
BY:
Shannon & Wilson
400 N. 34th Street, Suite 100
Seattle, WA 98103

(206) 632-8020
www.shannonwilson.com

GEOTECHNICAL ENGINEERING AND ENVIRONMENTAL REPORT

Cascade Mill Parkway, Phase 3 YAKIMA COUNTY, WASHINGTON

Submitted To: Sargent Engineers, Inc.

320 Ronlee Lane NW Olympia, WA 98502

Attn: Ms. Jessica Soward, PE, SE

Subject:

GEOTECHNICAL ENGINEERING AND ENVIRONMENTAL REPORT,

CASCADE MILL PARKWAY, PHASE 3, YAKIMA COUNTY, WASHINGTON

Shannon & Wilson prepared this report and participated in this project as a subconsultant to Sargent Engineers, Inc. Our scope of services was specified our proposal dated February 12, 2021, and executed via the Professional Services Agreement with Sargent Engineers, Inc., dated March 2, 2021.

We appreciate the opportunity to be of service to you on this project. If you have questions concerning this report, or we may be of further service, please contact us.

Sincerely,

SHANNON & WILSON

Oliver T. Hoopes, PE Associate

MXT:KXM:OTH:RAM/oth

1	Intr	Introduction1				
	1.1	1.1 General				
	1.2	Project Understanding and Description				
	1.3	Scope of Services				
2	Subsurface Explorations					
	2.1	2021 1	Explorations	3		
		2.1.1	Shannon & Wilson Borings	3		
		2.1.2	County Test Pits	4		
		2.1.3	WSDOT Test Pit	5		
	2.2	2017-	2018 Explorations	5		
	2.3	2014 1	Explorations	5		
3	Geo	technic	al Laboratory Testing	5		
4	Environmental Laboratory Testing			6		
	4.1	2021 1	Explorations	6		
	4.2	2014 and 2017 Explorations				
5	Gro	undwa	ter and Surface Water Measurements	7		
6	Geology and Subsurface Conditions			8		
	6.1	5.1 Geologic Setting				
	6.2	Subsurface Soil Conditions				
	6.3			10		
		6.3.1	2021 Explorations	10		
		6.3.2	2017-2018 Explorations	11		
		6.3.3	2014 Explorations	11		
7	Engineering Studies and Recommendations					
	7.1	Seismic Design Parameters and Hazard Evaluation				
		7.1.1	Ground Motions	12		
		7.1.2	Earthquake-Induced Geologic Hazards	12		
			7.1.2.1 Fault-Related Ground Rupture	12		
			7.1.2.2 Liquefaction	13		
	7.2 Yakima River Bridges			13		

	7.2.1	General		
	7.2.2	Subsurface Conditions		
	7.2.3	Pier Scour14		
	7.2.4	Drilled Shaft Axial Resistance		
	7.2.5	Lateral Resistance		
	7.2.6	Lateral Earth Loads on Abutment Walls		
	7.2.7	Abutment Global Stability		
7.3	Roady	vay Embankments		
	7.3.1	Global Stability		
	7.3.2	Settlement		
7.4	Storm	water Detention Pond21		
	7.4.1	Subsurface Conditions and Recommendations		
	7.4.2	Infiltration Evaluation		
7.5	Sign S	Structure and Street Light Foundations22		
7.6	Paven	nent Design23		
	7.6.1	Traffic Load		
	7.6.2	Subgrade Conditions		
	7.6.3	Pavement Section Recommendation24		
	7.6.4	Pavement Materials and Construction24		
	7.6.5	Frost Susceptibility		
7.7	Manh	oles and Vaults25		
7.8	Burie	d Utilities26		
Con	Construction Considerations			
8.1	General26			
8.2	Site P	reparation and Grading27		
8.3	Fill Pl	acement and Compaction27		
8.4	Temp	orary Shoring28		
8.5	Temporary Excavations29			
8.6	Drille	d Shafts30		
8.7	Obstructions 30			
8.8	Wet Weather Considerations30			

8

9	Limitations		
10	References3		
Exhi	bits		
Exhil	bit 1-1: A	erial Imagery Showing Recent Site Work West of I-82 (July 2021)2	
Exhil	bit 2-1: C	ounty Wood Waste Test Pit Findings4	
		hotograph of the Bank of the Yakima River Near the Proposed YRB East	
Exhil	bit 7-1: A	pproximate Extents of Scour Mitigation Measures15	
Exhil	bit 7-3: La	ateral Earth Pressure K Values for Surcharge Loads17	
Exhil	bit 7-4: Fa	actored Bearing Resistance for Proposed Wing Walls for Piers 1 and 519	
		ssumed MSW and Wood Waste Geometric Parameters for CMP Embankment	
West	t of I-82		
E' -			
Figu			
Figu		Vicinity Map	
Figu		Site and Exploration Plan (2 sheets)	
Figu	re 3:	Generalized Subsurface Profile A-A'	
Figu	re 4:	Generalized Subsurface Profile B-B'	
Figu	re 5:	Generalized Subsurface Profile C-C'	
Figu	re 6:	Seismic Design Response Spectra Site Class = D	
Figu	re 7:	Estimated Axial Shaft Resistance, Yakima River Bridge Pier 1, 6 Ft Diameter	
Figu	re 8:	Estimated Axial Shaft Resistance, Yakima River Bridge Pier 2, 10 Ft Diameter	
Figu	re 9:	Estimated Axial Shaft Resistance, Yakima River Bridge Pier 2, 10 Ft Diameter, with 100 Yr Scour	
Figu	re 10:	Estimated Axial Shaft Resistance, Yakima River Bridge Pier 2, 10 Ft Diameter,	
		with 500 Yr Scour	
Figu	re 11:	Estimated Axial Shaft Resistance, Yakima River Bridge Pier 3, 10 Ft Diameter	
Figu	re 12:	Estimated Axial Shaft Resistance, Yakima River Bridge Pier 3, 10 Ft Diameter, with 100 Yr Scour	
Figu	re 13:	Estimated Axial Shaft Resistance, Yakima River Bridge Pier 3, 10 Ft Diameter, with 500 Yr Scour	
Figu	re 14:	Estimated Axial Shaft Resistance, Yakima River Bridge Pier 4, 10 Ft Diameter	
Figu	re 15:	Estimated Axial Shaft Resistance, Yakima River Bridge Pier 4, 10 Ft Diameter, with 100 Yr Scour	
Fion	re 16·	Estimated Axial Shaft Resistance Yakima River Bridge Pier 4 10 Ft Diameter	

with 500 Yr Scour

Figure 17: Estimated Axial Shaft Resistance, Yakima River Bridge Pier 5, 6 Ft Diameter

Figure 18: Yakima River Bridge LPILE Parameters for Lateral Deep Foundation

Analysis

Figure 19: Recommended Surcharge Loading for Temporary and Permanent Walls

Figure 20: Loads on Buried Utilities

Appendices

Appendix A: Subsurface Explorations

Appendix B: Geotechnical Laboratory Test Procedures and Results

Appendix C: 2014 and 2017 Subsurface Data

Appendix D: Environmental Procedures and Testing Results

Appendix E: Groundwater Observations Appendix F: Global Stability Analyses

Important Information

AASHTO American Association of State Highway and Transportation Officials

ADT average daily traffic
BDM Bridge Design Manual
bgs below ground surface
CMP Cascade Mill Parkway

County Yakima County

CRBG Columbia River Basalt Group
CSBC crushed surfacing base course

Ecology Washington State Department of Ecology

EFW equivalent fluid weight ESAL equivalent single-axle load

EWC East-West Corridor

FEE functional evaluation earthquake

FS factor of safety

g standard acceleration of gravity

GRO gasoline-range organics

GDM Geotechnical Design Manual

H:V Horizontal to Vertical

HMA hot-mix asphalt I-82 Interstate 82

IDW investigation-derived waste

ksf kips per square foot

LRFD Load and Resistance Factor Design

mg/kg milligrams per kilogram

mm millimeter

MSW municipal solid waste
MTCA Model Toxics Control Act
pcf pounds per cubic foot
PIT Pilot Infiltration Test
psf pounds per square foot
SEE safety evaluation earthquake

SMMEW Stormwater Management Manual for Eastern Washington

SPT Standard Penetration Test
USBR U.S. Bureau of Reclamation
USGS U.S. Geological Survey
VWP vibrating wire piezometer

WSDOT Washington State Department of Transportation

YRB Yakima River Bridge

1 INTRODUCTION

1.1 General

This report presents the results of our geotechnical engineering and environmental studies for Phase 3 of the Cascade Mill Parkway (CMP) Phase 3 Project (Project) in Yakima County (the County), Washington. The location of the proposed CMP roadway alignment is shown in the Vicinity Map, Figure 1.

1.2 Project Understanding and Description

The CMP Project in Yakima County includes approximately 2.1 miles of a four-lane arterial that will connect the City of Yakima with Terrace Heights, an unincorporated area of the County. The Project is designed to improve traffic flow and includes at-grade and abovegrade roads, sidewalks, a shared bicycle/pedestrian path, undercrossing bridges beneath I-82, and a bridge over the Yakima River and the Roza Canal. Other Project improvements include illumination, sewer and potable water utilities, storm drainage, levee flood protection, floodplain restoration, and wetland/stream mitigation on the Yakima River east bank. The river levee to the east and south of the Yakima River Bridge (YRB) will be removed as a part of this Project. The river levee to the east and north of the bridge will be evaluated by a separate County project.

Phase 3 of the Project includes the proposed CMP alignment from west of North 15th Street. Key proposed Phase 3 elements addressed in this report include:

- The CMP Roadway Alignment, including the roadway prism, sign and luminaire foundations, and proposed buried utilities.
- A proposed roadway embankment supporting the CMP alignment, up to about 10 feet tall, west of the I-82 embankment.
- The YRB over the Yakima River and associated approach embankments and walls.
- YRB scour protection measures.
- A stormwater infiltration and detention pond north of CMP, between Interstate-82 (I-82) and the Yakima River.

Two proposed I-82 undercrossing bridges are also associated with Phase 3 of the CMP Project because they will be designed by the Washington State Department of Transportation (WSDOT) Bridge and Structures Office. The recommendations for these bridges are presented in a separate report.

Phases 1 and 2 included the at-grade portions of the alignment east of North 15th Street in Yakima. Geotechnical recommendations for Phases 1 and 2 are presented in our Final Design Geotechnical Engineering and Environmental Report, Stages 1 and 2, East-West Corridor Project, February 14, 2020 (Shannon & Wilson, 2020).

West of the I-82 embankment, the CMP alignment crosses land that was previously used as a lumber mill and then later as a municipal solid waste (MSW) landfill. The extent of this landfill location is indicated in Figure 2 with a dashed yellow line. We understand that as part of the Bravo Company Boulevard extension project, the City of Yakima has removed the MSW and wood waste material in that area down to native sand and gravel within the CMP footprint and replaced it with compacted granular fill. Exhibit 1-1 presents a July 2021 aerial image that was taken after the City of Yakima performed this work (Google Earth, 2021).

Exhibit 1-1: Aerial Imagery Showing Recent Site Work West of I-82 (July 2021)

Based on preliminary plans, we understand that in addition to replacing the MSW and wood waste, the City of Yakima also installed a zone of low permeability material around the perimeter of the replacement zone. We understand the purpose of this relatively low permeability zone is to reduce the potential that vapor from the remaining MSW would intrude into the newly placed granular material.

1.3 Scope of Services

Our scope of services included performing subsurface explorations, field and laboratory tests, and geotechnical, hydrogeologic, and hydraulic analyses to advance the Phase 3 portion of the CMP Project to final corridor design configuration. This report updates recommendations from the following reports we performed under previous contracts:

- Draft Geotechnical Engineering and Environmental Report, East-West Corridor Project Stage 3, Yakima County, Washington (January 8, 2020)
- Draft Hydraulics Report, Yakima East-West Corridor Project, FEMA No-Rise Study, Yakima County, Washington (January 2019)

The subsurface explorations and engineering performed incorporates and builds upon those presented in previous reports.

2 SUBSURFACE EXPLORATIONS

Shannon & Wilson performed subsurface exploration programs for the CMP Project in 2014, 2017, and 2021. Approximate locations of these explorations are shown in the Site and Exploration Plan (Figure 2).

Numerous explorations by others were performed in the area west of I-82, primarily to evaluate the depth of the MSW and wood waste within the CMP Project alignment. As noted in Section 1.2, the City of Yakima removed this material within the CMP alignment and replaced it with compacted granular fill. Therefore, we have not included logs of any of these explorations west of the I-82 embankment in this report.

2.1 2021 Explorations

Subsurface explorations completed for the project in 2021 included the following three programs:

- Seven borings by Shannon & Wilson in the I-82 embankment,
- Two test pits performed by the County in the footprint of a proposed stormwater detention pond, and
- One test pit completed by WSDOT in the I-82 embankment sideslope.

2.1.1 Shannon & Wilson Borings

Shannon & Wilson performed a subsurface exploration program in 2021 that included seven borings. These borings were completed between March and April 2021. The Site and

Exploration Plan, Figure 2, shows the approximate locations of the borings. Appendix A includes the description of field methods and procedures to perform the borings and detailed logs of the borings.

Six borings were advanced for the two I-82 undercrossing bridges. Four borings were performed at the proposed abutments (B-9-21, B-10-21, B-11P-21, and B-12P-21) and two borings were performed approximately 100 feet away from the abutments to assess conditions at the tieback locations (B-13-21 and B-14-21). The borings were drilled in the interior and exterior shoulders of I-82. We advanced the abutment borings to 100 feet below ground surface (bgs) and the tieback borings to 65 feet bgs. All borings were advanced using sonic core drilling methods. The borings extended through the I-82 embankment fill and into the underlying native soil.

One subsurface boring (B-15P-21) was advanced in the existing U.S. Bureau of Reclamation (USBR) levee. The boring was advanced to 40 feet bgs using sonic core drilling methods, and a well was installed in the borehole.

In situ vibrating wire piezometers (VWPs) and dataloggers were installed in two of the abutment borings, B-11P-21 and B-12P-21, and the USBR boring, B-15P-21. We collected over 12 months of daily groundwater data from the VWPs, from April 2021 to May 2022. The dataloggers were removed from the borings in May 2022. Plots of the groundwater observations are included in Appendix E.

2.1.2 County Test Pits

In 2021, the County performed two test pits within the footprint of the proposed pond, designated North Test Hole and South Test Hole. The locations of these test pits are shown in Figure 2. Our understanding of the depth of the wood as shown in Exhibit 2-1 is based on email correspondence with the County. Shannon & Wilson was not present during the excavation of these test pits. Exhibit 2-1 presents the County's findings at these test pits.

Exhibit 2-1: County Wood Waste Test Pit Findings

Test Pit Name	Depth (feet)	Description
North Test Hole	8	Top of wood waste
	9	Bottom of wood waste / top of river alluvium
	14	Bottom of pit (also in river alluvium)
South Test Hole	1	Top of wood waste
	13	Bottom of wood waste / top of river alluvium / bottom of pit

2.1.3 WSDOT Test Pit

WSDOT performed a test pit in May 2022 to evaluate stand-up time of the I-82 embankment material. Details on the stand-up test pit and a log can be found in Appendix A. The test pit log is shown in Appendix A.

2.2 2017-2018 Explorations

Shannon & Wilson performed three boreholes and one test pit for the East-West Corridor (EWC) Project Stage 3, designated B-1-17, B-2-17, and B-3-18, and TP-P1-17 (see Figure 2). The explorations west of the Yakima River were completed between July and September 2017, and boring B-3-18, located on a gravel bar in the Yakima River, was completed in September 2018. The 2017-2018 explorations are included in the Site and Exploration Plan, Figure 2.

The borings, designated B-1-17, B-2-17, and B-3-18, were advanced using sonic core drilling techniques to depths ranging from 40 to 140 feet bgs.

The test pit, designated TP-P1-17, was excavated to design a drainage facility. The test pit was excavated to 8.5 feet bgs using a backhoe provided by the County and observed by a Shannon & Wilson representative. A Pilot Infiltration Test was performed in TP-P1-17.

Boring and test pit logs and descriptions of field methods and procedures used to perform the borings and test pits are included in Appendix C.

2.3 2014 Explorations

Shannon & Wilson completed four borings, designated EWC-B-01-14 through EWC-B-04-14, along the Stage 3 portion of the EWC alignment between June and July 2014 as a part of the 30% design study. The 2014 explorations are included in the Site and Exploration Plan, Figure 2. The borings for the 30% design were drilled using sonic core drilling techniques to an approximate depth of 100 feet bgs. Boring logs and descriptions of field methods and procedures used to perform the borings are included in Appendix C.

3 GEOTECHNICAL LABORATORY TESTING

We performed geotechnical laboratory testing on select soil samples from the explorations performed by Shannon & Wilson to evaluate index and engineering properties. This laboratory testing included visual soil classification, moisture content determinations, grain-size analysis, and Atterberg Limits. Laboratory tests were performed by Shannon & Wilson in accordance with applicable ASTM standard test procedures. Appendix B provides

descriptions of the laboratory test procedures and the laboratory test results. Results are also presented graphically in the boring logs in Appendix A.

Appendix C provides descriptions of the laboratory test procedures and the laboratory test results from 2017-2018 and 2014 explorations.

4 ENVIRONMENTAL LABORATORY TESTING

We performed environmental laboratory testing on samples retrieved from the 2014, 2017, and 2021 explorations. Environmental testing was performed by others in the area west of I-82. However, as noted in Section 1.2, the City of Yakima removed the MSW and wood waste material within the CMP Project footprint in 2021. Therefore, environmental testing results from those explorations are not included or summarized in this report.

4.1 2021 Explorations

Soil samples were collected for environmental laboratory analysis from borings B-09-21, B-10-21, B-11P-21, B-13-21, B-14-21, and B-15P-21. The laboratory analysis was completed to assist in the disposal of investigation-derived waste (IDW) generated during the investigation and to provide environmental characterization of the soils that may be encountered during construction for worker health and safety purposes. The samples were screened for the potential of contamination using a photoionization detector and visual and olfactory observations. Soil samples were collected at depths where field indication identified the potential presence of contamination. In borings where no field indication of contamination was observed, samples were collected near the groundwater-soil interface.

Analytical laboratory test results identified heavy oil-range petroleum hydrocarbons and gasoline-range organics (GRO) similar to mineral spirits present in the soil in one of the borings completed for the Project. Several metals, including arsenic, barium, chromium, lead and selenium, were detected in samples collected from each of the borings. With the exception of the GRO detected, the heavy oil-range hydrocarbons and metals, including arsenic, barium, chromium, lead and selenium, were detected below available Washington State Department of Ecology (Ecology) Model Toxics Control Act (MTCA) Method A and B criteria (Ecology, 2013).

GRO was detected at a concentration of 1,030 milligrams per kilogram (mg/kg) in the 15.5-foot sample collected from boring B-10-21. The location of this sample is depicted graphically in Generalized Subsurface Profile B-B' (Figure 4). The detected concentration exceeds the Ecology MTCA Method A soil cleanup level for unrestricted land use of

100 mg/kg. Currently, we are unsure of the source of the contamination encountered in boring B-10-21 at that depth.

Additional information is provided in Appendix D, which includes descriptions of the soil sample screening, methodology, and IDW disposal, along with analytical data results of the samples collected during the 2021 investigation. Removal, handling, and disposal recommendations for the contaminated soil are provided in Section 8.9.

4.2 2014 and 2017 Explorations

Environmental laboratory analysis was performed on soil samples collected from borings completed during previous investigations, 30% phase borings EWC-B-01-14 through EWC-B-04-14 (2014) and borings B-1-17 and B-2-17 (2017), located west of the Yakima River. The samples were collected to assist with environmental characterization of the soil that may be encountered during construction of the Project and to assist in the disposal of generated IDW. The samples were screened for the potential of contamination using a photoionization detector and visual and olfactory observations. The soil samples in the 30% borings were collected near the groundwater interface.

Laboratory test results identified gasoline-range petroleum hydrocarbons, toluene, ethylbenzene, xylenes, diesel-range-petroleum hydrocarbons, lube-oil-range petroleum hydrocarbons, arsenic, chromium, lead, and cadmium in the soil sampled along the alignment. The identified contaminants were below the Washington MTCA Method A unrestricted cleanup criteria (Ecology, 2013).

Appendix D provides descriptions of the soil sample screening, methodology, and IDW disposal, along with analytical data results.

5 GROUNDWATER AND SURFACE WATER MEASUREMENTS

We measured groundwater levels in piezometers installed in the 2021, 2017-2018, and 2014 borings. Figures E-1 through E-8 in Appendix E present plots of surface and groundwater monitoring data for the Project. The 2021, 2017-2018, and 2014 borings with VWPs and groundwater monitoring wells are as follows:

2021: In situ VWPs and dataloggers were installed in borings B-11P-21 and B-12P-21. A monitoring well with a VWP was installed in boring B-15P-21. Figures E-1 through E-3 present the recorded groundwater elevation versus time, and daily precipitation and relative river level between January 2021 and June 2022. Precipitation data is from a National Oceanic and Atmospheric Administration weather station near downtown

Yakima. The relative river levels represent gage heights from the Yakima River, from the U.S. Geological Survey (USGS) river gauge at Union Gap, which is approximately 6 miles downstream from the Project site.

- 2017-2018: A monitoring well was installed in B-2-17. Figure E-4 presents the groundwater elevation versus time from November 2017 through September 2018.
- 2014: Monitoring wells and VWPs were installed in EWC-B-01-14 through EWC-B-04-14. Figures E-5 through E-8 present the recorded groundwater elevation versus time, and the area precipitation between July 1, 2014, and June 16, 2015. Precipitation data is from the Yakima Air Terminal.

The boring logs in Appendix A (2021) and Appendix C (2017-2018, 2014) show the groundwater elevations measured and the corresponding dates of record.

We utilized the VWP groundwater data for the final phase of analysis and design recommendations.

6 GEOLOGY AND SUBSURFACE CONDITIONS

6.1 Geologic Setting

The Project site is located near the western margin of the Columbia Basin geologic province, a lowland occupying the southern-central portion of Washington that is characterized by expansive plateaus, incised canyons, and east-west-oriented ridges.

Bedrock within the Columbia Basin is generally composed of the Miocene Columbia River Basalt Group (CRBG) and Tertiary sedimentary rock (Lasmanis, 1991). Basalt that comprises the CRBG accumulated between about 17 and 6 million years ago. While much of the CRBG is buried by younger sedimentary rock or unconsolidated deposits, it is well exposed in many areas, including near the Project site where the basalt has been relatively uplifted and exposed in roughly east-west-oriented anticlinal folds that comprise the Yakima fold and thrust belt. Presently active deformation in the fold and thrust belt began in the Miocene (McCaffrey and others, 2016).

Cataclysmic floods periodically inundated and scoured much of the Columbia Basin during the last glacial period (Norman and others, 2004; Bjornstad, 2006). Repeated failure of the ice dams resulted in numerous massive floods that flowed across much of eastern Washington and down the Columbia River. The floods eroded channels into bedrock and removed surficial soils in some areas, while leaving extensive deposits of gravel, sand, and silt in others (Norman and others, 2004; Bjornstad, 2006).

Constrictions along the path of glacial floods resulted in the formation of temporary lakes and the accumulation of relatively fine-grained slack-water deposits in some areas (Bjornstad, 1980). The wind-deposited loess and dune deposits covering much of the western Columbia Basin were commonly derived from the reworking of these flood and slack-water deposits. Loess deposits are locally as much as 250 feet thick (Norman and others, 2004). The loess and slack-water deposits are exposed on the higher topography encompassing the east-west ridges near the Project site.

Surficial deposits of the CMP area consist of Holocene alluvium along the active Yakima River channel and Pleistocene terrace deposits at slightly higher elevations along the margins of the channel (Bentley and others, 1993; Schuster, 1994). The terrace deposits may extend to about 30 feet above the modern Yakima River floodplain.

6.2 Subsurface Soil Conditions

This section describes the geologic soil units encountered by boreholes along the CMP alignment. The geologic unit descriptions are described below and are shown in the boring logs presented in Appendices A and C. A generalized subsurface cross section along the CMP roadway alignment is presented in Figure 3, and generalized cross sections oriented approximately orthogonal to the alignment are presented in Figures 4 and 5.

The soil units encountered in the project explorations include Holocene Fill (Hf), Loess Deposits (Ql), and Alluvial Deposits (Qa). Terrace deposits from the Yakima River are undifferentiated from Qa. Descriptions of these units follow:

- Holocene Fill (Hf) Hf generally consists of anthropogenically placed silty gravel with variable sand content and local cobbles. Where present, subsurface explorations encountered up to 50 feet of Hf with variable angularity, density, moisture, and plasticity. Hf deposits appear to be largely derived from the local native Qa deposits.
- Wood Waste and Municipal Solid Waste (MSW) West of I-82 Within the former Cascade Mill property, MSW and wood waste were encountered in previous borings from grade to about 14 feet bgs and shown as Hf-Landfill in Figure 3.
 - As noted in Section 1.2, the City of Yakima removed the MSW and wood waste within the CMP Project footprint west of the I-82 embankment.
 - No MSW and no significant wood waste were encountered within the I-82 embankment in the 2021 explorations; however, trace amounts of wood fragments were observed in several locations.
- Wood Waste East of I-82 Between I-82 and the Yakima River, wood waste was encountered up to about 13 feet bgs in test pits as measured by the County in 2021.

Alluvial Deposits (Qa) – Qa generally consists of medium dense to dense, poorly sorted gravel with silt, sand, and cobbles to silty gravel with sand. The relative density interpreted from the Standard Penetration Tests (SPTs) may be overestimated due to the presence of gravel and cobbles. The subsurface explorations encountered Qa at the ground surface and underlying the Hf deposits. The Qa deposits are characterized by the presence of silty interbeds to 1 foot thick, and clay is commonly encountered in the matrix of gravel deposits. From our experience nearby, we anticipate that the matrix in the gravel and cobbles will vary widely from coarse sand to clayey, silty sand. Boulders are also likely present in the Qa material based on our observations of the surface the Yakima River channel and banks (see Exhibit 6-1).

Exhibit 6-1: Photograph of the Bank of the Yakima River Near the Proposed YRB East Abutment

6.3 Groundwater Conditions

6.3.1 2021 Explorations

Groundwater levels vary with the time of year at the site and depend on the amount of precipitation and irrigation. We recorded groundwater levels via in situ VWPs for B-11P-21, B-12P-21, and B-15P-21.

2009 and 2011 reports from SLR International Corporation described the subsurface conditions at the abandoned Cascade Mill landfill site. In the documents, SLR reports that the groundwater could fluctuate from about 8 feet bgs in the summer months to about 20 feet bgs in the winter months at the landfill site. The Yakima River strongly influences groundwater levels close to the river.

We recorded the following groundwater elevation between April 7, 2021, and May 22, 2022:

• I-82 Roadway/Embankment: Approximate elevation 1038 to 1043 feet

A groundwater elevation of 1043 feet was used for I-82 analyses and design recommendations. Plots of the groundwater level readings are included in Appendix E.

6.3.2 2017-2018 Explorations

We recorded groundwater levels via a well transducer in boring B-2-17. We recorded the following groundwater elevations between November 2017 and September 2018:

B-2-17: Approximate elevation 1038 to 1044 feet

A plot of the observation well readings is included in Appendix E.

6.3.3 2014 Explorations

We recorded the following groundwater depths between July 17, 2014, and June 10, 2015:

- Cascade Mill Site: Approximately 12 to 19 feet bgs (elevation 1038 to 1045 feet)
- Adjacent to the Yakima River: Approximately 12 to 15 feet bgs (elevation 1041 to 1045 feet)

Plots of the groundwater level readings are included in Appendix E.

7 ENGINEERING STUDIES AND RECOMMENDATIONS

The geotechnical engineering recommendations and conclusions presented in the following sections are for the YRB and part of the CMP Phase 3 Project. We understand that the roadway alignment and bridges will be designed in accordance with the 2022 WSDOT Geotechnical Design Manual (GDM) (WSDOT, 2022b) and the American Association of State Highway and Transportation Officials (AASHTO, 2020) Load and Resistance Factor Design (LRFD) Bridge Design Specifications, 9th Edition. The recommendations and conclusions herein are based on information from field explorations, in situ testing, and laboratory testing performed for this project, and our understanding of the project.

7.1 Seismic Design Parameters and Hazard Evaluation

7.1.1 Ground Motions

We understand that the seismic design of the Project will be in accordance with the WSDOT Bridge Design Manual (BDM) (WSDOT, 2022a). The BDM specifies two design level earthquakes, the functional evaluation earthquake (FEE) and the safety evaluation earthquake (SEE). The FEE seismic design parameters are based on design ground motions with a 30% probability of exceedance in 75 years (210-year return period) and the SEE seismic design parameters are based on design ground motions with a 7% probability of exceedance in 75 years (975-year return period). We understand the proposed YRB is considered a "Normal" structure and, therefore, only the SEE is applicable for design. Seismic design parameters presented in this report are based on the SEE earthquake.

The site soil response factors are based on determination of the site class definitions as presented in the BDM. The Washington Division of Geology and Earth Resources Site Class Map of Yakima County (Palmer and others, 2004) shows that the site could be classified as Site Class C or D. Based on the description of the subsurface conditions encountered in nearby explorations and our understanding of the site geology, we recommend that the site be classified as Site Class D. We note that although the SPT blow counts in the Hf and Qa deposits are typically above 50 blows per foot, they likely are not representative of the soil relative density due to the presence of gravel, cobbles, and boulders.

The design response spectrum corresponding to the design ground motion is shown in Figure 6.

7.1.2 Earthquake-Induced Geologic Hazards

Earthquake-induced geologic hazards that may affect a given site include fault-related ground rupture, liquefaction, and liquefaction-related effects, such as loss of shear strength, bearing capacity failures, loss of lateral support, ground oscillation, and lateral spreading. An associated effect of earthquake shaking is densification of the soil and potential ground surface settlement.

7.1.2.1 Fault-Related Ground Rupture

The USGS U.S. Quaternary Fault Map does not show faults mapped within the CMP site area. The closest known faults are the east-west trending Ahtanum Ridge and Rattlesnake Hills structures, which are approximately 5½ miles south of the proposed alignment. Based on these fault locations, it is our opinion that the risk of fault-related ground rupture at the site is low.

7.1.2.2 Liquefaction

Liquefaction of loose, saturated, and cohesionless soil occurs when excess pore pressure is generated as a result of earthquake shaking. Liquefaction potential has been studied for more than 50 years, resulting in analytical methods based on laboratory and field procedures. The most widely used methods are empirical and based on correlations between SPT measurements (N-value), peak ground acceleration, and earthquake magnitude. Based on the analyses, we consider the potential for liquefaction and the associated effects (e.g., loss of shear strength, bearing capacity failures, loss of lateral support, ground oscillation, and lateral spreading) along the CMP alignment to be low.

7.2 Yakima River Bridges

7.2.1 General

Drilled shafts were selected as the preferred foundation system for the proposed YRB. The locations of these proposed bridges are shown on sheet 2 of the Site and Exploration Plan (Figure 2). The following sections provide the recommendations for scour, axial and lateral resistance of drilled shafts, lateral earth loads on abutment walls, and abutment global stability for the YRB.

We understand the structural design team have selected 6-foot-diameter drilled shafts for the abutment piers (Piers 1 and 5) and 10-foot-diameter drilled shafts for Piers 2 through 4.

7.2.2 Subsurface Conditions

Our interpretation of the subsurface conditions for the YRB is presented in sheet 2 of Profile A-A' (Figure 3). We based our interpretation on borings EWC-B-03-14, B-3-18, and EWC-B-04-14. The borings encountered native gravel with sand and cobbles and varying amounts of silt (Qa). Although these three borings did not encounter boulders, abundant cobbles and boulders are visible along the Yakima River channel bottom and banks (see Exhibit 6-1). Therefore, we anticipate the Qa geologic unit in this area likely contains scattered boulders and therefore, the Contractor should be prepared to encounter boulders in the drilled shaft excavations.

The SPT blow counts in the Qa deposit were very high. However, we consider the relative density interpreted from the SPTs to be overstated due to the presence of gravel and cobbles. Therefore, for engineering purposes we consider the Qa deposit to be medium dense to dense, rather than very dense.

7.2.3 Pier Scour

Based on the hydraulic analyses, we estimate pier scour will occur at YRB Piers 2 through 4. Detailed scour recommendation designs are presented in the Hydraulics Report for the Project (Shannon & Wilson, in press). This section summarizes the scour findings and conclusions from that report.

Pier scour occurs when waters flow into a pier and diverges both up and down, as well as around the sides of the pier. Due to the orientation of the Yakima River side channel and proposed removal of the existing levee east of Pier 5 (the east abutment), Yakima River could scour away the material around and behind the Pier 1 shafts if scour mitigation measures are not implemented there. Therefore, we recommend installing scour protection measures for the east abutment.

Design pier scour configurations for 100- and 500-year flood events are presented in sheet 2 of Profile A-A' (Figure 3).

To protect the east abutment from scour up to the 100-year flood event, we recommend installing a launchable riprap blanket around the east abutment in a "U" configuration footprint as shown in Exhibit 7-1. The proposed cross-sectional configuration of the placed and launched configurations of this blanket are shown in Profile A-A' (Figure 3). Gradation and sizing details for the riprap blanket are provided in the Hydraulics Report.

Construction of the riprap blanket will require an excavation of up to about 18 feet deep. The location of this excavation would be west of the proposed abutment but outside of the wetted perimeter of the channel. Temporary shoring may be necessary to complete this excavation. Sections 8.4 and 8.5 provided construction considerations for temporary shoring and excavation recommendations, respectively.

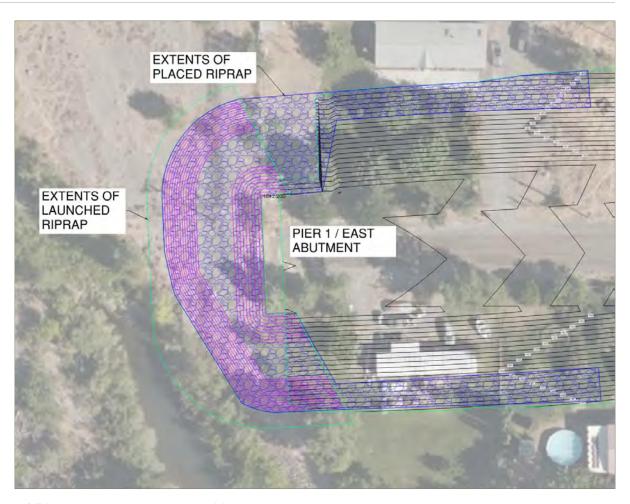


Exhibit 7-1: Approximate Extents of Scour Mitigation Measures

7.2.4 Drilled Shaft Axial Resistance

Drilled shaft axial resistance is a function of shaft diameter, embedment length, subsurface conditions, scour depth, and installation techniques.

Based on discussions with the design team, Piers 1 and 5 will be constructed with 6-foot-diameter drilled shafts, while Piers 2 through 4 will be constructed with 10-foot-diameter drilled shafts. Figures 7 through 17 present the results of the axial resistance analyses for service, strength, and extreme event limit states for 6- and 10-foot-diameter drilled shafts for Piers 1 through 5. The plots present nominal side and base resistance and factored total compressive resistance using the WSDOT GDM (WSDOT, 2022b) guidelines and AASHTO (2020) LRFD resistance factors. The figures show the assumed subsurface conditions based on soil conditions encountered in nearby borings.

7.2.5 Lateral Resistance

The computer program LPILE may be used to generate p-y curves (load-deflection curves) for the lateral resistance analysis of the drilled shafts and to calculate the magnitude of deflection, shear, and moment along the shaft. Figure 18 presents the recommended soil parameters for input into LPILE considering unscoured and scoured conditions.

We recommended a "Soft Clay" soil model with close to zero strength and stiffness for the scour zone for the 100-year flood scour case. Soil will not be present in this zone during the scour event, we anticipate the soil below the scour zone will not experience a significant change in overburden stress. The intent of this "zero strength" soil layer is to maintain the same overburden stresses between pre-scour and post-scour cases.

The proposed location of the YRB east abutment (Pier 5) is behind an existing levee. We assume that these levees will be properly maintained and repaired as needed following flood events. We also assume that recommended scour protection measures (as described in Section 7.2.3) will be installed at the east abutment. Under these assumptions, we do not consider the abutments susceptible to pier scour and therefore the lateral resistance analyses for the abutment shafts do not need to consider scour effects.

To account for group effects, the recommended soil parameters in Figure 18 should be adjusted using the P-multipliers summarized in Section 8.13 of the WSDOT Geotechnical Design Manual (2022b) and Sections 10.7.2.4 and 10.8.2.3 of the AASHTO LRFD (2020). These efficiency factors should be used in lateral resistance analyses of deep foundation groups.

7.2.6 Lateral Earth Loads on Abutment Walls

We understand the YRB abutments will include cast-in-place concrete stem walls above the drilled shafts and pile cap. These stem walls will retain the soil behind the abutment and these walls must be designed to resist lateral earth pressures.

Lateral earth pressures against walls are dependent upon many factors, including method of backfill placement and degree of compaction, backfill slope, surcharges, the type of backfill and/or adjacent native soil, drainage provisions, and whether or not the wall or structure can yield or deflect laterally or rotate at the top after or during placement of backfill or during and after excavation. For walls that are capable of deflecting at least 0.001 times the wall height, active lateral earth conditions govern the applied pressures. For walls or structures that are not allowed to move 0.001 times the wall height, at-rest lateral earth pressure conditions govern. Our lateral earth pressure recommendations in the form of

equivalent fluid weight (EFW) are presented in Exhibit 7-2. These recommendations assume active earth pressure conditions.

Exhibit 7-2: Recommended EFWs for Active Earth Pressure Conditions

	EFW
Design Condition	(pounds per cubic foot)
Static	34
Seismic	42

The recommendations for the lateral earth pressures in Exhibit 7-2 include static and seismic lateral earth pressure EFW. These should be applied as triangular pressure distributions. We note that the seismic EFW in Exhibit 7-2 includes both static and seismic components.

The seismic lateral earth pressures provided are consistent with a pseudo-static analysis using the Mononobe-Okabe equation for lateral earth pressures and include a horizontal seismic coefficient of 0.11. We used a horizontal seismic coefficient equal to one-half of the site design ground acceleration, As, of 0.21g (Figure 6) for the Site Class D SEE ground motion level. One-half the As is used because the full As is experienced only a few times within the record of earthquake shaking, and the actual earthquake ground motion is cyclic in nature, not static.

Lateral earth pressures due to surcharge loads should be added to the recommended lateral earth pressures, where appropriate. Recommended lateral pressures due to surcharge loads are presented in Figure 19. We recommend using the following lateral earth pressure coefficients, K values, in conjunction with Figure 19 (see Exhibit 7-3):

Exhibit 7-3: Lateral Earth Pressure K Values for Surcharge Loads

Design Condition	K Value
Static	0.26
Seismic	0.34

Unless included as a surcharge load on the wall, excavated material, fill embankments, stockpiles, and/or equipment and vehicle traffic should be placed and routed away from the top edge of the wall, no closer than a distance equal to the wall height.

The lateral earth pressure recommendations assume the walls are backfilled with properly compacted, free-draining aggregate. WSDOT Standard Specifications provide gradation criteria for wall backfill materials. The wall backfill should consist of Gravel Backfill for Walls as specified in Standard Specification Section 9-03.12(2) (WSDOT, 2021).

7.2.7 Abutment Global Stability

We performed global stability analyses for the YRB east and west abutments. The global stability analysis approach and results are presented in Appendix F. In summary, the analyses indicate that the proposed abutments will achieve an adequate factor of safety (FS) against global instability for both static and seismic cases.

As noted in Section 7.2.3, we recommend a launchable riprap blanket be constructed at the YRB east abutment to mitigate scour. For the global stability analyses, we assumed the fully launched, post-scour condition (see Profile A-A, Figure 3) to represent long-term static conditions for these analyses.

7.2.8 Wing Walls

We understand the wing wall at Piers 1 and 5 will consist of cast-in-place concrete cantilever walls and that Sargent intends to design them using WSDOT standard plans. Based on the available subsurface data at the abutments, we consider the geotechnical conditions at the proposed wing walls to meet the design assumptions for WSDOT standard plan walls.

Exhibit 7-4 presents recommended bearing resistances for various footing widths. The bearing resistance curves presented in this exhibit incorporate the following resistance factors:

Service Limit State: 1.0

Strength Limit State: 0.45

Extreme Limit State: 0.9

We assumed that the bottom of the footing was at least 2 feet bgs and that the ground surface has a slope of 5 Horizontal to 1 Vertical (5H:1V) or shallower.

Our wing wall bearing resistance analyses assume the footing subgrades are prepared in accordance with Section 8.2.

We consider our global stability analyses for Piers 1 and 5 (see Section 7.2.7 and Appendix F) to apply to the wing walls. This determination is based on the following:

- The wing walls connect to the abutment walls and we consider them to have the same subsurface conditions.
- The wing walls and abutment walls will be backfilled using the same fill material and compaction methods.
- We did not include the bridge shafts in our abutment global stability analyses.
- The ground surface slope in front of the wing walls is shallower than at the abutments.

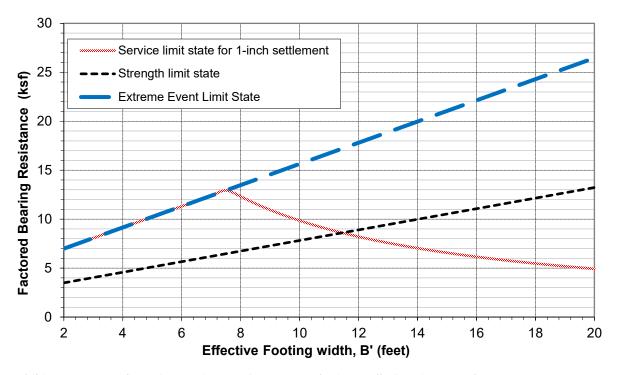


Exhibit 7-4: Factored Bearing Resistance for Proposed Wing Walls for Piers 1 and 5

7.3 Roadway Embankments

We understand the following roadway embankments are proposed for the Project that will support the CMP roadway:

- YRB approach embankments leading up to both abutments.
- An approximately 10-foot-tall fill embankment west of the I-82 embankment.

Based on preliminary plans, we understand these embankments will consist of unreinforced soil slopes constructed at 3H:1V sideslopes.

As indicated in Profile A-A' (Figure 3), MSW and wood waste were encountered near the ground surface on both sides of I-82. As noted in Section 1.2, we understand the area west of I-82 was a former City of Yakima landfill and before that the entire area west of the Yakima River in the vicinity of the EWC alignment was part of a timber mill (Cascade Mill). However, we understand that in 2021, the City of Yakima, as part of the Bravo Company Boulevard extension project, removed the MSW and wood waste west of the I-82 embankment and replaced it with compacted granular fill.

Based on our review of the preliminary plans and as-built data for the City of Yakima's MSW and wood waste removal effort and the CMP Project plans, we have assumed the geometric configuration shown in Exhibit 7-5 for the roadway embankment analyses.

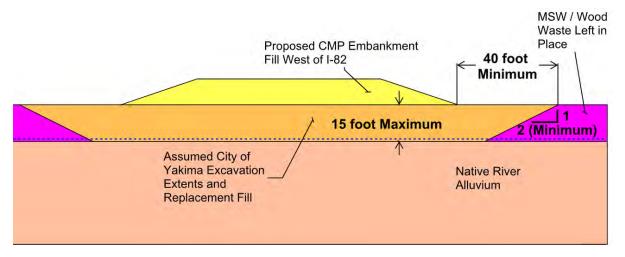


Exhibit 7-5: Assumed MSW and Wood Waste Geometric Parameters for CMP Embankment West of I-82

Between the Yakima River and I-82, we estimate up to about 13 feet of wood waste are present based on the test pits performed by the County (North Test Hole and South Test Hole) and TP-P1-17. We understand that prior to the construction of the YRB approach embankment, the County intends to remove the wood waste within the CMP footprint as well as underneath the proposed stormwater detention pond north of the CMP roadway between I-82 and the Yakima River. Therefore, for the approach embankment analyses we assumed that all the wood waste will be excavated and the resulting subsurface conditions will consist of compacted granular fill underlain by native river alluvium.

7.3.1 Global Stability

We performed global stability analyses for the proposed roadway embankments. The global stability analysis approach and results are presented in Appendix F. In summary, the analyses indicate that the proposed approach embankments will achieve an adequate FS against global instability for both static and seismic cases.

7.3.2 Settlement

Based on the analyses, we anticipate settlements of the roadway embankments up to about 2 inches may occur. This estimated settlement assumes:

- The County removes all the wood waste within the CMP footprint between I-82 and the Yakima River, and
- The City of Yakima removed and replaced the MSW and wood waste west of the I-82 embankment consistent with the assumptions shown in Exhibit 7-5.

Assuming the foundation soil beneath the proposed approach embankments consists of granular material (sand and gravel), we expect this settlement to occur as the embankment

material is placed. We anticipate long-term settlements of the approach embankments will be negligible.

7.4 Stormwater Detention Pond

We understand that a proposed stormwater detention pond will be constructed as part of the Project north of the CMP roadway between I-82 and the Yakima River.

7.4.1 Subsurface Conditions and Recommendations

As noted above and described in Exhibit 2-1, wood waste is present in the area of the proposed pond. In our opinion, wood waste is not suitable for the foundation material or sidewalls of a detention pond and should be removed prior to constructing the pond.

We performed one Pilot Infiltration Test (PIT) in test pit TP-P1-17 in 2017. TP-P1-17 is located about 100 feet east of the proposed pond. The log of TP-P1-1, presented as Figure C-9 in Appendix C, shows that abundant wood debris was encountered in the upper 6 feet of this test pit with material consistent with native alluvium from 6 to 8.5 feet bgs.

In our opinion, the subsurface conditions within TP-P1-17 are similar to those that at the proposed pond area, assuming the wood waste is removed down to the native river alluvium below. We anticipate removal of wood waste will require an excavation of up to about 14 feet deep within the footprint of the pond. For pond slope stability, we recommend removing the wood waste at least 5 feet beyond the crest of the pond slopes.

Temporary excavation stability is the responsibility of the Contractor. For planning purposes, we assume that the sideslopes may need to be cut at 2H:1V or shallower. The Contractor may also elect to use temporary shoring. Sections 8.4 and 8.5 provided construction considerations for temporary shoring and excavation recommendations, respectively.

7.4.2 Infiltration Evaluation

We estimated long-term design infiltration rates for the proposed stormwater detention pond using the results of the PIT conducted in test pit TP-P1-17. This PIT was performed in a subsurface profile that included wood waste on the sidewalls and native alluvium in a portion of the sidewalls and in the bottom of the PIT excavation.

In addition to the infiltration rate estimated from the PIT, we used empirical correlations to grain-size analysis data for comparison purposes. Both PIT and grain-size analysis-based infiltration rate estimation methods result in short-term rates. We estimated the long-term design infiltration rates by applying correction factors to the short-term infiltration rates.

Appendix C describes the PIT procedure and methods for estimating the long-term design infiltration rates using the results of the PIT and grain-size distributions. The grain-size distribution curves are shown in Appendix C.

Tables C-1 and C-2 provide estimated short-term and long-term design infiltration rates. As indicated in these tables, the PIT infiltration rate results were higher compared to the empirical correlations. Based on the range of infiltration rates we obtained, we recommend using a design infiltration rate of 10 inches per hour for the proposed pond near test pit TP-P1-17. This design value assumes native alluvium material is present at the base of the pond. If new fill is placed at the bottom of the wood waste excavation within the pond footprint to raise the pond bottom grade, we assume this fill will have a similar gradation and density of the native alluvium. Although lower values were obtained based on several of the empirical grain-size distribution-based infiltration rate estimates (Table C-2) obtained from sand and gravel samples, we consider the PIT to be more representative of the likely infiltration rate behavior at TP-P1-17. Therefore, the design infiltration rate recommendation is weighted toward the PIT-based results.

The long-term design infiltration rates presented in this report meets the requirements for flow control for the Ecology Stormwater Management Manual for Eastern Washington and the Yakima County Regional Stormwater Manual. The design infiltration rates are for flow control only and assume a pretreatment system will be used to meet water quality requirements. Both the SMMEW and the Yakima County Regional Stormwater Manual require a maximum infiltration rate of 2.4 inches per hour for infiltration systems designed to meet treatment standards. The base of the proposed infiltration systems should be a minimum of 5 feet above the seasonally high groundwater level. Based on available data from piezometers installed in the EWC-B-02-14 and B-2-17 boreholes, we estimate the seasonally high groundwater level near the proposed pond to be elevation 1044 feet. See Appendix E for piezometer data.

7.5 Sign Structure and Street Light Foundations

New sign and street light structures may be installed within the CMP alignment. Based on our understanding of the locations of these structures, their foundations will be installed within either engineered YRB approach embankment fill or engineered granular fill installed within the zone where the wood waste will be removed. As such, we recommend designing sign and street light foundations for the Project using WSDOT standard foundations.

Per WSDOT GDM Section 17.2.1 (WSDOT, 2022b), WSDOT standard foundation designs for cantilever signals, strain poles, cantilever signs, sign bridges, and luminaires are based on

allowable lateral bearing pressures and soil friction angles developed from correlation. We recommend using an allowable lateral bearing pressure of 3,500 pounds per square foot (psf), and a friction angle of 36 degrees for new, engineered compacted granular borrow fill installed for this project and for the underlying native alluvial sand and gravel.

7.6 Pavement Design

We performed pavement analyses using the AASHTO (1993) method for flexible pavement design. The AASHTO method is a widely used empirical design procedure for the design of pavement structures. It considers strength of the base course materials, traffic stresses, and the strength of the pavement subgrade. We understand design life for the proposed CMP pavement is 50 years.

7.6.1 Traffic Load

Average daily traffic (ADT) counts, including heavy trucks, were provided to us in 2017 for a previous phase of the project. Based on discussions with the design team, we understand the pavement design parameters, including ADT, have not changed.

The ADT is estimated at 11,510 vehicles per day in the eastbound direction and 7,930 vehicles per day in the westbound direction. The Project design team estimated that the passenger cars and other light-duty vehicles make up 98% of the traffic loading, with the remaining 2% being made up of heavy truck traffic. We converted the traffic volumes into equivalent single-axle loads (ESALs) by using equivalent axle load factors provided in the Asphalt Institute manual (Asphalt Institute, 1991) and guidance provided in the AASHTO Design of Pavement Structures (AASHTO, 1993). The Asphalt Institute manual provides percentages of truck types that make up traffic for different function classifications of roads.

The Project design team identified the functional classification for the proposed EWC as Urban Principal. We used Table IV-1 in the Asphalt Institute manual to estimate the distribution of heavy traffic for an Urban Principal roadway. The Project design team also provided growth rates of approximately 2.6% from the design year to 2035 and 1.5% from 2035 to 2067. Based on the analysis of the existing and projected traffic conditions, we estimate that approximately 1.8 million ESALs will be subjected to the roadway over the planned 50-year design life.

7.6.2 Subgrade Conditions

We understand the proposed CMP pavement will be installed on either engineered YRB approach embankment fill, engineered granular fill installed within the zone where the

wood waste will be removed, engineered granular fill in the portion that was formerly occupied by the City landfill, or medium dense to dense, native alluvial sand and gravel.

For the pavement design analyses, we assumed embankment fill would consist of WSDOT Common Borrow as specified in Section 9-03.14(3) of the WSDOT Standard Specification (WSDOT, 2020). Placement and compaction of the embankment fill required to raise the grade is discussed in Section 8.3. In areas where the roadway will be constructed on native soils, the area underlying the proposed roadway section should be stripped to remove loose, soft, or disturbed soil, old fill, and organic materials/soils and debris. The subgrade should be graded to its design grade, smoothed, and compacted to 95% of the Modified Proctor maximum dry density (ASTM D1557) and to a dense and unyielding condition.

We recommend proof rolling the pavement subgrades prior to installing the pavement sections. Proof rolling should be observed by a geotechnical engineer and should be performed by rolling over the subgrade with a fully loaded standard dump truck. Loose or soft subgrade soil identified during proof rolling by excessive rutting or pumping should be compacted to a dense, unyielding condition or removed and replaced with at least 2 feet of compacted embankment fill as presented in Section 8.3.

We assumed an average subgrade resilient modulus of 15,000 pounds per square inch for both compacted embankment fill and compacted native granular soils. Drainage should be provided below crushed surfacing base course (CSBC) layers to mitigate saturation of the CSBC and subgrade soils.

7.6.3 Pavement Section Recommendation

The proposed pavement types include hot-mix asphalt (HMA) for the roadway and intersections. We calculated the pavement layer thicknesses using the AASHTO (1993) pavement design method. Based on the analysis results including frost susceptibility conditions described below, we recommend the flexible pavement section consist of a minimum of 6 inches of HMA underlain by 9 inches of CSBC material for a total structural pavement thickness of 15 inches.

7.6.4 Pavement Materials and Construction

The HMA, CSBC, and gravel base layers should be constructed in accordance with current WSDOT Standard Specifications for Road, Bridge, and Municipal Construction (WSDOT, 2021). HMA should conform to Section 5-04 in the WSDOT Standard Specifications. Aggregate for HMA should meet Section 9-03.8 requirements for HMA subjected to between 0.3 and 3 million ESALs.

7.6.5 Frost Susceptibility

Frost-susceptible soil is regarded as having greater than 3% finer than 0.02 millimeter (mm). Soil with a fines content not exceeding 7% passing the No. 200 sieve, based on the minus ¾-inch fraction, can normally be expected to have 3% or less finer than 0.02 mm. Based on the grain-size analyses presented in Appendices D and E, it is our opinion that the on-site soil is frost susceptible and has near-surface fines content ranging from about 2 to 60%. According to the WSDOT Everseries User's Guide (WSDOT, 2005), the frost depth in the Yakima area is about 30 inches in fine-grained soil and 55 inches in coarse-grained soil. Fine-grained soil is defined as having 50% or more passing the No. 200 sieve. The measured frost depth during the cold winters of 1949 and 1950 was about 25 to 30 inches in the Yakima area. Based on this information, we recommend assuming a frost depth of 30 inches.

Pavement can be designed for frost protection by providing a pavement section that is equal to or thicker than half of the anticipated frost depth in accordance with the WSDOT Pavement Policy (2015). The pavement section includes pavement and non-frost-susceptible granular base materials. In our opinion, the minimum recommended pavement section should provide adequate frost protection.

7.7 Manholes and Vaults

We understand that concrete manholes and vaults will be installed for belowgrade utilities along the alignment. We recommend the unyielding, precast concrete manholes and vaults be designed to resist an at-rest lateral earth pressure using an EFW applied as a triangular distribution. The recommended EFWs provided below are based on the assumption that a well-compacted Select Borrow fill will be placed around the concrete structures. Based on the groundwater observations obtained from EWC explorations, we assume that some of structures may extend below the groundwater elevation.

- EFW above groundwater 54 pounds per cubic foot (pcf)
- EFW below groundwater 92 pcf (includes hydrostatic pressure)

The EFW below groundwater includes hydrostatic pressure. Unbalanced lateral loads may be resisted through friction along the base of the manholes and vaults. We recommend concrete manholes and vaults be designed using a nominal coefficient of friction of 0.4 for soil against precast concrete. We recommend applying a resistance factor of 0.9 to this nominal coefficient of friction.

7.8 Buried Utilities

Figure 20 presents the geotechnical recommendations regarding loading on rigid buried pipelines caused by overburden soils (Case A and Case B) and H-20 live traffic loads (Case C). The H-20 live traffic loads shown in Case C should be added to the overburden loads for portions of the alignment within proposed or future road right-of-way to obtain the total design load for the pipeline. We recommend using steel plates to distribute temporary loads if construction traffic loads could exceed the H-20 design traffic loads, and/or where the pipeline is not designed for H-20 loading. We recommend using a backfill unit weight of 130 pcf for pipeline overburden load calculations.

We developed recommendations for modulus of soil reaction (E') values for use in the reclamation equation (Howard, 1996) for pipe design. The modulus values are based on the soil encountered in explorations, the trench backfill that we expect to be specified, and recommendations made in Howard (1996). For the buried utility pipelines along the roadway alignment, we recommend using an E' value of 1,500 kips per square foot (ksf) for the embedment material. This value assumes the pipe is embedded in Gravel Backfill for Pipe Zone Bedding as specified in the WSDOT Standard Specification, Section 9.03.12(3) (WSDOT, 2021) and that the material is compacted to at least 95% of its Modified Proctor maximum dry density (ASTM Designation D1557). For the purpose of calculating a composite E' that represents the embedment material and the trench walls, we recommend using an E' value of 1,500 ksf for the in situ gravel trench walls.

The recommended E' values are based on subsurface conditions in explorations that are several hundred feet apart. Variable subsurface conditions would likely be encountered between these explorations. The pipeline designer should consider this variability when selecting pipe type and properties.

8 CONSTRUCTION CONSIDERATIONS

8.1 General

The applicability of the design recommendations provided in this report is contingent on good construction practice. Poor construction techniques may alter conditions from those on which our recommendations are based, possibly resulting in unfavorable conditions, such as reduced foundation resistance, higher earth pressures, and increased settlement. The following sections present additional construction and material considerations for this Project.

8.2 Site Preparation and Grading

Clearing and grubbing beneath the proposed CMP alignment should be done in accordance with Section 2-01 of the WSDOT Standard Specifications (WSDOT, 2021). The alignment footprint should be cleared of trees, brush, and existing fill or debris. The area should be grubbed of stumps and large roots, and stripped of topsoil and underlying soil, which contains roots or other objectionable debris and organic matter. We recommend that organic-rich soil be removed from the site or stockpiled for reuse in landscape areas.

We assume any wood waste beneath these proposed features will be completely removed and replaced with reinforced, compacted structural fill. The areal and vertical extent of this excavation, as well as environmental considerations, are being prepared by others.

After clearing and grubbing, and prior to any fill placement, the exposed soil surface should be compacted using a heavy vibratory roller (10-ton or heavier static weight). Native subgrade soils should be proof-rolled and, if necessary, compacted to achieve at least 95% of the Modified Proctor maximum dry density (ASTM D1557). The proof-rolling operations should consist of several passes of a fully loaded dump truck to identify potential loose, soft, and/or yielding areas. Loose or soft subgrade should be compacted to a dense, unyielding condition or removed and replaced with at least 2 feet of compacted structural fill. Subgrade surfaces that will receive structural fill, levee fill, or foundations should be dense and unyielding and should be evaluated by a geotechnical engineer prior to placing the fill or constructing the foundations.

8.3 Fill Placement and Compaction

Construction of the proposed CMP Project features will require placement and compaction of:

- Roadway embankment fill,
- Utility trench backfill, and
- Retaining wall backfill.

We assumed the roadway embankment fill and utility trench backfill will be Common Borrow, as specified in Section 9-03.14(3) of the WSDOT Standard Specification (WSDOT, 2021), with the exception that the material shall not contain more than 1% organic material by dry unit weight. Based on the grain-size distributions of the on-site soil samples we tested (see Appendix C), we anticipate the on-site Qa soil along the CMP alignment will meet the requirements of Common Borrow, provided that cobbles and boulders larger than 4 inches are removed prior to or during fill placement. Numerous cobbles and boulders were encountered in the subsurface explorations. Evaluating the cost effectiveness and

schedule implications of removing oversized particles should be the Contractor's responsibility.

If fill is to be placed during periods of wet weather or under wet conditions, it should have the added requirement that the percentage of fines (materials passing the No. 200 sieve based on wet-sieving the minus ¾-inch fraction) be limited to 5%. The fines should be nonplastic. See Section 8.8 for additional wet weather construction considerations.

For backfill of utility trenches, pipe zone bedding should extend from the trench bottom to at least 8 to 12 inches above the pipes. Pipe zone bedding should consist of select granular soil free from organic matter meeting the requirements for Gravel Backfill for Pipe Zone Bedding as specified in Standard Specification Section 9-03.12(3) (WSDOT, 2021). The pipe zone bedding below the pipe should be compacted before laying the pipe. After the pipe is installed, heavy vibratory equipment or rollers should not be allowed beside or over the pipe until at least 2 feet of material is placed above the pipe. Fill placed above the Gravel Backfill for Pipe Zone Bedding (8 to 12 inches above the pipes) to the top of the utility trench should be compacted Common Borrow backfill. As discussed above, the on-site coarsegrained (sands and gravels) soils could be used as utility trench backfill above the pipe zone bedding provided cobbles and boulders larger than 4 inches are removed.

Roadway embankment fill, retaining wall backfill, and pipe zone bedding should be placed in horizontal uniform lifts and compacted to a dense and unyielding condition to at least 95% of the Modified Proctor maximum dry density (ASTM D1557) in accordance with Standard Specification Section 2-03.3(14)C, Method C (WSDOT, 2021). Utility trench backfill may be placed and compacted in accordance with Standard Specification Section 2-03.3(14)C, Method B (WSDOT, 2021). The appropriate lift thickness and compaction methods necessary to achieve this compaction criteria should be determined by the Contractor using the Contractor's selected equipment and fill material. In situ soil density of all compacted fill materials must be verified with in situ soil density testing in accordance with WSDOT Standard Specification 2-03.3(14)D (WSDOT, 2021).

8.4 Temporary Shoring

We understand temporary shoring may be needed to facilitate buried utility installation. Temporary shoring may also be deemed necessary by the Contractor for the launchable riprap blanket installation. The design of temporary shoring is the responsibility of the Contractor as they are in control of the means and methods of construction.

Unshored and trench box-protected excavations are generally used where the groundwater is below the base of the excavation and movement of the trench walls is acceptable. Some trench wall movement is commonly acceptable when nearby structures, utilities, and other

improvements are a sufficient distance from the excavation, such that they are not impacted by the stress relief and ground movement associated with the excavation. Trench boxes are designed to provide passive protection for workers in the trench and provide poor contact with the trench sidewalls; therefore, movement of the ground adjacent to the trench is likely.

If existing utilities, or settlement-sensitive improvements are too close to the excavation, measures to protect these improvements, temporary or permanent utility relocation, and/or excavation shoring that limits ground movement would be required. We recommend assuming that utilities and other improvements above a plane that extends up and away from the bottom of the excavation at 1.5H:1V could be affected by ground movement associated with unshored or trench box-protected excavations.

8.5 Temporary Excavations

Construction slope angles required for stability and safety depend on careful evaluation of factors that include:

- Contractor means and methods,
- Amount and depth of groundwater seepage,
- Soil and materials exposed in the excavation slope,
- Depth of the excavation,
- Surcharge loads on top of the excavation,
- Geometry of the excavation, and
- Time of construction.

Because of the many factors involved, required slope values can only be estimated prior to construction. For safe working conditions and prevention of ground loss, excavation slopes should be the responsibility of the Contractor, as they will be at the jobsite full time to observe and control the work. All current and applicable safety regulations regarding excavation slopes should be followed.

For planning purposes, we recommend assuming a contractor would make temporary, unsupported, open-cut slopes in sand and gravel Qa soil no steeper than 1.5H:1V. Flatter cut slopes may be required where loose soil is encountered. The above recommendation is for temporary cut slopes in dry conditions. If wet conditions or groundwater inflow is encountered, flatter slopes may be required. Exposed cut slopes may need to be protected with a waterproof covering during periods of wet weather to reduce sloughing and erosion.

Unshored, open-trench techniques might be suitable where the excavation depth is shallow, and the trench sides can be sloped sufficiently to avoid trench side failure. Where the

excavation depth exceeds 4 feet, trench side sloping, trench boxes, a trench shoring system, or a combination of the above will be required. All traffic and/or construction equipment loads should be set back from the edge of the cut slopes a minimum of 4 feet. Excavated material, stockpiles, and equipment should not be placed closer to the edge of any excavation than the depth of the excavation, unless the excavation is shored and such materials are accounted for as a surcharge load on the shoring system.

Based on expected temporary excavation depths of up to 6 feet, anticipated subsurface conditions, and space limitations along the proposed alignment, we anticipate that trench excavations could be made using conventional excavating equipment, such as rubber-tired backhoes or tracked hydraulic excavators. If the exposed subgrade is too loose to provide a working surface or a firm foundation for utilities, the subgrade should be improved by compacting at least the upper 12 inches of loose, granular subgrade to a dense and unyielding condition.

8.6 Drilled Shafts

YRB drilled shaft foundations should be constructed in accordance with WSDOT Standard Specifications (2021), Section 6-19.

In our opinion, the Qa deposits will be prone to caving during shaft drilling. Full-depth temporary casing will likely be needed to maintain the integrity of the drill holes.

8.7 Obstructions

Based on explorations at the site and our interpretation of the local geologic deposits and field observations of the Yakima River channel and banks (see Exhibit 6-1), we expect the Contractor to encounter cobbles and boulders in shaft excavations. The cobbles and boulders may range in diameter from 3 inches to greater than 24 inches. The Contractor should be prepared to advance excavations and penetrations past such obstructions using suitable means, methods, and equipment.

8.8 Wet Weather Considerations

In the CMP area, wet weather generally begins about mid-October and continues through about May. It would be advisable to schedule earthwork during the drier weather months. However, should wet weather or wet-condition earthwork be unavoidable, the following recommendations are provided:

• The ground surface in and surrounding the construction area should be sloped to promote rapid runoff of precipitation away from the work areas and to prevent the ponding of water.

- Work areas, slopes, and stockpiles should be covered with plastic and appropriate erosion and sediment control measures applied. The use of sloping, ditching, sumps, dewatering, and other measures should be employed as necessary to permit proper completion of the work.
- Earthwork should be accomplished in small sections to minimize exposure to wet conditions. That is, each section should be small enough so that the removal of unsuitable soils and placement and compaction of clean structural fill could be accomplished on the same day.
- To mitigate soil disturbance, the size or type of construction equipment may have to be limited.
- Fill material to be placed should consist of clean, well-graded granular soils, of which not more than 5% by dry weight pass the No. 200 mesh sieve, based on the wet sieving fraction passing the ³/₄-inch mesh sieve. The fines should be nonplastic.
- No fill soil should be left uncompacted and exposed to moisture. A smooth-drum vibratory roller, or equivalent, should roll the surface to promote rapid runoff of the surface water.
- In-place soil or fill soil that becomes wet and unstable and/or too wet for compaction should be removed and replaced with clean, structural fill material.
- Excavation and placement of structural fill material should be observed on a full-time basis by a geotechnical engineer, experienced in wet weather/wet condition earthwork to determine that the work is being accomplished in accordance with the Project specifications and our recommendations.
- Grading and earthwork should not be performed during periods of heavy, continuous rainfall.

8.9 Removal, Handling, and Disposal of Contaminated Soil

We recommend that the Contractor remove contaminated material at boring B-10-21 for off-site disposal. Starting at 10 feet below the existing ground surface and extending to the planned depth of the excavation, the Contractor should remove a 20- by 20-foot area of soil centered in the plan view around boring B-10-21.

All contaminated material should be handled and stored in a manner that prevents the spread of contamination to adjacent soil or water.

The Contractor shall perform excavation and other tasks of this Section in compliance with applicable statutes and regulations, including the State MTCA, Chapter 70.105D RCW. We recommend that the Contractor be required to complete all soil sampling necessary to characterize material generated prior to disposal, appropriately coordinate with disposal facilities to ensure facility acceptance of characterized material prior to it leaving the project

site and comply with disposal facility permit requirements. The Contractor should allow for the Engineer to collect samples for quality assurance/quality control purposes.

If stockpiling is performed, the area used must be within the construction limits, but not in an in-service street right-of-way. The stockpiling areas should not block areas that need to be accessed during construction, such as electrical vaults and monitoring wells, or below ground sites identified for cultural resource investigation. The stockpile area should allow for ease of sampling, testing, and load out once characterization is complete.

The Contractor should divert water from contaminated and potentially hazardous stockpiled materials and cover them with a minimum of 6-mil polyethylene sheeting. The edges of the sheeting should be installed and maintained in accordance with Section 8-01.3(5). The stockpiles should be covered at all times when not being worked. The Contractor should inspect the stockpiles daily, maintain the sheeting, and replace any worm or ripped sheeting sections.

The stockpile area should be constructed to collect water from any stockpile(s), preventing it from releasing the potentially contaminated water, and should also be isolated from precipitation and stormwater run-on. Any collected stockpile water should be prevented from discharging to public sewerage without proper permitting. Stockpile water should also be prevented from discharging to waters of the State prior to treatment and sampling to confirm compliance with surface water quality standards and National Pollutant Discharge Elimination System permit requirements.

Separate stockpiles should be maintained for known hazardous or contaminated material and for suspected hazardous or contaminated material. The Contractor should transport hazardous or contaminated material and dispose of it at a permitted facility. The Contractor should provide the Engineer with a copy of the shipping manifest or bill of lading indicating the amount of material hauled to disposal and bearing the disposal site operator's confirmation for receipt of the material. Manifests should be submitted in accordance with Section 1-07.5(7).

9 LIMITATIONS

This report was prepared for the exclusive use of Sargent Engineers, Yakima County, and other members of the design team for specific application to the design of the CMP Project as it relates to the geotechnical aspects discussed in this report. Our conclusions and recommendations are intended for design of the Stage 3 of the alignment. The final version of report should be provided to a contractor for bidding and constructing the Project. The

interpretations, conclusions, and recommendations presented in this report should not be construed as a warranty of surficial or subsurface conditions.

Within the limitations of scope, schedule, and budget, the interpretations, conclusions, and recommendations presented in this report were prepared in accordance with generally accepted professional geotechnical engineering principles and practice in this area at the time this report was prepared. We make no other warranty, either express or implied.

The analyses, conclusions, and recommendations contained in this report are based on site conditions as they existed during our site visits and explorations, and further assume that the explorations are representative of the subsurface conditions throughout the CMP site, i.e., the subsurface conditions everywhere are not significantly different from those disclosed by the explorations. Our conclusions and recommendations are based on our understanding of the Project as described in this report and the site conditions as interpreted from the explorations.

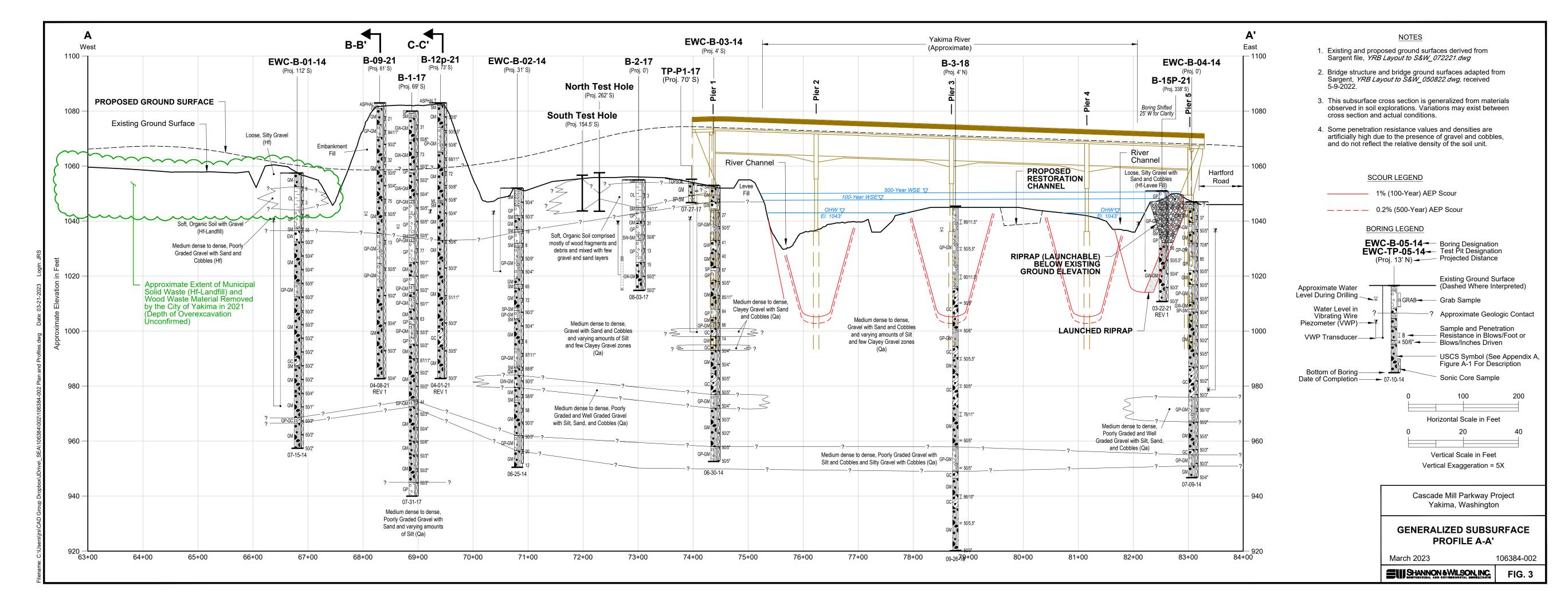
If during construction, subsurface conditions different from those encountered in the explorations are observed or appear to be present, we should be advised at once so that we can review these conditions and reconsider our recommendations where necessary. If there is substantial lapse of time between submission of this report and the start of work at the site, or if conditions have changed because of natural forces or construction operations at or adjacent to the site, we recommend that this report be reviewed to determine the applicability of the conclusions and recommendations concerning the changed conditions or time lapse.

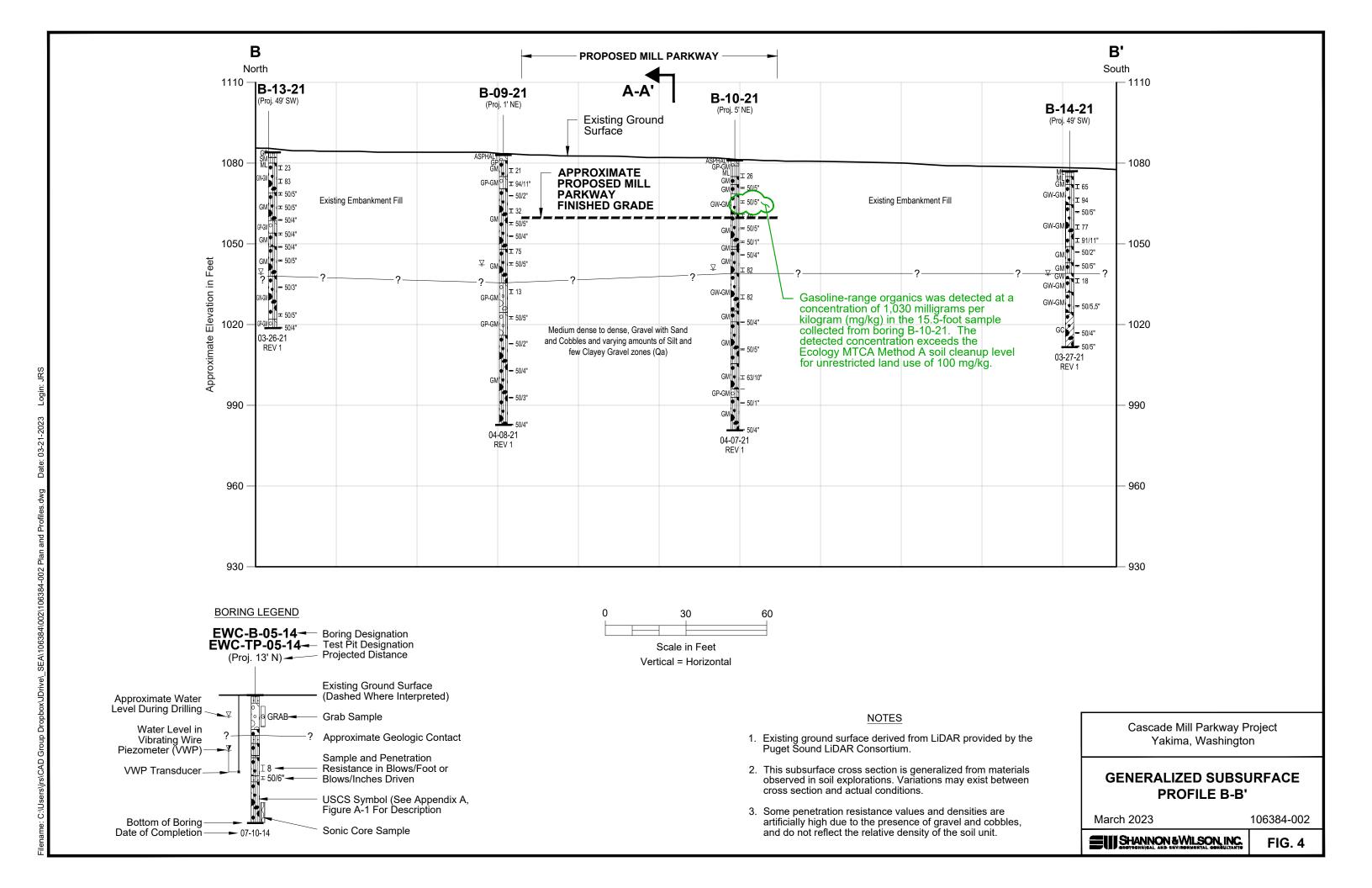
Unanticipated soil conditions are commonly encountered and cannot be fully determined by merely taking soil samples from a limited number of subsurface explorations. Such unexpected conditions frequently require that additional expenditures be made to attain a properly constructed Project. Therefore, some contingency funds are recommended to accommodate such potential extra costs.

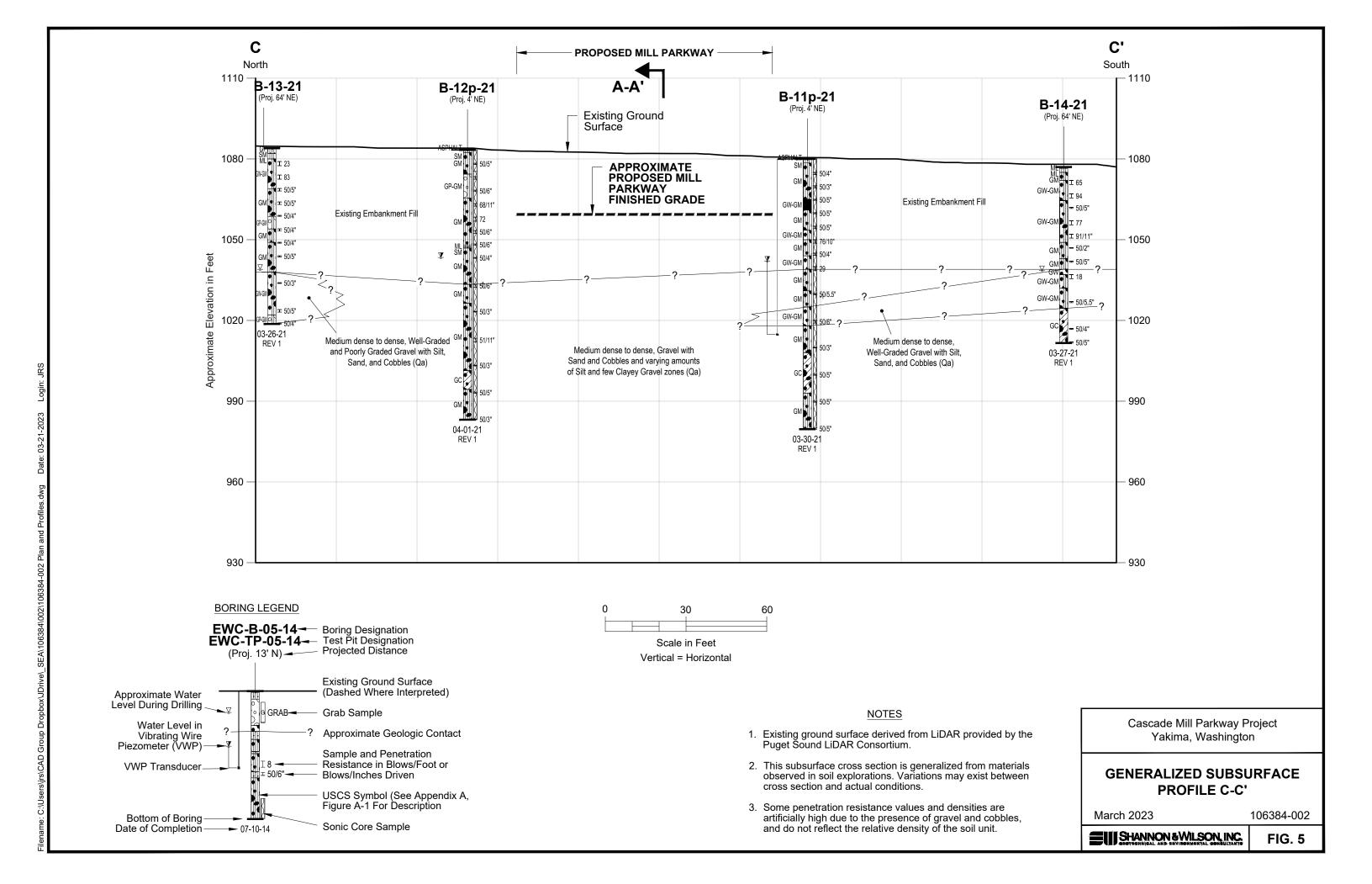
The scope of our geotechnical services does not include evaluations regarding the presence or absence of wetlands, hazardous or toxic substances in the soil, surface water, groundwater, or air on, below, or around the site, or for the evaluation or disposal of contaminated soils or groundwater, should any be encountered.

We have prepared the document, "Important Information About Your Geotechnical/ Environmental Report," to assist you and others in understanding the use and limitations of our report.

10 REFERENCES


- American Association of State Highway and Transportation Officials (AASHTO), 1993, AASHTO guide for design of pavement structures: Washington, D.C., AASHTO, 2 v.
- American Association of State Highway and Transportation Officials (AASHTO), 2020, AASHTO LRFD bridge design specifications (9th ed.): Washington, D.C., AASHTO, 2 v.
- Asphalt Institute, 1991, Thickness design: asphalt pavements for highways & streets (9th ed.): Lexington, Ky., Asphalt Institute, MS-1, 98 p.
- Bentley, R.D. and Campbell, N.P., 1983, Geologic map of the Yakima Quadrangle, Washington: Washington State Department of Natural Resources, Division of Geology and Earth Resources, Geologic Map GM-29, 1:62,500.
- Bjornstad, B.N., 1980, Sedimentology and depositional environment of the Touchet Beds, Walla Walla River Basin, Washington: Cheney, Wash., Eastern Washington University, Master's Thesis, 119 p.
- Bjornstad, B.N., 2006, On the trail of the Ice Age floods: a geological field guide to the mid-Columbia basin: Sandpoint, Idaho, Keokee Books, 307 p.
- Geo-Slope International, 2021, SIGMA/W v. 2021.4: Calgary, Alberta, Geo-Slope International.
- Google Earth, 2021, Aerial photo of I-82 and Industrial Road, Yakima, Washington: Photo dated July 4, 2021, accessed via Google Earth, September 13, 2022.
- Howard, A.K., 1996, Pipeline installation: a manual for construction of buried pipe: Lakewood, Colo., Relativity Pub.
- Lasmanis, R., 1991, The geology of Washington: Rocks & Minerals, v. 66, no. 4, p. 262-277.
- McCaffrey, Robert; King, R.W.; Wells, R.E.; and others, 2016, Contemporary deformation in the Yakima fold and thrust belt estimated with GPS: Geophysical Journal International, v. 207, no. 1, p. 1-11.
- Norman, D.K.; Busacca, A.J.; and Teissere, R.F., 2004, Geology of the Yakima valley wine country—a geologic field trip guide from Stevenson to Zillah, Washington: Olympia, Wash., Washington State Division of Geology and Earth Resources, 96th Annual Meeting of the Association of American State Geologists, Field Trip Guide 1, 13 p.


- Palmer, S.P.; Magsino, S.L.; Bilderback, E.L.; and others, 2004, Site class map of Yakima County, Washington, in Liquefaction susceptibility and site class maps of Washington State, by county: Washington State Department of Geology and Earth Resources, Open File Report 2004-20, sheet 39B, scale 1:150,000.
- Schuster, J.E., 1994, Geologic map of the east half of the Yakima 1:100,000 quadrangle, Washington: Washington State Department of Natural Resources, Division of Geology and Earth Resources, Open File Report 94-12, 19 p., 1 plate, scale 1:100,000.
- Shannon & Wilson, 2020, Final design, geotechnical engineering and environmental report, stages 1 and 2, East-West Corridor Project, Yakima County, Washington: Report prepared by Shannon & Wilson, Inc., Seattle, Wash., 21-1-22425-002, for HW Lochner, Lacey, Wash., February.
- Shannon & Wilson, in press, Hydraulics report, Cascade Mill Parkway, Phase 3, Yakima County, Washington: Report prepared by Shannon & Wilson, Inc., Seattle, Wash., 106384-003, for Sargent Engineers, Inc., Olympia, Wash.
- Washington State Department of Ecology, 2013, Model toxics control act regulation and statute: MTCA cleanup regulation, chapter 173-340 WAC; model toxics control act, chapter 70.105D RCW; uniform environmental covenants act, chapter 64.70 RCW (rev.): Olympia, Wash., Washington Dept. of Ecology, Publication no. 94.06, 324 p., available: https://fortress.wa.gov/ecy/publications/summarypages/9406.html.
- Washington State Department of Transportation (WSDOT), 2005, Everseries user's guide pavement analysis computer software and case studies: Olympia, Wash., WSDOT Materials Laboratory, 112 p., available:


 http://www.wsdot.wa.gov/NR/rdonlyres/0C02BB7B-C345-4958-AA08-089E5E512B96/0/EverseriesUserGuidePart1.pdf.
- Washington State Department of Transportation (WSDOT), 2021, Standard specifications for road, bridge, and municipal construction: Olympia, Wash., WSDOT, Manual M 41-10, August, available: https://www.wsdot.wa.gov/Publications/Manuals/M41-10.htm.
- Washington State Department of Transportation (WSDOT), 2022a, Bridge design manual LRFD: Olympia, Wash., Manual M 23-50, June, available: https://www.wsdot.wa.gov/Publications/Manuals/M23-50.htm
- Washington State Department of Transportation (WSDOT), 2022b, Geotechnical design manual: Olympia, Wash., WSDOT, Manual M 46-03, 1 v., February, available: https://www.wsdot.wa.gov/Publications/Manuals/M46-03.htm.

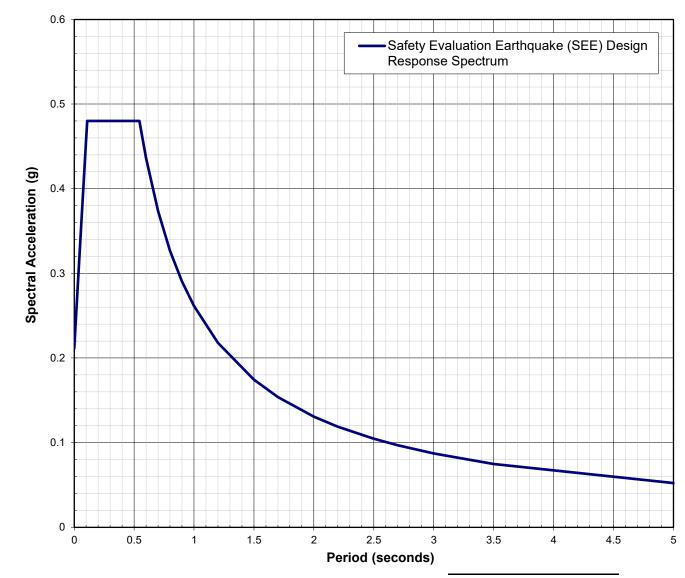

SHANNON & WILSON INC.

FIG. 1

NOTES

- We developed the design response spectrum based on guidance in WSDOT BDM (2022).
- The safety evaluation earthquake (SEE) seismic design parameters are based on design ground motions with a 7 percent probability of exceedance in 75 years (975-year return period) for Site Class D.
- 3. The mapped SRA values are based on a probabilistic seismic hazard analysis performed by the USGS (Petersen and others, 2014).
- 4. WSDOT BDM = Washington state department of transportation bridge design manual; g = gravitational acceleration; PGA = peak ground acceleration; SRA = spectral response acceleration; USGS = U.S. Geological Survey.
- 5. Coordinates used for site (NAVD 88):

Latitude = 46.6135° Longitude = -120.4912°

Seismic Parameters

PGA = 0.14 g $S_S = 0.31$ g $S_1 = 0.11$ g $A_S = 0.21$ g $S_{DS} = 0.48$ g $S_{D1} = 0.26$ g $F_{pga} = 1.52$ $F_a = 1.55$ $F_v = 2.38$ $T_0 = 0.11$ sec. $T_S = 0.54$ sec.

Cascade Mill Parkway Project Yakima, Washington

SEISMIC DESIGN RESPONSE SPECTRA SITE CLASS = D

March 2023

106384-002

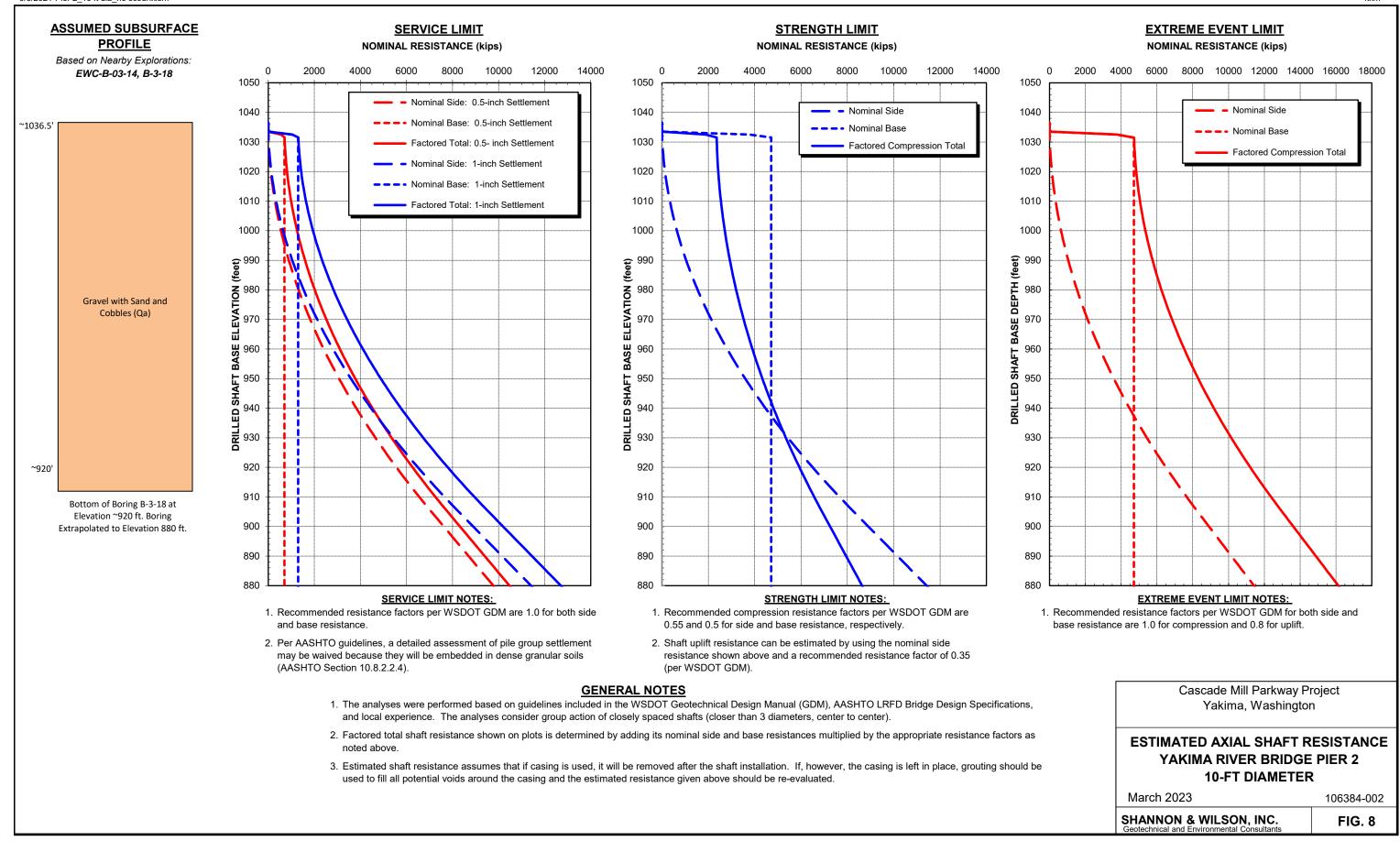
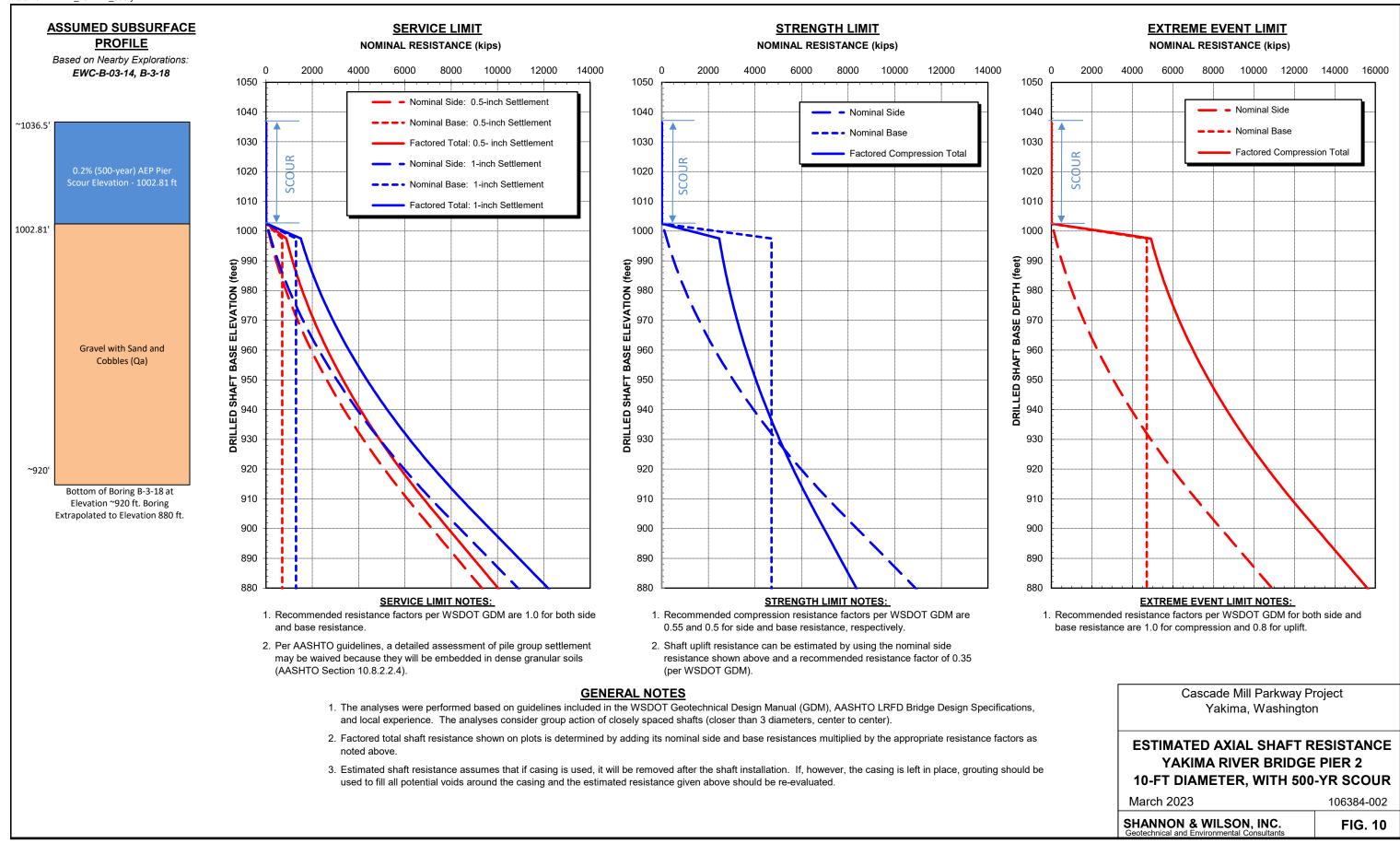


FIG. 6

11/10/2021-Pier 1_6 ft dia_West Abutment.xlsm

ASSUMED SUBSURFACE **SERVICE LIMIT STRENGTH LIMIT EXTREME EVENT LIMIT PROFILE NOMINAL RESISTANCE (kips) NOMINAL RESISTANCE (kips) NOMINAL RESISTANCE (kips)** Based on Nearby Explorations: 10000 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 2000 4000 6000 8000 EWC-B-03-14 1050 1050 1050 ~1050' Gravel with Sand and Cobbles (Qa) - Nominal Side: 0.5-inch Settlement 1040 1040 1040 Nominal Side Nominal Side ~1040' Nominal Base: 0.5-inch Settlement - - - Nominal Base Nominal Base 1030 1030 1030 Factored Total: 0.5- inch Settlement Factored Compression Total **Factored Compression Total** Nominal Side: 1-inch Settlement 1020 1020 1020 - - - Nominal Base: 1-inch Settlement 1010 1010 1010 Factored Total: 1-inch Settlement 1000 1000 1000 Gravel with Sand and Cobbles (Qa) (**teet**) 990 (**feet**) 990 980 970 970 ELEVATION 980 **BASE** 960 BASE 960 960 ~956' **SHAFT** 950 SHAF 950 밉 Bottom of Boring EWC-B-03-14 at Elevation ~956 ft. Boring ILED Extrapolated to 880 ft. 940 930 930 **E** 930 930 920 920 920 910 910 910 900 900 900 890 890 890 880 880 880 **EXTREME EVENT LIMIT NOTES: SERVICE LIMIT NOTES: STRENGTH LIMIT NOTES:** 1. Recommended resistance factors per WSDOT GDM are 1.0 for both side 1. Recommended compression resistance factors per WSDOT GDM are 0.55 1. Recommended resistance factors per WSDOT GDM for both side and base resistance are 1.0 for compression and 0.8 for uplift. and base resistance. and 0.5 for side and base resistance, respectively. 2. Per AASHTO guidelines, a detailed assessment of pile group settlement 2. Shaft uplift resistance can be estimated by using the nominal side may be waived because they will be embedded in dense granular soils resistance shown above and a recommended resistance factor of 0.35 (per (AASHTO Section 10.8.2.2.4). WSDOT GDM). **GENERAL NOTES** Cascade Mill Parkway Project 1. The analyses were performed based on guidelines included in the WSDOT Geotechnical Design Manual (GDM), AASHTO LRFD Bridge Design Specifications, and Yakima, Washington local experience. The analyses consider group action of closely spaced shafts (closer than 3 diameters, center to center). 2. Factored total shaft resistance shown on plots is determined by adding its nominal side and base resistances multiplied by the appropriate resistance factors as noted **ESTIMATED AXIAL SHAFT RESISTANCE** YAKIMA RIVER BRIDGE PIER 1 3. Estimated shaft resistance assumes that if casing is used, it will be removed after the shaft installation. If, however, the casing is left in place, grouting should be used **6-FT DIAMETER** to fill all potential voids around the casing and the estimated resistance given above should be re-evaluated. March 2023 106384-002 **SHANNON & WILSON, INC.** FIG. 7

9/3/2021-Pier 2 10 ft dia no scour.xlsm



9/3/2021-Pier 2_10 ft dia_100 yr scour.xlsm kxm

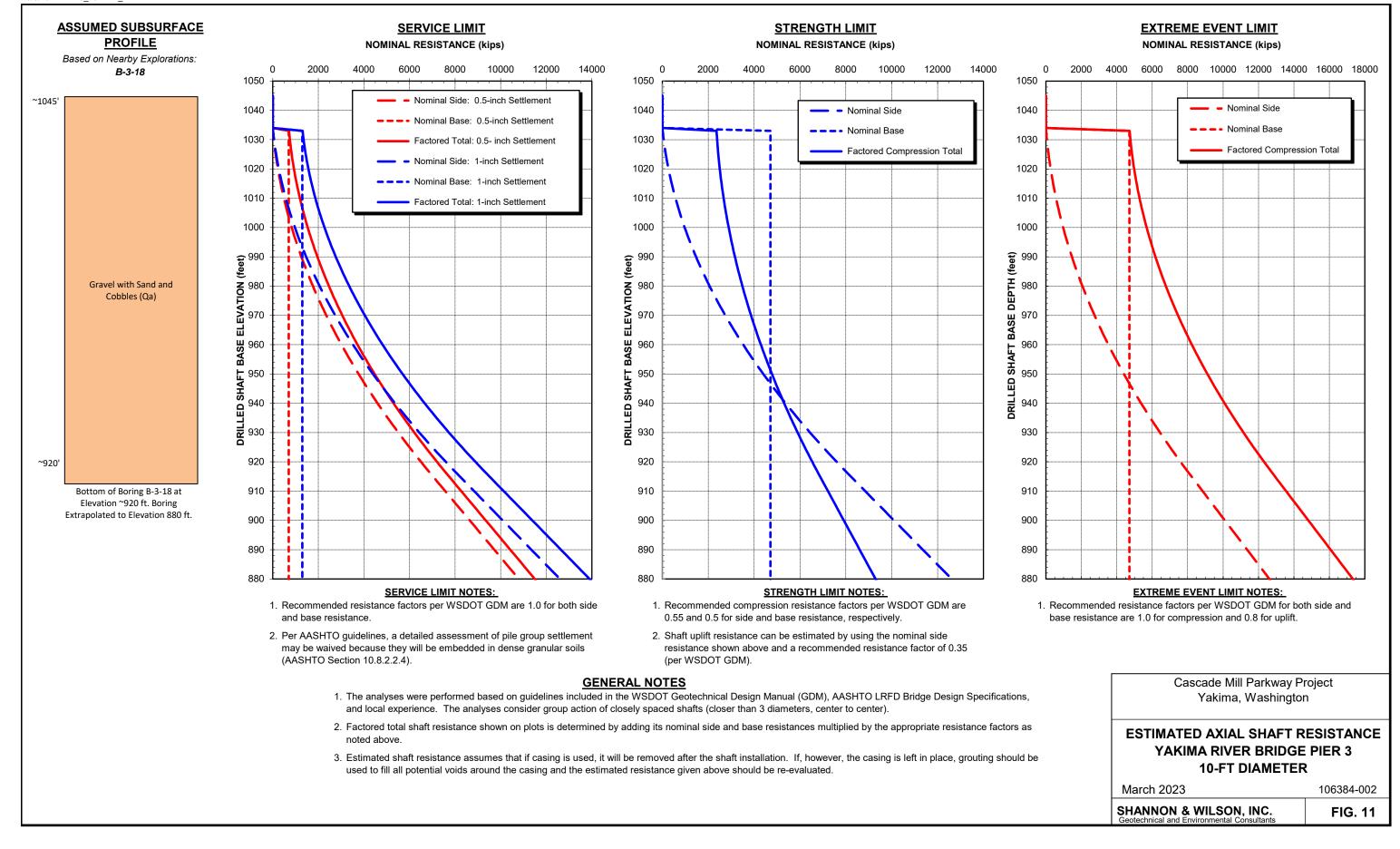
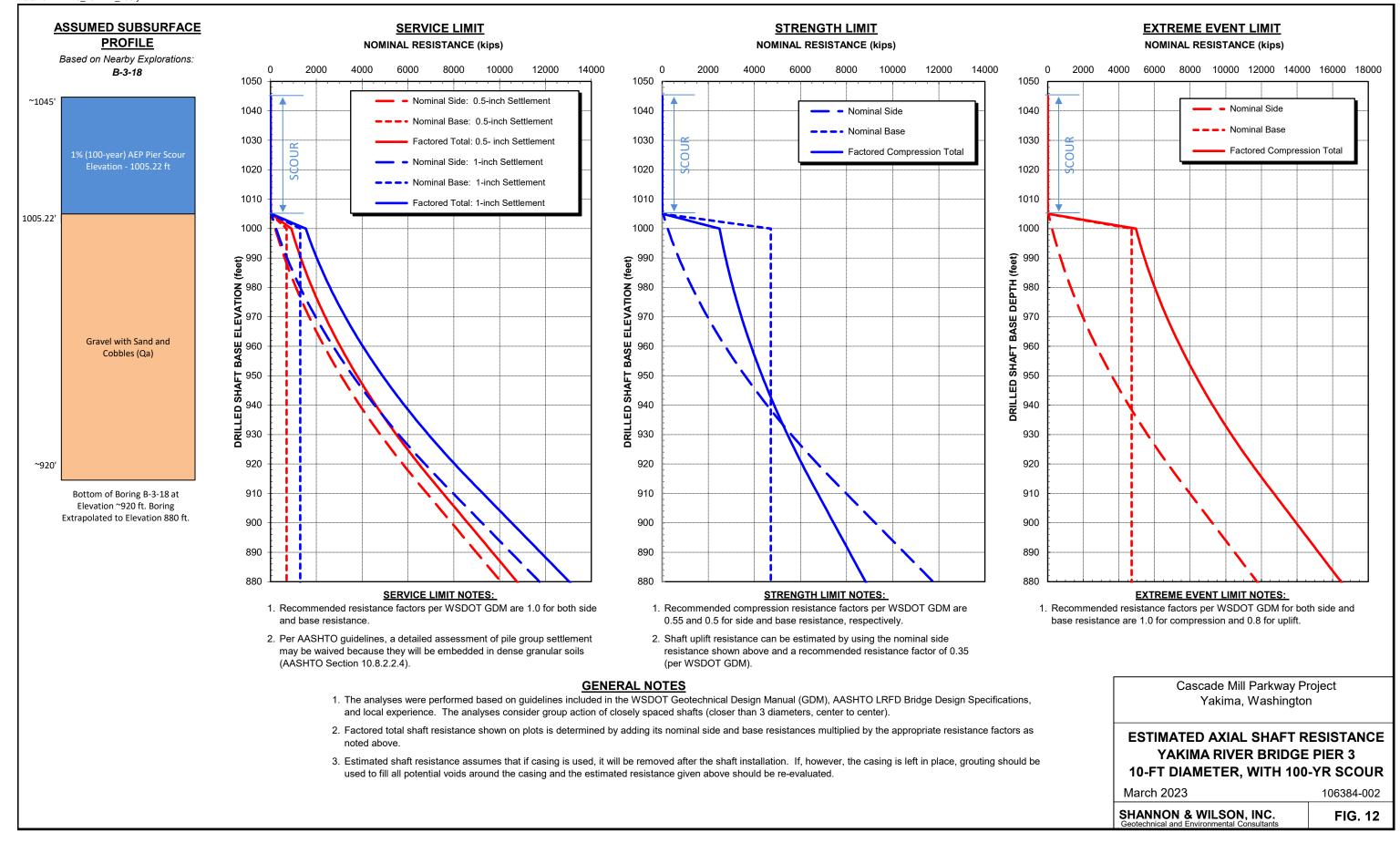
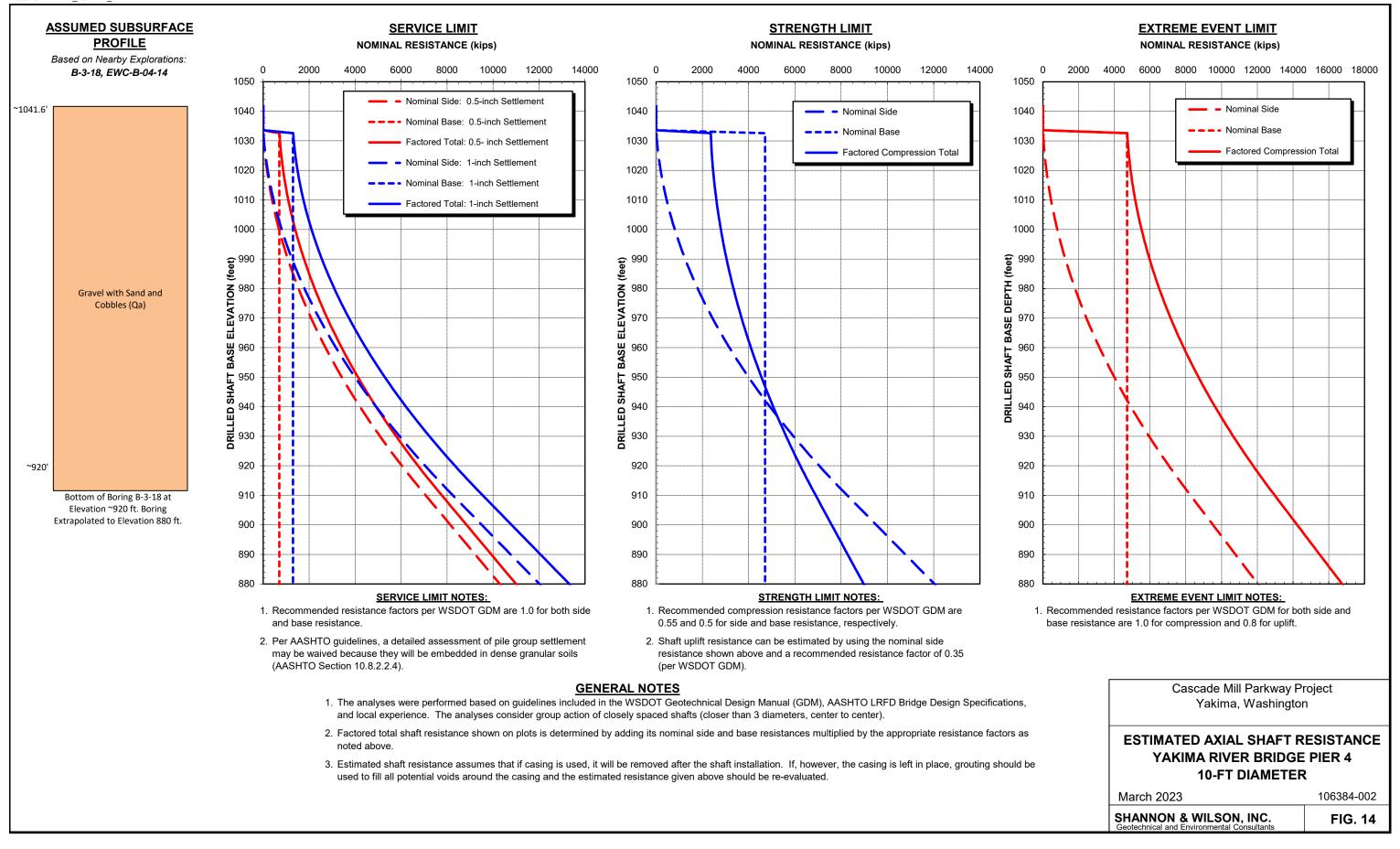
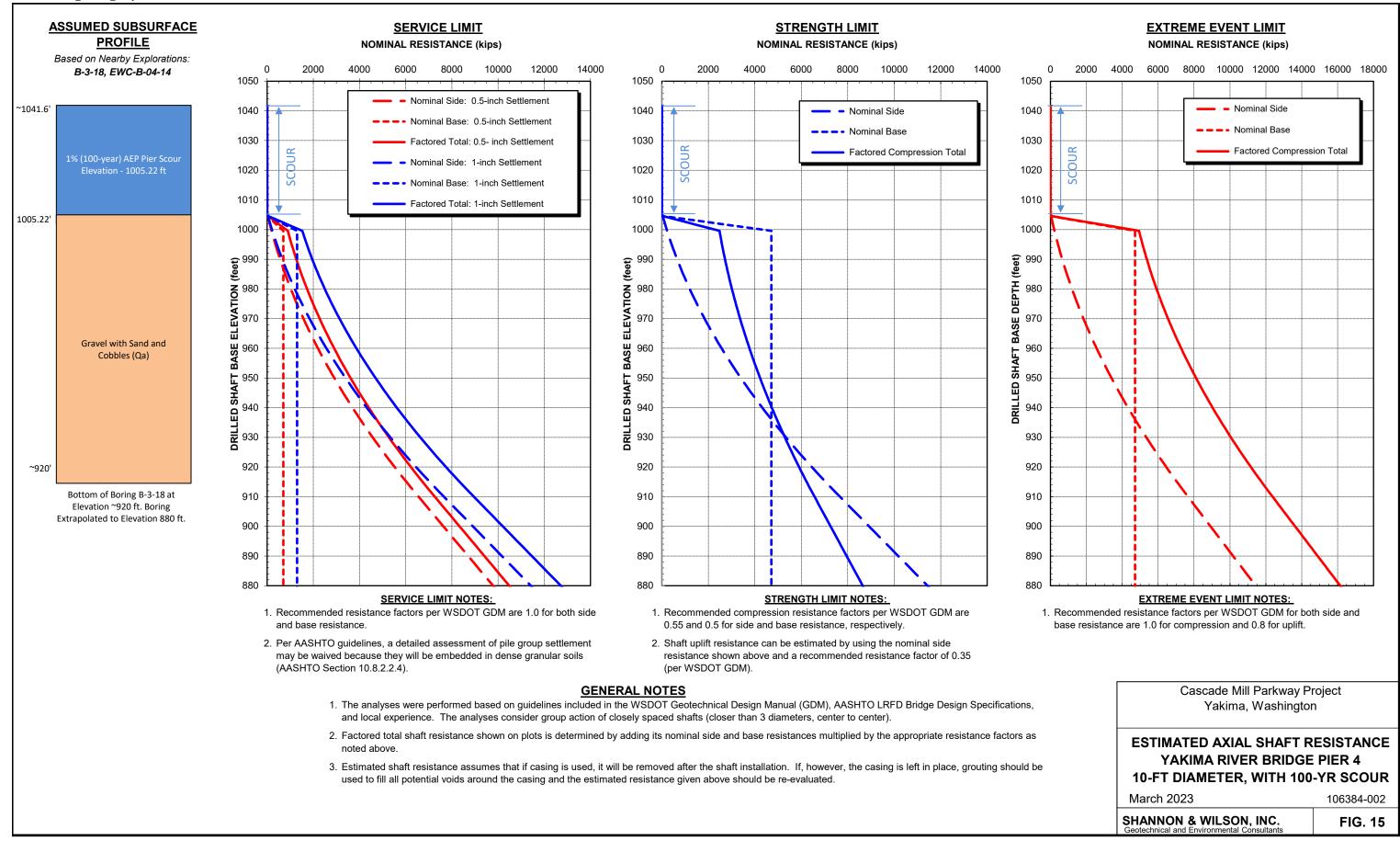

ASSUMED SUBSURFACE SERVICE LIMIT STRENGTH LIMIT **EXTREME EVENT LIMIT PROFILE NOMINAL RESISTANCE (kips) NOMINAL RESISTANCE (kips) NOMINAL RESISTANCE (kips)** Based on Nearby Explorations: 2000 4000 6000 8000 10000 12000 14000 2000 4000 6000 8000 10000 12000 14000 2000 4000 6000 8000 10000 12000 14000 16000 0 0 EWC-B-03-14, B-3-18 1050 1050 - Nominal Side: 0.5-inch Settlement Nominal Side 1040 1040 1040 Nominal Side - - - Nominal Base: 0.5-inch Settlement ~1036.5 --- Nominal Base --- Nominal Base 1030 1030 1030 Factored Total: 0.5- inch Settlement Factored Compression Total **Factored Compression Total** Nominal Side: 1-inch Settlement 1% (100-year) AEP Pier Scour 1020 1020 1020 --- Nominal Base: 1-inch Settlement 1010 1010 1010 Factored Total: 1-inch Settlement 1005.22' 1000 1000 1000 (**teet**) (**feet**) 990 990 980 970 970 980 970 980 ᆸ Gravel with Sand and BASE 960 960 960 Cobbles (Qa) 忘 SHAFT SHAFT 950 950 950 940 940 굡 930 920 920 920 ~920' Bottom of Boring B-3-18 at 910 910 910 Elevation ~920 ft. Boring Extrapolated to Elevation 880 ft. 900 900 900 890 890 890 880 880 880 **EXTREME EVENT LIMIT NOTES: SERVICE LIMIT NOTES: STRENGTH LIMIT NOTES:** 1. Recommended resistance factors per WSDOT GDM are 1.0 for both side 1. Recommended compression resistance factors per WSDOT GDM are 0.55 1. Recommended resistance factors per WSDOT GDM for both side and and base resistance. and 0.5 for side and base resistance, respectively. base resistance are 1.0 for compression and 0.8 for uplift 2. Per AASHTO guidelines, a detailed assessment of pile group settlement 2. Shaft uplift resistance can be estimated by using the nominal side may be waived because they will be embedded in dense granular soils resistance shown above and a recommended resistance factor of 0.35 (per (AASHTO Section 10.8.2.2.4). WSDOT GDM). Cascade Mill Parkway Project **GENERAL NOTES** 1. The analyses were performed based on guidelines included in the WSDOT Geotechnical Design Manual (GDM), AASHTO LRFD Bridge Design Specifications, and Yakima, Washington local experience. The analyses consider group action of closely spaced shafts (closer than 3 diameters, center to center). 2. Factored total shaft resistance shown on plots is determined by adding its nominal side and base resistances multiplied by the appropriate resistance factors as **ESTIMATED AXIAL SHAFT RESISTANCE** YAKIMA RIVER BRIDGE PIER 2 3. Estimated shaft resistance assumes that if casing is used, it will be removed after the shaft installation. If, however, the casing is left in place, grouting should be 10-FT DIAMETER, WITH 100-YR SCOUR used to fill all potential voids around the casing and the estimated resistance given above should be re-evaluated. March 2023 106384-002 **SHANNON & WILSON, INC.**

FIG. 9

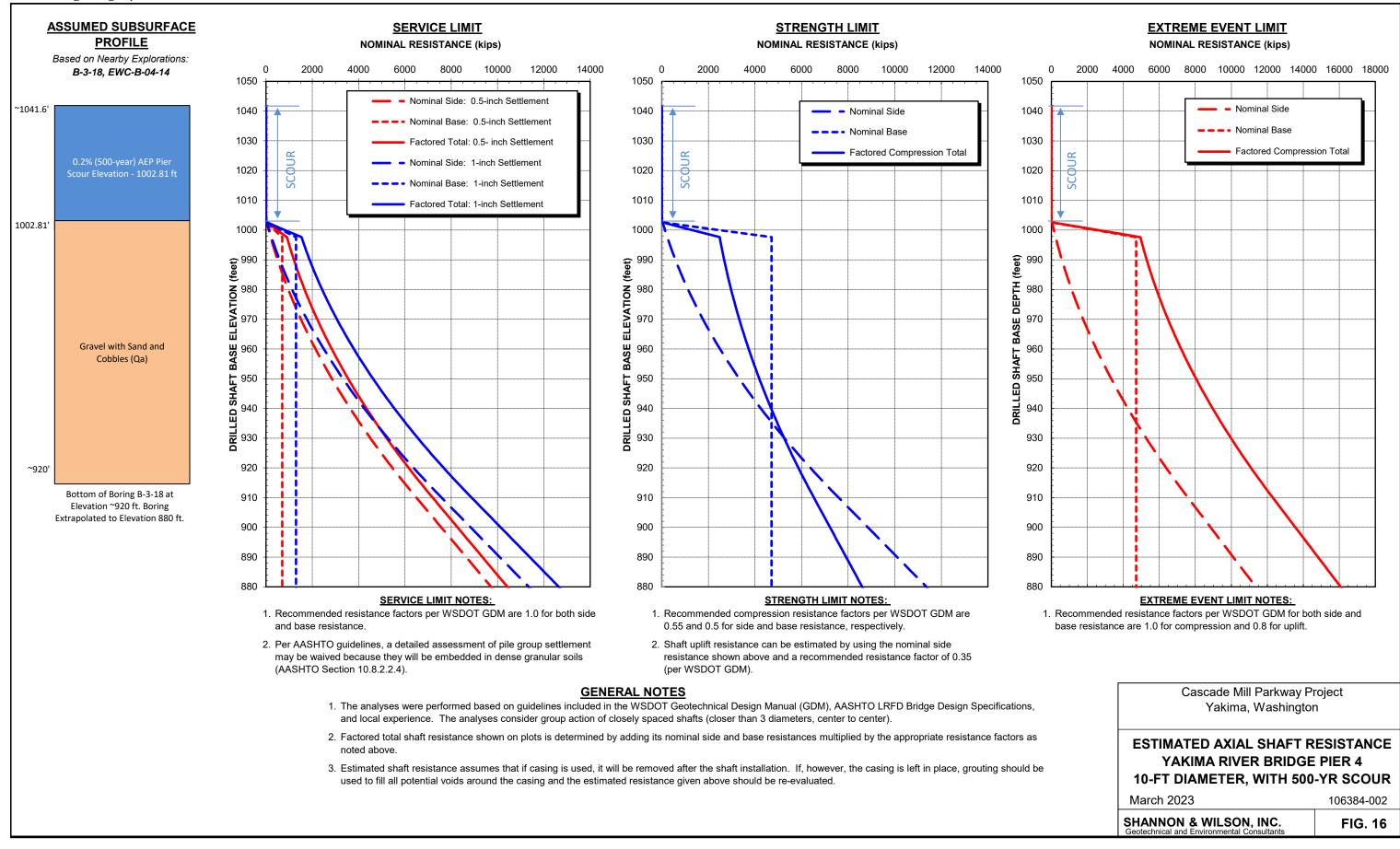

9/3/2021-Pier 2_10 ft dia_500 yr scour.xlsm

9/3/2021-Pier 3 10 ft dia no scour.xlsm


9/3/2021-Pier 3_10 ft dia_100 yr scour.xlsm


9/3/2021-Pier 3_10 ft dia_500 yr scour.xlsm

ASSUMED SUBSURFACE SERVICE LIMIT STRENGTH LIMIT EXTREME EVENT LIMIT PROFILE NOMINAL RESISTANCE (kips) NOMINAL RESISTANCE (kips) **NOMINAL RESISTANCE (kips)** Based on Nearby Explorations: 2000 4000 8000 10000 12000 14000 2000 8000 10000 12000 14000 2000 4000 6000 8000 10000 12000 14000 16000 18000 B-3-18 1050 1050 ~1045' Nominal Side: 0.5-inch Settlement Nominal Side 1040 1040 Nominal Side 1040 Nominal Base: 0.5-inch Settlement -- - Nominal Base --- Nominal Base 1030 1030 1030 Factored Total: 0.5- inch Settlement **Factored Compression Total Factored Compression Total** 0.2% (500-year) AEP Pier Nominal Side: 1-inch Settlement 1020 1020 1020 --- Nominal Base: 1-inch Settlement 1010 1010 1010 Factored Total: 1-inch Settlement 1002.81' 1000 1000 1000 (**feet**) (**feet**) 990 990 980 970 970 NOIT 980 ELEVAT 970 Gravel with Sand and **BASE** 960 BASE 960 960 Cobbles (Qa) 950 940 950 950 940 940 940 DRILL ₹ 930 930 930 920 920 920 ~920' Bottom of Boring B-3-18 at 910 910 910 Elevation ~920 ft. Boring Extrapolated to Elevation 880 ft. 900 900 900 890 890 890 880 880 880 **EXTREME EVENT LIMIT NOTES: SERVICE LIMIT NOTES: STRENGTH LIMIT NOTES:** 1. Recommended resistance factors per WSDOT GDM are 1.0 for both side 1. Recommended compression resistance factors per WSDOT GDM are 1. Recommended resistance factors per WSDOT GDM for both side and and base resistance. 0.55 and 0.5 for side and base resistance, respectively. base resistance are 1.0 for compression and 0.8 for uplift. 2. Per AASHTO guidelines, a detailed assessment of pile group settlement 2. Shaft uplift resistance can be estimated by using the nominal side may be waived because they will be embedded in dense granular soils resistance shown above and a recommended resistance factor of 0.35 (AASHTO Section 10.8.2.2.4). (per WSDOT GDM) **GENERAL NOTES** Cascade Mill Parkway Project 1. The analyses were performed based on guidelines included in the WSDOT Geotechnical Design Manual (GDM), AASHTO LRFD Bridge Design Specifications, Yakima, Washington and local experience. The analyses consider group action of closely spaced shafts (closer than 3 diameters, center to center). 2. Factored total shaft resistance shown on plots is determined by adding its nominal side and base resistances multiplied by the appropriate resistance factors as **ESTIMATED AXIAL SHAFT RESISTANCE** noted above. YAKIMA RIVER BRIDGE PIER 3 3. Estimated shaft resistance assumes that if casing is used, it will be removed after the shaft installation. If, however, the casing is left in place, grouting should be 10-FT DIAMETER, WITH 500-YR SCOUR used to fill all potential voids around the casing and the estimated resistance given above should be re-evaluated. 106384-002 March 2023 SHANNON & WILSON, INC. FIG. 13


9/3/2021-Pier 4 10 ft dia no scour.xlsm

9/3/2021-Pier 4_10 ft dia_100 yr scour.xlsm

9/3/2021-Pier 4_10 ft dia_500 yr scour.xlsm

11/10/2021-Pier 5_6 ft dia_East Abutment.xlsm

ASSUMED SUBSURFACE **SERVICE LIMIT STRENGTH LIMIT EXTREME EVENT LIMIT PROFILE NOMINAL RESISTANCE (kips) NOMINAL RESISTANCE (kips) NOMINAL RESISTANCE (kips)** Based on Nearby Explorations: 10000 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 2000 4000 6000 8000 EWC-B-04-14 1050 1050 1050 ~1047' - Nominal Side: 0.5-inch Settlement 1040 1040 1040 Nominal Side Nominal Side Nominal Base: 0.5-inch Settlement - - - Nominal Base Nominal Base 1030 1030 1030 Factored Total: 0.5- inch Settlement **Factored Compression Total** Factored Compression Total Nominal Side: 1-inch Settlement 1020 1020 1020 - - - Nominal Base: 1-inch Settlement 1010 1010 1010 Factored Total: 1-inch Settlement 1000 1000 1000 Gravel with Sand and Cobbles (Qa) (**Jeet**) (**feet**) 990 980 970 970 ELEVATION 980 970 **BASE** 960 BASE 960 960 **SHAFT** 950 SHAF 950 밉 ~947' 940 930 ILED Bottom of Boring EWC-B-04-14 at Elevation ~947 ft. Boring **E** 930 930 Extrapolated to 880 ft. 920 920 920 910 910 910 900 900 900 890 890 890 880 880 880 **EXTREME EVENT LIMIT NOTES:** SERVICE LIMIT NOTES: STRENGTH LIMIT NOTES: 1. Recommended resistance factors per WSDOT GDM are 1.0 for both side 1. Recommended compression resistance factors per WSDOT GDM are 0.55 1. Recommended resistance factors per WSDOT GDM for both side and base resistance are 1.0 for compression and 0.8 for uplift. and base resistance. and 0.5 for side and base resistance, respectively. 2. Per AASHTO guidelines, a detailed assessment of pile group settlement 2. Shaft uplift resistance can be estimated by using the nominal side may be waived because they will be embedded in dense granular soils resistance shown above and a recommended resistance factor of 0.35 (per (AASHTO Section 10.8.2.2.4). WSDOT GDM). **GENERAL NOTES** Cascade Mill Parkway Project 1. The analyses were performed based on guidelines included in the WSDOT Geotechnical Design Manual (GDM), AASHTO LRFD Bridge Design Specifications, and Yakima, Washington local experience. The analyses consider group action of closely spaced shafts (closer than 3 diameters, center to center). 2. Factored total shaft resistance shown on plots is determined by adding its nominal side and base resistances multiplied by the appropriate resistance factors as noted **ESTIMATED AXIAL SHAFT RESISTANCE** YAKIMA RIVER BRIDGE PIER 5 3. Estimated shaft resistance assumes that if casing is used, it will be removed after the shaft installation. If, however, the casing is left in place, grouting should be used **6-FT DIAMETER** to fill all potential voids around the casing and the estimated resistance given above should be re-evaluated. March 2023 106384-002 **SHANNON & WILSON, INC.** FIG. 17

Table 18-1 - LPILE Parameters by Elevation

			Unscoured Conditions			Scoured Conditions					
Soil Description	Top Elevation of Layer (See Table Below)	Effective Unit Weight (pcf)	LPile Model	Friction Angle , φ (degrees)	Initial Modulus of Subgrade Reaction, k (pci)	LPile Model	Friction Angle, φ (degrees)	Initial Modulus of Subgrade Reaction, k (pci)	Undrained Cohesion, c (psf)	Strain Factor E50	Ground Slope Angle, B (deg)
Quaternary Alluvium	E	77.6	Sand (Reese)	40	95	Soft Clay (Reese)			1	1	ß
Quaternary Alluvium	S	77.6	Sand (Reese)	40	95	Sand (Reese)	40	95			ß

Table 18-2 - Design Elevations

Table 18-3 - Ground Slopes

Location

Pier 1

Pier 2 Pier 3

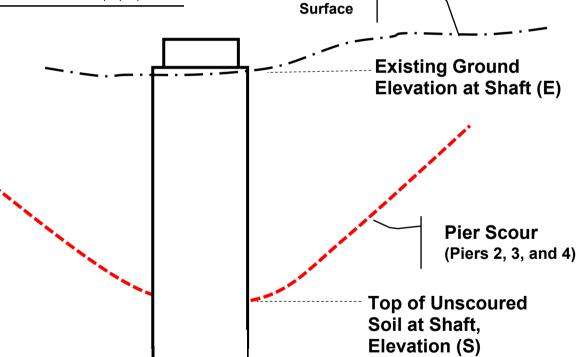
Pier 4

Pier 5 - Riprap Option

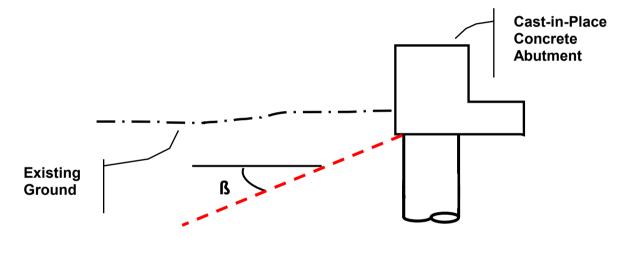
Ground Slope Angle, ß

(deg)

See Note 3


0

26.6


Location	Elevation E (feet)	Elevation S (feet)	Note
Pier 1	See Note 2	S = E	No Scour (See Note 3)
Pier 2	1037	1005	
Pier 3	1045	1005	
Pier 4	1042	1005	
Pier 5 - Riprap Option	See Note 2	S = E	See Sketch "Riprap Option"

Piers 2, 3, and 4 Geometry Sketch

Existing Ground

Pier 5 Geometry Sketch - Riprap Option

Cascade Mill Parkway Yakima, Washington

YAKIMA RIVER BRIDGE LPILE PARAMETERS FOR LATERAL DEEP FOUNDATION ANALYSIS

March 2023

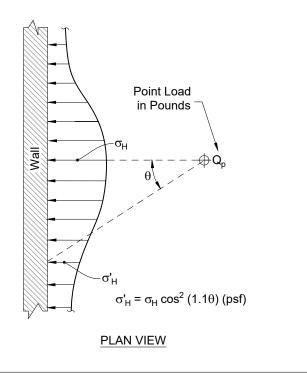

106384-002

FIG. 18

SHANNON & WILSON, INC.

h 2023 106384-0

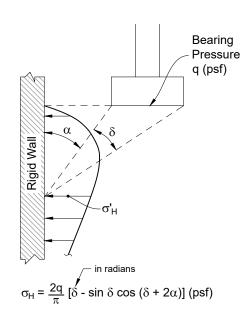
- 1. pcf = pounds per cubic foot; pci = pounds per cubic inch; psf = pounds per square foot
- 2. Top of shaft elevations to be determined by structural engineer.
- 3. Scour is not anticipated at Pier 1 because it is located behind a levee. We assume the levee will have adequate scour protection during the design flood event. Apply soil parameters from below Elevation S (second row in Table 18-1) to all layers in LPILE model for Pier 1.

A) LATERAL PRESSURE DUE TO POINT LOAD i.e. SMALL ISOLATED FOOTING OR WHEEL LOAD (NAVFAC DM 7.2, 1986)

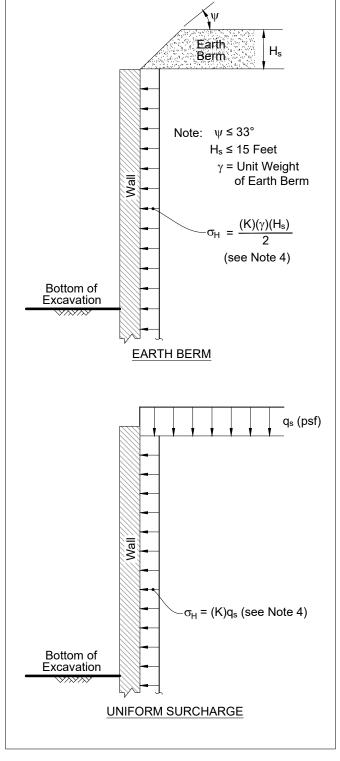
x = mH

Line Load in Pounds/Foot (see Note 3)

H

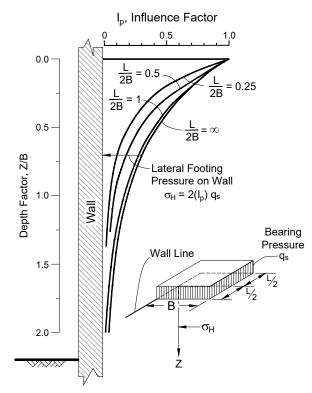

Bottom of Excavation

ELEVATION VIEW


For m
$$\leq$$
 0.4: $\sigma_H = 0.20 \frac{Q_l}{H} \frac{n}{(0.16 + n^2)^2}$ (psf) (see Note 3)
For m > 0.4: $\sigma_H = 1.28 \frac{Q_l}{H} \frac{m^2 n}{(m^2 + n^2)^2}$ (psf)

B) LATERAL PRESSURE DUE TO LINE LOAD i.e. NARROW CONTINUOUS FOOTING PARALLEL TO WALL

(NAVFAC DM 7.02, 1986)



C) LATERAL PRESSURE DUE TO STRIP LOAD (AASHTO LRFD Bridge Design Specifications, 2020)

D) LATERAL PRESSURE DUE TO EARTH BERM OR UNIFORM SURCHARGE

(derived from Poulos and Davis, *Elastic Solutions for Soil and Rock Mechanics*, 1974; and Terzaghi and Peck, *Soil Mechanics in Engineering Practice*, 1967)

E) LATERAL PRESSURE DUE TO ADJACENT FOOTING

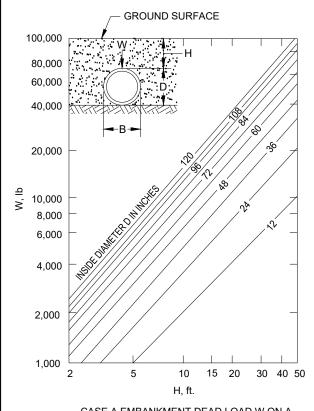
(see Notes 5 and 6)

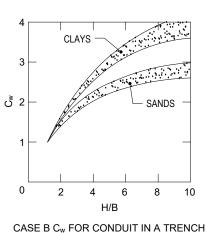
(derived from NAVFAC DM 7.02, 1986; and Sandhu, Earth Pressure on Walls Due to Surcharge, 1974)

NOTES

- 1. Figures are not drawn to scale.
- Applicable surcharge pressures should be added to appropriate permanent wall lateral earth and water pressure.
- 3. If point or line loads are close to the back of the wall such that m ≤ 0.4, it may be more appropriate to model the actual load distribution (i.e., Detail E) or use more rigorous analysis methods.
- 4. See text and lateral load diagram exihibits for recommended K values.
- The stress is estimated on the back of the wall at the center of the length, L, of loading.
- 6. The estimated stress is based on a Poisson's ratio of 0.5.

Cascade Mill Parkway Project Yakima, Washington


RECOMMENDED SURCHARGE LOADING FOR TEMPORARY AND PERMANENT WALLS


March 2023

106384-002

SHANNON & WILSON, INC.

FIG. 19

HEIGHT OF COVER OVER CONDUIT (ft) 0 400 800 1200 1600 2000 2400

CASE C VERTICAL PRESSURE DUE TO H-20 LIVE LOAD ON CONDUIT (PSF)

CASE A EMBANKMENT DEAD LOAD W ON A CONDUIT BURIED IN A SOIL EMBANKMENT

NOTES

- 1. W = total dead load per unit length.
- 2. Embankment dead loads shown in (a) are based on soil unit weight of 100 pcf. For different soil unit weights, adjust the loads proportionately.
- 3. For trench backfill shown in (b): $W = C_W (\gamma)(B)^2$

where: γ = soil unit weight.

B = trench width at top of pipe level.

If backfill compacted adequately, a unit weight of 125 pcf is recommended for evaluation.

- 4. Live loads shown in (c) include effect of impact.
- 5. This figure was adapted from NAVFAC DM7.

Cascade Mill Parkway Project Yakima, Washington

LOADS ON BURIED UTILITIES

March 2023

106384-002

IIISHANNON & WILSON, INC.

FIG. 20

Appendix A

Subsurface Explorations

CONTENTS

A.1	I INTRODUCTION		\-1
A.2	2 SOIL CLASSIFICATION		۱-1
A.3	3 SOIL BORINGS		۱-1
	A.3.1 Sonic Core Drilling Proceed	dures	۱-1
	A.3.3 Sonic Core Soil Review		\ -2
A 4	4 STAND-UP TEST PIT	Δ	7 −3

Exploration Logs

Figure A-1: Soil Description and Log Key (2 sheets)

Figure A-2: Log of Boring B-9-21 (6 sheets)

Figure A-3: Log of Boring B-10-21 (6 sheets)

Figure A-4: Log of Boring B-11P-21 (6 sheets)

Figure A-5: Log of Boring B-12P-21 (6 sheets)

Figure A-6: Log of Boring B-13-21 (4 sheets)

Figure A-7: Log of Boring B-14-21 (4 sheets)

Figure A-8: Log of Boring B-15P-21 (3 sheets)

Test Pit Log, TP-1-22

A.1 INTRODUCTION

The subsurface exploration program for Cascade Mill Parkway Phase 3 Project alignment consisted of drilling and sampling seven borings.

We advanced the seven borings, designated B-9-21 through B-15P-21, to depths ranging between 40 to 100 feet. We installed vibrating wire piezometers in B-11P-21, B-12P-21, and B-15P-21.

Approximate locations of the borings and tests pits were recorded in the field using a geographic information system (GIS) application accessed on a cellular phone. The locations of the explorations are shown in Figure 2. The exploration locations and elevations should be considered accurate to the degree implied by the method used.

A.2 SOIL CLASSIFICATION

A representative from Shannon & Wilson was present throughout the field explorations to observe the drilling and sampling operations; retrieve representative soil samples for subsequent laboratory testing; and to prepare descriptive field logs of the explorations. Soil sample classifications were based on ASTM Designation D2487, Standard Practice for Classification of Soils for Engineering Purposes, and ASTM Designation D2488, Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). The Unified Soil Classification System, as described in Figure A-1 of this appendix, was used to classify the soil. The exploration logs in the report represent our interpretation of the contents of the field logs.

A.3 SOIL BORINGS

A.3.1 Sonic Core Drilling Procedures

Holt Services Inc. of Edgewood, Washington, drilled the soil borings under subcontract to Shannon & Wilson using a Terra Sonic 150CC track-mounted drill rig, outfitted with an automatic hammer. The sonic core drilling method uses high-frequency vibratory motion applied to the top of the drill column, along with down-pressure and rotation, to obtain nearly continuous core samples in soil and rock.

Soil samples were obtained using a 4-inch-outside-diameter (OD) core barrel. As the drill column was advanced into the ground, soil entered the core barrel. After advancing the

core barrel a distance of 5 feet (termed a core "run"), a 6-inch OD temporary casing was vibrated to the bottom of the sample interval. The drill column and core barrel were then removed from the borehole and the soil core was extracted from the core barrel into plastic bags. Soil recovered from each run was described in the field and logged by our field representative. The soil sample bags were then sealed to retain moisture and stored in core boxes for transport. After retrieval of the soil core for a specific interval, the casing was cleared of slough and the drill column and core barrel were advanced, starting at the bottom of the temporary casing.

A.3.2 Split-Spoon Soil Samples

Disturbed soil samples were obtained from the borings by a split-spoon sampler used in conjunction with a Standard Penetration Test (SPT) and the sonic core barrel. To obtain disturbed soil samples from the borings, SPTs were performed in general accordance with the ASTM Designation D1586, Standard Test Method for Standard Penetration Test and Split-Barrel Sampling of Soils. The SPTs were performed at 5-foot intervals to a depth of 40 feet, then 10-foot intervals thereafter, in between sonic core runs. The SPT consists of a 2-inch O.D., 1.375-inch-inside-diameter, split-spoon sampler driven 18 inches into the bottom of the borehole with a 140-pound hammer free falling 30 inches. The number of blows required to advance the split-spoon sampler the last 12 inches of penetration is termed the Standard Penetration Resistance (N-value). This value is an empirical parameter that provides a means of evaluating the relative density or compactness of cohesionless (granular) soils and the relative consistency (stiffness) of cohesive soils. This value is commonly used in engineering analyses to estimate soil strength and other characteristics. The terminology used to describe the relative density or consistency of the soils is presented in Figure A-1. Generally, when penetration resistances exceed 50 or more blows for 6 inches or less of penetration, the test is terminated, and the number of blows and corresponding penetration recorded. The N-values were recorded by our field representative and are plotted in the boring logs presented as Figures A-2 through A-8.

The split-spoon sampler used during the penetration test recovers a disturbed sample of the soil, which is useful for identification and classification purposes. The samples were classified and recorded in the field by our field representative. The samples were then sealed in jars to retain moisture and returned to our laboratory for testing.

A.3.3 Sonic Core Soil Review

Soil recovered from sonic core drilling was reviewed for identification and classification purposes and photographed in our warehouse. Grab samples were collected during our review and placed in labeled plastic jars and 5-gallon plastic bags, sealed, and transported to our laboratory for further analysis and testing.

A.4 STAND-UP TEST PIT

On May 22, 2022, a test pit, designated TP-1-22, was excavated in the outside shoulder of eastbound Interstate 82. The Washington State Department of Transportation advanced the test pit using a John Deere excavator mounted with a 3-foot-wide bucket. A Shannon & Wilson field representative was onsite to observe the process and log the test pit.

TP-1-22 was excavated at approximately 10 a.m. on Sunday, May 22. The test pit was 4 to 6 feet wide, by 13 feet long, by 9 to 12 feet deep. The test pit remained open for approximately 24 hours. We used a timelapse camera to observe the sidewall conditions during the 24-hour period and also made several visits to the test pit.

Upon arrival at the test pit the next morning, approximately 9 a.m. on Monday, May 23, we observed limited localized sidewall caving and minor erosion of fine sand and silt had occurred during the 24-hour period; however, the volumes were small. The test pit log for TP-1-22 shows overall beginning and ending photographs. The small volumes of erosion can be visualized by comparing the base of the excavation.

We observed that physical disturbance of the sidewalls (e.g., bumping from the excavator bucket or walking too close to the edge of the pit) caused minor sloughing due to the dry nature of the fill. This sloughing occurred immediately at the time of the disturbance.

We observed that the in-place density and compaction of the embankment material at the west, north, and south sidewalls of the test pit was relatively loose with some apparent cohesion in the upper few feet. We attribute this relatively loose layer to the test pit being located on the side slope of the embankment. In contrast, the east sidewall of the test pit, which was beneath the pavement, appeared to be more compact.

Cascade Mill Parkway Yakima, Washington

Sheet 1 of 2

Shannon & Wilson uses a soil identification system modified from the Unified Soil Classification System (USCS). Elements of the USCS and other definitions are provided on this and the following page. Soil descriptions are based on visual-manual procedures (ASTM D2488) and laboratory testing procedures (ASTM D2487), if performed.

	Structure ¹		
Interbedded Alternating layers of varying material or color with layers at least 1/4-inch-thick; singular: bed.			
Laminated	Alternating layers of varying material or color with layers less than 1/4-inch-thick; singular: lamination.		
Fissured	Breaks along definite planes or fractures with little resistance.		
Slickensided	Fracture planes appear polished or glossy; sometimes striated.		
Blocky	Cohesive soil that can be broken down into small angular lumps that resist further breakdown.		
Lensed	Inclusion of small pockets of different soils, such as small lenses of sand scattered through a mass of clay.		
Homogeneous	Same color and appearance throughout.		

	Angularity and Shape ¹
Angular	Sharp edges and unpolished planar surfaces.
Subangular	Similar to angular, but with rounded edges.
Subrounded	Nearly planar sides with well-rounded edges.
Rounded	Smoothly curved sides with no edges.
Flat	Width/thickness ratio > 3.
Elongated	Length/width ratio > 3.

	Standard Penetration Test (SPT) ³
Hammer	140 pounds with a 30-inch free fall. Rope on 6- to 10-inch-diameter cathead 2-1/4 rope turns, > 100 rpm. If automatic hammers are used, blow counts shown on boring logs should be adjusted to account for efficiency of hammer.
Sampler	10 to 30 inches long Shoe I.D. = 1.375 inches Barrel I.D. = 1.5 inches Barrel O.D. = 2 inches
N-Value	Sum blow counts for second and third 6-inch increments. Refusal: 50 blows for 6 inches or less or 10 blows for 0 inch.

Moisture Content				
Dry	Absence of moisture, dusty, dry to the touch.			
Moist	Damp but no visible water.			
Wet	Visible free water, from below water table.			

Gradation						
Poorly Graded	Narrow range of grain sizes present or, within the range of grain sizes present, one or more sizes are missing (Gap Graded). Meets criteria in ASTM D2487, if tested.					
Well-Graded	Full range and even distribution of grain sizes present. Meets criteria in ASTM D2487, if tested.					

	Cementation ¹
Weak	Crumbles/breaks with handling or slight finger pressure.
Moderate	Crumbles or breaks with considerable finger pressure.
Strong	Will not crumble or break with finger pressure.

	Plasticity ²	
Nonplastic	Cannot roll a 1/8-in. thread at any water content.	PI < 4
Low	A thread can barely be rolled and a lump cannot be formed when drier than the plastic limit.	4 < PI < 10
Medium	A thread is easy to roll and not much time is required to reach the plastic limit. The thread cannot be rerolled after reaching the plastic limit. A lump crumbles when drier than the plastic limit.	10 < PI < 20
Hard	It takes considerable time rolling and kneading to reach the plastic limit. A thread can be rerolled several times after reaching the plastic limit. A lump can be formed without crumbling when drier than the plastic limit.	PI > 21

	Additional Terms
Mottled	Irregular patches of different colors.
Bioturbated	Soil disturbance or mixing by plants or animals.
Diamict	Nonsorted sediment; sand and gravel in silt and/or clay matrix.
Cuttings	Material brought to surface by drilling.
Slough	Material that caved from sides of borehole.
Sheared	Disturbed texture, mix of strengths.

Notes

¹Reprinted, with permission, from ASTM D2488 - 09a Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428. A copy of the complete standard may be obtained from ASTM International, www.astm.org.

²Adapted, with permission, from ASTM D2488 - 09a Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428. A copy of the complete standard may be obtained from ASTM International, www.astm.org.

³Penetration resistances (N-values) shown on boring logs are as recorded in the field and have not been corrected for hammer efficiency, overburden, or other factors.

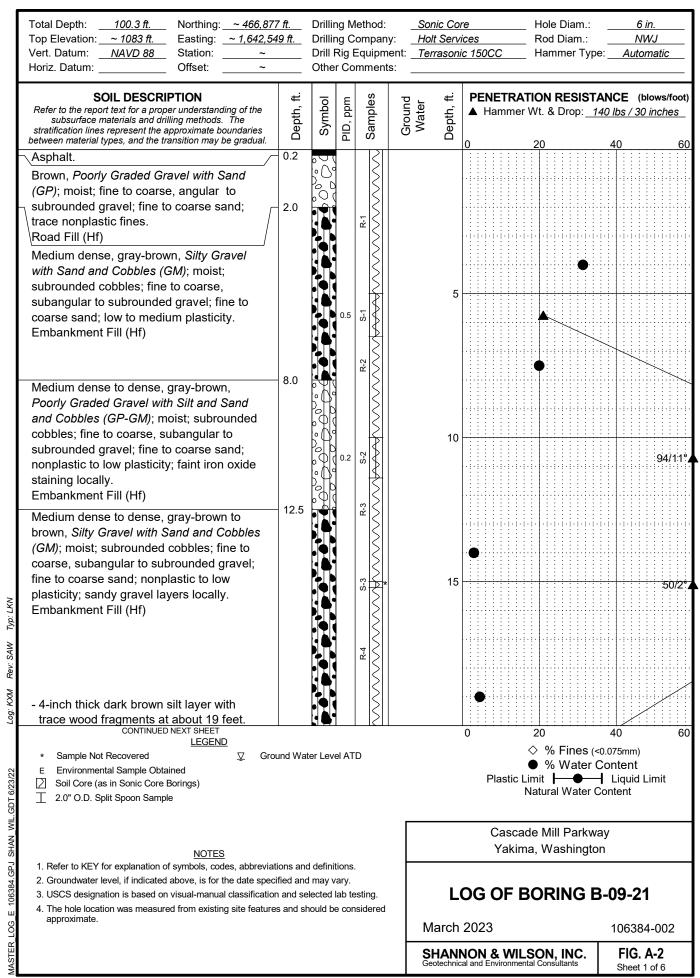
1/7/22

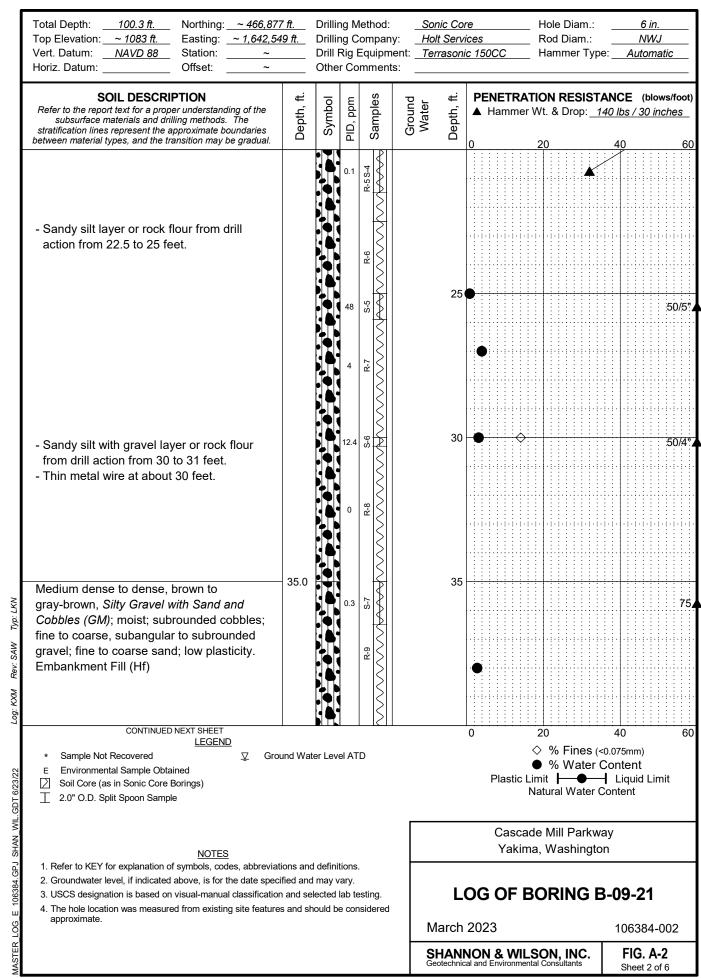
Unified Soil Classification System (USCS) Modified From USACE Tech Memo 3-357, ASTM D2487, and ASTM D2488							
		Symbol		Typical Identifications			
		Gravel	GW		Well-graded Gravel; Well-graded Gravel with Sand		
	Gravels (more than 50% of	(less than 5% fines)	GP	000	Poorly Graded Gravel; Poorly Graded Gravel with Sand		
	coarse fraction retained on No. 4 sieve)	Silty or Clayey Gravel	GM	K K	Silty Gravel; Silty Gravel with Sand		
Coarse-Grained Soils	,	(more than 12% fines)	GC		Clayey Gravel; Clayey Gravel with Sand		
(more than 50% retained on No. 200 sieve)		Sand	SW		Well-graded Sand; Well-graded Sand with Gravel		
	Sands (50% or more of coarse - fraction passes the No. 4 sieve)	(less than 5% fines)	SP		Poorly Graded Sand; Poorly Graded Sand with Gravel		
		Silty or Clayey Sand (more than 12% fines)	SM		Silty Sand; Silty Sand with Gravel		
			sc		Clayey Sand; Clayey Sand with Gravel		
	0.11	Inorganic -	ML		Silt; Silt with Sand or Gravel; Sandy or Gravelly Silt		
	Silts and Clays (liquid limit less than 50)		CL		Lean Clay; Lean Clay with Sand or Gravel; Sandy or Gravelly Lean Clay		
Fine-Grained Soils		Organic	OL	===	Organic Silt or Clay; Organic Silt or Clay with Sand or Gravel; Sandy or Gravelly Organic Silt or Clay		
(50% or more passes the No. 200 sieve)		Inorganic -	МН		Elastic Silt; Elastic Silt with Sand or Gravel; Sandy or Gravelly Elastic Sil		
	Silts and Clays (liquid limit 50 or more)		СН		Fat Clay; Fat Clay with Sand or Gravel; Sandy or Gravelly Fat Clay		
		Organic	ОН		Organic Silt or Clay; Organic Silt or Clay with Sand or Gravel; Sandy or Gravelly Organic Silt or Clay		
Highly Organic Soils	Primarily organic matter, dark i	n color, and organic odor	PT		Peat or other highly organic soils (see ASTM D4427)		

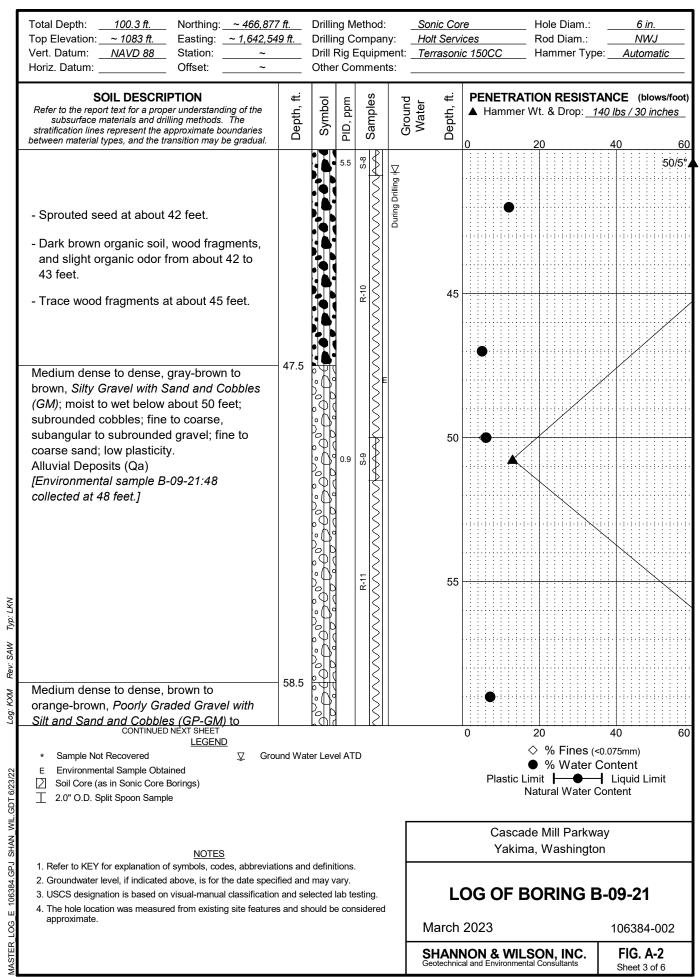
	Acronyms and Abbreviations						
ATD	At Time of Drilling	MgO	Magnesium Oxide	psi	Pounds per Square Inch		
Diam.	Diameter	mm	Millimeter	PVC	Polyvinyl Chloride		
Elev.	Elevation	MnO	Manganese Oxide	rpm	Rotations per Minute		
ft	Feet	NA	Not Applicable or Not Available	SPT	Standard Penetration Test		
FeO	Iron Oxide	NP	Nonplastic	USCS	Unified Soil Classification System		
gal	Gallons	O.D.	Outside Diameter	qu	Unconfined Compressive Strength		
Horiz.	Horizontal	OW	Observation Well	VWP	Vibrating Wire Piezometer		
HSA	Hollow-Stem Auger	pcf	Pounds per Cubic Foot	Vert.	Vertical		
I.D.	Inside Diameter	PID	Photoionization Detector	WOH	Weight of Hammer		
in	Inches	PMT	Pressuremeter Test	WOR	Weight of Rods		
lbs	Pounds	ppm	Parts per Million	Wt	Weight		

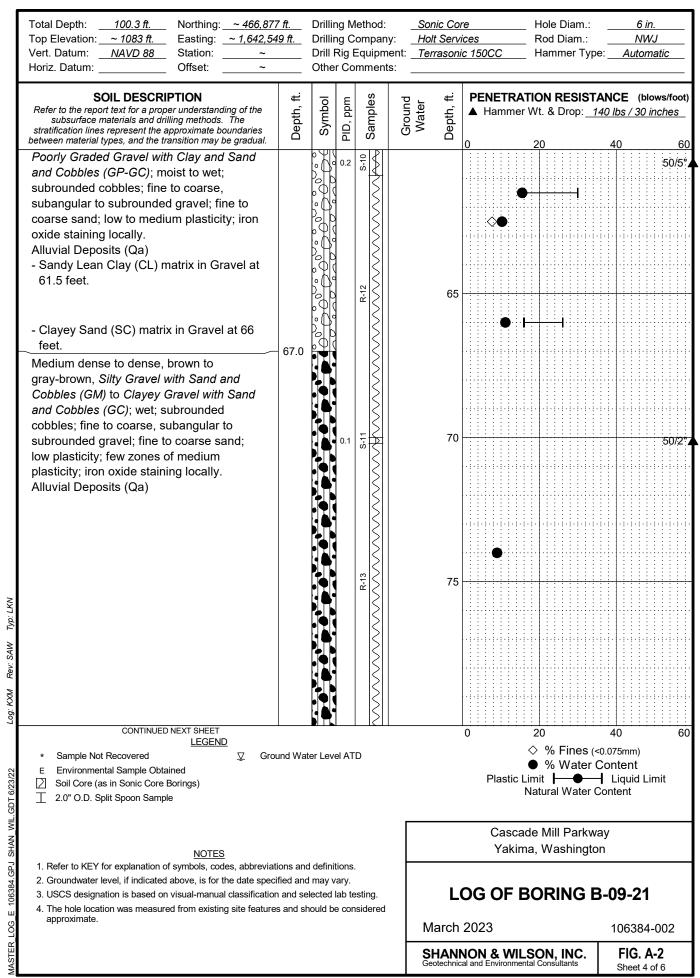
Relative Density Cohesionless Soils				
N, SPT, Blows/ft	Relative Density			
< 4	Very loose			
4 - 10	Loose			
10 - 30	Medium dense			
30 - 50	Dense			
> 50	Very dense			

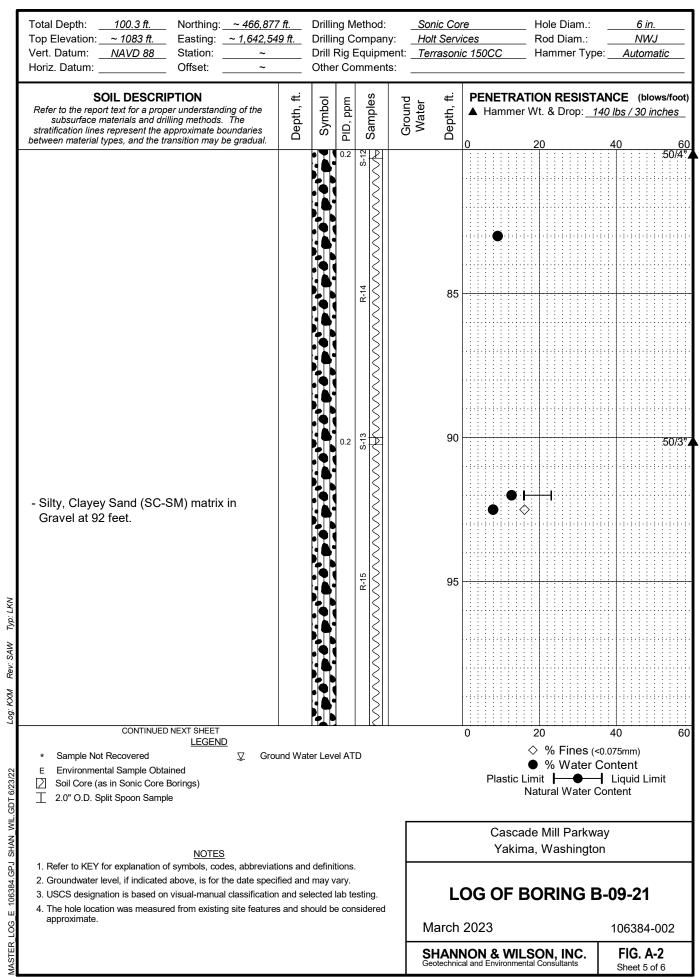
Cohesive Soils		
N, SPT, Blows/ft	Relative Consistency	
< 2	Very soft	
2 - 4	Soft	
4 - 8	Medium stiff	
8 - 15	Stiff	
15 - 30	Very stiff	
> 30	Hard	

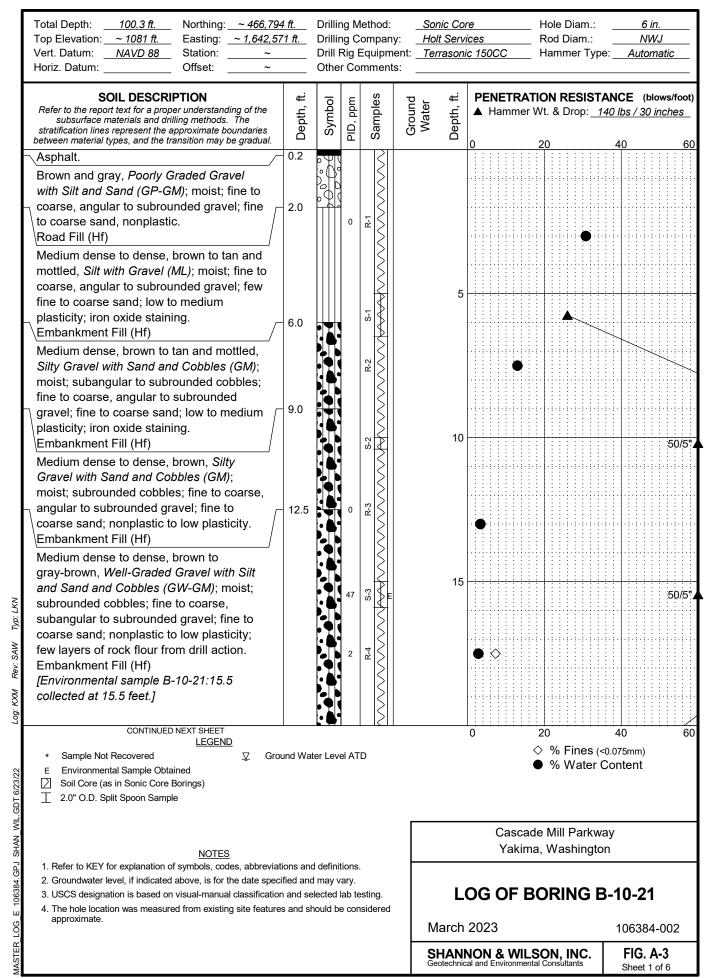

Р	ercentages ^{1, 2}	
Trace	< 5%	
Few	5 to 10%	
Little	15 to 25%	
Some	30 to 45%	
Mostly	50 to 100%	

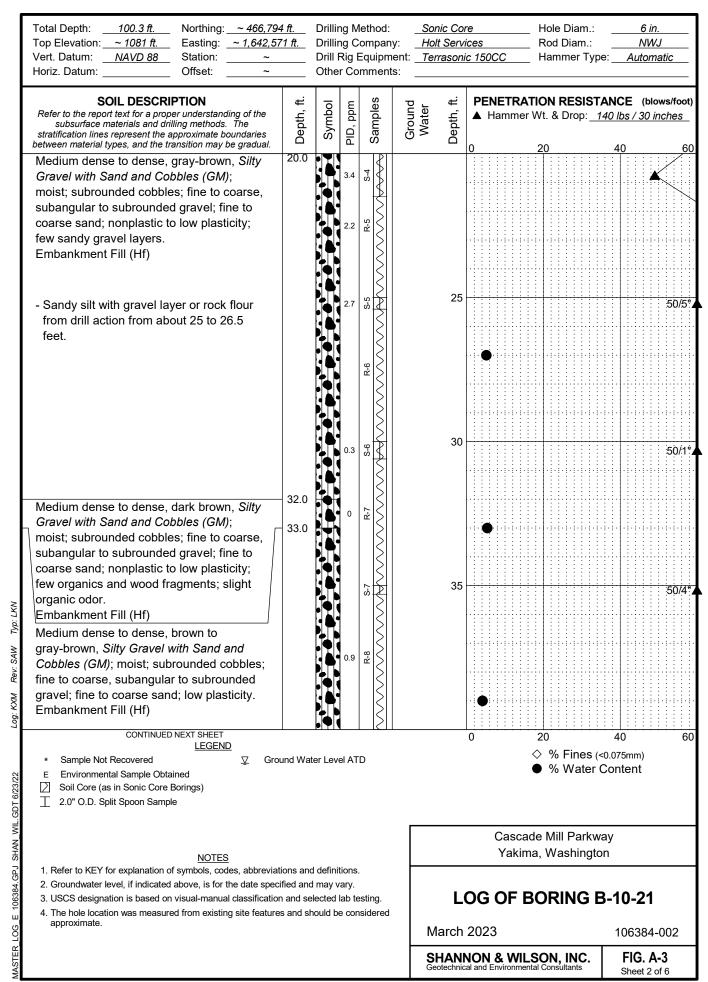

Well and Backfill Symbols				
Bentonite Cement Grout				
Bentonite Grout				
	Bentonite Chips			
	Silica Sand			
	Perforated or Screened Casing			
7/2/4 & 7/2/4 & 4/7/2/4 / 7/2/4 9/2/4 & 7/2/4 9/2/4 & 7/2/4 4/7/4 / 7/2/4	Surface Cement Seal			
	Asphalt or Cap			
	Slough			
	Inclinometer or Non-perforated Casing			
	Instrumentation Riser or Electrical Lead			
	Vibrating Wire Piezometer with Designation			

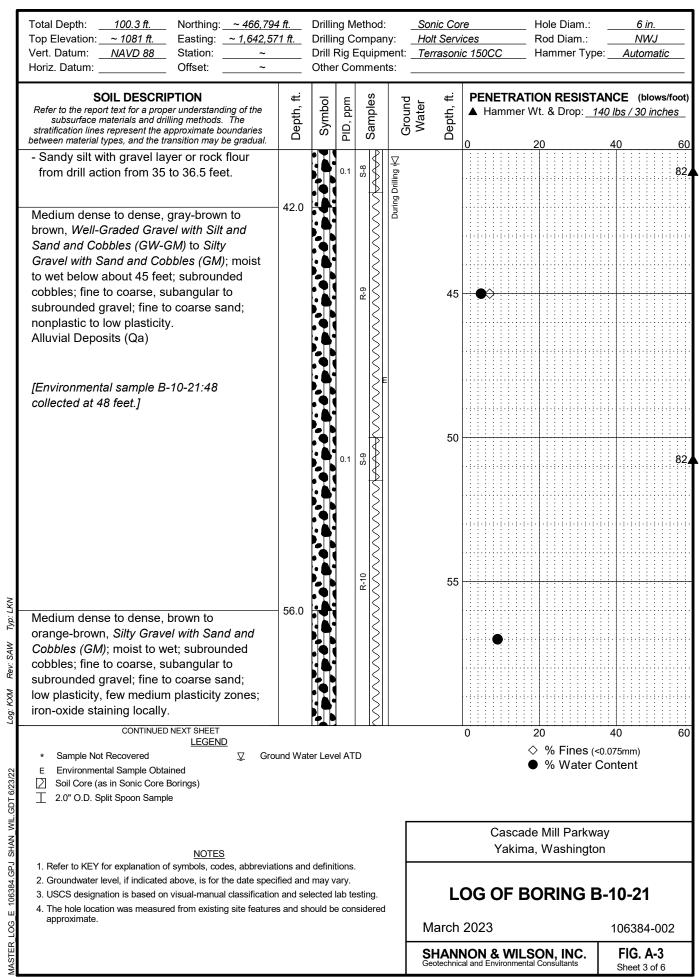

Dual symbols (symbols separated by a hyphen, i.e., SP-SM, Sand with Silt) are used for soils with between 5% and 12% fines or when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart. Graphics shown on the logs for these soil types are a combination of the two graphic symbols (e.g., SP and SM).

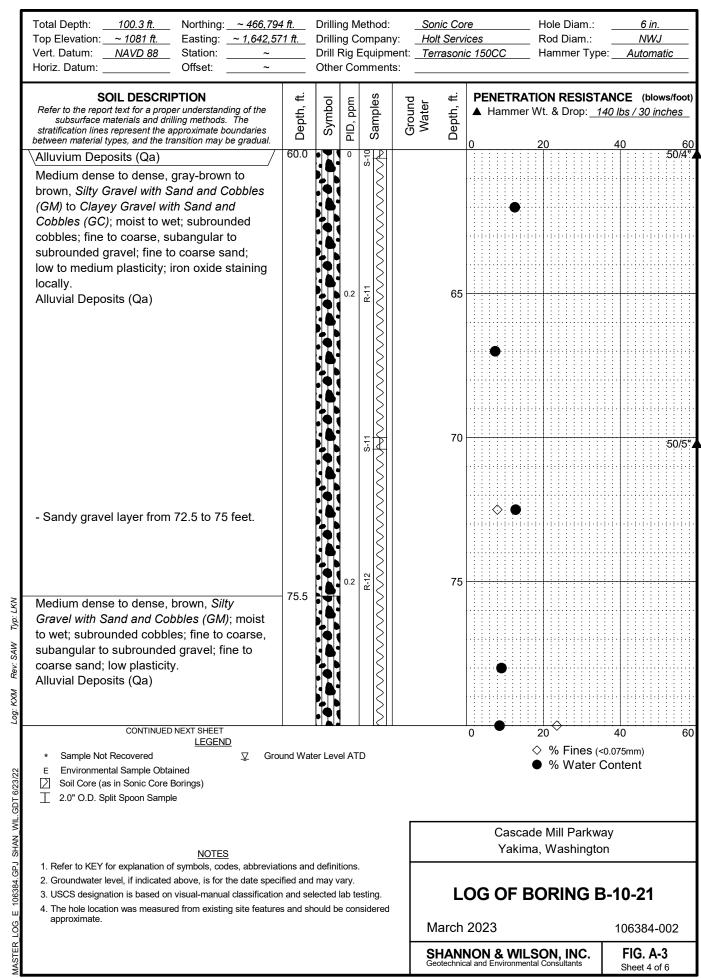

Borderline symbols (symbols separated by a slash, i.e., CL/ML, Lean Clay to Silt; SP-SM/SM, Sand with Silt to Silty Sand) indicate that the soil properties are close to the defining boundary between two groups.

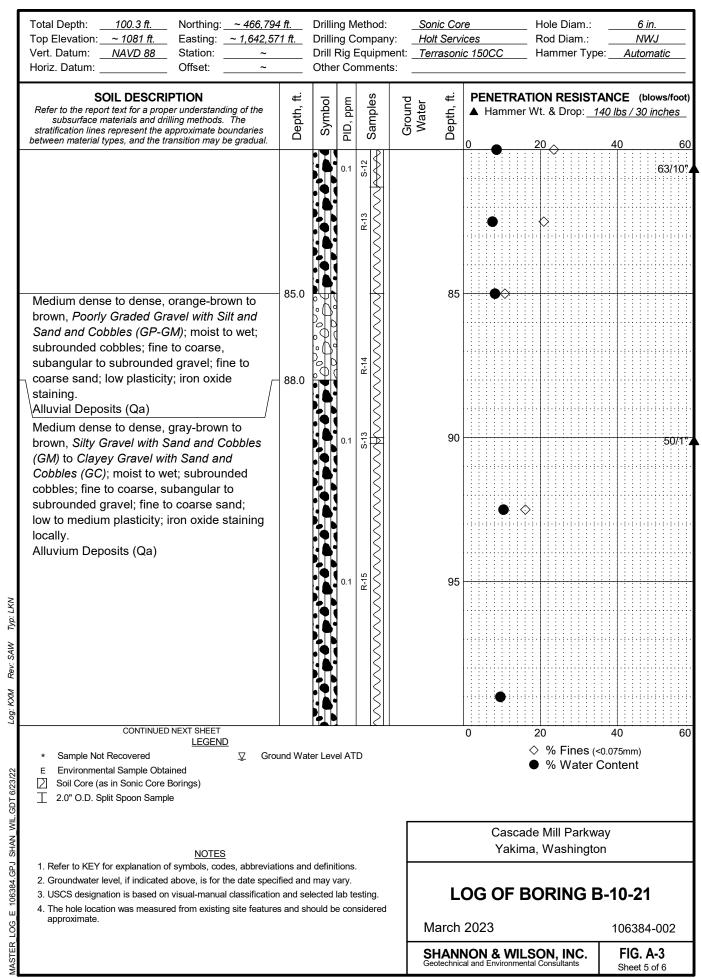

No. 4 size = 4.75 mm = 0.187 in.; No. 200 size = 0.075 mm = 0.003 in.

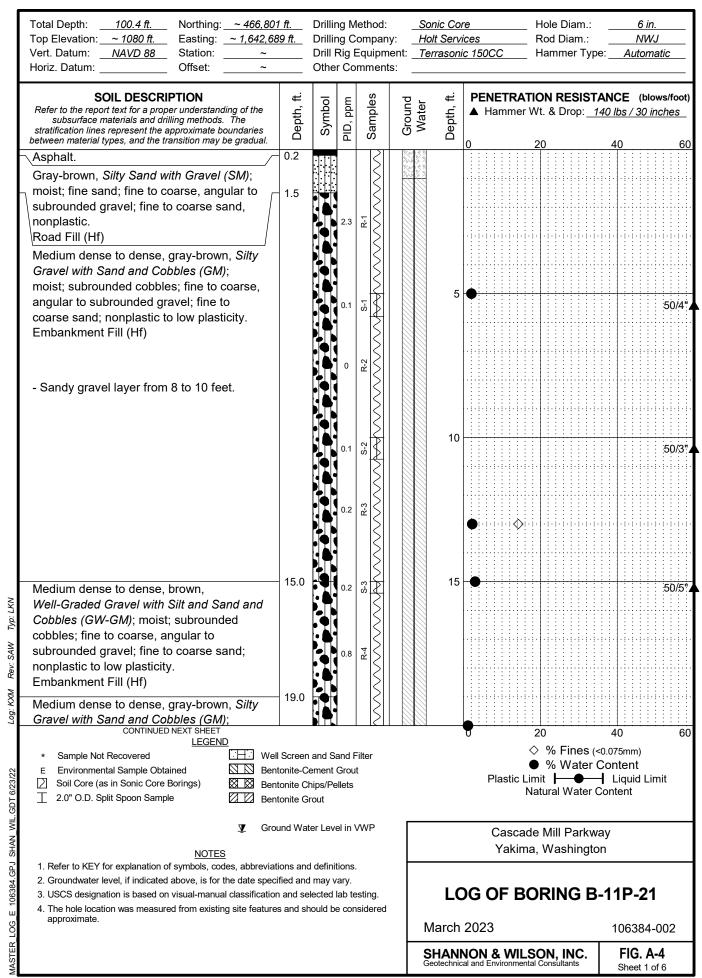


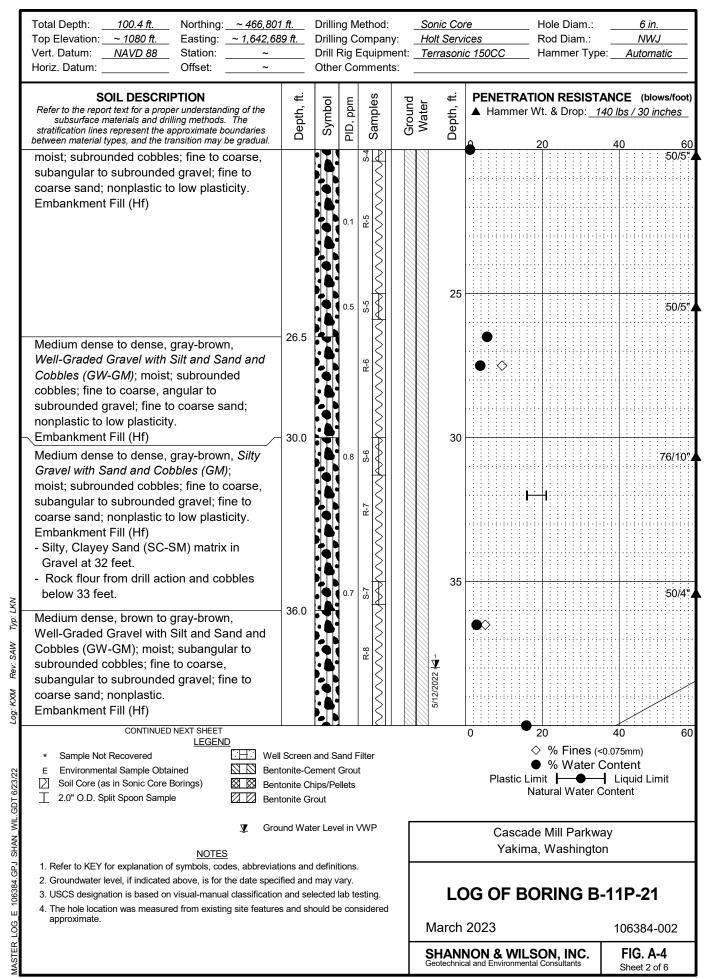


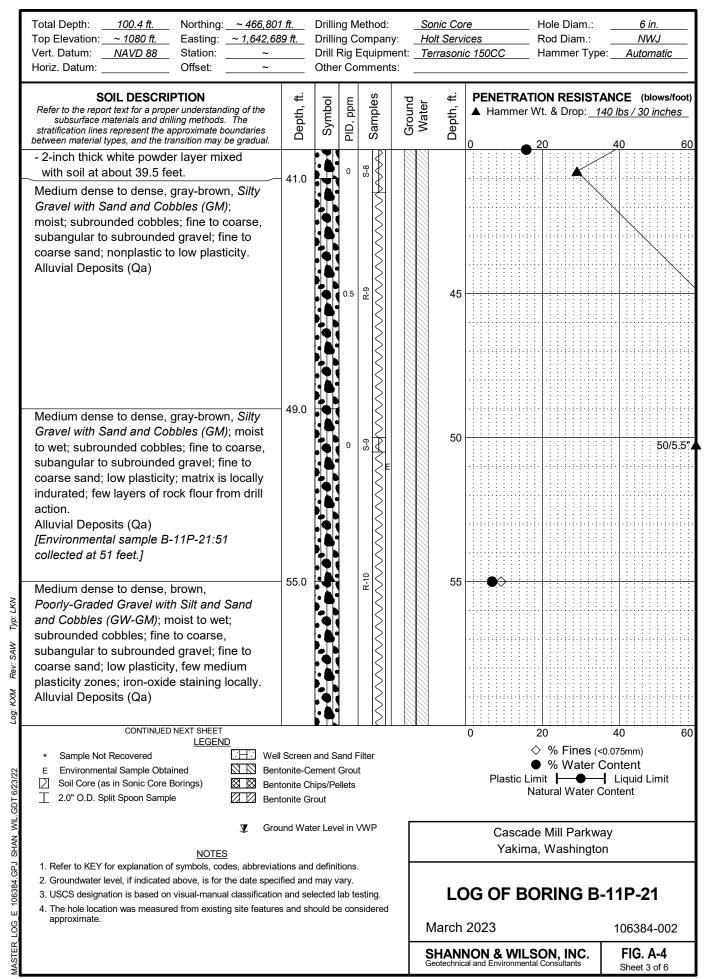




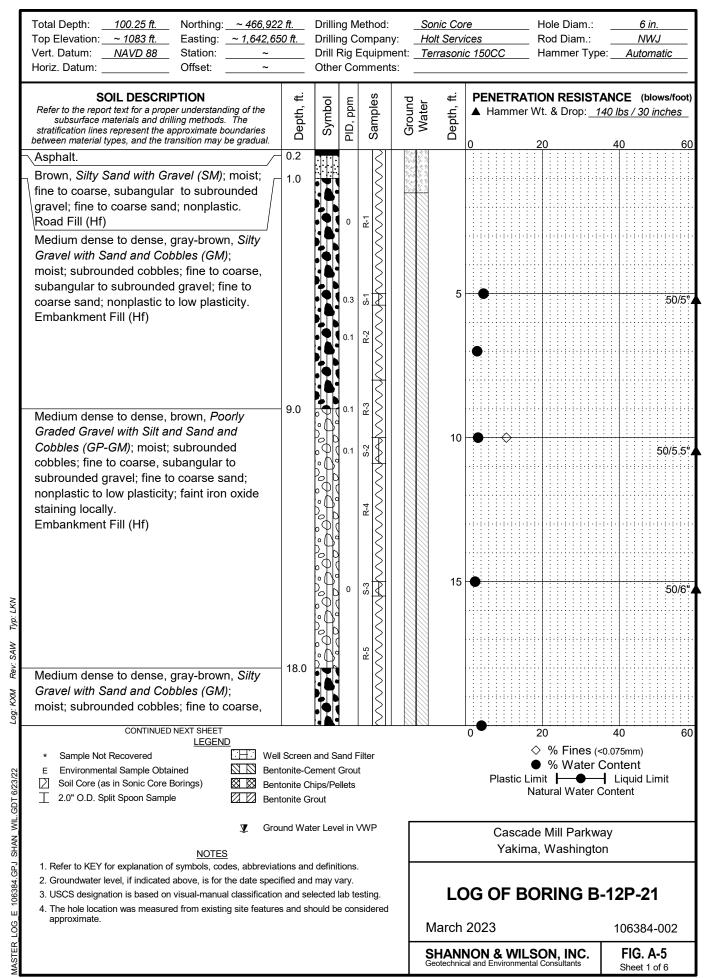

	Total Depth: 100.3 ft. Northing: ~ 466,877 Top Elevation: ~ 1083 ft. Easting: ~ 1,642,54 Vert. Datum: NAVD 88 Station: ~ Horiz. Datum: Offset: ~		Drillir Drill I	ng C Rig I	lethod: compan Equipm omment	y: _ ent: _	Sonic Co. Holt Serv Terrason	ice		CC	<u> </u>		F	lole Rod Iam	Dia	am.	.:	e: _	A	6 i NV utor	VJ	tic	_ _ _
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm		Ground	water Depth, ft.	1								_	_		CE bs/	•		hes	s60
İ	BOTTOM OF BORING COMPLETED 4/8/2021	100.3			8-1-S									- ! - !								50	/4" 4
	NOTE: Where gravels exceeding one-half the inside diameter of the split spoon sampler, cobbles, or boulders are present, the SPT blow counts are not reliable indicators of soil density or stiffness per																						
	ASTM D1586. The interpreted relative densities for layers that meet these criteria presented in this boring log are based on density of nearby soil zones encountered						105																
	and interpretation of the geologic depositional environment, instead of the blow count versus relative density relationship presented in Figure A-1.																						
							110																
Typ: LKN							115																
Rev: SAW Typ																							
Log: KXM								0					2	0				4	10				60
GDT 6/23/22	LEGEND * Sample Not Recovered Environmental Sample Obtained Soil Core (as in Sonic Core Borings) 2.0" O.D. Split Spoon Sample	und Wa	ter Lev	el AT	D.					Pla	asti	ic L		% % t !	W	ate	er (Cor ไป	75mi nter _iqu tent	nt iid L	.im	it	
J SHAN WIL.	<u>NOTES</u>											cac						-					
ASTER LOG E 106384.GPJ SHAN WIL.GDT 6/23/22	 Refer to KEY for explanation of symbols, codes, abbreviat Groundwater level, if indicated above, is for the date speci USCS designation is based on visual-manual classification The hole location was measured from existing site features 	ified and n and se	d may v elected	ary. lab te	esting.		L	0	G	C	F	В	BC	R	IN	IG	E	3-C)9-	21			
R LOG E	approximate.						March											1	106				
ASTE													G . <i>I</i> eet 6										

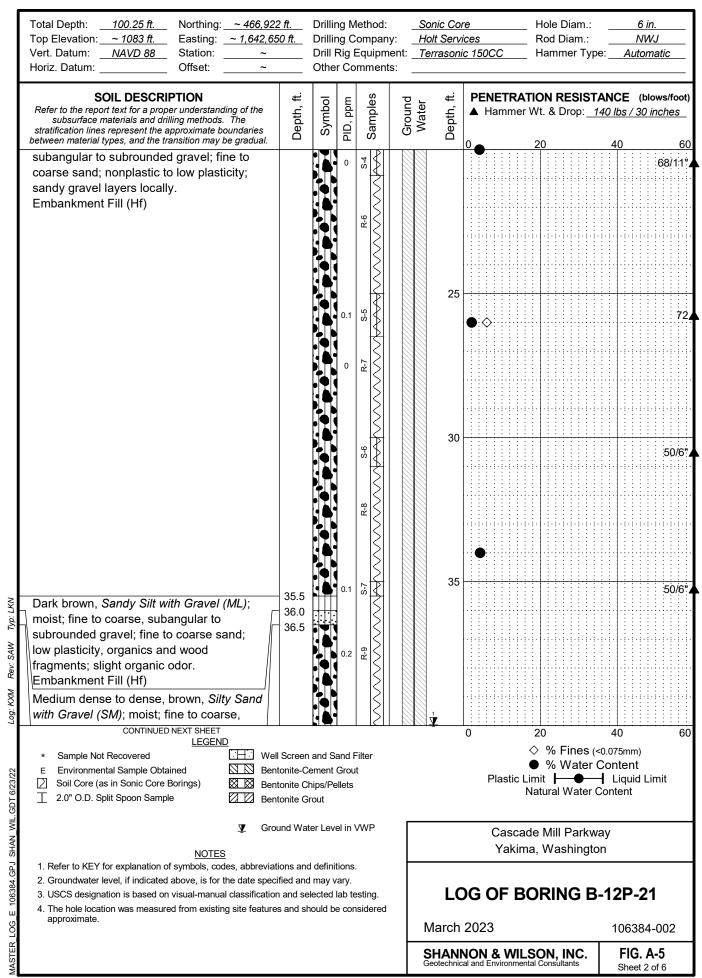


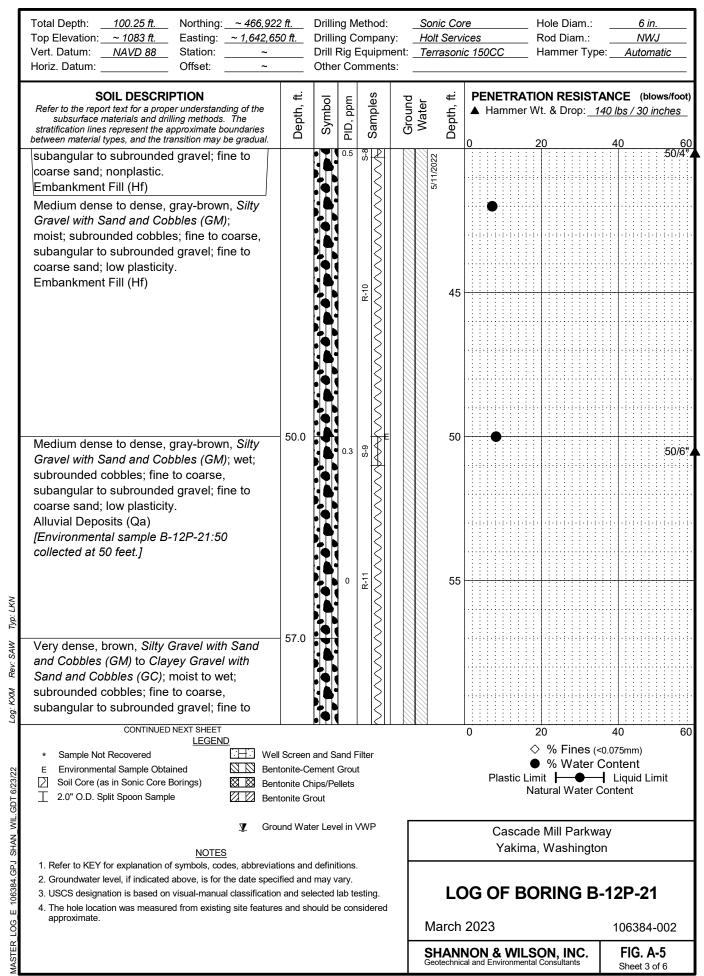


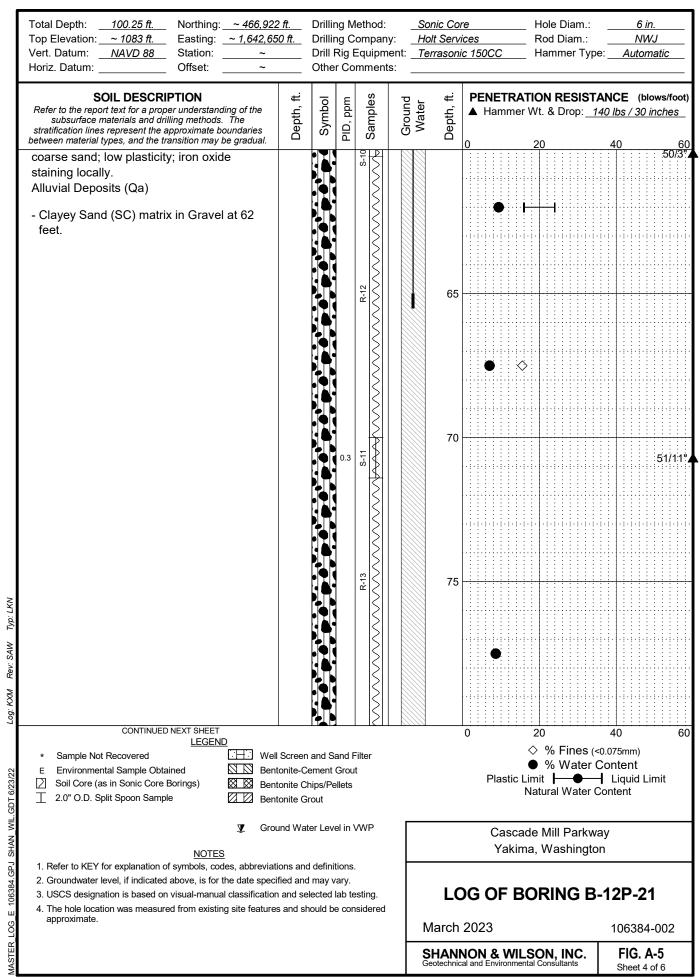


	Total Depth: 100.3 ft. Northing: ~ Top Elevation: ~1081 ft. Easting: ~ Vert. Datum: NAVD 88 Station: Offset:		Drillir Drill I	ng C Rig I	lethod: company: Equipme omments:	. <u>Ho</u> nt: <u>Te</u>	nic Cor It Servi rrasoni	ces	CC		_ _ F	Hole Rod Ham	Dia	am.	:	 		6 ir NW utom	′J	
	SOIL DESCRIPTION Refer to the report text for a proper understanding subsurface materials and drilling methods. The stratification lines represent the approximate bound between material types, and the transition may be g	e daries d	Symbol	PID, ppm	Samples	Ground	Depth, ft.				r W						bs /	•		nes 60
	BOTTOM OF BORING COMPLETED 4/7/2021 NOTE: Where gravels exceeding one-h the inside diameter of the split spoon				4-7						2								Į.	50/4",
	sampler, cobbles, or boulders are present the SPT blow counts are not reliable indicators of soil density or stiffness per ASTM D1586. The interpreted relative densities for layers that meet these critical samples.	r					105													
	presented in this boring log are based of density of nearby soil zones encountered and interpretation of the geologic depositional environment, instead of the blow count versus relative density	on ed																		
	relationship presented in Figure A-1.						110													
ΚN							115													
Rev: SAW Typ: LKI																				
Log: KXM Re								0				20				4	0	- ! - ! -		60
.GDT 6/23/22	* Sample Not Recovered E Environmental Sample Obtained Soil Core (as in Sonic Core Borings) 2.0" O.D. Split Spoon Sample	☑ Ground Wat	ter Lev	el AT	D			Ü			♦	%				0.07	′5mn iten			00
ASTER_LOG_E 106384.GPJ SHAN_WIL.GDT 6/23/22	<u>NOTES</u> 1. Refer to KEY for explanation of symbols, codes, and 2. Groundwater level, if indicated above, is for the decirion of the decirion											: Mi				•				
OG_E 106384	USCS designation is based on visual-manual clar The hole location was measured from existing sit approximate.	ssification and se	lected	lab te	-		L (larch			FI	BC	DR	IN	IG	В			21	-00)2
ASTER L						-	HANN			WII	LS(ON.	, IN	IC.	.		FIC	3. A	<u>3</u>	

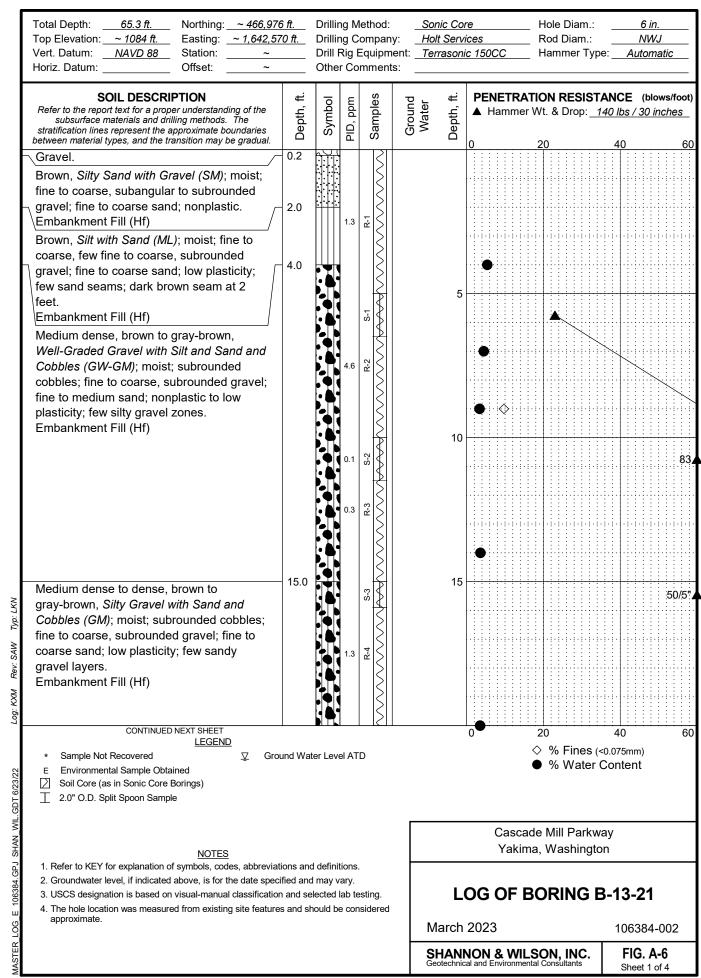


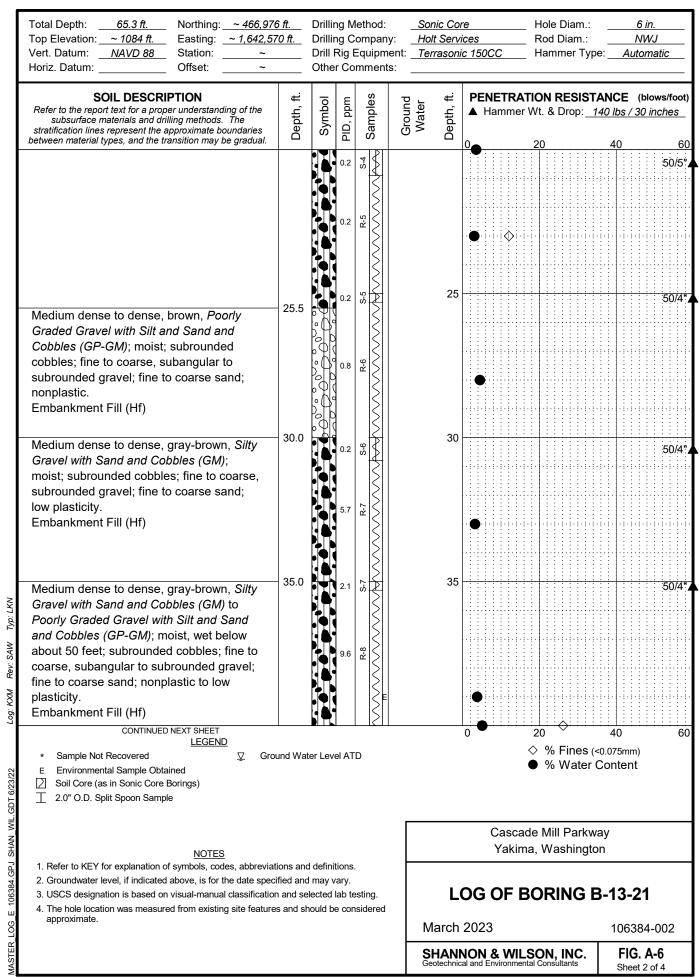


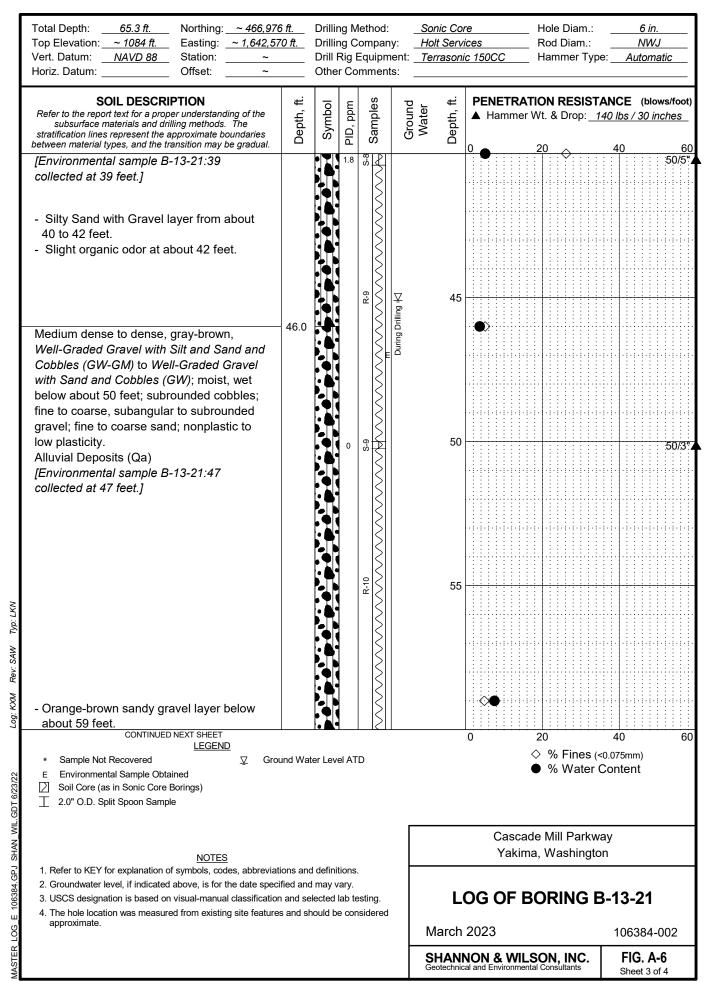

	Total Depth: 100.4 ft. Northing: ~ 466,8 Top Elevation: ~ 1080 ft. Easting: ~ 1,642,6 Vert. Datum: NAVD 88 Station: ~ Horiz. Datum: Offset: ~	689 ft.	Drillir Drillir Drill F Other	ng C Rig E	om Equ	ipany uipme	ent:	Holt	ic Coi Servi asoni	ices		С	_	R	ole D od D amm	Diam	n.:	e: _			in. WJ mati	ic	_ _ _
ľ	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	-	Samples	Ground	Water	Depth, ft.						N R . & D					•		hes	,
	Medium dense to dense, gray-brown to brown, Silty Gravel with Sand and Cobbles (GM) to Clayey Gravel with Sand and Cobbles (GC); moist to wet; subrounded cobbles; fine to coarse, subangular to subrounded gravel; fine to coarse sand;	62.0			R-11 S-10				65													50/	: :
	low to medium plasticity; iron oxide staining locally. Alluvial Deposits (Qa)				~																		
	Medium dense to dense, brown, <i>Clayey Gravel with Sand and Cobbles (GC)</i> ; moist to wet; subrounded cobbles; fine to coarse, subangular to subrounded gravel; fine to	72.0		0.1	S-11				70					I		4						.50/	3"2
th Rev: SAW Typ: LKN	coarse sand; low to medium plasticity; iron-oxide staining locally. Alluvial Deposits (Qa) - 6-inch thick orange-brown, ash or weathered gravel zones at 76 and 83			0.1	R-12				75														
GDT 6/23/22 Log: KXM	Feet. CONTINUED NEXT SHEET LEGEND * Sample Not Recovered E Environmental Sample Obtained Soil Core (as in Sonic Core Borings) Be	/ell Screer entonite-C entonite C entonite G	Cement (Chips/Pe	Grou		r				0	PI	last	ic Li	• mit	% F % V : -	//at	ter	<0.0' Cor	nte Liqu	nť uid L	_imi		60
ASTER LOG E 106384.GPJ SHAN WIL.GDT 6/23/22	NOTES 1. Refer to KEY for explanation of symbols, codes, abbrevi 2. Groundwater level, if indicated above, is for the date spe 3. USCS designation is based on visual-manual classificati 4. The hole location was measured from existing site feature approximate.	ecified and	nd definit nd may v elected l	tions. ary. lab te	estir	ng.		Ma	LC		0	Yal	kim	a, \	Mill Was	shin	ngto	on 5 -1		P-2			
ASTER L							\mid	SH	IANI technic	VO I	N &	& V	VILS	SO al Co	N, I	INC tants	-		FI	IG.		1	


Top Vert.	100.4 ft. 100.4 ft.	Northing: _ Easting: _ Station: _ Offset: _			Drillir Drillir Drill F Othe	ng C Rig E	om Equ	ıpanı ıipm	/: ent:	Sonic C Holt Se Terrasc	ervic	es	occ	;		Rod	e Dia Diai nmer	m.:	- pe: _		NV	in. NJ mati	ic	
strat	SOIL DESCRII ier to the report text for a prope subsurface materials and dril tification lines represent the a een material types, and the tra	er understandir Iling methods. approximate bou	The undaries	Depth, ft.	Symbol	PID, ppm	-	samples	Ground	Water Denth ff	Deptil, it.												s/foot hes	-
brov (GA Cob cob sub low loca	dium dense to dense, g wn, Silty Gravel with S M) to Clayey Gravel with bbles (GC); moist to we obles; fine to coarse, su orounded gravel; fine to to medium plasticity; if ally. uvial Deposits (Qa)	Sand and Co th Sand and et; subround ubangular to o coarse sal	obbles d ded o nd;	- 87.0		0	R-14 S-13 R-13 S-12	www.www.www.www.www.www.www.www.ww.		9	35												50/5"	
*	Sample Not Recovered Environmental Sample Obtai Soil Core (as in Sonic Core E 2.0" O.D. Split Spoon Sample	nined Borings)	Well Bent	tonite-C	n and Sa Cement (Chips/Pe	Grou		r			(0	Pla	astic	¢ € Lin) % nit [Fin Wa	eter	(<0.0 Co	nte Liqı	nt uid L	_imi	60	Ō
9, 106387 3. U 4. T	Refer to KEY for explanation of Groundwater level, if indicated USCS designation is based on The hole location was measure approximate.	above, is for the visual-manual of	es, abbreviati ne date speci classification	tions and ified and	d may v elected l	tions. ary. lab te	estir	ng.		L Marc	ch 2	202	O I	′ak F I	BC	RI	II Paashi	E E	on 3-1	106	384	21 4-00 A-4		

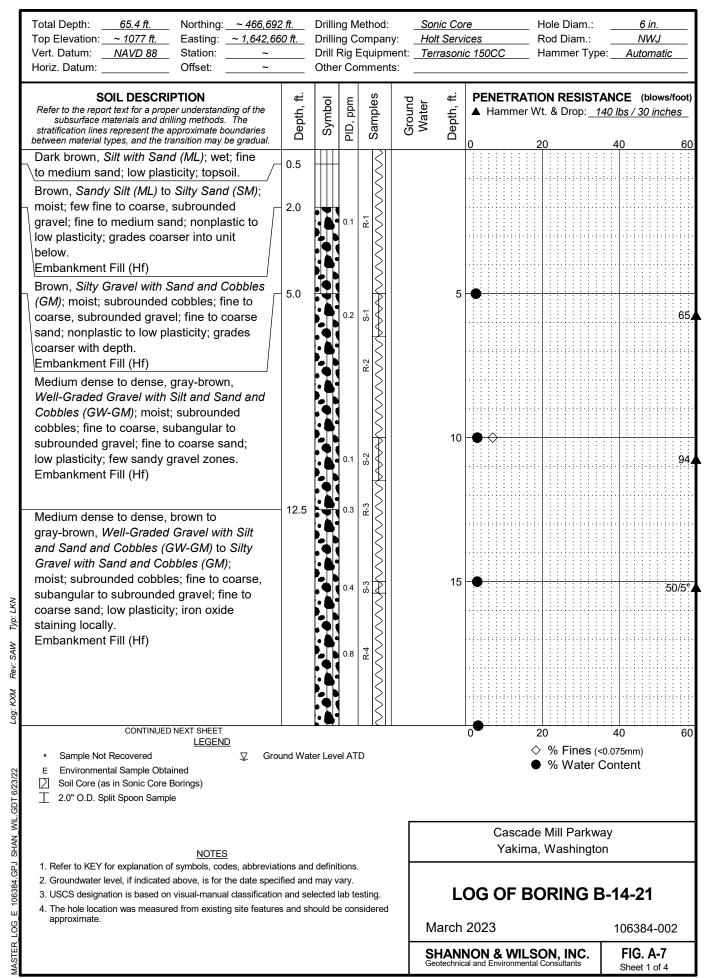
	Total Depth: 100.4 ft. Northing: Top Elevation: ~1080 ft. Easting: Vert. Datum: NAVD 88 Station: Horiz. Datum: Offset:	~ 466,801 ft. ~ 1,642,689 ft. ~ ~ ~ ~	Drillir Drill I	ng C Rig I	Method: Company: Equipme omments:	nt: <u>Te</u>	onic Cor olt Servi errasonic	ces	OCC		_ _ F	Rod	Diar Dian mer	n.:	e: _	A	6 i NV utor		ic
ŀ	SOIL DESCRIPTION Refer to the report text for a proper understand subsurface materials and drilling methods. stratification lines represent the approximate be between material types, and the transition may be	. The to oundaries	Symbol	PID, ppm	Samples	Ground Water	Depth, ft.				er W				140 I		-		s/foot) hes
ŀ	BOTTOM OF BORING COMPLETED 3/30/2021	100.4	4	0	4.7					- ! - ! -									50/5"4
	NOTE: Where gravels exceeding on the inside diameter of the split spoor sampler, cobbles, or boulders are pr the SPT blow counts are not reliable	resent,																	
	indicators of soil density or stiffness ASTM D1586. The interpreted relati densities for layers that meet these or presented in this boring log are base density of nearby soil zones encount	tive criteria ed on					105												
	and interpretation of the geologic depositional environment, instead of blow count versus relative density relationship presented in Figure A-1.	f the																	
							110			- - -									
>							115												
Rev: SAW Typ: LKN																			
Log: KXM Rev.																			
GDT 6/23/22	LEGEND * Sample Not Recovered E Environmental Sample Obtained ∑ Soil Core (as in Sonic Core Borings) ⊥ 2.0" O.D. Split Spoon Sample	Well Screer Bentonite-C Bentonite C Bentonite C	Cement Chips/Pe	Grou	ut			0	Pla	stic	♦ Lim	% it -	Fine Wa (I) I) Wa	ter	<0.07 Cor	nter Liqu	nť uid L	-imi	60 it
ASTER_LOG_E 106384.GPJ SHAN_WIL.GDT 6/23/22	<u>NOTES</u> 1. Refer to KEY for explanation of symbols, cod												l Pa ashii		-				
)G_E 106384.0	 Groundwater level, if indicated above, is for the discontinuous of the continuous and the continuous discontinuous /li>	al classification and se	elected	lab te	_		LC ⁄/arch			F E	3O	RII	NG	iΒ				2 1 4-00	0 2
ASTER_LC						SHANNON & WILSON, INC.							FI	G. /	A-4				

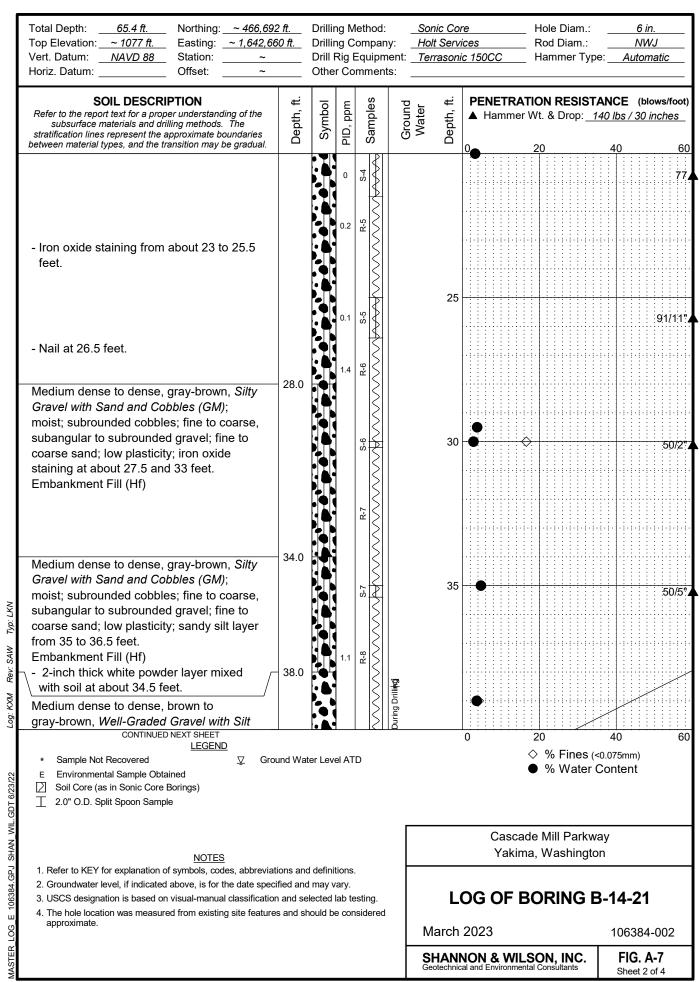


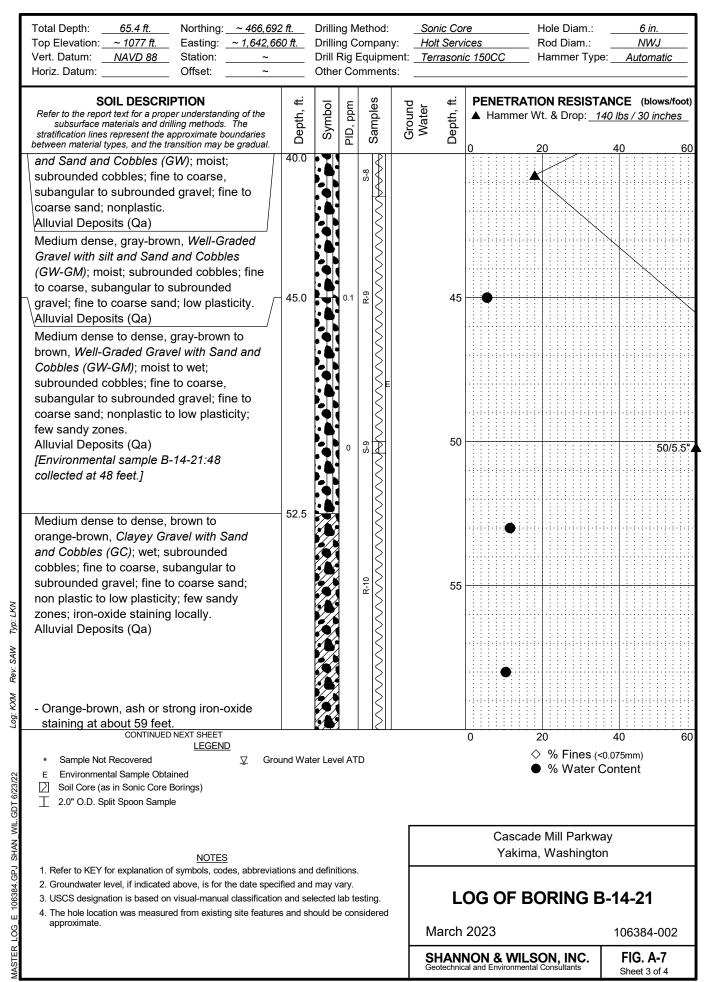


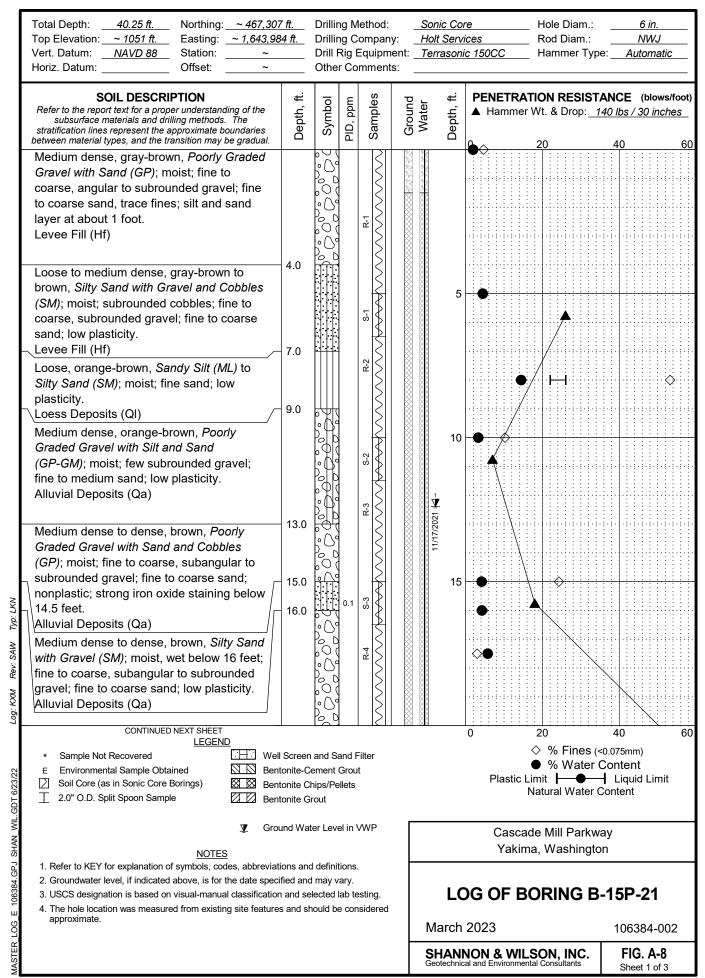


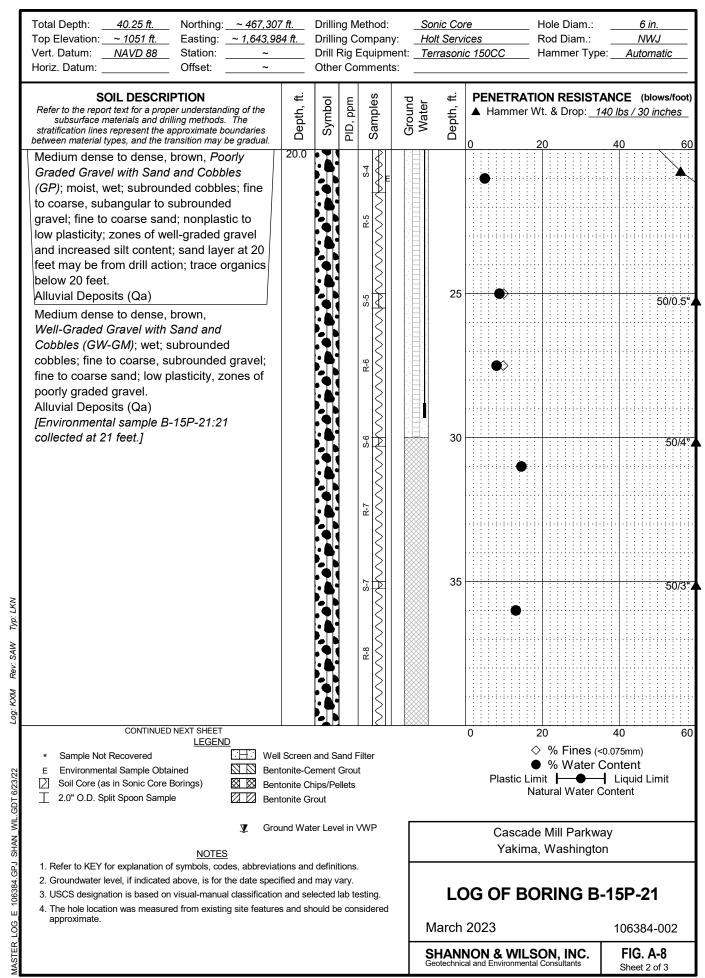
	Total Depth: 100.25 ft. Northing: ~ 466,8 Top Elevation: ~ 1083 ft. Easting: ~ 1,642, Vert. Datum: NAVD 88 Station: ~ Horiz. Datum: Offset: ~	,650 ft.		ng C Rig E	om Equ	ipany uipme	: <u>/</u> ent:	Sonic Co Holt Serv Terrason	vic	es	0C	С		Ro	d [Dia Diar mer	m.:				6 in NW Itom		
ľ	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual	Depth, ft.	Symbol	PID, ppm	3	Samples	Ground	Vater Depth, ft.						_		RES Dro	_				•		/foot) es60
LOG: KXM KEY. SAW IYP. LKN	Medium dense to dense, brown, Clayey Gravel with Sand and Cobbles (GC); moist to wet; subrounded cobbles; fine to coarse, subangular to subrounded gravel; fine to coarse sand; low to medium plasticity; iron oxide staining locally. Alluvial Deposits (Qa) - 6-inch thick ash or weathered gravel layer at 83.5 feet. - Lean Clay (CL) matrix in Gravel and Sand at 84 feet. - Strong iron oxide staining or disintegrated red gravel at 87 feet. Medium dense to dense, brown, Silty Gravel with Sand and Cobbles (GM) to Clayey Gravel with Sand and Cobbles (GC); moist to wet; subrounded cobbles; fine to coarse, subangular to subrounded gravel; fine to coarse sand; low plasticity; few zones of medium plasticity. Alluvial Deposits (Qa)	82.0		0	R-15 S-13 R-14 S-12			90															O/3*
SHAN_WIL.GDT 6/23/22	E Environmental Sample Obtained Soil Core (as in Sonic Core Borings)	Vell Screen Bentonite-C Bentonite C Bentonite C	Cement Chips/Pe	Grou		r)	PI	asti	c Li	● ' imit	% ' % '	Fin Wa	eter	r C	on L	5mm ten iqui	t	mit	60
ASTER LOG E 106384.GPJ SHAN W	NOTES 1. Refer to KEY for explanation of symbols, codes, abbrevence. 2. Groundwater level, if indicated above, is for the date spontally used to the second state of the second state of the second state. 4. The hole location was measured from existing site feature approximate.	ecified an	nd definit d may v elected	tions. ⁄ary. lab te	estin	ng.		March	ո 2	202	O	Yal F	B	a, V	Va RIN	I Pa	E E	tor	12	063	384	-00	2
ASTE												FIC											


		~ 466,922 ~ 1,642,65 ~ ~		Drillir Drill f	ng C Rig E	lethod: ompany Equipme mments	r: <u>- </u>	Sonic Cor Holt Servi Ferrasoni	ices		CC			Hole Rod Han	Dia	ım.:	:	- - :		6 ii NVI uton	/J	 c	_ _ _
	SOIL DESCRIPTION Refer to the report text for a proper understandi subsurface materials and drilling methods. stratification lines represent the approximate bo between material types, and the transition may b	The oundaries	Depth, ft.	Symbol	PID, ppm	Samples	Ground	Depth, ft.	1				er W	ON /t. &					<u>bs /</u>	-	<u>incł</u>	hes	60
	BOTTOM OF BORING COMPLETED 4/1/2021 NOTE: Where gravels exceeding on		100.3			S-14																50/	3"2
	the inside diameter of the split spoor sampler, cobbles, or boulders are pro- the SPT blow counts are not reliable indicators of soil density or stiffness ASTM D1586. The interpreted relati	esent, per ve						105								- ! - !							
	densities for layers that meet these of presented in this boring log are base density of nearby soil zones encount and interpretation of the geologic depositional environment, instead of	ed on tered																					
	blow count versus relative density relationship presented in Figure A-1.							110															
								110															
								115															
4W Typ: LKN								110															
Log: KXM Rev: SAW																							
SHAN_WIL.GDT 6/23/22	* Sample Not Recovered E Environmental Sample Obtained Soil Core (as in Sonic Core Borings) 2.0" O.D. Split Spoon Sample	Well Bent	Screen tonite-C tonite C tonite G	ement hips/Pe	Grou				0	F	Plas	stic	¢ Lim	20 > % • % nit atura	W	ate	r C	on L	'5mr iten iqui	í	imit		60
	NOTES 1. Refer to KEY for explanation of symbols, code	es, abbreviati		d definit	tions.		Yakima, Washington																
LOG_E 106384.GPJ	 Groundwater level, if indicated above, is for the discovery of the sum of t	classification	and se	lected	lab te	-)2				
ASTER LOG						SHANNON & WILSON, INC. Geotechnical and Environmental Consultants							FIC She										






	Total Depth: 65.3 ft. Northing: ~ 466,970 Top Elevation: ~ 1084 ft. Easting: ~ 1,642,57 Vert. Datum: NAVD 88 Station: ~ Horiz. Datum: Offset: ~		Drillir Drill I	ng C Rig I	lethod: compan Equipm omment	y: _ ent: _	Sonic Co Holt Ser Terrasor	vic	es		CC		_	Hol Rod Hai	d D	ian	า.:	- - De: _			6 in. IW.	J	
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples	Ground	Water Depth, ft.							_		_	_			E (•		foot) es 60
				0.1	S-10													- ! - !				5	0/5",
	Medium dense to dense, brown to orange-brown, Silty Gravel with Sand and Cobbles (GM) to Clayey Gravel with Sand and Cobbles (GC); wet; subrounded cobbles; fine to coarse, subrounded gravel;	62.0			R-11																		
	fine to coarse sand; low to medium plasticity. Alluvial Deposits (Qa)	65.3		0.1	1-8- 1-1-8-		65	5 -														5	0/4"2
	BOTTOM OF BORING COMPLETED 3/26/2021 NOTE: Where gravels exceeding one-half																						
	the inside diameter of the split spoon sampler, cobbles, or boulders are present, the SPT blow counts are not reliable indicators of soil density or stiffness per ASTM D1586. The interpreted relative densities for layers that meet these criteria						70	0									• ! • !						
	presented in this boring log are based on density of nearby soil zones encountered and interpretation of the geologic depositional environment, instead of the blow count versus relative density																						
Тур: LKN	relationship presented in Figure A-1.						75	5 -										- ! - !					
Rev: SAW																							
Log: KXM))	• ! •				20	- ! - !				40				60
GDT 6/23/22	* Sample Not Recovered Environmental Sample Obtained Soil Core (as in Sonic Core Borings) 2.0" O.D. Split Spoon Sample	und Wa	ter Leve	el AT	⁻ D													<0.0 Co		^{mm)} ∋nt			
J SHAN WIL.	NOTES			. :						(e M , W				vay on					
ASTER_LOG_E 106384.GPJ SHAN_WIL.GDT 6/23/22	Refer to KEY for explanation of symbols, codes, abbreviat Groundwater level, if indicated above, is for the date spec USCS designation is based on visual-manual classification The hole location was measured from existing site feature	ified and n and se	l may v	ary. lab te	esting.		L	_(OC)	Ol	F	В	ЭF	₹II	NC	3	B- ⁻	13	3-2	:1		
TER LOG I	approximate.						March					//I I			_	IN/		Т		638 IG			2
AST						SHANNON & WILSON, INC. Geotechnical and Environmental Consultants Shee																	



T V	Fotal Depth: 65.4 ft. Top Elevation: ~ 1077 ft. Vert. Datum: NAVD 88 Horiz. Datum:	Northing: ~ 466,6 Easting: ~ 1,642, Station: ~ ~ Offset: ~		Drillir Drill I	ing C Rig I	Method: Company Equipme omments	r: <u> </u>	Sonic Col Holt Servi Terrasoni	vice		cc	;	_ _ _		le D d Di mme	am.	.:	ə: 	A	6 ii NV uton		ic_	_ _ _ _
	SOIL DESCRI Refer to the report text for a prop subsurface materials and dri stratification lines represent the a petween material types, and the tr	per understanding of the rilling methods. The approximate boundaries	Depth, ft.	Symbol	PID, ppm	Samples	Ground	vvater Depth, ft.										40 II		-	lows	:hes	-
					0.2	R-11 S-10		65														50/	
	BOTTOM OF E COMPLETED 3 NOTE: Where gravels ex the inside diameter of the	8/27/2021 cceeding one-half	65.4			1-8 1-8		-														50/	5"4
	the inside diameter of the sampler, cobbles, or boul the SPT blow counts are indicators of soil density of ASTM D1586. The interpedensities for layers that me presented in this boring loadensity of nearby soil zon and interpretation of the of depositional environment blow count versus relative relationship presented in	Iders are present, not reliable or stiffness per preted relative neet these criteria og are based on nes encountered geologic t, instead of the e density						70															
Log: KXM Rev: SAW Typ: LKN								75															
	* Sample Not Recovered E Environmental Sample Obta Soil Core (as in Sonic Core 2.0" O.D. Split Spoon Samp	ained Borings)	Ground W <i>a</i>	ater Lev	rel AT	TD			0					20 > %	% Fi % W			0.07					60
ASTER LOG E 106384.GPJ SHAN WIL.GDT 6/23/22	Refer to KEY for explanation of 2. Groundwater level, if indicated 3. USCS designation is based or 4. The hole location was measure.	d above, is for the date spon visual-manual classificat	ecified an	nd may v selected	vary. I lab te	esting.		L	0	G	Y	'ak	ima	e M a, W	/asl	hing	gto	n —	4-	_ _ -21	— — i	_	
STER_LOG_E	The noie location was measure approximate.	ed from existing site read	res and s	nould b	e cor	isidered	-	March SHANI Geotechnic				W	ILS	ON al Con		NC	.		FIG	G. /	4-00 A-7	7	

	Total Depth: 40.25 ft. Northing: ~ 467,307 Top Elevation: ~ 1051 ft. Easting: ~ 1,643,98 Vert. Datum: NAVD 88 Station: ~ Horiz. Datum: Offset: ~		Drillir Drill F	ng C Rig I	Method: Company Equipmonts	y: <u>He</u> ent: <u>Te</u>	onic Cor lolt Servi errasonic	ces	0C	2		Ro	od D	Dian Diam ner		e: _	A		in. WJ mat		
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm		Ground Water	Depth, ft.	ı							IST.) inc	<u>che:</u>	60
-	BOTTOM OF BORING COMPLETED 3/22/2021	40.3			% I															50	0/3"2
	NOTE: Where gravels exceeding one-half the inside diameter of the split spoon sampler, cobbles, or boulders are present, the SPT blow counts are not reliable																				
	indicators of soil density or stiffness per ASTM D1586. The interpreted relative densities for layers that meet these criteria						45												:		
	presented in this boring log are based on density of nearby soil zones encountered and interpretation of the geologic																				
	depositional environment, instead of the blow count versus relative density relationship presented in Figure A-1.																				
							50														
Typ: LKN							55 -														
Rev: SAW																					
Log: KXM								0			-!-!-	20	: : : : !-!-!				10		: :: : : : : : :	60
ASTER_LOG_E 106384.GPJ SHAN_WIL.GDT 6/23/22	E Environmental Sample Obtained Soil Core (as in Sonic Core Borings) Bent	Il Screen ntonite-Centonite Ch ntonite Gi	Cement Chips/Pe	Grou	ut				Pla	asti	ic Li	● ^q mit	% V ⊢	//at	es (< ter (Cor - լ	nter Liqu	nt uid L	Lim	it	
SHAN W	▼ Ground MOTES 1. Refer to KEY for explanation of symbols, codes, abbreviati	ound Wat													rkw	-					
_E 106384.G	Groundwater level, if indicated above, is for the date speci USCS designation is based on visual-manual classification The hole location was measured from existing site features approximate.	ified and n and se	d may v elected l	vary. Iab te	esting.		LC			F	В)R	RIN	1G	В	-1	5P	'-2	<u>'</u> 1		
STER_LOG	approximate.					\vdash	March SHANN Seotechnica			k W	/ILS	 301	N, I	INC) .			G. <i>A</i>			!

Cascade Mill Parkway TP-1-22 Yakima, Washington Date Completed: May 23, 2022 Northing: ~466,766 feet Maximum Depth: 12 feet Excavation Company: WSDOT Top Elevation: ~1080 feet Easting: ~1,642,557 feet TP Top Length: 3 feet Excavation Equipment: John Deere Horizontal Datum: _____ Vertical Datum: TP Top Width: <u>13 feet</u> Depth (feet) Approx. Elev. (feet) Test Pit Photograph Material Description Southwest Side of Test Pit Medium dense to dense, gray-brown, *SILTY GRAVEL WITH SAND*(GM); moist; fine to coarse, subangular to subrounded gravel; fine to coarse sand; nonplastic to low plasticity fines; Embankment Fill (Hf). 1019 1018 -Vegetation and topsoil at ground surface 1011

BOTTOM OF HOLE AT 12 FEET

Left: Test Pit on Sunday, 5/22/2022 at 11:28 am; Right: Test Pit on Monday, 5/23/2022 at 9:34 am

- Refer to KEY for explanation of symbols, codes, abbreviations, and definitions.
- Group symbol is based on visual-manual identification and selected lab testing.
- Groundwater level, if indicated above, is for the date specified and may vary.
- Report text contains limitations and information needed to contextually understand this log.
- Excavation was performed adjacent to EB I-82 shoulder, in interstate embankment

FIN	AL
Logged by:	KXM
Review by:	OTH
Version:	1

Appendix B

Geotechnical Laboratory Test Procedures and Results

CONTENTS

B.1	INTRODUCTION	B-1
B.2	VISUAL CLASSIFICATION	B-1
В.3	WATER CONTENT DETERMINATION	B-1
B.4	GRAIN-SIZE ANALYSES	B-1
	B.4.1 Sieve Analysis	B-2
	B.4.2 Combined Analysis	B-2
B.5	ATTERBERG LIMITS	B-2
B.6	CONSIDERATIONS	B-2

Tables

Table B-1: Summary of Laboratory Testing (5 pages) Laboratory Terms (2 pages) Sample Types

Tests

Grain-Size Distribution Plot, Boring B-09-21
Grain-Size Distribution Plot, Boring B-10-21
Grain-Size Distribution Plot, Boring B-11P-21
Grain-Size Distribution Plot, Boring B-12P-21
Grain-Size Distribution Plot, Boring B-13-21
Grain-Size Distribution Plot, Boring B-14-21
Grain-Size Distribution Plot, Boring B-14-21
Plasticity Chart, Boring B-09-21
Plasticity Chart, Boring B-11P-21
Plasticity Chart, Boring B-12P-21
Plasticity Chart, Boring B-15P-21

B.1 INTRODUCTION

We performed geotechnical laboratory testing on select soil samples retrieved from the borings completed for Cascade Mill Parkway. The laboratory testing program included tests to classify the soil and provide data for engineering studies. We performed visual classification on all retrieved samples. Our laboratory testing program included water content determinations, grain-size distribution analyses, and Atterberg limits tests.

The following sections describe the laboratory test procedures.

B.2 VISUAL CLASSIFICATION

We visually classified soil samples retrieved from the borings using a system based on ASTM D2487-11, Standard Test Method for Classification of Soil for Engineering Purposes, and ASTM D2488-09a, Standard Recommended Practice for Description of Soils (Visual-Manual Procedure). We summarize our classification system in Appendix A. We assigned a Unified Soil Classification System (USCS) group name and symbol, based on our visual classification of particles finer than 76.2 millimeters (3 inches). We revised visual classifications using results of the index tests discussed below.

B.3 WATER CONTENT DETERMINATION

We tested the water content of selected samples in accordance with ASTM D2216-10, Standard Method for Laboratory Determination of Water (Moisture) Content of Soil, Rock, and Soil-Aggregate Mixtures. Comparison of the water content of a soil with its index properties can be useful in characterizing soil unit weight, consistency, compressibility, and strength. We present water content test results in the Summary of Laboratory Testing table in this appendix and graphically on Appendix A exploration logs.

B.4 GRAIN-SIZE ANALYSES

Grain-size distribution analyses separate soil particles through mechanical or sedimentation processes. Grain-size distributions are used to classify the granular component of soils and can correlate with soil properties, including frost susceptibility, permeability, shear strength, liquefaction potential, capillary action, and sensitivity to moisture. We plot grain-size distribution analysis results in this appendix. Grain-size distribution plots provide tabular information about each specimen, including USCS group symbol and group name; water

content; constituent (i.e., cobble, gravel, sand, and fines) percentages; coefficients of uniformity and curvature, if applicable; personnel initials; ASTM standard designation; and testing remarks. Constituent percentages are presented in the Lab Summary Table in this appendix and fines contents are plotted as data points on Appendix A exploration logs.

B.4.1 Sieve Analysis

We performed mechanical sieve analyses on selected soil specimens to determine the grain-size distribution of coarse-grained soil particles, in accordance with ASTM C136/C136M 14, Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates.

B.4.2 Combined Analysis

We performed combined analyses (mechanical and sedimentation) on selected soil specimens to determine the grain-size distribution of coarse- and fine-grained soil particles, in accordance with ASTM D422-63 2007e2, Standard Test Method for Particle-Size Analysis of Soils. We assumed a specific gravity of 2.7 for hydrometer calculations, unless otherwise indicated on grain-size distribution plots.

B.5 ATTERBERG LIMITS

We performed Atterberg Limits tests on selected fine-grained samples in accordance with ASTM D4318, Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils (www.astm.org). The Atterberg Limits include Liquid Limit (LL), Plastic Limit (PL), and Plasticity Index (PI = LL - PL). These limits can assist soil classification, indicate soil consistency (when compared to natural water content), provide correlation to soil properties, and estimate liquefaction potential. Plasticity charts provide the liquid limit, plastic limit, plasticity index, USCS group symbol, water content, and percent passing the No. 200 sieve (if a grain-size distribution analysis was performed). Soil plasticity test results are also shown graphically on the exploration logs presented in Appendix A.

B.6 CONSIDERATIONS

Drilling and sampling methodologies may affect the outcome of prescribed geotechnical laboratory tests. Refer to the field exploration discussion in this report for a discussion of these potential effects. Instances of limited recovery may have resulted in test samples not meeting specified minimum mass requirements, per ASTM standards. Test plots show which samples do not meet ASTM specified minimum mass requirements.

Table B-1: Summary of Laboratory Testing

							Percent					Coefficient of	Coefficient of	Liquid	Plastic	
Exploration Designation	Top Depth	Sample Number	Sample Type	SPT Blow Count	USCS	Water Content	Cobbles Removed ¹	Gravel Percent	Sand Percent	Fines Percent	Clay-size Percent	Uniformity, \mathbf{C}_{u}	Curvature, C _c	Limit, LL	Limit, PL	Soil Description
	(feet)	-	•	(bpf)		(%)	(%)	(%)	(%)	(%)	(%)	_ · · · ·	_	(%)	(%)	-
B-09-21	4	R-1	SCORE			31.3										
B-09-21	7.5	R-2	SCORE			19.9										
B-09-21	14	R-3	SCORE			2.9										
B-09-21	19	R-4	SCORE			4.5										
B-09-21	25	R-7	SCORE			0.8										
B-09-21	25	S-5	SPT	50/5"		0.8										
B-09-21	27	R-7	SCORE			3.9										
B-09-21	30	R-8	SCORE		GM	3.1	12*	44*	40*	16*						Silty Gravel with Sand and Cobbles
B-09-21	30	R-8	SPT	50/4"	GM	3.1										Silty Gravel with Sand and Cobbles
B-09-21	38	R-9	SCORE			2.7										
B-09-21	42	R-10	SCORE			12.1										
B-09-21	47	R-10	SCORE			5.1										
B-09-21	50	R-11	SCORE		GP-GM	6.1		72*	23*	5.5*		125.1	5.1			Poorly Graded Gravel with Silt and Sand
B-09-21	50	R-11	SPT	13	GP-GM	6.1										Poorly Graded Gravel with Silt and Sand
B-09-21	59	R-11	SCORE			7.2										
B-09-21	61.5	R-12	SCORE		CL	15.5								30	16	Sandy Lean Clay with Gravel
B-09-21	62.5	R-12	SCORE		GP-GM	10.3		52*	40*	7.7*		59.8	0.4			Poorly Graded Gravel with Silt and Sand
B-09-21	66	R-12	SCORE		SC	11.1								26	16	Clayey Sand with Gravel
B-09-21	74	R-13	SCORE			9.0										
B-09-21	83	R-14	SCORE			9.1										
B-09-21	92	R-15	SCORE		SC-SM	12.7								23	16	Silty, Clayey Sand with Gravel
B-09-21	92.5	R-15	SCORE		GM	7.9	15*	50*	31*	19*						Silty Gravel with Sand and Cobbles
B-10-21	3	R-1	SCORE			30.8										
B-10-21	7.5	R-2	SCORE			13.0										
B-10-21	13	R-3	SCORE			3.3										
B-10-21	17.5	R-4	SCORE		GW-GM	2.8		63*	29*	7.3*		97.1	1.7			Well-Graded Gravel with Silt and Sand
B-10-21	27	R-6	SCORE			5.1										
B-10-21	33	R-7	SCORE			5.4										
B-10-21	39	R-8	SCORE			4.1										

Exploration Designation	Top Depth	Sample Number	Sample Type	SPT Blow Count	USCS	Water Content	Percent Cobbles Removed ¹	Gravel Percent	Sand Percent	Fines Percent	Clay-size Percent	Coefficient of Uniformity,	Coefficient of Curvature, C _c	Liquid Limit, LL	Plastic Limit, PL	Soil Description
Designation	(feet)	-	. , , , ,	(bpf)		(%)	(%)	(%)	(%)	(%)	(%)	_		(%)	(%)	
B-10-21	45	R-9	SCORE		GW-GM	4.8	16*	59*	33*	8.4*		110.4	1.5			Well-Graded Gravel with Silt and Sand and Cobbles
B-10-21	57	R-10	SCORE			9.1										
B-10-21	62	R-11	SCORE			12.5										
B-10-21	67	R-11	SCORE			7.4										
B-10-21	72.5	R-12	SCORE		SP-SM	12.8		35*	57*	8*		8.7	0.9			Poorly Graded Sand with Silt and Gravel
B-10-21	78	R-12	SCORE			9.1										
B-10-21	80	R-13	SCORE		GM	8.6		43*	33*	24*						Silty Gravel with Sand
B-10-21	80	R-13	SPT	63/10"	GM	8.6										Silty Gravel with Sand
B-10-21	82.5	R-13	SCORE		GM	7.5		51	28	21	6					Silty Gravel with Sand
B-10-21	85	R-14	SCORE		GP-GM	8.2	6*	58*	30*	11*		709.2	7.1			Poorly Graded Gravel with Silt and Sand and Cobbles
B-10-21	92.5	R-15	SCORE		GM	10.4		57	27	16	5					Silty Gravel with Sand
B-10-21	99	R-15	SCORE			9.6										
B-11P-21	5	R-2	SCORE			2.0										
B-11P-21	5	S-1	SPT	50/4"		2.0										
B-11P-21	13	R-3	SCORE		GM	2.2	22*	43*	39*	18*						Silty Gravel with Sand and Cobbles
B-11P-21	15	R-4	SCORE			3.0										
B-11P-21	15	S-3	SPT	50/5"		3.0										
B-11P-21	20	R-5	SCORE			1.1										
B-11P-21	20	S-4	SPT	50/5"		1.1										
B-11P-21	26.5	R-6	SCORE			5.6										
B-11P-21	27.5	R-6	SCORE		GW-GM	3.8		62*	28*	9.5*		221.4	1.9			Well-Graded Gravel with Silt and Sand
B-11P-21	32	R-7	SCORE		SC-SM									21	16	Silty, Clayey Sand with Gravel
B-11P-21	36.5	R-8	SCORE		GW-GM	2.9		65*	30*	5.1*		53.9	1.4			Well-Graded Gravel with Silt and Sand
B-11P-21	40	R-9	SCORE			15.8										
B-11P-21	40	S-8	SPT	29		15.8										
B-11P-21	55	R-10	SCORE		GW-GM	6.9		60*	31*	9.3*		147.9	2.3			Well-Graded Gravel with Silt and Sand
B-11P-21	62	R-11	SCORE			12.5										
B-11P-21	71	R-12	SCORE			12.1										
B-11P-21	72.5	R-12	SCORE		GC	9.3		51*	29*	20*				27	18	Clayey Gravel with Sand
B-11P-21	80	R-13	SCORE			11.7										

Exploration	Тор	Sample	Sample	SPT Blow		Water	Percent Cobbles	Gravel	Sand	Fines	Clay-size	Coefficient of C Uniformity,	Coefficient of Curvature,	Liquid Limit,	Plastic Limit,	
Designation	Depth	Number -	Type	Count	USCS	Content	Removed ¹	Percent	Percent	Percent	Percent	C _u	C _c _	LL	PL	Soil Description
	(feet)			(bpf)		(%)	(%)	(%)	(%)	(%)	(%)			(%)	(%)	
B-11P-21	80	S-12	SPT	50/5"		11.7										
B-11P-21	90	R-14	SCORE			12.0										
B-11P-21	90	S-13	SPT	50/5"		12.0										
B-12P-21	5	R-2	SCORE			4.7										
B-12P-21	5	S-1	SPT	50/5"		4.7										
B-12P-21	7	R-2	SCORE			3.0										
B-12P-21	10	R-4	SCORE		GP-GM	3.2		51*	39*	11*		129.6	4.3			Poorly Graded Gravel with Silt and Sand
B-12P-21	10	R-4	SPT	50/5.5"	GP-GM	3.2										Poorly Graded Gravel with Silt and Sand
B-12P-21	15	R-5	SCORE			2.5										
B-12P-21	15	S-3	SPT	50/6"		2.5										
B-12P-21	20	R-6	SCORE			4.1										
B-12P-21	20	S-4	SPT	68/11"		4.1										
B-12P-21	26	R-7	SCORE		GP-GM	2.1	8*	71*	22*	6.5*		84.4	4.3			Poorly Graded Gravel with Silt and Sand and Cobbles
B-12P-21	26	R-7	SPT	72	GP-GM	2.1										Poorly Graded Gravel with Silt and Sand and Cobbles
B-12P-21	34	R-8	SCORE			4.3										
B-12P-21	42	R-10	SCORE			7.2										
B-12P-21	50	R-11	SCORE		GP-GM	8.2	13*	55*	36*	9.3*		153.2	0.4			Poorly Graded Gravel with Silt and Sand and Cobbles
B-12P-21	50	R-11	SPT	50/6"	GP-GM	8.2										Poorly Graded Gravel with Silt and Sand and Cobbles
B-12P-21	62	R-12	SCORE		SC	9.4								24	16	Clayey Sand with Gravel
B-12P-21	67.5	R-12	SCORE		GM	7.0		55*	29*	16*						Silty Gravel with Sand
B-12P-21	77.5	R-13	SCORE			8.6										
B-12P-21	84	R-14	SCORE		CL	33.2								48	23	Lean Clay
B-12P-21	90	R-15	SCORE		GM	7.5	9*	57*	25*	18*						Silty Gravel with Sand and Cobbles
B-12P-21	90	R-15	SPT	50/5"	GM	7.5										Silty Gravel with Sand and Cobbles
B-12P-21	97	R-15	SCORE			8.6										
B-13-21	4	R-1	SCORE			5.4										
B-13-21	7	R-2	SCORE			4.5										
B-13-21	9	R-2	SCORE		GW-GM	3.4		51*	39*	9.7*		98.3	2.0			Well-Graded Gravel with Silt and Sand
B-13-21	14	R-3	SCORE			3.6										
B-13-21	20	R-5	SCORE			3.5										

Exploration Designation	Top Depth	Sample Number	Sample Type	SPT Blow Count	USCS	Water Content	Percent Cobbles Removed ¹	Gravel Percent	Sand Percent	Fines Percent	Clay-size Percent	Coefficient of (Uniformity, C _u	Coefficient of Curvature, C _c	Liquid Limit, LL	Plastic Limit, PL	Soil Description
Designation	(feet)	-	1,700	(bpf)	3000	(%)	(%)	(%)	(%)	(%)	(%)	_	- C _c _	(%)	(%)	-
B-13-21	20	S-4	SPT	50/5"		3.5										
B-13-21	23	R-5	SCORE		GM	3.0		58*	30*	12*						Silty Gravel with Sand
B-13-21	28	R-6	SCORE			4.5										
B-13-21	33	R-7	SCORE			3.2										
B-13-21	39	R-8	SCORE			3.8										
B-13-21	40	R-9	SCORE		SM	5.1		22*	52*	26*						Silty Sand with Gravel
B-13-21	40	R-9	SPT	50/5"	SM	5.1										Silty Sand with Gravel
B-13-21	46	R-9	SCORE		GP-GM	3.7		75*	20*	5.1*		130.9	8.2			Poorly Graded Gravel with Silt and Sand
B-13-21	59	R-10	SCORE		GW	7.5		60*	36*	4.9*		33.3	2.4			Well-Graded Gravel with Sand
B-13-21	64	R-11	SCORE		GP-GM	9.9		62	29	9.1	3	172.8	0.8			Poorly Graded Gravel with Silt and Sand
B-14-21	5	R-2	SCORE			2.7										
B-14-21	5	S-1	SPT	65		2.7										
B-14-21	10	R-3	SCORE		GW-GM	3.0	9*	63*	29*	7.8*		96.8	2.4			Well-Graded Gravel with Silt and Sand and Cobbles
B-14-21	10	R-3	SPT	94	GW-GM	3.0										Well-Graded Gravel with Silt and Sand and Cobbles
B-14-21	15	R-4	SCORE			3.0										
B-14-21	15	S-3	SPT	50/5"		3.0										
B-14-21	20	R-5	SCORE			3.3										
B-14-21	20	S-4	SPT	77		3.3										
B-14-21	29.5	R-6	SCORE			3.8										
B-14-21	30	R-7	SCORE		GM	2.8	5*	49*	34*	18*						Silty Gravel with Sand and Cobbles
B-14-21	30	R-7	SPT	50/2"	GM	2.8										Silty Gravel with Sand and Cobbles
B-14-21	35	R-8	SCORE			4.8										
B-14-21	35	S-7	SPT	50/5"		4.8										
B-14-21	39	R-8	SCORE		GW	3.6		64*	32*	4.2*		41.9	1.7			Well-Graded Gravel with Sand
B-14-21	45	R-9	SCORE			5.6										
B-14-21	53	R-10	SCORE			11.6										
B-14-21	58	R-10	SCORE			10.5										
B-14-21	63	R-11	SCORE			10.7										
B-15P-21	0	R-1	SCORE		GP	1.9		78*	18*	4.7*		48.9	6.2			Poorly Graded Gravel with Sand
B-15P-21	5	R-2	SCORE			4.5										

Exploration Designation	Designation Depth Num (feet)	Sample Number	Sample Type	SPT Blow Count	uscs	Water Content	Percent Cobbles Removed ¹	Gravel Percent	Sand Percent	Fines Percent	Clay-size Percent	Coefficient of Uniformity, C _u		Liquid Limit, LL	Plastic Limit, PL	Soil Description
	(feet)			(bpf)		(%)	(%)	(%)	(%)	(%)	(%)			(%)	(%)	
B-15P-21	5	S-1	SPT	26		4.5										
B-15P-21	8	R-2	SCORE		ML	14.5		0	47	53	10			26	22	Sandy Silt
B-15P-21	10	R-3	SCORE		GP-GM	3.3		53	37	10	3	211.0	0.2			Poorly Graded Gravel with Silt and Sand
B-15P-21	10	R-3	SPT	7	GP-GM	3.3										Poorly Graded Gravel with Silt and Sand
B-15P-21	15	R-4	SCORE		SM	4.2		20	56	24	7					Silty Sand with Gravel
B-15P-21	15	R-4	SPT	18	SM	4.2										Silty Sand with Gravel
B-15P-21	16	R-4	SCORE		GP-GM	4.2	15	74	20	5.4	1	97.8	5.6			Poorly Graded Gravel with Silt and Sand and Cobbles
B-15P-21	16	R-4	SPT	18	GP-GM	4.2										Poorly Graded Gravel with Silt and Sand and Cobbles
B-15P-21	17.5	R-4	SCORE		GW	5.8		71	26	3.0	1	68.1	2.6			Well-Graded Gravel with Sand
B-15P-21	21	R-5	SCORE		GW-GM	5.0		66	29	5.2	1	45.1	2.4			Well-Graded Gravel with Silt and Sand
B-15P-21	21	R-5	SPT	56	GW-GM	5.0										Well-Graded Gravel with Silt and Sand
B-15P-21	25	R-6	SCORE		GP-GM	8.8	19	47	41	12	3					Poorly Graded Gravel with Silt and Sand and Cobbles
B-15P-21	25	R-6	SPT	50/0.5"	GP-GM	8.8										Poorly Graded Gravel with Silt and Sand and Cobbles
B-15P-21	27.5	R-6	SCORE		GW-GM	8.0	7	55	34	10	3	196.4	1.7			Well-Graded Gravel with Silt and Sand and Cobbles
B-15P-21	31	R-7	SCORE			14.5										
B-15P-21	36	R-8	SCORE			13.1										

NOTES:

^{*} Sample specimen weight did not meet required minimum mass for the test; bpf = blows per foot; SCORE = Soil Core (as in Sonic Core Borings); SPT = 2-inch Outside Diameter Split-Spoon Sample

¹ Cobble percentages are calculated using the pre-removal, oven-dried mass of the total specimen. USCS Group Symbol, Soil Classification Group Name, Gravel Percent, Fines Percent, Cu, and Cc values are calculated from particles smaller than 76.2mm (3 inches) only, per ASTM D2487.

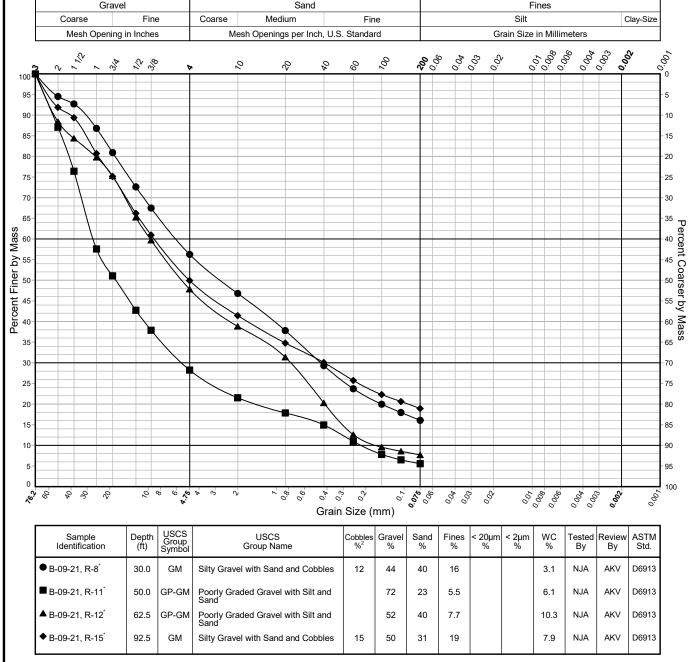
Laboratory Terms

% percent * Sample specimen weight did not meet required minimum mass for the test method. * inch # Test not performed by Shannon & Wilson laboratory. ASTM Std. ASTM International Standard Cc coefficient of curvature cday-size Soli particles finer than 0.02 mm. cm centimeter cm² square centimeter coarse-grained Soil particles coarser than 0.075 mm (cobble-, gravel-, and sand-sized particles). cobbles Soil particles finer than 305 mm and coarser than 76.2 mm. Cu coefficient of uniformity Re axial strain fine-grained Soil particles finer than 76.2 mm and coarser than 4.75 mm. Gs specific gravity of soi	Abbreviations, Symbols, and Terms	Descriptions
** inch # Test not performed by Shannon & Wilson laboratory. ASTM Std. ASTM International Standard C₂ coefficient of curvature clay-size Soil particles finer than 0.02 mm. cm centimeter cm² square centimeter coarse-grained Soil particles coarser than 0.075 mm (cobble-, gravel-, and sand-sized particles). cobbles Soil particles finer than 305 mm and coarser than 76.2 mm. C₂ coefficient of uniformity CU consolidated-undrained e axial strain fine-grained Soil particles finer than 76.2 mm and coarser than 4.75 mm. ft feet Ym wet unit weight gravel Soil particles finer than 76.2 mm and coarser than 4.75 mm. Gs specific gravity of soil solids H₂ initial height ΔH change in height ΔH _{coad} end of load increment deformation in inch in³ cubic inch LL liquid limit min min <td>%</td> <td>percent</td>	%	percent
# Test not performed by Shannon & Wilson laboratory. ASTM Std. ASTM International Standard C _c coefficient of curvature clay-size Soil particles finer than 0.02 mm. cm centimeter cm² square centimeter coarse-grained Soil particles coarser than 0.075 mm (cobble-, gravel-, and sand-sized particles). cobbles Soil particles finer than 305 mm and coarser than 76.2 mm. C _u coefficient of uniformity CU consolidated-undrained e axial strain fine-grained Soil particles finer than 76.2 mm and coarser than 4.75 mm. ft feet Ym wet unit weight gravel Soil particles finer than 76.2 mm and coarser than 4.75 mm. G _S specific gravity of soil solids H ₀ initial height ΔH change in height ΔH change in height LL liquid limit min minute mm millimeter μ _m micrometer MC moisture content MPa mega-pascal NP nonplastic Oc organic content	*	Sample specimen weight did not meet required minimum mass for the test method.
ASTM Std. ASTM International Standard Cc coefficient of curvature clay-size Soil particles finer than 0.02 mm. cm centimeter cm² square centimeter coarse-grained Soil particles coarser than 0.075 mm (cobble-, gravel-, and sand-sized particles). cobbles Soil particles finer than 305 mm and coarser than 76.2 mm. Cu coefficient of uniformity CU consolidated-undrained e axial strain fine-grained Soil particles finer than 76.2 mm and coarser than 4.75 mm. ft feet Ym wet unit weight gravel Soil particles finer than 76.2 mm and coarser than 4.75 mm. Gs specific gravity of soil soilids Ho inital height ΔH change in height ΔH change in height LL liquid limit min minute mm millimeter μm micrometer MC moisture content MPa mega-pascal NP nonplastic OC organic content	"	inch
Cc coefficient of curvature clay-size Soil particles finer than 0.02 mm. cm centimeter cm² square centimeter coarse-grained Soil particles coarser than 0.075 mm (cobble-, gravel-, and sand-sized particles). cobbles Soil particles finer than 305 mm and coarser than 76.2 mm. Cu coefficient of uniformity CU consolidated-undrained e axial strain fine-grained Soil particles finer than 76.2 mm and coarser than 4.75 mm. ft feet Ym wet unit weight gravel Soil particles finer than 76.2 mm and coarser than 4.75 mm. Gs specific gravity of soil solids H₀ initial height ΔH change in height ΔH change in height ΔHoard end of load increment deformation in inch in³ cubic inch LL liquid limit min micrometer MC moisture content MPa norganic content	#	Test not performed by Shannon & Wilson laboratory.
clay-size Soil particles finer than 0.02 mm. cm centimeter cm² square centimeter coarse-grained Soil particles coarser than 0.075 mm (cobble-, gravel-, and sand-sized particles). cobbles Soil particles finer than 305 mm and coarser than 76.2 mm. Cu coefficient of uniformity CU consolidated-undrained e axial strain fine-grained Soil particles finer than 76.2 mm and coarser than 4.75 mm. ft feet Ym wet unit weight gravel Soil particles finer than 76.2 mm and coarser than 4.75 mm. Gs specific gravity of soil solids Ho initial height ΔH change in height ΔH change in height LL liquid limit min minute mm millimeter μm micrometer MC moisture content MPa mega-pascal NP nonplastic OC organic content	ASTM Std.	ASTM International Standard
cm centimeter cm² square centimeter coarse-grained Soil particles coarser than 0.075 mm (cobble-, gravel-, and sand-sized particles). cobbles Soil particles finer than 305 mm and coarser than 76.2 mm. Cu coefficient of uniformity CU consolidated-undrained ε axial strain fine-grained Soil particles finer than 76.2 mm and coarser than 4.75 mm. ft feet Ym wet unit weight gravel Soil particles finer than 76.2 mm and coarser than 4.75 mm. Gs specific gravity of soil solids H₀ initial height ΔH change in height ΔH initial height ΔH initial height ΔH initial height LL liquid limit <td>Сс</td> <td>coefficient of curvature</td>	Сс	coefficient of curvature
cm² square centimeter coarse-grained Soil particles coarser than 0.075 mm (cobble-, gravel-, and sand-sized particles). cobbles Soil particles finer than 305 mm and coarser than 76.2 mm. C₂ coefficient of uniformity CU consolidated-undrained € axial strain fine-grained Soil particles finer than 76.2 mm and coarser than 4.75 mm. ft feet Ym wet unit weight gravel Soil particles finer than 76.2 mm and coarser than 4.75 mm. Gs specific gravity of soil soilds H₀ initial height ΔH change in height ΔHoard end of load increment deformation in inch LL liquid limit min minute mm millimeter μm micrometer MC moisture content MPa mega-pascal NP nonplastic OC organic content	clay-size	Soil particles finer than 0.02 mm.
coarse-grained Soil particles coarser than 0.075 mm (cobble-, gravel-, and sand-sized particles). cobbles Soil particles finer than 305 mm and coarser than 76.2 mm. Cu coefficient of uniformity CU consolidated-undrained e axial strain fine-grained Soil particles finer than 76.2 mm and coarser than 4.75 mm. ft feet Ym wet unit weight gravel Soil particles finer than 76.2 mm and coarser than 4.75 mm. Gs specific gravity of soil solids Ho initial height ΔH change in height ΔH load end of load increment deformation in inch in³ cubic inch LL liquid limit min minute mm millimeter μm micrometer MC moisture content MPa mega-pascal NP nonplastic OC organic content	cm	centimeter
cobbles Soil particles finer than 305 mm and coarser than 76.2 mm. C₂ coefficient of uniformity CU consolidated-undrained € axial strain fine-grained Soil particles finer than 76.2 mm and coarser than 4.75 mm. ft feet Ym wet unit weight gravel Soil particles finer than 76.2 mm and coarser than 4.75 mm. Gs specific gravity of soil solids H₀ initial height ΔH change in height ΔH change in height ΔH bload end of load increment deformation in inch in³ cubic inch LL liquid limit min minute mm millimeter μm micrometer MC moisture content MPa mega-pascal NP nonplastic OC organic content	cm ²	square centimeter
Cu coefficient of uniformity CU consolidated-undrained ε axial strain fine-grained Soil particles finer than 76.2 mm and coarser than 4.75 mm. ft feet Ym wet unit weight gravel Soil particles finer than 76.2 mm and coarser than 4.75 mm. Gs specific gravity of soil solids Ho initial height ΔH change in height ΔH change in height ΔH end of load increment deformation in inch in³ cubic inch LL liquid limit min minute mm millimeter μm micrometer MC moisture content MPa mega-pascal NP nonplastic OC organic content	coarse-grained	Soil particles coarser than 0.075 mm (cobble-, gravel-, and sand-sized particles).
CU consolidated-undrained © axial strain Fine-grained Soil particles finer than 76.2 mm and coarser than 4.75 mm. ft feet Ym wet unit weight gravel Soil particles finer than 76.2 mm and coarser than 4.75 mm. Gs specific gravity of soil solids Ho initial height ΔH change in height ΔH change in height LL liquid limit min minute mm millimeter μm micrometer MC moisture content MPa mega-pascal NP nonplastic OC organic content	cobbles	Soil particles finer than 305 mm and coarser than 76.2 mm.
ε axial strain fine-grained Soil particles finer than 76.2 mm and coarser than 4.75 mm. ft feet Ym wet unit weight gravel Soil particles finer than 76.2 mm and coarser than 4.75 mm. Gs specific gravity of soil solids H₀ initial height ΔH change in height ΔH end of load increment deformation in inch in³ cubic inch LL liquid limit min minute mm millimeter MC moisture content MPa mega-pascal NP nonplastic OC organic content	Cu	coefficient of uniformity
fine-grained Soil particles finer than 76.2 mm and coarser than 4.75 mm. ft feet Ym wet unit weight gravel Soil particles finer than 76.2 mm and coarser than 4.75 mm. Gs specific gravity of soil solids Ho initial height ΔH change in height ΔHIoad end of load increment deformation in inch in³ cubic inch LL liquid limit min minute mm millimeter μm micrometer MC moisture content MPa mega-pascal NP nonplastic OC organic content	CU	consolidated-undrained
ft feet Ym wet unit weight gravel Soil particles finer than 76.2 mm and coarser than 4.75 mm. Gs specific gravity of soil solids Ho initial height ΔH change in height ΔHload end of load increment deformation in inch LL liquid limit min minute mm millimeter μm micrometer MC moisture content MPa mega-pascal NP nonplastic OC organic content	€	axial strain
Ym wet unit weight gravel Soil particles finer than 76.2 mm and coarser than 4.75 mm. Gs specific gravity of soil solids Ho initial height ΔH change in height ΔHload end of load increment deformation in inch LL liquid limit min minute mm millimeter μm micrometer MC moisture content MPa mega-pascal NP nonplastic OC organic content	fine-grained	Soil particles finer than 76.2 mm and coarser than 4.75 mm.
gravel Soil particles finer than 76.2 mm and coarser than 4.75 mm. Gs specific gravity of soil solids Ho initial height ΔH change in height ΔH _{load} end of load increment deformation in inch in³ cubic inch LL liquid limit min minute mm millimeter μm micrometer MC moisture content MPa mega-pascal NP nonplastic OC organic content	ft	feet
Gs specific gravity of soil solids Ho initial height ΔH change in height ΔHload end of load increment deformation in inch lin³ cubic inch LL liquid limit min minute mm millimeter μn micrometer MC moisture content MPa mega-pascal NP nonplastic OC organic content	Υm	wet unit weight
Ho initial height ΔH change in height ΔH _{load} end of load increment deformation in inch in³ cubic inch LL liquid limit min minute mm millimeter μm micrometer MC moisture content MPa mega-pascal NP nonplastic OC organic content	gravel	Soil particles finer than 76.2 mm and coarser than 4.75 mm.
ΔH change in height ΔH _{load} end of load increment deformation in inch in³ cubic inch LL liquid limit min minute mm millimeter μm micrometer MC moisture content MPa mega-pascal NP nonplastic OC organic content	Gs	specific gravity of soil solids
ΔH _{load} end of load increment deformation in inch in³ cubic inch LL liquid limit min minute mm millimeter μm micrometer MC moisture content MPa mega-pascal NP nonplastic OC organic content	H₀	initial height
in inch in3 cubic inch LL liquid limit min minute mm millimeter μm micrometer MC moisture content MPa mega-pascal NP nonplastic OC organic content	ΔΗ	change in height
in³ cubic inch LL liquid limit min minute mm millimeter μm micrometer MC moisture content MPa mega-pascal NP nonplastic OC organic content	ΔH_{load}	end of load increment deformation
LL liquid limit min minute mm millimeter μm micrometer MC moisture content MPa mega-pascal NP nonplastic OC organic content	in	inch
min minute mm millimeter μm micrometer MC moisture content MPa mega-pascal NP nonplastic OC organic content	in ³	cubic inch
mm millimeter μm micrometer MC moisture content MPa mega-pascal NP nonplastic OC organic content	LL	liquid limit
μm micrometer MC moisture content MPa mega-pascal NP nonplastic OC organic content	min	minute
MC moisture content MPa mega-pascal NP nonplastic OC organic content	mm	millimeter
MPa mega-pascal NP nonplastic OC organic content	μ _m	micrometer
NP nonplastic OC organic content	MC	moisture content
OC organic content	MPa	mega-pascal
	NP	nonplastic
p total stress	OC	organic content
	р	total stress

Abbreviations, Symbols, and Terms	Descriptions
p'	effective stress
Pa	pascal
pcf	pounds per cubic foot
PI	Plasticity Index
PL	plastic limit
psf	pounds per square foot
psi	pounds per square inch
q	deviatoric stress
Sand	Soil particles finer than 4.75 mm and coarser than 0.075 mm.
sec	second
Silt	Soil particles finer than 0.075 mm and coarser than 0.002 mm.
tn	time to n% primary consolidation
tload	duration of load increment
tsf	short tons per square foot
USCS	Unified Soil Classification System
UU	unconsolidated-undrained
WC	water content

Sample Types

2SS 2.5-inch-Outside-D	Descriptions
	Diameter Split-Spoon Sample
2ST 2-inch-Outside-Dia	meter Thin-Walled Tube
3HSA 3-inch CME Hollow	v Stem Auger Sampler
3SS 3-inch-Outside-Dia	imeter Split-Spoon Sample
4SS 4-inch-Inside-Diam	neter Split-Spoon Sample
6SS 6-inch-Inside-Diam	neter Split-Spoon Sample
CA_MC Modified California	Sampler
CA_SPT Standard Penetrati	ion Test (SPT)
CORE Rock Core	
DM +3.25-inch-Outside	e-Diameter Split-Spoon Sampler
DMR 3.25-inch Sampler	with Internal Rings
GRAB Grab Sample	
GUS 3-inch-Outside-Dia	meter Gregory Undisturbed Sampler (GUS) Sample
OSTER 3-inch-Outside-Dia	meter Osterberg Sample
PITCHER 3-inch-Outside-Dia	meter Pitcher Sample
PMT Pressuremeter Tes	st (f=failed)
PO Porter Penetration	Test Sample
PT 2.5-inch-Outside-D	Diameter Thin-Walled Tube
ROCK Rock Core Sample	
SCORE Soil Core (as in So	nic Core Borings)
SH1 1-inch Plastic Shea	ath
SH2 2-inch Plastic Shea	ath with Soil Recovery
SH3 2-inch Plastic Shea	ath with no Soil Recovery
SPT 2-inch-Outside-Dia	meter Split-Spoon Sample
SS Split-Spoon	
ST 3-inch-Outside-Dia	meter Thin-Walled Tube
STW 3-inch-Outside-Dia	meter Thin-Walled Tube
TEST Sample Test Interv	val
TW Thin Wall Sample	
UNDIST Undisturbed Samp	le
VANE Vane Shear	
WATER Water Sample for I	Probe Logs
XCORE Core Sample	


106384-002 March 31, 2023

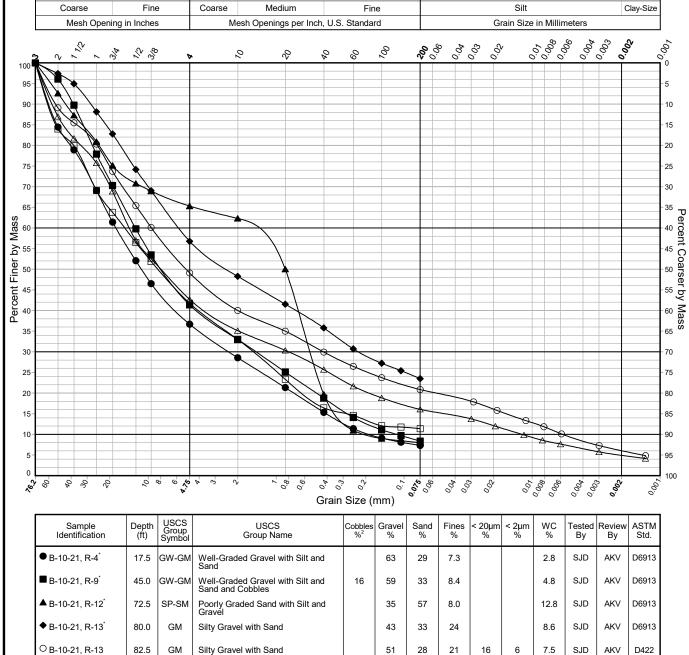
GRAIN SIZE DISTRIBUTION PLOT

Cascade Mill Parkway Yakima, Washington

BORING B-09-21

Test specimen did not meet minimum mass recommendations.

² Cobble percentages are calculated using the pre-removal, oven-dried mass of the total specimen. USCS Group Symbol, Soil Classification Group Name, Gravel %, Sand %, Fines %, <0.02mm %, and <2um% values are calculated from particles smaller than 76.2mm (3 inches) only, per ASTM D2487.


Gravel

GRAIN SIZE DISTRIBUTION PLOT

Fines

Cascade Mill Parkway Yakima, Washington

BORING B-10-21

Sand

GP-GM

GM

85.0

92.5

6

58

57

30

27

11

16

12

8.2

10.4

SJD

SJD

AKV

AKV

D6913

D422

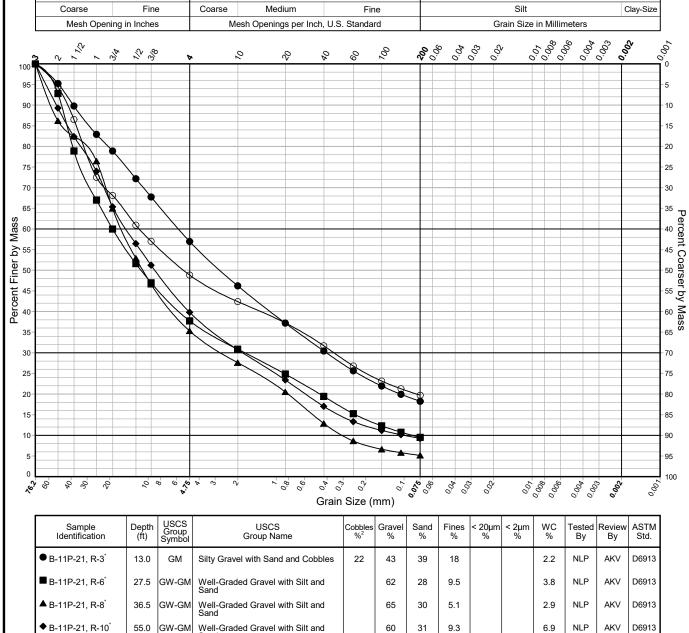
Poorly Graded Gravel with Silt and Sand and Cobbles

Silty Gravel with Sand

□ B-10-21, R-14*

△ B-10-21, R-15

^{*} Test specimen did not meet minimum mass recommendations.


² Cobble percentages are calculated using the pre-removal, oven-dried mass of the total specimen. USCS Group Symbol, Soil Classification Group Name, Gravel %, Sand %, Fines %, <0.02mm %, and <2um% values are calculated from particles smaller than 76.2mm (3 inches) only, per ASTM D2487.

Gravel

Fines

Cascade Mill Parkway Yakima, Washington

BORING B-11P-21

Sand

GC

Clayey Gravel with Sand

72.5

51

29

20

9.3

NLP

 AKV

D6913

OB-11P-21, R-12*

Test specimen did not meet minimum mass recommendations.

² Cobble percentages are calculated using the pre-removal, oven-dried mass of the total specimen. USCS Group Symbol, Soil Classification Group Name, Gravel %, Sand %, Fines %, <0.02mm %, and <2um% values are calculated from particles smaller than 76.2mm (3 inches) only, per ASTM D2487.

GRAIN SIZE DISTRIBUTION PLOT

Cascade Mill Parkway Yakima, Washington

BORING B-12P-21

NLP

NLP

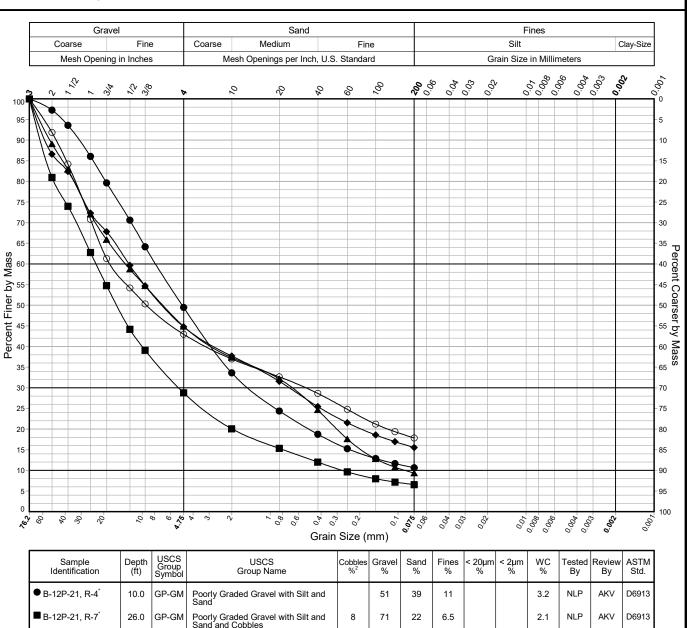
NLP

AKV

AKV

 AKV

D6913


D6913

D6913

8.2

7.0

7.5

GP-GM

GM

GM

50.0

67.5

90.0

Poorly Graded Gravel with Silt and Sand and Cobbles

Silty Gravel with Sand and Cobbles

Silty Gravel with Sand

13

9

55

55

57

36

29

25

9.3

16

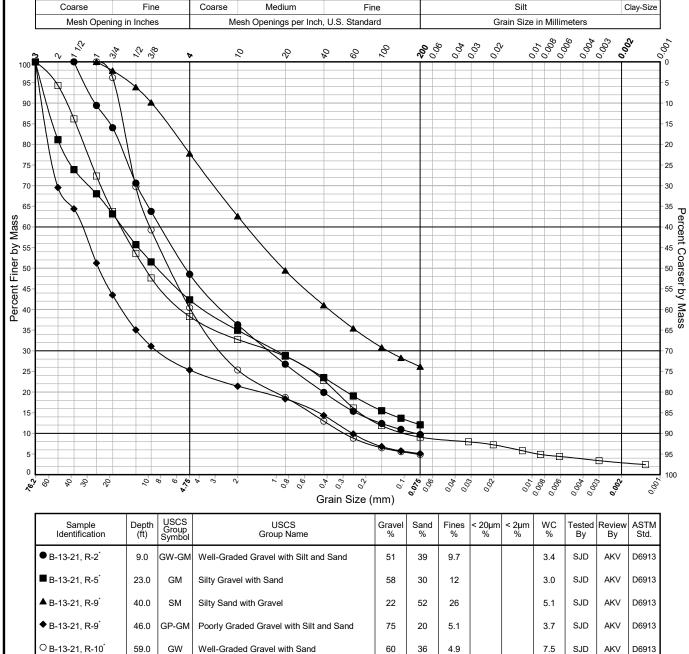
18

▲ B-12P-21, R-11

◆ B-12P-21, R-12*

OB-12P-21, R-15*

Test specimen did not meet minimum mass recommendations.


² Cobble percentages are calculated using the pre-removal, oven-dried mass of the total specimen. USCS Group Symbol, Soil Classification Group Name, Gravel %, Sand %, Fines %, <0.02mm %, and <2um% values are calculated from particles smaller than 76.2mm (3 inches) only, per ASTM

Gravel

Fines

Cascade Mill Parkway Yakima, Washington

BORING B-13-21

Sand

GW

GP-GM

Well-Graded Gravel with Sand

Poorly Graded Gravel with Silt and Sand

59.0

64.0

□ B-13-21, R-11

60

62

36

29

4.9

9.1

7

3

7.5

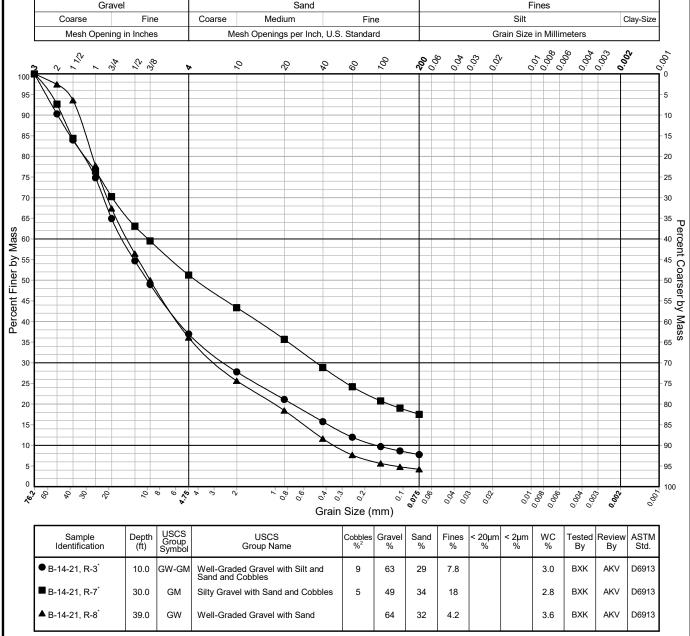
9.9

SJD

SJD

AKV

AKV


D6913

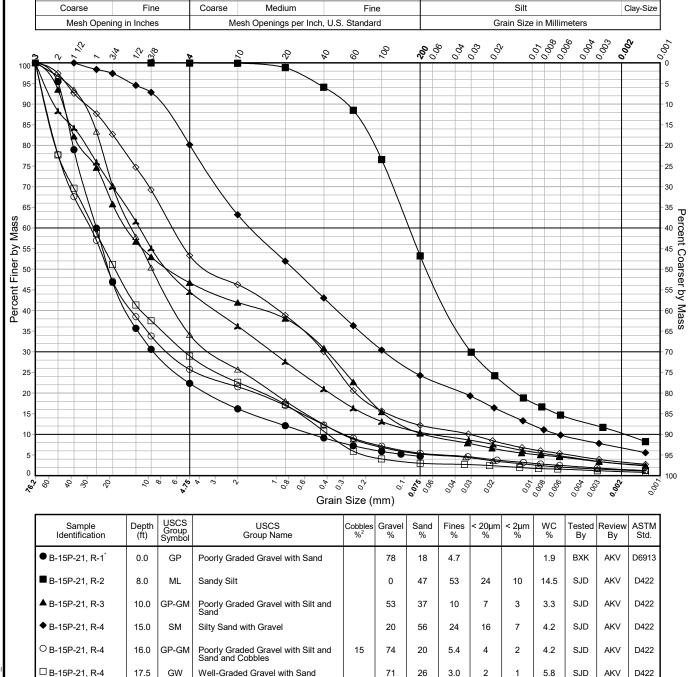
D422

Test specimen did not meet minimum mass recommendations.

² Cobble percentages are calculated using the pre-removal, oven-dried mass of the total specimen. USCS Group Symbol, Soil Classification Group Name, Gravel %, Sand %, Fines %, <0.02mm %, and <2um% values are calculated from particles smaller than 76.2mm (3 inches) only, per ASTM

BORING B-14-21

Test specimen did not meet minimum mass recommendations.


² Cobble percentages are calculated using the pre-removal, oven-dried mass of the total specimen. USCS Group Symbol, Soil Classification Group Name, Gravel %, Sand %, Fines %, <0.02mm %, and <2um% values are calculated from particles smaller than 76.2mm (3 inches) only, per ASTM D2487.

Gravel

Fines

Cascade Mill Parkway Yakima, Washington

BORING B-15P-21

Sand

GW-GN

GP-GM

GW-GN

21.0

25.0

27.5

66

47

55

19

7

29

41

34

5.2

12

10

8

8

3

3

5.0

8.8

8.0

SJD

SJD

SJD

AKV

AKV

AKV

D422

D422

D422

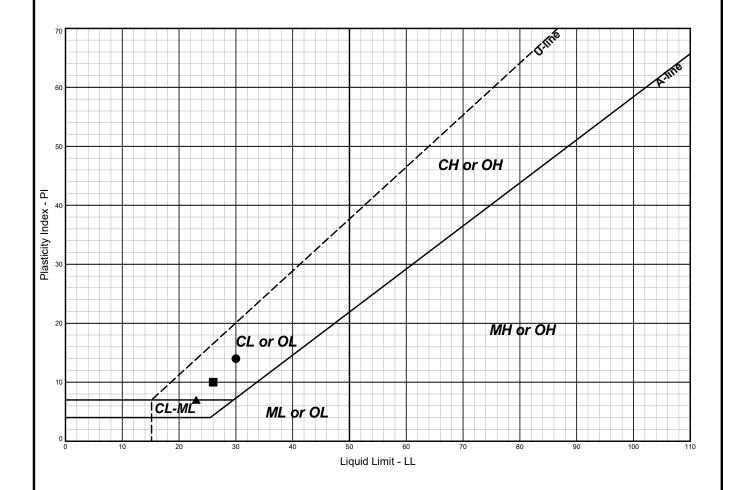
Well-Graded Gravel with Silt and Sand

Well-Graded Gravel with Silt and Sand and Cobbles

Sand and Cobbles

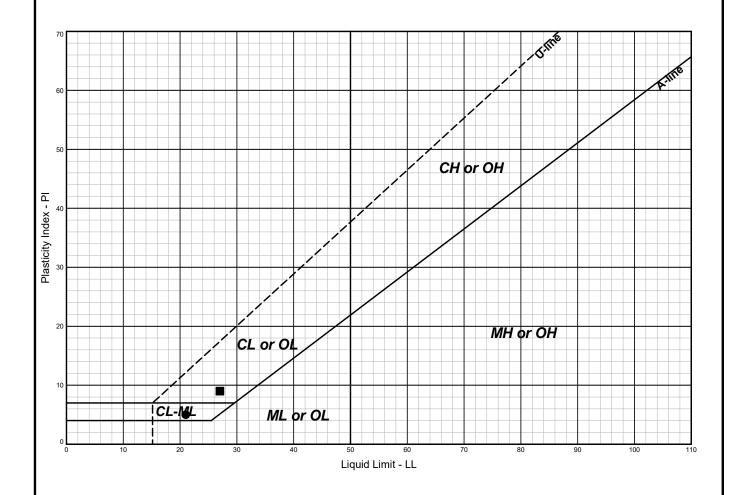
Poorly Graded Gravel with Silt and

△ B-15P-21, R-5

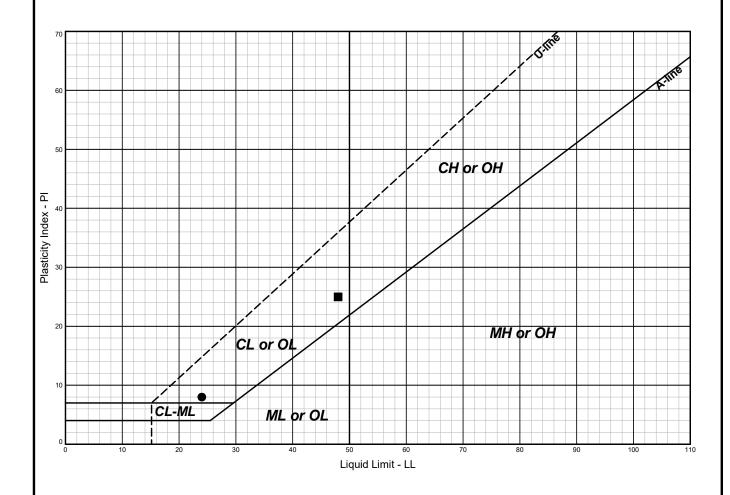

♦ B-15P-21, R-6

▲ B-15P-21, R-6

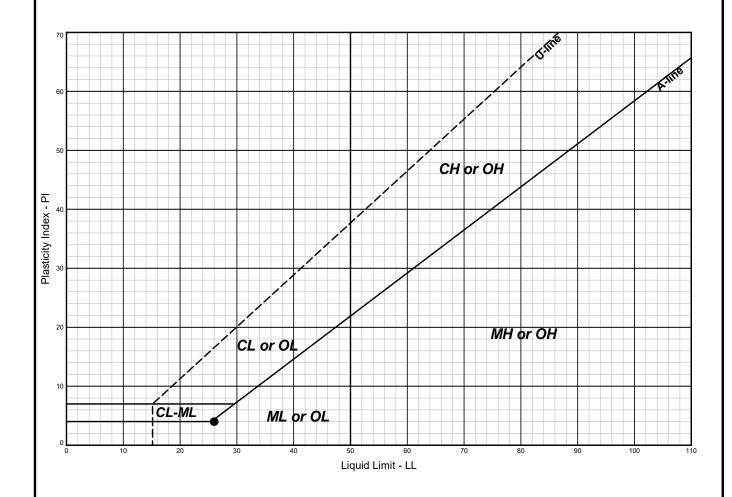
^{*}Test specimen did not meet minimum mass recommendations.


² Cobble percentages are calculated using the pre-removal, oven-dried mass of the total specimen. USCS Group Symbol, Soil Classification Group Name, Gravel %, Sand %, Fines %, <0.02mm %, and <2um% values are calculated from particles smaller than 76.2mm (3 inches) only, per ASTM D2487

BORING B-09-21


Sample Identification	Depth (ft)	USCS Group Symbol	USCS Group Name	LL	PL	PI	WC %	Gravel %	Sand %	Fines %	< 2µm %	Tested By	Review By	ASTM Std.
● B-09-21, R-12	61.5	CL	Sandy Lean Clay with Gravel	30	16	14	15.5					DES	AKV	D4318
■ B-09-21, R-12	66.0	sc	Clayey Sand with Gravel	26	16	10	11.1					BXK	AKV	D4318
▲ B-09-21, R-15	92.0	SC-SM	Silty, Clayey Sand with Gravel	23	16	7	12.7					MXC	AKV	D4318

BORING B-11P-21


Sample Identification	Depth (ft)	USCS Group Symbol	USCS Group Name	LL	PL	PI	WC %	Gravel %	Sand %	Fines %	< 2µm %	Tested By	Review By	ASTM Std.
● B-11P-21, R-7	32.0	SC-SM	Silty, Clayey Sand with Gravel	21	16	5						BXK	AKV	D4318
■ B-11P-21, R-12	72.5	GC	Clayey Gravel with Sand	27	18	9	9.3	51	29	20		BXK	AKV	D4318

BORING B-12P-21

Sample Identification	Depth (ft)	USCS Group Symbol	USCS Group Name	LL	PL	PI	WC %	Gravel %	Sand %	Fines %	< 2µm %	Tested By	Review By	ASTM Std.
● B-12P-21, R-12	62.0	sc	Clayey Sand with Gravel	24	16	8	9.4					BXK	AKV	D4318
■ B-12P-21, R-14	84.0	CL	Lean Clay	48	23	25	33.2					MXC	AKV	D4318

BORING B-15P-21

Sample Identification	Depth (ft)	USCS Group Symbol	USCS Group Name	J	PL	PI	WC %	Gravel %	Sand %	Fines %	< 2µm %	Tested By	Review By	ASTM Std.	
● B-15P-21, R-2	8.0	ML	Sandy Silt	26	22	4	14.5	0	47	53	10	BXK	AKV	D4318	

Appendix C

2014 and 2017 Subsurface Data

CONTENTS

C.1	SUBSI	URFACE EXPLORATIONS	C-1
	C.1.1	Introduction	C-1
	C.1.2	Soil Classification	C-1
	C.1.3	Soil Borings	C-2
		C.1.3.1 Sonic Core Drilling Procedures	C-2
		C.1.3.2 Split-Spoon Soil Samples	C-2
		C.1.3.3 Sonic Core Soil Review	C-3
	C.1.4	Test Pit Excavation	C-3
		C.1.4.1 Test Pit Excavation Procedures	C-3
		C.1.4.2 Soil Sampling	C-3
C.2	GEOT	ECHNICAL LABORATORY TEST PROCEDURES AND RESULTS	C-3
	C.2.1	Introduction	C-3
	C.2.2	Visual Classification	C-4
	C.2.3	Water Content Determination	C-4
	C.2.4	Grain-Size Analyses	C-4
		C.2.4.1 Sieve Analysis	C-4
		C.2.4.2 Combined Analysis	C-5
	C.2.5	Considerations	C-5
C.3	PILO	I INFILTRATION TEST AND PROCEDURES	C-5
	C.3.1	Introduction	C-5
	C.3.2	Infiltration Evaluation	C-5
	C.3.3	Pilot Infiltration Test Procedures	C-6
	C.3.4	Short-Term Pilot Infiltration Test Results	C-7
	C.3.5	Grain-Size Data Evaluation Procedure	C-7
	C.3.6	Long-Term Design Infiltration Rate Correction Factors	C-7
C.4	REFEI	RENCES	C-8

Figures

Figure C-1: Soil Description and Log Key (3 sheets)

Figure C-2: Log of Boring B-1-17 (8 sheets)

Figure C-3: Log of Boring B-2-17 (3 sheets)

Figure C-4: Log of Boring B-3-18 (7 sheets)

Figure C-5: Log of Boring EWC-B-01-14 (6 sheets)

Figure C-6: Log of Boring EWC-B-02-14 (6 sheets)

Figure C-7: Log of Boring EWC-B-03-14 (6 sheets)

Figure C-8: Log of Boring EWC-B-04-14 (6 sheets)

Figure C-9: Log of Test Pit TP-P1-17

Tables

Table C-1: Summary of Pilot Infiltration Test Results

Table C-2: Summary of Grain-Size Analysis Infiltration Correlations

Tests

Grain-Size Distribution Plot, Boring B-1-17

Grain-Size Distribution Plot, Boring B-2-17

Grain-Size Distribution Plot, Boring B-3-18

Grain-Size Distribution Plot, Test Pit TP-P1-17

Grain-Size Distribution Plot, Boring EWC-B-01-14

Grain-Size Distribution Plot, Boring EWC-B-02-14

Grain-Size Distribution Plot, Boring EWC-B-03-14

Grain-Size Distribution Plot, Boring EWC-B-04-14

C.1 SUBSURFACE EXPLORATIONS

C.1.1 Introduction

The subsurface exploration program for the Stage 3 portion of the East-West Corridor (EWC) alignment consisted of drilling and sampling seven borings and excavating and collecting samples in one test pit. Four borings, designated EWC-B-01-14 through EWC-B-04-14 were completed in 2014 during the 30% design phase and the remaining explorations were completed between July and September 2017 and September 2018 (boring B-3-18).

We advanced the seven borings, designated B-1-17, B-2-17, B-3-18, and EWC-B-01-14 through EWC-B-04-14, to depths ranging between 40 to 140 feet. We installed observation wells in B-2-17 and in EWC-B-01-14 through EWC-B-04-14.

We excavated the test pit TP-P1-17 to design drainage facilities to approximately to 8.5 feet below ground surface (bgs). After completion, the test pit was backfilled with the excavation spoils and tamped with the excavator bucket at the ground surface.

Approximate locations of the borings and tests pits were recorded in the field using a hand-held Trimble global positioning system device. The locations of the explorations are shown in Figure 2, after the main text. The exploration locations and elevations should be considered accurate to the degree implied by the method used.

C.1.2 Soil Classification

A representative from Shannon & Wilson was present throughout the field explorations to observe the drilling, test pit, and sampling operations; retrieve representative soil samples for subsequent laboratory testing; and to prepare descriptive field logs of the explorations. Soil sample classifications were based on ASTM Designation D2487, Standard Practice for Classification of Soils for Engineering Purposes, and ASTM Designation D2488, Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). The Unified Soil Classification System, as described in Figure A-1 of this appendix, was used to classify the soil. The exploration logs in the report represent our interpretation of the contents of the recent field logs.

C.1.3 Soil Borings

C.1.3.1 Sonic Core Drilling Procedures

Holt Services Inc. of Edgewood, Washington, drilled the soil borings under subcontract to Shannon & Wilson using a Terra Sonic track-mounted drill rig, outfitted with an automatic hammer. The sonic core drilling method uses high-frequency vibratory motion applied to the top of the drill column, along with down-pressure and rotation, to obtain nearly continuous core samples in soil and rock.

Soil samples were obtained using a 4-inch-outside-diameter (OD) core barrel. As the drill column was advanced into the ground, soil entered the core barrel. After advancing the core barrel a distance of 5 feet (termed a core "run"), a 6-inch OD temporary casing was vibrated to the bottom of the sample interval. The drill column and core barrel were then removed from the borehole and the soil core was extracted from the core barrel into plastic bags. Soil recovered from each run was described in the field and logged by our geologist. The soil sample bags were then sealed to retain moisture and stored in core boxes for transport. After retrieval of the soil core for a specific interval, the casing was cleared of slough and the drill column and core barrel were advanced, starting at the bottom of the temporary casing.

C.1.3.2 Split-Spoon Soil Samples

Disturbed soil samples were obtained from the borings by a split-spoon sampler used in conjunction with a Standard Penetration Test (SPT) and the sonic core barrel. To obtain disturbed soil samples from the borings, SPTs were performed in general accordance with the ASTM Designation D1586, Standard Test Method for Standard Penetration Test and Split-Barrel Sampling of Soils. The SPTs were generally performed at 5-foot intervals in between sonic core runs. The SPT consists of a 2-inch OD, 1.375-inch-inside-diameter, split-spoon sampler driven 18 inches into the bottom of the borehole with a 140-pound hammer free falling 30 inches. The number of blows required to advance the split-spoon sampler the last 12 inches of penetration is termed the Standard Penetration Resistance (N-value). This value is an empirical parameter that provides a means of evaluating the relative density or compactness of cohesionless (granular) soils and the relative consistency (stiffness) of cohesive soils. This value is commonly used in engineering analyses to estimate soil strength and other characteristics. The terminology used to describe the relative density or consistency of the soils is presented in Figure A-1. Generally, when penetration resistances exceed 50 or more blows for 6 inches or less of penetration, the test is terminated, and the number of blows and corresponding penetration recorded. The N-values were recorded by our field representative and are plotted in the boring logs presented as Figures C-2 through C-8.

The split-spoon sampler used during the penetration test recovers a disturbed sample of the soil, which is useful for identification and classification purposes. The samples were classified and recorded in the field by our geologist. The samples were then sealed in jars to retain moisture and returned to our laboratory for testing.

C.1.3.3 Sonic Core Soil Review

Soil recovered from sonic core drilling was reviewed for identification and classification purposes and photographed in our warehouse. Grab samples were collected during our review and placed in labeled plastic jars and 5-gallon plastic bags, sealed, and transported to our laboratory for further analysis and testing.

C.1.4 Test Pit Excavation

C.1.4.1 Test Pit Excavation Procedures

Test pit TP-P1-17 was excavated on September 27, 2017, by Yakima County Maintenance staff using a John Deere 410L rubber-tired backhoe. Test pit depth was approximately 8.5 feet bgs. Yakima County Maintenance staff backfilled the test pits with the excavation spoils in approximately the same order as it was removed from the hole. The surface of the test pit backfill was tamped with the back of the backhoe bucket for compaction.

C.1.4.2 Soil Sampling

Representative disturbed soil samples from the soil layers encountered in the test pits were collected from the backhoe bucket or spoil pile. A Shannon & Wilson representative was present throughout the test pit excavation to collect the grab samples, visually classify the soil, and prepare an exploration log for each test pit. After soil classification, the samples were sealed in jars or 5-gallon bags to retain moisture and returned to our laboratory for analyses.

The intervals where these samples were collected are shown on the test pit log presented in Figure C-9. Figure C-1 presents a soil description and symbology key for the logs.

C.2 GEOTECHNICAL LABORATORY TEST PROCEDURES AND RESULTS

C.2.1 Introduction

We performed geotechnical laboratory testing on select soil samples retrieved from the borings and test pits completed for the final design phase of this project. The laboratory testing program included tests to classify the soil and provide data for engineering studies.

We performed visual classification on all retrieved samples. Our laboratory testing program included water content determinations and grain-size distribution analyses.

The following sections describe the laboratory test procedures.

C.2.2 Visual Classification

We visually classified soil samples retrieved from the borings using a system based on ASTM D2487-11, Standard Test Method for Classification of Soil for Engineering Purposes, and ASTM D2488-09a, Standard Recommended Practice for Description of Soils (Visual-Manual Procedure). We summarize our classification system in Appendix A. We assigned a Unified Soil Classification System (USCS) group name and symbol, based on our visual classification of particles finer than 76.2 millimeters (3 inches). We revised visual classifications using results of the index tests discussed below.

C.2.3 Water Content Determination

We tested the water content of selected samples in accordance with ASTM D2216-10, Standard Method for Laboratory Determination of Water (Moisture) Content of Soil, Rock, and Soil-Aggregate Mixtures. Comparison of the water content of a soil with its index properties can be useful in characterizing soil unit weight, consistency, compressibility, and strength. We present water content test results in the Laboratory Test Summary table in this appendix, and graphically on Appendix A exploration logs.

C.2.4 Grain-Size Analyses

Grain-size distribution analyses separate soil particles through mechanical or sedimentation processes. Grain-size distributions are used to classify the granular component of soils and can correlate with soil properties, including frost susceptibility, permeability, shear strength, liquefaction potential, capillary action, and sensitivity to moisture. We plot grain-size distribution analysis results in this appendix. Grain-size distribution plots provide tabular information about each specimen, including USCS group symbol and group name; water content; constituent (i.e., cobble, gravel, sand, and fines) percentages; coefficients of uniformity and curvature, if applicable; personnel initials; ASTM standard designation; and testing remarks. Constituent percentages are presented in the Lab Summary Table in this appendix and fines contents are plotted as data points on Appendix A exploration logs.

C.2.4.1 Sieve Analysis

We performed mechanical sieve analyses on selected soil specimens to determine the grain-size distribution of coarse-grained soil particles, in accordance with ASTM C136/C136M-14, Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates.

C.2.4.2 Combined Analysis

We performed combined analyses (mechanical and sedimentation) on selected soil specimens to determine the grain-size distribution of coarse- and fine-grained soil particles, in accordance with ASTM D422-63 2007e2, Standard Test Method for Particle-Size Analysis of Soils. We assumed a specific gravity of 2.7 for hydrometer calculations, unless otherwise indicated on grain-size distribution plots.

C.2.5 Considerations

Drilling and sampling methodologies may affect the outcome of prescribed geotechnical laboratory tests. Refer to the field exploration discussion in this report for a discussion of these potential effects. Instances of limited recovery may have resulted in test samples not meeting specified minimum mass requirements, per ASTM standards. Test plots show which samples do not meet ASTM specified minimum mass requirements.

C.3 PILOT INFILTRATION TEST AND PROCEDURES

C.3.1 Introduction

Shannon & Wilson performed one Pilot Infiltration Test (PIT) within Stage 3 of the East-West Corridor Project on September 27, 2017. The approximate locations of this PIT test pit, designated TP-P1-17, is shown in Figure 2 in the main report.

C.3.2 Infiltration Evaluation

We estimated the long-term design infiltration rates for the proposed infiltration systems along the EWC alignment. The infiltration evaluation was completed according to the 2004 Washington State Department of Ecology (Ecology) Stormwater Management Manual for Eastern Washington (SMMEW) (Ecology, 2004) and the Yakima County Regional Stormwater Manual (Yakima County, 2010). The Ecology 2012 Stormwater Management Manual for Western Washington (Ecology, 2012) was used as a supplement to the SMMEW when limited information was available.

We estimated long-term design infiltration rates for Stage 3 of the EWC using the results of the PIT conducted in test pit TP-P1-17. We also used empirical correlations to grain-size analysis data for comparison purposes. Both PIT and grain-size analysis-based infiltration rate estimation methods result in short-term rates. We estimated the long-term design infiltration rates by applying correction factors to the short-term infiltration rates.

Section C.3.3 describes the PIT procedure and methods for estimating the long-term design infiltration rates using the results of the PIT and grain-size distributions. The grain-size distribution curves are shown at the end of this Appendix.

Tables C-1 and C-2 provide estimated short-term and long-term design infiltration rates. As indicated in these tables, the PIT infiltration rate results were higher compared to the empirical correlations. Based on the range of infiltration rates we obtained, we recommend using a design infiltration rate of 10 inches per hour for the Stage 3 infiltration facility near test pit TP-P1-17. Although lower values were obtained based on several of the empirical grain-size distribution-based infiltration rate estimates (Table 2), we consider the PIT to be more representative of the likely infiltration rate behavior at TP-P1-17. Therefore, our design infiltration rate recommendation is weighted toward the PIT-based results.

The long-term design infiltration rates presented in this report meet the requirements for flow control for the Ecology SMMEW and the Yakima County Regional Stormwater Manual. The design infiltration rates are for flow control only and assume a pretreatment system will be used to meet water quality requirements. Both the SMMEW and the Yakima County Regional Stormwater Manual require a maximum infiltration rate of 2.4 inches per hour for infiltration systems designed to meet treatment standards. The base of the proposed infiltration systems should be a minimum of 5 feet above the seasonally high groundwater level.

C.3.3 Pilot Infiltration Test Procedures

The PIT was performed in accordance with the Ecology 2004 SMMEW (Ecology, 2004). The procedure consisted of excavating a test pit to the proposed depth of the infiltration facility, adding water to the test pit, and measuring the drainage time of the water.

We determined the depth of the infiltration structures at each location using a grading plan provided by H.W. Lochner that described the final grade of the locations where water will be infiltrated. Based on correspondence with Lochner, we assume the maximum depth of the infiltration facility will be about 6 feet bgs. Therefore, the depth for the PIT was targeted at 8.5 feet bgs.

The Yakima County Maintenance staff used a John Deere 410L rubber-tired backhoe to excavate the test pits to the dimensions shown in Table 1 in the main report. Water was conveyed to the test pits from a 3,000-gallon water truck with a 2-inch fire hose and plastic pipe. The flow rate was regulated using a gate valve and measured using a flow meter. A measuring rod was placed in the test pit to measure the depth of the water.

The PIT included a constant rate test and a falling head test. The constant rate test was performed by filling the test pit to a constant level and taking flow rate and water level readings every 15 minutes until the flow rate and water level remained constant, or a minimum of 2 hours had passed. After the constant rate test was complete, a falling head test was performed by turning off the water and recording the rate that water in the test pit drained. Water level measurements were recorded approximately every 15 minutes during the falling head tests.

C.3.4 Short-Term Pilot Infiltration Test Results

The water level was brought up to and maintained at approximately 1 to 2 feet above the bottom of the test pit over the course of 2 hours. As shown in Table 1, the short-term falling head infiltration rate was evaluated to be about 50 inches per hour.

C.3.5 Grain-Size Data Evaluation Procedure

The SMMEW recommends using grain-size data to estimate the infiltration rate of soil; however, it provides limited information on how to estimate the infiltration rate from grain-size data. We used an analytical solution from the Ecology Stormwater Management Manual for Western Washington (SMMWW) (Ecology, 2012) to estimate the infiltration rate of soil using the grain-size data. The analytical solution used to calculate the saturated hydraulic conductivity from the grain-size data is:

$$\log_{10}(K_{\text{sat}}) = -1.57 + 1.90D_{10} + 0.015D_{60} - 0.013D_{90} - 2.08f_{\text{fines}}$$

Ksat = saturated hydraulic conductivity

D10, D60, and D90 = grain size in millimeters for which 10, 60, and 90% of the sample is more fine

ffines = fraction of soil (by weight) that passes the number 200 sieve

C.3.6 Long-Term Design Infiltration Rate Correction Factors

The SMMEW provides limited recommendations for what correction factors to apply to short-term infiltration rates to estimate long-term design infiltration rates. We used the recommended correction factors from the SMMWW to apply to the short-term infiltration rates to obtain long-term design infiltration rates. The correction factors include:

CFv, site variability and number of locations tested. Recommended CFv values range from 0.33 to 0.9.

CFt, uncertainty of test method. Recommended CFt is 0.5 for a small-scale PIT Method and 0.4 for grain-size method.

CFm, degree of influent control to prevent siltation and biological buildup. The CFm value correlates to the percentage of the design infiltration rate that the pond will decrease to before maintenance occurs. For example, if an infiltration pond is cleaned after it infiltrates at 90% of the design infiltration rate, then the CFm correction factor would be 0.9. The 2012 SMMWW does not provide a recommended range of CFm values.

A total correction factor (CFT) is calculated by finding the product of the correction factors for site variability (CFv), uncertainty of test method (CFt), and influent control (CFm). The short-term infiltration rate is multiplied by the CFT to determine the long-term design infiltration rate.

$$CF_T = CF_v \times CF_t \times CF_m$$

CF_T x Short Term Infiltration Rate = Long Term Design Infiltration Rate

Our recommended correction factors for the infiltration evaluation are as follows:

CFv = 0.7

CFt = 0.5 for the PIT and 0.4 for the grain-size analysis

CFm = 0.7

Therefore, CFT equals 0.25 for the PIT and 0.20 for the grain-size analysis. Table 1 in the main text provides the long-term design infiltration rate results of the PIT evaluation, and Table 2 in the main text provides the long-term design infiltration rate results of the grain-size analysis.

C.4 REFERENCES

Washington State Department of Ecology (Ecology), 2004, Storm drainage design guideline for site characterization, in stormwater management manual for eastern Washington: Olympia, Wash., Washington State Department of Ecology Water Quality Program, Publication No. 004-10-076, Appendix 6B.

Washington State Department of Ecology (Ecology), 2012, Hydrologic analysis and flow control design/BMPs, in stormwater management in western Washington: Olympia, Wash., Washington State Department of Ecology Water Quality Program, Publication No. 12-10-030, v. III.

Yakima County, Wash., 2010, Yakima County regional stormwater manual: Yakima Wash., Yakima County: Yakima, Wash., Yakima County, January, available: http://www.yakimacounty.us/stormwater/.

S&W INORGANIC SOIL CONSTITUENT DEFINITIONS	3
--	---

CONSTITUENT ²	FINE-GRAINED SOILS (50% or more fines) ¹	COARSE-GRAINED SOILS (less than 50% fines) ¹
Major	Silt, Lean Clay, Elastic Silt, or Fat Clay ³	Sand or Gravel ⁴
Modifying (Secondary) Precedes major constituent	30% or more coarse-grained: Sandy or Gravelly	More than 12% fine-grained: Silty or Clayey ³
Minor Follows major	15% to 30% coarse-grained: with Sand or with Gravel ⁴	5% to 12% fine-grained: with Silt or with Clay ³
constituent	30% or more total coarse-grained and lesser coarse-grained constituent is 15% or more: with Sand or	15% or more of a second coarse- grained constituent: with Sand or with Gravel ⁵
	with Gravel ⁵	with Graver

All percentages are by weight of total specimen passing a 3-inch sieve. The order of terms is: *Modifying Major with Minor*.

MOISTURE CONTENT TERMS

Dry	Absence of moisture, dusty, dry to the touch
Moist	Damp but no visible water
Wet	Visible free water, from below water table

STANDARD PENETRATION TEST (SPT) **SPECIFICATIONS**

Hammer: 140 pounds with a 30-inch free fall.

Rope on 6- to 10-inch-diam. cathead

2-1/4 rope turns, > 100 rpm

NOTE: If automatic hammers are used, blow counts shown on boring logs should be adjusted to account for

efficiency of hammer.

Sampler:

10 to 30 inches long Shoe I.D. = 1.375 inches Barrel I.D. = 1.5 inches Barrel O.D. = 2 inches

N-Value: Sum blow counts for second and third

6-inch increments.

Refusal: 50 blows for 6 inches or less; 10 blows for 0 inches.

NOTE: Penetration resistances (N-values) shown on boring logs are as recorded in the field and have not been corrected for hammer efficiency, overburden, or other factors.

DESCRIPTION	SIEVE NUMBER AND/OR APPROXIMATE SIZE
FINES	< #200 (0.075 mm = 0.003 in.)
SAND Fine Medium Coarse	#200 to #40 (0.075 to 0.4 mm; 0.003 to 0.02 in.) #40 to #10 (0.4 to 2 mm; 0.02 to 0.08 in.) #10 to #4 (2 to 4.75 mm; 0.08 to 0.187 in.)
GRAVEL Fine Coarse	#4 to 3/4 in. (4.75 to 19 mm; 0.187 to 0.75 in.) 3/4 to 3 in. (19 to 76 mm)
COBBLES	3 to 12 in. (76 to 305 mm)
BOULDERS	> 12 in. (305 mm)

RELATIVE DENSITY / CONSISTENCY

COHESION	LESS SOILS	COHESIVE SOILS		
N, SPT, BLOWS/FT.	RELATIVE DENSITY	N, SPT, BLOWS/FT.	RELATIVE CONSISTENCY	
< 4	Very loose	< 2	Very soft	
4 - 10	Loose	2 - 4	Soft	
10 - 30	Medium dense	4 - 8	Medium stiff	
30 - 50	Dense	8 - 15	Stiff	
> 50	Very dense	15 - 30	Very stiff	
		> 30	Hard	

WELL AND BACKFILL SYMBOLS

Bentonite Cement Grout	7,5/4 + 7,5/4 1,5/5/4 2,5/4 + 7,5/4 2,5/4 + 7,5/4	Surface Cement Seal
Bentonite Grout		Asphalt or Cap
Bentonite Chips		Slough
Silica Sand		Inclinometer or Non-perforated Casing
Perforated or Screened Casing		Vibrating Wire Piezometer

PERCENTAGES TERMS 1,2

1 LIGENTAGEG TERMIO				
Trace	< 5%			
Few	5 to 10%			
Little	15 to 25%			
Some	30 to 45%			
Mostly	50 to 100%			

¹Gravel, sand, and fines estimated by mass. Other constituents, such as organics, cobbles, and boulders, estimated by volume.

²Reprinted, with permission, from ASTM D2488 - 09a Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428. A copy of the complete standard may be obtained from ASTM International, www.astm.org.

> East-West Corridor Project Stage 3 Yakima, Washington

SOIL DESCRIPTION AND LOG KEY

August 2019

21-1-22425-002

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

FIG. C-1 Sheet 1 of 3

³Determined based on behavior.

Determined based on which constituent comprises a larger percentage Whichever is the lesser constituent.

UNIFIED SOIL CLASSIFICATION SYSTEM (USCS) (Modified From USACE Tech Memo 3-357, ASTM D2487, and ASTM D2488)						
MAJOR DIVISIONS			GROUP/GRAPHIC SYMBOL		TYPICAL IDENTIFICATIONS	
	Gravels (more than 50%	Gravel (less than 5% fines)	GW	X	Well-Graded Gravel; Well-Graded Gravel with Sand	
			GP		Poorly Graded Gravel; Poorly Graded Gravel with Sand	
	of coarse fraction retained on No. 4 sieve)	Silty or Clayey Gravel	GM		Silty Gravel; Silty Gravel with Sand	
COARSE- GRAINED SOILS		(more than 12% fines)	GC		Clayey Gravel; Clayey Gravel with Sand	
(more than 50% retained on No. 200 sieve)		Sand (less than 5% fines)	SW		Well-Graded Sand; Well-Graded Sand with Gravel	
	Sands (50% or more of coarse fraction passes the No. 4 sieve)		SP		Poorly Graded Sand; Poorly Graded Sand with Gravel	
		Silty or Clayey Sand (more than 12% fines)	SM		Silty Sand; Silty Sand with Gravel	
			SC		Clayey Sand; Clayey Sand with Gravel	
		Inorgania	ML		Silt; Silt with Sand or Gravel; Sandy or Gravelly Silt	
	Silts and Clays (liquid limit less than 50)	Inorganic	CL		Lean Clay; Lean Clay with Sand or Gravel; Sandy or Gravelly Lean Clay	
FINE-GRAINED SOILS (50% or more		Organic	OL		Organic Silt or Clay; Organic Silt or Clay with Sand or Gravel; Sandy or Gravelly Organic Silt or Clay	
passes the No. 200 sieve)	Silts and Clays (liquid limit 50 or more)	Inorganic	МН		Elastic Silt; Elastic Silt with Sand or Gravel; Sandy or Gravelly Elastic Silt	
			СН		Fat Clay; Fat Clay with Sand or Gravel; Sandy or Gravelly Fat Clay	
		Organic	ОН		Organic Silt or Clay; Organic Silt or Clay with Sand or Gravel; Sandy or Gravelly Organic Silt or Clay	
HIGHLY- ORGANIC SOILS		ic matter, dark in organic odor	PT		Peat or other highly organic soils (see ASTM D4427)	

NOTE: No. 4 size = 4.75 mm = 0.187 in.; No. 200 size = 0.075 mm = 0.003 in.

NOTES

- 1. Dual symbols (symbols separated by a hyphen, i.e., SP-SM, Sand with Silt) are used for soils with between 5% and 12% fines or when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart. Graphics shown on the logs for these soil types are a combination of the two graphic symbols (e.g., SP and SM).
- Borderline symbols (symbols separated by a slash, i.e., CL/ML, Lean Clay to Silt; SP-SM/SM, Sand with Silt to Silty Sand) indicate that the soil properties are close to the defining boundary between two groups.

East-West Corridor Project Stage 3 Yakima, Washington

SOIL DESCRIPTION AND LOG KEY

August 2019

21-1-22425-002

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

FIG. C-1 Sheet 2 of 3

GRADATION TERMS

Poorly Graded	Narrow range of grain sizes present or, within
•	the range of grain sizes present, one or more
	sizes are missing (Gap Graded). Meets
	criteria in ASTM D2487, if tested.
Well-Graded	Full range and even distribution of grain sizes
	present. Meets criteria in ASTM D2487, if

CEMENTATION TERMS¹

tested.

Weak	Crumbles or breaks with handling or slight finger pressure.
Moderate	Crumbles or breaks with considerable finger
	pressure.
Strong	Will not crumble or break with finger
	pressure.

PLASTICITY²

DESCRIPTION	VISUAL-MANUAL CRITERIA	APPROX. LASITICITY INDEX RANGE
Nonplastic	A 1/8-in. thread cannot be rolled at any water content.	< 4
Low	A thread can barely be rolled and a lump cannot be formed when drier than the plastic limit.	4 to 10
Medium		10 to 20
High		> 20

DIT	ONIAL	TERMS

Mottled	Irregular patches of different colors.					
Bioturbated	Soil disturbance or mixing by plants or animals.					
Diamict	Nonsorted sediment; sand and gravel in silt and/or clay matrix.					
Cuttings	Material brought to surface by drilling.					
Slough	Material that caved from sides of borehole.					
Sheared	Disturbed texture, mix of strengths.					

PARTICLE ANGULARITY AND SHAPE TERMS¹

Angular	Sharp edges and unpolished planar surfaces
Subangular	Similar to angular, but with rounded edges.
Subrounded	Nearly planar sides with well-rounded edges.
Rounded	Smoothly curved sides with no edges.
Flat	Width/thickness ratio > 3.
Elongated	Length/width ratio > 3.

¹Reprinted, with permission, from ASTM D2488 - 09a Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428. A copy of the complete standard may be obtained from ASTM International, www.astm.org.

²Adapted, with permission, from ASTM D2488 - 09a Standard Practice for Description and Identification of Soils (Visual-Manual Procedure), copyright ASTM International, 100 Barr Harbor Drive, West Conshohocken, PA 19428. A copy of the complete standard may be obtained from ASTM International, www.astm.org.

ACRO	ACRONYMS AND ABBREVIATIONS							
ATD	At Time of Drilling							
Diam.	Diameter							
Elev.	Elevation							
ft.	Feet							
FeO	Iron Oxide							
gal.	Gallons							
Horiz.	Horizontal							
HSA	Hollow Stem Auger							
I.D.	Inside Diameter							
in.	Inches							
lbs.	Pounds							
MgO	Magnesium Oxide							
mm	Millimeter							
MnO	Manganese Oxide							
NA	Not Applicable or Not Available							
NP	Nonplastic							
O.D.	Outside Diameter							
OW	Observation Well							
pcf	Pounds per Cubic Foot							
PID	Photo-Ionization Detector							
PMT	Pressuremeter Test							
ppm	Parts per Million							
psi	Pounds per Square Inch							
PVC	Polyvinyl Chloride							
rpm	Rotations per Minute							
SPT	Standard Penetration Test							
USCS	Unified Soil Classification System							
\mathbf{q}_{u}	,							
VWP								
Vert.	Vertical							
WOH								
WOR	Weight of Rods							
Wt.	Weight							

STRUCTURE TERMS¹

Interbedded	Alternating layers of varying material or color with layers at least 1/4-inch thick; singular: bed.
Laminated	Alternating layers of varying material or color with layers less than 1/4-inch thick; singular: lamination.
<u>-</u>	
Fissured	Breaks along definite planes or fractures with little resistance.
Slickensided	Fracture planes appear polished or
Blocky	glossy; sometimes striated. Cohesive soil that can be broken down into small angular lumps that resist further breakdown.
Lensed	Inclusion of small pockets of different soils, such as small lenses of sand scattered through a mass of clay.
Homogeneous	Same color and appearance throughout.

East-West Corridor Project Stage 3 Yakima, Washington

SOIL DESCRIPTION AND LOG KEY

August 2019

21-1-22425-002

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

FIG. C-1 Sheet 3 of 3

							-
Total Depth: <u>140 ft.</u> Northing:	Dri!	lling Metho	od:	Sonic Co	ore	Hole Diam.:	8 in.
Top Elevation: ~ 1080 ft. Easting:		Iling Comp		Holt Serv		Rod Diam.:	3-1/2"
Vert. Datum: <u>NAVD88</u> Station:	_			Terrason		Hammer Type	
Horiz. Datum: Offset:		ner Comm					
			—		<u> </u>		
SOIL DESCRIPTION	نے	0 0	g g	نے پے	PENETRAT	ION RESISTA	ANCE (blows/foot)
Refer to the report text for a proper understanding of the	Depth, ft.	Symbol	Ground	Water Depth, f	▲ Hammer	Wt. & Drop: <u>14</u>	10 lbs / 30 inches
subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries	_)ep	Syl Syl	[년	je Š			
between material types, and the transition may be gradual.		° _ u.	,		0	20	4060
Dense, gray, Poorly Graded Gravel with Sand		10 × 1	≤ 11				
\cap (GP); dry; fine to coarse subangular to angular	0.7		<				
gravel; fine to coarse sand; trace nonplastic	1		511				
fines.	1		511	2			
\ \ \ \ \ \ \ \ \ \ \ \ \	0.5		$\geq $	2			
	2.5	~ L	511				
Dense, dark brown, Silty Sand with Gravel	ı		<u> </u>				
(SM); moist; fine to coarse, subangular to	ı		511	4			
angular gravel; fine to coarse sand; nonplastic	ı		511	4			
fines; trace iron-oxide staining; diamict.	1		>				
Fill (Hf)	1		री।				
- Layer of poorly graded sand with silt at 2	1	1	∤				
feet.	1		∤	6		idaa	
	ı		\$11			. [.] . [.] . [.] . [.] . [.] . [
Dense to very dense, Well Graded Gravel with	ı		511				
Silt and Sand and Cobbles (GW-GM) to Poorly	1		>				
Graded Gravel with Sand and Cobbles (GP);	ı		>11	8			
moist; few subrounded to subangular cobbles;	ı		<u> </u>				.::::::::::::::::::::::::::::::::::::::
fine to coarse, subangular to subrounded	ı		<u> </u>				
gravel; fine to coarse sand; nonplastic fines;	1		511				
trace seams of silty gravel with sand; trace	1	2	 	10			50/6"
☐ iron-oxide staining.	10.5		 		Historia		
Fill (Hf)	1		<u> </u>				
- layer of poorly graded sand with gravel from	1		<u> </u>				
10 to 10.5 feet.	1		<u> </u>	12	1		
	1	. F. S.	511				
Very dense, gray, Well Graded Gravel with Silt	1		511				
and Sand (GW-GM); moist; few rounded	ı		>				
cobbles; fine to coarse, subangular to	ı		>11	14	-1		· · · · · · · · · · · · · · · · · · ·
subrounded gravel; medium to coarse sand;	1		<u> </u>				
trace fine sand; trace iron-oxide staining	1	1.4	 				
throughout.	1		\$11				
Fill (Hf)	ı	1	\$	16	-1-1-1-1-1-1-1-1-1		134
Fill (Hf) - Lenses of drier, sandier gravel from 15.9 to	ı	!• 8 ⁴	$ \langle \langle \rangle \rangle$				
16 fact and 16 2 to 16 4 fact	ı		511				
10 leet and 10.2 to 10.4 leet.	1	7 7	<u> </u>			·	
10 leet and 10.2 to 10.4 leet.	1		511	18			
	1		511		-: -T -:		
Dulid Share	ı		>11				
i :	ı		>11				
			211_		<u> </u>		
CONTINUED NEXT SHEET LEGEND					0	20	40 60
<u></u>	^/stor I	-val ATD				♦ % Fines (<0)	0.075mm)
* Sample Not Recovered ♀ Ground V ☐ Soil Core (as in Sonic Core Borings)	√ater ∟	.evel A1D				% Water C	
5 Z 2.0" O.D. Split Spoon Sample							
2.0 О.Б. Эрик эроон заттрів							
			г				
			1		East-Wes	st Corridor Pro	ject
			1			Stage 3	
NOTES	1	Yakima, Washington					
NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviation	definitions	}		•			
Refer to REY for explanation of symbols, codes, abbreviation Section 2. Groundwater level, if indicated above, is for the date specified.			Ì				
2. Groundwater level, it indicated above, is for the date specified as USCS designation is based on visual-manual classification a			ecting	1	OG OF F	BORING E	2.1_17
3. USCS designation is based on visual-mandal diassincation a	ilu sele	Cleu ian ie.	Stirry.	_	.000.	JONING L)-1-1 <i>1</i>
Soil Core (as in Sonic Core Borings) 2.0" O.D. Split Spoon Sample NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviation 2. Groundwater level, if indicated above, is for the date specified 3. USCS designation is based on visual-manual classification a			Ì		- · <u>-</u>	•	
			Ì	August	2019	21	-1-22425-002
X.			Ť	OH A N	LIVAL O 14014	2011 1110	FIG. C-2
2				Geotechni	NON & WIL cal and Environmer	atal Consultants	FIG. 6-2

Total Depth: 140 ft. Northing: Top Elevation: ~1080 ft. Easting: Vert. Datum: NAVD88 Station: Horiz. Datum: Offset:	D	Orilling M Orilling C Orill Rig I Other Co	Company Equipm	y: Ho ent: Te	onic Cor olt Servi errasoni	ices Rod Diam.:	8 in. 3-1/2" De: Automatic		
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratificatic lines indicated below represent the approximate boundarie between material types, and the transition may be gradual	on to	Symbol	Samples	Ground Water	Depth, ft.	PENETRATION RESIST ▲ Hammer Wt. & Drop: _1 0 20			
Very dense, brown, Poorly Graded Gravel with Sand (GP) to Poorly Graded Sand with Grave (SP); moist; fine to coarse subrounded to subangular gravel; fine to coarse sand; trace nonplastic fines. (Hf)	22.	600	4 %2 %2 %2 %2 %2 %2 %2 %2 %2 %2 %2 %2 %2		22 -		30/3:		
Very dense, gray, Well Graded Gravel with Sinand Sand and Cobbles (GW-GM); moist; few subrounded to subangular cobbles; fine to coarse subrounded to subangular gravel; fine to coarse sand; trace nonplastic fines. (Hf) - layer of poorly graded sand with gravel from 25.2 to 25.8 feet.			5 * * * * * * * * * * * * * * * * * * *		26		50/2*/		
 Little cobbles below 27 feet. Trace brick fragments at 32 feet. 	32.	5	6 7.3		30		50/4"』		
Very dense, gray to brown, <i>Poorly Graded Gravel with Silt and Sand (GP-GM)</i> ; fine to coarse, subangular to subrounded gravel; fine to coarse sand; nonplastic fines; few wood fragments. Fill (Hf)	33.4	.5	7		34	•	50/5"2		
Very dense, gray, <i>Poorly Graded Gravel (GP)</i> to <i>Poorly Graded Gravel with Sand (GP)</i> ; moist to wet; few to little rounded cobbles up to approximately 6-inch-diameter; fine to coarse, subrounded to rounded gravel; fine to coarse sand; trace nonplastic fines; trace organics over 30 feet.	st 37 :	000	R-8		38				
CONTINUED NEXT SHEET LEGEND * Sample Not Recovered				_	0 20 40				
2. Groundwater level, if indicated above, is for the date sp	NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviations and definitions. 2. Groundwater level, if indicated above, is for the date specified and may vary. 3. USCS designation is based on visual-manual classification and selected lab testing.			J .	L	East-West Corridor Pr Stage 3 Yakima, Washingto	on		
STER LOG				-	ugust	2019 2 NON & WILSON, INC. all and Environmental Consultants	FIG. C-2		

	Total Depth: 140 ft. Northing: Top Elevation: ~ 1080 ft. Easting: Vert. Datum: NAVD88 Station: Horiz. Datum: Offset:	Dril Dril	illing C ill Rig E	Method Compa Equipr ommer	any: oment:	Sonic Co Holt Sen Terrason	vices	Hole Diam.: Rod Diam.: Hammer Type	8 in. 3-1/2 e: Automa	2"
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water Depth, ft.		TION RESISTA Wt. & Drop: 14		
	Alluvium (Ha) Very dense, gray-brown, <i>Poorly Graded Gravel with Sand (GP)</i> ; moist; fine to coarse subrounded to subangular gravel; fine to coarse sand; nonplastic fines. (Hf) - Layer of silty sand with gravel from 40 to 40.5 feet.			8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	During Drilling is	42		20	40	50/5"4
	Very dense, gray, Silty Sand with Gravel (SM); moist; fine to coarse subrounded to subangular gravel; fine to coarse sand; nonplastic fines; trace metal wire. (Hf)	45.0 46.0 47.5		-10 e d -10 e e		46	; ;			50/5"2
	Very dense, gray-brown, <i>Poorly Graded Gravel with Silt and Sand (GP-GM)</i> ; moist; fine to coarse, subrounded to subangualar gravel; fine to coarse sand; nonplastic fines. Alluvium (Ha)	41.0				48 50				
	Very dense, brown, Poorly Graded Gravel with Sand and Cobbles (GP); wet; few subangular cobbles; fine to coarse, subrounded gravel; fine to coarse sand trace nonplastic fines. Alluvium (Ha) - Few silty gravel wit sand pockets below 53			R-11 01		52	2			77
Typ: LKN	feet. Several core runs have approximately 0.4-foot-thick layer of sand to silty sand that fines upwards, looks like slough or other disturbed soils not representative of actual	55.0	i.0	= -	54 56				50/1*2	
Log: BMC Rev: EAS Typ	stratigraphy. Very dense, brown and gray, Silty Gravel with Sand and Cobbles (GM) to Poorly Graded Gravel with Silt and Sand (GP-GM); wet; trace subrounded cobbles; fine to coarse subrounded to rounded gravel; fine to coarse			R-12		58	1			
	CONTINUED NEXT SHEET LEGEND * Sample Not Recovered						0	20 ♦ % Fines (< • % Water C		60
STER_LOG_E 21-22425.GPJ SHAN_WIL.GDT 8/16/19	NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviations and definitions.						East-West Corridor Project Stage 3 Yakima, Washington			
LOG E 21-2242	Groundwater level, if indicated above, is for the date specifi USCS designation is based on visual-manual classification		-	-	ng.	L August		BORING E	B-1-17 1-1-22425-(002
STER					Ī	SHAN	INON & WIL	SON, INC.	FIG. C-	2

	Total Depth:	Dril	Iling C	Method: Company: Equipme	r: Ho	onic Cor Iolt Servi	rices	Hole Diam.: Rod Diam.: Hammer Type:	8 in. 3-1/2" : Automatic	
•	Horiz. Datum: Offset:			omments:					- Automatio	
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.			NCE (blows/foot) 0 lbs / 30 inches	
	sand; nonplastic to low plasticity fines; trace iron-oxide staining. Alluvium (Ha) - Layer of silty gravel with sand from 52.5 to 52.8 feet.	60.0		12 *		62			.50/11/	
	Very dense, gray Poorly Graded Gravel (GP); wet; fewe subrounded cobbles; fine to coarse subrounded gravel trace sand. Alluvium (Ha)	63.0				64			Έη/ρὸ	
	Very dense, gray to brown, <i>Poorly Graded Gravel with Silt and Sand (GP-GM)</i> ; wet; trace subrounded cobbles; fine to coarse, subrounded to subangular gravel; fine to	66.0		13		66	•		JW2.	
	coarse sand; nonplastic to low plasticity fines. Alluvium (Ha) - Layer of poorly graded gravel from 64 to 64.5 feet.	67.5		R-1.		68				
	Very dense, gray-brown, Silty Gravel with Sand (GM) to Silty Sand with Gravel (SM); moist to wet; fine to coarse, subrounded to subangular gravel; fine to coarse sand; nonplastic to low plasticity fines.			14		70			50/11/2	
	Alluvium (Ha) Very dense, gray-brown, <i>Poorly Graded Gravel</i>	72.0		R-15		72				
	with Silt and Sand and Cobbles (GP-GM) to Silty Gravel with Sand and Cobbles (GM); moist; trace subrounded cobbles; fine to coarse, subrounded to subangular gravel; fine					74				
,	to coarse sand; nonplastic to low plasticity fines. Alluvium (Ha)	75.8		15		76			634	
Log: BMC Rev: EAS	Very dense, gray-brown, Silty Gravel with Sand and Cobbles (GM) to Poorly Graded Gravel with Silt and Sand and Cobbles (GP-GM); wet; trace subrounded cobbles; fine to coarse subrounded to subangular gravel; fine to	77.5		R-14		78				
	CONTINUED NEXT SHEET LEGEND * Sample Not Recovered ☐ Soil Core (as in Sonic Core Borings) ☐ 2.0" O.D. Split Spoon Sample	Water Le	evel A	.TD			0	20 ♦ % Fines (<0 ■ % Water Co		
STER LOG E 21-22425.GPJ SHAN WIL.GDT 8/16/19	<u>NOTES</u> 1. Refer to KEY for explanation of symbols, codes, abbreviatior	one and	dofiniti	ione.				st Corridor Proj Stage 3 a, Washington		
E 21-22425.G	Refer to REY for explanation of symbols, codes, appreviation Groundwater level, if indicated above, is for the date specifie USCS designation is based on visual-manual classification a	specified and may vary.						BORING B	J-1-17	
STER LOG			-	August :	2019 NON_& WIL		-1-22425-002 FIG. C-2			

Top Elevation: ~ 1080 ft. Eas	rthing:sting:	_ _ Drill	lling Co	Method: Company	: Ho	onic Cor olt Servi	rices	_ Hole Diam.: _ Rod Diam.: Hammer Type	8 ir 3-1/	/2"
Vert. Datum: <u>NAVD88</u> Stat Horiz. Datum: Offs	ition:set:		_	Equipme omments		rasom	10 150	напшегтур	e: <i>Autom</i>	latic
SOIL DESCRIPTION Refer to the report text for a proper under subsurface materials and drilling methon lines indicated below represent the apposetween material types, and the transit	understanding of the ods. The stratification proximate boundaries	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	1	TION RESIST. r Wt. & Drop: 1.	-	-
coarse sand; nonplastic to low			693	16						50/3"2
Very dense, brown, <i>Poorly Grad</i> (<i>GP</i>); wet; fine to coarse, subar subrounded gravel; fine to coar low plasticity fines.	ingular to	82.5		R-17		82				
Allluvium (Ha) Very dense, yellow-brown, <i>Poo</i>			000	1		84			1.	
Gravel with Silt and Sand and (GP-GM); wet; few subrounded	Cobbles d to subangular	84.7		17						50/2*4
cobbles; fine to coarse subroun subangular gravel; fine to coars plasticity fines.						86				
Alluvium (Ha) - Layer of poorly graded sand f	from 80 to 80.5			R-18		88				
Very dense, yellow-brown, Poo Gravel with Sand and Cobbles Graded Gravel with Cobbles (6	s (GP) to Poorly GP); wet; trace	90.0				90				~714,48
subangular cobbles; fine to coa subrounded to subangular grav coarse sand; trace nonplastic to	vel; fine to			18		92				8//):(:_
fines. Alluvium (Ha)				\frac{\rightarrow}{6} \leq						
Very dense, gray, Silty Gravel v Cobbles (GM) to Silty Sand wit Cobbles (SM); wet; few subrou	ith Gravel and unded cobbles;					94				
fine to coarse, subrounded to refine to coarse sand; nonplastic iron-oxide staining. Alluvium (Ha)	- 1			19		96				50/2*2
- Lense of poorly graded sand 88.7 feet. Very dense, gray-brown, Silty C	Gravel with Sand			R-20		98				
and Cobbles (GM); wet; few su cobbles; fine to coarse, subrour										
CONTINUED NEXT S LI * Sample Not Recovered	<u>LEGEND</u>	Vater L∉	evel A?	TD			0	20		60
HAN WIL.GDT								est Corridor Pro Stage 3		
Soil Core (as in Sonic Core Boring 2.0" O.D. Split Spoon Sample 2.0" O.D. Split Spoon Sample 1. Refer to KEY for explanation of sym 2. Groundwater level, if indicated above 3. USCS designation is based on visual	ve, is for the date specified	ed and m	may var	ıry.				BORING I		
ш 907					A	ugust :	2019	2	1-1-22425	-002
STER					S	HANI	NON & WIL	LSON, INC.	FIG. C	;-2

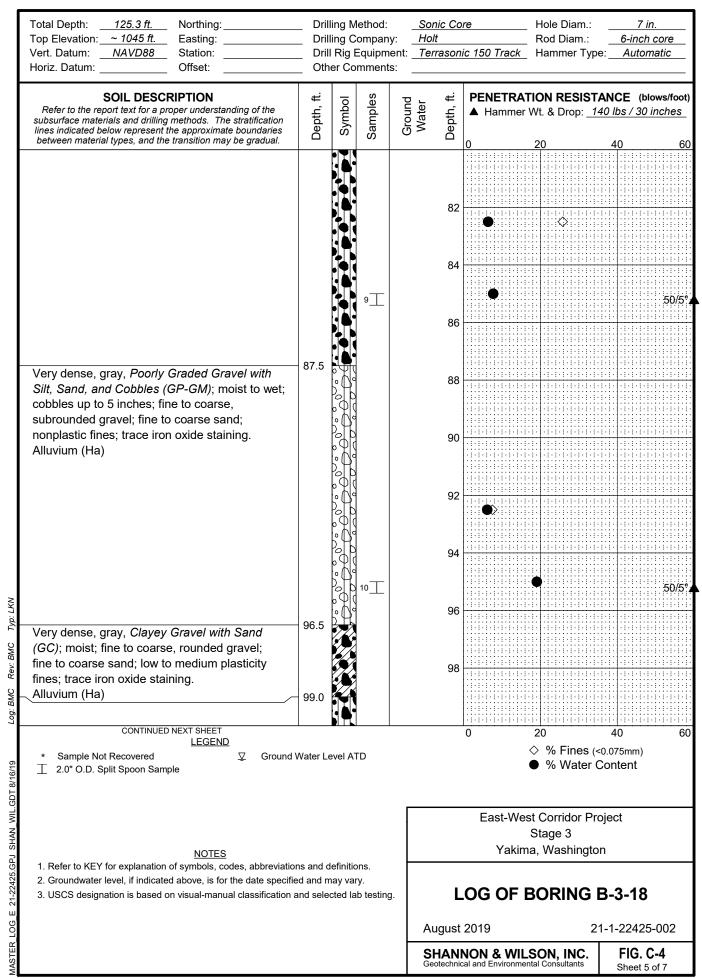
								-
Total Depth: <u>140 ft.</u> Northing:	Dri′	lling M	/lethod:	Sonic	: C <u>o</u>	re	_ Hole Diam.:	8 in
Top Elevation: ~ 1080 ft. Easting:		_	Compan				Rod Diam.:	3-1/2"
Vert. Datum: NAVD88 Station:			Equipm				Hammer Type	
Horiz. Datum: Offset:			mment		<u>. </u>			
	- '				_	ı		
SOIL DESCRIPTION	نے	_ '	S	7 0.	<u>:</u>	PENETRA	TION RESIST	ANCE (blows/foot)
Refer to the report text for a proper understanding of the	Depth, 1	Symbol	Samples	Ground	ر '			40 lbs / 30 inches
subsurface materials and drilling methods. The stratification	ğ	J yr	l E	∫ o i	Depth,		VV 0. 2	10
lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	占	S	Ss	(b) >	ا ك	_		
3, 7	 		201_0		$\overline{-}$	0	20	40 bu
fine to coarse sand; low plasticity fines; trace			1" 5		-			
iron-oxide staining; few diamict pockets.			>					
Alluvium (Ha)			>		ļ			
1		-	1 2 1	1	102			
			빌이		10-			
			1 ☆ く !		ļ			
			1		1			
			! S !	, ا	101	<u> </u>	- - - - <u> - - - - </u>	:
			<u> </u>	<u>'</u>	104		<u> </u>	
	105 (>		-			
Dense, yellow-brown, Poorly Graded Gravel	105.0	A ALLA	। दि ।		1			
with Silt and Cobbles (GP-GM) to Silty Gravel		(() 9	₂₁ }		- 1			
with Cobbles (GM); wet; few subrounded		POLD]	1	106			
, , , , , , , , , , , , , , , , , , , ,		6 XIV	」 く 「		1			
cobbles; fine to coarse, subrounded gravel; few		1º HT	1_, 5 !		-		[:::: :::::::::::::::::::::::::::::::::	
$_{ extstyle \cap}$ fine to coarse sand; low plasticity fines.	107.5	اللهم أد	12121					
Alluvium (Ha)			√ " > ↓	1	108		- - - - - - - - - -	· <u> </u>
- Three 0.2-foot-thick siltier lenses from 107 to			>		-			
\ 109.2 feet.			1 >		1			
Very dense, gray-brown, Silty Gravel with Sand		484	1 2		ļ		:::: ::::::::::::::::::::::::::::::::	
			1,,,	1	110			50/27
and Cobbles (GM); moist; few subrounded			(²² ≤					::::::::::::::::::::::::::::::::::::::
cobbles; fine to coarse, subrounded to			1 5		-			
subangular gravel; fine to coarse sand;			1 > +					
nonplastic to low plasticity fines.			<u> > </u>	ر ا	112		<u> </u>	
Alluvium (Ha)			S ₂₈	<u>'</u>	114			
- Layer wet silty sand from 110 to 110.5 feet.			1 <u>~</u>			•		
,			1		1			
			1 5	Ι,			i:i: :i:i:i:::::::	
			1 5	1	114			
			1 > 1		-			
			। हि					
			$ ^{23} ^{23} ^{1}$					50/4*/
- Pocket of orange-brown silty sand with		489		1	116			
- Pocket of orange-brown silty sand with			1		1			
- 1 conce of ordinge-brown silty sails with			1_ \$		-		[:::: :::::::::::::::::::::::::::::::::	
iron-oxide staining at 116.5 feet.			15 5 1		-			
iron-oxide staining at 116.5 feet.			۱ <u> ۲ </u> ۱	1	118		<u> </u>	
			<u> </u>					
			>		1			
			1		1			
CONTINUED NEXT SHEET LEGEND						0	20	40 60
	Mater I	oriol V.	TD				♦ % Fines (<	<0.075mm)
* Sample Not Recovered ♀ Ground ¹ ☐ Soil Core (as in Sonic Core Borings)	Water ∟	evel A i	טו				% Water 0	
Soli Cole (as in Soliic Cole Bollings)							•	
☐ 2.0" O.D. Split Spoon Sample								
						East-We	est Corridor Pro	oject
1							Stage 3	,
l						Vakin	na, Washingto	ın.
NOTES						I anıı	Ila, wasiiiigio	<u>и</u>
Refer to KEY for explanation of symbols, codes, abbreviation				[
Groundwater level, if indicated above, is for the date specific		-	-			22.25		- 4 4=
3. USCS designation is based on visual-manual classification a	and sele	ected la	ıb testinç	g.	L	OG OF	BORING I	B-1-17
1				l _{Aua}	ust	2019	2	1-1-22425-002
Soil Core (as in Sonic Core Borings) 2.0" O.D. Split Spoon Sample NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviation 2. Groundwater level, if indicated above, is for the date specific 3. USCS designation is based on visual-manual classification a				7,449				T T ZZ 120 002
				SH/	1NA	NON & WIL	LSON, INC.	FIG. C-2
}				Geote	echnic	al and Environme	ental Consultants	Chart 6 of 0

Total Depth: 140 ft. Northing: Top Elevation: ~ 1080 ft. Easting: Vert. Datum: NAVD88 Station: Horiz. Datum: Offset:	Drilling Method: Drilling Company: Drill Rig Equipment Other Comments:		Sonic Col Holt Servi Terrasoni	ices	Hole Diam.: Rod Diam.: Hammer Type	8 in. 3-1/2" : Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft. Symbol	Samples	Water Depth, ft.			ANCE (blows/foot) 0 lbs / 30 inches 40 60
Very dense, gray, Silty Gravel with Sand and Cobbles (GM) to Clayey Gravel with Sand and Cobbles (GC); moist to wet; few subrounded cobbles; fine to coarse, subrounded gravel; fine to coarse sand; low to medium plasticity fines. Alluvium (Ha)	120.0	74 X X X X X X X X X X X X X X X X X X X	122			50/6*2
Very dense, gray-brown, Silty Gravel with Sand and Cobbles (GM); moist to wet; few subrounded cobbles; fine to coarse, subrounded to rounded gravel; fine to coarse sand; nonplastic to low plasticty fines; few diamict pockets. Alluvium (Ha)	125.0	R-26	126 128			.50/312
- Layer of silty sand with gravel from 131.5 to 132 feet.		H-27	130 132 134			:50/2*4
Very dense, gray-brown, Poorly Graded Gravel with Sand (GP) to Poorly Graded Gravel with Silt and Sand (GP-GM); wet; fine to coase, subrounded to subangular gravel; fine to coarse sand; nonplastic fines. Alluvium (Ha)	135.0	17 H-28	136 138			50/3*2
CONTINUED NEXT SHEET LEGEND * Sample Not Recovered ∇ Ground	I Water Level ATC)		0	20 ♦ % Fines (< • % Water C	•
Soil Core (as in Sonic Core Borings) 2.0" O.D. Split Spoon Sample NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviatio 2. Groundwater level, if indicated above, is for the date specific 3. USCS designation is based on visual-manual classification and specification and specificatio	ied and may vary.	<i>'</i> .	L	Yakim	st Corridor Pro Stage 3 na, Washingtor	1
STER LOG E			August SHANI Geotechnic		SON, INC.	-1-22425-002 FIG. C-2

	Total Depth: 140 ft. Northing: Top Elevation: ~ 1080 ft. Easting: Vert. Datum: NAVD88 Station: Horiz. Datum: Offset:	_ Drill _ Drill	ing C Rig I	lethod: company Equipments	y: <u>Ho</u> ent: <u>Te</u>	onic Coi olt Servi errasoni	ces Rod Diam.	3-1/2"
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRATION RESIS A Hammer Wt. & Drop:	
	BOTTOM OF BORING COMPLETED 7/31/2017	140.0				142		
						144		
						146		
						148		
						150		
						152		
>						154		
EAS 1yp: LKI						156		
Log: BMC Rev:						158		
WIL.GDT 8/16/19	* Sample Not Recovered ♀ Ground N Soil Core (as in Sonic Core Borings) 2.0" O.D. Split Spoon Sample	Water Le	evel A	ΤD			0 20	40 60 s (<0.075mm) r Content
GPJ SHAN WIL.G	<u>NOTES</u> 1. Refer to KEY for explanation of symbols, codes, abbreviation	ns and d	ofinitio	one.			East-West Corridor I Stage 3 Yakima, Washing	
LOG_E 21-22425.G	Refer to REY for explanation of symbols, codes, abbreviation Groundwater level, if indicated above, is for the date specific USCS designation is based on visual-manual classification a	ed and m	ay vai	ry.			OG OF BORING	
ASTER_LO					-	August SHANN Beotechnic	2019 ION & WILSON, INC at and Environmental Consultants	21-1-22425-002 FIG. C-2

Total Depth: 40.2 ft. Northing: Top Elevation: ~ 1055 ft. Easting: Vert. Datum: NAVD88 Station: Horiz. Datum: Offset:				Holt	ic Col Servi asoni	-	
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	-	Water	Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: 140 lbs / 30 inches 0 20 40 60
Light brown, Sandy Silt (ML); moist; fine sand; nonplastic fines; trace organics and roots. Fill (Hf) Dark brown, Organic Soil (OL); moist; few fine to coarse, subrounded to subangular gravel; few fine to coarse sand; nonplastic fines; mostly wood fragments and debris. Fill (Hf) - Layer of silty fine sand from 5 to 5.6 feet.	0.9		F-3-1			2 4	
Very dense, gray-brown, Silty Sand (SM) to	10.0 11.0		R-3			10	74/11:
Dense to very dense, gray, <i>Poorly Graded Gravel with Cobbles(GP)</i> ; dry to moist; few subrounded cobbles; fine to coarse, subrounded gravel; few fine to coarse sand; trace nonplastic fines; iron-oxide staining below	15.0 16.0		R-4 & C	9/14/2018		14 16	
Sand (GP); wet; fine to coarse, subrounded CONTINUED NEXT SHEET LEGEND * Sample Not Recovered ☑ Soil Core (as in Sonic Core Borings) ☐ 2.0" O.D. Split Spoon Sample ☑ Bentonite ☑ Ground W	e-Ceme Chips/ Grout	nt Gro	ut S				0 20 40 60
NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviations and definitions. 2. Groundwater level, if indicated above, is for the date specified and may vary. 3. USCS designation is based on visual-manual classification and selected lab testing.							Yakima, Washington OG OF BORING B-2-17 2019 21-1-22425-002 NON & WILSON, INC. FIG. C-3 al and Environmental Consultants Sheet 1 of 3

Total Depth: <u>40.2 ft.</u> Northing:		illing Method:	_	Sonic Co		Hole Diam.:	6 in.	
Top Elevation: <u>~ 1055 ft.</u> Easting:		illing Company		Holt Serv		Rod Diam.:	3-1/2"	
Vert. Datum: <u>NAVD88</u> Station:		ill Rig Equipme		Terrason	ic 150	Hammer Type	e: <u>Automatic</u>	
Horiz. Datum: Offset:	_ Oth	her Comments	3: _					
COU DESCRIPTION	T.,			. :	SCHETDAT	"ON DEGICE	110F (1100-160-11)	
SOIL DESCRIPTION Refer to the report text for a proper understanding of the	, H	Symbol	pu	er 1, ff.			ANCE (blows/foot)	
subsurface materials and drilling methods. The stratification	Depth, 1	Symbol	Ground	Water Depth, f	▲ Hammer	Wt. & Drop: <u>14</u>	10 lbs / 30 inches	
lines indicated below represent the approximate boundaries	De	Sa Sy	ট :	≶ ē				
between material types, and the transition may be gradual.			- IXXI		0	20	40 60	
gravel; fine coarse sand; trace nonplastic fines.	20.0	<u> :</u> :						
∖Alluvium (Ha)		:: : : 4 \$					50/6"4	
Very dense, dark gray, Well Graded Sand with								
Silt and Gravel (SW-SM); wet; fine,	22.0			22				
subrounded to subangluar gravel; fine to		1512 673		×				
coarse sand; nonplastic fines.		11SII						
Alluvium (Ha)		1121 609						
		[• Od >		24				
Medium dense, gray, Poorly Graded Gravel		Po_d 2		_				
with Sand and Cobbles (GP); wet; few to little								
subangular cobbles; fine to coarse,		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				:: ::::::::::::::::::::::::::::::::::::		
subrounded to subangular gravel; fine to		[27] 5]		26				
coarse sand; trace nonplastic fines.								
Alluvium (Ha)		131 KM						
		11512509						
		[• Od " S		28				
		Po 0 SII						
		þζ] >						
		S S						
	30.0		E	30	(a			
Medium dense to very dense, gray, Well	00.5		1:3	·	· · · · · · · · · · · · · · · · · · ·			
Graded Gravel with Silt and Sand (GW-GM) to		6 \$	EB		A			
Well Graded Gravel with Sand (GW); wet; fine			i: E					
to coarse, subrounded gravel; fine to coarse		[S M•]	1:1	32		11		
sand; nonpastic fines.			E	·-		T		
Alluvium (Ha)			日					
Alluvium (ma)		! 	EB					
			EH	34	<u> </u>		i:i: <u>::::::::::::</u>	
			:	0 -				
							FO (OR	
1			li.H				50/2"2	
3		[] 	ĿΞ	36		1: -1:-1:-1:-1:-1:-1:-	1-11-1-1-1-1-1-1-1-1-	
·]		▶ ¶(>		· .				
2			ŀΞ					
787. X				38		1		
o C			[:H					
			ŀΉ					
10g: BINC								
			با			<u> </u>		
CONTINUED NEXT SHEET					0	20	40 60	
* Sample Not Recovered		LO Filton				◇ % Fines (<	0.075mm)	
		d Sand Filter				% Water C		
E Soil Core (as in Sonic Core Borings) Bentonite								
E								
Bentonite			_					
₹ Ground \	/Vater L	_evel in Well				t Corridor Pro	ject	
NA CONTRACTOR OF THE CONTRACTO						Stage 3		
NOTES					Yakim	a, Washingtoi	n	
1. Refer to KEY for explanation of symbols, codes, abbreviation	ns and	definitions.	\vdash					
2. Groundwater level, if indicated above, is for the date specifie								
3. USCS designation is based on visual-manual classification a			.	L	OG OF F	BORING E	R ₋ 2 ₋ 17	
N	iliu oois	ioleu lub locai.e	.	_	.000.		J-L- 1 i	
ப் வ						0.4		
Soil Core (as in Sonic Core Borings) 2.0" O.D. Split Spoon Sample Bentonite Bentonite Ground V NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviation 2. Groundwater level, if indicated above, is for the date specifie 3. USCS designation is based on visual-manual classification and the specifie are specified and the specifies and the specifies are specified and the specifies are specified and the specifies and the specifies are specified an	_				August 2019 21-1-22425-002			
Д				CHVNI	NON & WILL	SON INC	FIG. C-3	
هِ ا				Geotechnic	NON & WIL: al and Environmen	SON, INC.	FIG. 6-3	


Total Depth: 40.2 ft. Northing: Top Elevation: ~ 1055 ft. Easting: Vert. Datum: NAVD88 Station: Horiz. Datum: Offset:	-			r: <u>Hol</u> ent: <u>Ter</u>	nic Coi It Servi rrasoni	<i>ices</i> Rod Diam.: <u>3-1/2"</u>		
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: 140 lbs / 30 inches 0 20 40 60		
BOTTOM OF BORING COMPLETED 8/3/2017	40.2		8	(* · · · · ·)	42	50/2"7		
					44			
					46			
					48			
					50			
					52			
					54			
					56			
					58			
,						0 20 40 60		
* Sample Not Recovered Well Scr. Soil Core (as in Sonic Core Borings) Bentonite	Soil Core (as in Sonic Core Borings) Bentonite-Cement Grout 2.0" O.D. Split Spoon Sample Bentonite Chips/Pellets							
▼ Ground \ NOTES				East-West Corridor Project Stage 3 Yakima, Washington				
 Refer to KEY for explanation of symbols, codes, abbreviations and definitions. Groundwater level, if indicated above, is for the date specified and may vary. USCS designation is based on visual-manual classification and selected lab testing 					L	OG OF BORING B-2-17		
					ugust HANN	2019 21-1-22425-002 NON & WILSON, INC. al and Environmental Consultants Short 3 of 3		

Total Depth: 125.3 ft. Northing: Top Elevation: ~ 1045 ft. Easting: Vert. Datum: NAVD88 Station: Horiz. Datum: Offset:	_ Drill _ Drill	lling Co Il Rig E	/lethod: Compan Equipm omment	ny: nent: _	Sonic Cor Holt Terrasoni	re ic 150 Track	Hole Diam.: Rod Diam.: Hammer Type	7 in. 6-inch core 2: Automatic	
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	Water Depth, ft.			ANCE (blows/foot) 40 lbs / 30 inches 40 60	
Very dense, brown, Poorly Graded Gravel with Silt and Cobbles (GP-GM); moist to wet; subrounded cobbles up to 6 inches; fine to coarse, subrounded gravel; trace to few medium to coarse sand; nonplastic fines. Alluvium (Ha)				During Drilling I∕d	2 - 4 - 4 - 6 - 6 - 12 - 14 - 16 - 18 - 18 - 18 - 18 - 10 - 18 - 18 - 18	◆◆0	20 20	\$9/11.5°/2 50/5.5°/ 40 60	
* Sample Not Recovered \(\tilde{\Pi} \) Ground W \(\tilde{\Pi} \) 2.0" O.D. Split Spoon Sample * NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviations 2. Groundwater level, if indicated above, is for the date specified 3. USCS designation is based on visual-manual classification are properties.	aler Le	vei A i	U				% Water 0 st Corridor Pro Stage 3	Content	
1. Refer to KEY for explanation of symbols, codes, abbreviations 2. Groundwater level, if indicated above, is for the date specified 3. USCS designation is based on visual-manual classification ar	d and m	nay var	ıry.	ng.	4 6 8 10 12 14 16 18 0 20 40 ♦ % Fines (<0.075mm) • % Water Content East-West Corridor Project Stage 3 Yakima, Washington LOG OF BORING B-3-18 August 2019 21-1-22425-0				
ASTER LO								FIG. C-4	

Total Depth: 125.3 ft. Northing: Top Elevation: ~ 1045 ft. Easting: Vert. Datum: NAVD88 Station: Horiz. Datum: Offset:	Drill	lling C Il Rig E	Method: Company Equipmonts	y: <u>H</u> ient: <u>T</u>	Sonic Coi Holt Ferrasoni		Hole Diam.: Rod Diam.: Hammer Type	7 in. 6-inch core E: Automatic	
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.			ANCE (blows/foot) 40 lbs / 30 inches 40 60	
					22				
- Lens of Silty Gravel with up to 40% sand from 25 to 26 feet.			3		24	•		60/11.5?2	
						28			
Very dense, gray-brown, Silty Gravel with Sand and Cobbles (GM); wet; few cobbles up to 5 inches; fine to coarse, subrounded gravel; medium to coarse sand; nonplastic to low	30.0				30				
plasticity fines. Alluvium (Ha) - Lens of Silty Gravel with Sand from 32.5 to 33.5 feet.					34				
WC Typ: LKN			4		36	• 💠		50/5"	
DOG: BMC Rev. BMC Rev					38				
CONTINUED NEXT SHEET LEGEND * Sample Not Recovered ↓ Ground ↓ 2.0" O.D. Split Spoon Sample	Water Le	evel A	ΓD						
T 2.0" O.D. Split Spoon Sample NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviatio 2. Groundwater level, if indicated above, is for the date specific 3. USCS designation is based on visual-manual classification and the specific symbols.	-4	· mutai				9	Water Content Corridor Project Stage 3 a, Washington BORING B-3-18 21-1-22425-002		
1. Refer to KEY for explanation of symbols, codes, abbreviatio 2. Groundwater level, if indicated above, is for the date specific 3. USCS designation is based on visual-manual classification and processing the symbols.	ied and m	may var	ıry.						
STER_LO				-	August SHANN	NON & WILS al and Environment			

Total Depth: 125.3 ft. Northing: Top Elevation: ~ 1045 ft. Easting: Vert. Datum: NAVD88 Station: Horiz. Datum: Offset:	Dri Dri	lling Co Il Rig E	ethod: ompan Equipm mment	y: <u>Ho</u> ent: <u>Te</u>	onic Co olt errason		Hole Diam.: Rod Diam.: Hammer Type	7 in. 6-inch core e: Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.			ANCE (blows/foot) 40 lbs / 30 inches 40 60
Becomes mostly cobbles and coarse gravel from 43 to 45 feet.					42			
Very dense, brown, <i>Poorly Graded Gravel with Silt and Sand (GP-GM)</i> ; wet; fine to coarse, subrounded gravel; fine to coarse sand;	45.0		5		46	•		50/6*2
nonplastic fines. Alluvium (Ha)					48	• ◊		
Very dense, gray, Clayey Gravel with Sand and Cobbles (GC); wet; few cobbles up to 3 inches; fine to coarse, rounded gravel; medium to	51.0				50 52			
coarse sand; low plasticity fines. Alluvium (Ha) - Sand content increases from little to some below 52.5 feet.	- 55.0		+		54	•		
Very dense, gray-brown, Silty Gravel with Sand and Cobbles (GM); wet; few cobbles up to 3 inches; fine to coarse, rounded gravel; medium to coarse sand; nonplastic fines. Alluvium (Ha)			6		56	• \$		50/5.5*/
CONTINUED NEXT SHEET					58	0 2	20	40 60
LEGEND * Sample Not Recovered ♀ Ground ☐ 2.0" O.D. Split Spoon Sample	Water L	evel AT	TD			\$	% Fines (< % Water 0	
NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviation	ons and o	definitio	ns.			S	Corridor Pro tage 3 Washingto	
2. Groundwater level, if indicated above, is for the date specification 3. USCS designation is based on visual-manual classification		-	-		L August	.OG OF B		B-3-18 1-1-22425-002
AST LEK LO				-		NON & WILS cal and Environmenta		FIG. C-4

Total Depth: 125.3 ft. Northing: Top Elevation: ~ 1045 ft. Easting: Vert. Datum: NAVD88 Station: Horiz. Datum: Offset:	Drill Drill	lling Co Il Rig E	Method: Company Equipments	y: <u>Hol</u> lent: <u>Ter</u>		ore nic 150 Track	_ Hole Diam.: _ Rod Diam.: _ Hammer Ty	6-inch	core
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.	I	TION RESIS		
Very dense, gray-brown, Clayey Gravel with Sand and Cobbles (GC); wet; few cobbles up to 4 inches; fine to coarse, subrounded gravel; fine to coarse sand; low plasticity fines. Alluvium (Ha)	61.0				62				
Maximum cobble size increases to approximately 6 inches from 65 to 82 feet.			7_	ı I	66		•		50/5"2
					68	•	•		
					70				
Very dense, brown, Silty Gravel with Sand (GM); wet; cobbles up to 4 inches; fine to coarse, subrounded gravel; fine to corase sand; nonplastic fines; trace iron oxide staining. Alluvium (Ha) Lens of wet, silty sand from 73.5 to 75 feet.	72.5				74		•		
Typ: LKN			8		76	*	•		76/11"4
- Increase in fines content from few to little.					78				
CONTINUED NEXT SHEET LEGEND * Sample Not Recovered	d Water Le	evel AT	ГD			0	20 ♦ % Fines • % Water	40 (<0.075mm) r Content	60
NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviation 2. Groundwater level, if indicated above, is for the date specification 3. USCS designation is based on visual-manual classification							est Corridor P Stage 3 na, Washingt	-	
1. Refer to KEY for explanation of symbols, codes, abbreviation 2. Groundwater level, if indicated above, is for the date specification 3. USCS designation is based on visual-manual classification	ified and m	nay var	ry.	j.	 L	.OG OF	BORING	B-3-18	
ASTER LOG				-	ugust :	NON & WIL cal and Environme		21-1-22425 FIG. C	C-4

Total Depth: 125.3 ft. Northing: Top Elevation: ~1045 ft. Easting: Vert. Datum: NAVD88 Station: Horiz. Datum: Offset:	Dril Dril	ill Rig E	compan	ny: <u>-</u> nent: <u>-7</u>	Sonic Coi Holt Terrasoni	ore nic 150 Track	Hole Diam.: Rod Diam.: Hammer Typ	7 in. 6-inch core e: Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground	vvater Depth, ft.	I		ANCE (blows/foot) 40 lbs / 30 inches 40 60
Very dense, gray-brown, Silty Gravel with Sand and Cobbles (GM); wet; few cobbles up to 3"; fine to coarse, rounded gravel; medium to coarse sand; nonplastic fines. Alluvium (Ha)					102	• •		
Very dense, gray-brown, Clayey Gravel with Sand and Cobbles (GC); wet; cobbles up to 5"; fine to coarse rounded gravel; medium to coarse sand; low to medium plasticity fines; trace iron oxide staining.	105.0		11		106	• ◊		86/10"2
Alluvium (Ha) - Lens of silty gravel with sand from 108.3 to 109.1 feet. Very dense, gray-brown, Silty Gravel with Sand	110.0	0			108			
 and Cobbles (GM); moist to wet; cobbles up to 8"; fine to coarse rounded gravel; medium to coarse sand; non plastic to low plasticity fines. Alluvium (Ha) Lens of clayey gravel with sand and cobbles 					112			
from 112.5 to 113.8 feet.			12		114	•		50/5.51/2
OW - Lens of relatively dry clayey gravel with trace					118			
- Lens of relatively dry clayey gravel with trace iron oxide staining from 118.5 to 120 feet.						0	20	40 60
* Sample Not Recovered ♀ Ground * Sample Not Recovered ♀ Ground ↓ 2.0" O.D. Split Spoon Sample	nd Water Lo	evel AT	ÎD			-	♦ % Fines (♦ % Water (<0.075mm)
T 2.0" O.D. Split Spoon Sample NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviat 2. Groundwater level, if indicated above, is for the date speci 3. USCS designation is based on visual-manual classification	tions and	finitic	-20				est Corridor Pro Stage 3 na, Washingto	
Refer to KEY for explanation of symbols, codes, abbreviate Codes, abbreviate	ified and n	may var	ry.	g.	L	.OG OF	BORING	B-3-18
STER LOG				-	August SHANN Geotechnic	2019 NON & WIL		1-1-22425-002 FIG. C-4

Total Depth: 125.3 ft. Northing: Top Elevation: ~ 1045 ft. Easting: Vert. Datum: NAVD88 Station: Horiz. Datum: Offset:	_ Dril _ Dril	ling C I Rig I	lethod: ompan Equipm mment	y: <u>Ho</u> ent: <u>Te</u>			Hole Diam.: Rod Diam.: Hammer Typ	7 in. 6-inch core e: Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines indicated below represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	Samples	Ground Water	Depth, ft.			ANCE (blows/foot) 40 lbs / 30 inches 40 60
 Lens of relatively dry clayey gravel from 123.9 to 124.1 feet. 					122 124	•	X	
BOTTOM OF BORING COMPLETED 9/26/2018	125.3		13		126	•		50/3°2
					128			
					130			
					132			
77.					134 136			
LOG: BINC: Rev. BINC: IVP.					138			
LEGEND * Sample Not Recovered □ Ground \□	∐ Water Lo	evel A	ГD			0	20 > % Fines (- • % Water (
2.0" O.D. Split Spoon Sample 2.0" O.D. Split Spoon Sample NOTES 1. Refer to KEY for explanation of symbols, codes, abbreviation		lasa-tr					st Corridor Pr Stage 3 na, Washingto	
1. Refer to KEY for explanation of symbols, codes, abbreviation 2. Groundwater level, if indicated above, is for the date specifie 3. USCS designation is based on visual-manual classification a	ed and n	nay vai	ry.		L ugust		BORING	B-3-18 1-1-22425-002
ASTER LO				-		NON & WIL cal and Environme		FIG. C-4 Sheet 7 of 7

Total Depth: 100.1 ft. Northing: Top Elevation: ~ 1057.5 ft. Easting: Vert. Datum: Station: Horiz. Datum: Offset:	_	Drillir Drillir Drill F Othe	ng C Rig I	ompa Equip	any: men	Но	nic Col It Serv rra Sor	ices, Inc. Rod Diam.:
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples		Ground Water	Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: 140 lbs / 30 inches 0 20 40 60
Loose, brown, Silty Gravel with Sand and Cobbles (GM); dry; angular cobbles in Run 1; some angular to subrounded gravel; few wood fragments. Fill (Hf)				1-74			2	
Soft, dark brown, <i>Organic Soil with Gravel</i> (<i>OL/OH</i>); moist; subangular to subrounded gravel; fine to coarse sand; organic debris, wood, and charcoal; garbage debris including plastic, glass, and foil; slight hydrocarbon odor. Landfill (Hf)	5.0		0	R-2 1			6	
- Sand and angular gravel with silt between 11 and 11.5 feet.	13.5		8.7 13.7	2 2 2	· · · · · · · · · · · · · · · · · · ·		12	
Medium dense to dense, gray to red-brown, Poorly Graded Gravel with Sand and Cobbles (GP) to Poorly Graded Gravel with Silt, Sand, and Cobbles (GP-GM); moist to wet; little cobbles; subangular to rounded gravel. Fill (Hf)	10.0		0	R-4 s	During Drilling		14 16 18 18	684
Soil Core (as in Sonic Core Borings) Soli Core (as in Sonic Core Borings) Bento 2.0" O.D. Split Spoon Sample Bento Bento	onite-C onite C onite C	n and S Cement Chips/Po Grout	Gro ellets	ut S				0 20 40 60 \$\rightarrow\$ % Fines (<0.075mm) \$\rightarrow\$ % Water Content Plastic Limit Liquid Limit Natural Water Content
_	ations	iter Lev and de and ma	el in finitio y va	VWP ons. ry.		A	ugust	East-West Corridor Project Yakima County, Washington OF BORING EWC-B-01-14 2015 21-1-21630-004 NON & WILSON, INC. FIG. C-5 Ral and Environmental Consultants Ral and Environmental Consultants

ı	Total Depth: <u>100.1 ft.</u> Northing:		Drillir	ıg M	ethod:		Sonic	c Cor	re Hole D	iam.:	8 in.
ı	Top Elevation: ~ 1057.5 ft. Easting:			_	ompany	: <u> </u>	Holt .	Servi	ices, Inc. Rod Di	iam.:	
ı	Vert. Datum: Station:		Drill F		Equipme		Terra	Son	<u>nic</u> Hamm	er Type:	Automatic
ı	Horiz. Datum: Offset:		Othe	· Co	mments	: _					
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples	Ground	Water	Depth, ft.	PENETRATION RE A Hammer Wt. & Dr	rop: <u>140 lb</u> :	s / 30 inches
	Medium dense to dense, dark gray, Silty Sand with Gravel (SM); wet; little organic and garbage debris. Fill (Hf)	20.0		0	4			22	0 20	40	60
	Medium dense to dense, brown mottled with red-brown and dark gray, Well Graded Gravel with Sand and Cobbles (GW) grading to Poorly Graded Gravel with Silt, Sand, and Cobbles (GP-GM); wet;				R-5-			24	•		
	subrounded cobbles; angular to subrounded gravel; slight iron-oxide staining. Alluvium (Qa)	25.0		0	5			26	• .		50/3"
	- Siltier below 22 feet. Medium dense to dense, brown to gray-brown, Silty Gravel with Sand and Cobbles (GM); wet; subangular to rounded				R-6			28			
	gravel; trace clay; trace iron-oxide staining locally. Alluvium (Qa) - Iron-oxide staining between 28.5 and 30			0	6			30			3 0/4" .
	feet and below 38.5 feet Cleaner gravel layer from 30.5 to 32 feet.				R-7			32			
Д	- Cleaner gravel layer from 35 to 37.5 feet.				7			34			30/4"
Rev: JKP Typ: CL					R-8 			36			
Log: SAW Rev								38	•		
	CONTINUED NEXT SHEET <u>LEGEND</u>								0 20	40	
ASTER LOG E 21-21630.GPJ SHAN WIL.GDT 11/13/17	* Sample Not Recovered Well Soil Core (as in Sonic Core Borings) Bent 2.0" O.D. Split Spoon Sample Bent	tonite-0 tonite 0 tonite 0	n and S Cement Chips/Po Grout ater Lev	Grou ellets	ut :	_			● % W Plastic Limit ├ ─	ines (<0.075 Vater Conte →	ent quid Limit
SHAN C	<u>NOTES</u>		ater Lev						East-West Corrid Yakima County, V	-	
E 21-21630.GF	Refer to KEY for explanation of symbols, codes, abbrevion Groundwater level, if indicated above, is for the date specificated. USCS designation is based on visual-manual classificated.	ecified	and ma	y var	y.		L	OG	OF BORING	EWC-E	3-01-14
10G							Aug	gust :	2015	21-1-2	21630-004
ASTER						T	SH.	ANN	NON & WILSON, I	NC. I	FIG. C-5

ſ	Total Depth: Northing:		Drillir	na M	ethod:		Sonic C	Core		Hole Diam.:	8 in.	
	Top Elevation: <u>~ 1057.5 ft.</u> Easting:		Drillin	ng Co	ompany	: _	Holt Se	ervic	es, Inc.	Rod Diam.:		
Ì	Vert. Datum: Station:		Drill F		quipme		Terra S	Sonic	<u> </u>	Hammer Type	e: <i>Automa</i>	tic
L	Horiz. Datum: Offset:		Othe	r Coi	mments							
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples	Ground	Water Depth. ft.		PENETRATI		•	,
	Medium dense to dense, light tan to brown, Poorly Graded Gravel with Silt, Sand, and Cobbles (GP-GM); wet, moist below 44 feet; few subangular to subrounded cobbles; subangular to subrounded gravel; trace clay. Alluvium (Qa) - Light tan ash layer(?) around 42.5 feet.	40.0			R.9			12				50/5".
	Medium dense to dense, brown to gray-brown, <i>Silty Gravel with Sand and Cobbles (GM)</i> ; wet; subangular to subrounded cobbles; subangular to rounded gravel.	45.0			9		4	16	•			50/3"
	Alluvium (Qa)				R-10		4	18				
					10		5	50				50/3".
					R-11			52				
Typ: CLP	- Clayey gravel from 55 to 56.5 feet.				11 2			56	•			50/3",
Log: SAW Rev: JKP Tyl	 Poorly Graded Gravel with Sand layer from 56.5 to 57.5 feet. Light tan ash layer(?) from 57.5 to 58.5 feet. 				R-12		5	58				
⁵⁰	CONTINUED NEXT SHEET		.91		1511			0		<u> </u>	40	<u>////////</u> 60
ASTER_LOG_E_21-21630.GPJ_SHAN_WIL.GDT 11/13/17	* Sample Not Recovered Well Soil Core (as in Sonic Core Borings) Ben 2.0" O.D. Split Spoon Sample Ben Ben	II Screentonite-Contonite Contonite Contonite Cound Wa	Cement Chips/Pe Grout	Grou ellets	ıt				○ Plastic Lin	→ % Fines (< → % Water (→ mit	0.075mm) Content Liquid Lim	
3PJ SHAN	▼ Ground NOTES 1. Refer to KEY for explanation of symbols, codes, abbrev	ound Wa								Corridor Pro unty, Washir	-	
э E 21-21630.С	Coundwater level, if indicated above, is for the date special USCS designation is based on visual-manual classificated.	ecified a	and ma	y var	y.				OF BOR			
ŏ						L	Augus	st 2	015	2	1-1-21630-0	04
ASTER							SHAI	NN(ON & WILS	ON, INC.	FIG. C-	5

Total Depth: 100.1 ft. Northing: Top Elevation: ~ 1057.5 ft. Easting: Vert. Datum: Station: Horiz. Datum: Offset:		Drillir Drill F	ng Method: ng Compan Rig Equipm r Comment	ıy: <u>H</u> nent: <u>Te</u>		ces, Inc.	Hole Diam.: Rod Diam.: Hammer Type	8 in. Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm Samples	Ground	Depth, ft.			NCE (blows/foot) 0 lbs / 30 inches
- Plastic fines below 60 feet Strong iron-oxide staining below 60 feet.			13		62 64			50/2**
Medium dense to dense, brown to gray-brown, <i>Clayey Gravel with Sand (GC)</i> ; moist; subrounded to subangular gravel; slight iron-oxide staining. Alluvium (Qa)	67.0		R-14		66 68			
Medium dense to dense, gray, Silty Sand (SM); wet; trace fine gravel. Alluvium (Qa) Medium dense to dense, brown to	70.0 70.5		14		70			5012"
gray-brown with red-brown mottling, Silty Gravel with Sand and Cobbles (GM) to Clayey Gravel with Sand and Cobbles (GC); moist; subangular to subrounded gravel; trace clay; iron-oxide staining locally.			15 R-15		72 74	•	-	50/2%
Alluvium (Qa)			R-16		76			
- Iron oxide staining at 78 and 79.5 feet.					78			
* Sample Not Recovered	ntonite- ntonite (ntonite (Cement Chips/Pe	ellets				20	ontent É Liquid Limit
-	ound Wa	ater Lev	rel in VWP			Yakima C	est Corridor Pro County, Washin	gton
USCS designation is based on visual-manual classification				<i>A</i>	August	2015	Т	-1-21630-004
					SHANN Seotechnica	ION & WIL al and Environme	SON, INC. ental Consultants	FIG. C-5

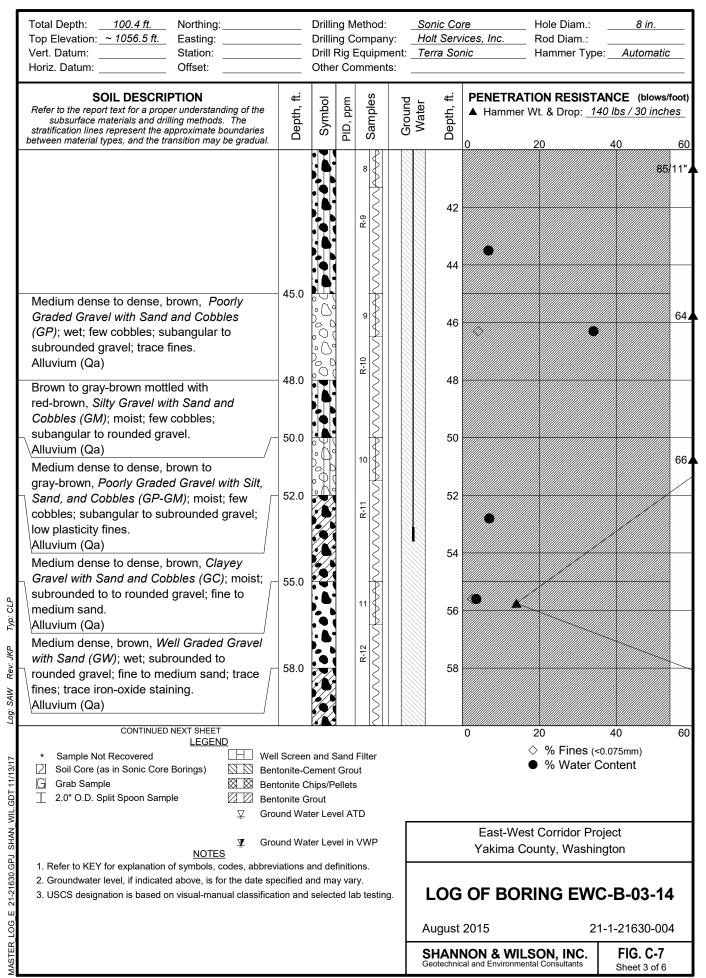
Total Depth: 100.1 ft. Northing: Top Elevation: ~ 1057.5 ft. Easting: Vert. Datum: Station: Horiz. Datum: Offset:		Drillir Drill F	ng C Rig E	ethod: ompan Equipm mment	y: H ent: To	onic Cor olt Servi erra Sor	ices, Inc. Rod Diam.:
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples	Ground Water	Depth, ft.	PENETRATION RESISTANCE (blows/foot) ▲ Hammer Wt. & Drop: 140 lbs / 30 inches 0 20 40 60
Medium dense to dense, brown mottled with red-brown and gray, Silty Gravel with Sand and Cobbles (GM); moist; few subrounded cobbles; subangular to rounded gravel; trace clay. Alluvium (Qa) - Strong iron-oxide staining from 82.5 to 84.5 feet. - Clayey gravel from 83 to 85 feet.	80.0			R-17 9J		82 84	50/4**
- Strong iron-oxide staining between 86.5 and 89 feet.				R-18		86 88	58/172
Medium dense to dense, brown, Poorly Graded Gravel with Clay and Cobbles (GP-GC); wet; some cobbles; angular to subrounded gravel. Alluvium (Qa) Medium dense to dense, brown to	89.0 91.0			18		90 92	50/3*,
gray-brown mottled with red-brown, Silty Gravel with Sand and Cobbles (GM); moist; few subangular to subrounded cobbles; subangular to rounded gravel. Alluvium (Qa) - Iron-oxide staining sand from 94 to 94.5				19 R-19		94	56/3*2
feet.				R-20		96 98	
Soil Core (as in Sonic Core Borings) Ben 2.0" O.D. Split Spoon Sample	tonite-0	n and S Cement Chips/Po	Grou	ut			0 20 40 60 \$\rightarrow\$ Fines (<0.075mm) \$\rightarrow\$ Water Content Plastic Limit Liquid Limit Natural Water Content
	und Wa und Wa riations ecified	ater Lev ater Lev and de and ma	rel in finition	VWP ons. ry.			East-West Corridor Project Yakima County, Washington OF BORING EWC-B-01-14
					-	August : SHANN Seotechnic	2015 21-1-21630-004 NON & WILSON, INC. al and Environmental Consultants Short 5 of 6

Total Depth: 100.1 ft. Northing: Top Elevation: ~ 1057.5 ft. Easting: Vert. Datum: Station: Horiz. Datum: Offset:		Drillir Drill I	ng C Rig E	lethod: ompan Equipm mment	y: Hent: Te		ices, Inc. F	Hole Diam.: Rod Diam.: Hammer Type:	8 in. Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples	Ground	Depth, ft.	▲ Hammer W		MCE (blows/foot) lbs / 30 inches
BOTTOM OF BORING COMPLETED 7/15/2014 Notes: a) Some blow counts are high due to the	100.1			20		102			5072"2
presence of gravel and cobbles, and do not reflect the relative density of the soil unit. b) Moisture content may be reduced by						104			
frictional heating generated during drilling. c) Boulders may be present in alluvium layers.						106			
 d) Drilled using 4- and 6-inch diameter sonic core casings. Recovered 4-inch diameter soil core. 						108			
						110 112			
						114			
						116			
						118			
Soil Core (as in Sonic Core Borings) Ber 2.0" O.D. Split Spoon Sample Ber	II Screer ntonite-C ntonite C ntonite G ound Wa	ement hips/P frout	Grou ellets	ut			◇ ● Plastic Lim	% Fines (<0. % Water Co it	ntent Liquid Limit
▼ Gro NOTES 1. Refer to KEY for explanation of symbols, codes, abbreven the second symbols and the second symbols. Some second symbols are second symbols and second symbols are second symbols. Some second symbols are second symbols are second symbols are second symbols. Some second symbols are second symbols are second symbols are second symbols. Some second symbols are second symbols are second symbols are second symbols. Some second symbols are second symbols are second symbols. Some second symbols are second symbols are second symbols. Some second symbols are second symbols are second symbols. Some symbols are second symbols are second symbols. Some second symbols are second symbols are second symbols. Some second symbols are second symbols are second symbols. Some second symbols are second symbols are second symbols are second symbols. Some second symbols are second symbols are second symbols are second symbols. Some second symbols are second symbols are second symbols are second symbols. Some second symbols are second symbols are second symbols are second symbols. Some second symbols are second symbols are second symbols. Some second symbols are second symbols are second symbols. Some symbols are second symbols are second symbols are second symbols. Some symbols are second symbols are second symbols are second symbols. Some symbols are second symbols are second symbols. Some symbols are second symbols are second symbols are second symbols. Some symbols are second symbols are second symbols are	ecified a	and de	finitic y var	ons. Ty.			Yakima Cou		-B-01-14
					-	August SHANI Beotechnic	2015 NON & WILSO tal and Environmental		1-21630-004 FIG. C-5

	Total Depth: 101.5 ft. Northing: Top Elevation: ~ 1052 ft. Easting: Vert. Datum: Station: Horiz. Datum: Offset:		Drillin Drillin Drill F Other	ig Co Rig E	ompai Equipn	ny: nent:	Soni Holt Terr	Serv	ices, Inc. Roc	e Diam.: _ I Diam.: _ nmer Type: _	8 in. Automatic
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples	Ground	Water	Depth, ft.	PENETRATION ▲ Hammer Wt. &	Drop: <u>140</u>	, ,
	Medium dense to dense, brown to dark brown, Silty Sand with Gravel (SM); moist; subangular to subrounded and broken gravel; organics including wood chips and grass. Fill (Hf)				F-1	9.25 9.25 9.25 9.25 9.25 9.25	\$ 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2			
	- Few cobbles below 5 feet.				1			6			350/4"∡
	Medium dense to dense, gray, Poorly Graded Gravel with Cobbles (GP); moist; few angular to subrounded cobbles; angular to rounded gravel; little sand; trace fines. Fill (Hf)	6.5			R-2		1 <u>T</u>	8	•		
	Medium dense to dense, brown, Silty Sand with Gravel (SM); moist; angular to subrounded gravel; fine to medium sand; little wood debris; trace organics. Fill (Hf)	11.0			R-3		9/2/2014	10	• .		50/3"4
	Medium dense to dense, brown, Silty Gravel with Sand (GM) to Poorly Graded Gravel with Silt, Sand, and Cobbles (GP-GM); moist; angular to rounded gravel. Fill (Hf)	15.0				Ž gui		14	.,		
. ord 1 yp. OEF	Medium dense, gray to gray-brown, Silty Sand (SM); wet; trace fine gravel; unit fining upward. Alluvium (Qa)	16.0		0	R-4	During Drilling		16			
LUG. CANN ILL	Medium dense, gray to gray-brown, <i>Poorly Graded Gravel with Sand (GP)</i> ; wet; subangular to rounded gravel; trace fines. Alluvium (Qa)		0000					18			
VIL.GD1 11/13/1/	☑ Soil Core (as in Sonic Core Borings) ☑ Bent ☑ 2.0" O.D. Split Spoon Sample ☑ ☑ Bent	tonite-0 tonite (tonite (n and S Cement Chips/Pe Grout	Grou ellets	ıt					5 Fines (<0.0 6 Water Cor	
GPJ SHAIN V			ater Lev						East-West Co Yakima County	-	
E 21-2103U.	Groundwater level, if indicated above, is for the date spe USCS designation is based on visual-manual classification.	ecified	and ma	y var	y.	ng.			OF BORIN		
YOU EN LOC						-			2015 NON & WILSON al and Environmental Col		-21630-004 FIG. C-6

Total Depth: 101.5 ft. Northing: Top Elevation: ~ 1052 ft. Easting: Vert. Datum: Station: Horiz. Datum: Offset:		Drillir Drill I	ng Co Rig E	ethod: ompan iquipm mment	y: _ <i></i> ent:	Sonic Co Holt Serv Terra Sor	ices, Inc.	_ Hole Diam.: _ Rod Diam.: _ Hammer Type:	8 in. Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples	Ground	vvatei Depth, ft.		TION RESISTAI r Wt. & Drop: <u>140</u>	, ,
- Strong iron-oxide staining and few cobbles below 18.5 feet. Loose, brown to gray-brown, Silty Sand (SM); wet; trace fine gravel. Alluvium (Qa) Medium dense to dense, gray to gray-brown, Poorly Graded Gravel with Silt, Sand, and Cobbles (GP-GM); moist to wet; angular to rounded gravel; low plasticity fines. Alluvium (Qa) Note: Blow counts for sample S-4 may be anomalous because sampler was advanced through slough. - Trace clay pockets and slight iron-oxide staining below 26 feet.	21.5		0	R-7 9 R-6 9 R-5 4 WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW		22 24 26 28 30			50/9"2
Medium dense to dense, brown to gray-brown, Silty Gravel with Sand and Cobbles (GM); moist to wet; little, subrounded cobbles; subangular to rounded gravel; low plasticity fines. Alluvium (Qa)	33.0			7		34		•	654
Medium dense to dense, brown, Silty Sand (SM); wet; trace gravel; low plasticity fines. Alluvium (Qa) Medium dense to dense, brown to gray-brown, Silty Gravel with Sand and Cobbles (GM); moist to wet; subrounded	36.5			R-8		38			
☐ Soil Core (as in Sonic Core Borings) Be ☐ 2.0" O.D. Split Spoon Sample Be ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐	ell Scree entonite (entonite (entonite (Cement Chips/P Grout	Grou ellets	t		N	0	20 ◇ % Fines (<0. ● % Water Co	,
	ound Wa eviations pecified	ater Lev and de and ma	rel in ' finitio y var	VWP ns. y.	g.	August	Yakima (OF BO 2015	est Corridor Proje County, Washing RING EWC 21- LSON, INC.	ton

Top Elevation: ~ 1052 ft. Easting:		Drilling Method: Drilling Company: Drill Rig Equipmer Other Comments:		ces, Inc.	Hole Diam.: _ Rod Diam.: _ Hammer Type: _	8 in. Automatic
SOIL DESCRIPTION Refer to the report text for a proper understand subsurface materials and drilling methods. stratification lines represent the approximate be between material types, and the transition may be	. The oundaries	Symbol PID, ppm Samples	Ground Water Depth, ft.		Vt. & Drop: <u>140</u>	NCE (blows/foot) Ibs / 30 inches
cobbles; subangular to rounded grave plasticity fines. Alluvium (Qa) - Light tan ash layer(?) from about 3' 39 feet Light tan ash layer(?) from about 4' 43.5 feet.	37.5 to	8.8	42			72,
Medium dense to dense, gray-brown brown, <i>Poorly Graded Sand with Silt Gravel (SP-SM)</i> ; wet; subrounded gradow plasticity fines. Alluvium (Qa)	t and ravel;		44			50/3*/
Medium dense to dense, brown, Poo Graded Gravel with Silt, Sand, and C (GP-GM); moist; 3- to 5-inch, subrou cobbles; subangular to subrounded g Alluvium (Qa)	Cobbles 47.5 unded gravel.	[1]: [1] [2] [2]	48			
Medium dense to dense, brown, Silty (SM); wet; trace fine gravel; fine to m sand. Alluvium (Qa) Loose to dense, brown to gray-brown	nedium n, <i>Silty</i>	10	50 52			50/4"
Gravel with Sand and Cobbles (GM) little subrounded cobbles; subrounde rounded gravel. Alluvium (Qa) - Strong iron-oxide staining at 54.5 fe	ed to	R-11	54	•		
Typ: CLP		7.12 11 11	56	*		
Medium dense to dense, brown to gray-brown, <i>Poorly Graded Gravel w</i> Sand, and Cobbles (GP-GM); moist CONTINUED NEXT SHEET			58	0	20	40 60
LEGEND	Well Scree Bentonite C Bentonite C	en and Sand Filter Cement Grout Chips/Pellets Grout ater Level ATD			> % Fines (<0.0	075mm)
Soil Core (as in Sonic Core Borings) 2.0" O.D. Split Spoon Sample NOTES 1. Refer to KEY for explanation of symbols, co 2. Groundwater level, if indicated above, is for 3. USCS designation is based on visual-manu	▼ Ground Wass codes, abbreviations r the date specified	ater Level in VWP and definitions. and may vary.	1.06	Yakima Co	t Corridor Proje ounty, Washingt	ton
3. USCS designation is based on visual-manu 90	ial classification and	a selected lab testing.	August 2			1-21630-004
STER			SHANN	ION & WILS	SON, INC.	FIG. C-6


	Total Depth: 101.5 ft. Northing: Top Elevation: ~ 1052 ft. Easting: Vert. Datum: Station: Horiz. Datum: Offset:		Drillir Drill f	ng Co Rig E	lethod: ompany Equipme mments	/: _ <i></i>	Sonic Co Holt Serv Terra Sor	ices, Inc.	Hole Diam.: Rod Diam.: Hammer Type:	8 in. Automatic
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples	Ground	vvater Depth, ft.		TION RESISTAL Wt. & Drop: _140	NCE (blows/foot) 0 lbs / 30 inches
	angular to rounded gravel; low plasticity fines. Alluvium (Qa) - Light tan ash layer(?) from about 60 to 63 feet.				R-13		62	9	25	97/11"
	 Gray, Silty Gravel layer from 63 to 63.5 feet. Strong iron-oxide staining below 63.5 feet. 	- 65.0			4		64	•		
	Medium dense to dense, brown, Silty Sand with Gravel (SM); wet; fine, subrounded gravel. Alluvium (Qa)	65.5	1.1.1		13		66			68/8"
}	Brown, Silty Gravel with Sand and Cobbles (GM) to Clayey Gravel with Sand and Cobbles (GC); moist; few cobbles; angular to rounded gravel; slight iron-oxide staining in sandy silt matrix.	68.0			R-14		68	•		
	Alluvium (Qa) Medium dense to dense, brown mottled with red-brown and gray, Well Graded Gravel with Silt and Sand (GW-GM); moist;	72.5			R-15		72			\$D/5"
	subangular to rounded gravel; trace clay pockets. Alluvium (Qa) - Light tan ash layer(?) around 70 feet. Medium dense to dense, brown mottled	, 2.5			Ä		74			
JKP Typ: CLP	with gray and red-brown, Silty Gravel with Sand and Cobbles (GM); moist; angular to subrounded gravel; trace clay pockets. Alluvium (Qa) - Higher plasticity fines below 74 feet.	76.0			R-16		76			58/9"
Log: SAW Rev: JKP	Medium dense to dense, gray-brown, Silty Sand with Gravel (SM); moist; little subangular to rounded gravel; low to medium plasticity fines.	78.0					78			
STER LOG E 21-21630.GPJ SHAN WIL.GDT 11/13/17	☑ Soil Core (as in Sonic Core Borings) ☑ Ben ☑ 2.0" O.D. Split Spoon Sample ☑ Ben ☑ Ben ☑ Ben	ell Screen ntonite-C ntonite C ntonite G	Cement Chips/Po Grout	Grou	ut ;			0	20 ♦ % Fines (<0. ■ % Water Co	
GPJ SHAN WI		ound Wa	ater Lev	/el in '	VWP				st Corridor Projounty, Washing	
э Е 21-21630.	Groundwater level, if indicated above, is for the date spans. USCS designation is based on visual-manual classification.	pecified a	and ma	y var	y.				RING EWC	
STER_LOC							August SHANI Costochnic	2015 NON & WIL		FIG. C-6

Total Depth: 101.5 ft. Northing: Top Elevation: ~ 1052 ft. Easting: Vert. Datum: Station: Horiz. Datum: Offset:		Drillir Drill F	ng Metl ng Com Rig Equ r Comr	npany uipme	: Ho	onic Cor olt Servi erra Son	ces, Inc.	Hole Diam.: Rod Diam.: Hammer Type	8 in. e: Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples	Ground Water	Depth, ft.			ANCE (blows/foot) 40 lbs / 30 inches
Alluvium (Qa) Medium dense to dense, brown, Silty Gravel with Sand and Cobbles (GM) to Clayey Gravel with Sand and Cobbles (GC); moist; few subrounded cobbles; angular to rounded gravel; iron-oxide			R-17			82			
staining locally. Alluvium (Qa) - Baked zone from drill action from 82.5 to 83 feet Clayey gravel from 85 to 88 feet.			17			84 86	•		50/3"2
- Strong iron-oxide staining from 88.5 to 90 feet.			R-18			88			
Brown, <i>Poorly Graded Gravel with Silt and Sand (GP-GM)</i> ; wet; subrounded gravel; iron-oxide staining below 93 feet. Alluvium (Qa)	90.0		R-19			90			50/3**
- Iron-oxide staining below 93.5.			ı K			94			
Medium dense, brown to gray-brown with red-brown mottling; Silty Gravel with Sand and Cobbles (GM); moist; subangular to subrounded gravel; interbedded with poorly	95.5		R-20			96			
graded gravel. Alluvium (Qa)			~ ~			98			
☐ Soil Core (as in Sonic Core Borings) ☐ Ben ☐ 2.0" O.D. Split Spoon Sample ☐ ☐ ☐ Ben ☐ ☐ ☐ ☐ Ben	ntonite-(ntonite (ntonite (Cement Chips/Po	ellets	er			0	20 ◇ % Fines (< ● % Water 0	
▼ Gro <u>NOTES</u> 1. Refer to KEY for explanation of symbols, codes, abbrev	/iations	and de						st Corridor Pro ounty, Washir	-
Groundwater level, if indicated above, is for the date sp S. USCS designation is based on visual-manual classification.				esting.		LOG			C-B-02-14 1-1-21630-004
	-		ION & WIL	SON, INC.	FIG. C-6				

Total Depth: 101.5 ft. Northing: Top Elevation: ~ 1052 ft. Easting: Vert. Datum: Station: Horiz. Datum: Offset:		Drillir Drill I	ng C Rig E	lethod: ompang Equipmo mments	y: Ho ent: Te		ices, Inc.	Hole Diam.: Rod Diam.: Hammer Type	8 in. Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples	Ground Water	Depth, ft.			NCE (blows/foot) 0 lbs / 30 inches 40 60
BOTTOM OF BORING COMPLETED 6/25/2014	- 101.5			20		102	A		
Notes: a) Some blow counts are high due to the presence of gravel and cobbles, and do not reflect the relative density of the soil						104			
unit. b) Moisture content may be reduced by frictional heating generated during drilling.						106			
c) Boulders may be present in alluvium layers.						108			
						110			
						112			
						114			
						116			
						118			
☑ Soil Core (as in Sonic Core Borings) ☑ ☑ Ben ☑ 2.0" O.D. Split Spoon Sample ☑ ☑ Ben ☑ ☑ Ben ☑ ☑ Ben	Il Screer atonite-C atonite C atonite G und War	ement hips/P rout	Grou ellets	ut			0	20	
 	ecified a	and de and ma	finition	ons. Ty.		LOG	Yakima Co	et Corridor Pro punty, Washin	gton
					-	ugust SHANN	2015 NON & WIL	ı	-1-21630-004 FIG. C-6

Total Depth: 100.4 ft. Northing: Top Elevation: ~ 1056.5 ft. Easting: Vert. Datum: Station: Horiz. Datum: Offset:		Drillir Drill F	ng Co Rig E	lethod Compai Equiprommen	iny: men	_/	Sonic Co Holt Sen Terra So	vices, Inc.	Rod	Diam.: _ Diam.: _ mer Type: _	8 in. Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples		Ground	water Depth, ft.		_	Drop: <u>140</u>	NCE (blows/foot) Ibs / 30 inches 40 60
Brown, Silty Sand with Gravel (SM); moist; angular to subrounded and broken gravel; some wood chips. Fill (Hf) Brown, Silty Gravel with Sand and Cobbles (GM); moist; few cobbles; angular to rounded gravel; little wood chips; trace roots. Fill (Hf) - Sandy silt with gravel below 5 feet. Gray-brown, Well Graded Gravel with Sand and Cobbles (GW); moist; subangular to rounded gravel; trace fines.	1.0			1 P.1 P.1	*	7	2 4	•	20		40
Medium dense, brown to red-brown, Poorly Graded Gravel with Silt, Sand, and Cobbles (GP-GM); wet; subangular to subrounded gravel; slight iron-oxide staining from 11.5 to 13 feet. Alluvium (Qa) - Silty gravel with sand from 10 to 12 feet.	8.5		0	R-3	During Drilling ∤		10 124/2014 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1			•	
- Mostly fine gravel and coarse sand from 15 to 16.5 feet. - Slight iron-oxide staining below 17 feet.				R4 E	-		16	•			50/5"』
CONTINUED NEXT SHEET LEGEND * Comple Not Possylvand	ntonite-(ntonite (ntonite (ound Wa	en and S -Cement Chips/Pe Grout /ater Lev	t Grou Pellets vel AT	ut s TD					• %	Fines (<0.0 Water Con	ect
Salfiple Not Recovered Soil Core (as in Sonic Core Borings) Ben Grab Sample 2.0" O.D. Split Spoon Sample Ben Gro Roro Toro NOTES 1. Refer to KEY for explanation of symbols, codes, abbrev 2. Groundwater level, if indicated above, is for the date sp 3. USCS designation is based on visual-manual classifications Soil Core (as in Sonic Core Borings) Ben Gro NOTES 1. Refer to KEY for explanation of symbols, codes, abbrev 2. Groundwater level, if indicated above, is for the date sp 3. USCS designation is based on visual-manual classifications	pecified	d and ma	ay var	ry.	ng.		August			21-1	-B-03-14 1-21630-004 FIG. C-7

	Total Depth: 100.4 ft. Northing: Top Elevation: ~ 1056.5 ft. Easting: Vert. Datum: Station: Horiz. Datum: Offset:		Drillir Drill F	ng C Rig E	lethod: company Equipme mments	/: <u>/</u> ent:	Sonic Co Holt Serv Terra So	vices, Inc.	Hole Diam.: Rod Diam.: Hammer Typ	8 ir e:Auton	
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.		PID, ppm	Samples	Ground	vvater Depth, ft.		TION RESIST. Wt. & Drop: 1		,
	Medium dense to dense, gray to gray-brown, Well Graded Gravel (GW); wet; few cobbles; subangular to subrounded gravel; trace sand and fines. Alluvium (Qa)	20.0			R-5 P		22	•			
	Medium dense to dense, brown, <i>Silty Gravel with Sand and Cobbles (GM)</i> ; moist to wet; few subrounded cobbles; subangular to subrounded gravel.	23.5			5		24				
	Alluvium (Qa) - Light tan ash layer(?) from about 26.5 to 27.5 feet.				R-6		26				
	Medium dense to dense, gray to gray-brown, <i>Poorly Graded Sand (SP)</i> ; wet; trace fine gravel. Alluvium (Qa)	30.0			6		30				67.
	Medium dense to dense, brown, <i>Poorly Graded Gravel with Sand (GP)</i> ; wet; subangular to rounded gravel; trace fines. Alluvium (Qa) - Siltier below 33.5 feet.	34.5			F.7		34	•			
<p clp<="" p="" typ:=""></p>	Medium dense to dense, brown to gray-brown and red-brown, <i>Silty Gravel with Sand and Cobbles (GM)</i> ; moist to wet; subangular to subrounded gravel; trace clay pockets.				7		36				5 0/5" 4
Log: SAW Rev: JKP	Alluvium (Qa) - Light tan ash layer(?) from about 36 to 37.5 feet Iron-oxide staining below 37.5 feet.				8-8		38	•			
	☑ Soil Core (as in Sonic Core Borings) ☑ Ben ☑ Grab Sample ☑ Ben ☑ 2.0" O.D. Split Spoon Sample ☑ Ben	ntonite-C ntonite C ntonite C	en and S Cement Chips/Pe Grout ater Lev	Grou ellets	ut S			0	20 ♦ % Fines (< • % Water (,	60
ASTER_LOG_E 21-21630.GPJ SHAN_WIL.GDT 11/13/17	·	ound Wa	ater Lev	el in	VWP			Yakima Co	st Corridor Pro ounty, Washii	ngton	
LOG E 21-21	3. USCS designation is based on visual-manual classificat	ion and	d selecte	ed la	b testing.		LOG August		RING EW	C-B-03 1-1-21630	
STER							SHAN Geotechni	NON & WIL	SON, INC.	FIG. C	>-7

Total Depth: <u>100.4 ft.</u> Northing:			_	ethod:		Sonic Core Hole Diam.: 8 in.				
Top Elevation: <u>~ 1056.5 ft.</u> Easting:		Drillin		ompany		Holt Servi		Rod Diam.:	Automo	41-
Vert. Datum: Station: Offset:			_	:quipme nments		Terra Son	IIC	Hammer Type	e: <u>Automa</u>	tic
	_									
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples	Ground Water	Depth, ft.		FION RESISTA Wt. & Drop: 12	•	
Medium dense to dense, brown, <i>Clayey Gravel with Sand and Cobbles (GC)</i> ; moist; subrounded to rounded gravel. Alluvium (Qa)	60.0			12		62	U	20	40	350/ 4 "Z
Medium dense to dense, gray to gray-brown, <i>Silty Gravel with Sand and Cobbles (GM)</i> ; moist; subangular to subrounded gravel; low plasticity fines. Alluvium (Qa)				R-13		64	•			
, (S2)				13		66				5 0/4" 4
Baked zone from drilling friction from 67 to 68.5 feet. Medium dense to dense, brown to	68.5			R-14		68				
red-brown, Clayey Gravel with Sand and Cobbles (GC); moist; subrounded to angular cobbles; angular to rounded gravel. Alluvium (Qa) - Slight iron-oxide staining below 70 feet.				14		70				5 0/5" 4
				R-15		72 74	•			
Medium dense to dense, brown with red-brown and gray mottling, <i>Poorly</i>	76.0			15		76				50/5"4
Graded Gravel with Silt, Sand, and Cobbles (GP-GM); moist; few cobbles; subangular to subrounded gravel; iron-oxide staining. Alluvium (Qa) - Silty gravel from 77 to 79 feet.				R-16		78	•			
continued next sheet		Pala					_			<u></u>
LEGEND * Sample Not Recovered	ntonite-C ntonite C ntonite C	en and S Cement Chips/Pe Grout ater Lev	Grou ellets	ıt			0	20 ♦ % Fines (< ■ % Water C		60
▼ Gro NOTES 1. Refer to KEY for explanation of symbols, codes, abbrev		ater Lev						st Corridor Pro ounty, Washir	-	
2. Groundwater level, if indicated above, is for the date sp 3. USCS designation is based on visual-manual classificat	ecified	and ma	ıy vary	y.		LOG	OF BOF	RING EW	C-B-03-	14
						August	2015	2	1-1-21630-0)04
1						SHANN Geotechnica	FIG. C-	7		

Total Depth: <u>100.4 ft.</u> Northing:		Drillir	ng M	ethod:	S	Sonic Co	re	Hole	e Diam.:	8	in.
Top Elevation: <u>~ 1056.5 ft.</u> Easting:				ompany			ices, Inc.		Diam.:		**
Vert. Datum: Station: Offset:				quipments		erra Sor	nic	_ Han	nmer Type	: <u>Auto</u>	matic
110112. Batain 55		1		111110	,. <u> </u>						
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The	Depth, ft.	Symbol	PID, ppm	Samples	Ground	Depth, ft.	PENETR. ▲ Hamme				
stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	ď	Ś	ll li		ტ >	De	0	20		40	60
 Iron-oxide staining from 76 to 77 feet and below 79 feet. 	04.0			16							50/4"2
Medium dense to dense, gray-brown to	81.0			$ \xi $							
brown, Silty Gravel with Sand and Cobbles (GM) to Clayey Gravel with Sand and				R-17		82					
Cobbles (GC); moist; little, subrounded cobbles; angular to rounded gravel;											
iron-oxide staining locally.						84					
Alluvium (Qa) - Slight iron-oxide staining below 84 feet.				17							50/3"/
- Poorly graded gravel with sand from 85 to 87 feet.				$ \xi $		86					
				R-18		88					
				18		90					50/2*
				3							0012
						00					
				R-19		92					
				$ \xi $		94					
Medium dense to dense, gray-brown,	95.0			19							5 0/5" 4
G (GP-GM); moist; subangular to rounded						96					
gravei; low plasticity fines; slight iron-oxide		000		R-20							
staining. Alluvium (Qa) - Silty gravel below 96 feet.				ا کا ا		98					
- Silty gravel below 90 leet.		000									
CONTINUED NEXT SHEET		1° H°					<i>0</i>	<u>/////////////////////////////////////</u>		40	60
<u>LEGEND</u>	II Seroe	n and S	Sand I	Eiltor			O .		Fines (<		00
Sample Not Recovered Well	ntonite-(Cement	Grou						Water C		
☐ Grab Sample	ntonite (ntonite (Chips/Po Grout	ellets								
∑ Gro	ound Wa	ater Lev	el AT	D			East M	loot Ca	rridor Pro	vicet	
₹ ₩ N <u>OTES</u>	ound Wa	ater Lev	el in \	VWP					, Washin	-	
1. Refer to KEY for explanation of symbols, codes, abbreven 2. Groundwater level, if indicated above, is for the date sp											
3. USCS designation is based on visual-manual classifica			-			LOG	OF BC	RIN	G EW	C-B-03	3-14
ଅ ଓ					,	August	2015		21	-1-2163	0-004
Soil Core (as in Sonic Core Borings) Soil Core (as in Sonic Core Borings) Grab Sample 2.0" O.D. Split Spoon Sample Part of Gro NOTES 1. Refer to KEY for explanation of symbols, codes, abbreved to the company of						SHANI	NON & W	ILSON	I, INC.	FIG.	C-7

Total Depth: 100.4 ft. Northing: Top Elevation: ~ 1056.5 ft. Easting: Vert. Datum: Station: Horiz. Datum: Offset:		Drillir Drill I	ng C Rig I	lethod: compan Equipm mment	ny: <u>H</u> nent: <u>T</u>	onic Col lolt Serv erra Sor	ices, Inc.	Hole Diam.: Rod Diam.: Hammer Type:	8 in. Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples	Ground				NCE (blows/foot) 0 lbs / 30 inches 40 60
BOTTOM OF BORING COMPLETED 6/30/2014 Notes:	100.4	1000		20		102			50/5"4
a) Some blow counts are high due to the presence of gravel and cobbles, and do not reflect the relative density of the soil unit.						104			
b) Moisture content may be reduced by frictional heating generated during drilling. c) Boulders may be present in alluvium						106			
layers.						108			
						110			
						112			
						114			
						116			
)						110	0	20	40 60
Soil Core (as in Sonic Core Borings) Grab Sample 2.0" O.D. Split Spoon Sample	I Screer tonite-C tonite C tonite G und Wa	Cement Chips/P Grout	Gro	ut S			•	⇒ % Fines (<0. ■ % Water Co	.075mm)
▼ Gro NOTES 1. Refer to KEY for explanation of symbols, codes, abbreven the second symbols and the second symbols. 2. Groundwater level, if indicated above, is for the date sport of the second symbols. 3. USCS designation is based on visual-manual classification.	ecified a	and de	finition	ons. ry.	g.	LOG	Yakima Co	t Corridor Projounty, Washing	gton
						August		21-	-1-21630-004 FIG. C-7

Total Depth: 100.3 ft. Northing: Top Elevation: ~ 1047 ft. Easting: Vert. Datum: Station: Horiz. Datum: Offset:		Drillir Drillir Drill F Othe	ng Co Rig E	ompa Equipr	ny: nent:	Но	nic Cor It Servi rra Sor	ices, Inc.	Hole Diam.: Rod Diam.: Hammer Type	8 in.			
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples	Ground	Water	Depth, ft.			ANCE (blows/foot) 0 lbs / 30 inches			
Brown, Silty Gravel with Sand and Cobbles (GM); moist; subrounded and angular cobbles; angular to rounded gravel. Fill (Hf) Red-brown, Poorly Graded Gravel with Silt and Sand (GP-GM); moist; angular to rounded gravel. Alluvium (Qa) Dense, gray to brown, Well Graded Gravel with Silt and Sand (GW-GM); moist; angular to rounded gravel. Alluvium (Qa) Few subrounded and angular cobbles at	- 1.0			1 1 N			2 4 6	• .					
3 feet. Dense, brown to gray-brown, Poorly Graded Gravel with Silt, Sand, and Cobbles (GP-GM) to Silty Gravel with Sand and Cobbles (GM); moist; subangular to subrounded gravel. Alluvium (Qa) Gradational contact at 11 feet. Medium dense to dense, brown, Silty Gravel with Sand and Cobbles (GM); wet; subangular to subrounded gravel. Alluvium (Qa)	- 7.5		0	R-3 c R-2 WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	Drilling ∤☐	4/7/PMAF [2]	10 10 12 12			50/5"4			
Medium dense to dense, brown, Poorly Graded Gravel with Silt, Sand, and Cobbles (GP-GM); wet; subangular to rounded gravel; low plasticity fines. Alluvium (Qa)	15.0			8.4 s	During Drill		16 18	•		70/8"4			
☑ Soil Core (as in Sonic Core Borings) ☑ Sen ☐ 2.0" O.D. Split Spoon Sample ☑ Ø Ben ☑ Ø Ben ☑ Ø Ben	tonite-0 tonite 0 tonite 0	en and S Cement Chips/Po Grout ater Lev	Grou ellets	ıt	, K2	medal —	•	0	20	,			
	und Wa iations ecified	ater Lev and de and ma	el in ' finitio y var	VWP ns. y.	ng.	Αι	ugust	Yakima C OF BOI 2015	Т	gton C-B-04-14 -1-21630-004			
								SHANNON & WILSON, INC. Geotechnical and Environmental Consultants Sheet 1 of 6					

Total Depth: 100.3 ft. Northing: Top Elevation: ~ 1047 ft. Easting: Vert. Datum: Station: Horiz. Datum: Offset:		Drillir Drill I	ng Methong Comp Rig Equi r Comm	any: pment:	Sonic Co Holt Serv Terra Son	rices, Inc.	Hole Diam.: Rod Diam.: Hammer Type:	8 in. Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm Samples	Ground	Water Depth, ft.		TION RESISTA Wt. & Drop: 140	NCE (blows/foot) 0 lbs / 30 inches 40 60
Medium dense to dense, brown mottled with red-brown, Poorly Graded Gravel with Sand and Cobbles (GP) to Poorly Graded Gravel with Silt, Sand, and Cobbles (GP-GM); wet; subangular to subrounded gravel. Alluvium (Qa)	20.0		R-5		22	< •		85.
Medium dense to dense, brown, Well Graded Gravel with Sand and Cobbles (GW) to Well Graded Gravel with Silt, Sand, and Cobbles (GW-GM); wet; angular to subrounded gravel. Alluvium (Qa)	25.0		R-6		26			50/5"4
Light tan ash layer(?) at about 28 feet. Medium dense to dense, brown to gray, Poorly Graded Gravel with Silt, Sand, and	30.0		6 <	>	30			50/5*4
Cobbles (GP-GM); moist; few cobbles; subangular to rounded gravel, mostly fine gravel; low plasticity fines; iron-oxide staining. Alluvium (Qa)			R-7		32			
Baked zone from drilling friction from 35 to 36 feet. Medium dense to dense, brown, <i>Well</i>	36.5		7 (36			\$0/5"2
Graded to Poorly Graded Gravel with Silt, Sand, and Cobbles (GW-GM/GP-GM); moist to wet; angular to rounded gravel; slight iron-oxide staining. Alluvium (Qa)	39.0		8-8		38			
Soil Core (as in Sonic Core Borings) Ber 2.0" O.D. Split Spoon Sample Ber	Il Scree ntonite-(ntonite (ntonite (Cement Chips/P Grout	ellets		±XXI	0	20 ♦ % Fines (<0 • % Water Co	,
	ound Wa viations ecified	ater Lev and de and ma	el in VWI finitions. ly vary.	}	LOG	Yakima C	est Corridor Proj County, Washing	gton
		August SHANI Geotechnic		SON, INC.	FIG. C-8			

	Total Depth: 100.3 ft. Northing: Top Elevation: ~ 1047 ft. Easting: Vert. Datum: Station: Horiz. Datum: Offset:		Drillin Drill F	ng Co Rig E	lethod: ompany Equipme mments	ent:		Servi	ces, Inc.	Hole Diam.: Rod Diam.: Hammer Type:	8 in. Automatic
ľ	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples	Ground	Water			TION RESISTAL Wt. & Drop: _140	NCE (blows/foot) 0 lbs / 30 inches
	Medium dense to dense, gray, Poorly Graded Sand with Silt and Gravel (SP-SM); wet; subangular to subrounded, fine to coarse gravel. Alluvium (Qa)	40.0			R-9			42			.5G/4*2
	Medium dense to dense, gray-brown to brown, <i>Silty Gravel with Sand and Cobbles (GM)</i> ; moist; little cobbles; subangular to subrounded gravel; low plasticity fines; iron-oxide staining locally.				9			44			5 p/3"2.
	Alluvium (Qa)				R-10			46			
	Wet below 48 feet.				, я. (48			
					10			50			50/2"4
	Increasing plasticity below 52.5 feet.				-			52			
	Strong iron-oxide staining from 53 to 54.5 feet.							54	•		
Typ: CLP	Clayey gravel with ash layer(?) from about 55 to 56.5 feet.				11			56			5 0/5" 4
AW Rev: JKP					R-12			58			
Log: SAW	Poorly graded gravel with silt and sand below 59 feet.										
MIL.GDT 11/13/17	☑ Soil Core (as in Sonic Core Borings) ☑ Bente ☑ 2.0" O.D. Split Spoon Sample ☑ Bente ☑ Bente ☑ Bente	tonite-C tonite C tonite G	en and S Cement Chips/Pe Grout ater Leve	Grou	ut		_	_ ()	20	
SHAN	-	und Wa	ater Lev	∕el in ˈ	VWP					st Corridor Projection	
STER_LOG_E 21-21630.GPJ SHAN_WIL.GDT 11/13/17	NOTES 1. Refer to KEY for explanation of symbols, codes, abbrevia 2. Groundwater level, if indicated above, is for the date spe 3. USCS designation is based on visual-manual classification	ecified a	and ma	y var	y.	J.	LO)G		RING EWC	
10G						L	Augu	ust 2	2015	21-	-1-21630-004
STER				SHA	۱NN	ON & WIL	SON, INC.	FIG. C-8			

Total Depth: 100.3 ft. Northing: Top Elevation: ~ 1047 ft. Easting: Vert. Datum: Station: Horiz. Datum: Offset:		Drillir Drill F	ng Co Rig E	ethod: ompan iquipm nment	y: <u>-</u> ent: <u>-7</u>	Sonic Col Holt Serv Terra Sor	ices, Inc.	Hole Diam.: Rod Diam.: Hammer Type:	8 in. Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples	Ground	Depth, ft.		TION RESISTAN Wt. & Drop: 140	' '
Medium dense to dense, gray-brown to brown mottled with red-brown, <i>Clayey Gravel with Sand and Cobbles (GC)</i> ; moist; few cobbles; angular to rounded gravel. Alluvium (Qa)	60.0			R-13		62			50/15
Strong iron-oxide staining below 66 feet.				13		66	•	9	50/2*2
				14 7 7 1		68 70			50/3*4
Medium dense to dense, brown mottled with red-brown and gray, Poorly Graded Gravel with Silt, Sand, and Cobbles (GP-GM); moist; few cobbles; subangular to rounded gravel; low plasticity fines; weathered cobbles and gravel.	71.0			R-15		72 74	•		
Alluvium (Qa)				15		76			56/10"2
Strong iron-oxide staining from 79 to 80 feet.				R-16		78	•		
☑ Soil Core (as in Sonic Core Borings) ☑ ☑ Ben ☑ 2.0" O.D. Split Spoon Sample ☑ ☑ Ben ☑ ☑ Ben	tonite-(tonite (tonite (n and S Cement Chips/Pe Grout ater Lev	Grou ellets	t			0	20	
-	und Wa	ater Lev and det	el in '	VWP ns.			Yakima C	est Corridor Proje County, Washing	ton
3. USCS designation is based on visual-manual classificat	tion and	d select	ed lal	o testin		August	2015	21-2 SON, INC.	-B-04-14 1-21630-004 FIG. C-8

	Total Depth: 100.3 ft. Northing: Top Elevation: ~ 1047 ft. Easting: Vert. Datum: Station: Horiz. Datum: Offset:		Drillir Drill f	ng Co Rig E	ethod: ompan Equipm mment	y: ent: _	Sonic Holt S Terra	ervic	ices, Inc. Rod Diam.:	-
	SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples	Ground	Water	_		50
	Medium dense to dense, brown to gray-brown mottled with red-brown and dark gray, Silty Gravel with Sand and Cobbles (GM); moist to wet; subangular to subrounded gravel; trace clay pockets; weathered cobbles and gravel.	80.0			R-17			82	5072	
	Alluvium (Qa)				17			84	50/5	
							1	86		
					R-18		1	88	•	
-	Medium dense to dense, brown with red-brown, Clayey Gravel with Sand (GC) to Silty Gravel with Sand (GM); moist;	90.0			18		!	90	50/3	
-	subangular to subrounded gravel. Alluvium (Qa) - Strong iron-oxide staining at 90.5 feet.	92.0			R-19		!	92	·•	
	Medium dense to dense, brown to red-brown, <i>Poorly Graded Gravel with Silt, Sand, and Cobbles (GP-GM)</i> ; wet; subangular to rounded gravel; low plasticity				19		!	94	50/3	
Typ: CLP	fines. Alluvium (Qa) Medium dense to dense, brown to	96.0					!	96		
Log: SAW Rev: JKP	gray-brown, Silty Gravel with Sand and Cobbles (GM); moist; subrounded to rounded gravel; low to medium plasticity fines. Alluvium (Qa)				R-20		!	98	•	
ASTER_LOG_E 21-21630.GPJ SHAN_WIL.GDT 11/13/17 LC	CONTINUED NEXT SHEET LEGEND * Sample Not Recovered Soil Core (as in Sonic Core Borings) Denoted Ben 2.0" O.D. Split Spoon Sample Ben Ben	ell Screentonite-Contonite Contonite Contonite Contonite Cound Wa	Cement Chips/Po Grout	Grou ellets	ut	i×××	××.	(0 20 40 6	30
GPJ SHAN W	_	ound Wa	ater Lev	el in '	VWP				East-West Corridor Project Yakima County, Washington	_
<u>ε 21-21630.</u>	Groundwater level, if indicated above, is for the date sp. USCS designation is based on visual-manual classification.	pecified a	and ma	y var	y.	j.			OF BORING EWC-B-04-14	
STER_LOG							SHA Geotee		2015 21-1-21630-004 NON & WILSON, INC. al and Environmental Consultants Sheet 5 of 6	_

Total Depth: 100.3 ft. Northing: Top Elevation: ~ 1047 ft. Easting: Vert. Datum: Station: Horiz. Datum: Offset:		Drillir Drill F	ng Co Rig E	lethod: ompany Equipme mments	y: <u>Ho</u> ent: <u>Te</u>		ces, Inc. Rod Diam.:	8 in. Automatic
SOIL DESCRIPTION Refer to the report text for a proper understanding of the subsurface materials and drilling methods. The stratification lines represent the approximate boundaries between material types, and the transition may be gradual.	Depth, ft.	Symbol	PID, ppm	Samples	Ground Water	Depth, ft.	PENETRATION RESISTANG ▲ Hammer Wt. & Drop: 140 li	
BOTTOM OF BORING COMPLETED 7/9/2014 Notes:	100.3			20		102		50/4"
a) Some blow counts are high due to the presence of gravel and cobbles, and do not reflect the relative density of the soil unit.						104		
 b) Moisture content may be reduced by frictional heating generated during drilling. c) Boulders may be present in alluvium layers. 						106		
іаусі5.						108		
						110		
						112		
						114 116		
						118		
) LECEND							0 20 4	.0 60
☑ Soil Core (as in Sonic Core Borings) ☑ Sen ☐ 2.0" O.D. Split Spoon Sample ☑ Ø Ben ☑ Ø Ben ☑ Ø	II Screen ntonite-Contonite Cl ntonite Gound Wat	ement hips/Pe rout	Grou ellets	ut			◇ % Fines (<0.07 ● % Water Con	
NOTES 1. Refer to KEY for explanation of symbols, codes, abbrev 2. Groundwater level, if indicated above, is for the date sp	ecified a	and det	finitio ıy var	ons. 'y.			East-West Corridor Project Yakima County, Washington	on
USCS designation is based on visual-manual classificat	tion and	selecto	ed lal	b testing	A	ugust	2015 21-1- ION & WILSON, INC.	-21630-004 FIG. C-8

S-2

Gravels, maximum dimension 3"; fine to coarse Sand; no fines.

Bottom at 8.5'

FIG. C-9

Table C-1: Summary of Pilot Infiltration Test Results

			Test Pit	Dimens	ons (ft)		Short-Term	n Infiltrati	on (in/hr)	Correc	ction F	actors	Total Correction Factors	Long-Term Design Infiltration (in/hr)
Project Stage	PIT ID	Test Date	Length	Width		Average Flow Rate (gpm)	Constant Head Test	Falling Head Test	Average	CF _v	CF _t	CF _m	CF _T = CF _v x CF _t x CF _m	Rate = CF _⊤ x Ksat
Stage 3	TP-P1a-17	9/27/2017	5	7	8.5	340	53	50	51	0.7	0.5	0.7	0.25	13

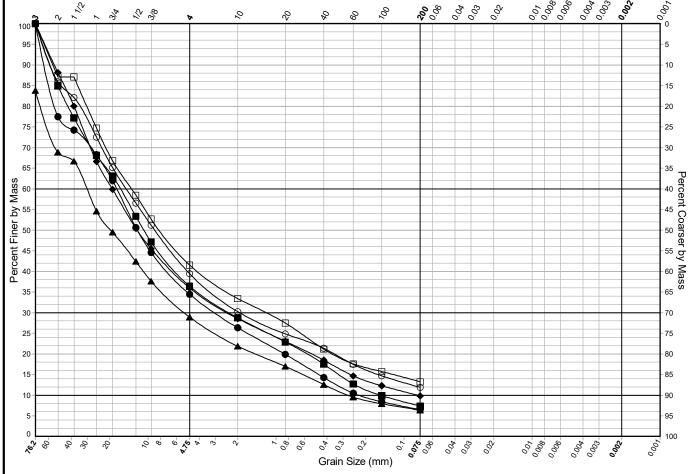
NOTES:

 $CFv = site variability and number of locations tested; CF_t = uncertainty of test method; CF_m = degree of influent control to prevent siltation and biological buildup; CF_T = total correction factor; ft = feet gpm = gallons per minute; in/hr = inches per hour; N/A = not applicable; Ksat = saturated hydraulic conductivity; PIT = pilot infiltration tests$

Table C-2: Summary of Grain-Size Analysis Infiltration Correlations

Test Pit Designation	Depth of Sample	D ₁₀	D ₆₀	D ₉₀				Corre	ection F	actors	Total Correction Factors	Long-Term Design Infiltration (in/hr)
and Sample	(ft bgs)	(mm)	(mm)	(mm)	ffines	(cm/sec)	(in/hr)	CF _v	CF _t	CF _m	CF _T = CF _v x CF _t x CF _m	Rate = CF _T x Ksat
TP-P1-17*	4	0.04	0.339	11.53	19.2	9.20E-03	13	0.7	0.4	0.7	0.20	2.5
TP-P1-17	8.5	0.096	0.353	0.757	6.962	2.90E-02	14	0.7	0.4	0.7	0.20	8
TP-P1-17 Average	e Infiltration Ra	ite										5

NOTES:


CFv = site variability and number of locations tested; CF_T = uncertainty of test method; CF_m = degree of influent control to prevent siltation and biological buildup; CF_T = total correction factor; cm/sec = centimeters per second; D_{10} , D_{60} , D_{90} = grain size that corresponds to 10, 60, and 90% of the sample that is more fine; ffines = % by weight of fines (materials passing No. 200 sieve); ft bgs = feet below ground surface; in/hr = inches per hour; Ksat = saturated hydraulic conductivity; mm = millimeter

^{*} D10 estimated based on grain-size distribution curve.

East-West Corridor Project Stage 3 Yakima, Washington

BORING B-1-17

Gra	avel		Sand					Fines				
Coarse	Fine	Coarse	Medium		F	ine		5	Silt	Clay-Size		
Mesh Open	ing in Inches	N	lesh Openings per	Inch, U.S	S. Standa	ard		Grain	Size in Millimeters			
	\$ 2\%	b 1	0 0	9	%	200	çç	9°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	0.00° 0.00° 0.00° 0.00°	90° °		

Sample Identification	Depth (ft)	USCS Group Symbol	USCS Group Name	Cobbles %	Gravel %	Sand %	Fines %	< 20µm %	< 2μm %	WC %	Tested By	Review By	ASTM Std.
● B-1-17, R-2 [*]	8.0	GW-GM	Well-Graded Gravel with Silt and Sand		66	28	6.5			2.8	SAB		C136
■ B-1-17, R-4 [*]	18.0	GW-GM	Well-Graded Gravel with Silt and Sand		64	29	7.4			3.8	SAB		C136
▲ B-1-17, R-6 [*]	28.0	GW-GM	Well-Graded Gravel with Silt and Sand and Cobbles	16	55	23	6.3			2.9	SAB		C136
◆ B-1-17, R-7 [*]	33.0	GP-GM	Poorly Graded Gravel with Silt and Sand		64	26	9.8			3.9	SAB		C136
O B-1-17, R-12	56.0	GM	Silty Gravel with Sand		61	28	12			8.7	SAB		C136
□ B-1-17, R-20 [*]	98.0	GM	Silty Gravel with Sand		58	28	13			7.1	SAB		C136

12/10/19


Test specimen did not meet minimum mass recommendations.

Cobble percentages are calculated using the pre-removal, oven-dried mass of the total specimen. USCS Group Symbol, Soil Classification Group Name, Gravel %, Sand %, Fines %, <0.02mm %, <2um%, Cu, and Cc values are calculated from particles smaller than 76.2mm (3 inches) only, per ASTM D2487.

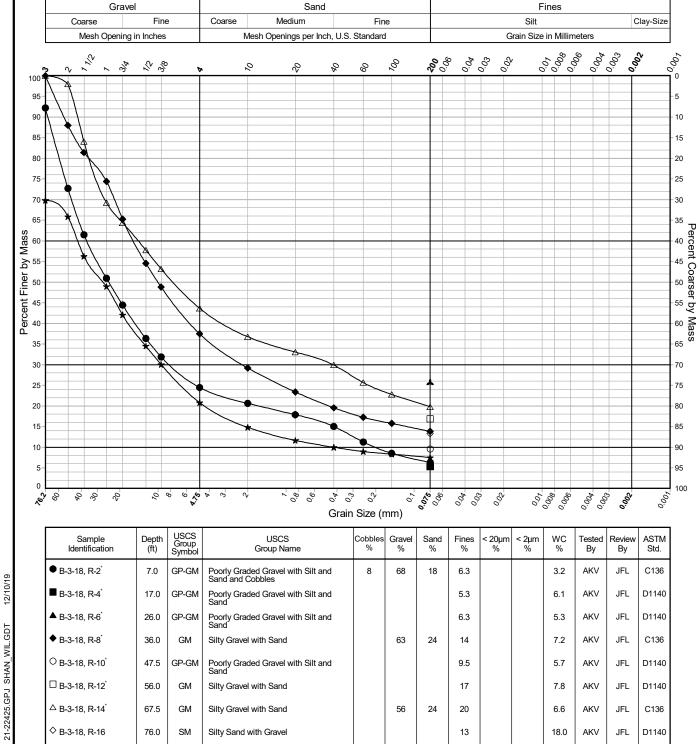
East-West Corridor Project Stage 3 Yakima, Washington

BORING B-2-17

Gra	avel		Sand		Fines				
Coarse	Fine	Coarse Medium Fine		Fine	Silt	Clay-Size			
Mesh Open	ing in Inches	N	Mesh Openings per Inch,	U.S. Standard	Grain Size in Millimeters				

Sample Identification	Depth (ft)	USCS Group Symbol	USCS Group Name	Gravel %	Sand %	Fines %	< 20µm %	< 2µm %	WC %	Tested By	Review By	ASTM Std.
● B-2-17, R-3 [*]	13.0	GP	Poorly Graded Gravel	83	14	2.7			1.6	SAB		C136
■ B-2-17, R-5 [*]	20.0	SW-SM	Well-Graded Sand with Silt and Gravel	19	71	9.7			12.3	SAB		C136
▲ B-2-17, R-7 [*]	30.0	GW-GM	Well-Graded Gravel with Silt and Sand	62	31	6.8			8.0	SAB		C136

Test specimen did not meet minimum mass recommendations.


12/10/19

GRAIN SIZE DISTRIBUTION PLOT

East-West Corridor Project Stage 3 Yakima, Washington

BORING B-3-18

Sheet 1 of 2

GM

GP-GM

Silty Gravel with Sand

Poorly Graded Gravel with Silt and Sand and Cobbles

82.5

92.5

30

49

13

26

7.5

6.4

6.1

AKV

AKV

JFL

JFL

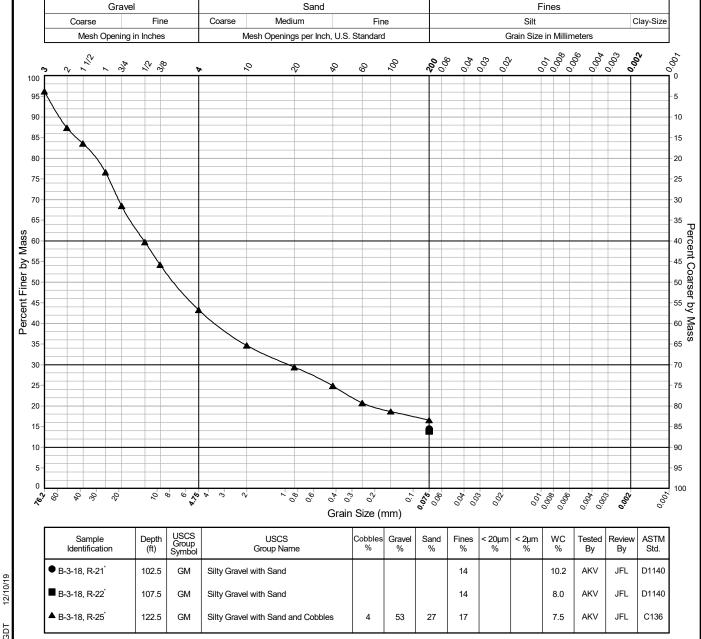
D1140

C136

B-3-18, R-17

★ B-3-18, R-19

^{*}Test specimen did not meet minimum mass recommendations.

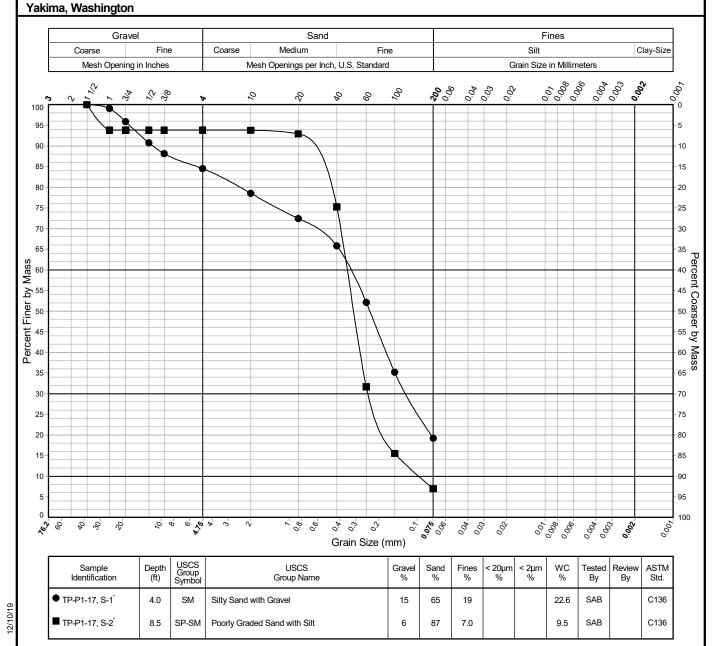

² Cobble percentages are calculated using the pre-removal, oven-dried mass of the total specimen. USCS Group Symbol, Soil Classification Group Name, Gravel %, Sand %, Fines %, <0.02mm %, <2um%, Cu, and Cc values are calculated from particles smaller than 76.2mm (3 inches) only, per ASTM D2487.

East-West Corridor Project Stage 3

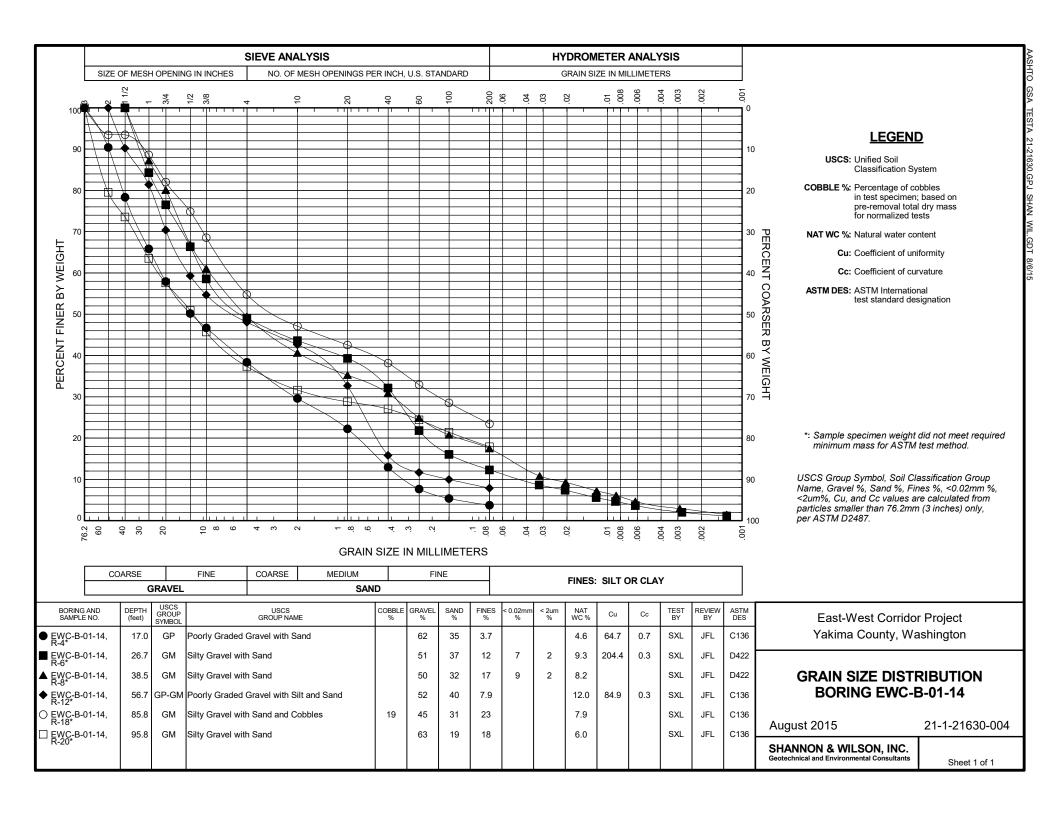
Yakima, Washington

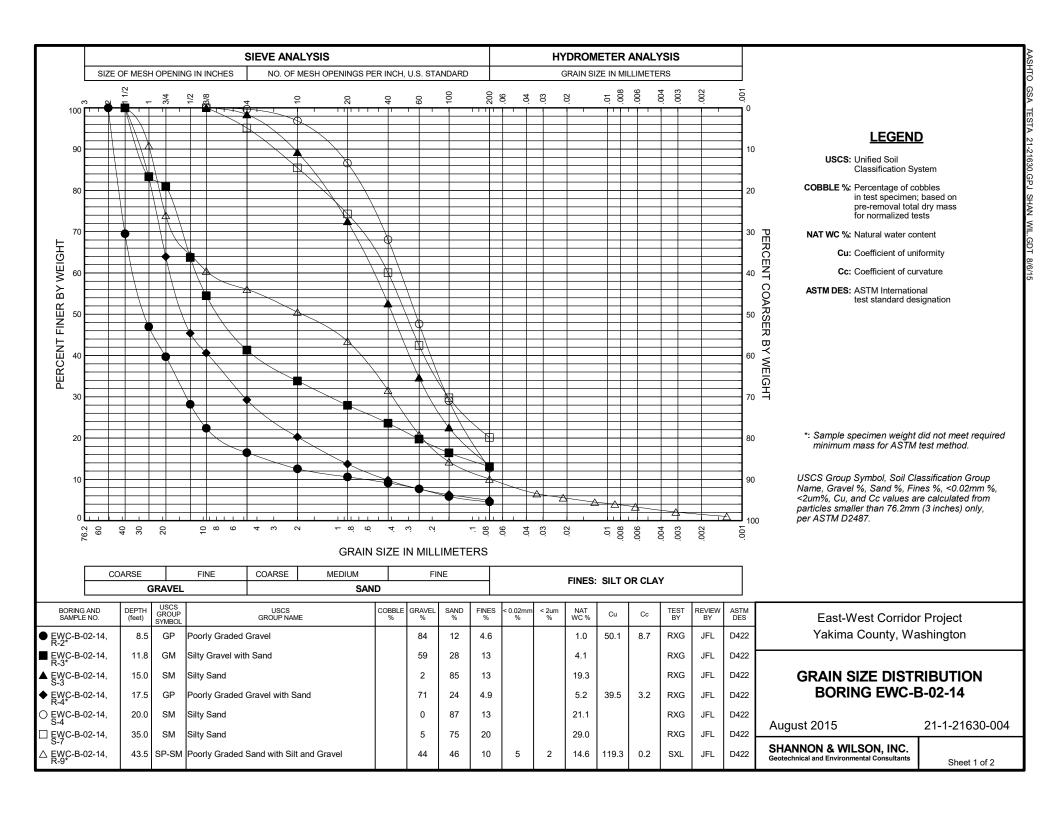
BORING B-3-18

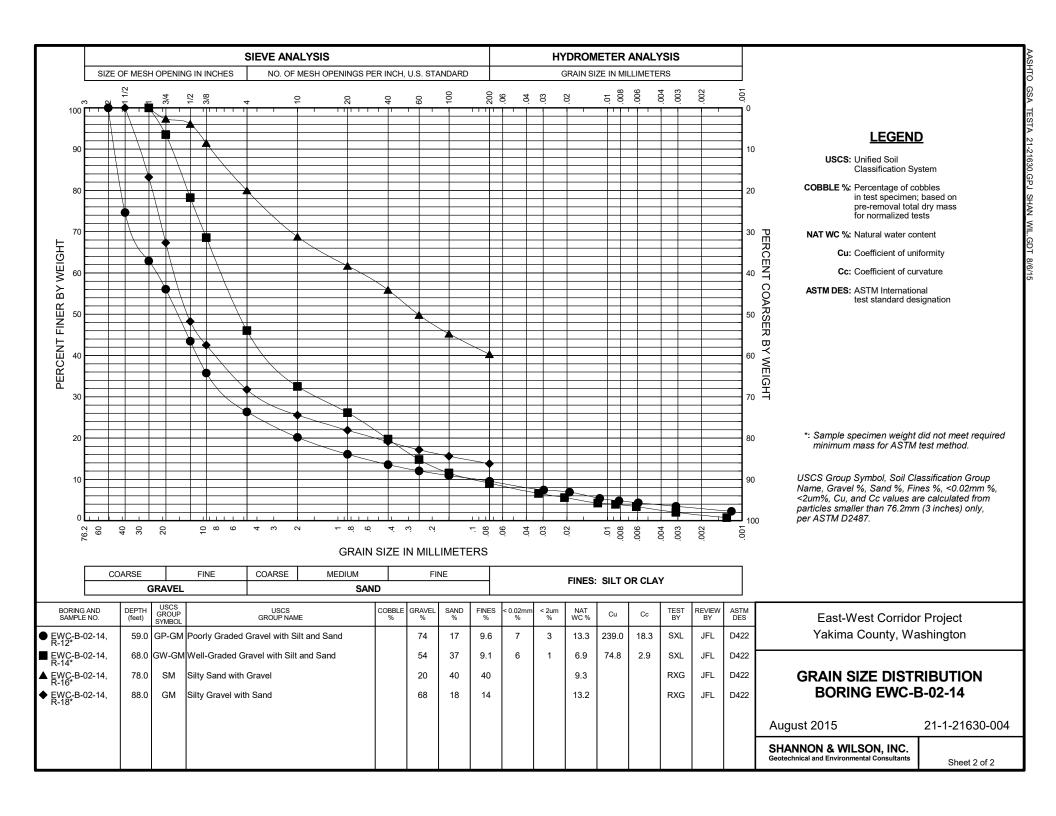
Sheet 2 of 2

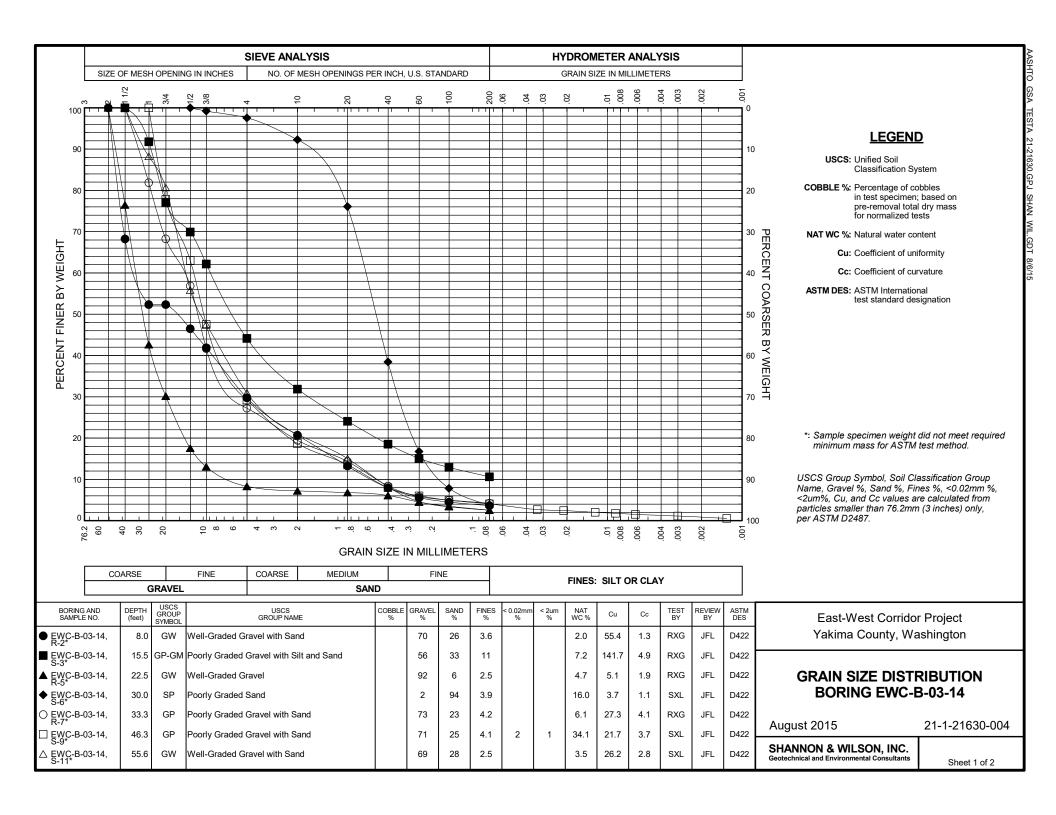


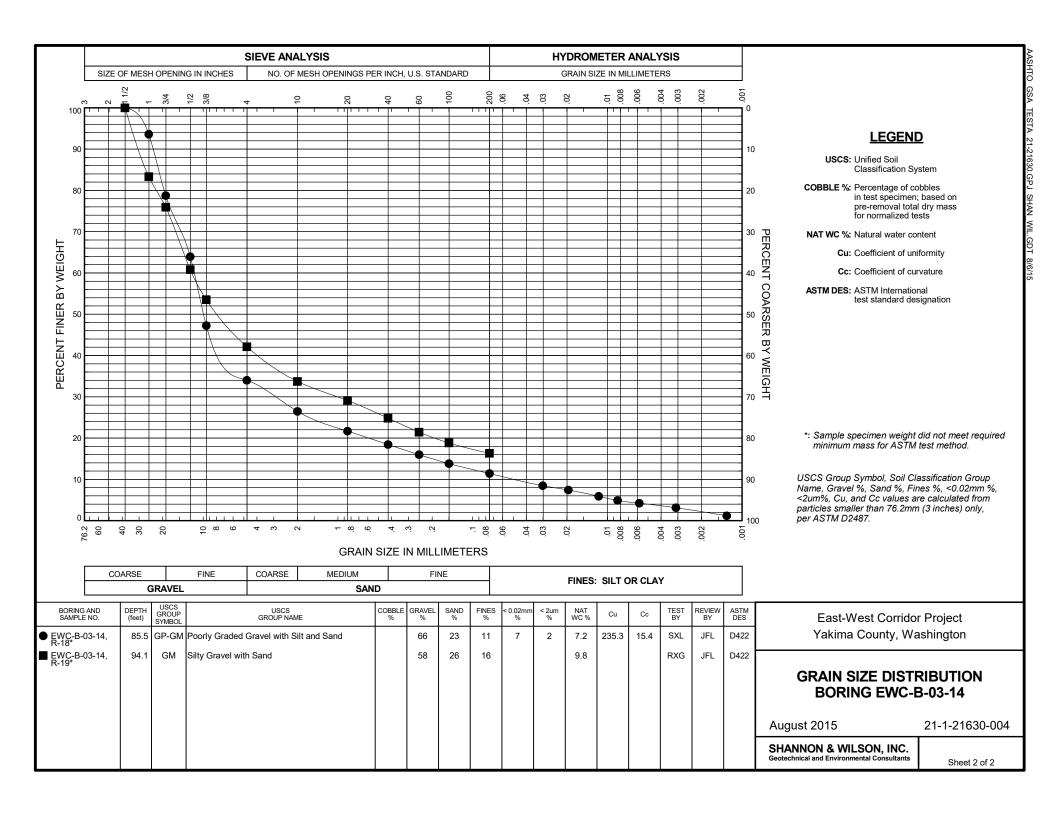
Test specimen did not meet minimum mass recommendations.

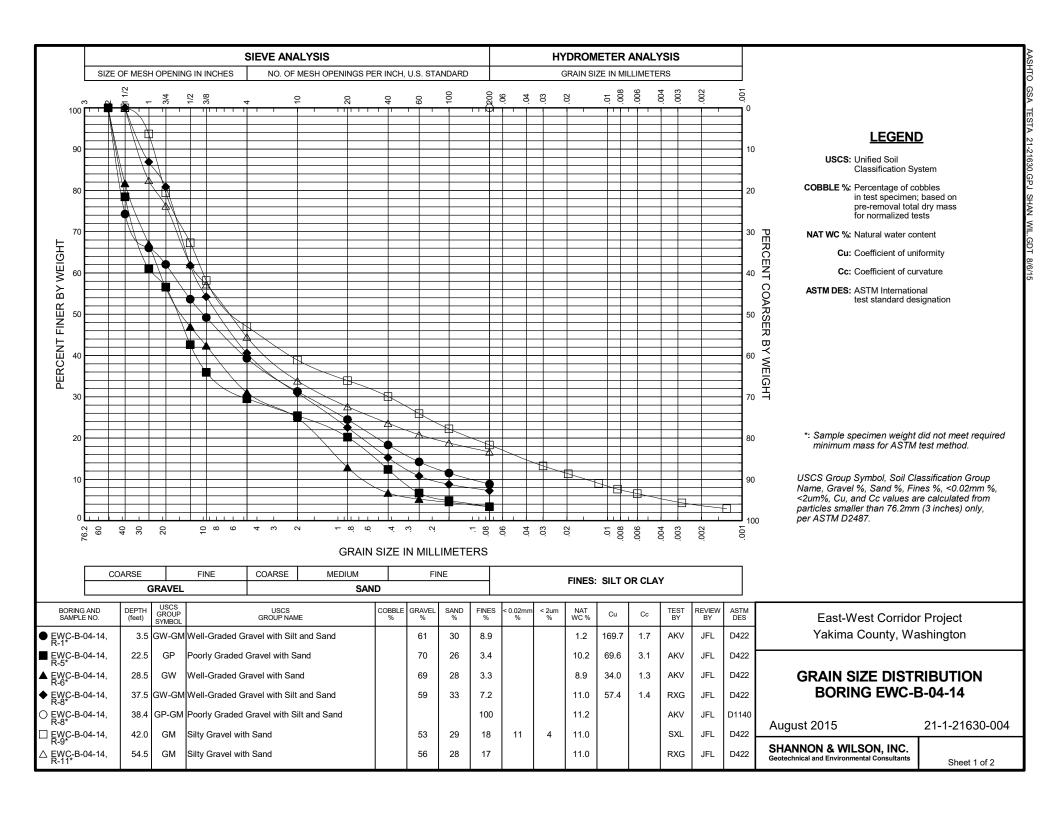

² Cobble percentages are calculated using the pre-removal, oven-dried mass of the total specimen. USCS Group Symbol, Soil Classification Group Name, Gravel %, Sand %, Fines %, <0.02mm %, <2um%, Cu, and Cc values are calculated from particles smaller than 76.2mm (3 inches) only, per ASTM D2487.

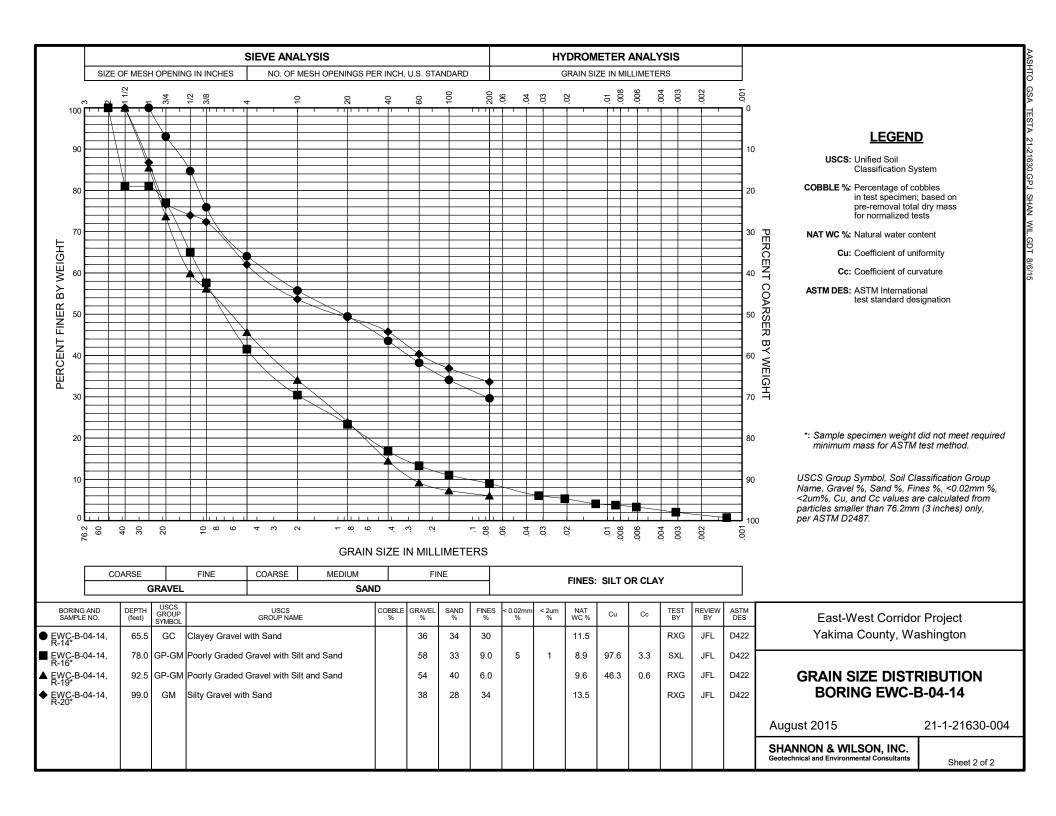

East-West Corridor Project Stage 3


TEST PIT TP-P1-17




^{*}Test specimen did not meet minimum mass recommendations.





Appendix D

Environmental Procedures and Testing Results

CONTENTS

D.1	GENE	RAL	D-1
D.2	2021 E	NVIRONMENTAL TESTING	D-1
	D.2.1	Soil Sampling Activities	D-1
	D.2.2	Analytical Methods	D-2
	D.2.3	Analytical Results	D-2
	D.2.4	Investigation-Derived Waste	D-3
D.3	2017 E	NVIRONMENTAL TESTING	D-3
	D.3.1	Soil Sampling Activities	D-3
	D.3.2	Analytical Methods	D-4
	D.3.3	Analytical Results	D-4
	D.3.4	Investigation-Derived Waste	D-5
D.4	2014 E	NVIRONMENTAL TESTING	D-6
	D.4.1	Soil Sampling Activities	D-6
	D.4.2	Analytical Methods	D-6
	D.4.3	Analytical Results	D-7
	D.4.4	Investigation-Derived Waste	D-7
D.5	REFE	RENCES	D-8
Exhi	bits		
		2021 Fremont Analytical Reports	.D-2
		2017 Fremont Analytical Report Reference Numbers	
Exhi	bit D-3:	2014 Fremont Analytical Reports	D-7

Tables

Table D-1: Summary of 2021 Analytical Testing Data

Table D-2: Summary of 2017 Analytical Testing Data (2 pages)

Table D-3: Summary of 2014 Analytical Testing Data (2 pages)

Table D-4: Summary of Adjusted Toxicity Equivalence Factor Concentrations (6 pages)

Report Compilation Attachments

2021 Fremont Analytical Reports (127 pages)

2017 Fremont Analytical Reports (127 pages)

2014 Fremont Analytical Reports (83 pages)

D.1 GENERAL

This appendix presents the results of our environmental laboratory testing analyses for the Cascade Mill Parkway Phase 3 project. We also performed two previous sets of environmental testing: one in 2014 for the 30% design study and one in 2017 for the East-West Corridor Stage 3 design study.

D.2 2021 ENVIRONMENTAL TESTING

D.2.1 Soil Sampling Activities

Soil samples were collected from borings B-09-21, B-10-21, B-11P-21, B-13-21, B-14-21, and B-15P-21 for health and safety and waste characterization purposes.

No visual or olfactory signs of contamination were observed during drilling. Wood fragments were noted within borings B-09-21, B-10-21, and B-12-21 at depths of approximately 19, 42, and 45 feet below ground surface (bgs) in B-09-21, 10 feet bgs in B-10-21, and 36 feet bgs in B-12-21.

Soil samples were screened for the potential presence of contamination using a photoionization detector (PID) and visual and olfactory observations. PID readings ranged from 0.3 part per million (ppm) to 5.5 ppm during drilling. Elevated PID readings of 12.4 and 48 ppm were measured in boring B-09-21 and of 47 ppm measured in boring B-10-21. The elevated readings measured in both borings B-09-21 and B-10-21 may have been associated with the presence of rock dust. The dust may have impacted the PID filter and lamp bulb, which potentially could have led to erroneous readings. Field screening results are noted in the boring logs (Appendix A).

Up to two samples were collected from each boring. Samples were collected at depths where field indication potentially identified the presence of contamination. In borings where no field indication of contamination was observed, samples were collected near the groundwater interface.

Soil samples were collected using disposable sampling equipment. The samples were collected by donning a pair of disposable nitrile gloves. Each sample was collected within clean, laboratory-supplied glassware using disposable stainless-steel spoons or laboratory-provided plungers (for U.S. Environmental Protection Agency [EPA] Method 5035). The sample container labels were completed using indelible ink. The sample jars were sealed in plastic bags, and then placed into a cooler with "blue ice." Samples were transported by a

Shannon & Wilson field representative to Fremont Analytical, of Seattle, Washington, under chain-of-custody procedures.

D.2.2 Analytical Methods

Soil samples were submitted to Fremont Analytical for the following analyses:

- Gasoline-range hydrocarbons by Method Northwest Total Petroleum Hydrocarbons –
 Gasoline
- Diesel- and lube-oil-range hydrocarbons by Method Northwest Total Petroleum Hydrocarbons as Diesel Extended
- Benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8260C
- Resource Conservation and Recovery Act metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) by EPA Method 6020A/7471B
- Polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270DSIM
- Pentachlorophenol (Herbicide) by EPA Method 8151A

Samples were analyzed within specified holding times.

D.2.3 Analytical Results

In April 2022, ten soil samples were collected from the Stage 3 segment geotechnical to support investigation-derived waste (IDW) characterization and provide information for health and safety purposes. The analytical results of the collected samples are summarized in Table D-1. Copies of the analytical laboratory reports are included in this appendix. Dates and reference numbers for these reports are summarized in the following Exhibit D-1:

Exhibit D-1: 2021 Fremont Analytical Reports

Date	Fremont Analytical Laboratory Reference Number	Pages
4/29/2022	2104132	39 pages
4/09/2022	2104041	22 pages
4/07/2022	2103484	25 pages
4/29/2022	2104312	21 pages

No gasoline-range and diesel-range petroleum hydrocarbons were detected above laboratory reporting limits in any of the samples analyzed with the exception of the 15.5-foot sample collected in boring B-10. Gasoline range organics (GRO) with a similar pattern to mineral spirits was detected at a concentration 1,030 milligrams per kilogram (mg/kg). This detected GRO concentration exceeds the Washington State Department of Ecology (Ecology) Model Toxics Control Act (MTCA) Method A soil cleanup level for

unrestricted land use of 100 mg/kg when benzene is not present (Ecology, 2013). Heavy oil-range petroleum hydrocarbons were also detected in the same sample at a concentration of 1,120 mg/kg. The detected concentration does not exceed the MTCA Method A soil cleanup level for unrestricted land use of 2,000 mg/kg. The source of this contamination is unknown.

Several metals, including arsenic, barium, chromium, lead and selenium, were detected in each of the samples analyzed. The detected concentrations are compared to MTCA Method A cleanup levels. Where no Method A level is established, the concentrations are compared to Method B cleanup levels for direct contact. All the metals detected concentrations were below available MTCA cleanup levels. The chromium analysis does not determine if the chromium present is either trivalent or hexavalent chromium. Based on the available site history, hexavalent chromium is not considered likely. The detected concentrations are below cleanup levels for trivalent chromium.

All the detected metals concentrations, with the exception of selenium, were detected within naturally background concentrations for metals in Eastern Washington as identified in the Natural Background Soil Metals Concentrations in Washington State study prepared by Ecology in 1994 (Ecology, 1994). Detected selenium concentrations were present above the established background level of 0.78 mg/kg. It should be noted that the selenium background level established within the study was considered to be an estimate.

No PAHs, BTEX, or pentachlorophenol were detected above laboratory reporting limits within any of the samples collected and analyzed.

D.2.4 Investigation-Derived Waste

IDW generated during these field activities consisted of boring cuttings and drilling mud. IDW was placed in 55-gallon drums and temporarily stored at the Yakima County Equipment Services Yard pending laboratory analyses. Disposable sampling equipment was disposed as solid waste. The IDW was removed from the County Yard by Advanced Chemical Transport of San Jose, California, under subcontract to Shannon & Wilson, on July 13 and 26, 2021. The IDW was disposed at U.S. Ecology Landfill of Grandview, Idaho, on July 26, 2021.

D.3 2017 ENVIRONMENTAL TESTING

D.3.1 Soil Sampling Activities

Soil samples were collected from borings B-1-17 and B-2-17 for environmental characterization. No visual or olfactory signs of contamination were observed. Wood waste

was noted within boring B-2-17 from depths of approximately 1 to 10 feet below ground surface. Four samples were taken from each boring. Samples taken from boring B-1-17 were identified as ES-1 through ES-4. Samples taken from boring B-2-17 were identified as ES-5 through ES-8. From each boring, samples included a near-surface sample, a sample from above the groundwater table, a sample from the water table, and a sample from below the water table.

Soil samples were collected using disposable sampling equipment. Soil samples were collected by donning a pair of disposable nitrile gloves. Samples were collected within clean, laboratory-supplied glassware using disposable stainless-steel spoons or laboratory-provided plungers (for EPA Method 5035). The sample container labels were completed using indelible ink. The samples were sealed in plastic bags, and then placed into a cooler with "blue ice." Samples were transported by a Shannon & Wilson field representative to Fremont Analytical, of Seattle, Washington, under chain-of-custody procedures.

D.3.2 Analytical Methods

Soil samples were submitted to Fremont Analytical for the following analyses:

- Gasoline-range hydrocarbons by Method Northwest Total Petroleum Hydrocarbons –
 Gasoline
- Diesel- and lube-oil-range hydrocarbons by Method Northwest Total Petroleum Hydrocarbons as Diesel Extended
- Volatile organic compounds (VOCs) by EPA Method 8260C
- Resource Conservation and Recovery Act metals (arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver) and additional metals (copper, nickel, and zinc) by EPA Method 6020A/7471B
- PAHs by EPA Method 8270DSIM
- Polychlorinated biphenyls (PCBs) by EPA Method 8082
- Organochlorine pesticides by EPA Method 8081A
- Herbicides by EPA Method 8151A

Samples were analyzed within specified holding times.

D.3.3 Analytical Results

Analytical results for the Stage 3 area borings are summarized in Table D-1 and the associated analytical laboratory reports are included in this appendix. Dates and reference numbers for these reports are summarized in the following Exhibit D-2:

Exhibit D-2: 2017 Fremont Analytical Report Reference Numbers

Date	Fremont Analytical Laboratory Reference Number	Pages
8/14/2017	1707301	61 pages
8/14/2017	1708051	66 pages

Gasoline-range and diesel-range petroleum hydrocarbons were not detected above laboratory reporting limits within any of the analyzed samples. One sample (ES-6) contained petroleum hydrocarbons within the lube-oil range at a concentration of 495 mg/kg, below MTCA Method A soil cleanup level for unrestricted land use. The same sample also contained toluene, 1,2,3-trichlorobenzene, and 1,2,4-trichlorobenzene at concentrations below cleanup levels. VOCs were not detected within any of the other samples. It should be noted that sample ES-6 was taken from within the wood waste layer observed within boring B-2-17.

Several metals were detected within the samples. Concentrations were compared to MTCA Method A cleanup levels and Method B cleanup levels for direct contact. Arsenic, barium, lead, copper, nickel, and zinc were detected within all samples at concentrations below cleanup levels. Cadmium was detected within one soil sample, ES-5, at a concentration below the MTCA Method A cleanup level. Selenium was detected within all but one soil sample at concentrations below the cleanup level. Chromium was detected within all samples. Based on the known site history, hexavalent chromium is not considered likely. The detected concentrations are below cleanup levels for trivalent chromium.

With minor exceptions, all metals were detected within background concentrations for Eastern Washington. The copper, nickel, and zinc concentrations detected within sample ES-5 were above typical background concentrations, but below cleanup levels. The nickel concentration measured within sample ES-1 was also above typical background levels, but below cleanup levels. Samples ES-1 and ES-5 were both taken from near-surface depths. Selenium was detected at concentrations above the established background level of 0.78 mg/kg. It should be noted that the selenium background level established within the study was considered to be an estimate. Other sources suggest that selenium concentrations ranging between 0.01 to 2.0 mg/kg are typical of surficial soils.

PAHs, PCBs, organochlorine pesticides, and herbicides were not detected above laboratory reporting limits within any of the analyzed samples.

D.3.4 Investigation-Derived Waste

IDW generated during these field activities was removed from the site by the driller.

D.4 2014 ENVIRONMENTAL TESTING

D.4.1 Soil Sampling Activities

Soil samples were screened for the potential presence of contamination using a PID and visual and olfactory observations. PID readings were recorded at 8.7 and 13.7 ppm in the landfill material encountered in boring EWC-B-01-14. These readings are likely due to the presence of landfill debris consisting of municipal solid waste observed generally in the upper 15 feet. A slight hydrocarbon odor was also observed in the landfill material retrieved from boring EWC-B-01-14. Field screening results are noted in the boring logs (Appendix A).

Soil samples were collected from selected explorations for waste characterization purposes. In borings where no field indication of contamination was observed, samples were collected near the groundwater interface; the samples in the test pits were generally collected at the bottom of the excavation.

Soil samples were collected using disposable sampling equipment. Soil samples were collected by donning a pair of disposable nitrile gloves. At least one laboratory-supplied 8-ounce jar was filled using disposable stainless-steel spoons, and two clean, laboratory-supplied 40-millimeter vials in accordance with EPA Method 5035. The sample container labels were completed using indelible ink. The samples were sealed in plastic bags, and then placed into a cooler and maintained at 4 degrees Celsius (°C) (± 2°C) with "blue ice." Samples were transported by a Shannon & Wilson field representative to Fremont Analytical of Seattle, Washington, under chain-of-custody procedures.

D.4.2 Analytical Methods

Soil samples were submitted to Fremont Analytical for the following analyses:

- Gasoline-range hydrocarbons by Method Northwest Total Petroleum Hydrocarbons-Gasoline with benzene, toluene, ethylbenzene, and xylenes distinction
- Diesel- and lube-oil-range hydrocarbons by Method Northwest Total Petroleum Hydrocarbons as Diesel Extended with acid/silica gel cleanup
- PAHs EPA Method 8270DSIM
- MTCA metals (arsenic, cadmium, chromium, mercury, and lead) by EPA Method 6020/7471B
- Herbicides by EPA Method 8151A

Samples were analyzed within specified holding times.

D.4.3 Analytical Results

In July 2014, five soil samples were collected from the Stage 3 segment geotechnical explorations to support IDW characterization. Analytical results are summarized in Table D-2 and the analytical laboratory reports are included in this appendix. Dates and reference numbers for these reports are summarized in the following Exhibit D-3:

Exhibit D-3: 2014 Fremont Analytical Reports

Date	Fremont Analytical Laboratory Reference Number	Pages
7/10/2014	1406291	19 pages
7/11/2014	1407039	22 pages
7/21/2014	1407120	21 pages
7/25/2014	1407187	21 pages

Lube-oil-range petroleum hydrocarbons were detected in soil samples EWC-B-01-14:10.0 and EWC-B-01-14:15.0 below the cleanup criteria.

Arsenic, chromium, and lead were detected below the MTCA Method A cleanup levels in the soil samples analyzed. Cadmium was also detected below the cleanup level in samples EWC-B-01-14:10.0 and EWC-B-01-14:15.0.

Table D-3 provides a toxicity equivalence factor (TEF) analysis of the individual carcinogenic PAH (cPAH) constituents. The TEF method is used to adjust the concentrations of each cPAH such that they are relative to benzo(a)pyrene, which is the most carcinogenic of the PAHs. The individual cPAH concentrations are then added together for comparison with the MTCA cleanup level for benzo(a)pyrene. Based on the TEF analysis, sample EWC-B-01-14:15.0 has adjusted cPAH concentrations that exceed the MTCA Method A unrestricted cleanup criterion.

Herbicides were detected in soil samples analyzed with the exception of EWC-B-01-14:15.0.

D.4.4 Investigation-Derived Waste

IDW generated during these field activities consisted of boring cuttings and drilling mud. IDW was placed in 55-gallon drums and temporarily stored on site pending laboratory analyses. Disposable sampling equipment was disposed as solid waste. The IDW was removed from the site by Tri-Valley Construction, Inc. of Yakima, Washington, under subcontract to Shannon & Wilson, on January 23, 2015. The IDW was disposed at the Terrace Heights Landfill of Yakima, Washington, on January 23, 2015.

D.5 REFERENCES

Washington State Department of Ecology (Ecology), Toxics Cleanup Program, 1994, Natural background soil metals concentrations in Washington State, Publication No. 94-115, October.

Washington State Department of Ecology (Ecology), 2013, Model Toxics Control Act regulation and statue, Chapter 173-340 WAC: Ecology Toxics Cleanup Program, Olympia, Wash., publication no. 94-06.

Table D-1: Summary of 2021 Analytical Testing Data

Sample New Intelligence Sample New Intel	Boring:		B-9-21		0-21	B-11P-21	B-12P-21		-13-21	B-14-21	B-15P-21	MTCA Soil Clea	anup Levels	
Sample Delives Company			B-9-21/R-10@48'		B-10-21/a9@48'	B-11P-21/R-10@51'	B-12P-21/R-11@50'	B-13-21/R-8@39'	B-13-21/R-9@47'	B-14-21/R-9@48'	B-15P-21/S-5@21			Natural
Sample Delivery Group: 214132 214132 214132 214132 214432 214441 214441 214441 214441 214412 214		ground surface):	48				50	39	47	48	21	MTCA Method A		Background Soil
Name														
Performant hydrocarbosis (paging)	Sample Delivery Group:		2104132	2104132	2104132	2104041	2104041	2103484	2103484	2104312	2104312	Use (mg/kg)	B (mg/kg)	Concentration ²
Search Mort														
Gascine Franci O NOTFI-Co:	-											100	100	
Disset Figs Gil NNPTPH-Dx 151 U			5.37 U	•	5.46 U	4.44 U	5.88 U	15.4 U	5.41 U		5.46 U			*
Heavy Oil MYTH-Hox 104 U 1,138 DH 106 U 93.5 U 93.7 U 100 U 103 U 94.9 U 105 U 2,000														*
Volsite Capraire Compounds (garly a) September S														*
Berusen			104 U	1,120 DH	106 U	93.6 U	94.7 U	100 U	103 U	94.9 U	105 U	2,000	2,000	*
Tolume														
Ellyberzone SW2600 0029 U 00398 U,H 0027 U 0029 U 0029 U 00396 U 00398 U,H 0027 U 0029 U 0029 U 00396 U 00396 U 0029 U 00396 U 0029 U 00396 U 0029 U												0.03	0.03	*
m_pXysee												7	7	*
o System SNR260D 0.0228 U 0.0223 U 0.0224 U 0.0254 U 0.0275 U 0.0273 U 0.0274 U												6	6	*
Oxygen O												- 9	9	*
Asenic SW6020B 2.41 D 2.58 D 2 D 2.25 D 1.99 D 2.48 D 2.46 D 3.45 D 2.77 D 20 24 Barlum SW6020B 5.27 D 70.2 D 50.5 D 6.86 D 68.1 D 68.1 D 67.2 D 63.9 D 50.5 D 7 16000 Cadmium SW6020B 0.167 U 0.168 U 0.17 U 0.173 U 0.173 U 0.175 U 0.175 U 0.175 U 0.169 U 0.168 U 0.168 U 1.97 D 2 80 C Cadmium SW6020B 1.88 D 28.7 D 14.2 D 14.7 D 17.1 D 17.7 U 0.175 U 0.175 U 0.175 U 0.175 U 0.169 U 0.168 U 0.168 U 0.169 U 2 80 C C C C C C C C C C C C C C C C C C		SW8260D	0.0269 U	0.0328 U, H	0.0273 U	0.0222 U	0.0294 U	0.0769 U	0.027 U	0.0366 U	0.0273 U			*
Barlum SW6020B 52,7 70,2 50,5 50,5 68,8 50 68,1 64,8 57,2 50,3 50,5 50,5 70,0														
Cadmium												20		5
Chromism SyM6020B 138 D 237 D 142 D 147 D 171 D 206 D 168 D 188 D 157 D 192,000 120,000												*		255
Lad										0.168 U		-		1
Mercury SW7471 0.28 U 0.28 U 0.28 U 0.24 S U 0.24 S U 0.24 S U 0.26 S U 0.28 S U 0.25 S U 0.27 U 2 S electron SW6020B 0.12 S U 0.12 S												,	120,000	38
Selentum SM620B 2.4 D 1.52 D 2.25 D 2.47 D 1.68 D 1.54 D 1.72 D 1.85 D 2.19 D 400													*	11
Silver SW6020B 0.125 U 0.126 U 0.127 U 0.13 U 0.131 U 0.131 U 0.127 U 0.126 U 0.127 U 0.128 U 0.127 U 0.126 U 0.127 U 0.128 U 0.127 U 0.128 U 0.127 U 0.128 U 0.127 U 0.128												2	*	0.05
Polymericar Acomatic Hydrocarbons (PAHs) (mg/kg)								1.54 D				*		0.78
Naphthalene				0.126 U	0.127 U	0.13 U	0.131 U	0.127 U	0.127 U	0.126 U	0.127 U	*	400	0.61
2-Metry/naphthalene							2 22 /2 //							
1.Methylnaphthalene												5	5	*
Acenaphthylene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.0181 U 0.0206 U * Acenaphthene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.0181 U 0.0206 U * Acenaphthene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.0181 U 0.0206 U * Acenaphthene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.0181 U 0.0206 U * Acenaphthene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0383 U 0.0411 U * Acenaphthene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0383 U 0.0411 U * Acenaphthene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0383 U 0.0411 U * Acenaphthene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0383 U 0.0411 U * Acenaphthene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0383 U 0.0411 U * Acenaphthene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0383 U 0.0411 U * Acenaphthene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0485 U 0.0195 U 0.0181 U 0.0206 U * Acenaphthene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0363 U 0.0411 U * Acenaphthene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.0191 U 0.0219 U 0.0185 U 0.0195 U 0.018 U 0.0206 U * Acenaphthene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.0191 U 0.0219 U 0.0185 U 0.0195 U 0.018 U 0.0206 U * Acenaphthene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.0191 U 0.0219 U 0.0185 U 0.0195 U 0.018 U 0.0206 U * Acenaphthene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.0191 U 0.0219 U 0.0185												*	*	*
Acenaphthene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.0181 U 0.0206 U * * * * Fluorene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.0181 U 0.0206 U * * * * * Phenanthrene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0363 U 0.0411 U * * * * Fluoranthene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0363 U 0.0411 U * * * * Phenanthrene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0363 U 0.0411 U * * * * Phyrene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0363 U 0.0411 U * * * * Phyrene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0363 U 0.0411 U * * * * Phyrene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0363 U 0.0411 U * * * * Phyrene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0363 U 0.0411 U * * * * Phyrene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0363 U 0.0411 U * * * * * Phyrene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0363 U 0.0411 U * * * * * Phyrene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0363 U 0.0411 U * * * * Phyrene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0363 U 0.0411 U * * * * Phyrene SW8270SIM 0.0213 U 0.019 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.018 U 0.0206 U * * * * Phyrene SW8270SIM 0.0213 U 0.019 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.018 U 0.0206 U * * * * Phyrene SW8270SIM 0.0213 U 0.019 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.018 U 0.0206 U * * * * Phyrene SW8270SIM 0.0213 U 0.019 U, H 0.0202 U 0.019 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0363 U 0.0411 U * * * * Phyrene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0363 U 0.0411 U * * * * Phyrene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U												*	*	*
Fluorene SW827OSIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.0181 U 0.0206 U * * * * Phenanthrene SW827OSIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0379 U 0.0337 U 0.0369 U 0.0380 U 0.0363 U 0.0411 U * * * * * * * * * * * * * * * * * *												*	*	*
Phenanthrene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.0389 U 0.0363 U 0.0411 U * * * * Anthracene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.0399 U 0.0363 U 0.0411 U * * * * * * * * * * * * * * * * * *	Acenaphthene											*	*	*
Anthracene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.0380 U 0.0383 U 0.0411 U * * * Fluoranthene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.0389 U 0.0363 U 0.0411 U * * * * Pyrene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.0389 U 0.0363 U 0.0411 U * * * * Benz[a]anthracene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0195 U 0.0185 U 0.0195 U 0.0181 U 0.0206 U * * * * Chrysene SW8270SIM 0.0213 U 0.0411 U, H 0.0202 U 0.019 U 0.0437 U 0.0369 U 0.0363 U 0.0411 U * * * * Benz(c)[filuoranthene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0437 U 0.0369 U 0.039 U 0.0363 U 0.0411 U * * * * Benz(c)[filuoranthene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0195 U 0.0185 U 0.0195 U 0.018 U 0.0206 U * * * Benz(c)[filuoranthene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.018 U 0.0206 U * * Benz(c)[filuoranthene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.018 U 0.0206 U * * Benz(c)[filuoranthene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.018 U 0.0206 U * * Benz(c)[filuoranthene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.018 U 0.0206 U * * Benz(c)[filuoranthene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.018 U 0.0206 U * * Benz(c)[filuoranthene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.018 U 0.0206 U 0.1 2 Benz(c)[filuoranthene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.018 U 0.0206 U 0.1 2 Benz(c)[filuoranthene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.018 U 0.0206 U 0.1 2 Benz(c)[filuoranthene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.039 U 0.0369 U 0.0363 U 0.0411 U * * * Benz(c)[filuoranthene SW8270SIM 0.0213 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.0399 U 0.0363 U 0.0411 U * * * Benz(c)[filuoranthene SW8270SIM 0.0215 U 0.0383 U, H 0.0404 U 0.03												*	*	*
Fluoranthene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0363 U 0.0411 U * * * Pyrene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0383 U 0.0411 U * * * Benz[a]anthracene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.0181 U 0.0206 U * * Benz(a]anthracene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0363 U 0.0411 U * * * Benz(a]anthracene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0437 U 0.0369 U 0.039 U 0.0363 U 0.0411 U * * * Benz(a)(a)Inoranthene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.018 U 0.0206 U * * * Benz(a)(a)Inoranthene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.018 U 0.0206 U * * * Benz(a)(a)Inoranthene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.018 U 0.0206 U * * * Benz(a)(a)Inoranthene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.018 U 0.0206 U * * * Benz(a)(a)Inoranthene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.018 U 0.0206 U * * * Benz(a)(a)Inoranthene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.018 U 0.0206 U * * * Benz(a)(a)Inoranthene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.018 U 0.0206 U 0.1 2 Benz(a)Inoranthene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0363 U 0.0411 U * * * TEF-adjusted CPAHs (see Table D-3) 0.025 0.02 0.023 0.022 0.0254 0.0254 0.0214 0.0226 0.021 0.021 0.02 0.1 2 Detected Herbicides (mg/kg)												*	*	*
Pyrene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0363 U 0.0411 U * * * *				0.0383 U, H								*	*	*
Benza Benz												*	*	*
Chrysene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0363 U 0.0411 U * * * Benzo(k)fluoranthene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.0195 U 0.018 U 0.0206 U * * * Benzo(b)fluoranthene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.018 U 0.0206 U * * * Benzo(ghi)perylene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.018 U 0.0206 U * * * Benzo(a)pyrene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.018 U 0.0206 U * * * Benzo(a)pyrene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.018 U 0.0206 U * * * Benzo(a)pyrene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.0369 U 0.0363 U 0.0411 U * * * Benzo(a,h)anthracene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0363 U 0.0411 U * * * Benzo(a,h)anthracene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0363 U 0.0411 U * * * Benzo(a,h)anthracene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0363 U 0.0411 U * * * Benzo(a,h)anthracene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0363 U 0.0411 U * * * Benzo(a,h)anthracene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0363 U 0.0411 U * * * Benzo(a,h)anthracene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0363 U 0.0411 U * * * Benzo(a,h)anthracene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0363 U 0.0411 U * * Benzo(a,h)anthracene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0437 U 0.0369 U 0.0369 U 0.0363 U 0.0411 U * * Benzo(a,h)anthracene SW8270SIM 0.0426 U 0.0383 U, H 0.0440 U 0.0379 U 0.0447 U 0.0369 U 0.0369 U 0.0363 U 0.0411 U * * Benzo(a,h)anthracene SW8270SIM 0.0426 U 0.0383 U, H 0.0440 U 0.0379 U 0.0440 U 0.0379 U 0.0440 U 0.0379 U 0.0440 U 0.0369 U 0.0366 U 0.039 U 0.0366												*	*	*
Benzo(k)fluoranthene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.018 U 0.0206 U * * Benzo(b)fluoranthene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0185 U 0.0195 U 0.018 U 0.0206 U * * Benzo(ghi)perylene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0185 U 0.0195 U 0.018 U 0.0206 U * * Benzo(a)pyrene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.018 U 0.0206 U * * Benzo(a)pyrene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.018 U 0.0206 U 0.1 2 Indeno(1,2,3-cd)pyrene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0363 U 0.0411 U * *												*	*	*
Benzo(b)fluoranthene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.018 U 0.0206 U * * *												*	*	*
Benzo(ghi)perylene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.018 U 0.0206 U * * Benzo(a)pyrene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0185 U 0.0195 U 0.018 U 0.0206 U 0.1 2 Indeno(1,2,3-cd)pyrene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0363 U 0.0411 U * * Dibenzo(a,h)anthracene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.0363 U 0.0411 U * * TEF-adjusted cPAHs (see Table D-3) 0.025 0.02 0.023 0.022 0.0254 0.0214 0.0226 0.021 0.02 0.1 2 Detected Herbicides (mg/kg)												*	*	*
Benzo(a)pyrene SW8270SIM 0.0213 U 0.0191 U, H 0.0202 U 0.019 U 0.0219 U 0.0219 U 0.0185 U 0.0195 U 0.018 U 0.0206 U 0.1 2 Indeno(1,2,3-cd)pyrene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.0369 U 0.0363 U 0.0411 U * * Dibenzo(a,h)anthracene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.0369 U 0.0363 U 0.0411 U * * TEF-adjusted cPAHs (see Table D-3) 0.025 0.02 0.023 0.022 0.0254 0.021 0.0226 0.021 0.02 0.1 2 Detected Herbicides (mg/kg)	` '											ж	*	*
Indeno(1,2,3-cd)pyrene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0363 U 0.0411 U * * Dibenzo(a,h)anthracene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0363 U 0.0411 U * * TEF-adjusted cPAHs (see Table D-3) 0.025 0.02 0.023 0.022 0.0254 0.0214 0.0226 0.021 0.02 0.1 2 Detected Herbicides (mg/kg)				,								*	*	*
Dibenzo(a,h)anthracene SW8270SIM 0.0426 U 0.0383 U, H 0.0404 U 0.0379 U 0.0437 U 0.0369 U 0.039 U 0.0363 U 0.0411 U * * TEF-adjusted cPAHs (see Table D-3) 0.025 0.02 0.023 0.022 0.0254 0.0214 0.0226 0.021 0.02 0.1 2 Detected Herbicides (mg/kg)												0.1	2	*
TEF-adjusted cPAHs (see Table D-3) 0.025 0.02 0.023 0.022 0.0254 0.0214 0.0226 0.021 0.02 0.1 2 Detected Herbicides (mg/kg)												*	*	*
Detected Herbicides (mg/kg)												*	*	*
			0.025	0.02	0.023	0.022	0.0254	0.0214	0.0226	0.021	0.02	0.1	2	*
Pentachiorophenoi SW8151A 0.0852 U 0.076 U, H 0.0809 U 0.0759 U 0.0875 U 0.0739 U 0.078 U 0.0725 U 0.0823 U * * *	, .		0.0050	0.0=2		0.2==0.11	0.02=					J.		
NOTES:	<u> </u>	SW8151A	0.0852 U	0.076 U, H	0.0809 U	0.0759 U	0.0875 U	0.0739 U	0.078 U	0.0725 U	0.0823 U	*	*	*

- Unresolved gasoline range organics (C6-C12) were detected in this sample (1,030 mg/kg). The beginning pattern matches mineral spirits but the end pattern is a different product.
 Natural background soil metals concentrations shown are for Yakima Basin with the exception of Barium (value from Spokane Basin), silver (statewide value), and selenium (statewide value).

Bold values indicate a detection.

Criteria for gasoline-range petroleum in soil are 30 mg/kg when benzene is present and 100 mg/kg when benzene is not present.

All samples were submitted for benzene, toluene, ethylbenzene, and xylenes analysis; no analytes were detected above reporting limits.

NA = Not applicable.

Shaded values indicate a MTCA Method A exceedance.

cPAHs = carcinogenic polycyclic aromatic hydrocarbons; D= dilution was required; H = holding times for preparation or analysis exceeded; mg/kg = milligram per kilogram; MTCA = Model Toxics Control Act; NWTPH-Dx = Northwest Total Petroleum Hydrocarbons-Diesel Extended; NWTPH-Gx = Northwest Total Petroleum Hydrocarbons-Gasoline Extended; TCLP = Toxicity Characteristic Leaching Procedure; TEF = toxicity equivalency factor; U = the analyte was not detected above the laboratory reporting limit shown

106384-002 106384-002-R2f-AD-TD-1.xlsx-3/23/2023/wp/tvv

³ Criteria for gasoline-range petroleum in soil are 100 mg/kg when benzene is not present.

⁴ Criteria for chromium are for hexavalent chromium/trivalent chromium.

^{*} No MTCA Method A values have been established for this analyte.

Table D-2: Summary of 2017 Analytical Testing Data

Boring:			В-1	1-17			B-2-	-17		MTCA Soil C	leanup Levels	
Sample Identification:		ES-1	ES-2	ES-3	ES-4	ES-5	ES-6	ES-7	ES-8			Natural
Sample Depth (feet below	around surface).	0.4	41.5	43.5	53.9	0.2	8.8	15.8	21.2	Method A	Method B	Background Soi
Sample Date:	ground surface).	07/25/17	07/26/17	07/26/17	07/27/17	08/03/17	08/03/17	08/03/17	08/03/17	Unrestricted	Direct Contact	Metals
Sample Delivery Group:		1707301	1707301	1707301	1707301	1708051	1708051	1708051	1708051	Land Use	Noncancer	Concentration ¹
Analyte	Method	1707501	1101301	1707301	1707301	1700031	1700001	1700031	1700031	Land 036	Noncancei	Concentration
Petroleum Hydrocarbons												
•	NWTPH-Gx	NA	4.4 U	5.2 U	5.4 U	NΙΛ	25.0.11	4.5 U	4.7 U	100 ²	*	*
Gasoline #2 Diesel	NWTPH-GX NWTPH-Dx	NA NA	4.4 U 18.3 U	20.2 U	18.8 U	NA NA	25.8 U 19.2 U	4.5 U 18.9 U	20.4 U	2,000	*	*
Lube Oil	NWTPH-Dx	NA NA	45.8 U	50.5 U	47.0 U	NA NA	495	47.3 U	51.0 U	2,000	*	*
Volatile Organic Compou		IVA	45.0 0	30.3 0	47.0 0	INA	433	47.5 0	31.0 0	2,000		
Toluene	SW8260C	NA	0.0175 U	0.0207 U	0.0218 U	NA	0.177	0.0181 U	0.0186 U	7	6,400	*
1,2,3-Trichlorobenzene	SW8260C	NA NA	0.0175 U	0.0207 U	0.0218 U	NA NA	0.27	0.0181 U	0.0186 U	*	*	*
1,2,4-Trichlorobenzene	SW8260C	NA NA	0.0218 U	0.0259 U	0.0272 U	NA NA	0.27	0.0226 U	0.0233 U	*	800	*
RCRA 8 Metals (mg/kg)	01102000	197	0.0210 0	0.0200 0	0.0272	107	VIZI	0.0220	0.0200 0			
Arsenic	SW6020A	3.24	2.32	1.98	1.79	4.19	2.92	2.07	2.1	20	24	5
Barium	SW6020A	71	57.5	51.9	89.9	162	72.5	54.2	63.6	*	16000	255
Cadmium	SW6020A	0.153 U	0.149 U	0.17 U	0.161 U	0.175	0.473 U	0.17 U	0.172 U	2	80	1
Chromium	SW6020A	38.1	18.1	13.2	15.7	36.7	5.51	23	23.2	19/2,000 4	240/120,000	38
Lead	SW6020A	3.24	2.29	1.58	2.05	7.1	14.2	2.65	2.29	250	*	11
Mercury	SW7471B	0.208 U	0.196 U	0.208 U	0.211 U	0.251 U	0.702 U	0.253 U	0.288 U	2	*	0.05
Selenium	SW6020A	1.95	1.5	1.97	1.77	2.16	1.18 U	1.63	1.53	*	400	0.78
Silver	SW6020A	0.078 U	0.082 U	0.082 U	0.083 U	0.081 U	0.224 U	0.08 U	0.094 U	*	400	0.61
Additional Metals (mg/kg)												
Copper	SW6020A	20.1	14.2	16	16.6	48.8	12	14.7	18.7	*	3,200	26
Nickel	SW6020A	62	19.3	17.9	16.2	69.1	5.56	25	19.5	*	1,600	46
Zinc	SW6020A	69.2	40.8	40.3	45.3	82.7	56.5	43.7	42.2	*	24,000	79
Polycyclic Aromatic Hydr			0.0445.11	0.0200.11	0.0440.11	NΙΛ	0.4400.11	0.0074.11	0.0455.11			*
1-Methylnaphthalene 2-Methylnaphthalene	SW8270DSIM SW8270DSIM	NA NA	0.0415 U 0.0415 U	0.0396 U 0.0396 U	0.0442 U 0.0442 U	NA NA	0.1190 U 0.1190 U	0.0371 U 0.0371 U	0.0455 U 0.0455 U		<u></u>	*
Acenaphthene	SW8270DSIM	NA NA	0.0415 U	0.0396 U	0.0442 U	NA NA	0.1190 U	0.0371 U	0.0455 U		<u>-</u>	*
Acenaphthylene	SW8270DSIM	NA NA	0.0415 U	0.0396 U	0.0442 U	NA NA	0.1190 U	0.0371 U	0.0455 U		-	*
Anthracene	SW8270DSIM	NA NA	0.0415 U	0.0396 U	0.0442 U	NA NA	0.1190 U	0.0371 U	0.0455 U			*
Benz[a]anthracene	SW8270DSIM	NA NA	0.0415 U	0.0396 U	0.0442 U	NA NA	0.1190 U	0.0371 U	0.0455 U		.	*
Benzo(a)pyrene	SW8270DSIM	NA	0.0415 U	0.0396 U	0.0442 U	NA	0.1190 U	0.0371 U	0.0455 U		-	*
Benzo(b)fluoranthene	SW8270DSIM	NA	0.0415 U	0.0396 U	0.0442 U	NA	0.1190 U	0.0371 U	0.0455 U			*
Benzo(ghi)perylene	SW8270DSIM	NA	0.0415 U	0.0396 U	0.0442 U	NA	0.1190 U	0.0371 U	0.0455 U			*
Benzo(k)fluoranthene	SW8270DSIM	NA	0.0415 U	0.0396 U	0.0442 U	NA	0.1190 U	0.0371 U	0.0455 U			*
Chrysene	SW8270DSIM	NA	0.0415 U	0.0396 U	0.0442 U	NA	0.1190 U	0.0371 U	0.0455 U			*
Dibenzo(a,h)anthracene	SW8270DSIM	NA	0.0415 U	0.0396 U	0.0442 U	NA	0.1190 U	0.0371 U	0.0455 U			*
Fluoranthene	SW8270DSIM	NA	0.0415 U	0.0396 U	0.0442 U	NA	0.1190 U	0.0371 U	0.0455 U		-	*
Fluorene	SW8270DSIM	NA	0.0415 U	0.0396 U	0.0442 U	NA	0.1190 U	0.0371 U	0.0455 U		-	*
Indeno(1,2,3-cd)pyrene	SW8270DSIM	NA NA	0.0415 U	0.0396 U	0.0442 U	NA NA	0.1190 U	0.0371 U	0.0455 U		-	*
Naphthalene	SW8270DSIM	NA NA	0.0415 U	0.0396 U	0.0442 U	NA NA	0.1190 U	0.0371 U	0.0455 U			*
Phenanthrene Disconne	SW8270DSIM	NA NA	0.0415 U	0.0396 U	0.0442 U	NA NA	0.1190 U	0.0371 U	0.0455 U			*
Pyrene Polychlorinated Biphenyl	SW8270DSIM	NA NA	0.0415 U	0.0396 U	0.0442 U	NA NA	0.1190 U	0.0371 U	0.0455 U			
<u> </u>	SW8082	NA	0.0889 U	0.105 U	0.106 U	NA	0.295 U	0.103 U	0.118 U			*
PCB-aroclor 1016 PCB-aroclor 1221	SW8082 SW8082	NA NA	0.0889 U	0.105 U 0.105 U	0.106 U	NA NA	0.295 U 0.295 U	0.103 U	0.118 U 0.118 U		- <u>-</u>	*
PCB-aroclor 1232	SW8082	NA NA	0.0889 U	0.105 U	0.106 U	NA NA	0.295 U	0.103 U	0.118 U		- 	*
PCB-aroclor 1242	SW8082	NA NA	0.0889 U	0.105 U	0.106 U	NA NA	0.295 U	0.103 U	0.118 U		 	*
PCB-aroclor 1248	SW8082	NA NA	0.0889 U	0.105 U	0.106 U	NA NA	0.295 U	0.103 U	0.118 U		 	*
PCB-aroclor 1254	SW8082	NA NA	0.0889 U	0.105 U	0.106 U	NA NA	0.295 U	0.103 U	0.118 U		 	*
PCB-aroclor 1260	SW8082	NA NA	0.0889 U	0.105 U	0.106 U	NA NA	0.295 U	0.103 U	0.118 U		-	*
PCB-aroclor 1262	SW8082	NA NA	0.0889 U	0.105 U	0.106 U	NA NA	0.295 U	0.103 U	0.118 U			*
PCB-aroclor 1268	SW8082	NA	0.0889 U	0.105 U	0.106 U	NA	0.295 U	0.103 U	0.118 U			*
PCB, Sum of Aroclors	SW8082	NA	0.0889 U	0.105 U	0.106 U	NA	0.295 U	0.103 U	0.118 U		-	*

Boring:			B-1	-17			B-2	2-17		MTCA Soil Cl	eanup Levels	
Sample Identification:		ES-1	ES-2	ES-3	ES-4	ES-5	ES-6	ES-7	ES-8			Natural
Sample Depth (feet below	ground surface):	0.4	41.5	43.5	53.9	0.2	8.8	15.8	21.2	Method A	Method B	Background Soil
Sample Date:	g	07/25/17	07/26/17	07/26/17	07/27/17	08/03/17	08/03/17	08/03/17	08/03/17	Unrestricted	Direct Contact	Metals
Sample Delivery Group:		1707301	1707301	1707301	1707301	1708051	1708051	1708051	1708051	Land Use	Noncancer	Concentration ¹
Analyte	Method	1101001	1101001	1101001	1101001	1100001	1100001	1100001	1100001	Lana 300	Homounoon	Concentration
Organochlorine Pesticides												
4,4'-DDD	SW8081A	0.009 U	NA	NA	NA	0.011 U	NA	NA	NA		-	*
4,4'-DDE	SW8081A	0.009 U	NA NA	NA NA	NA NA	0.011 U	NA NA	NA NA	NA NA			*
4,4'-DDT	SW8081A	0.009 U	NA NA	NA NA	NA NA	0.011 U	NA NA	NA NA	NA NA			*
Aldrin	SW8081A	0.009 U	NA NA	NA NA	NA NA	0.011 U	NA NA	NA NA	NA NA			*
alpha-BHC	SW8081A	0.009 U	NA	NA NA	NA NA	0.011 U	NA NA	NA NA	NA NA	_	_	*
beta-BHC	SW8081A	0.009 U	NA	NA	NA	0.011 U	NA	NA	NA	_	-	*
cis-Chlordane	SW8081A	0.009 U	NA	NA	NA	0.011 U	NA	NA	NA	_	-	*
delta-BHC	SW8081A	0.009 U	NA	NA	NA	0.011 U	NA	NA	NA		-	*
Dieldrin	SW8081A	0.009 U	NA	NA	NA	0.011 U	NA	NA	NA	_	-	*
Endosulfan I	SW8081A	0.009 U	NA	NA	NA	0.011 U	NA	NA	NA	_	-	*
Endosulfan II	SW8081A	0.009 U	NA	NA	NA	0.011 U	NA	NA	NA	-	-	*
Endosulfan Sulfate	SW8081A	0.009 U	NA	NA	NA	0.011 U	NA	NA	NA	-	-	*
Endrin	SW8081A	0.009 U	NA	NA	NA	0.011 U	NA	NA	NA		-	*
Endrin Aldehyde	SW8081A	0.009 U	NA	NA	NA	0.011 U	NA	NA	NA		-	*
Endrin Ketone	SW8081A	0.009 U	NA	NA	NA	0.011 U	NA	NA	NA		-	*
gamma-Chlordane	SW8081A	0.009 U	NA	NA	NA	0.011 U	NA	NA	NA		-	*
Heptachlor	SW8081A	0.009 U	NA	NA	NA	0.011 U	NA	NA	NA		-	*
Heptachlor Epoxide	SW8081A	0.009 U	NA	NA	NA	0.011 U	NA	NA	NA	-	-	*
Lindane	SW8081A	0.009 U	NA	NA	NA	0.011 U	NA	NA	NA	-	-	*
Methoxychlor	SW8081A	0.009 U	NA	NA	NA	0.011 U	NA	NA	NA	_	-	*
Toxaphene	SW8081A	0.090 U	NA	NA	NA	0.106 U	NA	NA	NA	<u>-</u>	-	*
Herbicides (mg/kg)												
<u>2,4,5-T</u>	SW8151A	0.0485 U	NA	NA	NA	0.0516 U	NA	NA	NA	_	-	*
2,4-D	SW8151A	0.0291 U	NA	NA	NA	0.0309 U	NA	NA	NA	-	-	*
2,4-DB	SW8151A	0.0242 U	NA	NA	NA	0.0258 U	NA	NA	NA	_	-	*
3,5-Dichlorobenzoic Acid	SW8151A	0.0388 U	NA	NA	NA	0.0413 U	NA	NA	NA	-	-	*
4-Nitrophenol	SW8151A	0.0291 U	NA	NA	NA	0.0309 U	NA	NA	NA	-	-	*
Acifluorfen	SW8151A	0.0776 U	NA	NA	NA	0.0825 U	NA	NA	NA	-	-	*
Bentazon	SW8151A	0.0339 U	NA	NA	NA	0.0361 U	NA	NA	NA	-	-	*
Chloramben	SW8151A	0.0194 U	NA	NA	NA	0.0206 U	NA	NA	NA	-	-	*
Chlorthal-dimethyl	SW8151A	0.0291 U	NA	NA	NA	0.0309 U	NA	NA	NA	-	-	*
Dalapon	SW8151A	0.1940 U	NA	NA	NA	0.2060 U	NA	NA	NA	-	-	*
Dicamba	SW8151A	0.0339 U	NA	NA	NA	0.0361 U	NA	NA	NA	-	-	
Dichlorprop	SW8151A	0.0242 U	NA	NA	NA	0.0258 U	NA	NA	NA	-	-	*
Dinoseb	SW8151A	0.0291 U	NA	NA	NA	0.0309 U	NA	NA	NA	-		*
MCPA	SW8151A	2.7200 U	NA	NA	NA	2.8900 U	NA	NA	NA	-		*
Mecoprop	SW8151A	4.2700 U	NA	NA	NA	4.5400 U	NA	NA	NA NA			*
Picloram	SW8151A	0.0485 U	NA NA	NA NA	NA NA	0.0516 U	NA	NA	NA NA	-	-	*
Silvex	SW8151A	0.0194 U	NA	NA	NA	0.0206 U	NA NA	NA	NA	-	-	*
NOTES:												

NOTES:

Bold values indicate a detection.

Concentrations are in milligrams per kilogram (mg/kg)

- 1 Natural background soil metals concentrations shown are for Yakima Basin with the exception of Barium (value from Spokane Basin), silver (statewide value), and selenium (statewide value).
- 2 Criteria for gasoline-range petroleum in soil is 100 mg/kg when benzene is not present.
- 3 Only VOCs that were detected within one or more sample are shown in the table. All other VOCs were not detected above laboratory reporting limits.
- 4 Criteria for chromium are for hexavalent chromium/trivalent chromium.
- * = criteria not established for this analyte
- -- = not shown, no detections occurred within analytical group

mg/kg = milligram per kilogram; MTCA = Model Toxics Control Act; NA = not analyzed; MTCA = Model Toxics Control Act; NWTPH-Dx = Northwest Total Petroleum Hydrocarbons-Diesel Extended; NWTPH-Gx = Northwest Total Petroleum Hydrocarbons-Gasoline Extended; RCRA = Resource Conservation and Recovery Act; U = the analyte was not detected above the indicated laboratory reporting limit

Table D-3: Summary of 2014 Analytical Testing Data

Boring:		EWC-l	B-01-14	EWC-B-02-14	EWC-B-03-14	EWC-B-04-14	MTCA Method A Unrestricted Land	MTCA Method A Industrial Land
Sample Identification:		EWC-B-01-14:10.0	EWC-B-01-14:15.0	EWC-B-02-14:12.25	EWC-B-03-14:12.0	EWC-B-04-14:10.0	Use (mg/kg)	Use (mg/kg)
Analyte	Method							555 (g/g/
Petroleum Hydrocarbons (m	ig/kg)							
Gasoline Range Organics	NWTPH-Gx	8.3 U	11 U	5.1 U	4.5 U	2.8 U	30/100	30/100
Diesel Range Organics	NWTPH-Dx	32 U	42 U	18 U	18 U	20 U	2,000	2,000
Lube Oil	NWTPH-Dx	147	1540	46 U	46 U	50 U	2,000	2,000
Volatile Organic Compound	s (mg/kg)							
Benzene	SW8260C	0.033 U	0.042 U	0.020 U	0.018 U	0.011 U	0.03	0.03
Toluene	SW8260C	0.033 U	0.042 U	0.020 U	0.018 U	0.011 U	7	7
Ethylbenzene	SW8260C	0.050 U	0.064 U	0.030 U	0.027 U	0.017 U	6	6
m, p-Xylene	SW8260C	0.033 U	0.042 U	0.020 U	0.018 U	0.011 U		
o-Xylene	SW8260C	0.033 U	0.042 U	0.020 U	0.018 U	0.011 U	- 9	9
MTCA 5 Metals (mg/kg)								
Arsenic	SW6010C	2.5	6.1	2.2	2.0	2.8	20	20
Cadmium	SW6010C	0.53	0.87	0.17 U	0.16 U	0.18 U	2	2
Chromium	SW6010C	13	18	14	11	25	2,000	2,000
Lead	SW6010C	21	36	2.9	1.9	2.5	250	1,000
Mercury	SW7471B	0.41 U	0.50 U	0.29 U	0.26 U	0.29 U	2	2
Polynuclear Aromatic Hydro	carbons (PAHs) (mg/kg	g)						
Naphthalene	SW8270DSIM	0.083 U	0.241	0.053 U	0.049 U	0.058 U	5	5
2-Methylnaphthalene	SW8270DSIM	0.083 U	0.0997 U	0.053 U	0.049 U	0.058 U	*	*
1-Methylnaphthalene	SW8270DSIM	0.083 U	0.0997 U	0.053 U	0.049 U	0.058 U	*	*
Acenaphthylene	SW8270DSIM	0.083 U	0.0997 U	0.053 U	0.049 U	0.058 U	*	*
Acenaphthene	SW8270DSIM	0.083 U	0.126	0.053 U	0.049 U	0.058 U	*	*
Fluorene	SW8270DSIM	0.083 U	0.178	0.053 U	0.049 U	0.058 U	*	*
Phenanthrene	SW8270DSIM	0.083 U	1.07	0.053 U	0.049 U	0.058 U	*	*
Anthracene	SW8270DSIM	0.083 U	0.289	0.053 U	0.049 U	0.058 U	*	*
Fluoranthene	SW8270DSIM	0.12	1.09	0.053 U	0.049 U	0.058 U	*	*
Pyrene	SW8270DSIM	0.083 U	0.839	0.053 U	0.049 U	0.058 U	*	*
Benz[a]anthracene	SW8270DSIM	0.083 U	0.46	0.053 U	0.049 U	0.058 U	*	*
Chrysene	SW8270DSIM	0.083 U	0.25	0.053 U	0.049 U	0.058 U	*	*
Benzo(k)fluoranthene	SW8270DSIM	0.083 U	0.20	0.053 U	0.049 U	0.058 U	*	*
Benzo(b)fluoranthene	SW8270DSIM	0.083 U	0.51	0.053 U	0.049 U	0.058 U	*	*
Benzo(ghi)perylene	SW8270DSIM	0.083 U	0.25	0.053 U	0.049 U	0.058 U	*	*
Benzo(a)pyrene	SW8270DSIM	0.083 U	0.38	0.053 U	0.049 U	0.058 U	0.1	2
Indeno(1,2,3-cd)pyrene	SW8270DSIM	0.083 U	0.23	0.053 U	0.049 U	0.058 U	*	*
Dibenzo(a,h)anthracene	SW8270DSIM	0.083 U	0.13	0.053 U	0.049 U	0.058 U	*	*
Benzo(ghi)perylene	SW8270DSIM	0.083 U	0.25	0.053 U	0.049 U	0.058 U	*	*
TEF-adjusted cPAHs (see Tal		0.0020 U	0.58	0.0010 U	0.0010 U	0.0012 U	0.1	2

Boring:		EWC-E	3-01-14	EWC-B-02-14	EWC-B-03-14	FWC-8-01-11	MTCA Method A Unrestricted Land	MTCA Method A Industrial Land
Sample Identification:		EWC-B-01-14:10.0	EWC-B-01-14:15.0	EWC-B-02-14:12.25	EWC-B-03-14:12.0	EWC-B-04-14:10.0	Use (mg/kg)	Use (mg/kg)
Analyte	Method							
Detected Herbicides (ug/kg)								
Pentachlorophenol	SW8151A	0.35	0.036 U	0.043	0.051	0.15	*	*

NOTES:

Bold values indicate a detection.

Criteria for gasoline-range petroleum in soil are 30 mg/kg when benzene is present and 100 mg/kg when benzene is not present.

Shaded values indicate a MTCA Method A exceedance.

cPAHs = carcinogenic polycyclic aromatic hydrocarbons; EWC = East-West Corridor; mg/kg = milligram per kilogram; MTCA = Model Toxics Control Act; NWTPH-Dx = Northwest Total Petroleum Hydrocarbons-Diesel Extended; NWTPH-Gx = Northwest Total Petroleum Hydrocarbons-Gasoline Extended; TEF = toxicity equivalent factor; U = the analyte was not detected above the laboratory reporting limit shown; ug/kg = microgram per kilogram

^{*} No MTCA Method A values have been established for this analyte.

Table D-4: Summary of Adjusted Toxicity Equivalence Factor Concentrations

2				Toxic Equivalency	
Soil Sample	Analyte	Sample Result (mg/kg)	Method Detection Limit (mg/kg)	Factor (TEF)	Adjusted Concentration ¹ (mg/kg)
Campic	Benzo(a)anthracene	ND	0.0213	0.1	0.001065
	Chrysene	ND	0.0426	0.01	0.000213
	Benzo(b)fluoranthene	ND	0.0213	0.1	0.001065
.84	Benzo(k)fluoranthene	ND	0.0213	0.1	0.001065
B-9-21/R-10@48	Benzo(a)pyrene	ND	0.0213	1	0.01065
₩	Indeno(1,2,3-c,d)pyrene	ND	0.0426	0.1	0.00213
9-7	Dibenzo(a,h)anthracene	ND	0.0426	0.4	0.0085
ம்	Sum ²				0.025
	MTCA Method A Cleanup Level for Unrestricted	Land Use			0.10
	MTCA Method A Cleanup Level for Industrial L	and Use			2.0
	Benzo(a)anthracene	ND	0.0191	0.1	0.000955
	Chrysene	ND	0.0383	0.01	0.0001915
2	Benzo(b)fluoranthene	ND	0.0191	0.1	0.000955
915.	Benzo(k)fluoranthene	ND	0.0191	0.1	0.000955
3.3	Benzo(a)pyrene	ND	0.0191	1	0.00955
21/S	Indeno(1,2,3-c,d)pyrene	ND	0.0383	0.1	0.001915
B-10-21/S-3@15.5'	Dibenzo(a,h)anthracene	ND	0.0383	0.4	0.0077
<u>ф</u>	Sum ²				0.02
	MTCA Method A Cleanup Level for Unrestricted	Land Use			0.10
	MTCA Method A Cleanup Level for Industrial L	and Use			2.0
	Benzo(a)anthracene	ND	0.0202	0.1	0.00101
	Chrysene	ND	0.0404	0.01	0.000202
_	Benzo(b)fluoranthene	ND	0.0202	0.1	0.00101
348	Benzo(k)fluoranthene	ND	0.0202	0.1	0.00101
/a9(Benzo(a)pyrene	ND	0.0202	1	0.0101
B-10-21/a9@48	Indeno(1,2,3-c,d)pyrene	ND	0.0404	0.1	0.00202
B-10	Dibenzo(a,h)anthracene	ND	0.0404	0.4	0.00808
	Sum ²				0.023
	MTCA Method A Cleanup Level for Unrestricted				0.10
	MTCA Method A Cleanup Level for Industrial L	and Use			2.0

0 "				Toxic Equivalency		
Soil Sample	Analyte	Sample Result (mg/kg)	Method Detection Limit (mg/kg)	Factor (TEF)	Adjusted Concentration ¹ (mg/kg)	
Sample	Benzo(a)anthracene	ND	0.0190	0.1	0.00095	
	Chrysene	ND ND	0.0379	0.01	0.00095	
	Benzo(b)fluoranthene	ND ND	0.0379	0.01	0.0001695	
351	Benzo(k)fluoranthene	ND ND	0.0190	0.1	0.00095	
10@	` '	ND ND	0.0190	1	0.0095	
\ \	Benzo(a)pyrene Indeno(1,2,3-c,d)pyrene	ND ND	0.0379	0.1	0.0095	
P-2	Dibenzo(a,h)anthracene	ND ND	0.0379	0.1	0.00758	
B-11P-21/R-10@51'	Sum ²	ואט	0.0379	0.4		
					0.0220	
	MTCA Method A Cleanup Level for Unrestricted				0.10	
	MTCA Method A Cleanup Level for Industrial L				2.0	
	Benzo(a)anthracene	ND	0.0219	0.1	0.001095	
	Chrysene	ND	0.0437	0.01	0.0002185	
20.	Benzo(b)fluoranthene	ND	0.0219	0.1	0.001095	
B-12P-21/R-11@50'	Benzo(k)fluoranthene	ND	0.0219	0.1	0.001095	
<u>₹</u>	Benzo(a)pyrene	ND	0.0219	1	0.01095	
-21	Indeno(1,2,3-c,d)pyrene	ND	0.0437	0.1	0.002185	
12P	Dibenzo(a,h)anthracene	ND	0.0437	0.4	0.00874	
ம்	Sum ²				0.0254	
	MTCA Method A Cleanup Level for Unrestricted				0.10	
	MTCA Method A Cleanup Level for Industrial L				2.0	
	Benzo(a)anthracene	ND	0.0185	0.1	0.000925	
	Chrysene	ND	0.0369	0.01	0.0001845	
-	Benzo(b)fluoranthene	ND	0.0185	0.1	0.000925	
933	Benzo(k)fluoranthene	ND	0.0185	0.1	0.000925	
R-8(Benzo(a)pyrene	ND	0.0185	1	0.00925	
21/1	Indeno(1,2,3-c,d)pyrene	ND	0.0369	0.1	0.001845	
B-13-21/R-8@39'	Dibenzo(a,h)anthracene	ND	0.0369	0.4	0.00738	
a	Sum ²				0.0214	
	MTCA Method A Cleanup Level for Unrestricted	d Land Use			0.10	
	MTCA Method A Cleanup Level for Industrial L				2.0	

				Toxic Equivalency	
Soil		Comple Desult (months)	Method Detection Limit	Factor	Adjusted Concentration ¹
Sample	Analyte	Sample Result (mg/kg)	(mg/kg)	(TEF)	(mg/kg)
	Benzo(a)anthracene	ND	0.0195	0.1	0.000975
	Chrysene	ND	0.0390	0.01	0.000195
i-	Benzo(b)fluoranthene	ND	0.0195	0.1	0.000975
@	Benzo(k)fluoranthene	ND	0.0195	0.1	0.000975
B-13-21/R-9@47	Benzo(a)pyrene	ND	0.0195	1	0.00975
	Indeno(1,2,3-c,d)pyrene	ND	0.0390	0.1	0.00195
	Dibenzo(a,h)anthracene	ND	0.0390	0.4	0.0078
	Sum ²				0.0226
	MTCA Method A Cleanup Level for Unrestricted	ed Land Use			0.10
	MTCA Method A Cleanup Level for Industrial	Land Use			2.0
	Benzo(a)anthracene	ND	0.0181	0.1	0.000905
	Chrysene	ND	0.0363	0.01	0.0001815
_	Benzo(b)fluoranthene	ND	0.0181	0.1	0.000905
348	Benzo(k)fluoranthene	ND	0.0181	0.1	0.000905
)6- >	Benzo(a)pyrene	ND	0.0181	1	0.00905
21/F	Indeno(1,2,3-c,d)pyrene	ND	0.0363	0.1	0.001815
B-14-21/R-9@48'	Dibenzo(a,h)anthracene	ND	0.0363	0.4	0.00726
ம்	Sum ²				0.0210
	MTCA Method A Cleanup Level for Unrestricte	ed Land Use			0.10
	MTCA Method A Cleanup Level for Industrial				2.0
	Benzo(a)anthracene	ND	0.0206	0.1	0.00103
	Chrysene	ND	0.0411	0.01	0.0002055
<u>-</u>	Benzo(b)fluoranthene	ND	0.0206	0.1	0.00103
@ 21	Benzo(k)fluoranthene	ND	0.0206	0.1	0.00103
S-5(Benzo(a)pyrene	ND	0.0206	1	0.0103
.21//	Indeno(1,2,3-c,d)pyrene	ND	0.0411	0.1	0.002055
B-15P-21/S-5@21'	Dibenzo(a,h)anthracene	ND	0.0411	0.4	0.0082
<u>ф</u>	Sum ²				0.02
	MTCA Method A Cleanup Level for Unrestricte	ed Land Use			0.10
	MTCA Method A Cleanup Level for Industrial				2.0

0 "				Toxic Equivalency	
Soil Sample	Amalista	Sample Result (mg/kg)	Method Detection Limit (mg/kg)	Factor (TEF)	Adjusted Concentration ¹ (mg/kg)
Sample	Analyte	ND	0.0015	0.1	0.000075
	Benzo(a)anthracene				
	Chrysene	ND ND	0.0017	0.01	0.00000845
0.0	Benzo(b)fluoranthene	ND	0.0019	0.1	0.0000965
EWC-B-01-14:10.0	Benzo(k)fluoranthene	ND	0.0015	0.1	0.000077
7-	Benzo(a)pyrene	ND	0.0019	1	0.000965
	Indeno(1,2,3-c,d)pyrene	ND	0.0021	0.1	0.000106
WC	Dibenzo(a,h)anthracene	ND	0.0019	0.4	0.0004
ш	Sum ²				0.002
	MTCA Method A Cleanup Level for Unrestricted				0.10
	MTCA Method A Cleanup Level for Industrial La	and Use			2.0
	Benzo(a)anthracene	0.46	0.0019	0.1	0.0462
	Chrysene	0.25	0.0020	0.01	0.00248
o.	Benzo(b)fluoranthene	0.51	0.0023	0.1	0.0507
:15	Benzo(k)fluoranthene	0.20	0.0018	0.1	0.0203
1-14	Benzo(a)pyrene	0.38	0.0023	1	0.382
Ģ B	Indeno(1,2,3-c,d)pyrene	0.23	0.0025	0.1	0.0231
EWC-B-01-14:15.0	Dibenzo(a,h)anthracene	0.13	0.0022	0.4	0.0536
ũ	Sum ²				0.58
	MTCA Method A Cleanup Level for Unrestricted	d Land Use			0.10
	MTCA Method A Cleanup Level for Industrial La	and Use			2.0
	Benzo(a)anthracene	ND	0.0010	0.1	0.00005
	Chrysene	ND	0.0011	0.01	0.0000545
52	Benzo(b)fluoranthene	ND	0.0013	0.1	0.0000625
12.2	Benzo(k)fluoranthene	ND	0.0009	0.1	0.000045
.14:	Benzo(a)pyrene	ND	0.0013	1	0.000625
-05	Indeno(1,2,3-c,d)pyrene	ND	0.0013	0.1	0.000065
EWC-B-02-14:12.25	Dibenzo(a,h)anthracene	ND	0.0012	0.4	0.00024
M	Sum ²				0.001
	MTCA Method A Cleanup Level for Unrestricted	d Land Use			0.10
	MTCA Method A Cleanup Level for Industrial L				2.0

				Toxic Equivalency	
Soil Sample	Associate	Sample Result (mg/kg)	Method Detection Limit	Factor (TEF)	Adjusted Concentration ¹
•	Analyte	ND	(mg/kg) 0.0009	0.1	(mg/kg) 0.000045
	Benzo(a)anthracene				
	Chrysene	ND ND	0.0010	0.01	0.000005
2.0	Benzo(b)fluoranthene	ND ND	0.0011	0.1	0.000055
	Benzo(k)fluoranthene	ND NB	0.0009	0.1	0.000045
03-1	Benzo(a)pyrene	ND NB	0.0011	1	0.00055
4	Indeno(1,2,3-c,d)pyrene	ND	0.0012	0.1	0.00006
, wc	Dibenzo(a,h)anthracene	ND	0.0011	0.4	0.00022
	Sum ²				0.0010
	MTCA Method A Cleanup Level for Unrestricted				0.10
	MTCA Method A Cleanup Level for Industrial La				2.0
	Benzo(a)anthracene	ND	0.0011	0.1	0.000055
	Chrysene	ND	0.0011	0.01	0.0000055
О.	Benzo(b)fluoranthene	ND	0.0013	0.1	0.000065
4:10	Benzo(k)fluoranthene	ND	0.0010	0.1	0.00005
4-17	Benzo(a)pyrene	ND	0.0013	1	0.00065
B-0	Indeno(1,2,3-c,d)pyrene	ND	0.0014	0.1	0.00007
	Dibenzo(a,h)anthracene	ND	0.0013	0.4	0.00026
ш	Sum ²				0.0012
	MTCA Method A Cleanup Level for Unrestricted	Land Use			0.10
	MTCA Method A Cleanup Level for Industrial La	and Use			2.0
	Benzo(a)anthracene	0.086	0.0500	0.1	0.0086
	Chrysene	0.082	0.0500	0.01	0.00082
~	Benzo(b)fluoranthene	ND	0.0500	0.1	0.0025
4:1	Benzo(k)fluoranthene	ND	0.0500	0.1	0.0025
3-1	Benzo(a)pyrene	ND	0.0500	1	0.025
<u>4</u>	Indeno(1,2,3-c,d)pyrene	ND	0.0500	0.1	0.0025
EWC-TP-03-14:12	Dibenzo(a,h)anthracene	ND	0.0500	0.4	0.0100
Ē	Sum ²				0.052
	MTCA Method A Cleanup Level for Unrestricted	Land Use			0.10
	MTCA Method A Cleanup Level for Industrial La				2.0

Soil Sample	Analyte	Sample Result (mg/kg)	Method Detection Limit (mg/kg)	Toxic Equivalency Factor (TEF)	Adjusted Concentration ¹ (mg/kg)
	Benzo(a)anthracene	0.086	0.0100	0.1	0.0086
	Chrysene	0.070	0.0100	0.01	0.0007
_	Benzo(b)fluoranthene	0.033	0.0100	0.1	0.0033
4:1	Benzo(k)fluoranthene	0.012	0.0100	0.1	0.0012
04-1	Benzo(a)pyrene	0.024	0.0100	1	0.024
4	Indeno(1,2,3-c,d)pyrene	ND	0.0100	0.1	0.0005
EWC-TP-04-14:11	Dibenzo(a,h)anthracene	ND	0.0100	0.4	0.0020
ш	Sum ²				0.04
	MTCA Method A Cleanup Level for Unro	estricted Land Use			0.10
	MTCA Method A Cleanup Level for Indu	ıstrial Land Use			2.0
	Benzo(a)anthracene	ND	0.0009	0.1	0.000045
	Chrysene	ND	0.0009	0.01	0.0000045
o.	Benzo(b)fluoranthene	ND	0.0011	0.1	0.000055
11.	Benzo(k)fluoranthene	ND	0.0008	0.1	0.00004
2-17	Benzo(a)pyrene	ND	0.0011	1	0.00055
P-0	Indeno(1,2,3-c,d)pyrene	ND	0.0012	0.1	0.00006
EWC-TP-05-14:11.0	Dibenzo(a,h)anthracene	ND	0.0011	0.4	0.00022
<u> </u>	Sum ²				0.0010
	MTCA Method A Cleanup Level for Unro		0.10		
	MTCA Method A Cleanup Level for Indu	ıstrial Land Use			2.0

NOTES:

1 Calculated as the detected concentration times the TEF, or as half the method detection limit (if analyte is not detected) times the TEF.

Bold values indicated a detection.

Shaded values indicate an MTCA Method A exceedance.

cPAH = carcinogenic polycyclic aromatic hydrocarbon; mg/kg = milligrams per kilogram; MTCA = Washington Model Toxics Control Act; ND = not detected

² Sum of the TEF for each cPAH.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Shannon & Wilson Ed Ptak 400 N. 34th Street, Suite 100 Seattle, WA 98103

RE: Yakima EWC Lab ID: 1406291

July 10, 2014

Attention Ed Ptak:

Fremont Analytical, Inc. received 1 sample(s) on 6/27/2014 for the analyses presented in the following report.

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Gasoline by NWTPH-Gx

Mercury by EPA Method 7471

Pentachlorophenol by EPA 8151A

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample Moisture (Percent Moisture)

Total Metals by EPA Method 6020

Volatile Organic Compounds by EPA Method 8260

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Michael Dee

MGR

Sr. Chemist / Principal

CLIENT: Shannon & Wilson Work Order Sample Summary

Project: Yakima EWC Lab Order: 1406291

Lab Sample ID Client Sample ID Date/Time Collected Date/Time Received

1406291-001 EWC-B-02:12.25 06/27/2014 12:00 PM 06/27/2014 12:00 PM

Case Narrative

WO#: **1406291**Date: **7/10/2014**

CLIENT: Shannon & Wilson Project: Yakima EWC

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

WO#: **1406291**Date Reported: **7/10/2014**

Client: Shannon & Wilson Collection Date: 6/27/2014 12:00:00 PM

Project: Yakima EWC

Lab ID: 1406291-001 **Matrix:** Soil

Client Sample ID: EWC-B-02:12.25

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Pentachlorophenol by EPA 8151	<u>A</u>			Batcl	n ID: 8026	Analyst: MD
Pentachlorophenol	0.0434	0.0227		mg/Kg-dry	1	7/9/2014 6:35:00 PM
Surr: 2,4-Dichlorophenylacetic acid	67.5	65-135		%REC	1	7/9/2014 6:35:00 PM
Diesel and Heavy Oil by NWTPH-	Dx/Dx Ext.			Batcl	n ID: 7961	Analyst: EC
Diesel (Fuel Oil)	ND	18.4		mg/Kg-dry	1	6/29/2014 11:59:00 AM
Heavy Oil	ND	45.9		mg/Kg-dry	1	6/29/2014 11:59:00 AM
Surr: 2-Fluorobiphenyl	74.1	50-150		%REC	1	6/29/2014 11:59:00 AM
Surr: o-Terphenyl	76.3	50-150		%REC	1	6/29/2014 11:59:00 AM
Polyaromatic Hydrocarbons by E	PA Method 8	270 (SIM)		Batcl	n ID: 7958	Analyst: NG
Naphthalene	ND	53.3		μg/Kg-dry	1	6/29/2014 8:51:00 PM
2-Methylnaphthalene	ND	53.3		μg/Kg-dry	1	6/29/2014 8:51:00 PM
1-Methylnaphthalene	ND	53.3		μg/Kg-dry	1	6/29/2014 8:51:00 PM
Acenaphthylene	ND	53.3		μg/Kg-dry	1	6/29/2014 8:51:00 PM
Acenaphthene	ND	53.3		μg/Kg-dry	1	6/29/2014 8:51:00 PM
Fluorene	ND	53.3		μg/Kg-dry	1	6/29/2014 8:51:00 PM
Phenanthrene	ND	53.3		μg/Kg-dry	1	6/29/2014 8:51:00 PM
Anthracene	ND	53.3		μg/Kg-dry	1	6/29/2014 8:51:00 PM
Fluoranthene	ND	53.3		μg/Kg-dry	1	6/29/2014 8:51:00 PM
Pyrene	ND	53.3		μg/Kg-dry	1	6/29/2014 8:51:00 PM
Benz(a)anthracene	ND	53.3		μg/Kg-dry	1	6/29/2014 8:51:00 PM
Chrysene	ND	53.3		μg/Kg-dry	1	6/29/2014 8:51:00 PM
Benzo(b)fluoranthene	ND	53.3		μg/Kg-dry	1	6/29/2014 8:51:00 PM
Benzo(k)fluoranthene	ND	53.3		μg/Kg-dry	1	6/29/2014 8:51:00 PM
Benzo(a)pyrene	ND	53.3		μg/Kg-dry	1	6/29/2014 8:51:00 PM
Indeno(1,2,3-cd)pyrene	ND	53.3		μg/Kg-dry	1	6/29/2014 8:51:00 PM
Dibenz(a,h)anthracene	ND	53.3		μg/Kg-dry	1	6/29/2014 8:51:00 PM
Benzo(g,h,i)perylene	ND	53.3		μg/Kg-dry	1	6/29/2014 8:51:00 PM
Surr: 2-Fluorobiphenyl	90.5	42.7-132		%REC	1	6/29/2014 8:51:00 PM
Surr: Terphenyl-d14 (surr)	106	48.8-157		%REC	1	6/29/2014 8:51:00 PM

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1406291**Date Reported: **7/10/2014**

Client: Shannon & Wilson Collection Date: 6/27/2014 12:00:00 PM

Project: Yakima EWC

Lab ID: 1406291-001 **Matrix:** Soil

Client Sample ID: EWC-B-02:12.25

Analyses	Result	RL	Qual	Units	DF	Da	ate Analyzed
Gasoline by NWTPH-Gx				Batcl	n ID: R1	5325	Analyst: GH
Gasoline	ND	5.06		mg/Kg-dry	1	6/30	/2014 8:29:00 AM
Surr: 4-Bromofluorobenzene	110	65-135		%REC	1	6/30	/2014 8:29:00 AM
Surr: Toluene-d8	101	65-135		%REC	1	6/30	/2014 8:29:00 AM
Volatile Organic Compounds by	y EPA Method	<u>8260</u>		Batcl	n ID: 79	57	Analyst: GH
Benzene	ND	0.0202		mg/Kg-dry	1	6/30	/2014 8:29:00 AM
Toluene	ND	0.0202		mg/Kg-dry	1	6/30	/2014 8:29:00 AM
Ethylbenzene	ND	0.0304		mg/Kg-dry	1	6/30	/2014 8:29:00 AM
m,p-Xylene	ND	0.0202		mg/Kg-dry	1	6/30	/2014 8:29:00 AM
o-Xylene	ND	0.0202		mg/Kg-dry	1	6/30	/2014 8:29:00 AM
Surr: Dibromofluoromethane	99.3	63.7-129		%REC	1	6/30	/2014 8:29:00 AM
Surr: Toluene-d8	95.4	61.4-128		%REC	1	6/30	/2014 8:29:00 AM
Surr: 1-Bromo-4-fluorobenzene	92.5	63.1-141		%REC	1	6/30	/2014 8:29:00 AM
Mercury by EPA Method 7471				Batcl	n ID: 79	63	Analyst: MW
Mercury	ND	0.285		mg/Kg-dry	1	6/30	/2014 11:13:07 AM
Total Metals by EPA Method 60	<u>20</u>			Batcl	n ID: 79	71	Analyst: TN
Arsenic	2.23	0.0871		mg/Kg-dry	1	6/30	/2014 4:09:25 PM
Cadmium	ND	0.174		mg/Kg-dry	1		/2014 4:09:25 PM
Chromium	14.4	0.0871		mg/Kg-dry	1	6/30	/2014 4:09:25 PM
Lead	2.85	0.174		mg/Kg-dry	1	6/30	/2014 4:09:25 PM
Sample Moisture (Percent Mois	ture)			Batcl	n ID: R1	5161	Analyst: TK
Percent Moisture	12.4			wt%	1	6/27	/2014 2:28:52 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

Work Order: 1406291

Cadmium

Chromium

Lead

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Project:	Yakima EWC									Total Me	tals by EP	A Metho	d 6020
Sample ID: MB-79	71 Samp	Туре:	IBLK			Units: mg/Kg		Prep Dat	te: 6/30/20)14	RunNo: 153	335	
Client ID: MBLK	S Batch	ı ID: 7	7971					Analysis Da	te: 6/30/20	14	SeqNo: 310	995	
Analyte		Re	sult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			ND	0.100									
Cadmium			ND	0.200									
Chromium			ND	0.100									
Lead			ND	0.200									
Sample ID: LCS-7	971 Samp	Туре: L	_cs			Units: mg/Kg		Prep Dat	te: 6/30/2 0)14	RunNo: 153	335	
Client ID: LCSS	Batch	ı ID:	7971					Analysis Da	te: 6/30/2 0	14	SeqNo: 310	996	
Analyte		Re	sult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			114	0.100	104.0	0	109	69.5	130.8				
Cadmium			112	0.200	92.80	0	121	73.3	127.2				
Chromium		6	8.9	0.100	62.90	0	110	67.9	132				
Lead		;	359	0.200	319.0	0	113	75.9	124.1				
Sample ID: 14062 9	91-001ADUP Samp	Туре: [DUP			Units: mg/Kg-	dry	Prep Dat	te: 6/30/20	114	RunNo: 153	335	
Client ID: EWC-I	3-02:12.25 Batch	ı ID:	7971					Analysis Da	te: 6/30/2 0	14	SeqNo: 310	998	
Analyte		Re	sult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		1	.73	0.0865						2.227	25.1	30	

Analyte detected in the associated Method Blank Qualifiers:

Holding times for preparation or analysis exceeded

ND

11.2

2.62

0.173

0.0865

0.173

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

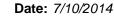
Ε Value above quantitation range

ND Not detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

14.42

2.851


30

30

30

25.5

8.59

Work Order: 1406291

Cadmium

Chromium

Lead

CLIENT: Shannon & Wilson

Project: Yakima EWC

QC SUMMARY REPORT

Total Metals by EPA Method 6020

1.84

0.983

6.79

30

30

30

1 10,000													
Sample ID: 1406	291-001AMS	SampType	MS		Units: mg/Kg-dry Prep Date: 6/30/2014				14	RunNo: 153	35		
Client ID: EWC	-B-02:12.25	Batch ID:	7971					Analysis Da	te: 6/30/20	14	SeqNo: 311	000	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			52.2	0.0871	43.56	2.227	115	75	125				
Cadmium			2.33	0.174	2.178	0.06856	104	75	125				
Chromium			66.1	0.0871	43.56	14.42	119	75	125				
Lead			27.9	0.174	21.78	2.851	115	75	125				
Sample ID: 1406	291-001AMSD	SampType	MSD			Units: mg	/Kg-dry	Prep Da	te: 6/30/20	14	RunNo: 153	35	
Client ID: EWC	-B-02:12.25	Batch ID:	7971					Analysis Da	te: 6/30/20	14	SeqNo: 311	001	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic			50.6	0.0852	42.58	2.227	114	75	125	52.21	3.08	30	

0.06856

14.42

2.851

108

120

109

75

75

75

125

125

125

2.326

66.09

27.90

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

2.37

65.4

26.1

0.170

0.0852

0.170

R RPD outside accepted recovery limits

D Dilution was required

2.129

42.58

21.29

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1406291

CLIENT: Shannon & Wilson **QC SUMMARY REPORT**

Mercury by FPA Method 7471

Project: Yakima	EWC							ivierd	sury by EP	A Metho	a /4/
Sample ID: MB-7963	SampType: MBLK			Units: mg/Kg		Prep Date	e: 6/27/20	14	RunNo: 153	16	
Client ID: MBLKS	Batch ID: 7963					Analysis Date	e: 6/30/20	14	SeqNo: 310	683	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	ND	0.250									
Sample ID: LCS-7963	SampType: LCS			Units: mg/Kg		Prep Date	e: 6/27/20	14	RunNo: 153	316	
Client ID: LCSS	Batch ID: 7963					Analysis Date	e: 6/30/20	14	SeqNo: 310	684	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.578	0.250	0.5000	0	116	80	120				
Sample ID: 1406267-001ADU	P SampType: DUP			Units: mg/Kg-	dry	Prep Date	e: 6/27/20	14	RunNo: 153	316	
Client ID: BATCH	Batch ID: 7963					Analysis Date	e: 6/30/20	14	SeqNo: 310	686	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	ND	0.257						0		20	
Sample ID: 1406267-001AMS	SampType: MS			Units: mg/Kg-	dry	Prep Date	e: 6/27/20	14	RunNo: 153	316	
Client ID: BATCH	Batch ID: 7963					Analysis Date	e: 6/30/20	14	SeqNo: 310	687	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.587	0.257	0.5142	0.02544	109	70	130				
Sample ID: 1406267-001AMS	SD SampType: MSD			Units: mg/Kg-	dry	Prep Date	e: 6/27/20	14	RunNo: 153	16	
Client ID: BATCH	Batch ID: 7963					Analysis Date	e: 6/30/20	14	SeqNo: 310	688	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.563	0.248	0.4955	0.02544	108	70	130	0.5873	4.23	20	

Analyte detected in the associated Method Blank Qualifiers:

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range E

ND Not detected at the Reporting Limit

Work Order: 1406291

QC SUMMARY REPORT

CLIENT: Shannon & Wilson Project: Yakima FWC

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Project: Yakıma EV	VC											
Sample ID: 1406256-001ADUP	SampType:	DUP			Units: mg/Kg-	dry	Prep Dat	e: 6/27/20	14	RunNo: 153	15	
Client ID: BATCH	Batch ID:	7961					Analysis Dat	e: 6/29/20	14	SeqNo: 310	640	
Analyte	R	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)		ND	20.6						0	-	30	
Heavy Oil		ND	51.6						0		30	
Surr: 2-Fluorobiphenyl		16.4		20.65		79.4	50	150		0		
Surr: o-Terphenyl		16.8		20.65		81.2	50	150		0		
Sample ID: LCS7961	SampType:	LCS			Units: mg/Kg		Prep Dat	e: 6/29/20	14	RunNo: 153	 :15	
Client ID: LCSS	Batch ID:	7961					Analysis Dat	e: 6/29/20	14	SeqNo: 310	660	
Analyte	R	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)		451	20.0	500.0	0	90.2	65	135				
Surr: 2-Fluorobiphenyl		17.6		20.00		87.9	50	150				
Surr: o-Terphenyl		15.7		20.00		78.7	50	150				
Sample ID: MBLK7961	SampType:	MBLK			Units: mg/Kg		Prep Dat	e: 6/28/20	14	RunNo: 153	15	
Client ID: MBLKS	Batch ID:	7961					Analysis Dat	e: 6/28/20	14	SeqNo: 310	661	
Analyte	R	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)		ND	20.0									
Heavy Oil		ND	50.0									
Surr: 2-Fluorobiphenyl		15.6		20.00		77.9	50	150				
Surr: o-Terphenyl		15.9		20.00		79.4	50	150				

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1406291

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Project: Yakima E	WC				Ро	lyaroma	tic Hydro	ocarbons by	/ EPA Met	hod 8270) (SIM)
Sample ID: MB-7958	SampType: MBLK			Units: µg/Kg		Prep Da	te: 6/27/2 0	14	RunNo: 153	320	
Client ID: MBLKS	Batch ID: 7958					Analysis Da	te: 6/27/20	14	SeqNo: 310	748	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	50.0									
2-Methylnaphthalene	ND	50.0									
1-Methylnaphthalene	ND	50.0									
Acenaphthylene	ND	50.0									
Acenaphthene	ND	50.0									
Fluorene	ND	50.0									
Phenanthrene	ND	50.0									
Anthracene	ND	50.0									
Fluoranthene	ND	50.0									
Pyrene	ND	50.0									
Benz(a)anthracene	ND	50.0									
Chrysene	ND	50.0									
Benzo(b)fluoranthene	ND	50.0									
Benzo(k)fluoranthene	ND	50.0									
Benzo(a)pyrene	ND	50.0									
Indeno(1,2,3-cd)pyrene	ND	50.0									
Dibenz(a,h)anthracene	ND	50.0									
Benzo(g,h,i)perylene	ND	50.0									
Surr: 2-Fluorobiphenyl	477		500.0		95.5	42.7	132				
Surr: Terphenyl-d14 (surr)	601		500.0		120	48.8	157				

Sample ID: 1406284-001ADUP	SampType: DUP	Units: µg/Kg-dry				Prep Dat	e: 6/27/20	14	RunNo: 153		
Client ID: BATCH	Batch ID: 7958					Analysis Dat	e: 6/27/20	14	SeqNo: 310	751	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	54.9						0		30	
2-Methylnaphthalene	ND	54.9						0		30	
1-Methylnaphthalene	ND	54.9						0		30	

Analyte detected in the associated Method Blank Qualifiers:

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

- Dilution was required D
- Analyte detected below quantitation limits
- Reporting Limit

- Value above quantitation range Е
- ND Not detected at the Reporting Limit
 - Spike recovery outside accepted recovery limits

Yakima EWC

Work Order: 1406291

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 1406284-001ADUP Client ID: BATCH	SampType: Batch ID:	DUP 7958			Units: µg/l	Units: μg/Kg-dry Prep Date: 6/27/2014 Analysis Date: 6/27/2014				RunNo: 153 SeqNo: 310		
Analyte	R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthylene		ND	54.9						0		30	
Acenaphthene		ND	54.9						0		30	
Fluorene		ND	54.9						0		30	
Phenanthrene		ND	54.9						0		30	
Anthracene		ND	54.9						0		30	
Fluoranthene		ND	54.9						0		30	
Pyrene		ND	54.9						0		30	
Benz(a)anthracene		ND	54.9						0		30	
Chrysene		ND	54.9						0		30	
Benzo(b)fluoranthene		ND	54.9						0		30	
Benzo(k)fluoranthene		ND	54.9						0		30	
Benzo(a)pyrene		59.8	54.9						59.03	1.23	30	
Indeno(1,2,3-cd)pyrene		ND	54.9						0		30	
Dibenz(a,h)anthracene		ND	54.9						0		30	
Benzo(g,h,i)perylene		ND	54.9						0		30	
Surr: 2-Fluorobiphenyl		484		548.9		88.3	42.7	132		0		
Surr: Terphenyl-d14 (surr)		661		548.9		120	48.8	157		0		

Sample ID: 1406284-002AMS	SampType: MS			Units: µg/Kg	-dry	Prep Da	te: 6/27/20	14	RunNo: 153	20	
Client ID: BATCH	Batch ID: 7958					Analysis Da	te: 6/27/20	14	SeqNo: 310	753	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,090	53.4	1,068	0	103	42.9	138				
2-Methylnaphthalene	1,140	53.4	1,068	0	107	42.8	151				
1-Methylnaphthalene	1,230	53.4	1,068	0	116	41.6	148				
Acenaphthylene	1,280	53.4	1,068	0	120	32.6	160				
Acenaphthene	1,170	53.4	1,068	0	110	46.3	142				
Fluorene	1,190	53.4	1,068	0	112	43.4	153				

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Yakima EWC

Work Order: 1406291

Project:

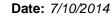
QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 1406284-002AMS	SampType: MS			Units: µg/Kg-	dry	Prep Da	te: 6/27/20	14	RunNo: 153	320	
Client ID: BATCH	Batch ID: 7958					Analysis Da	te: 6/27/20	14	SeqNo: 310	753	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenanthrene	1,270	53.4	1,068	0	118	45.5	140				
Anthracene	1,270	53.4	1,068	0	119	32.6	160				
Fluoranthene	1,400	53.4	1,068	0	131	44.6	161				
Pyrene	1,380	53.4	1,068	0	129	48.3	158				
Benz(a)anthracene	1,390	53.4	1,068	0	130	57.5	169				
Chrysene	1,260	53.4	1,068	0	118	45.2	146				
Benzo(b)fluoranthene	1,530	53.4	1,068	0	143	42.2	168				
Benzo(k)fluoranthene	1,380	53.4	1,068	0	129	48	161				
Benzo(a)pyrene	1,370	53.4	1,068	60.38	123	34.4	179				
Indeno(1,2,3-cd)pyrene	1,140	53.4	1,068	0	106	41.1	165				
Dibenz(a,h)anthracene	1,050	53.4	1,068	0	98.3	38.1	166				
Benzo(g,h,i)perylene	1,100	53.4	1,068	0	103	45.6	157				
Surr: 2-Fluorobiphenyl	496		533.8		93.0	42.7	132				
Surr: Terphenyl-d14 (surr)	641		533.8		120	48.8	157				
Sample ID: LCS-7958	SampType: LCS			Units: µg/Kg		Prep Da	te: 6/27/20	14	RunNo: 153	320	
Client ID: LCSS	Batch ID: 7958					Analysis Da	te: 6/27/20	14	SeqNo: 310	776	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,120	50.0	1,000	0	112	61.6	125				
2-Methylnaphthalene	1,170	50.0	1,000	0	117	58.2	129				
1-Methylnaphthalene	1,240	50.0	1,000	0	124	56.4	132				
Acenaphthylene	1,300	50.0	1,000	0	130	52.2	133				
Acenaphthene	1,180	50.0	1,000	0	118	54	131				
Fluorene	1,160	50.0	1,000	0	116	53.4	131				
Phenanthrene	1,200	50.0	1,000	0	120	55.6	128				
Anthracene	1,150	50.0	1,000	0	115	51	132				
Fluoranthene	1,210	50.0	1,000	0	121	48.4	134				

Qualifiers:


Analyte detected in the associated Method Blank Dilution was required D

Holding times for preparation or analysis exceeded RPD outside accepted recovery limits

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range Е ND Not detected at the Reporting Limit

Yakima EWC

Work Order: 1406291

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: LCS-7958 Client ID: LCSS	SampType: LCS Batch ID: 7958			Units: µg/Kg		Prep Da Analysis Da	te: 6/27/20		RunNo: 153 SeqNo: 310		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pyrene	1,240	50.0	1,000	0	124	48.6	135				
Benz(a)anthracene	1,150	50.0	1,000	0	115	41.9	136				
Chrysene	1,280	50.0	1,000	0	128	51.4	135				
Benzo(b)fluoranthene	1,190	50.0	1,000	0	119	39.7	137				
Benzo(k)fluoranthene	1,240	50.0	1,000	0	124	45.7	138				
Benzo(a)pyrene	1,190	50.0	1,000	0	119	45.3	135				
Indeno(1,2,3-cd)pyrene	945	50.0	1,000	0	94.5	45.4	137				
Dibenz(a,h)anthracene	901	50.0	1,000	0	90.1	45.8	134				
Benzo(g,h,i)perylene	995	50.0	1,000	0	99.5	49.3	134				
Surr: 2-Fluorobiphenyl	504		500.0		101	42.7	132				
Surr: Terphenyl-d14 (surr)	568		500.0		114	48.8	157				

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1406291

CLIENT: Shannon & Wilson

Project: Yakima EWC

QC SUMMARY REPORT

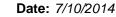
Pentachlorophenol by EPA 8151A

Sample ID: MB-8026	SampType	MBLK			Units: mg/Kg		Prep Date	e: 7/3/201 4	1	RunNo: 155	25	
Client ID: MBLKS	Batch ID:	8026					Analysis Date	e: 7/9/201 4	1	SeqNo: 314	233	
Analyte	I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pentachlorophenol		ND	0.0200									
Surr: 2,4-Dichlorophenylacetic acid		2.37		2.000		118	65	135				
Sample ID: LCS-8026	SampType	LCS			Units: mg/Kg		Prep Date	e: 7/3/201 4	1	RunNo: 155	525	
Client ID: LCSS	Batch ID:	8026					Analysis Date	e: 7/9/201 4	ı	SeqNo: 314	234	
Analyte	I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pentachlorophenol		0.847	0.0200	1.000	0	84.7	21.4	135				
Surr: 2,4-Dichlorophenylacetic acid		1.81		2.000		90.3	65	135				
Sample ID: 1406291-001ADUP	SampType	DUP			Units: mg/Kg-	dry	Prep Date	e: 7/3/201 4	1	RunNo: 155	525	
Client ID: EWC-B-02:12.25	Batch ID:	8026					Analysis Date	e: 7/9/201 4	ı	SeqNo: 314	236	
Analyte	-	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Pentachlorophenol	(0.0502	0.0230						0.04341	14.5	30	
Surr: 2,4-Dichlorophenylacetic acid		1.50		2.299		65.2	65	135		0		
Sample ID: 1407039-001AMS	SampType	: MS			Units: mg/Kg-	dry	Prep Date	e: 7/3/201 4	1	RunNo: 155	525	
Client ID: BATCH	Batch ID:	8026					Analysis Date	e: 7/9/201 4	ı	SeqNo: 314	239	
Analyte	I	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pentachlorophenol		6.01	0.0203	5.083	0.05119	117	28.2	156				
Surr: 2,4-Dichlorophenylacetic acid		2.49		2.033		123	65	135				

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits


D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1406291

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Gasoline by NWTPH-Gx

/C								Gasoline	by NW I	PH-G
SampType: LCS			Units: mg/K	g	Prep Da	te: 6/29/20	14	RunNo: 153	25	
Batch ID: R15325					Analysis Da	te: 6/29/20	14	SeqNo: 310	878	
Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
28.9	5.00	25.00	0	116	65	135				
2.50		2.500		100	65	135				
2.88		2.500		115	65	135				
SampType: MBLK			Units: mg/K	 .g	Prep Da	te: 6/29/20	14	RunNo: 153	25	
Batch ID: R15325					Analysis Da	te: 6/29/20	14	SeqNo: 310	879	
Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
ND	5.00									
2.50		2.500		100	65	135				
2.46		2.500		98.5	65	135				
SampType: DUP			Units: mg/K	g-dry	Prep Da	te: 6/27/20	14	RunNo: 153	25	
Batch ID: R15325					Analysis Da	te: 6/30/20	14	SeqNo: 310	958	
Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
ND	5.28						0		30	
2.68		2.639		102	65	135		0		
· -	SampType: LCS Batch ID: R15325 Result 28.9 2.50 2.88 SampType: MBLK Batch ID: R15325 Result ND 2.50 2.46 SampType: DUP Batch ID: R15325 Result ND R15325 Result	SampType: LCS Batch ID: R15325 Result RL 28.9 5.00 2.50 2.88 SampType: MBLK Batch ID: R15325 Result RL ND 5.00 2.50 2.46 SampType: DUP Batch ID: R15325 Result RL ND 5.28	SampType: LCS Batch ID: R15325 Result RL SPK value 28.9 5.00 25.00 2.50 2.500 2.500 SampType: MBLK MBLK Batch ID: R15325 Result RL SPK value ND 5.00 2.500 2.500 2.46 2.500 2.500 SampType: DUP Batch ID: R15325 Result RL SPK value ND 5.28	SampType: LCS Units: mg/K Batch ID: R15325 Result RL SPK value SPK Ref Val 28.9 5.00 25.00 0 2.50 2.500 2.500 SampType: MBLK Units: mg/K Batch ID: R15325 Result RL SPK value SPK Ref Val ND 5.00 2.500 2.500 2.500 SampType: DUP Units: mg/K Batch ID: R15325 Result RL SPK value SPK Ref Val ND 5.28 SPK value SPK Ref Val SPK Ref Val	SampType: LCS Units: mg/Kg Batch ID: R15325 Result RL SPK value SPK Ref Val %REC 28.9 5.00 25.00 0 116 2.50 2.500 100 100 2.88 2.500 Units: mg/Kg Batch ID: R15325 Result RL SPK value SPK Ref Val %REC ND 5.00 2.500 100 2.50 98.5 SampType: DUP Units: mg/Kg-dry Batch ID: R15325 Result RL SPK value SPK Ref Val %REC ND 5.28 SPK value SPK Ref Val %REC	SampType: LCS Units: mg/Kg Prep Date Analysis Dat	SampType: LCS Units: mg/Kg Prep Date: 6/29/20 Batch ID: R15325 Result RL SPK value SPK Ref Val %REC LowLimit HighLimit 28.9 5.00 25.00 0 116 65 135 2.50 2.500 0 116 65 135 2.88 2.500 100 65 135 SampType: MBLK Units: mg/Kg Prep Date: 6/29/20 Batch ID: R15325 Analysis Date: 6/29/20 Result RL SPK value SPK Ref Val %REC LowLimit HighLimit ND 5.00 2.500 100 65 135 2.46 2.500 98.5 65 135 SampType: DUP Units: mg/Kg-dry Prep Date: 6/27/20 Result RL SPK value SPK Ref Val %REC LowLimit HighLimit ND	SampType: LCS Units: mg/Kg Prep Date: 6/29/2014 Batch ID: R15325 Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val 28.9 5.00 25.00 0 116 65 135	SampType: LCS	SampType: LCS Units: mg/Kg Prep Date: 6/29/2014 RunNo: 15325 Batch ID: R15325 Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit 28.9 5.00 25.00 0 116 65 135

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1406291

QC SUMMARY REPORT

CLIENT: Shannon & Wilson Yakima FWC Project:

Volatile Organic Compounds by EPA Method 8260

Project: Yakıma EW	C										
Sample ID: 1406278-001BDUP	SampType: DUP			Units: mg/K	g-dry	Prep Dat	te: 6/27/20	14	RunNo: 153		
Client ID: BATCH	Batch ID: 7957					Analysis Da	te: 6/30/20	14	SeqNo: 310	848	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	ND	0.0211						0		30	
Toluene	ND	0.0211						0		30	
Ethylbenzene	ND	0.0317						0		30	
m,p-Xylene	ND	0.0211						0		30	
o-Xylene	ND	0.0211						0		30	
Surr: Dibromofluoromethane	2.57		2.639		97.4	63.7	129		0		
Surr: Toluene-d8	2.50		2.639		94.7	61.4	128		0		
Surr: 1-Bromo-4-fluorobenzene	2.43		2.639		92.0	63.1	141		0		
Sample ID: 1406279-001BMS	SampType: MS			Units: mg/K	g-dry	Prep Dat	te: 6/27/20	14	RunNo: 153	24	
Client ID: BATCH	Batch ID: 7957					Analysis Da	te: 6/30/20	14	SeqNo: 310	850	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	1.16	0.0223	1.115	0	104	63.5	133				
Toluene	1.10	0.0223	1.115	0	98.8	63.4	132				
Ethylbenzene	1.13	0.0334	1.115	0	102	54.5	134				
m,p-Xylene	2.30	0.0223	2.229	0	103	53.1	132				
o-Xylene	1.14	0.0223	1.115	0	103	53.3	139				
Surr: Dibromofluoromethane	2.89		2.786		104	63.7	129				
Surr: Toluene-d8	2.82		2.786		101	61.4	128				
Surr: 1-Bromo-4-fluorobenzene	2.96		2.786		106	63.1	141				
Sample ID: LCS-7957	SampType: LCS			Units: mg/K	g	Prep Dat	te: 6/27/20	14	RunNo: 153	24	
Client ID: LCSS	Batch ID: 7957					Analysis Da	te: 6/29/20	14	SeqNo: 310	867	
Client ID. LC33			0.014	SPK Ref Val	%REC	I owl imit	HiahLimit	RPD Ref Val	%RPD	RPDLimit	Qu
Analyte	Result	RL	SPK value	SER NEI Vai	701120	20112	5		70. 1. 2	KPDLIIIII	Qu
	Result 1.02	0.0200	SPK value	0	102	74.6	124		70111 2	RPDLIIIII	

R RPD outside accepted recovery limits

RL Reporting Limit

Work Order: 1406291

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson Yakima EWC

Volatile Organic Compounds by EPA Method 8260

rioject. Takima Evv	0										
Sample ID: LCS-7957	SampType: LCS			Units: mg/Kg		Prep Dat	e: 6/27/20 1	14	RunNo: 153	324	
Client ID: LCSS	Batch ID: 7957					Analysis Dat	e: 6/29/20 1	14	SeqNo: 310	867	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ethylbenzene	0.985	0.0300	1.000	0	98.5	74	129				
m,p-Xylene	2.02	0.0200	2.000	0	101	79.8	128				
o-Xylene	0.991	0.0200	1.000	0	99.1	72.7	124				
Surr: Dibromofluoromethane	2.54		2.500		101	63.7	129				
Surr: Toluene-d8	2.49		2.500		99.7	61.4	128				
Surr: 1-Bromo-4-fluorobenzene	2.61		2.500		104	63.1	141				
Sample ID: MB-7957	SampType: MBLK			Units: mg/Kg		Prep Dat	e: 6/27/20 1	14	RunNo: 153	324	
Client ID: MBLKS	Batch ID: 7957					Analysis Dat	e: 6/29/20 1	14	SeqNo: 310	868	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	0.0200									
Toluene	ND	0.0200									
Ethylbenzene	ND	0.0300									
m,p-Xylene	ND	0.0200									
o-Xylene	ND	0.0200									
Surr: Dibromofluoromethane	2.32		2.500		93.0	63.7	129				
Surr: Toluene-d8	2.67		2.500		107	61.4	128				
Surr: 1-Bromo-4-fluorobenzene	2.07		2.500		82.9	63.1	141				

Analyte detected in the associated Method Blank Qualifiers:

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Dilution was required D

Analyte detected below quantitation limits

Reporting Limit

Value above quantitation range Е

ND Not detected at the Reporting Limit

Sample Log-In Check List

С	lient Name:	sw	Work O	der Numb	er: 1406291	
Lo	ogged by:	Clare Griggs	Date Re	ceived:	6/27/2014	12:00:00 PM
Cha	in of Cust	<u>ody</u>				
1.	Is Chain of Co	ustody complete?	Yes	✓	No \square	Not Present
2.	How was the	sample delivered?	Cour	<u>ier</u>		
Log	<u>In</u>					
	Coolers are p	resent?	Yes	✓	No \square	NA 🗆
4.	Shipping conf	tainer/cooler in good condition?	Yes	V	No 🗀	
5.	Custody seals	s intact on shipping container/cooler?	Yes		No \square	Not Required ✓
6.	Was an attem	npt made to cool the samples?	Yes	✓	No 🗆	NA \square
7.	Were all coole	ers received at a temperature of >0°C to 10.0°C	Yes	~	No 🗆	NA 🗆
8.	Sample(s) in	proper container(s)?	Yes	✓	No \square	
9.	Sufficient san	nple volume for indicated test(s)?	Yes	✓	No \square	
10.	Are samples	properly preserved?	Yes	✓	No \square	
		ative added to bottles?	Yes		No 🗹	NA 🗆
12	Is the headsp	ace in the VOA vials?	Yes		No \square	NA 🗹
		es containers arrive in good condition(unbroken)?	Yes	✓	No 🗌	
		ork match bottle labels?	Yes	✓	No \square	
15.	Are matrices	correctly identified on Chain of Custody?	Yes	✓	No 🗌	
		at analyses were requested?	Yes	✓	No 🗌	
		ing times able to be met?	Yes	\checkmark	No \square	
Spe	cial Handl	ling (if applicable)				
18.	Was client no	otified of all discrepancies with this order?	Yes		No \square	NA 🗹
	Person I	Notified: Date:				
	By Who	m: Via:	eMa	il 🗌 Pho	one Fax	In Person
	Regardi	ng:				
	_	nstructions:				
19.	Additional ren	narks:				

Item Information

Item #	Temp °C	Condition
Cooler	4.9	Good
Sample	6.0	Good

Special namarys	一くのののです	Mindic-Aimin	Fluorida	C.Phosphate	Sulfate, - 1 Bromide		Chloride	Nitrate Nitrite	Anions (Circle):
2		6 C3 C4 C9 C4 C7	Ay 6 Ba Ec	individual: Ap Al	ints TAL	000	RCHA-8	W.C	"Metals Analysis (Circle):
							-		10
									-2
									100
									7
									172
									<i>ω</i> ₁
							Ī		fe
cheschenia Ed Phicer				X	が一人	Seal	¢.	12-25 (40 xL)	\$ E 8-01-1
wheele with Ed Pitch				Y.	20	12:45	E /in E	2-25 (40HL)	1-10+152-1-10-4, JAR
小人大 北方 田 アカド	×	×				12.74	NE/2	2 3.25 (10)	5 WC-13-62- 2.25
Comments/Depth	1917 (93) 1917 (93) 1918 (1918) 1918 (1918)				Sample Type	Sample	Sample		Simple Name
WW = WESTE WASS	V = Ground Water	ter, Dor = Drinking Water, GW	Soud, W=World	SO = Sordiment, St = Solid,	5 a Soli	p = pro	Bulk, Dedfror,	AQ = Aques	*Materix Codess: A = Air.
i		TOP SELECTION					2 trails	BY 45 812	Resporte To (PAI)
CACHILL	5 MW Stephanic	1	Collected by:	200-520 4804	では		A 01810	STORIE WA ORIOS	City, State, Zip
1901-82)	B-02 [East 51 de		Tacabou:			Sinite 100	W.	NOO N 34%	Address:
	Making EWO		Project Name:			33	NAMES I WIT SON	Shannon	Clent
4500291	Laborarory Project No (internal):	Laborari Page:	& X	4	Date	3790	Tel: 206-352-3790 Fox: 206-352-7178	*	3500 Fremont Ave N. Seattle, WA 98103
Citatil of Castody vector	2						0	-remont	

TAT -5 SameDayn NextDayn 2 Day 3 Day frigure spendingly with threat in advance.

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Shannon & Wilson Ed Ptak 400 N. 34th Street, Suite 100 Seattle, WA 98103

RE: Yakima EWC Lab ID: 1407039

July 11, 2014

Attention Ed Ptak:

Fremont Analytical, Inc. received 2 sample(s) on 7/3/2014 for the analyses presented in the following report.

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Gasoline (NWTPH-Gx) & BTEX (EPA Method 8021B)

Mercury by EPA Method 7471

Pentachlorophenol by EPA 8151A

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample Moisture (Percent Moisture)

Total Metals by EPA Method 6020

Volatile Organic Compounds by EPA Method 8260

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

MGR

Michael Dee

Sr. Chemist / Principal

Date: 07/11/2014

07/03/2014 11:00 AM

EWC-B-06:24.0

CLIENT: Shannon & Wilson Work Order Sample Summary

Project: Yakima EWC Lab Order: 1407039

1407039-002

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 1407039-001
 EWC-B-03:12.0
 06/26/2014 4:30 PM
 07/03/2014 11:00 AM

07/02/2014 8:30 AM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: **1407039**Date: **7/11/2014**

CLIENT: Shannon & Wilson Project: Yakima EWC

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

WO#: **1407039** Date Reported: **7/11/2014**

Client: Shannon & Wilson Collection Date: 6/26/2014 4:30:00 PM

Project: Yakima EWC

Lab ID: 1407039-001 **Matrix:** Soil

Client Sample ID: EWC-B-03:12.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Pentachlorophenol by EPA 8151	<u>A</u>			Batch	n ID: 802	6 Analyst: MD
Pentachlorophenol	0.0512	0.0192		mg/Kg-dry	1	7/9/2014 7:28:00 PM
Surr: 2,4-Dichlorophenylacetic acid	96.7	65-135		%REC	1	7/9/2014 7:28:00 PM
Diesel and Heavy Oil by NWTPH-	-Dx/Dx Ext.			Batch	n ID: 801	Analyst: EC
Diesel (Fuel Oil)	ND	18.2		mg/Kg-dry	1	7/5/2014 12:08:00 AM
Heavy Oil	ND	45.5		mg/Kg-dry	1	7/5/2014 12:08:00 AM
Surr: 2-Fluorobiphenyl	97.3	50-150		%REC	1	7/5/2014 12:08:00 AM
Surr: o-Terphenyl	93.9	50-150		%REC	1	7/5/2014 12:08:00 AM
Polyaromatic Hydrocarbons by E	EPA Method 8	3270 (SIM)		Batch	n ID: 802	2 Analyst: NG
Naphthalene	ND	49.0		μg/Kg-dry	1	7/3/2014 8:24:00 PM
2-Methylnaphthalene	ND	49.0		μg/Kg-dry	1	7/3/2014 8:24:00 PM
1-Methylnaphthalene	ND	49.0		μg/Kg-dry	1	7/3/2014 8:24:00 PM
Acenaphthylene	ND	49.0		μg/Kg-dry	1	7/3/2014 8:24:00 PM
Acenaphthene	ND	49.0		μg/Kg-dry	1	7/3/2014 8:24:00 PM
Fluorene	ND	49.0		μg/Kg-dry	1	7/3/2014 8:24:00 PM
Phenanthrene	ND	49.0		μg/Kg-dry	1	7/3/2014 8:24:00 PM
Anthracene	ND	49.0		μg/Kg-dry	1	7/3/2014 8:24:00 PM
Fluoranthene	ND	49.0		μg/Kg-dry	1	7/3/2014 8:24:00 PM
Pyrene	ND	49.0		μg/Kg-dry	1	7/3/2014 8:24:00 PM
Benz(a)anthracene	ND	49.0		μg/Kg-dry	1	7/3/2014 8:24:00 PM
Chrysene	ND	49.0		μg/Kg-dry	1	7/3/2014 8:24:00 PM
Benzo(b)fluoranthene	ND	49.0		μg/Kg-dry	1	7/3/2014 8:24:00 PM
Benzo(k)fluoranthene	ND	49.0		μg/Kg-dry	1	7/3/2014 8:24:00 PM
Benzo(a)pyrene	ND	49.0		μg/Kg-dry	1	7/3/2014 8:24:00 PM
Indeno(1,2,3-cd)pyrene	ND	49.0		μg/Kg-dry	1	7/3/2014 8:24:00 PM
Dibenz(a,h)anthracene	ND	49.0		μg/Kg-dry	1	7/3/2014 8:24:00 PM
Benzo(g,h,i)perylene	ND	49.0		μg/Kg-dry	1	7/3/2014 8:24:00 PM
Surr: 2-Fluorobiphenyl	112	42.7-132		%REC	1	7/3/2014 8:24:00 PM
Surr: Terphenyl-d14 (surr)	143	48.8-157		%REC	1	7/3/2014 8:24:00 PM

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1407039**Date Reported: **7/11/2014**

Client: Shannon & Wilson Collection Date: 6/26/2014 4:30:00 PM

Project: Yakima EWC

Lab ID: 1407039-001 **Matrix:** Soil

Client Sample ID: EWC-B-03:12.0

Analyses	Result	RL	Qual	Units	DF	. D	ate Analyzed
Gasoline (NWTPH-Gx) & BTEX (EPA Method 8	8021B)		Batch	ı ID:	8058	Analyst: BC
Gasoline	ND	4.53		mg/Kg-dry	1	7/9	/2014 4:32:00 PM
Surr: 1,4-Difluorobenzene	116	65-135		%REC	1	7/9	/2014 4:32:00 PM
Surr: 4-Bromofluorobenzene	115	65-135		%REC	1	7/9	/2014 4:32:00 PM
Volatile Organic Compounds by	EPA Method	<u>8260</u>		Batch	ı ID:	8023	Analyst: GH
Benzene	ND	0.0181		mg/Kg-dry	1	7/6	/2014 6:24:00 PM
Toluene	ND	0.0181		mg/Kg-dry	1	7/6	/2014 6:24:00 PM
Ethylbenzene	ND	0.0272		mg/Kg-dry	1	7/6	/2014 6:24:00 PM
m,p-Xylene	ND	0.0181		mg/Kg-dry	1	7/6	/2014 6:24:00 PM
o-Xylene	ND	0.0181		mg/Kg-dry	1	7/6	/2014 6:24:00 PM
Surr: Dibromofluoromethane	82.3	63.7-129		%REC	1	7/6	/2014 6:24:00 PM
Surr: Toluene-d8	104	61.4-128		%REC	1	7/6	/2014 6:24:00 PM
Surr: 1-Bromo-4-fluorobenzene	93.8	63.1-141		%REC	1	7/6	/2014 6:24:00 PM
Mercury by EPA Method 7471				Batch	ı ID:	8025	Analyst: MW
Mercury	ND	0.256		mg/Kg-dry	1	7/3	/2014 3:46:10 PM
Total Metals by EPA Method 602	<u>20</u>			Batch	ı ID:	8024	Analyst: TN
Arsenic	1.99	0.0819		mg/Kg-dry	1	7/3	/2014 3:38:05 PM
Cadmium	ND	0.164		mg/Kg-dry	1	7/3	/2014 3:38:05 PM
Chromium	11.2	0.0819		mg/Kg-dry	1	7/3	/2014 3:38:05 PM
Lead	1.89	0.164		mg/Kg-dry	1	7/3	/2014 3:38:05 PM
Sample Moisture (Percent Moist	ture)			Batch	ı ID:	R15401	Analyst: TK
Percent Moisture	6.05			wt%	1	7/3	/2014 12:52:55 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1407039**Date Reported: **7/11/2014**

Client: Shannon & Wilson Collection Date: 7/2/2014 8:30:00 AM

Project: Yakima EWC

Lab ID: 1407039-002 **Matrix:** Soil

Client Sample ID: EWC-B-06:24.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Pentachlorophenol by EPA 8151	<u>A</u>			Batch	n ID: 80	26 Analyst: MD
Pentachlorophenol	0.0227	0.0211		mg/Kg-dry	1	7/9/2014 7:54:00 PM
Surr: 2,4-Dichlorophenylacetic acid	121	65-135		%REC	1	7/9/2014 7:54:00 PM
Diesel and Heavy Oil by NWTPH-	Dx/Dx Ext.			Batch	n ID: 80	18 Analyst: EC
Diesel (Fuel Oil)	ND	21.2		mg/Kg-dry	1	7/5/2014 12:39:00 AM
Heavy Oil	ND	53.1		mg/Kg-dry	1	7/5/2014 12:39:00 AM
Surr: 2-Fluorobiphenyl	97.0	50-150		%REC	1	7/5/2014 12:39:00 AM
Surr: o-Terphenyl	93.2	50-150		%REC	1	7/5/2014 12:39:00 AM
Polyaromatic Hydrocarbons by E	PA Method 8	3270 (SIM)		Batch	n ID: 80	22 Analyst: NG
Naphthalene	ND	56.5		μg/Kg-dry	1	7/3/2014 8:49:00 PM
2-Methylnaphthalene	ND	56.5		μg/Kg-dry	1	7/3/2014 8:49:00 PM
1-Methylnaphthalene	ND	56.5		μg/Kg-dry	1	7/3/2014 8:49:00 PM
Acenaphthylene	ND	56.5		μg/Kg-dry	1	7/3/2014 8:49:00 PM
Acenaphthene	ND	56.5		μg/Kg-dry	1	7/3/2014 8:49:00 PM
Fluorene	ND	56.5		μg/Kg-dry	1	7/3/2014 8:49:00 PM
Phenanthrene	ND	56.5		μg/Kg-dry	1	7/3/2014 8:49:00 PM
Anthracene	ND	56.5		μg/Kg-dry	1	7/3/2014 8:49:00 PM
Fluoranthene	ND	56.5		μg/Kg-dry	1	7/3/2014 8:49:00 PM
Pyrene	ND	56.5		μg/Kg-dry	1	7/3/2014 8:49:00 PM
Benz(a)anthracene	ND	56.5		μg/Kg-dry	1	7/3/2014 8:49:00 PM
Chrysene	ND	56.5		μg/Kg-dry	1	7/3/2014 8:49:00 PM
Benzo(b)fluoranthene	ND	56.5		μg/Kg-dry	1	7/3/2014 8:49:00 PM
Benzo(k)fluoranthene	ND	56.5		μg/Kg-dry	1	7/3/2014 8:49:00 PM
Benzo(a)pyrene	ND	56.5		μg/Kg-dry	1	7/3/2014 8:49:00 PM
Indeno(1,2,3-cd)pyrene	ND	56.5		μg/Kg-dry	1	7/3/2014 8:49:00 PM
Dibenz(a,h)anthracene	ND	56.5		μg/Kg-dry	1	7/3/2014 8:49:00 PM
Benzo(g,h,i)perylene	ND	56.5		μg/Kg-dry	1	7/3/2014 8:49:00 PM
Surr: 2-Fluorobiphenyl	110	42.7-132		%REC	1	7/3/2014 8:49:00 PM
Surr: Terphenyl-d14 (surr)	146	48.8-157		%REC	1	7/3/2014 8:49:00 PM

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1407039**Date Reported: **7/11/2014**

Client: Shannon & Wilson Collection Date: 7/2/2014 8:30:00 AM

Project: Yakima EWC

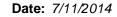
Lab ID: 1407039-002 **Matrix:** Soil

Client Sample ID: EWC-B-06:24.0

Analyses	Result	RL	Qual	Units	DF	•	Date Analyzed
Gasoline (NWTPH-Gx) & BTEX	EPA Method 8	8021B)		Batch	ı ID:	8058	Analyst: BC
Gasoline	ND	5.30		mg/Kg-dry	1	7	7/9/2014 5:06:00 PM
Surr: 1,4-Difluorobenzene	118	65-135		%REC	1	7	7/9/2014 5:06:00 PM
Surr: 4-Bromofluorobenzene	117	65-135		%REC	1	7	7/9/2014 5:06:00 PM
Volatile Organic Compounds by	EPA Method	<u>8260</u>		Batch	ı ID:	8023	Analyst: GH
Benzene	ND	0.0212		mg/Kg-dry	1	7	7/6/2014 6:54:00 PM
Toluene	ND	0.0212		mg/Kg-dry	1	7	7/6/2014 6:54:00 PM
Ethylbenzene	ND	0.0318		mg/Kg-dry	1	7	7/6/2014 6:54:00 PM
m,p-Xylene	ND	0.0212		mg/Kg-dry	1	7	7/6/2014 6:54:00 PM
o-Xylene	ND	0.0212		mg/Kg-dry	1	7	7/6/2014 6:54:00 PM
Surr: Dibromofluoromethane	82.0	63.7-129		%REC	1	7	7/6/2014 6:54:00 PM
Surr: Toluene-d8	104	61.4-128		%REC	1	7	7/6/2014 6:54:00 PM
Surr: 1-Bromo-4-fluorobenzene	94.2	63.1-141		%REC	1	7	7/6/2014 6:54:00 PM
Mercury by EPA Method 7471				Batch	ı ID:	8025	Analyst: MW
Mercury	ND	0.244		mg/Kg-dry	1	7	7/3/2014 3:47:47 PM
Total Metals by EPA Method 602	20			Batch	ı ID:	8024	Analyst: TN
Arsenic	4.09	0.0884		mg/Kg-dry	1	7	7/3/2014 3:42:07 PM
Cadmium	ND	0.177		mg/Kg-dry	1		7/3/2014 3:42:07 PM
Chromium	27.0	0.0884		mg/Kg-dry	1	7	7/3/2014 3:42:07 PM
Lead	3.31	0.177		mg/Kg-dry	1	7	7/3/2014 3:42:07 PM
Sample Moisture (Percent Mois	ture)			Batch	ı ID:	R1540	1 Analyst: TK
Percent Moisture	13.0			wt%	1	7	7/3/2014 12:52:55 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range


J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

Work Order: 1407039

QC SUMMARY REPORT

CLIENT: Shannon & Wilson Project: Yakima EWC

Total Metals by EPA Method 6020

Sample ID: MB-8024	SampType: MBLK			Units: mg/Kg		Prep Da	te: 7/3/20 1	14	RunNo: 15411		
Client ID: MBLKS	Batch ID: 8024					Analysis Da	te: 7/3/20 1	14	SeqNo: 312	2321	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	ND	0.100									
Cadmium	ND	0.200									
Chromium	ND	0.100									
Lead	ND	0.200									

Sample ID: LCS-8024	SampType: LCS			Units: mg/Kg		Prep Dat	te: 7/3/201	4	RunNo: 15 4	111	
Client ID: LCSS	Batch ID: 8024					Analysis Dat	te: 7/3/201	4	SeqNo: 312	2322	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	108	0.100	104.0	0	104	69.5	130.8				
Cadmium	102	0.200	92.80	0	110	73.3	127.2				
Chromium	78.9	0.100	62.90	0	125	67.9	132				
Lead	361	0.200	319.0	0	113	75.9	124.1				

Sample ID: 1407035-001ADUP	SampType: DUP			Units: mg/	Kg-dry	Prep Da	te: 7/3/201	4	RunNo: 15 4	111	
Client ID: BATCH	Batch ID: 8024					Analysis Da	te: 7/3/201	4	SeqNo: 312	2326	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	1.46	0.0834						1.372	5.97	30	
Cadmium	ND	0.167						0		30	
Chromium	20.8	0.0834						18.97	9.33	30	
Lead	1.43	0.167						1.503	4.94	30	

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Yakima EWC

Work Order: 1407039

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Total Metals by EPA Method 6020

Sample ID: 1407035-001AMS	SampType: MS			Units: mg/	Kg-dry	Prep Da	te: 7/3/201	4	RunNo: 154	111	
Client ID: BATCH	Batch ID: 8024					Analysis Da	te: 7/3/201	4	SeqNo: 312	2328	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	43.3	0.0803	40.16	1.372	104	75	125				
Cadmium	2.38	0.161	2.008	0.05464	116	75	125				
Chromium	68.6	0.0803	40.16	18.97	124	75	125				
Lead	23.2	0.161	20.08	1.503	108	75	125				

Sample ID: 1407035-001AMSD	SampType: MSD			Units: mg/	/Kg-dry	Prep Dat	e: 7/3/201	4	RunNo: 15 4	111	
Client ID: BATCH	Batch ID: 8024					Analysis Dat	e: 7/3/201	4	SeqNo: 312	2329	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	42.4	0.0822	41.08	1.372	99.8	75	125	43.26	2.06	30	
Cadmium	2.37	0.164	2.054	0.05464	113	75	125	2.382	0.518	30	
Chromium	65.1	0.0822	41.08	18.97	112	75	125	68.65	5.26	30	
Lead	22.5	0.164	20.54	1.503	102	75	125	23.18	2.77	30	

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1407039

CLIENT:

1407039
Shannon & Wilson
QC SUMMARY REPORT

Project: Yakima EWC Mercury by EPA Method 7471

Project:	Yakima EV	VC					More	ary by Er A Metriou 1471
Sample ID:	MB-8025	SampType: MBLK			Units: mg/Kg		Prep Date: 7/3/2014	RunNo: 15408
Client ID:	MBLKS	Batch ID: 8025					Analysis Date: 7/3/2014	SeqNo: 312274
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury		ND	0.250					
Sample ID:	LCS-8025	SampType: LCS			Units: mg/Kg		Prep Date: 7/3/2014	RunNo: 15408
Client ID:	LCSS	Batch ID: 8025					Analysis Date: 7/3/2014	SeqNo: 312275
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury		0.526	0.250	0.5000	0	105	80 120	
Sample ID:	1407035-001ADUP	SampType: DUP			Units: mg/Kg-c	dry	Prep Date: 7/3/2014	RunNo: 15408
Client ID:	ВАТСН	Batch ID: 8025					Analysis Date: 7/3/2014	SeqNo: 312277
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury		ND	0.259				0	20
Sample ID:	1407035-001AMS	SampType: MS			Units: mg/Kg-c	dry	Prep Date: 7/3/2014	RunNo: 15408
Client ID:	ВАТСН	Batch ID: 8025					Analysis Date: 7/3/2014	SeqNo: 312278
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury		0.495	0.232	0.4639	0.005880	106	70 130	
Sample ID:	1407035-001AMSD	SampType: MSD			Units: mg/Kg-c	dry	Prep Date: 7/3/2014	RunNo: 15408
Client ID:	ВАТСН	Batch ID: 8025					Analysis Date: 7/3/2014	SeqNo: 312279
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Mercury		0.526	0.240	0.4805	0.005880	108	70 130 0.4955	5.91 20

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1407039

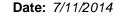
QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.


Not detected at the Reporting Limit

Spike recovery outside accepted recovery limits

Project: Yakima E\	WC							illu neavy C			
Sample ID: 1407030-003ADUP	SampType: DUP			Units: mg/K	g-dry	Prep Date	e: 7/3/201	4	RunNo: 15 4	119	
Client ID: BATCH	Batch ID: 8018					Analysis Date	e: 7/4/201	4	SeqNo: 312	2428	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	19.1						0		30	
Heavy Oil	ND	47.7						0		30	
Surr: 2-Fluorobiphenyl	18.3		19.09		95.9	50	150		0		
Surr: o-Terphenyl	17.7		19.09		92.8	50	150		0		
Sample ID: 1406256-021ADUP	SampType: DUP			Units: mg/K	(g-dry	Prep Date	e: 7/3/201	4	RunNo: 154	119	
Client ID: BATCH	Batch ID: 8018					Analysis Date	e: 7/4/201	4	SeqNo: 312	2435	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	20.1						0		30	
Heavy Oil	ND	50.3						0		30	
Surr: 2-Fluorobiphenyl	20.0		20.12		99.3	50	150		0		
Surr: o-Terphenyl	19.1		20.12		95.2	50	150		0		
Sample ID: LCS8018	SampType: LCS			Units: mg/K	Σg	Prep Date	e: 7/4/201	4	RunNo: 154	119	
Client ID: LCSS	Batch ID: 8018					Analysis Date	e: 7/4/201	4	SeqNo: 312	2443	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	485	20.0	500.0	0	97.1	65	135				
Surr: 2-Fluorobiphenyl	21.7		20.00		108	50	150				
Surr: o-Terphenyl	18.9		20.00		94.6	50	150				
Sample ID: MBLK8018	SampType: MBLK			Units: mg/K		Prep Date	e: 7/4/201	4	RunNo: 154	119	
Client ID: MBLKS	Batch ID: 8018					Analysis Date	e: 7/4/201	4	SeqNo: 312	2444	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	20.0									
Qualifiers: B Analyte detected i	n the associated Method Blank		D Dilution wa	as required			E Value	above quantitation ra	ange		

Analyte detected below quantitation limits

Reporting Limit

Yakima EWC

Work Order: 1407039

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Sample ID: MBLK8018	SampType: MBLK			Units: mg/Kg		Prep Da	te: 7/4/201	4	RunNo: 15 4	419	
Client ID: MBLKS	Batch ID: 8018					Analysis Da	te: 7/4/201	4	SeqNo: 312	2444	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Heavy Oil	ND	50.0									
Surr: 2-Fluorobiphenyl	19.3		20.00		96.6	50	150				
Surr: o-Terphenyl	18.5		20.00		92.7	50	150				

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1407039

Surr: 1,4-Difluorobenzene

Surr: 4-Bromofluorobenzene

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Gasoline (NWTPH-Gx) & BTEX (EPA Method 8021B)

Project: Yakima EV	VC					Gasoline	(NWTPH-Gx) & B1	TEX (EPA Method 8	021B)
Sample ID: LCS-GX-8058	SampType: LCS			Units: mg/Kg		Prep Date	7/9/2014	RunNo: 15502	
Client ID: LCSS	Batch ID: 8058					Analysis Date	7/9/2014	SeqNo: 313809	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Gasoline	497	5.00	500.0	0	99.4	65	135		
Surr: 1,4-Difluorobenzene	53.9		50.00		108	65	135		
Surr: 4-Bromofluorobenzene	57.0		50.00		114	65	135		
Sample ID: MB-8058	SampType: MBLK			Units: mg/Kg		Prep Date	7/8/2014	RunNo: 15502	
Client ID: MBLKS	Batch ID: 8058					Analysis Date	7/9/2014	SeqNo: 313810	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Gasoline	ND	5.00							

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

56.8

58.1

RPD outside accepted recovery limits

D Dilution was required

50.00

50.00

Analyte detected below quantitation limits

Reporting Limit

E Value above quantitation range

65

65

114

116

135

135

ND Not detected at the Reporting Limit

Work Order: 1407039

QC SUMMARY REPORT

CLIENT: Shannon & Wilson Drojecti Vakima EMC

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Project: Yakima E	WC				го	nyai Oillai	iic riyuro	carbons by	Y LI A IVICI	.110u 021	, (Olivi)
Sample ID: MB-8022	SampType: MBLK			Units: µg/Kg		Prep Da	ite: 7/3/2014	1	RunNo: 15	435	
Client ID: MBLKS	Batch ID: 8022					Analysis Da	ite: 7/3/2014	1	SeqNo: 31	2708	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	50.0									
2-Methylnaphthalene	ND	50.0									
1-Methylnaphthalene	ND	50.0									
Acenaphthylene	ND	50.0									
Acenaphthene	ND	50.0									
Fluorene	ND	50.0									
Phenanthrene	ND	50.0									
Anthracene	ND	50.0									
Fluoranthene	ND	50.0									
Pyrene	ND	50.0									
Benz(a)anthracene	ND	50.0									
Chrysene	ND	50.0									
Benzo(b)fluoranthene	ND	50.0									
Benzo(k)fluoranthene	ND	50.0									
Benzo(a)pyrene	ND	50.0									
Indeno(1,2,3-cd)pyrene	ND	50.0									
Dibenz(a,h)anthracene	ND	50.0									
Benzo(g,h,i)perylene	ND	50.0									
Surr: 2-Fluorobiphenyl	535		500.0		107	42.7	132				
Surr: Terphenyl-d14 (surr)	716		500.0		143	48.8	157				
Sample ID: LCS-8022	SampType: LCS			Units: µg/Kg		Prep Da	ite: 7/3/201 4	1	RunNo: 15	435	
Client ID: LCSS	Batch ID: 8022					Analysis Da	ite: 7/3/201 4	1	SeqNo: 31	2709	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	2,030	50.0	2,000	0	101	61.6	125				

Sample ID. LCS-6022	Samp rype. LCS			Office. µg/kg		Frep Date. 7/3/2014			Ruilino. 13433		
Client ID: LCSS	Batch ID: 8022				Analysis Date: 7/3/2014			4	SeqNo: 312709		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	2,030	50.0	2,000	0	101	61.6	125				
2-Methylnaphthalene	1,790	50.0	2,000	0	89.7	58.2	129				
1-Methylnaphthalene	1,900	50.0	2,000	0	95.1	56.4	132				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

E Value above quantitation range

Not detected at the Reporting Limit

Yakima EWC

Work Order: 1407039

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: LCS-8022	SampType: LCS			Units: µg/Kg		Prep Dat	e: 7/3/201	4	RunNo: 15 4	135	
Client ID: LCSS	Batch ID: 8022					Analysis Dat	e: 7/3/201	4	SeqNo: 312	2709	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthylene	1,870	50.0	2,000	0	93.6	52.2	133				
Acenaphthene	1,890	50.0	2,000	0	94.4	54	131				
Fluorene	1,900	50.0	2,000	0	95.1	53.4	131				
Phenanthrene	1,840	50.0	2,000	0	92.2	55.6	128				
Anthracene	1,780	50.0	2,000	0	88.8	51	132				
Fluoranthene	1,910	50.0	2,000	0	95.6	48.4	134				
Pyrene	1,860	50.0	2,000	0	93.2	48.6	135				
Benz(a)anthracene	1,960	50.0	2,000	0	98.2	41.9	136				
Chrysene	1,680	50.0	2,000	0	83.8	51.4	135				
Benzo(b)fluoranthene	1,960	50.0	2,000	0	98.1	39.7	137				
Benzo(k)fluoranthene	1,610	50.0	2,000	0	80.6	45.7	138				
Benzo(a)pyrene	1,570	50.0	2,000	0	78.5	45.3	135				
Indeno(1,2,3-cd)pyrene	1,260	50.0	2,000	0	63.1	45.4	137				
Dibenz(a,h)anthracene	1,180	50.0	2,000	0	58.9	45.8	134				
Benzo(g,h,i)perylene	1,370	50.0	2,000	0	68.7	49.3	134				
Surr: 2-Fluorobiphenyl	514		500.0		103	42.7	132				
Surr: Terphenyl-d14 (surr)	675		500.0		135	48.8	157				

Sample ID: 1407035-001ADUP	SampType: DUP			Units: µg/Kg	g-dry	Prep Date: 7/3/2014	RunNo: 15435
Client ID: BATCH	Batch ID: 8022					Analysis Date: 7/3/2014	SeqNo: 312710
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Naphthalene	ND	51.1				0	30
2-Methylnaphthalene	ND	51.1				0	30
1-Methylnaphthalene	ND	51.1				0	30
Acenaphthylene	ND	51.1				0	30
Acenaphthene	ND	51.1				0	30
Fluorene	ND	51.1				0	30

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

- D Dilution was required
- J Analyte detected below quantitation limits
- RL Reporting Limit

- E Value above quantitation range
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Yakima EWC

Work Order: 1407039

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

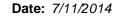
Sample ID: 1407035-001ADUP	SampType: DUP			Units: µg/l	Kg-dry	Prep Dat	e: 7/3/201	4	RunNo: 154	135	
Client ID: BATCH	Batch ID: 8022					Analysis Dat	e: 7/3/201	4	SeqNo: 312	2710	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenanthrene	ND	51.1						0		30	
Anthracene	ND	51.1						0		30	
Fluoranthene	ND	51.1						0		30	
Pyrene	ND	51.1						0		30	
Benz(a)anthracene	ND	51.1						0		30	
Chrysene	ND	51.1						0		30	
Benzo(b)fluoranthene	ND	51.1						0		30	
Benzo(k)fluoranthene	ND	51.1						0		30	
Benzo(a)pyrene	ND	51.1						0		30	
Indeno(1,2,3-cd)pyrene	ND	51.1						0		30	
Dibenz(a,h)anthracene	ND	51.1						0		30	
Benzo(g,h,i)perylene	ND	51.1						0		30	
Surr: 2-Fluorobiphenyl	414		511.1		81.1	42.7	132		0		
Surr: Terphenyl-d14 (surr)	534		511.1		105	48.8	157		0		

Sample ID: 1407035-002AMS	D2AMS SampType: MS Units: μg/Kg-dry Prep Date: 7/3/2014					4	RunNo: 15435				
Client ID: BATCH	Batch ID: 8022					Analysis Da	te: 7/3/201	4	SeqNo: 312	2787	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	2,080	50.9	2,037	0	102	42.9	138				
2-Methylnaphthalene	1,890	50.9	2,037	0	92.9	42.8	151				
1-Methylnaphthalene	2,030	50.9	2,037	0	99.4	41.6	148				
Acenaphthylene	1,960	50.9	2,037	0	96.3	32.6	160				
Acenaphthene	1,950	50.9	2,037	0	95.7	46.3	142				
Fluorene	1,960	50.9	2,037	0	96.3	43.4	153				
Phenanthrene	2,110	50.9	2,037	52.90	101	45.5	140				
Anthracene	2,030	50.9	2,037	7.258	99.1	32.6	160				
Fluoranthene	2,140	50.9	2,037	47.11	103	44.6	161				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

Not detected at the Reporting Limit

Yakima EWC

Work Order: 1407039

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 1407035-002AMS	SampType: MS			Units: µg/k	(g-dry	Prep Da	te: 7/3/201	4	RunNo: 154	135	
Client ID: BATCH	Batch ID: 8022					Analysis Da	te: 7/3/201	4	SeqNo: 312	2787	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pyrene	2,100	50.9	2,037	40.76	101	48.3	158				
Benz(a)anthracene	2,090	50.9	2,037	0	103	57.5	169				
Chrysene	1,740	50.9	2,037	22.85	84.5	45.2	146				
Benzo(b)fluoranthene	2,230	50.9	2,037	0	109	42.2	168				
Benzo(k)fluoranthene	1,930	50.9	2,037	0	94.7	48	161				
Benzo(a)pyrene	1,960	50.9	2,037	46.53	94.2	34.4	179				
Indeno(1,2,3-cd)pyrene	1,800	50.9	2,037	0	88.6	41.1	165				
Dibenz(a,h)anthracene	1,820	50.9	2,037	0	89.6	38.1	166				
Benzo(g,h,i)perylene	1,980	50.9	2,037	0	97.0	45.6	157				
Surr: 2-Fluorobiphenyl	535		509.2		105	42.7	132				
Surr: Terphenyl-d14 (surr)	690		509.2		136	48.8	157				

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1407039

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Pentachlorophenol by EPA 8151A

Project: Yakima EWC	;								Pentachi	oropheno	by EPA	8151
Sample ID: MB-8026	SampType:	MBLK			Units: mg/	Kg	Prep Dat	te: 7/3/201	4	RunNo: 15	525	
Client ID: MBLKS	Batch ID:	8026					Analysis Dat	te: 7/9/201	4	SeqNo: 314	1233	
Analyte	F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pentachlorophenol		ND	0.0200									
Surr: 2,4-Dichlorophenylacetic acid		2.37		2.000		118	65	135				
Sample ID: LCS-8026	SampType:	LCS			Units: mg/	Kg	Prep Dat	te: 7/3/201	4	RunNo: 15	525	
Client ID: LCSS	Batch ID:	8026					Analysis Dat	te: 7/9/201	4	SeqNo: 314	1234	
Analyte	F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pentachlorophenol		0.847	0.0200	1.000	0	84.7	21.4	135				
Surr: 2,4-Dichlorophenylacetic acid		1.81		2.000		90.3	65	135				
Sample ID: 1406291-001ADUP	SampType:	DUP			Units: mg/	Kg-dry	Prep Dat	te: 7/3/201	4	RunNo: 15	525	
Client ID: BATCH	Batch ID:	8026					Analysis Dat	te: 7/9/201	4	SeqNo: 314	1236	
Analyte	F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pentachlorophenol	0	.0502	0.0230						0.04341	14.5	30	
Surr: 2,4-Dichlorophenylacetic acid		1.50		2.299		65.2	65	135		0		
Sample ID: 1407039-001AMS	SampType:	MS			Units: mg/	Kg-dry	Prep Dat	te: 7/3/201	4	RunNo: 15	525	
Client ID: EWC-B-03:12.0	Batch ID:	8026					Analysis Dat	te: 7/9/201	4	SeqNo: 314	1239	
Analyte	F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pentachlorophenol		6.01	0.0203	5.083	0.05119	117	28.2	156				
Surr: 2,4-Dichlorophenylacetic acid		2.49		2.033		123	65	135				

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

RL Reporting Limit

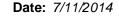
E Value above quantitation range

ND Not detected at the Reporting Limit

R RPD outside accepted recovery limits

Work Order: 1407039

QC SUMMARY REPORT


CLIENT: Shannon & Wilson Yakima FWC

Volatile Organic Compounds by EPA Method 8260

Spike recovery outside accepted recovery limits

Sample ID: 1407037-001BDUP	SampType: DUP			Units: mg/Kg	g-dry	Prep Date	7/3/2014	4	RunNo: 154	418	
Client ID: BATCH	Batch ID: 8023					Analysis Date	7/6/2014	4	SeqNo: 312	2408	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	0.0199						0		30	
Toluene	ND	0.0199						0		30	
Ethylbenzene	ND	0.0299						0		30	
m,p-Xylene	ND	0.0199						0		30	
o-Xylene	ND	0.0199						0		30	
Surr: Dibromofluoromethane	2.03		2.489		81.5	63.7	129		0		
Surr: Toluene-d8	2.55		2.489		102	61.4	128		0		
Surr: 1-Bromo-4-fluorobenzene	2.33		2.489		93.7	63.1	141		0		
Sample ID: 1407037-002BMS	SampType: MS			Units: mg/K	g-dry	Prep Date	7/3/2014	4	RunNo: 154	418	
Client ID: BATCH	Batch ID: 8023					Analysis Date	7/6/2014	4	SeqNo: 312	2410	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	0.784	0.0216	1.080	0	72.6	63.5	133				
Toluene	0.985	0.0216	1.080	0	91.2	63.4	132				
Ethylbenzene	0.899	0.0324	1.080	0	83.3	54.5	134				
m,p-Xylene	1.78	0.0216	2.159	0	82.5	53.1	132				
o-Xylene	0.897	0.0216	1.080	0	83.1	53.3	139				
Surr: Dibromofluoromethane	2.32		2.699		86.0	63.7	129				
Surr: Toluene-d8	2.95		2.699		109	61.4	128				
Surr: 1-Bromo-4-fluorobenzene	2.79		2.699		103	63.1	141				
Sample ID: LCS-8023	SampType: LCS			Units: mg/Kg	9	Prep Date	7/3/201	4	RunNo: 154	418	
Client ID: LCSS	Batch ID: 8023					Analysis Date	7/6/2014	4	SeqNo: 312	2415	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	0.811	0.0200	1.000	0	81.1	74.6	124				
	1.04	0.0200	1.000	0	104	67.3	138				

Reporting Limit

Work Order: 1407039

Surr: Dibromofluoromethane

Surr: 1-Bromo-4-fluorobenzene

Surr: Toluene-d8

QC SUMMARY REPORT

CLIENT: Shannon & Wilson Project: Yakima FWC

Volatile Organic Compounds by EPA Method 8260

Project: Yakıma EW	C					7 0 10111	• • · · · ·	pou			. 0_00
Sample ID: LCS-8023	SampType: LCS			Units: mg/Kg	I	Prep Da	ite: 7/3/201	4	RunNo: 154	418	
Client ID: LCSS	Batch ID: 8023					Analysis Da	te: 7/6/201	4	SeqNo: 31:	2415	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ethylbenzene	0.952	0.0300	1.000	0	95.2	74	129				
m,p-Xylene	1.93	0.0200	2.000	0	96.5	79.8	128				
o-Xylene	0.955	0.0200	1.000	0	95.5	72.7	124				
Surr: Dibromofluoromethane	2.13		2.500		85.3	63.7	129				
Surr: Toluene-d8	2.75		2.500		110	61.4	128				
Surr: 1-Bromo-4-fluorobenzene	2.57		2.500		103	63.1	141				
Sample ID: MB-8023	SampType: MBLK			Units: mg/Kg	<u> </u>	Prep Da	ite: 7/3/201	4	RunNo: 154	418	
Client ID: MBLKS	Batch ID: 8023					Analysis Da	te: 7/6/201	4	SeqNo: 312	2416	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	0.0200									
Toluene	ND	0.0200									
Ethylbenzene	ND	0.0300									
m,p-Xylene	ND	0.0200									
o-Xylene	ND	0.0200									

78.0

103

95.4

63.7

61.4

63.1

129

128

141

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

1.95

2.57

2.39

R RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

L Reporting Limit

2.500

2.500

2.500

E Value above quantitation range

ND Not detected at the Reporting Limit

Sample Log-In Check List

CI	ient Name:	sw	Work Or	der Number:	1407039	
Lo	gged by:	Clare Griggs	Date Re	ceived:	7/3/2014	11:00:00 AM
Cha	in of Custo	<u>ody</u>				
1.	Is Chain of Cu	ustody complete?	Yes	✓	No \square	Not Present
2.	How was the	sample delivered?	FedE	<u> </u>		
Log	In					
_	Coolers are pr	resent?	Yes	✓	No 🗌	na 🗆
4.	Shipping cont	ainer/cooler in good condition?	Yes	✓	No 🗌	
5.	Custody seals	intact on shipping container/cooler?	Yes	✓	No \square	Not Required
6.	Was an attem	npt made to cool the samples?	Yes	V	No 🗌	NA 🗆
7.	Were all coole	ers received at a temperature of >0°C to 10.0°C	Yes	✓	No 🗌	NA \square
8.	Sample(s) in p	proper container(s)?	Yes	~	No 🗌	
9.	Sufficient sam	nple volume for indicated test(s)?	Yes	✓	No \square	
10.	Are samples p	properly preserved?	Yes	✓	No \square	
11.	Was preserva	ative added to bottles?	Yes		No 🗹	NA \square
12	Is the headspa	ace in the VOA vials?	Yes		No 🗌	NA 🗹
		es containers arrive in good condition(unbroken)?	Yes	✓	No \square	
14.	Does paperwo	ork match bottle labels?	Yes	✓	No \square	
15	Are matrices of	correctly identified on Chain of Custody?	Yes	✓	No 🗆	
		t analyses were requested?	Yes	✓	No 🗌	
17.	Were all holdi	ing times able to be met?	Yes	\checkmark	No \square	
<u>Spe</u>	cial Handlı	ing (if applicable)				
18.	Was client no	tified of all discrepancies with this order?	Yes		No \square	NA 🗹
	Person N	Notified: Date:				
	By Who	m: Via:	☐ eMa	il Phone	e 🗌 Fax	☐ In Person
	Regardir	ng:				
	Client In	structions:				
19.	Additional rem	narks:				

Item Information

Item #	Temp °C	Condition
Cooler	4.2	Good
Sample	1.9	Good

**Metals Analysis (Circle): MTCA-5

RCRA-8

Priority Pollutants

***Anions (Circle): Nitrate

Nitrite

Chloride

Sulfate

Sample Disposali

Return to Client

Disposal by La

() HICH

www.fremontanalytical.com

0.40		te Sromide D-Phosphale al by Lab (A feaming to specied 6 simples are organic	Individual: Ag Al As		×	*		*	×		duct., \$ = Soil; SD = Sediment, SL = Solid, Sample Type Supple Supp	100	F134 - 066 - 106	200	Date: 10 14 24 4		
	My Bald I'm	Fluoride Witrate+Nitrite about other 10 days.]	Be Ca				×			X	St Solid, W Warse, Dw Drinking Warse, GW Gr. St Solid, W Warse, Dw Drinking Warse, GW GW GW. St Solid, W GW		Collected by: SAW	Project Name:	Page:	Laboratory P	
	1100		HE K ME MIN NID NO NI PE				×			X	GW = Ground Water			YOKIME ENC		Laboratary Project No linternall:	
	TAT-> SameDay ^M NextDay ^M 2 Day 3 Day S	ally was the last the	Pb Sb Se Sr Sn Ti II U V Zn		4 ×	4	*	*	Uncol on Ed Plak For		WWW = Whate Water	Project No: 2 -1- 24630 006			of:	7020	

*Matrix Codes: A = Air, AQ = Aqueous, B = Bulk, O = Other, P = Product,

Brish Deznick

Scottle, MAGRIOZ

Tel: Fax:

Reports To (PM): City, State, Zip Address: Client

SHAMMAN & WILLIAM & MONAMAN & MONAMA

Septtle, WA 98103 3600 Fremont Ave N.

Fax: 206-352-7178 Tel: 206-352-3790

nalytical.

Sample Name

6/36

16:30 16:30

Sample

Sample

BWC-8-03:12.0 BWC-8-03-12.0

BEN1-8-06:24.0

B EMC- 8-06:24.0

BWC- B-63: 12:0

6/26 6/26

16:30

7/2

8139

8.30

FW1-8-06=14.0

1/1 7/2

0 8:30

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Shannon & Wilson Ed Ptak 400 N. 34th Street, Suite 100 Seattle, WA 98103

RE: Yakima EWC Lab ID: 1407120

July 21, 2014

Attention Ed Ptak:

Fremont Analytical, Inc. received 2 sample(s) on 7/14/2014 for the analyses presented in the following report.

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.
Gasoline by NWTPH-Gx
Mercury by EPA Method 7471
Pentachlorophenol by EPA 8151A
Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)
Sample Moisture (Percent Moisture)
Total Metals by EPA Method 6020
Volatile Organic Compounds by EPA Method 8260

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Michael Dee

MGR

Sr. Chemist / Principal

Date: 07/31/2014

CLIENT: Shannon & Wilson Work Order Sample Summary

Project: Yakima EWC Lab Order: 1407120

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 1407120-001
 EWC-B-04:10.0
 07/07/2014 4:30 PM
 07/14/2014 11:18 AM

 1407120-002
 EWC-B-05:16.0
 07/10/2014 10:50 AM
 07/14/2014 11:18 AM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: **1407120**Date: **7/21/2014**

CLIENT: Shannon & Wilson Project: Yakima EWC

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

WO#: **1407120**Date Reported: **7/21/2014**

Client: Shannon & Wilson Collection Date: 7/7/2014 4:30:00 PM

Project: Yakima EWC

Lab ID: 1407120-001 **Matrix:** Soil

Client Sample ID: EWC-B-04:10.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Pentachlorophenol by EPA 8151	<u>A</u>			Batch	n ID: 8119	Analyst: DB
Pentachlorophenol	0.152	0.0214		mg/Kg-dry	1	7/17/2014 12:13:00 PM
Surr: 2,4-Dichlorophenylacetic acid	84.2	65-135		%REC	1	7/17/2014 12:13:00 PM
Diesel and Heavy Oil by NWTPH-	Dx/Dx Ext.			Batch	n ID: 8107	Analyst: EC
Diesel (Fuel Oil)	ND	19.9		mg/Kg-dry	1	7/14/2014 6:43:00 PM
Heavy Oil	ND	49.8		mg/Kg-dry	1	7/14/2014 6:43:00 PM
Surr: 2-Fluorobiphenyl	147	50-150		%REC	1	7/14/2014 6:43:00 PM
Surr: o-Terphenyl	122	50-150		%REC	1	7/14/2014 6:43:00 PM
Polyaromatic Hydrocarbons by E	PA Method 8	3270 (SIM)		Batch	n ID: 8106	Analyst: NG
Naphthalene	ND	57.9		μg/Kg-dry	1	7/14/2014 10:08:00 PM
2-Methylnaphthalene	ND	57.9		μg/Kg-dry	1	7/14/2014 10:08:00 PM
1-Methylnaphthalene	ND	57.9		μg/Kg-dry	1	7/14/2014 10:08:00 PM
Acenaphthylene	ND	57.9		μg/Kg-dry	1	7/14/2014 10:08:00 PM
Acenaphthene	ND	57.9		μg/Kg-dry	1	7/14/2014 10:08:00 PM
Fluorene	ND	57.9		μg/Kg-dry	1	7/14/2014 10:08:00 PM
Phenanthrene	ND	57.9		μg/Kg-dry	1	7/14/2014 10:08:00 PM
Anthracene	ND	57.9		μg/Kg-dry	1	7/14/2014 10:08:00 PM
Fluoranthene	ND	57.9		μg/Kg-dry	1	7/14/2014 10:08:00 PM
Pyrene	ND	57.9		μg/Kg-dry	1	7/14/2014 10:08:00 PM
Benz(a)anthracene	ND	57.9		μg/Kg-dry	1	7/14/2014 10:08:00 PM
Chrysene	ND	57.9		μg/Kg-dry	1	7/14/2014 10:08:00 PM
Benzo(b)fluoranthene	ND	57.9		μg/Kg-dry	1	7/14/2014 10:08:00 PM
Benzo(k)fluoranthene	ND	57.9		μg/Kg-dry	1	7/14/2014 10:08:00 PM
Benzo(a)pyrene	ND	57.9		μg/Kg-dry	1	7/14/2014 10:08:00 PM
Indeno(1,2,3-cd)pyrene	ND	57.9		μg/Kg-dry	1	7/14/2014 10:08:00 PM
Dibenz(a,h)anthracene	ND	57.9		μg/Kg-dry	1	7/14/2014 10:08:00 PM
Benzo(g,h,i)perylene	ND	57.9		μg/Kg-dry	1	7/14/2014 10:08:00 PM
Surr: 2-Fluorobiphenyl	81.6	42.7-132		%REC	1	7/14/2014 10:08:00 PM
Surr: Terphenyl-d14 (surr)	102	48.8-157		%REC	1	7/14/2014 10:08:00 PM

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1407120**Date Reported: **7/21/2014**

Client: Shannon & Wilson Collection Date: 7/7/2014 4:30:00 PM

Project: Yakima EWC

Lab ID: 1407120-001 **Matrix:** Soil

Client Sample ID: EWC-B-04:10.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Gasoline by NWTPH-Gx				Batch	ı ID: R1	5594 Analyst: BC
Gasoline	ND	2.80		mg/Kg-dry	1	7/15/2014 12:04:00 PM
Surr: 4-Bromofluorobenzene	108	65-135		%REC	1	7/15/2014 12:04:00 PM
Surr: Toluene-d8	97.4	65-135		%REC	1	7/15/2014 12:04:00 PM
Volatile Organic Compounds by	EPA Method	<u>8260</u>		Batch	n ID: 809	97 Analyst: BC
Benzene	ND	0.0112		mg/Kg-dry	1	7/15/2014 12:04:00 PM
Toluene	ND	0.0112		mg/Kg-dry	1	7/15/2014 12:04:00 PM
Ethylbenzene	ND	0.0168		mg/Kg-dry	1	7/15/2014 12:04:00 PM
m,p-Xylene	ND	0.0112		mg/Kg-dry	1	7/15/2014 12:04:00 PM
o-Xylene	ND	0.0112		mg/Kg-dry	1	7/15/2014 12:04:00 PM
Surr: Dibromofluoromethane	99.4	63.7-129		%REC	1	7/15/2014 12:04:00 PM
Surr: Toluene-d8	97.4	61.4-128		%REC	1	7/15/2014 12:04:00 PM
Surr: 1-Bromo-4-fluorobenzene	96.1	63.1-141		%REC	1	7/15/2014 12:04:00 PM
Mercury by EPA Method 7471				Batch	n ID: 81	10 Analyst: MW
Mercury	ND	0.286		mg/Kg-dry	1	7/16/2014 3:24:42 PM
Total Metals by EPA Method 602	<u>20</u>			Batch	n ID: 809	96 Analyst: TN
Arsenic	2.77	0.0918		mg/Kg-dry	1	7/14/2014 4:24:42 PM
Cadmium	ND	0.184		mg/Kg-dry	1	7/14/2014 4:24:42 PM
Chromium	25.3	0.0918		mg/Kg-dry	1	7/14/2014 4:24:42 PM
Lead	2.45	0.184		mg/Kg-dry	1	7/14/2014 4:24:42 PM
Sample Moisture (Percent Moist	ture)			Batch	ı ID: R1	5551 Analyst: TK
Percent Moisture	14.3			wt%	1	7/14/2014 9:12:46 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1407120** Date Reported: **7/21/2014**

Client: Shannon & Wilson Collection Date: 7/10/2014 10:50:00 AM

Project: Yakima EWC

Lab ID: 1407120-002 **Matrix:** Soil

Client Sample ID: EWC-B-05:16.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Pentachlorophenol by EPA 8151	<u>A</u>			Batch	n ID: 81	19 Analyst: DB
Pentachlorophenol	0.144	0.0225		mg/Kg-dry	1	7/17/2014 1:03:00 PM
Surr: 2,4-Dichlorophenylacetic acid	76.2	65-135		%REC	1	7/17/2014 1:03:00 PM
Diesel and Heavy Oil by NWTPH-	·Dx/Dx Ext.			Batch	n ID: 81	07 Analyst: EC
Diesel (Fuel Oil)	ND	20.1		mg/Kg-dry	1	7/14/2014 7:47:00 PM
Heavy Oil	ND	50.4		mg/Kg-dry	1	7/14/2014 7:47:00 PM
Surr: 2-Fluorobiphenyl	157	50-150	S	%REC	1	7/14/2014 7:47:00 PM
Surr: o-Terphenyl	131	50-150		%REC	1	7/14/2014 7:47:00 PM
NOTES:						

S - Outlying surrogate recovery observed - High Bias. Sample was non-detect. No further action required.

Polyaromatic Hydrocarbons by	EPA Method	8270 (SIM)	Batch	ID: 8106	S Analyst: NG
Naphthalene	ND	54.7	μg/Kg-dry	1	7/14/2014 10:58:00 PM
2-Methylnaphthalene	ND	54.7	μg/Kg-dry	1	7/14/2014 10:58:00 PM
1-Methylnaphthalene	ND	54.7	μg/Kg-dry	1	7/14/2014 10:58:00 PM
Acenaphthylene	ND	54.7	μg/Kg-dry	1	7/14/2014 10:58:00 PM
Acenaphthene	ND	54.7	μg/Kg-dry	1	7/14/2014 10:58:00 PM
Fluorene	ND	54.7	μg/Kg-dry	1	7/14/2014 10:58:00 PM
Phenanthrene	ND	54.7	μg/Kg-dry	1	7/14/2014 10:58:00 PM
Anthracene	ND	54.7	μg/Kg-dry	1	7/14/2014 10:58:00 PM
Fluoranthene	ND	54.7	μg/Kg-dry	1	7/14/2014 10:58:00 PM
Pyrene	ND	54.7	μg/Kg-dry	1	7/14/2014 10:58:00 PM
Benz(a)anthracene	ND	54.7	μg/Kg-dry	1	7/14/2014 10:58:00 PM
Chrysene	ND	54.7	μg/Kg-dry	1	7/14/2014 10:58:00 PM
Benzo(b)fluoranthene	ND	54.7	μg/Kg-dry	1	7/14/2014 10:58:00 PM
Benzo(k)fluoranthene	ND	54.7	μg/Kg-dry	1	7/14/2014 10:58:00 PM
Benzo(a)pyrene	ND	54.7	μg/Kg-dry	1	7/14/2014 10:58:00 PM
Indeno(1,2,3-cd)pyrene	ND	54.7	μg/Kg-dry	1	7/14/2014 10:58:00 PM
Dibenz(a,h)anthracene	ND	54.7	μg/Kg-dry	1	7/14/2014 10:58:00 PM
Benzo(g,h,i)perylene	ND	54.7	μg/Kg-dry	1	7/14/2014 10:58:00 PM
Surr: 2-Fluorobiphenyl	77.2	42.7-132	%REC	1	7/14/2014 10:58:00 PM
Surr: Terphenyl-d14 (surr)	93.8	48.8-157	%REC	1	7/14/2014 10:58:00 PM

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1407120**Date Reported: **7/21/2014**

Client: Shannon & Wilson Collection Date: 7/10/2014 10:50:00 AM

Project: Yakima EWC

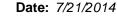
Lab ID: 1407120-002 **Matrix:** Soil

Client Sample ID: EWC-B-05:16.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Gasoline by NWTPH-Gx				Batch	ı ID: R′	15594 Analyst: BC
Gasoline	ND	3.74		mg/Kg-dry	1	7/15/2014 3:03:00 PM
Surr: 4-Bromofluorobenzene	107	65-135		%REC	1	7/15/2014 3:03:00 PM
Surr: Toluene-d8	98.4	65-135		%REC	1	7/15/2014 3:03:00 PM
Volatile Organic Compounds by	EPA Method	<u>8260</u>		Batch	n ID: 80	97 Analyst: BC
Benzene	ND	0.0150		mg/Kg-dry	1	7/15/2014 3:03:00 PM
Toluene	ND	0.0150		mg/Kg-dry	1	7/15/2014 3:03:00 PM
Ethylbenzene	ND	0.0224		mg/Kg-dry	1	7/15/2014 3:03:00 PM
m,p-Xylene	ND	0.0150		mg/Kg-dry	1	7/15/2014 3:03:00 PM
o-Xylene	ND	0.0150		mg/Kg-dry	1	7/15/2014 3:03:00 PM
Surr: Dibromofluoromethane	97.1	63.7-129		%REC	1	7/15/2014 3:03:00 PM
Surr: Toluene-d8	97.3	61.4-128		%REC	1	7/15/2014 3:03:00 PM
Surr: 1-Bromo-4-fluorobenzene	94.9	63.1-141		%REC	1	7/15/2014 3:03:00 PM
Mercury by EPA Method 7471				Batch	n ID: 81	10 Analyst: MW
Mercury	ND	0.282		mg/Kg-dry	1	7/16/2014 3:31:47 PM
Total Metals by EPA Method 602	<u>20</u>			Batch	n ID: 80	96 Analyst: TN
Arsenic	3.52	0.0854		mg/Kg-dry	1	7/14/2014 4:28:07 PM
Cadmium	ND	0.171		mg/Kg-dry	1	7/14/2014 4:28:07 PM
Chromium	19.4	0.0854		mg/Kg-dry	1	7/14/2014 4:28:07 PM
Lead	2.13	0.171		mg/Kg-dry	1	7/14/2014 4:28:07 PM
Sample Moisture (Percent Moist	ure)			Batch	ı ID: R	15551 Analyst: TK
Percent Moisture	13.2			wt%	1	7/14/2014 9:12:46 AM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range


J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

Yakima EWC

Work Order: 1407120

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Total Metals by EPA Method 6020

Sample ID: MB-8096	SampType: MBLK			Units: mg/Kg		Prep Date: 7/14/2014	RunNo: 15572
Client ID: MBLKS	Batch ID: 8096	DI ORIV I ORIVE (VI				Analysis Date: 7/14/2014	SeqNo: 315255
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Arsenic	ND	0.100					
Cadmium	ND	0.200					
Chromium	ND	0.100					
Lead	ND	0.200					

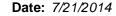
Sample ID: LCS-8096	SampType: LCS			Units: mg/Kg		Prep Dat	te: 7/14/20	14	RunNo: 155	572	
Client ID: LCSS	Batch ID: 8096					Analysis Dat	te: 7/14/20	14	SeqNo: 315	256	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	103	0.100	104.0	0	99.3	69.5	130.8				
Cadmium	91.9	0.200	92.80	0	99.0	73.3	127.2				
Chromium	73.0	0.100	62.90	0	116	67.9	132				
Lead	325	0.200	319.0	0	102	75.9	124.1				

Sample ID: 1407109-001ADUP	SampType: DUP			Units: mg/	Kg-dry	Prep Da	te: 7/14/20	14	RunNo: 155	572	
Client ID: BATCH	Batch ID: 8096					Analysis Da	te: 7/14/20	14	SeqNo: 315	5258	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	2.40	0.0817						2.928	19.8	30	
Cadmium	ND	0.163						0		30	
Chromium	25.9	0.0817						25.94	0.304	30	
Lead	5.05	0.163						6.146	19.6	30	

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits


D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Yakima EWC

Work Order: 1407120

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Total Metals by EPA Method 6020

Sample ID: 1407109-001AMS	SampType: MS			Units: mg/	Kg-dry	Prep Da	te: 7/14/20	14	RunNo: 155		
Client ID: BATCH	Batch ID: 8096					Analysis Da	te: 7/14/20	14	SeqNo: 315	5262	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	42.8	0.0836	41.79	2.928	95.4	75	125				
Cadmium	2.13	0.167	2.090	0.08323	97.8	75	125				
Chromium	68.8	0.0836	41.79	25.94	103	75	125				
Lead	26.8	0.167	20.90	6.146	98.9	75	125				

Sample ID: 1407109-001AMSD	SampType: MSD	Units: mg/Kg-dry				Prep Dat	e: 7/14/20	14	RunNo: 155		
Client ID: BATCH	Batch ID: 8096					Analysis Dat	e: 7/14/20	14	SeqNo: 315263		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	43.4	0.0817	40.84	2.928	99.2	75	125	42.79	1.52	30	
Cadmium	2.15	0.163	2.042	0.08323	101	75	125	2.127	0.990	30	
Chromium	68.7	0.0817	40.84	25.94	105	75	125	68.79	0.198	30	
Lead	29.6	0.163	20.42	6.146	115	75	125	26.82	9.68	30	

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1407120

CLIENT: Shannon & Wilson

Valsima FMC

QC SUMMARY REPORT

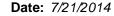
Mercury by EPA Method 7471

SampTyp	e: ME	BLK		Units: mg	/Kg	Prep Dat	e: 7/16/20 1	14	RunNo: 156	516	
Batch ID	: 81	10				Analysis Dat	e: 7/16/20 1	14	SeqNo: 316	6179	
	Resu	lt RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
	NE	0.250									
	e: LC	S		Units: mg	/Kg	Prep Dat	e: 7/16/20 1	14	RunNo: 156	516	
Batch ID	: 81	10				Analysis Dat	e: 7/16/20 1	14	SeqNo: 316	6180	
	Resu	lt RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
	0.58	6 0.250	0.5000	0	117	80	120				
)-001AMS SampTyr	ре: М .	<u> </u>		Units: mg	/Kg-dry	Prep Dat	e: 7/16/20 1	14	RunNo: 156	616	
04:10.0 Batch ID	: 81	10				Analysis Dat	e: 7/16/20 1	14	SeqNo: 316	6182	
	Resu	lt RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
	0.71	3 0.280	0.5607	0.06998	115	70	130				
)-001AMSD SampTyr	ре: М .	SD		Units: mg	/Kg-dry	Prep Dat	e: 7/16/20 1	14	RunNo: 156	616	
04:10.0 Batch ID	: 81	10				Analysis Dat	e: 7/16/20 1	14	SeqNo: 316	6183	
	Resu	lt RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
	0.67	2 0.286	0.5717	0.06998	105	70	130	0.7132	5.90	20	
)-001ADUP SampTy _r	pe: D U	P		Units: mg	/Kg-dry	Prep Dat	e: 7/16/20 1	14	RunNo: 156	616	
04:10.0 Batch ID	: 81	10				Analysis Dat	e: 7/16/20 1	14	SeqNo: 316	6184	
	Resu	lt RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
	NE	0.275						0		20	
0	10 SampTyr Batch ID 0-001AMS SampTyr -04:10.0 Batch ID 0-001AMSD SampTyr -04:10.0 Batch ID	Resul 10 SampType: LC Batch ID: 81: Resul 0.586 0-001AMS SampType: MS -04:10.0 Batch ID: 81: Resul 0.71: 0-001AMSD SampType: MS -04:10.0 Batch ID: 81: Resul 0.67: 0-001ADUP SampType: DU Batch ID: 81: Resul	Result RL	Result RL SPK value	Result RL SPK value SPK Ref Val	Result RL SPK value SPK Ref Val %REC	Result RL SPK value SPK Ref Val %REC LowLimit	Result RL SPK value SPK Ref Val %REC LowLimit HighLimit	Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val	Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD %RPD	Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

E Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1407120

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Project: Yakima EW	/C							,	JII DY INV		
Sample ID: 1407120-001ADUP	SampType: DUP			Units: mg/Kg	dry	Prep Date	: 7/14/20	14	RunNo: 15	581	
Client ID: EWC-B-04:10.0	Batch ID: 8107					Analysis Date	7/14/20	14	SeqNo: 315	5457	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Diesel (Fuel Oil)	ND	22.0						0		30	
Heavy Oil	ND	55.0						0		30	
Surr: 2-Fluorobiphenyl	32.3		22.00		147	50	150		0		
Surr: o-Terphenyl	26.9		22.00		122	50	150		0		
Sample ID: LCS-8107A	SampType: LCS			Units: mg/Kg		Prep Date	: 7/14/20°	14	RunNo: 155	581	
Client ID: LCSS	Batch ID: 8107					Analysis Date	: 7/14/20	14	SeqNo: 315	5478	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Diesel (Fuel Oil)	436	20.0	500.0	0	87.2	65	135				
Surr: 2-Fluorobiphenyl	26.2		20.00		131	50	150				
Surr: o-Terphenyl	20.5		20.00		103	50	150				
Sample ID: MBLK8107	SampType: MBLK			Units: mg/Kg		Prep Date	: 7/14/20	14	RunNo: 155	581	
Client ID: MBLKS	Batch ID: 8107					Analysis Date	: 7/14/20	14	SeqNo: 315	5720	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Diesel (Fuel Oil)	ND	20.0									
Heavy Oil	ND	50.0									
Surr: 2-Fluorobiphenyl	19.6		20.00		97.9	50	150				
Surr: o-Terphenyl	19.6		20.00		98.2	50	150				

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Yakima EWC

Work Order: 1407120

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: LCS-8106	SampType: LCS			Units: µg/Kg		Prep Date	e: 7/14/2014		RunNo: 155	582	
Client ID: LCSS	Batch ID: 8106					Analysis Date	e: 7/14/2014		SeqNo: 315	5509	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	PD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	879	50.0	1,000	0	87.9	61.6	125				
2-Methylnaphthalene	867	50.0	1,000	0	86.7	58.2	129				
1-Methylnaphthalene	841	50.0	1,000	0	84.1	56.4	132				
Acenaphthylene	853	50.0	1,000	0	85.3	52.2	133				
Acenaphthene	870	50.0	1,000	0	87.0	54	131				
Fluorene	873	50.0	1,000	0	87.3	53.4	131				
Phenanthrene	864	50.0	1,000	0	86.4	55.6	128				
Anthracene	865	50.0	1,000	0	86.5	51	132				
Fluoranthene	853	50.0	1,000	0	85.3	48.4	134				
Pyrene	839	50.0	1,000	0	83.9	48.6	135				
Benz(a)anthracene	859	50.0	1,000	0	85.9	41.9	136				
Chrysene	929	50.0	1,000	0	92.9	51.4	135				
Benzo(b)fluoranthene	894	50.0	1,000	0	89.4	39.7	137				
Benzo(k)fluoranthene	859	50.0	1,000	0	85.9	45.7	138				
Benzo(a)pyrene	902	50.0	1,000	0	90.2	45.3	135				
Indeno(1,2,3-cd)pyrene	766	50.0	1,000	0	76.6	45.4	137				
Dibenz(a,h)anthracene	710	50.0	1,000	0	71.0	45.8	134				
Benzo(g,h,i)perylene	727	50.0	1,000	0	72.7	49.3	134				
Surr: 2-Fluorobiphenyl	443		500.0		88.7	42.7	132				
Surr: Terphenyl-d14 (surr)	449		500.0		89.8	48.8	157				
Sample ID: 1407120-001ADUP	SampType: DUP			Units: µg/Kg·	-dry	Prep Date	e: 7/14/2014		RunNo: 155	582	
Client ID: EWC-B-04:10.0	Batch ID: 8106					Analysis Date	e: 7/14/2014		SeqNo: 315	5511	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RI	PD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	55.0						0		30	
2-Methylnaphthalene	ND	55.0						0		30	
1-Methylnaphthalene	ND	55.0						0		30	

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Yakima EWC

Work Order: 1407120

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 1407120-001ADUP	SampType: DUP			Units: µg/l	Kg-dry	Prep Dat	e: 7/14/2 0)14	RunNo: 155	582	
Client ID: EWC-B-04:10.0	Batch ID: 8106					Analysis Dat	e: 7/14/2 0	14	SeqNo: 315	5511	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthylene	ND	55.0						0		30	
Acenaphthene	ND	55.0						0		30	
Fluorene	ND	55.0						0		30	
Phenanthrene	ND	55.0						0		30	
Anthracene	ND	55.0						0		30	
Fluoranthene	ND	55.0						0		30	
Pyrene	ND	55.0						0		30	
Benz(a)anthracene	ND	55.0						0		30	
Chrysene	ND	55.0						0		30	
Benzo(b)fluoranthene	ND	55.0						0		30	
Benzo(k)fluoranthene	ND	55.0						0		30	
Benzo(a)pyrene	ND	55.0						0		30	
Indeno(1,2,3-cd)pyrene	ND	55.0						0		30	
Dibenz(a,h)anthracene	ND	55.0						0		30	
Benzo(g,h,i)perylene	ND	55.0						0		30	
Surr: 2-Fluorobiphenyl	479		550.1		87.0	42.7	132		0		
Surr: Terphenyl-d14 (surr)	558		550.1		101	48.8	157		0		

Sample ID: 1407120-002AMS	SampType: MS			Units: µg/Kg	-dry	Prep Da	te: 7/14/20	14	RunNo: 155	582	
Client ID: EWC-B-05:16.0	Batch ID: 8106					Analysis Dat	te: 7/14/20	14	SeqNo: 315	5513	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	838	52.9	1,058	0	79.2	42.9	138				
2-Methylnaphthalene	867	52.9	1,058	0	81.9	42.8	151				
1-Methylnaphthalene	853	52.9	1,058	0	80.6	41.6	148				
Acenaphthylene	902	52.9	1,058	0	85.2	32.6	160				
Acenaphthene	898	52.9	1,058	0	84.8	46.3	142				
Fluorene	914	52.9	1,058	0	86.4	43.4	153				

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

- D Dilution was required
 - Analyte detected below quantitation limits
- RL Reporting Limit

- E Value above quantitation range
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

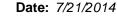
Yakima EWC

Work Order: 1407120

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson


Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 1407120-002AMS	SampType: MS			Units: µg/Kg	j-dry	Prep Da	te: 7/14/20	14	RunNo: 15	582	
Client ID: EWC-B-05:16.0	Batch ID: 8106					Analysis Da	te: 7/14/2 0	14	SeqNo: 31	5513	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenanthrene	889	52.9	1,058	0	84.0	45.5	140				
Anthracene	899	52.9	1,058	0	85.0	32.6	160				
Fluoranthene	896	52.9	1,058	0	84.7	44.6	161				
Pyrene	868	52.9	1,058	0	82.1	48.3	158				
Benz(a)anthracene	903	52.9	1,058	0	85.4	57.5	169				
Chrysene	984	52.9	1,058	0	93.0	45.2	146				
Benzo(b)fluoranthene	962	52.9	1,058	0	90.9	42.2	168				
Benzo(k)fluoranthene	898	52.9	1,058	0	84.9	48	161				
Benzo(a)pyrene	959	52.9	1,058	0	90.6	34.4	179				
Indeno(1,2,3-cd)pyrene	837	52.9	1,058	0	79.1	41.1	165				
Dibenz(a,h)anthracene	778	52.9	1,058	0	73.5	38.1	166				
Benzo(g,h,i)perylene	788	52.9	1,058	0	74.4	45.6	157				
Surr: 2-Fluorobiphenyl	391		529.0		73.9	42.7	132				
Surr: Terphenyl-d14 (surr)	486		529.0		91.9	48.8	157				
Sample ID: MB-8106	SampType: MBLK			Units: µg/Kg	<u> </u>	Prep Da	te: 7/14/2 0)14	RunNo: 15	582	
Client ID: MBLKS	Batch ID: 8106					Analysis Da	te: 7/14/2 0)14	SeqNo: 31	5518	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	50.0									
2-Methylnaphthalene	ND	50.0									
1-Methylnaphthalene	ND	50.0									
Acenaphthylene	ND	50.0									
Acenaphthene	ND	50.0									
Fluorene	ND	50.0									
Phenanthrene	ND	50.0									
Anthracene	ND	50.0									
,											

- RPD outside accepted recovery limits

- Dilution was required
- Analyte detected below quantitation limits
- Reporting Limit

- Value above quantitation range
- Not detected at the Reporting Limit
- Spike recovery outside accepted recovery limits

Yakima EWC

Work Order: 1407120

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: MB-8106	SampType: MBLK			Units: µg/Kg		•	e: 7/14/20		RunNo: 155		
Client ID: MBLKS	Batch ID: 8106					Analysis Da	e: 7/14/20	14	SeqNo: 315	5518	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pyrene	ND	50.0									
Benz(a)anthracene	ND	50.0									
Chrysene	ND	50.0									
Benzo(b)fluoranthene	ND	50.0									
Benzo(k)fluoranthene	ND	50.0									
Benzo(a)pyrene	ND	50.0									
Indeno(1,2,3-cd)pyrene	ND	50.0									
Dibenz(a,h)anthracene	ND	50.0									
Benzo(g,h,i)perylene	ND	50.0									
Surr: 2-Fluorobiphenyl	487		500.0		97.3	42.7	132				
Surr: Terphenyl-d14 (surr)	529		500.0		106	48.8	157				

R RPD outside accepted recovery limits

Holding times for preparation or analysis exceeded

D Dilution was required

Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1407120

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

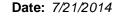
Pentachlorophenol by EPA 8151A

Project: Yakima EW0	С								Pentachi	oropheno	by EPA	8151
Sample ID: MB-8119	SampType	: MBLK			Units: mg	/Kg	Prep Dat	te: 7/15/2 0	14	RunNo: 150	646	
Client ID: MBLKS	Batch ID:	8119					Analysis Dat	te: 7/17/2 0	114	SeqNo: 316	6762	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pentachlorophenol		ND	0.0200									
Surr: 2,4-Dichlorophenylacetic acid		2.28		5.000		45.6	65	135				S
NOTES: S - Outlying QC recoveries were as	sociated with	n this sampl	le. All other lal	boratory contro	ol and field sampl	es within rang	e.					
Sample ID: LCS-8119	SampType	: LCS			Units: mg	/Kg	Prep Dat	te: 7/15/2 0	114	RunNo: 156	646	
Client ID: LCSS	Batch ID:	8119					Analysis Dat	te: 7/17/2 0	14	SeqNo: 316	6763	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pentachlorophenol		1.23	0.0200	4.000	0	30.7	21.4	135				
Surr: 2,4-Dichlorophenylacetic acid		3.42		5.000		68.4	65	135				
Sample ID: 1407120-001ADUP	SampType	: DUP			Units: mg	/Kg-dry	Prep Dat	te: 7/15/20	114	RunNo: 15 6	646	
Client ID: EWC-B-04:10.0	Batch ID:	8119					Analysis Dat	te: 7/17/2 0	14	SeqNo: 310	6765	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pentachlorophenol		0.142	0.0216						0.1518	7.03	30	
Surr: 2,4-Dichlorophenylacetic acid		4.22		5.399		78.1	65	135		0		
Sample ID: 1407120-002AMS	SampType	e: MS			Units: mg	/Kg-dry	Prep Dat	te: 7/15/20)14	RunNo: 156	646	
Client ID: EWC-B-05:16.0	Batch ID:	8119					Analysis Dat	te: 7/17/2 0	14	SeqNo: 310	6767	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pentachlorophenol		4.70	0.0222	4.445	0.1443	103	28.2	156				
				5.556								

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1407120

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Gasoline by NWTPH Gy

Project: Yakima EV	VC								Gasoline	by NWT	PH-G
Sample ID: 1407107-001BDUP	SampType: DUP			Units: mg/Kg	g-dry	Prep Date	e: 7/11/20	14	RunNo: 15	594	
Client ID: BATCH	Batch ID: R15594					Analysis Date	e: 7/15/20	14	SeqNo: 31	5680	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	7.25						0		30	
Surr: Toluene-d8	3.57		3.626		98.4	65	135		0		
Surr: 4-Bromofluorobenzene	3.77		3.626		104	65	135		0		
Sample ID: LCS-R15594	SampType: LCS			Units: mg/Kg]	Prep Date	e: 7/15/20	14	RunNo: 15 !	594	
Client ID: LCSS	Batch ID: R15594					Analysis Date	e: 7/15/20	14	SeqNo: 31	5685	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	25.5	5.00	25.00	0	102	65	135				
Surr: Toluene-d8	2.45		2.500		97.9	65	135				
Surr: 4-Bromofluorobenzene	2.75		2.500		110	65	135				
Sample ID: MB-R15594	SampType: MBLK			Units: mg/Kg	 }	Prep Date	e: 7/15/20	14	RunNo: 15	594	
Client ID: MBLKS	Batch ID: R15594					Analysis Date	e: 7/15/20	14	SeqNo: 31	5686	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	5.00									
Surr: Toluene-d8	2.48		2.500		99.1	65	135				
Surr: 4-Bromofluorobenzene	2.68		2.500		107	65	135				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

E Value above quantitation range

Not detected at the Reporting Limit

Holding times for preparation or analysis exceeded

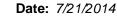
R RPD outside accepted recovery limits

Work Order: 1407120

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Volatile Organic Compounds by EPA Method 8260


Not detected at the Reporting Limit

Spike recovery outside accepted recovery limits

Sample ID: 1407120-001BMS	SampType: MS			Units: mg/Kg-	dry	Prep Date	: 7/14/201	14	RunNo: 155	i90	
Client ID: EWC-B-04:10.0	Batch ID: 8097					Analysis Date	7/15/201	14	SeqNo: 315	634	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	0.561	0.0112	0.5591	0	100	63.5	133				
Toluene	0.557	0.0112	0.5591	0	99.5	63.4	132				
Ethylbenzene	0.573	0.0168	0.5591	0	102	54.5	134				
m,p-Xylene	1.14	0.0112	1.118	0	102	53.1	132				
o-Xylene	0.554	0.0112	0.5591	0	99.1	53.3	139				
Surr: Dibromofluoromethane	1.45		1.398		104	63.7	129				
Surr: Toluene-d8	1.46		1.398		104	61.4	128				
Surr: 1-Bromo-4-fluorobenzene	1.47		1.398		105	63.1	141				
Sample ID: LCS-R15590	SampType: LCS			Units: mg/Kg		Prep Date	: 7/15/201	14	RunNo: 155	590	
Client ID: LCSS	Batch ID: 8097					Analysis Date	: 7/15/201	14	SeqNo: 315	638	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qu
Benzene	1.01	0.0200	1.000	0	101	74.6	124		-		
Toluene	1.01	0.0200	1.000	0	101	67.3	138				
Ethylbenzene	1.01	0.0300	1.000	0	101	74	129				
m,p-Xylene	2.04	0.0200	2.000	0	102	79.8	128				
o-Xylene	0.996	0.0200	1.000	0	99.6	72.7	124				
Surr: Dibromofluoromethane	2.53		2.500		101	63.7	129				
Surr: Toluene-d8	2.55		2.500		102	61.4	128				
Surr: 1-Bromo-4-fluorobenzene	2.60		2.500		104	63.1	141				
Sample ID: MB-R15590	SampType: MBLK			Units: mg/Kg		Prep Date	: 7/15/201	14	RunNo: 155	590	
Client ID: MBLKS	Batch ID: 8097					Analysis Date	: 7/15/201	14	SeqNo: 315	639	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qu
Benzene	ND	0.0200									
Toluene	ND	0.0200									

Analyte detected below quantitation limits

Reporting Limit

Yakima EWC

Work Order: 1407120

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Volatile Organic Compounds by EPA Method 8260

Sample ID: MB-R15590	SampType: MBLK			Units: mg/Kg		Prep Da	te: 7/15/20	14	RunNo: 155	590	
Client ID: MBLKS	Batch ID: 8097					Analysis Dat	te: 7/15/20	14	SeqNo: 315	5639	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ethylbenzene	ND	0.0300									
m,p-Xylene	ND	0.0200									
o-Xylene	ND	0.0200									
Surr: Dibromofluoromethane	2.44		2.500		97.7	63.7	129				
Surr: Toluene-d8	2.44		2.500		97.6	61.4	128				
Surr: 1-Bromo-4-fluorobenzene	2.37		2.500		95.0	63.1	141				

Sample ID: 1407107-001BDUP	SampType: DUP			Units: mg/l	Kg-dry	Prep Da	te: 7/11/20	14	RunNo: 155	590	
Client ID: BATCH	Batch ID: 8097					Analysis Da	te: 7/15/20	14	SeqNo: 315	5697	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	0.0290						0		30	
Toluene	ND	0.0290						0		30	
Ethylbenzene	ND	0.0435						0		30	
m,p-Xylene	ND	0.0290						0		30	
o-Xylene	ND	0.0290						0		30	
Surr: Dibromofluoromethane	3.58		3.626		98.8	63.7	129		0		
Surr: Toluene-d8	3.52		3.626		97.0	61.4	128		0		
Surr: 1-Bromo-4-fluorobenzene	3.35		3.626		92.3	63.1	141		0		

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Sample Log-In Check List

С	ient Name:	sw	Work Order Num	nber: 1407120	
Lo	ogged by:	Clare Griggs	Date Received:	7/14/2014 1	1:18:00 AM
Cha	in of Custo	<u>ody</u>			
1.	Is Chain of Cu	ustody complete?	Yes 🗹	No \square	Not Present
2.	How was the s	sample delivered?	Client		
Log	ln .				
_	Coolers are p	resent?	Yes 🗸	No 🗆	NA 🗆
4.	Shipping cont	ainer/cooler in good condition?	Yes 🗸	No 🗌	
5.	Custody seals	intact on shipping container/cooler?	Yes	No 🗌 on	Not Required 🗹
6.	Was an attem	upt made to cool the samples?	Yes 🗹	No 🗌	NA 🗌
7.	Were all coole	ers received at a temperature of >0°C to 10.0°C	Yes 🗹	No 🗌	NA 🗆
8.	Sample(s) in p	proper container(s)?	Yes 🗸	No 🗌	
9.	Sufficient sam	nple volume for indicated test(s)?	Yes 🗸	No 🗆	
10.	Are samples p	properly preserved?	Yes 🗹	No 🗌	
11.	Was preserva	tive added to bottles?	Yes	No 🗹	NA \square
12	Is the headspa	ace in the VOA vials?	Yes	No 🗆	NA 🗹
		es containers arrive in good condition(unbroken)?	Yes 🗹	No 🗆	
14.	Does paperwo	ork match bottle labels?	Yes 🗹	No \square	
15	Are matrices of	correctly identified on Chain of Custody?	Yes 🗹	No 🗆	
		t analyses were requested?	Yes 🗹	No 🗌	
		ng times able to be met?	Yes 🗹	No \square	
<u>Spe</u>	cial Handl	ing (if applicable)			
18.	Was client no	tified of all discrepancies with this order?	Yes	No \square	NA 🗸
	Person N	Notified: Date:			
	By Who	m: Via:	eMail P	hone Fax	In Person
	Regardir	ng:			
	Client In	structions:			
19.	Additional rem	narks:			

Item Information

Item #	Temp °C	Condition
Cooler	5.6	Good
Sample	3.7	Good

THE MONTH ON THE DESCRIPTION TO SHOW THE DESC	"Fisase coordinate atty the lab in advance.	DE11 41/21/	11/11	- Kenz		Ō	11 41	714	F	The K
THE PROPERTY Foliation of the North Property Service of the Servic	TAT -> SamurDayA MentDayA 3 Day 3 Day STD	11.00	700	Hadelwood .	10 73	13 11/56	L'alla	Patr	MA	N. A.
SOD FERMONT AVEN. Tel: 200-252-3779 SOD FERMONT AVEN. Tel: 200-252-			1	No.	1		A LIVE	ted	1	padarbula
SOOP Remont Ave N. Tell: 206-325-3799 Soop Remont Ave N. Tell: 206-325			retained effection days.)	8	by Lab (Assembly	(X) Disposal	to Client	☐ Resura t		ample Disposal:
Premotative No. Tab. 206-322-3239 Date: 1 10 20 1 Page: Page No. Page: Page No. Page: Page No. Page: Page No. Page:	SUPERIOR REPORTS	ate+Morie		-D-Prinospirate			Chloria	Nitrita		"Anians (Circle):
Soot Fremont Ave M. Tel: 206-325-32790 Freientite, WA 982103 Froign Name: LED ON X 41th St. Social IDS Auditoria: LED ON X 41th St. Social IDS The 206-325-32790 Froign Name: LED ON X 41th St. Social IDS The 206-9220-9444 Collected by Froign Name: Froign Name: LED ON X 41th St. Social IDS The 206-9220-9444 Collected by Froign Name: Froi	ADELUSIS	CO CY CO FE HE K ME MA MO NO	H 84 He Ca	AS AL	13	Priority Polluta		1	(Circle):	Metals Analysis
Tree month Soot Fremont Ave N. Tel: 206-252-2720 Date: 7 10 2014 Project Name: 106-252-2720										
Soft Record Ave N. Tel: 26-352-3790 Froitie, WA 98103 For Scottie,										
### Tremont Ave N. Tel: 206-352-3790 Scottler, WA 98103 Fair: 206-352-7178 Spice 1 10 2014 Fair: 206-352-7178 Spice 2 10 2014 Fair: 206-352-7178 Spice 3 206-352-7178 Spice 3 206-352-7178 Spice 3 206-352-7178 Spice 3 206-352-7178 Fair:										
Scot Fremont Ave N. Tel: 206-352-3790 Date: 7 10 20 14 Project Name: Constitut, NA 38303 Francisco Franc								3		
THE MOINT SOUTH THE LABORATE SANGER PROJECT IN SOUTH STATE S				×		10:50		(402)	6.0	B-05:1
SOO FERMONT AVE N. Tel: 206-352-3790 Froittie, WA 98103 FAN: 206-352-7178 SHOWN AND A CAPT SE SECTION STREET LEPO N 3414 SE SectIL ION LOCATION: LEPO N 3414 SE SectIL ION LOCATION: LEPO N 3414 SE SectIL ION LOCATION: LEPO N 3414 SE SECTION LOCATION				×		10:50	-	(20 h		B-05:1
THE MONTE SATISFA DATE THE 200-352-3790 SHAMM AN TEL 200-352-3790 DATE THE SHAMM AN TEL 200-352-3790 Project Name: Tele 100-352-3790 SHAMM AN TEL 200-352-3790 Project Name: Tele 100-352-3790 Proj		×	×			10:50		(802)	16.0	
THE POINT IN THE 206-352-3750 SECON TEL 206-352-3750 Froject Name: LEFO N. 34/H. S.L. Schill 100 Tel: 100 - 920 - 4824 Emist: SAN-(B) Loc must 100 Emist: SA				×		16:30	4/4	~	10.0	B.04:
THE TOP ONE THE 206-352-3790 SATURD N. Tel: 206-352-3790 SATURD N. 34th St. St. H. 100 LIED N. 34th St. St. H. 100 LIED N. 34th St. St. H. 100 LIED N. 34th St. St. H. 100 LOCATION: B. St. M. D. Other, P. Product S. Soll So. Sadiment, St. Solld, W. Water, DW. Enrait. SW. Ground Water A. M. A.				×		16:30	7/7	(02)	10.0	15-04-
THE THE DITE IN THE SECOND DATE: \$1/0 DOLL \$1/		×	×			14:30	7/4	Y 04)		B-04:
THE TOPONT Tel: 206-352-3790 SATURE OF STATES SHOWN AND TO SHOW THE STATES Date: THE TOPONT PROJECT No Project Name: HER N. 34 H. St. Shirt 100 SCAME WAT OF STATES Tel: \$26-920-4864 Collected by SATURE STATES A - An. AC - Aqueous, B - Sulh, D - Other, P - Product S - Soll, SD - Sadiment, SL - Solld, W - Water, DW - Directing Water, SW - Ground Water, AC - Aqueous, B - Sulh, D - Other, P - Product S - Soll, SD - Sadiment, SL - Solld, W - Water, DW - Directing Water, SW - Ground Water, AC - Aqueous, B - Sulh, D - Other, P - Product S - Soll, SD - Sadiment, SL - Solld, W - Water, DW - Directing Water, SW - Ground Water, DW - DW - DW - DW - Ground Water, DW - DW - DW - DW - Ground Water, DW - DW	11,		127 6 6 6 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1				Sample Date			ample Name
Telt 206-352-3790 Fan: 206-352-7178 Shown and I will Sen Lifto N 3414 St. Shirte 100 Swifte MA 98/03 Tel: 306-920-4864 Collected by: Smith St. Shirte 100 Smith St. Shirte 100 Email: SAMB Shown in the state of the state	Waste Water		d, W=Water, DW=	Sediment, St Soll		ter, P = Prode	1.	quebus, B = B	150	fatrix Codes: A = A
Tel: 206-352-3750 Fax: 206-352-7178 Date: \$\frac{1}{2}\leftarranger \frac{1}{2}\leftarranger \	21-1-2630-006	LON Project No:	Emails SANO			7	Bride		CO.	Reports To [PM]
Tel: 206-352-3790 Fax: 206-352-7178 Date: 7 0 7-0 4 Page:	K . 8.05	VAN State	Project Name: Location: Collected by:	4784-076	100	100 To	180 A	HE WAS	8	Client Address: City, State, Zip
remont	at.	+	H	7/10/20	Date		5-352-7178	Fax: 200	^	Seattle, WA 983
	407170					ALL PA	Tal las	217	-	
	n of Custody Record	Chai				7	9		T	

Distribution: White - Lab, Yellow - File, Pink - Originator

www.fremontanalytical.com

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Shannon & Wilson Ed Ptak 400 N. 34th Street, Suite 100 Seattle, WA 98103

RE: Yakima EWC Lab ID: 1407187

July 25, 2014

Attention Ed Ptak:

Fremont Analytical, Inc. received 2 sample(s) on 7/18/2014 for the analyses presented in the following report.

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.
Gasoline by NWTPH-Gx
Mercury by EPA Method 7471
Pentachlorophenol by EPA 8151A
Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)
Sample Moisture (Percent Moisture)
Total Metals by EPA Method 6020
Volatile Organic Compounds by EPA Method 8260

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

MGR

Michael Dee

Sr. Chemist / Principal

Date: 07/25/2014

CLIENT: Shannon & Wilson Work Order Sample Summary

Project: Yakima EWC Lab Order: 1407187

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 1407187-001
 EWC-B-01:10.0
 07/14/2014 11:50 AM
 07/18/2014 12:00 AM

 1407187-002
 EWC-B-01:15.0
 07/14/2014 12:20 PM
 07/18/2014 12:00 AM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: **1407187**Date: **7/25/2014**

CLIENT: Shannon & Wilson Project: Yakima EWC

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

WO#: **1407187**Date Reported: **7/25/2014**

Client: Shannon & Wilson Collection Date: 7/14/2014 11:50:00 AM

Project: Yakima EWC

Lab ID: 1407187-001 **Matrix:** Soil

Client Sample ID: EWC-B-01:10.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Pentachlorophenol by EPA 819	51A			Batch	n ID: 818	6 Analyst: DB
Pentachlorophenol	0.348	0.0341		mg/Kg-dry	1	7/22/2014 6:02:00 PM
Surr: 2,4,6-Tribromophenol	119	19.7-144		%REC	1	7/22/2014 6:02:00 PM
Diesel and Heavy Oil by NWTP	PH-Dx/Dx Ext.			Batch	n ID: 816	9 Analyst: EC
Diesel (Fuel Oil)	ND	32.4		mg/Kg-dry	1	7/22/2014 12:32:00 AM
Heavy Oil	147	81.0		mg/Kg-dry	1	7/22/2014 12:32:00 AM
Surr: 2-Fluorobiphenyl	102	50-150		%REC	1	7/22/2014 12:32:00 AM
Surr: o-Terphenyl	98.6	50-150		%REC	1	7/22/2014 12:32:00 AM
Polyaromatic Hydrocarbons by	y EPA Method 8	3270 (SIM)		Batch	n ID: 816	5 Analyst: NG
Naphthalene	ND	82.6		μg/Kg-dry	1	7/18/2014 6:44:00 PM
2-Methylnaphthalene	ND	82.6		μg/Kg-dry	1	7/18/2014 6:44:00 PM
1-Methylnaphthalene	ND	82.6		μg/Kg-dry	1	7/18/2014 6:44:00 PM
Acenaphthylene	ND	82.6		μg/Kg-dry	1	7/18/2014 6:44:00 PM
Acenaphthene	ND	82.6		μg/Kg-dry	1	7/18/2014 6:44:00 PM
Fluorene	ND	82.6		μg/Kg-dry	1	7/18/2014 6:44:00 PM
Phenanthrene	ND	82.6		μg/Kg-dry	1	7/18/2014 6:44:00 PM
Anthracene	ND	82.6		μg/Kg-dry	1	7/18/2014 6:44:00 PM
Fluoranthene	120	82.6		μg/Kg-dry	1	7/18/2014 6:44:00 PM
Pyrene	ND	82.6		μg/Kg-dry	1	7/18/2014 6:44:00 PM
Benz(a)anthracene	ND	82.6		μg/Kg-dry	1	7/18/2014 6:44:00 PM
Chrysene	ND	82.6		μg/Kg-dry	1	7/18/2014 6:44:00 PM
Benzo(b)fluoranthene	ND	82.6		μg/Kg-dry	1	7/18/2014 6:44:00 PM
Benzo(k)fluoranthene	ND	82.6		μg/Kg-dry	1	7/18/2014 6:44:00 PM
Benzo(a)pyrene	ND	82.6		μg/Kg-dry	1	7/18/2014 6:44:00 PM
Indeno(1,2,3-cd)pyrene	ND	82.6		μg/Kg-dry	1	7/18/2014 6:44:00 PM
Dibenz(a,h)anthracene	ND	82.6		μg/Kg-dry	1	7/18/2014 6:44:00 PM
Benzo(g,h,i)perylene	ND	82.6		μg/Kg-dry	1	7/18/2014 6:44:00 PM
Surr: 2-Fluorobiphenyl	85.0	42.7-132		%REC	1	7/18/2014 6:44:00 PM
Surr: Terphenyl-d14 (surr)	95.2	48.8-157		%REC	1	7/18/2014 6:44:00 PM

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1407187**Date Reported: **7/25/2014**

Client: Shannon & Wilson Collection Date: 7/14/2014 11:50:00 AM

Project: Yakima EWC

Lab ID: 1407187-001 **Matrix:** Soil

Client Sample ID: EWC-B-01:10.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Gasoline by NWTPH-Gx				Batch	ı ID: R1	15702 Analyst: BC
Gasoline	ND	8.29		mg/Kg-dry	1	7/20/2014 8:08:00 AM
Surr: 4-Bromofluorobenzene	119	65-135		%REC	1	7/20/2014 8:08:00 AM
Surr: Toluene-d8	98.9	65-135		%REC	1	7/20/2014 8:08:00 AM
Volatile Organic Compounds by	EPA Method	<u>8260</u>		Batch	n ID: 81	44 Analyst: BC
Benzene	ND	0.0331		mg/Kg-dry	1	7/20/2014 8:08:00 AM
Toluene	ND	0.0331		mg/Kg-dry	1	7/20/2014 8:08:00 AM
Ethylbenzene	ND	0.0497		mg/Kg-dry	1	7/20/2014 8:08:00 AM
m,p-Xylene	ND	0.0331		mg/Kg-dry	1	7/20/2014 8:08:00 AM
o-Xylene	ND	0.0331		mg/Kg-dry	1	7/20/2014 8:08:00 AM
Surr: Dibromofluoromethane	99.3	63.7-129		%REC	1	7/20/2014 8:08:00 AM
Surr: Toluene-d8	100	61.4-128		%REC	1	7/20/2014 8:08:00 AM
Surr: 1-Bromo-4-fluorobenzene	100	63.1-141		%REC	1	7/20/2014 8:08:00 AM
Mercury by EPA Method 7471				Batch	n ID: 81	57 Analyst: MW
Mercury	ND	0.414		mg/Kg-dry	1	7/21/2014 3:28:31 PM
Total Metals by EPA Method 60	<u>20</u>			Batch	n ID: 81	56 Analyst: TN
Arsenic	2.52	0.130		mg/Kg-dry	1	7/21/2014 3:15:46 PM
Cadmium	0.527	0.259		mg/Kg-dry	1	7/21/2014 3:15:46 PM
Chromium	12.5	0.130		mg/Kg-dry	1	7/21/2014 3:15:46 PM
Lead	20.6	0.259		mg/Kg-dry	1	7/21/2014 3:15:46 PM
Sample Moisture (Percent Mois	ture)			Batch	ı ID: R1	15667 Analyst: TK
Percent Moisture	42.0			wt%	1	7/18/2014 3:50:49 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

WO#: **1407187**Date Reported: **7/25/2014**

Client: Shannon & Wilson Collection Date: 7/14/2014 12:20:00 PM

Project: Yakima EWC

Lab ID: 1407187-002 **Matrix:** Soil

Client Sample ID: EWC-B-01:15.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	
Pentachlorophenol by EPA 8151A				Batch ID: 8186 Analyst: DB			
Pentachlorophenol	ND	0.0363		mg/Kg-dry	1	7/22/2014 6:52:00 PM	
Surr: 2,4,6-Tribromophenol	134	19.7-144		%REC	1	7/22/2014 6:52:00 PM	
Diesel and Heavy Oil by NWTI	PH-Dx/Dx Ext.			Batch	n ID: 816	Analyst: EC	
Diesel (Fuel Oil)	ND	42.3		mg/Kg-dry	1	7/22/2014 1:03:00 AM	
Heavy Oil	1,540	106		mg/Kg-dry	1	7/22/2014 1:03:00 AM	
Surr: 2-Fluorobiphenyl	99.8	50-150		%REC	1	7/22/2014 1:03:00 AM	
Surr: o-Terphenyl	104	50-150		%REC	1	7/22/2014 1:03:00 AM	
Polyaromatic Hydrocarbons b	y EPA Method	8270 (SIM)		Batch	n ID: 816	Analyst: NG	
Naphthalene	241	99.7		μg/Kg-dry	1	7/18/2014 7:34:00 PM	
2-Methylnaphthalene	ND	99.7		μg/Kg-dry	1	7/18/2014 7:34:00 PM	
1-Methylnaphthalene	ND	99.7		μg/Kg-dry	1	7/18/2014 7:34:00 PM	
Acenaphthylene	ND	99.7		μg/Kg-dry	1	7/18/2014 7:34:00 PM	
Acenaphthene	126	99.7		μg/Kg-dry	1	7/18/2014 7:34:00 PM	
Fluorene	178	99.7		μg/Kg-dry	1	7/18/2014 7:34:00 PM	
Phenanthrene	1,070	99.7		μg/Kg-dry	1	7/18/2014 7:34:00 PM	
Anthracene	289	99.7		μg/Kg-dry	1	7/18/2014 7:34:00 PM	
Fluoranthene	1,090	99.7		μg/Kg-dry	1	7/18/2014 7:34:00 PM	
Pyrene	839	99.7		μg/Kg-dry	1	7/18/2014 7:34:00 PM	
Benz(a)anthracene	462	99.7		μg/Kg-dry	1	7/18/2014 7:34:00 PM	
Chrysene	248	99.7		μg/Kg-dry	1	7/18/2014 7:34:00 PM	
Benzo(b)fluoranthene	507	99.7		μg/Kg-dry	1	7/18/2014 7:34:00 PM	
Benzo(k)fluoranthene	203	99.7		μg/Kg-dry	1	7/18/2014 7:34:00 PM	
Benzo(a)pyrene	382	99.7		μg/Kg-dry	1	7/18/2014 7:34:00 PM	
Indeno(1,2,3-cd)pyrene	231	99.7		μg/Kg-dry	1	7/18/2014 7:34:00 PM	
Dibenz(a,h)anthracene	134	99.7		μg/Kg-dry	1	7/18/2014 7:34:00 PM	
Benzo(g,h,i)perylene	247	99.7		μg/Kg-dry	1	7/18/2014 7:34:00 PM	
Surr: 2-Fluorobiphenyl	44.0	42.7-132		%REC	1	7/18/2014 7:34:00 PM	
Surr: Terphenyl-d14 (surr)	63.6	48.8-157		%REC	1	7/18/2014 7:34:00 PM	

Qualifiers:

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- RL Reporting Limit

- D Dilution was required
- H Holding times for preparation or analysis exceeded
- ND Not detected at the Reporting Limit
 - S Spike recovery outside accepted recovery limits

WO#: **1407187**Date Reported: **7/25/2014**

Client: Shannon & Wilson Collection Date: 7/14/2014 12:20:00 PM

Project: Yakima EWC

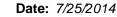
Lab ID: 1407187-002 **Matrix:** Soil

Client Sample ID: EWC-B-01:15.0

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Gasoline by NWTPH-Gx				Batcl	n ID: R1	5702 Analyst: BC
Gasoline	ND	10.6		mg/Kg-dry	1	7/20/2014 8:38:00 AM
Surr: 4-Bromofluorobenzene	114	65-135		%REC	1	7/20/2014 8:38:00 AM
Surr: Toluene-d8	98.7	65-135		%REC	1	7/20/2014 8:38:00 AM
Volatile Organic Compounds by	y EPA Method	<u>8260</u>		Batcl	n ID: 81	44 Analyst: BC
Benzene	ND	0.0424		mg/Kg-dry	1	7/20/2014 8:38:00 AM
Toluene	ND	0.0424		mg/Kg-dry	1	7/20/2014 8:38:00 AM
Ethylbenzene	ND	0.0636		mg/Kg-dry	1	7/20/2014 8:38:00 AM
m,p-Xylene	ND	0.0424		mg/Kg-dry	1	7/20/2014 8:38:00 AM
o-Xylene	ND	0.0424		mg/Kg-dry	1	7/20/2014 8:38:00 AM
Surr: Dibromofluoromethane	98.6	63.7-129		%REC	1	7/20/2014 8:38:00 AM
Surr: Toluene-d8	99.6	61.4-128		%REC	1	7/20/2014 8:38:00 AM
Surr: 1-Bromo-4-fluorobenzene	96.2	63.1-141		%REC	1	7/20/2014 8:38:00 AM
Mercury by EPA Method 7471				Batcl	n ID: 81	57 Analyst: MW
Mercury	ND	0.502		mg/Kg-dry	1	7/21/2014 3:30:09 PM
Total Metals by EPA Method 60	20			Batcl	n ID: 81	56 Analyst: TN
Arsenic	6.08	0.165		mg/Kg-dry	1	7/21/2014 3:19:12 PM
Cadmium	0.865	0.330		mg/Kg-dry	1	7/21/2014 3:19:12 PM
Chromium	17.5	0.165		mg/Kg-dry	1	7/21/2014 3:19:12 PM
Lead	36.3	0.330		mg/Kg-dry	1	7/21/2014 3:19:12 PM
Sample Moisture (Percent Mois	sture)			Batcl	n ID: R1	15667 Analyst: TK
Percent Moisture	53.0			wt%	1	7/18/2014 3:50:49 PM

Qualifiers: B Analyte detected in the associated Method Blank

E Value above quantitation range


J Analyte detected below quantitation limits

RL Reporting Limit

D Dilution was required

H Holding times for preparation or analysis exceeded

ND Not detected at the Reporting Limit

Work Order: 1407187

QC SUMMARY REPORT

CLIENT: Shannon & Wilson Project: Yakima EWC

Total Metals by EPA Method 6020

Sample ID: MB-8156	SampType: MBLK	SampType: MBLK				Prep Date: 7/21/2014			RunNo: 156		
Client ID: MBLKS	Batch ID: 8156					Analysis Da	te: 7/21/2 0)14	SeqNo: 317	7631	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	ND	0.100									
Cadmium	ND	0.200									
Chromium	ND	0.100									
Lead	ND	0.200									

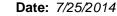
Sample ID: LCS-8156	SampType: LCS			Units: mg/Kg		Prep Dat	e: 7/21/20	14	RunNo: 156	95	
Client ID: LCSS	Batch ID: 8156					Analysis Dat	e: 7/21/20	14	SeqNo: 317	632	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	97.0	0.100	104.0	0	93.2	69.5	130.8				
Cadmium	92.2	0.200	92.80	0	99.3	73.3	127.2				
Chromium	67.1	0.100	62.90	0	107	67.9	132				
Lead	309	0.200	319.0	0	96.8	75.9	124.1				

Sample ID: 1407175-003ADUP	SampType: DUP			Units: mg/	Kg-dry	Prep Da	te: 7/21/20	14	RunNo: 156	395	
Client ID: BATCH	Batch ID: 8156					Analysis Da	te: 7/21/20	14	SeqNo: 317	7634	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	2.18	0.0831						2.340	7.06	30	_
Cadmium	ND	0.166						0		30	
Chromium	21.1	0.0831						20.80	1.58	30	
Lead	1.42	0.166						1.423	0.0175	30	

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits


D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Yakima EWC

Work Order: 1407187

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Total Metals by EPA Method 6020

Sample ID: 1407175-003AMS	SampType: MS	Units: mg/Kg-dry P			Prep Da	te: 7/21/20	14	RunNo: 156			
Client ID: BATCH	Batch ID: 8156					Analysis Da	te: 7/21/20	14	SeqNo: 317	7638	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	46.7	0.0837	41.87	2.340	106	75	125				
Cadmium	2.21	0.167	2.094	0.03943	104	75	125				
Chromium	71.5	0.0837	41.87	20.80	121	75	125				
Lead	22.8	0.167	20.94	1.423	102	75	125				

Sample ID: 1407175-003AMSD	SampType: MSD			Units: mg/	Kg-dry	Prep Dat	e: 7/21/20	14	RunNo: 156	695	
Client ID: BATCH	Batch ID: 8156					Analysis Dat	e: 7/21/20	14	SeqNo: 317	7639	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	42.7	0.0818	40.92	2.340	98.6	75	125	46.72	8.97	30	
Cadmium	1.99	0.164	2.046	0.03943	95.2	75	125	2.210	10.6	30	
Chromium	64.3	0.0818	40.92	20.80	106	75	125	71.45	10.5	30	
Lead	20.5	0.164	20.46	1.423	93.2	75	125	22.83	10.8	30	

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1407187

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Project: Yakima	a EWC							Merc	ury by EP	A Metho	d 747
Sample ID: MB-8157	SampType: MBLK			Units: mg/	Kg	Prep Date	7/21/201	4	RunNo: 156	692	
Client ID: MBLKS	Batch ID: 8157					Analysis Date	7/21/201	4	SeqNo: 317	7548	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	ND	0.250									
Sample ID: LCS-8157	SampType: LCS			Units: mg/	Kg	Prep Date	7/21/201	4	RunNo: 156	692	
Client ID: LCSS	Batch ID: 8157					Analysis Date	7/21/201	4	SeqNo: 317	7549	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.491	0.250	0.5000	0	98.2	80	120				
Sample ID: 1407184-001ADU	IP SampType: DUP			Units: mg/	Kg-dry	Prep Date	7/21/201	4	RunNo: 156	692	
Client ID: BATCH	Batch ID: 8157					Analysis Date	7/21/201	4	SeqNo: 317	7551	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	ND	0.279						0		20	
Sample ID: 1407184-001AMS	SampType: MS			Units: mg/	Kg-dry	Prep Date	7/21/201	4	RunNo: 156	692	
Client ID: BATCH	Batch ID: 8157					Analysis Date	7/21/201	4	SeqNo: 317	7552	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.539	0.264	0.5281	0.03102	96.1	70	130				
Sample ID: 1407184-001AMS	SD SampType: MSD			Units: mg/	Kg-dry	Prep Date	7/21/201	4	RunNo: 156	692	
Client ID: BATCH	Batch ID: 8157					Analysis Date	7/21/201	4	SeqNo: 317	7553	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.544	0.269	0.5379	0.03102	95.4	70	130	0.5387	1.05	20	

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

E Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1407187

QC SUMMARY REPORT

CLIENT: Shannon & Wilson Yakima FWC:

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Project: Yakıma Ev	VC							, ,	, ,		
Sample ID: 1407199-001ADUP	SampType: DUP			Units: mg/Kg	j-dry	Prep Date	7/21/20	14	RunNo: 15	706	
Client ID: BATCH	Batch ID: 8169					Analysis Date	7/21/20	14	SeqNo: 31	7859	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	24.6						0		30	
Heavy Oil	ND	61.6						0		30	
Surr: 2-Fluorobiphenyl	24.1		24.64		97.6	50	150		0		
Surr: o-Terphenyl	23.1		24.64		93.5	50	150		0		
Sample ID: LCS-8169	SampType: LCS			Units: mg/Kg	1	Prep Date	7/21/20	14	RunNo: 15	706	
Client ID: LCSS	Batch ID: 8169					Analysis Date	7/21/20	14	SeqNo: 31	7866	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	491	20.0	500.0	0	98.2	65	135				
Surr: 2-Fluorobiphenyl	21.9		20.00		110	50	150				
Surr: o-Terphenyl	18.8		20.00		94.2	50	150				
Sample ID: MB-8169	SampType: MBLK			Units: mg/Kg]	Prep Date	7/21/20	14	RunNo: 15	706	
Client ID: MBLKS	Batch ID: 8169					Analysis Date	7/21/20	14	SeqNo: 31	7867	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	20.0									
Heavy Oil	ND	50.0									
Surr: 2-Fluorobiphenyl	20.0		20.00		100	50	150				
Surr: o-Terphenyl	19.1		20.00		95.4	50	150				

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1407187

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Project: Yakima E	WC				Ро	lyaromatio	C Hydro	carbons by	y EPA Met	hod 8270	(SIM)
Sample ID: MB-8165	SampType: MBLK			Units: µg/Kg		Prep Date	: 7/18/20)14	RunNo: 150	681	
Client ID: MBLKS	Batch ID: 8165					Analysis Date	: 7/18/20)14	SeqNo: 31	7399	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	50.0									
2-Methylnaphthalene	ND	50.0									
1-Methylnaphthalene	ND	50.0									
Acenaphthylene	ND	50.0									
Acenaphthene	ND	50.0									
Fluorene	ND	50.0									
Phenanthrene	ND	50.0									
Anthracene	ND	50.0									
Fluoranthene	ND	50.0									
Pyrene	ND	50.0									
Benz(a)anthracene	ND	50.0									
Chrysene	ND	50.0									
Benzo(b)fluoranthene	ND	50.0									
Benzo(k)fluoranthene	ND	50.0									
Benzo(a)pyrene	ND	50.0									
Indeno(1,2,3-cd)pyrene	ND	50.0									
Dibenz(a,h)anthracene	ND	50.0									
Benzo(g,h,i)perylene	ND	50.0									
Surr: 2-Fluorobiphenyl	442		500.0		88.3	42.7	132				
Surr: Terphenyl-d14 (surr)	428		500.0		85.6	48.8	157				
Comple ID: 1 CC 04CF	CompType: 100			Linite:/IV.		Dran Data	. 7/40/00	M 4	DunNo. 454	204	

Sample ID: LCS-8165	SampType: LCS			Units: µg/Kg		Prep Dat	e: 7/18/2014		RunNo: 156	81	
Client ID: LCSS	Batch ID: 8165					Analysis Dat	e: 7/18/2014		SeqNo: 317	400	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD R	Ref Val	%RPD	RPDLimit	Qual
Naphthalene	861	50.0	1,000	0	86.1	61.6	125				
2-Methylnaphthalene	843	50.0	1,000	0	84.3	58.2	129				
1-Methylnaphthalene	837	50.0	1,000	0	83.7	56.4	132				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

Ε Value above quantitation range

Not detected at the Reporting Limit

Work Order: 1407187

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Yakima EWC

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: LCS-8165	SampType: LCS			Units: µg/Kg		Prep Date	7/18/201	4	RunNo: 150	681	
Client ID: LCSS	Batch ID: 8165					Analysis Date	7/18/201	4	SeqNo: 317	7400	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthylene	830	50.0	1,000	0	83.0	52.2	133				
Acenaphthene	903	50.0	1,000	0	90.3	54	131				
Fluorene	884	50.0	1,000	0	88.5	53.4	131				
Phenanthrene	859	50.0	1,000	0	85.9	55.6	128				
Anthracene	862	50.0	1,000	0	86.2	51	132				
Fluoranthene	864	50.0	1,000	0	86.4	48.4	134				
Pyrene	852	50.0	1,000	0	85.2	48.6	135				
Benz(a)anthracene	827	50.0	1,000	0	82.7	41.9	136				
Chrysene	951	50.0	1,000	0	95.1	51.4	135				
Benzo(b)fluoranthene	889	50.0	1,000	0	88.9	39.7	137				
Benzo(k)fluoranthene	844	50.0	1,000	0	84.4	45.7	138				
Benzo(a)pyrene	874	50.0	1,000	0	87.4	45.3	135				
Indeno(1,2,3-cd)pyrene	734	50.0	1,000	0	73.4	45.4	137				
Dibenz(a,h)anthracene	684	50.0	1,000	0	68.4	45.8	134				
Benzo(g,h,i)perylene	712	50.0	1,000	0	71.2	49.3	134				
Surr: 2-Fluorobiphenyl	421		500.0		84.1	42.7	132				
Surr: Terphenyl-d14 (surr)	416		500.0		83.1	48.8	157				

Sample ID: 1407187-001ADUP	SampType: DUP		Units: µg/Kg-dry Prep Date: 7/18/2014			14	RunNo: 15681				
Client ID: EWC-B-01:10.0	Batch ID: 8165					Analysis Dat	e: 7/18/20	14	SeqNo: 317	7402	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	82.4						0		30	
2-Methylnaphthalene	ND	82.4						0		30	
1-Methylnaphthalene	ND	82.4						0		30	
Acenaphthylene	ND	82.4						0		30	
Acenaphthene	ND	82.4						0		30	
Fluorene	ND	82.4						0		30	

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

- D Dilution was required
- Analyte detected below quantitation limits
- RL Reporting Limit

- E Value above quantitation range
- ND Not detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Yakima EWC

Work Order: 1407187

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 1407187-001ADUP	SampType: DUP			Units: µg/Kg-dry Prep Date: 7/18/2014			14	RunNo: 156	681		
Client ID: EWC-B-01:10.0	Batch ID: 8165					Analysis Dat	e: 7/18/2 0	14	SeqNo: 317	7402	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Phenanthrene	ND	82.4						0		30	
Anthracene	ND	82.4						0		30	
Fluoranthene	ND	82.4						120.2	106	30	R
Pyrene	ND	82.4						0		30	
Benz(a)anthracene	ND	82.4						0		30	
Chrysene	ND	82.4						0		30	
Benzo(b)fluoranthene	ND	82.4						0		30	
Benzo(k)fluoranthene	ND	82.4						0		30	
Benzo(a)pyrene	ND	82.4						0		30	
Indeno(1,2,3-cd)pyrene	ND	82.4						0		30	
Dibenz(a,h)anthracene	ND	82.4						0		30	
Benzo(g,h,i)perylene	ND	82.4						0		30	
Surr: 2-Fluorobiphenyl	600		824.3		72.8	42.7	132		0		
Surr: Terphenyl-d14 (surr)	807		824.3		97.9	48.8	157		0		
NOTES:											

NOTES:

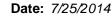
R - High RPD due to suspected sample inhomogeneity. The method is in control as indicated by the Laboratory Control Sample (LCS).

Sample ID: 1407187-002AMS	SampType: MS			Units: µg/K	g-dry	Prep Date: 7/18/2014			RunNo: 15681		
Client ID: EWC-B-01:15.0	Batch ID: 8165					Analysis Da	te: 7/18/2 0	14	SeqNo: 317	7404	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,680	100	2,003	240.6	71.7	42.9	138				
2-Methylnaphthalene	1,520	100	2,003	92.78	71.1	42.8	151				
1-Methylnaphthalene	1,430	100	2,003	56.24	68.5	41.6	148				
Acenaphthylene	1,470	100	2,003	33.90	71.6	32.6	160				
Acenaphthene	1,650	100	2,003	126.4	76.3	46.3	142				
Fluorene	1,730	100	2,003	178.2	77.4	43.4	153				
Phenanthrene	2,310	100	2,003	1,069	62.1	45.5	140				
Anthracene	1,810	100	2,003	288.9	75.8	32.6	160				

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits


D Dilution was required

Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Yakima EWC

Work Order: 1407187

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 1407187-002AMS	SampType: MS			Units: µg/l	(g-dry	Prep Da	te: 7/18/20	14	RunNo: 156	681	
Client ID: EWC-B-01:15.0	Batch ID: 8165					Analysis Da	te: 7/18/20	14	SeqNo: 317	7404	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluoranthene	2,350	100	2,003	1,089	63.1	44.6	161				
Pyrene	2,170	100	2,003	838.6	66.6	48.3	158				
Benz(a)anthracene	1,990	100	2,003	461.7	76.1	57.5	169				
Chrysene	2,020	100	2,003	247.7	88.7	45.2	146				
Benzo(b)fluoranthene	2,120	100	2,003	506.8	80.5	42.2	168				
Benzo(k)fluoranthene	1,750	100	2,003	203.0	77.1	48	161				
Benzo(a)pyrene	2,030	100	2,003	382.1	82.2	34.4	179				
Indeno(1,2,3-cd)pyrene	1,710	100	2,003	230.7	73.7	41.1	165				
Dibenz(a,h)anthracene	1,590	100	2,003	134.2	72.5	38.1	166				
Benzo(g,h,i)perylene	1,670	100	2,003	247.1	71.3	45.6	157				
Surr: 2-Fluorobiphenyl	496		1,002		49.5	42.7	132				
Surr: Terphenyl-d14 (surr)	884		1,002		88.2	48.8	157				

Qualifiers: B Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits

D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1407187

CLIENT: Shannon & Wilson

Project: Yakima EWC

QC SUMMARY REPORT

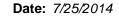
Pentachlorophenol by EPA 8151A

riojeci. Takiilla Evi	7 C								•		
Sample ID: MB-8186	SampType: MBLK			Units: mg/k	(g	Prep Dat	e: 7/22/20	14	RunNo: 157	797	
Client ID: MBLKS	Batch ID: 8186					Analysis Dat	e: 7/22/20	14	SeqNo: 319	9420	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pentachlorophenol	ND	0.0200									
Surr: 2,4,6-Tribromophenol	1.04		2.000		51.8	19.7	144				
Sample ID: LCS-8186	SampType: LCS			Units: mg/k	 (g	Prep Dat	e: 7/22/20	14	RunNo: 157	797	
Client ID: LCSS	Batch ID: 8186					Analysis Dat	e: 7/22/20	14	SeqNo: 319	9421	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pentachlorophenol	1.63	0.0200	4.000	0	40.7	21.4	135				
Surr: 2,4,6-Tribromophenol	1.71		2.000		85.3	19.7	144				
Sample ID: 1407187-001ADUP	SampType: DUP			Units: mg/k	(g-dry	Prep Dat	e: 7/22/20	14	RunNo: 157	797	
Client ID: EWC-B-01:10.0	Batch ID: 8186					Analysis Dat	e: 7/22/20	14	SeqNo: 319	9423	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pentachlorophenol	0.352	0.0336						0.3485	1.04	30	
Surr: 2,4,6-Tribromophenol	4.60		3.363		137	19.7	144		0	0	
Sample ID: 1407187-002AMS	SampType: MS			Units: mg/k	(g-dry	Prep Dat	e: 7/22/20	14	RunNo: 157	797	
Client ID: EWC-B-01:15.0	Batch ID: 8186					Analysis Dat	e: 7/22/20	14	SeqNo: 319	9425	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pentachlorophenol	9.50	0.0367	7.343	0	129	28.2	156				
Surr: 2,4,6-Tribromophenol	5.14		3.671		140	19.7	144				

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits


D Dilution was required

J Analyte detected below quantitation limits

RL Reporting Limit

E Value above quantitation range

ND Not detected at the Reporting Limit

Work Order: 1407187

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Project: Yakima EW	VC								Gasoline	by NWT	PH-G
Sample ID: MB-R15702	SampType: MBLK			Units: mg/l	(g	Prep Date	e: 7/19/20	14	RunNo: 15	702	
Client ID: MBLKS	Batch ID: R15702					Analysis Date	e: 7/19/20	14	SeqNo: 31	7786	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	5.00									
Surr: Toluene-d8	2.47		2.500		98.9	65	135				
Surr: 4-Bromofluorobenzene	2.82		2.500		113	65	135				
Sample ID: 1407181-004BDUP	SampType: DUP			Units: mg/l	(g-dry	Prep Date	e: 7/18/20	14	RunNo: 15	702	
Client ID: BATCH	Batch ID: R15702					Analysis Date	e: 7/20/20	14	SeqNo: 31	7802	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	5.69						0		30	
Surr: Toluene-d8	2.79		2.847		97.9	65	135		0		
Surr: 4-Bromofluorobenzene	3.16		2.847		111	65	135		0		
Sample ID: LCS-R15702	SampType: LCS			Units: mg/l	 (g	Prep Date	e: 7/19/20	14	RunNo: 15	702	
Client ID: LCSS	Batch ID: R15702					Analysis Date	e: 7/19/20	14	SeqNo: 31	7807	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	27.2	5.00	25.00	0	109	65	135				
Surr: Toluene-d8	2.51		2.500		100	65	135				
Surr: 4-Bromofluorobenzene	2.91		2.500		116	65	135				

Qualifiers: Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

RPD outside accepted recovery limits

D Dilution was required

Analyte detected below quantitation limits

Reporting Limit

E Value above quantitation range

Not detected at the Reporting Limit

Holding times for preparation or analysis exceeded

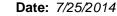
R RPD outside accepted recovery limits

Work Order: 1407187

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Volatile Organic Compounds by EPA Method 8260


Not detected at the Reporting Limit

Spike recovery outside accepted recovery limits

Sample ID: 1407181-004BDUP	SampType: DUP			Units: mg/Kg	-dry	Prep Date	: 7/18/20 1	4	RunNo: 156	693	
Client ID: BATCH	Batch ID: 8144					Analysis Date	: 7/20/20 1	4	SeqNo: 317	7585	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	ND	0.0228						0		30	
Toluene	ND	0.0228						0		30	
Ethylbenzene	ND	0.0342						0		30	
m,p-Xylene	ND	0.0228						0		30	
o-Xylene	ND	0.0228						0		30	
Surr: Dibromofluoromethane	2.70		2.847		94.8	63.7	129		0		
Surr: Toluene-d8	2.82		2.847		99.1	61.4	128		0		
Surr: 1-Bromo-4-fluorobenzene	2.67		2.847		93.7	63.1	141		0		
Sample ID: LCS-R15693	SampType: LCS			Units: mg/Kg		Prep Date	: 7/19/20 1	4	RunNo: 156	693	
Client ID: LCSS	Batch ID: 8144					Analysis Date	: 7/19/20 1	4	SeqNo: 317	7591	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qu
Benzene	0.977	0.0200	1.000	0	97.7	74.6	124		-		
Toluene	1.03	0.0200	1.000	0	103	67.3	138				
Ethylbenzene	0.986	0.0300	1.000	0	98.6	74	129				
m,p-Xylene	1.95	0.0200	2.000	0	97.5	79.8	128				
o-Xylene	0.962	0.0200	1.000	0	96.2	72.7	124				
Surr: Dibromofluoromethane	2.61		2.500		104	63.7	129				
Surr: Toluene-d8	2.57		2.500		103	61.4	128				
Surr: 1-Bromo-4-fluorobenzene	2.58		2.500		103	63.1	141				
Sample ID: MB-R15693	SampType: MBLK			Units: mg/Kg		Prep Date	e: 7/19/20 1	4	RunNo: 156	693	
Client ID: MBLKS	Batch ID: 8144					Analysis Date	: 7/19/20 1	4	SeqNo: 317	7592	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qu
Benzene	ND	0.0200									
Toluene	ND	0.0200									

Analyte detected below quantitation limits

Reporting Limit

Yakima EWC

Work Order: 1407187

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Volatile Organic Compounds by EPA Method 8260

Sample ID: MB-R15693	SampType: MBLK			Units: mg/Kg		Prep Da	te: 7/19/2 0	14	RunNo: 150	693	
Client ID: MBLKS	Batch ID: 8144					Analysis Dat	te: 7/19/2 0	114	SeqNo: 317	7592	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Ethylbenzene	ND	0.0300									
m,p-Xylene	ND	0.0200									
o-Xylene	ND	0.0200									
Surr: Dibromofluoromethane	2.47		2.500		98.7	63.7	129				
Surr: Toluene-d8	2.51		2.500		101	61.4	128				
Surr: 1-Bromo-4-fluorobenzene	2.38		2.500		95.1	63.1	141				

R RPD outside accepted recovery limits

L Reporting Limit

Holding times for preparation or analysis exceeded

D Dilution was required

Analyte detected below quantitation limits

E Value above quantitation range

ND Not detected at the Reporting Limit

Sample Log-In Check List

С	lient Name:	sw			Work Or	der Nur	mber: 1407187		
Lo	ogged by:	Erica Silva	i.		Date Red	ceived:	7/18/2014	ı	
Cha	nin of Custo	od <u>y</u>							
1.	Is Chain of Cu	ustody comp	ete?		Yes	✓	No \square	Not Present	
2.	How was the s	sample delive	ered?		<u>UPS</u>				
Log	<u>ı In</u>								
_	Coolers are p	resent?			Yes	✓	No 🗌	NA 🗌	
4.	Shipping cont	tainer/cooler	in good condition?		Yes	✓	No 🗌		
5.			ipping container/cooler?		Yes		No 🗌	Not Required 🗹	
6.	Was an attem	npt made to d	cool the samples?		Yes	V	No 🗌	NA 🗌	
7.	Were all coole	ers received	at a temperature of >0°C to 10.0°	°C	Yes	✓	No 🗌	NA 🗌	
8.	Sample(s) in p	proper conta	iner(s)?		Yes	~	No 🗌		
9.	Sufficient sam	nple volume t	for indicated test(s)?		Yes	✓	No \square		
10.	Are samples p	properly pres	erved?		Yes	✓	No 🗌		
11.	Was preserva	ative added to	bottles?		Yes		No 🗹	NA \square	
12.	Is the headspa	ace in the V	DA vials?		Yes		No 🗌	NA 🗹	
13.	Did all sample	es containers	arrive in good condition(unbroker	n)?	Yes	✓	No 🗌		
14.	Does paperwo	ork match bo	ttle labels?		Yes	~	No 🗌		
15.	Are matrices of	correctly ider	ntified on Chain of Custody?		Yes	~	No 🗌		
16.	Is it clear wha	it analyses w	ere requested?		Yes	✓	No 🗌		
17.	Were all holdi	ing times abl	e to be met?		Yes	✓	No \square		
Spe	cial Handlı	ing (if apı	olicable)						
18.	Was client no	tified of all d	screpancies with this order?		Yes	✓	No 🗌	NA 🗌	_
	Person N	Notified:	Ed Ptak	Date:			7/18/2014		
	By Who	m:	Erica Silva	Via:	✓ eMai	il 🗌 F	Phone Fax	In Person	
	Regardir	ng:	Full VOC list AND Gx/BTEX sele	ected: cla	rifv				
	Client In	structions:	Gx/BTEX only						
40	Additional ram								

19. Additional remarks:

Item Information

Item #	Temp °C	Condition
Cooler	8.5	Good
Sample	9.2	Good

Aplace courdinate with the use in science				×				*
TAT -> SameDay" NextDay" LDay : - 10	Date/Time	C V D	- delened	4		Date/Time	Dat	Reinfaushed
	1/18/14 14 46	A.	Rotowed		1211 (3) 75 18	116	Me Dat	* Reimpushia
		(X) Disposal by Las (Vincional) in manufact variance on preserved time (branks)	ine (company)) permit	and form with the	Disposal by L		Return to Client	Sample Dispusal:
Special Remarks:	Warite	Fluoride Micros-Werite	Saleydiscale; D	Бідуніць	Suifate	Chloride	Mitrate Nitide	***Aniam (Circle):
PB 50 Se 5r 5n Ti Ti U = 7	Or Co FE HE F ME ME ME TO ME PE	AL B DE DE CE CO	terstweezent Age: A4 Ac	TAL JOI	Priority Pallutants	RCRA-8 F	MICAS	** Metals Analysis (Circle):
								10
				L				LD.
								00
								7
								ġ.
								ÿ.
								A
								φu
	×	×		×	12:20	7/14	15.0	10-8-01
	X			×	11:50	7/14	10.0	1 LW(-B-0)=10.0
Commence/Daugith			10/1/	Sample Section Committee C	Sample 5 m	Sample		Sample Name
Waste Wated	*Mains Ordes: A *Air. AO * Aqueous. B : Bulk. O = Other, P + Product. S = soil. SD = Sudment. SL = Soild. W = Water, DW = Orniking Water, GW = Ground Water, WW = Waste Water	lid. W=Water, DW=DH	diment, St. = Sol	5=3011. \$0=5	er, P = Product	Bulk, O = Oth	AO = Aqueous. B =	*Main Endes: A *Ar
21-11-21.10-50	GAME Thomas I - Care Project No:	Email: S/HW/ 11			Faxo	niche	Brion REZNICK	Reports To (PM):
		Collected by:	M984-566-904	706-9	1	8/62	Scottle, WA	City, State, Zip
43-1-1-1	YOU TO EWC -	Project Name:			Ser # 150	VOFICE NAMES	2 2 2 2 h	Client:
at.	Page	120/4	111/	Date:		Fax: 206-352-7178		Seattle, WA 98103
407/87	laboratory Project Na (Internal):				277.8	The Part Part I		
Chain of Custody Record	Chai				7	0	remont	
					1			

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Shannon & Wilson Brian Reznick 400 N. 34th Street, Suite 100

RE: Yakima EWC

Seattle, WA 98103

Work Order Number: 1707301

August 14, 2017

Attention Brian Reznick:

Fremont Analytical, Inc. received 5 sample(s) on 7/31/2017 for the analyses presented in the following report.

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Gasoline by NWTPH-Gx

Herbicides by EPA Method 8151A

Mercury by EPA Method 7471

Organochlorine Pesticides by EPA Method 8081

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Polychlorinated Biphenyls (PCB) by EPA 8082

Sample Moisture (Percent Moisture)

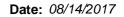
Total Metals by EPA Method 6020

Volatile Organic Compounds by EPA Method 8260C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.


Thank you for using Fremont Analytical.

I dul c. Redy

Sincerely,

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized) Mike Ridgeway Laboratory Director

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Shannon & Wilson Work Order Sample Summary

Project: Yakima EWC Work Order: 1707301

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1707301-001	ES-1	07/25/2017 9:22 AM	07/31/2017 8:39 AM
1707301-002	ES-2	07/26/2017 4:30 PM	07/31/2017 8:39 AM
1707301-003	ES-3	07/26/2017 4:40 PM	07/31/2017 8:39 AM
1707301-004	ES-4	07/27/2017 7:45 AM	07/31/2017 8:39 AM
1707301-005	Trip Blank	07/19/2017 9:20 AM	07/31/2017 8:39 AM

Case Narrative

WO#: **1707301**Date: **8/14/2017**

CLIENT: Shannon & Wilson Project: Yakima EWC

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Prep Comments for METHOD (PREP-PCB-S), SAMPLE (1707301-002A) required Acid Cleanup Procedure (Using Method No 3665A).

Prep Comments for METHOD (PREP-PCB-S), SAMPLE (1707301-003A) required Acid Cleanup Procedure (Using Method No 3665A).

Prep Comments for METHOD (PREP-PCB-S), SAMPLE (1707301-004A) required Acid Cleanup Procedure (Using Method No 3665A).

Prep Comments for METHOD (PREP-PCB-S), SAMPLE (1707301-004A) required Florisil Cleanup Procedure (Using Method No 3620C).

Prep Comments for METHOD (PREP-PCB-S), SAMPLE (1707301-003A) required Florisil Cleanup Procedure (Using Method No 3620C).

Prep Comments for METHOD (PREP-PCB-S), SAMPLE (1707301-002A) required Florisil Cleanup Procedure (Using Method No 3620C).

Qualifiers & Acronyms

WO#: 1707301

Date Reported: 8/14/2017

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Work Order: **1707301**Date Reported: **8/14/2017**

Client: Shannon & Wilson Collection Date: 7/25/2017 9:22:00 AM

Project: Yakima EWC

Lab ID: 1707301-001 **Matrix:** Soil

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
Organochlorine Pesticides by	EPA Method 80	<u>081</u>		Batch	ı ID:	17824 Analyst: SC
Toxaphene	ND	0.0902		mg/Kg-dry	1	8/7/2017 6:04:25 PM
Alpha BHC	ND	0.00902		mg/Kg-dry	1	8/7/2017 6:04:25 PM
Beta BHC	ND	0.00902		mg/Kg-dry	1	8/7/2017 6:04:25 PM
Gamma BHC (Lindane)	ND	0.00902		mg/Kg-dry	1	8/7/2017 6:04:25 PM
Delta BHC	ND	0.00902		mg/Kg-dry	1	8/7/2017 6:04:25 PM
Heptachlor	ND	0.00902		mg/Kg-dry	1	8/7/2017 6:04:25 PM
Aldrin	ND	0.00902		mg/Kg-dry	1	8/7/2017 6:04:25 PM
Heptachlor epoxide	ND	0.00902		mg/Kg-dry	1	8/7/2017 6:04:25 PM
gamma-Chlordane	ND	0.00902		mg/Kg-dry	1	8/7/2017 6:04:25 PM
Endosulfan I	ND	0.00902		mg/Kg-dry	1	8/7/2017 6:04:25 PM
alpha-Chlordane	ND	0.00902		mg/Kg-dry	1	8/7/2017 6:04:25 PM
Dieldrin	ND	0.00902		mg/Kg-dry	1	8/7/2017 6:04:25 PM
4,4´-DDE	ND	0.00902		mg/Kg-dry	1	8/7/2017 6:04:25 PM
Endrin	ND	0.00902		mg/Kg-dry	1	8/7/2017 6:04:25 PM
Endosulfan II	ND	0.00902		mg/Kg-dry	1	8/7/2017 6:04:25 PM
4,4´-DDD	ND	0.00902		mg/Kg-dry	1	8/7/2017 6:04:25 PM
Endrin aldehyde	ND	0.00902		mg/Kg-dry	1	8/7/2017 6:04:25 PM
Endosulfan sulfate	ND	0.00902		mg/Kg-dry	1	8/7/2017 6:04:25 PM
4,4´-DDT	ND	0.00902		mg/Kg-dry	1	8/7/2017 6:04:25 PM
Endrin ketone	ND	0.00902		mg/Kg-dry	1	8/7/2017 6:04:25 PM
Methoxychlor	ND	0.00902		mg/Kg-dry	1	8/7/2017 6:04:25 PM
Surr: Decachlorobiphenyl	97.4	17.8 - 157		%Rec	1	8/7/2017 6:04:25 PM
Surr: Tetrachloro-m-xylene	89.7	11 - 150		%Rec	1	8/7/2017 6:04:25 PM
erbicides by EPA Method 815	51A			Batch	ID:	17825 Analyst: BT
Dicamba	ND	33.9		μg/Kg-dry	1	8/10/2017 1:31:30 AI
2,4-D	ND	29.1		μg/Kg-dry	1	8/10/2017 1:31:30 Al
2,4-DP	ND	24.2		μg/Kg-dry	1	8/10/2017 1:31:30 Al
2,4,5-TP (Silvex)	ND	19.4		μg/Kg-dry	1	8/10/2017 1:31:30 A
2,4,5-T	ND	48.5		μg/Kg-dry	1	8/10/2017 1:31:30 A
Dinoseb	ND	29.1		μg/Kg-dry	1	8/10/2017 1:31:30 A
Dalapon	ND	194		μg/Kg-dry	1	8/10/2017 1:31:30 A
2,4-DB	ND	24.2		μg/Kg-dry	1	8/10/2017 1:31:30 Al
MCPP	ND	4,270		μg/Kg-dry	1	8/10/2017 1:31:30 Al
MCPA	ND	2,720		μg/Kg-dry	1	8/10/2017 1:31:30 Al
Picloram	ND	48.5		μg/Kg-dry	1	8/10/2017 1:31:30 Al
Bentazon	ND	33.9		μg/Kg-dry	1	8/10/2017 1:31:30 Al
Chloramben	ND	19.4		μg/Kg-dry	1	8/10/2017 1:31:30 AM

Work Order: **1707301**Date Reported: **8/14/2017**

Client: Shannon & Wilson Collection Date: 7/25/2017 9:22:00 AM

Project: Yakima EWC

Lab ID: 1707301-001 **Matrix:** Soil

Client Sample ID: ES-1

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Herbicides by EPA Method 8151A				Batch	n ID: 17	825 Analyst: BT
Acifluorfen	ND	77.6		μg/Kg-dry	1	8/10/2017 1:31:30 AM
3,5-Dichlorobenzoic acid	ND	38.8		μg/Kg-dry	1	8/10/2017 1:31:30 AM
4-Nitrophenol	ND	29.1		μg/Kg-dry	1	8/10/2017 1:31:30 AM
Dacthal (DCPA)	ND	29.1		μg/Kg-dry	1	8/10/2017 1:31:30 AM
Surr: 2,4-Dichlorophenylacetic acid	3.40	20.1 - 168	S	%Rec	1	8/10/2017 1:31:30 AM
NOTES:						
S - Outlying surrogate recovery(ies) observ	ed. A duplicate	analysis was p	erformed a	nd recovered	within rai	nge.
Mercury by EPA Method 7471				Batch	ı ID: 17	818 Analyst: WF

Mercury by EPA Method 7471			Balch ID.	1/818	Analyst. WF
Mercury	ND	0.208	mg/Kg-dry 1	8/3/2	2017 4:03:05 PM
Total Metals by EPA Method 6020			Batch ID:	17796	Analyst: TN
Arsenic	3.24	0.0764	mg/Kg-dry 1	8/2/2	2017 2:10:43 PM
Barium	71.0	0.382	mg/Kg-dry 1	8/2/2	017 2:10:43 PM
Cadmium	ND	0.153	mg/Kg-dry 1	8/2/2	017 2:10:43 PM
Chromium	38.1	0.0764	mg/Kg-dry 1	8/2/2	017 2:10:43 PM
Copper	20.1	0.153	mg/Kg-dry 1	8/2/2	017 2:10:43 PM
Lead	3.24	0.153	mg/Kg-dry 1	8/2/2	017 2:10:43 PM
Nickel	62.0	0.0764	mg/Kg-dry 1	8/2/2	017 2:10:43 PM
Selenium	1.95	0.382	mg/Kg-dry 1	8/2/2	017 2:10:43 PM
Silver	ND	0.0775	mg/Kg-dry 1	8/3/2	017 2:55:09 PM
Zinc	69.2	0.305	mg/Kg-dry 1	8/2/2	2017 2:10:43 PM
Sample Moisture (Percent Moisture)			Batch ID:	R37765	Analyst: BB

Percent Moisture 3.72 wt% 1 8/2/2017 1:35:42 PM

Work Order: **1707301**Date Reported: **8/14/2017**

Client: Shannon & Wilson Collection Date: 7/26/2017 4:30:00 PM

Project: Yakima EWC

Lab ID: 1707301-002 **Matrix:** Soil

					Date Analyzed
Polychlorinated Biphenyls (PC	B) by EPA 8082	2	Batch	ID:	17799 Analyst: SG
Aroclor 1016	ND	0.0889	mg/Kg-dry	1	8/2/2017 2:59:44 PM
Aroclor 1221	ND	0.0889	mg/Kg-dry	1	8/2/2017 2:59:44 PM
Aroclor 1232	ND	0.0889	mg/Kg-dry	1	8/2/2017 2:59:44 PM
Aroclor 1242	ND	0.0889	mg/Kg-dry	1	8/2/2017 2:59:44 PM
Aroclor 1248	ND	0.0889	mg/Kg-dry	1	8/2/2017 2:59:44 PM
Aroclor 1254	ND	0.0889	mg/Kg-dry	1	8/2/2017 2:59:44 PM
Aroclor 1260	ND	0.0889	mg/Kg-dry	1	8/2/2017 2:59:44 PM
Aroclor 1262	ND	0.0889	mg/Kg-dry	1	8/2/2017 2:59:44 PM
Aroclor 1268	ND	0.0889	mg/Kg-dry	1	8/2/2017 2:59:44 PM
Total PCBs	ND	0.0889	mg/Kg-dry	1	8/2/2017 2:59:44 PM
Surr: Decachlorobiphenyl	112	30.8 - 168	%Rec	1	8/2/2017 2:59:44 PM
Surr: Tetrachloro-m-xylene	100	30.1 - 143	%Rec	1	8/2/2017 2:59:44 PM
Diesel and Heavy Oil by NWTP	H-Dx/Dx Ext.		Batch	ID:	17798 Analyst: SB
Diesel (Fuel Oil)	ND	18.3	mg/Kg-dry	1	8/2/2017 5:25:46 PM
Heavy Oil	ND	45.8	mg/Kg-dry	1	8/2/2017 5:25:46 PM
Surr: 2-Fluorobiphenyl	83.5	50 - 150	%Rec	1	8/2/2017 5:25:46 PM
Surr: o-Terphenyl	85.9	50 - 150	%Rec	1	8/2/2017 5:25:46 PM
Polyaromatic Hydrocarbons by	EPA Method 8	3270 (SIM)	Batch	ID:	17800 Analyst: BT
Naphthalene	ND	41.5	μg/Kg-dry	1	8/2/2017 7:12:26 PM
2-Methylnaphthalene	ND	41.5	μg/Kg-dry	1	8/2/2017 7:12:26 PM
1-Methylnaphthalene	ND	41.5	μg/Kg-dry	1	8/2/2017 7:12:26 PM
Acenaphthylene	ND	41.5	μg/Kg-dry	1	8/2/2017 7:12:26 PM
Acenaphthene	ND	41.5	μg/Kg-dry	1	8/2/2017 7:12:26 PM
Fluorene	ND	41.5	μg/Kg-dry	1	8/2/2017 7:12:26 PM
Phenanthrene	ND	41.5	μg/Kg-dry	1	8/2/2017 7:12:26 PM
Anthracene	ND	41.5	μg/Kg-dry	1	8/2/2017 7:12:26 PM
Fluoranthene	ND	41.5	μg/Kg-dry	1	8/2/2017 7:12:26 PM
Pyrene	ND	41.5	μg/Kg-dry	1	8/2/2017 7:12:26 PM
Benz(a)anthracene	ND	41.5	μg/Kg-dry	1	8/2/2017 7:12:26 PM
Chrysene	ND	41.5	μg/Kg-dry	1	8/2/2017 7:12:26 PM
Benzo(b)fluoranthene	ND	41.5	μg/Kg-dry	1	8/2/2017 7:12:26 PM
Benzo(j,k)fluoranthene	ND	41.5	μg/Kg-dry	1	8/2/2017 7:12:26 PM
Benzo(a)pyrene	ND	41.5	μg/Kg-dry	1	8/2/2017 7:12:26 PM
Indeno(1,2,3-cd)pyrene	ND	41.5	μg/Kg-dry	1	8/2/2017 7:12:26 PM
Dibenz(a,h)anthracene	ND	41.5	μg/Kg-dry	1	8/2/2017 7:12:26 PM

Work Order: **1707301**Date Reported: **8/14/2017**

Client: Shannon & Wilson Collection Date: 7/26/2017 4:30:00 PM

Project: Yakima EWC

Lab ID: 1707301-002 **Matrix:** Soil

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by I	EPA Method 8	3270 (SIM)		Batch	ı ID:	17800 Analyst: BT
Benzo(g,h,i)perylene	ND	41.5		μg/Kg-dry	1	8/2/2017 7:12:26 PM
Surr: 2-Fluorobiphenyl	86.0	24.5 - 139		%Rec	1	8/2/2017 7:12:26 PM
Surr: Terphenyl-d14 (surr)	113	46.2 - 179		%Rec	1	8/2/2017 7:12:26 PM
Gasoline by NWTPH-Gx				Batch	ı ID:	17817 Analyst: MW
Gasoline	ND	4.36		mg/Kg-dry	1	8/4/2017 5:35:09 AM
Surr: Toluene-d8	105	65 - 135		%Rec	1	8/4/2017 5:35:09 AM
Surr: 4-Bromofluorobenzene	92.6	65 - 135		%Rec	1	8/4/2017 5:35:09 AM
Volatile Organic Compounds by	EPA Method	8260C		Batch	ı ID:	17817 Analyst: MW
Dichlorodifluoromethane (CFC-12)	ND	0.0175		mg/Kg-dry	1	8/4/2017 5:35:09 AM
Chloromethane	ND	0.0436		mg/Kg-dry	1	8/4/2017 5:35:09 AM
Vinyl chloride	ND	0.0218		mg/Kg-dry	1	8/4/2017 5:35:09 AM
Bromomethane	ND	0.0436		mg/Kg-dry	1	8/4/2017 5:35:09 AM
Trichlorofluoromethane (CFC-11)	ND	0.0175		mg/Kg-dry	1	8/4/2017 5:35:09 AM
Chloroethane	ND	0.0436		mg/Kg-dry	1	8/4/2017 5:35:09 AM
1,1-Dichloroethene	ND	0.0175		mg/Kg-dry	1	8/4/2017 5:35:09 AM
Methylene chloride	ND	0.0175		mg/Kg-dry	1	8/4/2017 5:35:09 AM
trans-1,2-Dichloroethene	ND	0.0175		mg/Kg-dry	1	8/4/2017 5:35:09 AM
Methyl tert-butyl ether (MTBE)	ND	0.0436		mg/Kg-dry	1	8/4/2017 5:35:09 AM
1,1-Dichloroethane	ND	0.0175		mg/Kg-dry	1	8/4/2017 5:35:09 AM
2,2-Dichloropropane	ND	0.0873	Q	mg/Kg-dry	1	8/4/2017 5:35:09 AM
cis-1,2-Dichloroethene	ND	0.0175		mg/Kg-dry	1	8/4/2017 5:35:09 AM
Chloroform	ND	0.0175		mg/Kg-dry	1	8/4/2017 5:35:09 AM
1,1,1-Trichloroethane (TCA)	ND	0.0218		mg/Kg-dry	1	8/4/2017 5:35:09 AM
1,1-Dichloropropene	ND	0.0175		mg/Kg-dry	1	8/4/2017 5:35:09 AM
Carbon tetrachloride	ND	0.0218		mg/Kg-dry	1	8/4/2017 5:35:09 AM
1,2-Dichloroethane (EDC)	ND	0.0175		mg/Kg-dry	1	8/4/2017 5:35:09 AM
Benzene	ND	0.0175		mg/Kg-dry	1	8/4/2017 5:35:09 AM
Trichloroethene (TCE)	ND	0.0175		mg/Kg-dry	1	8/4/2017 5:35:09 AM
1,2-Dichloropropane	ND	0.0175		mg/Kg-dry	1	8/4/2017 5:35:09 AM
Bromodichloromethane	ND	0.0175		mg/Kg-dry	1	8/4/2017 5:35:09 AM
Dibromomethane	ND	0.0175		mg/Kg-dry	1	8/4/2017 5:35:09 AM
cis-1,3-Dichloropropene	ND	0.0175		mg/Kg-dry	1	8/4/2017 5:35:09 AM
Toluene	ND	0.0175		mg/Kg-dry	1	8/4/2017 5:35:09 AM
trans-1,3-Dichloropropylene	ND	0.0175		mg/Kg-dry	1	8/4/2017 5:35:09 AM
1,1,2-Trichloroethane	ND	0.0175		mg/Kg-dry	1	8/4/2017 5:35:09 AM

Work Order: **1707301**Date Reported: **8/14/2017**

Date Analyzed

Client: Shannon & Wilson Collection Date: 7/26/2017 4:30:00 PM

RL

Qual

Units

DF

Project: Yakima EWC

Lab ID: 1707301-002 **Matrix:** Soil

Result

Client Sample ID: ES-2

Analyses

Allalyses	Result	NL.	Quai	Ullits	וט	Date Analyzeu
Volatile Organic Compounds by	EPA Method	8260C		Batch	ı ID:	17817 Analyst: MW
1,3-Dichloropropane	ND	0.0218		mg/Kg-dry	1	8/4/2017 5:35:09 AM
Tetrachloroethene (PCE)	ND	0.0218		mg/Kg-dry	1	8/4/2017 5:35:09 AM
Dibromochloromethane	ND	0.0218		mg/Kg-dry	1	8/4/2017 5:35:09 AM
1,2-Dibromoethane (EDB)	ND	0.00436		mg/Kg-dry	1	8/4/2017 5:35:09 AM
Chlorobenzene	ND	0.0218		mg/Kg-dry	1	8/4/2017 5:35:09 AM
1,1,1,2-Tetrachloroethane	ND	0.0218		mg/Kg-dry	1	8/4/2017 5:35:09 AM
Ethylbenzene	ND	0.0218		mg/Kg-dry	1	8/4/2017 5:35:09 AM
m,p-Xylene	ND	0.0436		mg/Kg-dry	1	8/4/2017 5:35:09 AM
o-Xylene	ND	0.0218		mg/Kg-dry	1	8/4/2017 5:35:09 AM
Styrene	ND	0.0218		mg/Kg-dry	1	8/4/2017 5:35:09 AM
Isopropylbenzene	ND	0.0218		mg/Kg-dry	1	8/4/2017 5:35:09 AM
Bromoform	ND	0.0436		mg/Kg-dry	1	8/4/2017 5:35:09 AM
1,1,2,2-Tetrachloroethane	ND	0.0175		mg/Kg-dry	1	8/4/2017 5:35:09 AM
n-Propylbenzene	ND	0.0218		mg/Kg-dry	1	8/4/2017 5:35:09 AM
Bromobenzene	ND	0.0175		mg/Kg-dry	1	8/4/2017 5:35:09 AM
1,3,5-Trimethylbenzene	ND	0.0218		mg/Kg-dry	1	8/4/2017 5:35:09 AM
2-Chlorotoluene	ND	0.0218		mg/Kg-dry	1	8/4/2017 5:35:09 AM
4-Chlorotoluene	ND	0.0218		mg/Kg-dry	1	8/4/2017 5:35:09 AM
tert-Butylbenzene	ND	0.0218		mg/Kg-dry	1	8/4/2017 5:35:09 AM
1,2,3-Trichloropropane	ND	0.0218		mg/Kg-dry	1	8/4/2017 5:35:09 AM
1,2,4-Trichlorobenzene	ND	0.0218		mg/Kg-dry	1	8/4/2017 5:35:09 AM
sec-Butylbenzene	ND	0.0436		mg/Kg-dry	1	8/4/2017 5:35:09 AM
4-Isopropyltoluene	ND	0.0436		mg/Kg-dry	1	8/4/2017 5:35:09 AM
1,3-Dichlorobenzene	ND	0.0175		mg/Kg-dry	1	8/4/2017 5:35:09 AM
1,4-Dichlorobenzene	ND	0.0175		mg/Kg-dry	1	8/4/2017 5:35:09 AM
n-Butylbenzene	ND	0.0218		mg/Kg-dry	1	8/4/2017 5:35:09 AM
1,2-Dichlorobenzene	ND	0.0175		mg/Kg-dry	1	8/4/2017 5:35:09 AM
1,2-Dibromo-3-chloropropane	ND	0.436		mg/Kg-dry	1	8/4/2017 5:35:09 AM
1,2,4-Trimethylbenzene	ND	0.0175		mg/Kg-dry	1	8/4/2017 5:35:09 AM
Hexachlorobutadiene	ND	0.0436		mg/Kg-dry	1	8/4/2017 5:35:09 AM
Naphthalene	ND	0.0436		mg/Kg-dry	1	8/4/2017 5:35:09 AM
1,2,3-Trichlorobenzene	ND	0.0175		mg/Kg-dry	1	8/4/2017 5:35:09 AM
Surr: Dibromofluoromethane	88.1	56.5 - 129		%Rec	1	8/4/2017 5:35:09 AM
Surr: Toluene-d8	102	64.5 - 151		%Rec	1	8/4/2017 5:35:09 AM
Surr: 1-Bromo-4-fluorobenzene	89.3	63.1 - 141		%Rec	1	8/4/2017 5:35:09 AM

NOTES

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Work Order: **1707301**Date Reported: **8/14/2017**

Client: Shannon & Wilson Collection Date: 7/26/2017 4:30:00 PM

Project: Yakima EWC

Lab ID: 1707301-002 **Matrix:** Soil

Analyses	Result	RL	Qual	Units	DF	Date	Analyzed
Mercury by EPA Method 7471				Batch	ID:	17818	Analyst: WF
Mercury	ND	0.196		mg/Kg-dry	1	8/3/201	7 4:09:35 PM
Total Metals by EPA Method 6020				Batch	ID:	17796	Analyst: TN
Arsenic	2.32	0.0747		mg/Kg-dry	1	8/2/201	7 2:14:44 PM
Barium	57.5	0.374		mg/Kg-dry	1	8/2/201	7 2:14:44 PM
Cadmium	ND	0.149		mg/Kg-dry	1	8/2/201	7 2:14:44 PM
Chromium	18.1	0.0747		mg/Kg-dry	1	8/2/201	7 2:14:44 PM
Copper	14.2	0.149		mg/Kg-dry	1	8/2/201	7 2:14:44 PM
Lead	2.29	0.149		mg/Kg-dry	1	8/2/201	7 2:14:44 PM
Nickel	19.3	0.0747		mg/Kg-dry	1	8/2/201	7 2:14:44 PM
Selenium	1.50	0.374		mg/Kg-dry	1	8/2/201	7 2:14:44 PM
Silver	ND	0.0818		mg/Kg-dry	1	8/3/201	7 2:59:11 PM
Zinc	40.8	0.299		mg/Kg-dry	1	8/2/201	7 2:14:44 PM
Sample Moisture (Percent Moisture	<u>e)</u>			Batch	ID:	R37765	Analyst: BB
Percent Moisture	3.74			wt%	1	8/2/201	7 1:35:42 PM

Work Order: **1707301**Date Reported: **8/14/2017**

Client: Shannon & Wilson Collection Date: 7/26/2017 4:40:00 PM

Project: Yakima EWC

Lab ID: 1707301-003 **Matrix:** Soil

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polychlorinated Biphenyls (PC	CB) by EPA 808	<u>2</u>		Batch	ı ID:	17799 Analyst: SG
Aroclor 1016	ND	0.105		mg/Kg-dry	1	8/2/2017 3:09:50 PM
Aroclor 1221	ND	0.105		mg/Kg-dry	1	8/2/2017 3:09:50 PM
Aroclor 1232	ND	0.105		mg/Kg-dry	1	8/2/2017 3:09:50 PM
Aroclor 1242	ND	0.105		mg/Kg-dry	1	8/2/2017 3:09:50 PM
Aroclor 1248	ND	0.105		mg/Kg-dry	1	8/2/2017 3:09:50 PM
Aroclor 1254	ND	0.105		mg/Kg-dry	1	8/2/2017 3:09:50 PM
Aroclor 1260	ND	0.105		mg/Kg-dry	1	8/2/2017 3:09:50 PM
Aroclor 1262	ND	0.105		mg/Kg-dry	1	8/2/2017 3:09:50 PM
Aroclor 1268	ND	0.105		mg/Kg-dry	1	8/2/2017 3:09:50 PM
Total PCBs	ND	0.105		mg/Kg-dry	1	8/2/2017 3:09:50 PM
Surr: Decachlorobiphenyl	111	30.8 - 168		%Rec	1	8/2/2017 3:09:50 PM
Surr: Tetrachloro-m-xylene	96.7	30.1 - 143		%Rec	1	8/2/2017 3:09:50 PM
Diesel and Heavy Oil by NWTF	PH-Dx/Dx Ext.			Batch	ı ID:	17798 Analyst: SB
Diesel (Fuel Oil)	ND	20.2		mg/Kg-dry	1	8/2/2017 5:56:43 PM
Heavy Oil	ND	50.5		mg/Kg-dry	1	8/2/2017 5:56:43 PM
Surr: 2-Fluorobiphenyl	67.5	50 - 150		%Rec	1	8/2/2017 5:56:43 PM
Surr: o-Terphenyl	70.1	50 - 150		%Rec	1	8/2/2017 5:56:43 PM
Polyaromatic Hydrocarbons b	y EPA Method 8	3270 (SIM)		Batch	ı ID:	17800 Analyst: BT
Naphthalene	ND	39.6		μg/Kg-dry	1	8/2/2017 8:49:35 PM
2-Methylnaphthalene	ND	39.6		μg/Kg-dry	1	8/2/2017 8:49:35 PM
1-Methylnaphthalene	ND	39.6		μg/Kg-dry	1	8/2/2017 8:49:35 PM
Acenaphthylene	ND	39.6		μg/Kg-dry	1	8/2/2017 8:49:35 PM
Acenaphthene	ND	39.6		μg/Kg-dry	1	8/2/2017 8:49:35 PM
Fluorene	ND	39.6		μg/Kg-dry	1	8/2/2017 8:49:35 PM
Phenanthrene	ND	39.6		μg/Kg-dry	1	8/2/2017 8:49:35 PM
Anthracene	ND	39.6		μg/Kg-dry	1	8/2/2017 8:49:35 PM
Fluoranthene	ND	39.6		μg/Kg-dry	1	8/2/2017 8:49:35 PM
Pyrene	ND	39.6		μg/Kg-dry	1	8/2/2017 8:49:35 PM
Benz(a)anthracene	ND	39.6		μg/Kg-dry	1	8/2/2017 8:49:35 PM
Chrysene	ND	39.6		μg/Kg-dry	1	8/2/2017 8:49:35 PM
Benzo(b)fluoranthene	ND	39.6		μg/Kg-dry	1	8/2/2017 8:49:35 PM
Benzo(j,k)fluoranthene	ND	39.6		μg/Kg-dry	1	8/2/2017 8:49:35 PM
Benzo(a)pyrene	ND	39.6		μg/Kg-dry	1	8/2/2017 8:49:35 PM
Indeno(1,2,3-cd)pyrene	ND	39.6		μg/Kg-dry	1	8/2/2017 8:49:35 PM
Dibenz(a,h)anthracene	ND	39.6		μg/Kg-dry	1	8/2/2017 8:49:35 PM

Work Order: **1707301**Date Reported: **8/14/2017**

Client: Shannon & Wilson Collection Date: 7/26/2017 4:40:00 PM

Project: Yakima EWC

Lab ID: 1707301-003 **Matrix:** Soil

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by I	EPA Method 8	3270 (SIM)		Batch	ı ID:	17800 Analyst: BT
Benzo(g,h,i)perylene	ND	39.6		μg/Kg-dry	1	8/2/2017 8:49:35 PM
Surr: 2-Fluorobiphenyl	63.5	24.5 - 139		%Rec	1	8/2/2017 8:49:35 PM
Surr: Terphenyl-d14 (surr)	118	46.2 - 179		%Rec	1	8/2/2017 8:49:35 PM
Gasoline by NWTPH-Gx				Batch	ı ID:	17817 Analyst: MW
Gasoline	ND	5.18		mg/Kg-dry	1	8/4/2017 6:32:28 AM
Surr: Toluene-d8	105	65 - 135		%Rec	1	8/4/2017 6:32:28 AM
Surr: 4-Bromofluorobenzene	90.9	65 - 135		%Rec	1	8/4/2017 6:32:28 AM
Volatile Organic Compounds by	EPA Method	8260C		Batch	ı ID:	17817 Analyst: MW
Dichlorodifluoromethane (CFC-12)	ND	0.0207		mg/Kg-dry	1	8/4/2017 6:32:28 AM
Chloromethane	ND	0.0518		mg/Kg-dry	1	8/4/2017 6:32:28 AM
Vinyl chloride	ND	0.0259		mg/Kg-dry	1	8/4/2017 6:32:28 AM
Bromomethane	ND	0.0518		mg/Kg-dry	1	8/4/2017 6:32:28 AM
Trichlorofluoromethane (CFC-11)	ND	0.0207		mg/Kg-dry	1	8/4/2017 6:32:28 AM
Chloroethane	ND	0.0518		mg/Kg-dry	1	8/4/2017 6:32:28 AM
1,1-Dichloroethene	ND	0.0207		mg/Kg-dry	1	8/4/2017 6:32:28 AM
Methylene chloride	ND	0.0207		mg/Kg-dry	1	8/4/2017 6:32:28 AM
trans-1,2-Dichloroethene	ND	0.0207		mg/Kg-dry	1	8/4/2017 6:32:28 AM
Methyl tert-butyl ether (MTBE)	ND	0.0518		mg/Kg-dry	1	8/4/2017 6:32:28 AM
1,1-Dichloroethane	ND	0.0207		mg/Kg-dry	1	8/4/2017 6:32:28 AM
2,2-Dichloropropane	ND	0.104	Q	mg/Kg-dry	1	8/4/2017 6:32:28 AM
cis-1,2-Dichloroethene	ND	0.0207		mg/Kg-dry	1	8/4/2017 6:32:28 AM
Chloroform	ND	0.0207		mg/Kg-dry	1	8/4/2017 6:32:28 AM
1,1,1-Trichloroethane (TCA)	ND	0.0259		mg/Kg-dry	1	8/4/2017 6:32:28 AM
1,1-Dichloropropene	ND	0.0207		mg/Kg-dry	1	8/4/2017 6:32:28 AM
Carbon tetrachloride	ND	0.0259		mg/Kg-dry	1	8/4/2017 6:32:28 AM
1,2-Dichloroethane (EDC)	ND	0.0207		mg/Kg-dry	1	8/4/2017 6:32:28 AM
Benzene	ND	0.0207		mg/Kg-dry	1	8/4/2017 6:32:28 AM
Trichloroethene (TCE)	ND	0.0207		mg/Kg-dry	1	8/4/2017 6:32:28 AM
1,2-Dichloropropane	ND	0.0207		mg/Kg-dry	1	8/4/2017 6:32:28 AM
Bromodichloromethane	ND	0.0207		mg/Kg-dry	1	8/4/2017 6:32:28 AM
Dibromomethane	ND	0.0207		mg/Kg-dry	1	8/4/2017 6:32:28 AM
cis-1,3-Dichloropropene	ND	0.0207		mg/Kg-dry	1	8/4/2017 6:32:28 AM
Toluene	ND	0.0207		mg/Kg-dry	1	8/4/2017 6:32:28 AM
trans-1,3-Dichloropropylene	ND	0.0207		mg/Kg-dry	1	8/4/2017 6:32:28 AM
1,1,2-Trichloroethane	ND	0.0207		mg/Kg-dry	1	8/4/2017 6:32:28 AM

Work Order: **1707301**Date Reported: **8/14/2017**

Date Analyzed

Client: Shannon & Wilson Collection Date: 7/26/2017 4:40:00 PM

RL

Qual

Units

DF

Project: Yakima EWC

Lab ID: 1707301-003 **Matrix:** Soil

Result

Client Sample ID: ES-3

Analyses

Allalyses	Result	NL	Quai	Ullits	וט	Date Analyzeu
Volatile Organic Compounds by	EPA Method	8260C		Batch	ID:	17817 Analyst: MW
1,3-Dichloropropane	ND	0.0259		mg/Kg-dry	1	8/4/2017 6:32:28 AM
Tetrachloroethene (PCE)	ND	0.0259		mg/Kg-dry	1	8/4/2017 6:32:28 AM
Dibromochloromethane	ND	0.0259		mg/Kg-dry	1	8/4/2017 6:32:28 AM
1,2-Dibromoethane (EDB)	ND	0.00518		mg/Kg-dry	1	8/4/2017 6:32:28 AM
Chlorobenzene	ND	0.0259		mg/Kg-dry	1	8/4/2017 6:32:28 AM
1,1,1,2-Tetrachloroethane	ND	0.0259		mg/Kg-dry	1	8/4/2017 6:32:28 AM
Ethylbenzene	ND	0.0259		mg/Kg-dry	1	8/4/2017 6:32:28 AM
m,p-Xylene	ND	0.0518		mg/Kg-dry	1	8/4/2017 6:32:28 AM
o-Xylene	ND	0.0259		mg/Kg-dry	1	8/4/2017 6:32:28 AM
Styrene	ND	0.0259		mg/Kg-dry	1	8/4/2017 6:32:28 AM
Isopropylbenzene	ND	0.0259		mg/Kg-dry	1	8/4/2017 6:32:28 AM
Bromoform	ND	0.0518		mg/Kg-dry	1	8/4/2017 6:32:28 AM
1,1,2,2-Tetrachloroethane	ND	0.0207		mg/Kg-dry	1	8/4/2017 6:32:28 AM
n-Propylbenzene	ND	0.0259		mg/Kg-dry	1	8/4/2017 6:32:28 AM
Bromobenzene	ND	0.0207		mg/Kg-dry	1	8/4/2017 6:32:28 AM
1,3,5-Trimethylbenzene	ND	0.0259		mg/Kg-dry	1	8/4/2017 6:32:28 AM
2-Chlorotoluene	ND	0.0259		mg/Kg-dry	1	8/4/2017 6:32:28 AM
4-Chlorotoluene	ND	0.0259		mg/Kg-dry	1	8/4/2017 6:32:28 AM
tert-Butylbenzene	ND	0.0259		mg/Kg-dry	1	8/4/2017 6:32:28 AM
1,2,3-Trichloropropane	ND	0.0259		mg/Kg-dry	1	8/4/2017 6:32:28 AM
1,2,4-Trichlorobenzene	ND	0.0259		mg/Kg-dry	1	8/4/2017 6:32:28 AM
sec-Butylbenzene	ND	0.0518		mg/Kg-dry	1	8/4/2017 6:32:28 AM
4-Isopropyltoluene	ND	0.0518		mg/Kg-dry	1	8/4/2017 6:32:28 AM
1,3-Dichlorobenzene	ND	0.0207		mg/Kg-dry	1	8/4/2017 6:32:28 AM
1,4-Dichlorobenzene	ND	0.0207		mg/Kg-dry	1	8/4/2017 6:32:28 AM
n-Butylbenzene	ND	0.0259		mg/Kg-dry	1	8/4/2017 6:32:28 AM
1,2-Dichlorobenzene	ND	0.0207		mg/Kg-dry	1	8/4/2017 6:32:28 AM
1,2-Dibromo-3-chloropropane	ND	0.518		mg/Kg-dry	1	8/4/2017 6:32:28 AM
1,2,4-Trimethylbenzene	ND	0.0207		mg/Kg-dry	1	8/4/2017 6:32:28 AM
Hexachlorobutadiene	ND	0.0518		mg/Kg-dry	1	8/4/2017 6:32:28 AM
Naphthalene	ND	0.0518		mg/Kg-dry	1	8/4/2017 6:32:28 AM
1,2,3-Trichlorobenzene	ND	0.0207		mg/Kg-dry	1	8/4/2017 6:32:28 AM
Surr: Dibromofluoromethane	85.3	56.5 - 129		%Rec	1	8/4/2017 6:32:28 AM
Surr: Toluene-d8	102	64.5 - 151		%Rec	1	8/4/2017 6:32:28 AM
Surr: 1-Bromo-4-fluorobenzene	87.5	63.1 - 141		%Rec	1	8/4/2017 6:32:28 AM

NOTES

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).

Work Order: **1707301**Date Reported: **8/14/2017**

Client: Shannon & Wilson Collection Date: 7/26/2017 4:40:00 PM

Project: Yakima EWC

Lab ID: 1707301-003 **Matrix:** Soil

Analyses	Result	RL	Qual	Units	DF	- Da	te Analyzed
Mercury by EPA Method 7471				Batch	ı ID:	17818	Analyst: WF
Mercury	ND	0.208		mg/Kg-dry	1	8/3/2	2017 4:11:10 PM
Total Metals by EPA Method 6020				Batch	ı ID:	17796	Analyst: TN
Arsenic	1.98	0.0850		mg/Kg-dry	1	8/2/2	2017 2:18:46 PM
Barium	51.9	0.425		mg/Kg-dry	1	8/2/2	017 2:18:46 PM
Cadmium	ND	0.170		mg/Kg-dry	1	8/2/2	017 2:18:46 PM
Chromium	13.2	0.0850		mg/Kg-dry	1	8/2/2	017 2:18:46 PM
Copper	16.0	0.170		mg/Kg-dry	1	8/2/2	017 2:18:46 PM
Lead	1.58	0.170		mg/Kg-dry	1	8/2/2	017 2:18:46 PM
Nickel	17.9	0.0850		mg/Kg-dry	1	8/2/2	017 2:18:46 PM
Selenium	1.97	0.425		mg/Kg-dry	1	8/2/2	017 2:18:46 PM
Silver	ND	0.0818		mg/Kg-dry	1	8/3/2	017 3:03:12 PM
Zinc	40.3	0.340		mg/Kg-dry	1	8/2/2	2017 2:18:46 PM
Sample Moisture (Percent Moisture	re)			Batch	ı ID:	R37765	Analyst: BB
Percent Moisture	7.40			wt%	1	8/2/2	.017 1:35:42 PM

Work Order: **1707301**Date Reported: **8/14/2017**

Client: Shannon & Wilson Collection Date: 7/27/2017 7:45:00 AM

Project: Yakima EWC

Lab ID: 1707301-004 **Matrix:** Soil

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polychlorinated Biphenyls (PC	B) by EPA 808	2		Batch	ı ID:	17799 Analyst: SG
Aroclor 1016	ND	0.106		mg/Kg-dry	1	8/2/2017 3:19:52 PM
Aroclor 1221	ND	0.106		mg/Kg-dry	1	8/2/2017 3:19:52 PM
Aroclor 1232	ND	0.106		mg/Kg-dry	1	8/2/2017 3:19:52 PM
Aroclor 1242	ND	0.106		mg/Kg-dry	1	8/2/2017 3:19:52 PM
Aroclor 1248	ND	0.106		mg/Kg-dry	1	8/2/2017 3:19:52 PM
Aroclor 1254	ND	0.106		mg/Kg-dry	1	8/2/2017 3:19:52 PM
Aroclor 1260	ND	0.106		mg/Kg-dry	1	8/2/2017 3:19:52 PM
Aroclor 1262	ND	0.106		mg/Kg-dry	1	8/2/2017 3:19:52 PM
Aroclor 1268	ND	0.106		mg/Kg-dry	1	8/2/2017 3:19:52 PM
Total PCBs	ND	0.106		mg/Kg-dry	1	8/2/2017 3:19:52 PM
Surr: Decachlorobiphenyl	144	30.8 - 168		%Rec	1	8/2/2017 3:19:52 PM
Surr: Tetrachloro-m-xylene	113	30.1 - 143		%Rec	1	8/2/2017 3:19:52 PM
Diesel and Heavy Oil by NWTF	PH-Dx/Dx Ext.			Batch	ı ID:	17814 Analyst: SB
Diesel (Fuel Oil)	ND	18.8		mg/Kg-dry	1	8/3/2017 10:24:43 PM
Heavy Oil	ND	47.0		mg/Kg-dry	1	8/3/2017 10:24:43 PM
Surr: 2-Fluorobiphenyl	91.4	50 - 150		%Rec	1	8/3/2017 10:24:43 PM
Surr: o-Terphenyl	98.7	50 - 150		%Rec	1	8/3/2017 10:24:43 PN
Polyaromatic Hydrocarbons by	y EPA Method 8	3270 (SIM)		Batch	ı ID:	17800 Analyst: BT
Naphthalene	ND	44.2		μg/Kg-dry	1	8/2/2017 9:13:27 PM
2-Methylnaphthalene	ND	44.2		μg/Kg-dry	1	8/2/2017 9:13:27 PM
1-Methylnaphthalene	ND	44.2		μg/Kg-dry	1	8/2/2017 9:13:27 PM
Acenaphthylene	ND	44.2		μg/Kg-dry	1	8/2/2017 9:13:27 PM
Acenaphthene	ND	44.2		μg/Kg-dry	1	8/2/2017 9:13:27 PM
Fluorene	ND	44.2		μg/Kg-dry	1	8/2/2017 9:13:27 PM
Phenanthrene	ND	44.2		μg/Kg-dry	1	8/2/2017 9:13:27 PM
Anthracene	ND	44.2		μg/Kg-dry	1	8/2/2017 9:13:27 PM
Fluoranthene	ND	44.2		μg/Kg-dry	1	8/2/2017 9:13:27 PM
Pyrene	ND	44.2		μg/Kg-dry	1	8/2/2017 9:13:27 PM
Benz(a)anthracene	ND	44.2		μg/Kg-dry	1	8/2/2017 9:13:27 PM
Chrysene	ND	44.2		μg/Kg-dry	1	8/2/2017 9:13:27 PM
Benzo(b)fluoranthene	ND	44.2		μg/Kg-dry	1	8/2/2017 9:13:27 PM
Benzo(j,k)fluoranthene	ND	44.2		μg/Kg-dry	1	8/2/2017 9:13:27 PM
Benzo(a)pyrene	ND	44.2		μg/Kg-dry	1	8/2/2017 9:13:27 PM
Indeno(1,2,3-cd)pyrene	ND	44.2		μg/Kg-dry	1	8/2/2017 9:13:27 PM
Dibenz(a,h)anthracene	ND	44.2		μg/Kg-dry	1	8/2/2017 9:13:27 PM

Work Order: **1707301**Date Reported: **8/14/2017**

Client: Shannon & Wilson Collection Date: 7/27/2017 7:45:00 AM

Project: Yakima EWC

Lab ID: 1707301-004 **Matrix:** Soil

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	
Polyaromatic Hydrocarbons by I	EPA Method 8	3270 (SIM)		Batch	ı ID:	17800 Analyst: BT	
Benzo(g,h,i)perylene	ND	44.2		μg/Kg-dry	1	8/2/2017 9:13:27 PM	
Surr: 2-Fluorobiphenyl	43.1	24.5 - 139		%Rec	1	8/2/2017 9:13:27 PM	
Surr: Terphenyl-d14 (surr)	103	46.2 - 179		%Rec	1	8/2/2017 9:13:27 PM	
Gasoline by NWTPH-Gx				Batch	ı ID:	17817 Analyst: MW	
Gasoline	ND	5.44		mg/Kg-dry	1	8/4/2017 7:01:05 AM	
Surr: Toluene-d8	106	65 - 135		%Rec	1	8/4/2017 7:01:05 AM	
Surr: 4-Bromofluorobenzene	90.6	65 - 135		%Rec	1	8/4/2017 7:01:05 AM	
Volatile Organic Compounds by	EPA Method	8260C		Batch ID:		17817 Analyst: MW	
Dichlorodifluoromethane (CFC-12)	ND	0.0218		mg/Kg-dry	1	8/4/2017 7:01:05 AM	
Chloromethane	ND	0.0544		mg/Kg-dry	1	8/4/2017 7:01:05 AM	
Vinyl chloride	ND	0.0272		mg/Kg-dry	1	8/4/2017 7:01:05 AM	
Bromomethane	ND	0.0544		mg/Kg-dry	1	8/4/2017 7:01:05 AM	
Trichlorofluoromethane (CFC-11)	ND	0.0218		mg/Kg-dry	1	8/4/2017 7:01:05 AM	
Chloroethane	ND	0.0544		mg/Kg-dry	1	8/4/2017 7:01:05 AM	
1,1-Dichloroethene	ND	0.0218		mg/Kg-dry	1	8/4/2017 7:01:05 AM	
Methylene chloride	ND	0.0218		mg/Kg-dry	1	8/4/2017 7:01:05 AM	
trans-1,2-Dichloroethene	ND	0.0218		mg/Kg-dry	1	8/4/2017 7:01:05 AM	
Methyl tert-butyl ether (MTBE)	ND	0.0544		mg/Kg-dry	1	8/4/2017 7:01:05 AM	
1,1-Dichloroethane	ND	0.0218		mg/Kg-dry	1	8/4/2017 7:01:05 AM	
2,2-Dichloropropane	ND	0.109	Q	mg/Kg-dry	1	8/4/2017 7:01:05 AM	
cis-1,2-Dichloroethene	ND	0.0218		mg/Kg-dry	1	8/4/2017 7:01:05 AM	
Chloroform	ND	0.0218		mg/Kg-dry	1	8/4/2017 7:01:05 AM	
1,1,1-Trichloroethane (TCA)	ND	0.0272		mg/Kg-dry	1	8/4/2017 7:01:05 AM	
1,1-Dichloropropene	ND	0.0218		mg/Kg-dry	1	8/4/2017 7:01:05 AM	
Carbon tetrachloride	ND	0.0272		mg/Kg-dry	1	8/4/2017 7:01:05 AM	
1,2-Dichloroethane (EDC)	ND	0.0218		mg/Kg-dry	1	8/4/2017 7:01:05 AM	
Benzene	ND	0.0218		mg/Kg-dry	1	8/4/2017 7:01:05 AM	
Trichloroethene (TCE)	ND	0.0218		mg/Kg-dry	1	8/4/2017 7:01:05 AM	
1,2-Dichloropropane	ND	0.0218		mg/Kg-dry	1	8/4/2017 7:01:05 AM	
Bromodichloromethane	ND	0.0218		mg/Kg-dry	1	8/4/2017 7:01:05 AM	
Dibromomethane	ND	0.0218		mg/Kg-dry	1	8/4/2017 7:01:05 AM	
cis-1,3-Dichloropropene	ND	0.0218		mg/Kg-dry	1	8/4/2017 7:01:05 AM	
Toluene	ND	0.0218		mg/Kg-dry	1	8/4/2017 7:01:05 AM	
trans-1,3-Dichloropropylene	ND	0.0218		mg/Kg-dry	1	8/4/2017 7:01:05 AM	
1,1,2-Trichloroethane	ND	0.0218		mg/Kg-dry	1	8/4/2017 7:01:05 AM	

DF

Units

Work Order: **1707301**Date Reported: **8/14/2017**

Date Analyzed

Client: Shannon & Wilson Collection Date: 7/27/2017 7:45:00 AM

RL

Qual

Project: Yakima EWC

Lab ID: 1707301-004 **Matrix:** Soil

Result

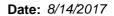
Client Sample ID: ES-4

Analyses

7.11.11.1.1.000	rtoouit	• • • • • • • • • • • • • • • • • • • •	Quu i	Omico		Date / that y zou
Volatile Organic Compounds by	EPA Method	8260C		Batch	ID:	17817 Analyst: MW
1,3-Dichloropropane	ND	0.0272		mg/Kg-dry	1	8/4/2017 7:01:05 AM
Tetrachloroethene (PCE)	ND	0.0272		mg/Kg-dry	1	8/4/2017 7:01:05 AM
Dibromochloromethane	ND	0.0272		mg/Kg-dry	1	8/4/2017 7:01:05 AM
1,2-Dibromoethane (EDB)	ND	0.00544		mg/Kg-dry	1	8/4/2017 7:01:05 AM
Chlorobenzene	ND	0.0272		mg/Kg-dry	1	8/4/2017 7:01:05 AM
1,1,1,2-Tetrachloroethane	ND	0.0272		mg/Kg-dry	1	8/4/2017 7:01:05 AM
Ethylbenzene	ND	0.0272		mg/Kg-dry	1	8/4/2017 7:01:05 AM
m,p-Xylene	ND	0.0544		mg/Kg-dry	1	8/4/2017 7:01:05 AM
o-Xylene	ND	0.0272		mg/Kg-dry	1	8/4/2017 7:01:05 AM
Styrene	ND	0.0272		mg/Kg-dry	1	8/4/2017 7:01:05 AM
Isopropylbenzene	ND	0.0272		mg/Kg-dry	1	8/4/2017 7:01:05 AM
Bromoform	ND	0.0544		mg/Kg-dry	1	8/4/2017 7:01:05 AM
1,1,2,2-Tetrachloroethane	ND	0.0218		mg/Kg-dry	1	8/4/2017 7:01:05 AM
n-Propylbenzene	ND	0.0272		mg/Kg-dry	1	8/4/2017 7:01:05 AM
Bromobenzene	ND	0.0218		mg/Kg-dry	1	8/4/2017 7:01:05 AM
1,3,5-Trimethylbenzene	ND	0.0272		mg/Kg-dry	1	8/4/2017 7:01:05 AM
2-Chlorotoluene	ND	0.0272		mg/Kg-dry	1	8/4/2017 7:01:05 AM
4-Chlorotoluene	ND	0.0272		mg/Kg-dry	1	8/4/2017 7:01:05 AM
tert-Butylbenzene	ND	0.0272		mg/Kg-dry	1	8/4/2017 7:01:05 AM
1,2,3-Trichloropropane	ND	0.0272		mg/Kg-dry	1	8/4/2017 7:01:05 AM
1,2,4-Trichlorobenzene	ND	0.0272		mg/Kg-dry	1	8/4/2017 7:01:05 AM
sec-Butylbenzene	ND	0.0544		mg/Kg-dry	1	8/4/2017 7:01:05 AM
4-Isopropyltoluene	ND	0.0544		mg/Kg-dry	1	8/4/2017 7:01:05 AM
1,3-Dichlorobenzene	ND	0.0218		mg/Kg-dry	1	8/4/2017 7:01:05 AM
1,4-Dichlorobenzene	ND	0.0218		mg/Kg-dry	1	8/4/2017 7:01:05 AM
n-Butylbenzene	ND	0.0272		mg/Kg-dry	1	8/4/2017 7:01:05 AM
1,2-Dichlorobenzene	ND	0.0218		mg/Kg-dry	1	8/4/2017 7:01:05 AM
1,2-Dibromo-3-chloropropane	ND	0.544		mg/Kg-dry	1	8/4/2017 7:01:05 AM
1,2,4-Trimethylbenzene	ND	0.0218		mg/Kg-dry	1	8/4/2017 7:01:05 AM
Hexachlorobutadiene	ND	0.0544		mg/Kg-dry	1	8/4/2017 7:01:05 AM
Naphthalene	ND	0.0544		mg/Kg-dry	1	8/4/2017 7:01:05 AM
1,2,3-Trichlorobenzene	ND	0.0218		mg/Kg-dry	1	8/4/2017 7:01:05 AM
Surr: Dibromofluoromethane	85.2	56.5 - 129		%Rec	1	8/4/2017 7:01:05 AM
Surr: Toluene-d8	102	64.5 - 151		%Rec	1	8/4/2017 7:01:05 AM
Surr: 1-Bromo-4-fluorobenzene	87.3	63.1 - 141		%Rec	1	8/4/2017 7:01:05 AM
	J					·· = - · · · · · · · · · · · · · · ·

NOTES

Q - Indicates an analyte with a continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF).


Work Order: **1707301**Date Reported: **8/14/2017**

Client: Shannon & Wilson Collection Date: 7/27/2017 7:45:00 AM

Project: Yakima EWC

Lab ID: 1707301-004 **Matrix:** Soil

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	
Mercury by EPA Method 7471				Batch	ID:	17818 Analyst: WF	
Mercury	ND	0.211		mg/Kg-dry	1	8/3/2017 4:12:46 PM	
Total Metals by EPA Method 6020				Batch	ID:	17796 Analyst: TN	
Arsenic	1.79	0.0804		mg/Kg-dry	1	8/2/2017 2:22:47 PM	
Barium	89.9	0.402		mg/Kg-dry	1	8/2/2017 2:22:47 PM	
Cadmium	ND	0.161		mg/Kg-dry	1	8/2/2017 2:22:47 PM	
Chromium	15.7	0.0804		mg/Kg-dry	1	8/2/2017 2:22:47 PM	
Copper	16.6	0.161		mg/Kg-dry	1	8/2/2017 2:22:47 PM	
Lead	2.05	0.161		mg/Kg-dry	1	8/2/2017 2:22:47 PM	
Nickel	16.2	0.0804		mg/Kg-dry	1	8/2/2017 2:22:47 PM	
Selenium	1.77	0.402		mg/Kg-dry	1	8/2/2017 2:22:47 PM	
Silver	ND	0.0828		mg/Kg-dry	1	8/3/2017 3:07:13 PM	
Zinc	45.3	0.322		mg/Kg-dry	1	8/2/2017 2:22:47 PM	
Sample Moisture (Percent Moisture	<u>e)</u>			Batch	ID:	R37765 Analyst: BB	
Percent Moisture	10.6			wt%	1	8/2/2017 1:35:42 PM	

1707301 Work Order:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Project: Yakima EW	/C						Diooci	and Heavy	<u> </u>		
Sample ID MB-17814	SampType: MBLK			Units: mg/Kg	3	Prep Dat	e: 8/3/201	7	RunNo: 37 8	322	
Client ID: MBLKS	Batch ID: 17814					Analysis Dat	e: 8/3/201	7	SeqNo: 720	6906	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	20.0									
Heavy Oil	ND	50.0									
Surr: 2-Fluorobiphenyl	18.1		20.00		90.3	50	150				
Surr: o-Terphenyl	19.5		20.00		97.4	50	150				
Sample ID LCS-17814	SampType: LCS			Units: mg/Ko	3	Prep Dat	e: 8/3/201	7	RunNo: 378	322	
Client ID: LCSS	Batch ID: 17814					Analysis Dat	e: 8/3/201	7	SeqNo: 720	6905	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	488	20.0	500.0	0	97.5	65	135				
Surr: 2-Fluorobiphenyl	19.2		20.00		96.0	50	150				
Surr: o-Terphenyl	22.8		20.00		114	50	150				
Sample ID 1708031-022BDUP	SampType: DUP			Units: mg/Kg	g-dry	Prep Dat	e: 8/3/201	7	RunNo: 378	322	
Client ID: BATCH	Batch ID: 17814					Analysis Dat	e: 8/3/201	7	SeqNo: 720	6892	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	19.7						0		30	
Heavy Oil	ND	49.3						0		30	
Surr: 2-Fluorobiphenyl	19.3		19.74		97.8	50	150		0		
Surr: o-Terphenyl	21.4		19.74		108	50	150		0		
Sample ID 1708031-022BMS	SampType: MS			Units: mg/Kg	g-dry	Prep Dat	e: 8/3/201	7	RunNo: 378	322	
Client ID: BATCH	Batch ID: 17814					Analysis Dat	e: 8/3/201	7	SeqNo: 720	6893	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	484	20.6	516.0	0	93.8	65	135				
Surr: 2-Fluorobiphenyl	14.7		20.64		71.4	50	150				
Surr: o-Terphenyl	17.7		20.64		85.9	50	150				

Page 20 of 61 Original

Date: 8/14/2017

Yakima EWC

Work Order: 1707301

Project:

Client ID: BATCH

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

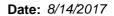
Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Sample ID 1708031-022BMS SampType: MS Units: mg/Kg-dry Prep Date: 8/3/2017 RunNo: 37822

Batch ID: 17814 Analysis Date: 8/3/2017 SeqNo: 726893

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Sample ID 1708031-022BMSD	SampType: MSD			Units: mg/K	g-dry	Prep Dat	te: 8/3/201	7	RunNo: 378	322	
Client ID: BATCH	Batch ID: 17814					Analysis Da	te: 8/3/201	7	SeqNo: 726	894	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	439	19.4	485.0	0	90.6	65	135	484.0	9.67	30	
Surr: 2-Fluorobiphenyl	18.4		19.40		94.6	50	150		0		
Surr: o-Terphenyl	21.5		19.40		111	50	150		0		


Sample ID 1708040-002ADUP	708040-002ADUP SampType: DUP			Units: mg/K	7	RunNo: 37822					
Client ID: BATCH	Batch ID: 17814					Analysis Da	te: 8/4/201	7	SeqNo: 726	6902	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	466	16.9						1,337	96.6	30	R
Heavy Oil	ND	42.3						0		30	
Surr: 2-Fluorobiphenyl	7.30		16.93		43.1	50	150		0		S
Surr: o-Terphenyl	11.1		16.93		65.5	50	150		0		

NOTES:

Original Page 21 of 61

S - Outlying surrogate recovery(ies) observed. A duplicate analysis was performed and recovered within range.

R - High RPD due to suspected sample inhomogeneity. The method is in control as indicated by the Laboratory Control Sample (LCS).

Work Order: 1707301

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Sample ID MB-17798	SampType: MBLK			Units: mg/Kg		Prep Date	e: 8/2/201	7	RunNo: 377	768	
Client ID: MBLKS	Batch ID: 17798					Analysis Date	e: 8/2/201	7	SeqNo: 725	5963	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	20.0									
Heavy Oil	ND	50.0									
Surr: 2-Fluorobiphenyl	15.9		20.00		79.4	50	150				
Surr: o-Terphenyl	16.4		20.00		82.2	50	150				
Sample ID LCS-17798	SampType: LCS			Units: mg/Kg		Prep Date	e: 8/2/201	7	RunNo: 377	768	
Client ID: LCSS	Batch ID: 17798					Analysis Date	e: 8/2/201	7	SeqNo: 725	5958	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	523	20.0	500.0	0	105	65	135				
Surr: 2-Fluorobiphenyl	21.0		20.00		105	50	150				
Surr: o-Terphenyl	23.2		20.00		116	50	150				
Sample ID 1708015-001BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date	e: 8/2/201	7	RunNo: 377	768	
Client ID: BATCH	Batch ID: 17798					Analysis Date	e: 8/2/201	7	SeqNo: 725	5959	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	24.4						0		30	
Heavy Oil	ND	61.0						0		30	
Surr: 2-Fluorobiphenyl	18.9		24.39		77.7	50	150		0		
Surr: o-Terphenyl	20.1		24.39		82.6	50	150		0		
Sample ID 1708015-001BMS	SampType: MS			Units: mg/Kg-	dry	Prep Date	e: 8/2/201	7	RunNo: 377	768	
Client ID: BATCH	Batch ID: 17798		Analysis Date: 8/2/2017				SeqNo: 726	6036			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	529	24.3	607.4	0	87.1	65	135				
Surr: 2-Fluorobiphenyl	21.9		24.30		90.1	50	150				
Surr: o-Terphenyl	24.3		24.30		100	50	150				

Original Page 22 of 61

Yakima EWC

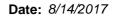
Work Order: 1707301

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.


Sample ID 1708015-001BMS SampType: MS Units: mg/Kg-dry Prep Date: 8/2/2017 RunNo: 37768

Client ID: **BATCH** Batch ID: **17798** Analysis Date: **8/2/2017** SeqNo: **726036**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Sample ID 1708015-001BMSD	SampType: MSD			Units: mg/K	g-dry	Prep Dat	te: 8/2/20 1	17	RunNo: 37	768	
Client ID: BATCH	Batch ID: 17798					Analysis Da	te: 8/2/20 1	17	SeqNo: 720	6037	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	567	23.9	596.5	0	95.1	65	135	529.1	6.92	30	
Surr: 2-Fluorobiphenyl	23.3		23.86		97.5	50	150		0		
Surr: o-Terphenyl	24.9		23.86		104	50	150		0		
Sample ID 1708009-002ADUP	SampType: DUP			Units: mg/K	g-dry	Prep Dat	te: 8/2/201	17	RunNo: 37	768	
Sample ID 1708009-002ADUP Client ID: BATCH	SampType: DUP Batch ID: 17798			Units: mg/k	• •	Prep Dat Analysis Dat			RunNo: 37 7		
		RL	SPK value	·	• •	Analysis Da	te: 8/2/20 1				Qual
Client ID: BATCH	Batch ID: 17798	RL 19.7	SPK value	·		Analysis Da	te: 8/2/20 1	17	SeqNo: 720	6304	Qual
Client ID: BATCH Analyte	Batch ID: 17798 Result		SPK value	·		Analysis Da	te: 8/2/20 1	17	SeqNo: 720	6304 RPDLimit	Qual
Client ID: BATCH Analyte Diesel (Fuel Oil)	Batch ID: 17798 Result	19.7	SPK value	·		Analysis Da	te: 8/2/20 1	RPD Ref Val	SeqNo: 720	RPDLimit	Qual

Original Page 23 of 61

QC SUMMARY REPORT

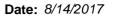
CLIENT: Shannon & Wilson

Gasoline by NWTPH-Gx

Project: Yakima EW	/C								Gasolin	e by NW	TPH-G
Sample ID LCS-17817	SampType: LCS			Units: mg/Kg		Prep Date:	8/3/2017		RunNo: 378	329	
Client ID: LCSS	Batch ID: 17817					Analysis Date:	8/3/2017		SeqNo: 727	7062	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit Rf	PD Ref Val	%RPD	RPDLimit	Qual
Gasoline	24.4	5.00	25.00	0	97.7	65	135				
Surr: Toluene-d8	1.28		1.250		102	65	135				
Surr: 4-Bromofluorobenzene	1.25		1.250		100	65	135				
Sample ID MB-17817	SampType: MBLK			Units: mg/Kg		Prep Date:	8/3/2017		RunNo: 378	329	
Client ID: MBLKS	Batch ID: 17817					Analysis Date:	8/3/2017		SeqNo: 727	7063	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit RF	PD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	5.00									
Surr: Toluene-d8	1.33		1.250		106	65	135				
Surr: 4-Bromofluorobenzene	1.19		1.250		95.3	65	135				
Sample ID 1707301-002BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date:	8/3/2017		RunNo: 378	329	
Client ID: ES-2	Batch ID: 17817					Analysis Date:	8/4/2017		SeqNo: 727	7053	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit Rf	PD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	4.36						0		30	
Surr: Toluene-d8	1.17		1.091		107	65	135		0		
Surr: 4-Bromofluorobenzene	1.01		1.091		92.5	65	135		0		
Sample ID 1707301-004BMS	SampType: MS			Units: mg/Kg-	dry	Prep Date:	8/3/2017		RunNo: 378	329	
Client ID: ES-4	Batch ID: 17817					Analysis Date:	8/4/2017		SeqNo: 727	7056	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit Rf	PD Ref Val	%RPD	RPDLimit	Qual
Gasoline	28.0	5.44	27.19	0	103	65	135				
Surr: Toluene-d8	1.39		1.360		102	65	135				
Surr: 4-Bromofluorobenzene	1.39		1.360		103	65	135				

Original Page 24 of 61

1707301 Work Order:


QC SUMMARY REPORT

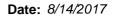
CLIENT: Shannon & Wilson

Gasoline by NWTPH-Gx

Project: Yakima EW	/C								Gasolin	e by NW	ГРН-Gх
Sample ID 1707301-004BMSD	SampType: MSD			Units: mg/k	(g-dry	Prep Da	te: 8/3/20 1	17	RunNo: 37	829	
Client ID: ES-4	Batch ID: 17817					Analysis Da	te: 8/4/20 1	17	SeqNo: 72	7057	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	26.0	5.44	27.19	0	95.5	65	135	27.98	7.48	30	
Surr: Toluene-d8	1.40		1.360		103	65	135		0		
Surr: 4-Bromofluorobenzene	1.37		1.360		101	65	135		0		

Page 25 of 61 Original

QC SUMMARY REPORT


CLIENT: Shannon & Wilson Project: Yakima EWC

Herbicides by EPA Method 8151A

Sample ID MB-17825	SampType: MBLK			Units: µg/Kg		Prep Date:	8/4/2017	RunNo: 37948	
Client ID: MBLKS	Batch ID: 17825					Analysis Date:	8/9/2017	SeqNo: 729321	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit Hig	ghLimit RPD Ref Val	%RPD RPDLimit	Qual
Dicamba	ND	35.0							
2,4-D	ND	30.0							
2,4-DP	ND	25.0							
2,4,5-TP (Silvex)	ND	20.0							
2,4,5-T	ND	50.0							
Dinoseb	ND	30.0							
Dalapon	ND	200							
2,4-DB	ND	25.0							
MCPP	ND	4,400							
MCPA	ND	2,800							
Picloram	ND	50.0							
Bentazon	ND	35.0							
Chloramben	ND	20.0							
Acifluorfen	ND	80.0							
3,5-Dichlorobenzoic acid	ND	40.0							
4-Nitrophenol	ND	30.0							
Dacthal (DCPA)	ND	30.0							
Surr: 2,4-Dichlorophenylacetic acid	716		1,000		71.6	20.1	168		

Sample ID LCS-17825	SampType: LCS			Units: µg/Kg	Kg Prep Date: 8/4/2017 Analysis Date: 8/9/2017				RunNo: 37948		
Client ID: LCSS	Batch ID: 17825					Analysis Da	te: 8/9/201 7	7	SeqNo: 729	9322	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dicamba	160	35.0	200.0	0	80.2	24.7	141				
2,4-D	179	30.0	200.0	0	89.6	22.4	130				
2,4-DP	166	25.0	200.0	0	83.2	26.4	130				
2,4,5-TP (Silvex)	180	20.0	200.0	0	90.0	21.2	138				
2,4,5-T	165	50.0	200.0	0	82.6	22.8	144				
Dinoseb	140	30.0	200.0	0	69.8	5	165				
Dalapon	930	200	1,000	0	93.0	18.4	162				

Original Page 26 of 61

CLIENT: Shannon & Wilson

Project: Yakima EWC

QC SUMMARY REPORT

Herbicides by EPA Method 8151A

Sample ID LCS-17825	SampType: LCS			Units: µg/Kg		Prep Dat	te: 8/4/201	7	RunNo: 379)48	
Client ID: LCSS	Batch ID: 17825					Analysis Da	te: 8/9/201	7	SeqNo: 72 9	322	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2,4-DB	190	25.0	200.0	0	94.8	5	164				
MCPP	826	4,400	1,000	0	82.6	22.2	157				
MCPA	883	2,800	1,000	0	88.3	47.4	128				
Picloram	171	50.0	200.0	0	85.7	5	175				
Bentazon	122	35.0	200.0	0	61.0	7.59	162				
Chloramben	64.5	20.0	200.0	0	32.3	5	147				
Acifluorfen	196	80.0	200.0	0	97.9	5	163				
3,5-Dichlorobenzoic acid	160	40.0	200.0	0	79.9	18.7	139				
4-Nitrophenol	146	30.0	200.0	0	73.0	5	163				
Dacthal (DCPA)	120	30.0	200.0	0	60.2	5	164				
Surr: 2,4-Dichlorophenylacetic acid	786		1,000		78.6	20.1	168				

Sample ID 1707301-001ADUP	SampType: DUP			Units: µg/	Kg-dry	Prep Date:	8/4/201	7	RunNo: 379	148	
Client ID: ES-1	Batch ID: 17825					Analysis Date:	8/10/20	17	SeqNo: 729	336	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit Hi	ighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dicamba	ND	32.6						0		30	
2,4-D	ND	27.9						0		30	
2,4-DP	ND	23.3						0		30	
2,4,5-TP (Silvex)	ND	18.6						0		30	
2,4,5-T	ND	46.5						0		30	
Dinoseb	ND	27.9						0		30	
Dalapon	ND	186						0		30	
2,4-DB	ND	23.3						0		30	
MCPP	ND	4,090						0		30	
MCPA	ND	2,610						0		30	
Picloram	ND	46.5						0		30	
Bentazon	ND	32.6						0		30	
Chloramben	ND	18.6						0		30	
Acifluorfen	ND	74.5						0		30	

Original Page 27 of 61

Yakima EWC

Work Order: 1707301

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Herbicides by EPA Method 8151A

Sample ID 1707301-001ADUP	SampType: DUP			Units: µg	/Kg-dry	Prep Dat	te: 8/4/20	17	RunNo: 379	948	
Client ID: ES-1	Batch ID: 17825					Analysis Da	te: 8/10/2	017	SeqNo: 729336 Ref Val. %RPD RPDL imit		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
3,5-Dichlorobenzoic acid	ND	37.2						0		30	
4-Nitrophenol	ND	27.9						0		30	
Dacthal (DCPA)	ND	27.9						0		30	
Surr: 2,4-Dichlorophenylacetic acid	451		930.7		48.4	20.1	168		0		

Sample ID 1707301-001AMS	SampType: MS			Units: µg/K	(g-dry	Prep Dat	te: 8/4/201	7	RunNo: 37 9	948	
Client ID: ES-1	Batch ID: 17825					Analysis Dat	te: 8/10/20	17	SeqNo: 729	9337	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dicamba	154	35.7	204.3	0	75.6	31.9	118				
2,4-D	173	30.6	204.3	0	84.8	12.4	134				
2,4-DP	164	25.5	204.3	0	80.2	27.2	129				
2,4,5-TP (Silvex)	178	20.4	204.3	0	87.3	28.6	134				
2,4,5-T	153	51.1	204.3	0	74.7	13.1	147				
Dinoseb	208	30.6	204.3	0	102	10	179				
Dalapon	865	204	1,021	0	84.7	24.9	139				
2,4-DB	191	25.5	204.3	0	93.6	50.2	152				
MCPP	795	4,490	1,021	0	77.8	37.8	140				
MCPA	867	2,860	1,021	0	84.9	13.7	147				
Picloram	309	51.1	204.3	0	151	5	153				
Bentazon	153	35.7	204.3	0	75.1	15	140				
Chloramben	126	20.4	204.3	0	61.6	5	162				
Acifluorfen	251	81.7	204.3	0	123	15	140				
3,5-Dichlorobenzoic acid	157	40.9	204.3	0	77.0	10	164				
4-Nitrophenol	52.9	30.6	204.3	0	25.9	44.8	125				S
Dacthal (DCPA)	133	30.6	204.3	0	64.9	5	132				
Surr: 2,4-Dichlorophenylacetic acid	d 735		1,021		72.0	20.1	168				

NOTES:

Original Page 28 of 61

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Work Order: 1707301

CLIENT: Shannon & Wilson

Project: Yakima EWC

QC SUMMARY REPORT

Herbicides by EPA Method 8151A

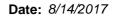
Sample ID 1707301-001AMSD	SampType	: MSD			Units: µg/K	g-dry	Prep Dat	e: 8/4/20 1	17	RunNo: 379	948	
Client ID: ES-1	Batch ID:	17825					Analysis Dat	e: 8/10/2 0)17	SeqNo: 72 9	9338	
Analyte	F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dicamba		142	34.5	196.9	0	72.1	31.9	118	154.3	8.30	30	
2,4-D		161	29.5	196.9	0	81.6	12.4	134	173.1	7.42	30	
2,4-DP		146	24.6	196.9	0	73.9	27.2	129	163.8	11.8	30	
2,4,5-TP (Silvex)		159	19.7	196.9	0	81.0	28.6	134	178.3	11.1	30	
2,4,5-T		166	49.2	196.9	0	84.5	13.1	147	152.6	8.60	30	
Dinoseb		187	29.5	196.9	0	95.1	10	179	207.6	10.3	30	
Dalapon		875	197	984.5	0	88.9	24.9	139	864.6	1.18	30	
2,4-DB		175	24.6	196.9	0	88.9	50.2	152	191.3	8.80	30	
MCPP		789	4,330	984.5	0	80.1	37.8	140	0		30	
MCPA		867	2,760	984.5	0	88.0	13.7	147	0		30	
Picloram		270	49.2	196.9	0	137	5	153	308.9	13.5	30	
Bentazon		133	34.5	196.9	0	67.5	15	140	153.4	14.4	30	
Chloramben		81.5	19.7	196.9	0	41.4	5	162	125.8	42.7	30	R
Acifluorfen		200	78.8	196.9	0	102	15	140	251.4	22.8	30	
3,5-Dichlorobenzoic acid		146	39.4	196.9	0	74.0	10	164	157.3	7.61	30	
4-Nitrophenol		55.9	29.5	196.9	0	28.4	44.8	125	52.91	5.56	30	S
Dacthal (DCPA)		114	29.5	196.9	0	58.1	5	132	132.5	14.7	30	
Surr: 2,4-Dichlorophenylacetic ac	id	691		984.5		70.2	20.1	168		0		

NOTES:

Original Page 29 of 61

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

R - High RPD observed, spike recovery is within range.


QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Mercury by EPA Method 7471

Project:	Yakima EW	/C							Mer	cury by El	PA Metho	od 7471
Sample ID	MB-17818	SampType: MBLK			Units: mg/Kg		Prep Date	8/3/201	7	RunNo: 378	306	
Client ID:	MBLKS	Batch ID: 17818					Analysis Date	8/3/201	7	SeqNo: 726	6795	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		ND	0.250									
Sample ID	LCS-17818	SampType: LCS			Units: mg/Kg		Prep Date	: 8/3/201	7	RunNo: 378	306	
Client ID:	LCSS	Batch ID: 17818					Analysis Date	8/3/201	7	SeqNo: 726	6796	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		0.500	0.245	0.4902	0	102	80	120				
Sample ID	1707301-001ADUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date	: 8/3/201	7	RunNo: 378	306	
Client ID:	ES-1	Batch ID: 17818					Analysis Date	8/3/201	7	SeqNo: 726	6798	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		ND	0.255						0		20	
Sample ID	1707301-001AMS	SampType: MS			Units: mg/Kg-	dry	Prep Date	: 8/3/201	7	RunNo: 378	306	
Client ID:	ES-1	Batch ID: 17818					Analysis Date	8/3/201	7	SeqNo: 726	6799	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		0.549	0.260	0.5193	0.02025	102	70	130				
Sample ID	1707301-001AMSD	SampType: MSD			Units: mg/Kg-	dry	Prep Date	: 8/3/201	7	RunNo: 378	306	
Client ID:	ES-1	Batch ID: 17818					Analysis Date	8/3/201	7	SeqNo: 726	801	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		0.521	0.245	0.4899	0.02025	102	70	130	0.5494	5.26	20	

Original Page 30 of 61

Surr: Tetrachloro-m-xylene

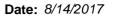
0.0469

QC SUMMARY REPORT

CLIENT: Shannon & Wilson Project: Yakima EWC

Organochlorine Pesticides by EPA Method 8081

Sample ID TOX CCV A 17824	SampType: CCV			Units: mg/L		Prep Da	te: 8/7/20	17	RunNo: 378	336	
Client ID: CCV	Batch ID: 17824					Analysis Da	te: 8/7/20	17	SeqNo: 72	7576	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toxaphene	930	0.100	1,000	0	93.0	80	120				
Sample ID MB-17824	SampType: MBLK			Units: mg/Kg		Prep Da	te: 8/4/20	17	RunNo: 378	336	
Client ID: MBLKS	Batch ID: 17824					Analysis Da	te: 8/7/20	17	SeqNo: 72	7577	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toxaphene	ND	0.100									
Alpha BHC	ND	0.0100									
Beta BHC	ND	0.0100									
Gamma BHC (Lindane)	ND	0.0100									
Delta BHC	ND	0.0100									
Heptachlor	ND	0.0100									
Aldrin	ND	0.0100									
Heptachlor epoxide	ND	0.0100									
gamma-Chlordane	ND	0.0100									
Endosulfan I	ND	0.0100									
alpha-Chlordane	ND	0.0100									
Dieldrin	ND	0.0100									
4,4´-DDE	ND	0.0100									
Endrin	ND	0.0100									
Endosulfan II	ND	0.0100									
4,4´-DDD	ND	0.0100									
Endrin aldehyde	ND	0.0100									
Endosulfan sulfate	ND	0.0100									
4,4´-DDT	ND	0.0100									
Endrin ketone	ND	0.0100									
Methoxychlor	ND	0.0100									
Surr: Decachlorobiphenyl	0.0480		0.05000		95.9	17.8	157				

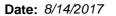

Original Page 31 of 61

93.9

11

150

0.05000


QC SUMMARY REPORT

CLIENT: Shannon & Wilson Project: Yakima EWC

Organochlorine Pesticides by EPA Method 8081

Sample ID LCS-17824	SampType: LCS			Units: mg/Kg		Prep Date	e: 8/4/2017		RunNo: 378	336	
Client ID: LCSS	Batch ID: 17824					Analysis Date	e: 8/7/2017		SeqNo: 727	7578	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
Alpha BHC	0.195	0.0100	0.2000	0	97.7	54.2	139				
Beta BHC	0.183	0.0100	0.2000	0	91.7	56.5	142				
Gamma BHC (Lindane)	0.195	0.0100	0.2000	0	97.5	55.5	142				
Delta BHC	0.193	0.0100	0.2000	0	96.6	47.4	157				
Heptachlor	0.209	0.0100	0.2000	0	105	50.9	153				
Aldrin	0.174	0.0100	0.2000	0	87.0	43.7	147				
Heptachlor epoxide	0.180	0.0100	0.2000	0	90.0	56.2	137				
gamma-Chlordane	0.172	0.0100	0.2000	0	86.1	58.5	136				
Endosulfan I	0.177	0.0100	0.2000	0	88.4	60	132				
alpha-Chlordane	0.173	0.0100	0.2000	0	86.6	46.1	140				
Dieldrin	0.177	0.0100	0.2000	0	88.6	61.2	133				
,4´-DDE	0.187	0.0100	0.2000	0	93.4	55.4	142				
Endrin	0.181	0.0100	0.2000	0	90.4	56.5	143				
Endosulfan II	0.175	0.0100	0.2000	0	87.7	62	143				
,4´-DDD	0.177	0.0100	0.2000	0	88.5	53.3	145				
Endrin aldehyde	0.168	0.0100	0.2000	0	83.8	39.5	153				
Endosulfan sulfate	0.181	0.0100	0.2000	0	90.3	53.8	148				
1,4´-DDT	0.208	0.0100	0.2000	0	104	48.2	152				
Endrin ketone	0.189	0.0100	0.2000	0	94.5	28.5	162				
Methoxychlor	0.222	0.0100	0.2000	0	111	34.6	159				
Surr: Decachlorobiphenyl	0.0516		0.05000		103	17.8	157				
Surr: Tetrachloro-m-xylene	0.0524		0.05000		105	11	150				
Sample ID 1707301-001ADUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date	e: 8/4/2017		RunNo: 378	336	
Client ID: ES-1	Batch ID: 17824					Analysis Date	e: 8/7/2017		SeqNo: 727	7580	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	RPD Ref Val	%RPD	RPDLimit	Qual
Гохарhene	ND	0.101						0		30	
Alpha BHC	ND	0.0101						0		30	
Beta BHC	ND	0.0101						0		30	

Original Page 32 of 61

Heptachlor

QC SUMMARY REPORT

CLIENT: Shannon & Wilson Project: Yakima EWC

Organochlorine Pesticides by EPA Method 8081

Sample ID 1707301-001ADUP	SampType: DUP			Units: mg	g/Kg-dry	Prep Date	e: 8/4/201	7	RunNo: 378	336	
Client ID: ES-1	Batch ID: 17824					Analysis Date	e: 8/7/201	7	SeqNo: 727	7580	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gamma BHC (Lindane)	ND	0.0101						0		30	
Delta BHC	ND	0.0101						0		30	
Heptachlor	ND	0.0101						0		30	
Aldrin	ND	0.0101						0		30	
Heptachlor epoxide	ND	0.0101						0		30	
gamma-Chlordane	ND	0.0101						0		30	
Endosulfan I	ND	0.0101						0		30	
alpha-Chlordane	ND	0.0101						0		30	
Dieldrin	ND	0.0101						0		30	
4,4´-DDE	ND	0.0101						0		30	
Endrin	ND	0.0101						0		30	
Endosulfan II	ND	0.0101						0		30	
4,4´-DDD	ND	0.0101						0		30	
Endrin aldehyde	ND	0.0101						0		30	
Endosulfan sulfate	ND	0.0101						0		30	
4,4´-DDT	ND	0.0101						0		30	
Endrin ketone	ND	0.0101						0		30	
Methoxychlor	ND	0.0101						0		30	
Surr: Decachlorobiphenyl	0.0471		0.05057		93.2	17.8	157		0		
Surr: Tetrachloro-m-xylene	0.0469		0.05057		92.8	11	150		0		
Sample ID 1707301-001AMS	SampType: MS			Units: mg	g/Kg-dry	Prep Date	e: 8/4/201	7	RunNo: 378	336	
Client ID: ES-1	Batch ID: 17824			·	- •	Analysis Date			SeqNo: 727	7581	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Alpha BHC	0.135	0.00929	0.1858	0	72.5	49.1	158				
Beta BHC	0.129	0.00929	0.1858	0	69.4	30.1	161				
Gamma BHC (Lindane)	0.136	0.00929	0.1858	0	73.2	40.5	158				
Delta BHC	0.136	0.00929	0.1858	0	73.0	31.5	153				

Original Page 33 of 61

0

79.0

0.00929

0.147

0.1858

156

37.9

QC SUMMARY REPORT

CLIENT: Shannon & Wilson Project: Yakima EWC

Organochlorine Pesticides by EPA Method 8081

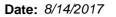
Sample ID 1707301-001AMS	SampType: MS			Units: mg/k	(g-dry	Prep Date	e: 8/4/201	7	RunNo: 378	336	
Client ID: ES-1	Batch ID: 17824					Analysis Date	e: 8/7/201	7	SeqNo: 727	7581	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aldrin	0.121	0.00929	0.1858	0	64.9	41.9	130				
Heptachlor epoxide	0.128	0.00929	0.1858	0	68.9	41	161				
gamma-Chlordane	0.124	0.00929	0.1858	0	66.5	40.9	132				
Endosulfan I	0.126	0.00929	0.1858	0	68.0	44.7	162				
alpha-Chlordane	0.125	0.00929	0.1858	0	67.2	41.4	132				
Dieldrin	0.128	0.00929	0.1858	0	69.0	43.9	155				
4,4´-DDE	0.136	0.00929	0.1858	0	73.1	34	166				
Endrin	0.134	0.00929	0.1858	0	72.1	50.5	166				
Endosulfan II	0.134	0.00929	0.1858	0	72.3	37.9	154				
4,4´-DDD	0.135	0.00929	0.1858	0	72.4	38.9	144				
Endrin aldehyde	0.125	0.00929	0.1858	0	67.5	38.3	156				
Endosulfan sulfate	0.135	0.00929	0.1858	0	72.7	25.2	144				
4,4´-DDT	0.163	0.00929	0.1858	0	87.7	38.4	160				
Endrin ketone	0.148	0.00929	0.1858	0	79.8	40.2	119				
Methoxychlor	0.185	0.00929	0.1858	0	99.5	43.4	178				
Surr: Decachlorobiphenyl	0.0441		0.04645		94.9	17.8	157				
Surr: Tetrachloro-m-xylene	0.0372		0.04645		80.1	11	150				

Sample ID 1707301-001AMSD	SampType: MSD			Units: mg/K	g-dry	Prep Da	te: 8/4/20 1	17	RunNo: 378	336	
Client ID: ES-1	Batch ID: 17824					Analysis Da	te: 8/7/20 1	17	SeqNo: 727	7582	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Alpha BHC	0.140	0.00954	0.1907	0	73.3	49.1	158	0.1347	3.73	30	
Beta BHC	0.130	0.00954	0.1907	0	68.1	30.1	161	0.1289	0.700	30	
Gamma BHC (Lindane)	0.140	0.00954	0.1907	0	73.4	40.5	158	0.1360	2.85	30	
Delta BHC	0.135	0.00954	0.1907	0	70.5	31.5	153	0.1357	0.890	30	
Heptachlor	0.153	0.00954	0.1907	0	80.1	37.9	156	0.1468	3.97	30	
Aldrin	0.124	0.00954	0.1907	0	65.2	41.9	130	0.1206	3.10	30	
Heptachlor epoxide	0.130	0.00954	0.1907	0	68.3	41	161	0.1280	1.81	30	
gamma-Chlordane	0.125	0.00954	0.1907	0	65.4	40.9	132	0.1235	0.975	30	

Original Page 34 of 61

Work Order: 1707301

Project:


QC SUMMARY REPORT

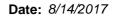
CLIENT: Shannon & Wilson Yakima EWC

Organochlorine Pesticides by EPA Method 8081

Sample ID 1707301-001AMSD	SampType: MSD			Units: mg/k	(g-dry	Prep Dat	te: 8/4/201	7	RunNo: 378	836	
Client ID: ES-1	Batch ID: 17824					Analysis Da	te: 8/7/201	7	SeqNo: 72	7582	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Endosulfan I	0.127	0.00954	0.1907	0	66.4	44.7	162	0.1264	0.211	30	
alpha-Chlordane	0.126	0.00954	0.1907	0	66.0	41.4	132	0.1248	0.909	30	
Dieldrin	0.127	0.00954	0.1907	0	66.6	43.9	155	0.1282	0.926	30	
4,4´-DDE	0.135	0.00954	0.1907	0	70.6	34	166	0.1358	0.768	30	
Endrin	0.131	0.00954	0.1907	0	68.5	50.5	166	0.1341	2.50	30	
Endosulfan II	0.126	0.00954	0.1907	0	65.9	37.9	154	0.1344	6.61	30	
4,4´-DDD	0.128	0.00954	0.1907	0	67.2	38.9	144	0.1345	4.88	30	
Endrin aldehyde	0.109	0.00954	0.1907	0	57.1	38.3	156	0.1254	14.1	30	
Endosulfan sulfate	0.122	0.00954	0.1907	0	63.8	25.2	144	0.1351	10.5	30	
4,4´-DDT	0.154	0.00954	0.1907	0	81.0	38.4	160	0.1630	5.34	30	
Endrin ketone	0.133	0.00954	0.1907	0	69.7	40.2	119	0.1483	11.0	30	
Methoxychlor	0.168	0.00954	0.1907	0	88.0	43.4	178	0.1849	9.64	30	
Surr: Decachlorobiphenyl	0.0354		0.04769		74.3	17.8	157		0		
Surr: Tetrachloro-m-xylene	0.0372		0.04769		78.1	11	150		0		

Page 35 of 61 Original

QC SUMMARY REPORT


CLIENT: Shannon & Wilson Yakima FWC

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Project: Yakima EV	NC				P	olyaromati	c Hydrocarbons	by EPA Method 827	'0 (SIM
Sample ID MB-17800	SampType: MBLK			Units: µg/Kg		Prep Date:	8/2/2017	RunNo: 37792	
Client ID: MBLKS	Batch ID: 17800					Analysis Date:	8/2/2017	SeqNo: 726348	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Naphthalene	ND	40.0							
2-Methylnaphthalene	ND	40.0							
1-Methylnaphthalene	ND	40.0							
Acenaphthylene	ND	40.0							
Acenaphthene	ND	40.0							
Fluorene	ND	40.0							
Phenanthrene	ND	40.0							
Anthracene	ND	40.0							
Fluoranthene	ND	40.0							
Pyrene	ND	40.0							
Benz(a)anthracene	ND	40.0							
Chrysene	ND	40.0							
Benzo(b)fluoranthene	ND	40.0							
Benzo(j,k)fluoranthene	ND	40.0							
Benzo(a)pyrene	ND	40.0							
Indeno(1,2,3-cd)pyrene	ND	40.0							
Dibenz(a,h)anthracene	ND	40.0							
Benzo(g,h,i)perylene	ND	40.0							
Surr: 2-Fluorobiphenyl	494		500.0		98.7	24.5	139		
Surr: Terphenyl-d14 (surr)	666		500.0		133	46.2	179		
Sample ID LCS-17800	SampType: LCS			Units: µg/Kg		Prep Date:	8/2/2017	RunNo: 37792	
Client ID: LCSS	Batch ID: 17800					Analysis Date:	8/2/2017	SeqNo: 726349	

Sample ID LCS-17800	SampType: LCS			Units: µg/Kg		Prep Da	te: 8/2/201	7	RunNo: 377	792	
Client ID: LCSS	Batch ID: 17800					Analysis Da	te: 8/2/201	7	SeqNo: 726	349	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	599	40.0	1,000	0	59.9	46.4	125				
2-Methylnaphthalene	728	40.0	1,000	0	72.8	45.1	135				
1-Methylnaphthalene	617	40.0	1,000	0	61.7	46.2	133				
Acenaphthylene	656	40.0	1,000	0	65.6	32.8	136				
Acenaphthene	654	40.0	1,000	0	65.4	38.7	129				

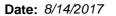
Page 36 of 61 Original

Yakima EWC

Work Order: 1707301

Project:

QC SUMMARY REPORT


CLIENT: Shannon & Wilson

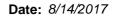
Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID LCS-17800	SampType: LCS			Units: µg/Kg		Prep Da	te: 8/2/20 1	17	RunNo: 37	792	
Client ID: LCSS	Batch ID: 17800					Analysis Da	te: 8/2/20 1	7	SeqNo: 720	6349	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluorene	658	40.0	1,000	0	65.8	41.4	144				
Phenanthrene	621	40.0	1,000	0	62.1	43.9	133				
Anthracene	768	40.0	1,000	0	76.8	44.2	136				
Fluoranthene	689	40.0	1,000	0	68.9	45.9	137				
Pyrene	677	40.0	1,000	0	67.7	46.2	137				
Benz(a)anthracene	720	40.0	1,000	0	72.0	41.2	141				
Chrysene	667	40.0	1,000	0	66.7	46.9	138				
Benzo(b)fluoranthene	688	40.0	1,000	0	68.8	41	155				
Benzo(j,k)fluoranthene	670	40.0	1,000	0	67.0	41.8	153				
Benzo(a)pyrene	684	40.0	1,000	0	68.4	30.2	171				
Indeno(1,2,3-cd)pyrene	678	40.0	1,000	0	67.8	31.3	159				
Dibenz(a,h)anthracene	697	40.0	1,000	0	69.7	28	158				
Benzo(g,h,i)perylene	681	40.0	1,000	0	68.1	32.4	144				
Surr: 2-Fluorobiphenyl	483		500.0		96.7	24.5	139				
Surr: Terphenyl-d14 (surr)	599		500.0		120	46.2	179				

Sample ID 1707301-002ADUP	SampType: DUP			Units: µg/Kg-c	lry	Prep Date: 8/2/20	17	RunNo: 37792	
Client ID: ES-2	Batch ID: 17800					Analysis Date: 8/2/20)17	SeqNo: 726353	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Naphthalene	ND	39.1					0	30	
2-Methylnaphthalene	ND	39.1					0	30	
1-Methylnaphthalene	ND	39.1					0	30	
Acenaphthylene	ND	39.1					0	30	
Acenaphthene	ND	39.1					0	30	
Fluorene	ND	39.1					0	30	
Phenanthrene	ND	39.1					0	30	
Anthracene	ND	39.1					0	30	
Fluoranthene	ND	39.1					0	30	
Pyrene	ND	39.1					0	30	

Original Page 37 of 61

QC SUMMARY REPORT


CLIENT: Shannon & Wilson

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Project: Yakima EW	C				Polyar	omatio	с пуаг	ocarbons b	y EPA IVIE	tnoa 827	u (Silv
Sample ID 1707301-002ADUP	SampType: DUP			Units: µg/Kg-dry	Pre	ep Date:	8/2/201	7	RunNo: 37	792	
Client ID: ES-2	Batch ID: 17800				Analys	sis Date:	8/2/201	7	SeqNo: 72	6353	
Analyte	Result	RL	SPK value	SPK Ref Val %R	EC Lowl	Limit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benz(a)anthracene	ND	39.1						0		30	
Chrysene	ND	39.1						0		30	
Benzo(b)fluoranthene	ND	39.1						0		30	
Benzo(j,k)fluoranthene	ND	39.1						0		30	
Benzo(a)pyrene	ND	39.1						0		30	
Indeno(1,2,3-cd)pyrene	ND	39.1						0		30	
Dibenz(a,h)anthracene	ND	39.1						0		30	
Benzo(g,h,i)perylene	ND	39.1						0		30	
Surr: 2-Fluorobiphenyl	424		488.6	86	.7	24.5	139		0		
Surr: Terphenyl-d14 (surr)	571		488.6	1	17	46.2	179		0		
Sample ID 1707301-002AMS	SampType: MS			Units: µg/Kg-dry	Pre	ep Date:	8/2/201	7	RunNo: 37	792	
Client ID: ES-2	Batch ID: 17800				Analys	sis Date:	8/2/201	7	SeqNo: 72	6354	

Sample ID 1707301-002AMS	SampType: MS			Units: µg/k	(g-dry	Prep Da	te: 8/2/201	7	RunNo: 37 7	792	
Client ID: ES-2	Batch ID: 17800					Analysis Da	te: 8/2/201	7	SeqNo: 726	6354	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	558	38.4	961.0	0	58.1	42.9	138				
2-Methylnaphthalene	688	38.4	961.0	0	71.6	42.8	151				
1-Methylnaphthalene	584	38.4	961.0	0	60.8	41.6	148				
Acenaphthylene	625	38.4	961.0	0	65.0	32.6	160				
Acenaphthene	630	38.4	961.0	0	65.5	46.3	142				
Fluorene	647	38.4	961.0	0	67.3	43.4	153				
Phenanthrene	630	38.4	961.0	0	65.5	45.5	140				
Anthracene	764	38.4	961.0	0	79.5	32.6	160				
Fluoranthene	676	38.4	961.0	0	70.3	44.6	161				
Pyrene	668	38.4	961.0	0	69.5	48.3	158				
Benz(a)anthracene	706	38.4	961.0	0	73.5	34.9	139				
Chrysene	654	38.4	961.0	0	68.0	45.2	146				
Benzo(b)fluoranthene	625	38.4	961.0	0	65.0	42.2	168				
Benzo(j,k)fluoranthene	685	38.4	961.0	0	71.3	34.8	147				
Benzo(a)pyrene	650	38.4	961.0	0	67.6	34.4	179				

Original Page 38 of 61

Yakima EWC

Work Order: 1707301

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID 1707301-002AMS	SampType: MS			Units: µg/K	g-dry	Prep Da	te: 8/2/201	7	RunNo: 37	792	
Client ID: ES-2	Batch ID: 17800					Analysis Da	te: 8/2/201	7	SeqNo: 72	6354	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Indeno(1,2,3-cd)pyrene	649	38.4	961.0	0	67.6	5	113				
Dibenz(a,h)anthracene	662	38.4	961.0	0	68.9	17.3	156				
Benzo(g,h,i)perylene	652	38.4	961.0	0	67.8	24.9	119				
Surr: 2-Fluorobiphenyl	406		480.5		84.5	24.5	139				
Surr: Terphenyl-d14 (surr)	557		480.5		116	46.2	179				

Sample ID 1707301-002AMSD	SampType: MSD			Units: µg/K	g-dry	Prep Da	te: 8/2/20 1	17	RunNo: 377	792	
Client ID: ES-2	Batch ID: 17800					Analysis Da	te: 8/2/20 1	17	SeqNo: 726	6355	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	623	39.4	985.6	0	63.2	42.9	138	558.0	11.0	30	
2-Methylnaphthalene	758	39.4	985.6	0	76.9	42.8	151	687.6	9.68	30	
1-Methylnaphthalene	637	39.4	985.6	0	64.6	41.6	148	583.9	8.73	30	
Acenaphthylene	679	39.4	985.6	0	68.9	32.6	160	624.9	8.27	30	
Acenaphthene	679	39.4	985.6	0	68.9	46.3	142	629.7	7.60	30	
Fluorene	705	39.4	985.6	0	71.5	43.4	153	646.5	8.61	30	
Phenanthrene	648	39.4	985.6	0	65.7	45.5	140	629.6	2.81	30	
Anthracene	792	39.4	985.6	0	80.4	32.6	160	764.0	3.65	30	
Fluoranthene	712	39.4	985.6	0	72.2	44.6	161	675.6	5.25	30	
Pyrene	692	39.4	985.6	0	70.2	48.3	158	667.6	3.53	30	
Benz(a)anthracene	751	39.4	985.6	0	76.2	34.9	139	706.4	6.14	30	
Chrysene	679	39.4	985.6	0	68.9	45.2	146	653.6	3.87	30	
Benzo(b)fluoranthene	666	39.4	985.6	0	67.6	42.2	168	624.9	6.37	30	
Benzo(j,k)fluoranthene	728	39.4	985.6	0	73.9	34.8	147	685.4	6.08	30	
Benzo(a)pyrene	697	39.4	985.6	0	70.7	34.4	179	649.5	7.08	30	
Indeno(1,2,3-cd)pyrene	685	39.4	985.6	0	69.5	5	113	649.2	5.32	30	
Dibenz(a,h)anthracene	711	39.4	985.6	0	72.1	17.3	156	661.9	7.10	30	
Benzo(g,h,i)perylene	689	39.4	985.6	0	69.9	24.9	119	651.5	5.62	30	
Surr: 2-Fluorobiphenyl	476		492.8		96.5	24.5	139		0		
Surr: Terphenyl-d14 (surr)	583		492.8		118	46.2	179		0		

Original Page 39 of 61

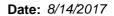
Yakima EWC

Work Order: 1707301

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

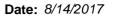

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID 1707301-002AMSD SampType: MSD Units: µg/Kg-dry Prep Date: 8/2/2017 RunNo: 37792

Client ID: **ES-2** Batch ID: **17800** Analysis Date: **8/2/2017** SeqNo: **726355**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Original Page 40 of 61


QC SUMMARY REPORT

CLIENT: Shannon & Wilson Yakima FWC

Polychlorinated Biphenyls (PCB) by EPA 8082

Sample ID MB-17799	SampType: MBLK			Units: mg/Kg		Prep Da	te: 8/2/20	17	RunNo: 377	776	
Client ID: MBLKS	Batch ID: 17799					Analysis Da	te: 8/2/20	17	SeqNo: 726	6074	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Aroclor 1016	ND	0.100									
Aroclor 1221	ND	0.100									
Aroclor 1232	ND	0.100									
Aroclor 1242	ND	0.100									
Aroclor 1248	ND	0.100									
Aroclor 1254	ND	0.100									
Aroclor 1260	ND	0.100									
Aroclor 1262	ND	0.100									
Aroclor 1268	ND	0.100									
Total PCBs	ND	0.100									
Surr: Decachlorobiphenyl	66.2		50.00		132	30.8	168				
Surr: Tetrachloro-m-xylene	60.0		50.00		120	30.1	143				
Sample ID LCS1-17799	SampType: LCS			Units: mg/Kg		Prep Da	te: 8/2/20 °	17	RunNo: 377	776	
Client ID: LCSS	Batch ID: 17799					Analysis Da	te: 8/2/20	17	SeqNo: 726	6075	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Aroclor 1016	0.804	0.100	1.000	0	80.4	38.5	149				
Aroclor 1260	0.802	0.100	1.000	0	80.2	35.4	154				
Surr: Decachlorobiphenyl	49.4		50.00		98.8	30.8	168				
Surr: Tetrachloro-m-xylene	50.3		50.00		101	30.1	143				
Sample ID LCS2-17799	SampType: LCS			Units: mg/Kg		Prep Da	te: 8/2/20 °	17	RunNo: 377	776	
Client ID: LCSS	Batch ID: 17799					Analysis Da	te: 8/2/20	17	SeqNo: 726	6076	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Aroclor 1254	0.898	0.100	1.000	0	89.8	32.8	151				
Surr: Decachlorobiphenyl	49.0		50.00		97.9	30.8	168				
Surr: Tetrachloro-m-xylene	50.4		50.00		101	30.1	143				

Original Page 41 of 61

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Polychlorinated Biphenyls (PCB) by EPA 8082

Sample ID 1707219-010ADUP	SampType: DUP			Units: mg/l	Kg-dry	Prep Date	e: 8/2/201	7	RunNo: 377	776	
Client ID: BATCH	Batch ID: 17799					Analysis Date	e: 8/2/201	7	SeqNo: 726	6078	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Aroclor 1016	ND	0.195						0		30	
Aroclor 1221	ND	0.195						0		30	
Aroclor 1232	ND	0.195						0		30	
Aroclor 1242	ND	0.195						0		30	
Aroclor 1248	ND	0.195						0		30	
Aroclor 1254	ND	0.195						0		30	
Aroclor 1260	ND	0.195						0		30	
Aroclor 1262	ND	0.195						0		30	
Aroclor 1268	ND	0.195						0		30	
Total PCBs	ND	0.195						0		30	
Surr: Decachlorobiphenyl	72.0		97.70		73.7	30.8	168		0		
Surr: Tetrachloro-m-xylene	70.7		97.70		72.4	30.1	143		0		
Sample ID 1707219-010AMS	SampType: MS			Units: mg/l	Kg-dry	Prep Date	e: 8/2/201	7	RunNo: 377	776	
Client ID: BATCH	Batch ID: 17799					Analysis Date	e: 8/2/201	7	SeqNo: 726	6079	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Aroclor 1016	1.61	0.187	1.865	0	86.4	27.1	166				
Aroclor 1260	1.60	0.187	1.865	0.02832	84.1	20.6	168				
Surr: Decachlorobiphenyl	62.7		93.26		67.2	30.8	168				
Surr: Tetrachloro-m-xylene	57.9		93.26		62.1	30.1	143				
Sample ID 1707219-010AMSD	SampType: MSD			Units: mg/l	Kg-dry	Prep Date	e: 8/2/201	7	RunNo: 377	776	
Client ID: BATCH	Batch ID: 17799					Analysis Date	e: 8/2/201	7	SeqNo: 726	080	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Aroclor 1016	1.64	0.187	1.871	0	87.6	27.1	166	1.612	1.66	30	
Aroclor 1260	1.63	0.187	1.871	0.02832	85.7	20.6	168	1.597	2.14	30	
Surr: Decachlorobiphenyl	60.4		93.53		64.6	30.8	168		0		

Page 42 of 61 Original

Yakima EWC

Work Order: 1707301

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Polychlorinated Biphenyls (PCB) by EPA 8082

Sample ID 1707219-010AMSD SampType: MSD Units: mg/Kg-dry Prep Date: 8/2/2017 RunNo: 37776

Client ID: **BATCH** Batch ID: **17799** Analysis Date: **8/2/2017** SeqNo: **726080**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Original Page 43 of 61

Yakima EWC

Work Order: 1707301

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Sample Moisture (Percent Moisture)

Sample ID 1707220-011ADUP	SampType: DUP	Units: wt%	Prep Date: 8/2/2017	RunNo: 37765
---------------------------	----------------------	------------	---------------------	---------------------

Client ID: BATCH Batch ID: R37765 Analysis Date: 8/2/2017 SeqNo: 725880

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Percent Moisture 19.8 0.500 20.12 1.55 20

SampType: **DUP** Sample ID 1707310-018ADUP Units: wt% Prep Date: 8/2/2017 RunNo: 37765 Client ID: BATCH Batch ID: R37765 Analysis Date: 8/2/2017 SeqNo: 725898 Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Analyte

Percent Moisture 4.55 0.500 5.649 21.7 20 R

Original Page 44 of 61

Silver

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Total Metals by EPA Method 6020

Project:	Yakima EW(0							Total Me	etals by El	PA Metho	od 6020
Sample ID	MB-17812	SampType: MBLK			Units: mg/Kg		Prep Date:	8/3/2017		RunNo: 378	301	
Client ID:	MBLKS	Batch ID: 17812					Analysis Date:	8/3/2017		SeqNo: 720	6525	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit R	PD Ref Val	%RPD	RPDLimit	Qual
Silver		ND	0.0752									
Sample ID	LCS-17812	SampType: LCS			Units: mg/Kg		Prep Date:	8/3/2017		RunNo: 378	301	
Client ID:	LCSS	Batch ID: 17812					Analysis Date:	8/3/2017		SeqNo: 720	6526	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit R	PD Ref Val	%RPD	RPDLimit	Qual
Silver		8.64	0.0752	9.398	0	91.9	80	120				
Sample ID	1708037-002BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date:	8/3/2017		RunNo: 378	301	
Client ID:	ВАТСН	Batch ID: 17812					Analysis Date:	8/3/2017		SeqNo: 720	6530	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit R	PD Ref Val	%RPD	RPDLimit	Qual
Silver		ND	0.144						0		20	
Sample ID	1708037-002BMS	SampType: MS			Units: mg/Kg-	dry	Prep Date:	8/3/2017		RunNo: 378	301	
Client ID:	ВАТСН	Batch ID: 17812					Analysis Date:	8/3/2017		SeqNo: 720	6532	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit R	PD Ref Val	%RPD	RPDLimit	Qual
Silver NOTES:	:	13.2	0.144	18.06	0.1420	72.6	75	125				S
S - Outly	ying spike recovery(ies) ol	bserved. A duplicate anal	lysis was pe	rformed and r	ecovered within range	Э.						
Sample ID	1708037-002BMSD	SampType: MSD			Units: mg/Kg-	dry	Prep Date:	8/3/2017		RunNo: 378	301	
Client ID:	ВАТСН	Batch ID: 17812					Analysis Date:	8/3/2017		SeqNo: 720	6533	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit R	PD Ref Val	%RPD	RPDLimit	Qual

Original Page 45 of 61

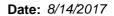
0.1420

75

125

13.25

4.01


20

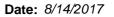
75.6

13.8

0.144

18.06

QC SUMMARY REPORT


CLIENT: Shannon & Wilson

Project: Yakima	a EWC							Total Me	etals by Ef	PA Metho	od 602
Sample ID MB-17796	SampType: MBLK			Units: mg/Kg		Prep Da	te: 8/2/201	7	RunNo: 377	771	
Client ID: MBLKS	Batch ID: 17796					Analysis Da	te: 8/2/201	7	SeqNo: 726	6020	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	ND	0.0769									
Barium	ND	0.385									
Cadmium	ND	0.154									
Chromium	ND	0.0769									
Copper	ND	0.154									
Lead	ND	0.154									
Nickel	ND	0.0769									
Selenium	ND	0.385									
Zinc	ND	0.308									
Sample ID LCS-17796	SampType: LCS			Units: mg/Kg		Prep Da	te: 8/2/201	7	RunNo: 377	771	
Client ID: LCSS	Batch ID: 17796					Analysis Da	te: 8/2/201	7	SeqNo: 726	6021	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	37.0	0.0725	36.23	0	102	80	120				
			00.00	•	07.4	00	400				
Barium	35.3	0.362	36.23	0	97.4	80	120				
Barium Cadmium	35.3 1.84	0.362 0.145	36.23 1.812	0	102	80	120				

				oe. mg/mg			0,2,20	• •		• • •	
Client ID: LCSS	Batch ID: 17796					Analysis Da	te: 8/2/20 1	17	SeqNo: 72	6021	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	37.0	0.0725	36.23	0	102	80	120				
Barium	35.3	0.362	36.23	0	97.4	80	120				
Cadmium	1.84	0.145	1.812	0	102	80	120				
Chromium	37.7	0.0725	36.23	0	104	80	120				
Copper	37.7	0.145	36.23	0	104	80	120				
Lead	18.2	0.145	18.12	0	100	80	120				
Nickel	38.6	0.0725	36.23	0	107	80	120				
Selenium	3.52	0.362	3.623	0	97.0	80	120				
Zinc	37.0	0.290	36.23	0	102	80	120				

Sample ID 1708015-001BDUP	SampType: DUP			Units: mg/K	(g-dry	Prep Da	te: 8/2/20 1	7	RunNo: 377	771	
Client ID: BATCH	Batch ID: 17796					Analysis Da	te: 8/2/20 1	7	SeqNo: 726	6023	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	7.69	0.101						8.091	5.13	20	
Barium	152	0.503						166.0	8.76	20	

Page 46 of 61 Original

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Total Metals by EPA Method 6020

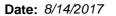
Project:	Yakima EW	С							TOTAL IN	etais by Er	PA Weth	յն ենչ
Sample ID	1708015-001BDUP	SampType: DUP			Units: mg	/Kg-dry	Prep Date	e: 8/2/201	7	RunNo: 377	771	
Client ID:	BATCH	Batch ID: 17796					Analysis Date	e: 8/2/201	7	SeqNo: 726	6023	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Cadmium		0.229	0.201						0.2297	0.132	20	
Chromium		81.8	0.101						90.69	10.3	20	
Copper		58.6	0.201						58.79	0.339	20	
Lead		15.0	0.201						12.44	18.4	20	
Nickel		92.4	0.101						98.89	6.74	20	
Selenium		1.93	0.503						2.207	13.6	20	
Zinc		107	0.403						105.2	1.66	20	
Sample ID	1708015-001BMS	SampType: MS			Units: mg	/Kg-dry	Prep Date	e: 8/2/201	7	RunNo: 377	771	
Client ID:		Batch ID: 17796			J		Analysis Date			SeqNo: 726	6025	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		55.3	0.0999	49.96	8.091	94.4	75	125		,		
Barium		222	0.500	49.96	166.0	113	75	125				
Cadmium		2.65	0.200	2.498	0.2297	96.9	75	125				
Chromium		144	0.0999	49.96	90.69	107	75	125				
Copper		104	0.200	49.96	58.79	91.4	75	125				
Lead		32.9	0.200	24.98	12.44	81.8	75	125				
Nickel		151	0.0999	49.96	98.89	104	75	125				
Selenium		6.64	0.500	4.996	2.207	88.7	75	125				
Zinc		156	0.400	49.96	105.2	101	75	125				
Sample ID	1708015-001BMSD	SampType: MSD			Units: mg	/Kg-dry	Prep Date	e: 8/2/201	7	RunNo: 377	771	
Client ID:	ВАТСН	Batch ID: 17796			_	-	Analysis Date	e: 8/2/201	7	SeqNo: 726	6026	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic		53.6	0.0999	49.96	8.091	91.1	75	125	55.27	3.05	20	
Barium		215	0.500	49.96	166.0	97.6	75	125	222.3	3.44	20	
Cadmium		2.60	0.200	2.498	0.2297	94.8	75	125	2.650	1.98	20	

Original Page 47 of 61

Yakima EWC

Work Order: 1707301

Project:

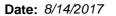

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Total Metals by EPA Method 6020

Sample ID 1708015-001BMSD	SampType: MSD			Units: mg/k	(g-dry	Prep Dat	te: 8/2/201	7	RunNo: 37	771	
Client ID: BATCH	Batch ID: 17796					Analysis Dat	te: 8/2/20 1	17	SeqNo: 720	6026	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Copper	104	0.200	49.96	58.79	90.7	75	125	104.5	0.317	20	
Lead	31.7	0.200	24.98	12.44	77.2	75	125	32.88	3.54	20	
Nickel	143	0.0999	49.96	98.89	89.1	75	125	151.0	5.15	20	
Selenium	6.52	0.500	4.996	2.207	86.4	75	125	6.638	1.72	20	
Zinc	147	0.400	49.96	105.2	83.6	75	125	155.5	5.66	20	

Original Page 48 of 61

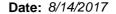

QC SUMMARY REPORT

CLIENT: Shannon & Wilson Project: Yakima EWC

Volatile Organic Compounds by EPA Method 8260C

Sample ID LCS-17817	SampType: LCS			Units: mg/Kg		Prep Da	te: 8/3/20 1	7	RunNo: 378	328	
Client ID: LCSS	Batch ID: 17817					Analysis Da	te: 8/3/20 1	7	SeqNo: 72	7044	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	1.44	0.0200	1.000	0	144	14.3	167				
Chloromethane	1.08	0.0500	1.000	0	108	46	144				
Vinyl chloride	1.17	0.0250	1.000	0	117	43.4	151				
Bromomethane	1.25	0.0500	1.000	0	125	40.9	157				
Trichlorofluoromethane (CFC-11)	1.22	0.0200	1.000	0	122	36.9	156				
Chloroethane	1.13	0.0500	1.000	0	113	33.1	147				
1,1-Dichloroethene	1.14	0.0200	1.000	0	114	49.7	142				
Methylene chloride	1.05	0.0200	1.000	0	105	46.3	140				
trans-1,2-Dichloroethene	1.08	0.0200	1.000	0	108	68	130				
Methyl tert-butyl ether (MTBE)	0.803	0.0500	1.000	0	80.3	66.3	145				
1,1-Dichloroethane	1.05	0.0200	1.000	0	105	61.9	137				
2,2-Dichloropropane	0.805	0.100	1.000	0	80.5	35.5	186				
cis-1,2-Dichloroethene	1.06	0.0200	1.000	0	106	71.3	135				
Chloroform	1.03	0.0200	1.000	0	103	69	145				
1,1,1-Trichloroethane (TCA)	1.06	0.0250	1.000	0	106	69	132				
1,1-Dichloropropene	1.11	0.0200	1.000	0	111	72.7	131				
Carbon tetrachloride	1.10	0.0250	1.000	0	110	63.4	137				
1,2-Dichloroethane (EDC)	0.996	0.0200	1.000	0	99.6	50.9	162				
Benzene	1.06	0.0200	1.000	0	106	64.3	133				
Trichloroethene (TCE)	1.08	0.0200	1.000	0	108	65.5	137				
1,2-Dichloropropane	1.02	0.0200	1.000	0	102	63.2	142				
Bromodichloromethane	1.02	0.0200	1.000	0	102	53.4	131				
Dibromomethane	1.01	0.0200	1.000	0	101	60.1	146				
cis-1,3-Dichloropropene	0.934	0.0200	1.000	0	93.4	59.1	143				
Toluene	1.11	0.0200	1.000	0	111	67.3	138				
trans-1,3-Dichloropropylene	1.07	0.0200	1.000	0	107	49.2	149				
1,1,2-Trichloroethane	1.03	0.0200	1.000	0	103	56.9	147				
1,3-Dichloropropane	1.02	0.0250	1.000	0	102	56.1	153				
Tetrachloroethene (PCE)	1.10	0.0250	1.000	0	110	52.7	150				
Dibromochloromethane	0.958	0.0250	1.000	0	95.8	70.6	144				
1,2-Dibromoethane (EDB)	0.978	0.00500	1.000	0	97.8	50.5	154				

Original Page 49 of 61


QC SUMMARY REPORT

CLIENT: Shannon & Wilson Project: Yakima EWC

Volatile Organic Compounds by EPA Method 8260C

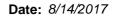
Sample ID LCS-17817	SampType: LCS			Units: mg/Kg		Prep Da	te: 8/3/20 1	17	RunNo: 37	328	
Client ID: LCSS	Batch ID: 17817					Analysis Da	te: 8/3/20 1	17	SeqNo: 72	7044	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chlorobenzene	1.07	0.0250	1.000	0	107	76.1	123				
1,1,1,2-Tetrachloroethane	1.03	0.0250	1.000	0	103	65.9	141				
Ethylbenzene	1.11	0.0250	1.000	0	111	74	129				
m,p-Xylene	2.19	0.0500	2.000	0	109	70	124				
o-Xylene	1.08	0.0250	1.000	0	108	68.1	139				
Styrene	1.07	0.0250	1.000	0	107	73.3	146				
Isopropylbenzene	1.13	0.0250	1.000	0	113	70	130				
Bromoform	0.972	0.0500	1.000	0	97.2	67	154				
1,1,2,2-Tetrachloroethane	1.01	0.0200	1.000	0	101	44.8	165				
n-Propylbenzene	1.16	0.0250	1.000	0	116	74.8	125				
Bromobenzene	1.04	0.0200	1.000	0	104	49.2	144				
1,3,5-Trimethylbenzene	1.09	0.0250	1.000	0	109	74.6	123				
2-Chlorotoluene	1.09	0.0250	1.000	0	109	76.7	129				
4-Chlorotoluene	1.08	0.0250	1.000	0	108	77.5	125				
tert-Butylbenzene	1.12	0.0250	1.000	0	112	66.2	130				
1,2,3-Trichloropropane	0.961	0.0250	1.000	0	96.1	67.9	136				
1,2,4-Trichlorobenzene	0.998	0.0250	1.000	0	99.8	62.6	143				
sec-Butylbenzene	1.15	0.0500	1.000	0	115	75.6	133				
4-Isopropyltoluene	1.07	0.0500	1.000	0	107	76.8	131				
1,3-Dichlorobenzene	1.07	0.0200	1.000	0	107	72.8	128				
1,4-Dichlorobenzene	1.06	0.0200	1.000	0	106	72.6	126				
n-Butylbenzene	1.10	0.0250	1.000	0	110	65.3	136				
1,2-Dichlorobenzene	1.06	0.0200	1.000	0	106	72.8	126				
1,2-Dibromo-3-chloropropane	0.920	0.500	1.000	0	92.0	40.2	155				
1,2,4-Trimethylbenzene	1.08	0.0200	1.000	0	108	77.5	129				
Hexachlorobutadiene	1.11	0.0500	1.000	0	111	42	151				
Naphthalene	1.02	0.0500	1.000	0	102	58.4	160				
1,2,3-Trichlorobenzene	1.02	0.0200	1.000	0	102	54.8	143				
Surr: Dibromofluoromethane	1.25		1.250		99.8	56.5	129				
Surr: Toluene-d8	1.28		1.250		103	64.5	151				
Surr: 1-Bromo-4-fluorobenzene	1.28		1.250		103	63.1	141				

Original Page 50 of 61

QC SUMMARY REPORT

CLIENT: Shannon & Wilson Project: Yakima EWC

Volatile Organic Compounds by EPA Method 8260C


Sample ID LCS-17817 SampType: LCS Units: mg/Kg Prep Date: 8/3/2017 RunNo: 37828

Client ID: LCSS Batch ID: 17817 Analysis Date: 8/3/2017 SeqNo: 727044

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

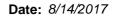
Sample ID MB-17817	SampType: MBLK			Units: mg/Kg		Prep Da	ite: 8/3/20	17	RunNo: 37	828	
Client ID: MBLKS	Batch ID: 17817					Analysis Da	ate: 8/3/20	17	SeqNo: 72	7045	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	0.0200									
Chloromethane	ND	0.0500									
Vinyl chloride	ND	0.0250									
Bromomethane	ND	0.0500									
Trichlorofluoromethane (CFC-11)	ND	0.0200									
Chloroethane	ND	0.0500									
1,1-Dichloroethene	ND	0.0200									
Methylene chloride	ND	0.0200									
trans-1,2-Dichloroethene	ND	0.0200									
Methyl tert-butyl ether (MTBE)	ND	0.0500									
1,1-Dichloroethane	ND	0.0200									
2,2-Dichloropropane	ND	0.100									Q
cis-1,2-Dichloroethene	ND	0.0200									
Chloroform	ND	0.0200									
1,1,1-Trichloroethane (TCA)	ND	0.0250									
1,1-Dichloropropene	ND	0.0200									
Carbon tetrachloride	ND	0.0250									
1,2-Dichloroethane (EDC)	ND	0.0200									
Benzene	ND	0.0200									
Trichloroethene (TCE)	ND	0.0200									
1,2-Dichloropropane	ND	0.0200									
Bromodichloromethane	ND	0.0200									
Dibromomethane	ND	0.0200									
cis-1,3-Dichloropropene	ND	0.0200									
Toluene	ND	0.0200									
											- 54 -57

Original Page 51 of 61

Yakima EWC

Work Order: 1707301

Project:


QC SUMMARY REPORT

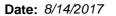
CLIENT: Shannon & Wilson

Volatile Organic Compounds by EPA Method 8260C

Sample ID MB-17817	SampType: MBLK			Units: mg/Kg		Prep Da	te: 8/3/20	17	RunNo: 37 8	828	
Client ID: MBLKS	Batch ID: 17817					Analysis Da	te: 8/3/20	17	SeqNo: 72	7045	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
trans-1,3-Dichloropropylene	ND	0.0200									
1,1,2-Trichloroethane	ND	0.0200									
1,3-Dichloropropane	ND	0.0250									
Tetrachloroethene (PCE)	ND	0.0250									
Dibromochloromethane	ND	0.0250									
1,2-Dibromoethane (EDB)	ND	0.00500									
Chlorobenzene	ND	0.0250									
1,1,1,2-Tetrachloroethane	ND	0.0250									
Ethylbenzene	ND	0.0250									
m,p-Xylene	ND	0.0500									
o-Xylene	ND	0.0250									
Styrene	ND	0.0250									
Isopropylbenzene	ND	0.0250									
Bromoform	ND	0.0500									
1,1,2,2-Tetrachloroethane	ND	0.0200									
n-Propylbenzene	ND	0.0250									
Bromobenzene	ND	0.0200									
1,3,5-Trimethylbenzene	ND	0.0250									
2-Chlorotoluene	ND	0.0250									
4-Chlorotoluene	ND	0.0250									
tert-Butylbenzene	ND	0.0250									
1,2,3-Trichloropropane	ND	0.0250									
1,2,4-Trichlorobenzene	ND	0.0250									
sec-Butylbenzene	ND	0.0500									
4-Isopropyltoluene	ND	0.0500									
1,3-Dichlorobenzene	ND	0.0200									
1,4-Dichlorobenzene	ND	0.0200									
n-Butylbenzene	ND	0.0250									
1,2-Dichlorobenzene	ND	0.0200									
1,2-Dibromo-3-chloropropane	ND	0.500									
1,2,4-Trimethylbenzene	ND	0.0200									

Original Page 52 of 61

QC SUMMARY REPORT


CLIENT: Shannon & Wilson Project: Yakima EWC

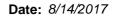
Volatile Organic Compounds by EPA Method 8260C

Sample ID MB-17817	SampType: MBLK			Units: mg/Kg		Prep Dat	te: 8/3/20 1	17	RunNo: 378	828	
Client ID: MBLKS	Batch ID: 17817					Analysis Da	te: 8/3/20 1	17	SeqNo: 72	7045	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Hexachlorobutadiene	ND	0.0500									
Naphthalene	ND	0.0500									
1,2,3-Trichlorobenzene	ND	0.0200									
Surr: Dibromofluoromethane	1.20		1.250		96.1	56.5	129				
Surr: Toluene-d8	1.27		1.250		102	64.5	151				
Surr: 1-Bromo-4-fluorobenzene	1.14		1.250		91.6	63.1	141				

Sample ID 1708016-026AMS	SampType: MS			Units: mg/l	Kg-dry	Prep Da	te: 8/3/201	7	RunNo: 378	328	
Client ID: BATCH	Batch ID: 17817					Analysis Da	te: 8/4/201	7	SeqNo: 72	7038	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	1.96	0.0245	1.227	0	160	43.5	121				S
Chloromethane	1.49	0.0614	1.227	0	121	45	130				
Vinyl chloride	1.50	0.0307	1.227	0	122	51.2	146				
Bromomethane	0.339	0.0614	1.227	0	27.6	21.3	120				
Trichlorofluoromethane (CFC-11)	0.606	0.0245	1.227	0	49.3	35	131				
Chloroethane	0.479	0.0614	1.227	0	39.0	31.9	123				
1,1-Dichloroethene	1.38	0.0245	1.227	0	113	61.9	141				
Methylene chloride	1.36	0.0245	1.227	0	111	54.7	142				
trans-1,2-Dichloroethene	1.35	0.0245	1.227	0	110	52	136				
Methyl tert-butyl ether (MTBE)	1.09	0.0614	1.227	0	88.7	54.4	132				
1,1-Dichloroethane	1.33	0.0245	1.227	0	108	51.8	141				
2,2-Dichloropropane	0.746	0.123	1.227	0	60.8	36	123				
cis-1,2-Dichloroethene	1.33	0.0245	1.227	0	108	58.6	136				
Chloroform	1.29	0.0245	1.227	0	105	53.2	129				
1,1,1-Trichloroethane (TCA)	1.22	0.0307	1.227	0	99.6	58.3	145				
1,1-Dichloropropene	1.44	0.0245	1.227	0	118	55.1	138				
Carbon tetrachloride	1.23	0.0307	1.227	0	100	53.3	144				
1,2-Dichloroethane (EDC)	1.25	0.0245	1.227	0	102	51.3	139				
Benzene	1.38	0.0245	1.227	0	113	63.5	133				

Original Page 53 of 61

Project:


QC SUMMARY REPORT

CLIENT: Shannon & Wilson Yakima EWC

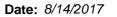
Volatile Organic Compounds by EPA Method 8260C

Sample ID 1708016-026AMS	SampType: MS			Units: mg/	Kg-dry	Prep Da	te: 8/3/20 1	17	RunNo: 37	328	
Client ID: BATCH	Batch ID: 17817					Analysis Da	te: 8/4/20 1	17	SeqNo: 72	7038	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Trichloroethene (TCE)	1.37	0.0245	1.227	0	111	68.6	132				
1,2-Dichloropropane	1.25	0.0245	1.227	0	101	59	136				
Bromodichloromethane	1.06	0.0245	1.227	0	86.2	50.7	141				
Dibromomethane	1.16	0.0245	1.227	0	94.3	50.6	137				
cis-1,3-Dichloropropene	0.950	0.0245	1.227	0	77.4	50.4	138				
Toluene	1.44	0.0245	1.227	0	117	63.4	132				
trans-1,3-Dichloropropylene	1.04	0.0245	1.227	0	84.6	44.1	147				
1,1,2-Trichloroethane	1.22	0.0245	1.227	0	99.2	51.6	137				
1,3-Dichloropropane	1.28	0.0307	1.227	0	104	53.1	134				
Tetrachloroethene (PCE)	1.58	0.0307	1.227	0.1214	119	35.6	158				
Dibromochloromethane	0.940	0.0307	1.227	0	76.6	55.3	140				
1,2-Dibromoethane (EDB)	1.16	0.00614	1.227	0	94.4	50.4	136				
Chlorobenzene	1.35	0.0307	1.227	0	110	60	133				
1,1,1,2-Tetrachloroethane	1.10	0.0307	1.227	0	89.8	53.1	142				
Ethylbenzene	1.43	0.0307	1.227	0	116	54.5	134				
m,p-Xylene	2.82	0.0614	2.455	0	115	53.1	132				
o-Xylene	1.38	0.0307	1.227	0	112	53.3	139				
Styrene	1.35	0.0307	1.227	0	110	51.1	132				
Isopropylbenzene	1.45	0.0307	1.227	0	118	58.9	138				
Bromoform	0.836	0.0614	1.227	0	68.1	57.9	130				
1,1,2,2-Tetrachloroethane	1.10	0.0245	1.227	0	89.4	51.9	131				
n-Propylbenzene	1.51	0.0307	1.227	0	123	53.6	140				
Bromobenzene	1.27	0.0245	1.227	0	104	54.2	140				
1,3,5-Trimethylbenzene	1.40	0.0307	1.227	0	114	51.8	136				
2-Chlorotoluene	1.38	0.0307	1.227	0	112	51.6	136				
4-Chlorotoluene	1.37	0.0307	1.227	0	111	50.1	139				
tert-Butylbenzene	1.43	0.0307	1.227	0	116	50.5	135				
1,2,3-Trichloropropane	1.07	0.0307	1.227	0	87.0	50.5	131				
1,2,4-Trichlorobenzene	1.27	0.0307	1.227	0	103	50.8	130				
sec-Butylbenzene	1.48	0.0614	1.227	0	121	52.6	141				
4-Isopropyltoluene	1.35	0.0614	1.227	0	110	52.9	134				

Page 54 of 61 Original

Project:

QC SUMMARY REPORT

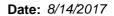

CLIENT: Shannon & Wilson Yakima EWC

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1708016-026AMS	SampType: MS			Units: mg/	Kg-dry	Prep Dat	te: 8/3/201	7	RunNo: 378	328	
Client ID: BATCH	Batch ID: 17817					Analysis Dat	te: 8/4/201	7	SeqNo: 727	7038	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,3-Dichlorobenzene	1.36	0.0245	1.227	0	110	52.6	131				
1,4-Dichlorobenzene	1.35	0.0245	1.227	0	110	52.9	129				
n-Butylbenzene	1.44	0.0307	1.227	0	117	52.6	130				
1,2-Dichlorobenzene	1.30	0.0245	1.227	0	106	55.8	129				
1,2-Dibromo-3-chloropropane	0.791	0.614	1.227	0	64.4	40.5	131				
1,2,4-Trimethylbenzene	1.36	0.0245	1.227	0	111	50.6	137				
Hexachlorobutadiene	1.47	0.0614	1.227	0	120	40.6	158				
Naphthalene	1.25	0.0614	1.227	0	102	52.3	124				
1,2,3-Trichlorobenzene	1.25	0.0245	1.227	0	102	54.4	124				
Surr: Dibromofluoromethane	1.48		1.534		96.6	56.5	129				
Surr: Toluene-d8	1.59		1.534		104	64.5	151				
Surr: 1-Bromo-4-fluorobenzene	1.56		1.534		102	63.1	141				

Sample ID 1708016-026AMSD	SampType:	MSD			Units: mg	/Kg-dry	Prep Dat	e: 8/3/20 1	7	RunNo: 378	328	
Client ID: BATCH	Batch ID:	17817					Analysis Dat	e: 8/4/20 1	7	SeqNo: 727	7039	
Analyte	R	tesult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)		1.85	0.0245	1.227	0	151	43.5	121	1.958	5.57	30	S
Chloromethane		1.54	0.0614	1.227	0	126	45	130	1.489	3.50	30	
Vinyl chloride		1.48	0.0307	1.227	0	120	51.2	146	1.497	1.23	30	
Bromomethane	C	0.338	0.0614	1.227	0	27.5	21.3	120	0.3385	0.136	30	
Trichlorofluoromethane (CFC-11)	C).561	0.0245	1.227	0	45.7	35	131	0.6055	7.68	30	
Chloroethane	C).449	0.0614	1.227	0	36.6	31.9	123	0.4786	6.44	30	
1,1-Dichloroethene		1.40	0.0245	1.227	0	114	61.9	141	1.381	1.02	30	
Methylene chloride		1.32	0.0245	1.227	0	108	54.7	142	1.363	2.96	30	
trans-1,2-Dichloroethene		1.33	0.0245	1.227	0	109	52	136	1.354	1.48	30	
Methyl tert-butyl ether (MTBE)		1.13	0.0614	1.227	0	92.0	54.4	132	1.088	3.67	30	
1,1-Dichloroethane		1.31	0.0245	1.227	0	107	51.8	141	1.326	1.11	30	
2,2-Dichloropropane	C).751	0.123	1.227	0	61.2	36	123	0.7462	0.672	30	
cis-1,2-Dichloroethene		1.31	0.0245	1.227	0	107	58.6	136	1.329	1.62	30	

Page 55 of 61 Original


QC SUMMARY REPORT

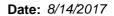
CLIENT: Shannon & Wilson Project: Yakima EWC

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1708016-026AMSD	SampType: MSD			Units: mg/	Kg-dry	Prep Da	te: 8/3/20 1	7	RunNo: 37	828	
Client ID: BATCH	Batch ID: 17817					Analysis Da	te: 8/4/20 1	7	SeqNo: 72	7039	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloroform	1.27	0.0245	1.227	0	103	53.2	129	1.290	1.60	30	
1,1,1-Trichloroethane (TCA)	1.22	0.0307	1.227	0	99.0	58.3	145	1.223	0.608	30	
1,1-Dichloropropene	1.40	0.0245	1.227	0	114	55.1	138	1.444	3.20	30	
Carbon tetrachloride	1.19	0.0307	1.227	0	96.9	53.3	144	1.231	3.50	30	
1,2-Dichloroethane (EDC)	1.23	0.0245	1.227	0	100	51.3	139	1.252	1.69	30	
Benzene	1.34	0.0245	1.227	0	109	63.5	133	1.384	2.96	30	
Trichloroethene (TCE)	1.32	0.0245	1.227	0	107	68.6	132	1.367	3.86	30	
1,2-Dichloropropane	1.23	0.0245	1.227	0	100	59	136	1.245	1.09	30	
Bromodichloromethane	1.05	0.0245	1.227	0	85.4	50.7	141	1.058	0.960	30	
Dibromomethane	1.13	0.0245	1.227	0	92.0	50.6	137	1.158	2.48	30	
cis-1,3-Dichloropropene	0.958	0.0245	1.227	0	78.0	50.4	138	0.9505	0.761	30	
Toluene	1.40	0.0245	1.227	0	114	63.4	132	1.440	3.08	30	
trans-1,3-Dichloropropylene	1.05	0.0245	1.227	0	85.8	44.1	147	1.038	1.42	30	
1,1,2-Trichloroethane	1.20	0.0245	1.227	0	97.5	51.6	137	1.218	1.69	30	
1,3-Dichloropropane	1.26	0.0307	1.227	0	103	53.1	134	1.277	1.24	30	
Tetrachloroethene (PCE)	1.52	0.0307	1.227	0.1214	114	35.6	158	1.578	3.97	30	
Dibromochloromethane	0.934	0.0307	1.227	0	76.1	55.3	140	0.9399	0.661	30	
1,2-Dibromoethane (EDB)	1.15	0.00614	1.227	0	93.8	50.4	136	1.159	0.673	30	
Chlorobenzene	1.32	0.0307	1.227	0	108	60	133	1.348	2.11	30	
1,1,1,2-Tetrachloroethane	1.09	0.0307	1.227	0	88.8	53.1	142	1.102	1.09	30	
Ethylbenzene	1.39	0.0307	1.227	0	113	54.5	134	1.429	2.57	30	
m,p-Xylene	2.73	0.0614	2.455	0	111	53.1	132	2.822	3.24	30	
o-Xylene	1.35	0.0307	1.227	0	110	53.3	139	1.378	1.76	30	
Styrene	1.33	0.0307	1.227	0	108	51.1	132	1.349	1.55	30	
Isopropylbenzene	1.41	0.0307	1.227	0	115	58.9	138	1.454	2.83	30	
Bromoform	0.829	0.0614	1.227	0	67.6	57.9	130	0.8357	0.751	30	
1,1,2,2-Tetrachloroethane	1.10	0.0245	1.227	0	89.6	51.9	131	1.097	0.256	30	
n-Propylbenzene	1.45	0.0307	1.227	0	119	53.6	140	1.508	3.61	30	
Bromobenzene	1.25	0.0245	1.227	0	102	54.2	140	1.272	2.02	30	
1,3,5-Trimethylbenzene	1.36	0.0307	1.227	0	111	51.8	136	1.400	2.75	30	
2-Chlorotoluene	1.34	0.0307	1.227	0	109	51.6	136	1.379	2.79	30	

Original Page 56 of 61

QC SUMMARY REPORT


CLIENT: Shannon & Wilson
Project: Yakima FWC

Volatile Organic Compounds by EPA Method 8260C

Project: Yakıma EWO	<u> </u>						- J		,		
Sample ID 1708016-026AMSD	SampType: MSD			Units: mg/l	Kg-dry	Prep Date	8/3/201	7	RunNo: 37 8	328	
Client ID: BATCH	Batch ID: 17817					Analysis Date	8/4/201	7	SeqNo: 727	7039	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
4-Chlorotoluene	1.34	0.0307	1.227	0	109	50.1	139	1.367	2.13	30	
tert-Butylbenzene	1.39	0.0307	1.227	0	113	50.5	135	1.429	3.15	30	
1,2,3-Trichloropropane	1.05	0.0307	1.227	0	85.8	50.5	131	1.068	1.33	30	
1,2,4-Trichlorobenzene	1.31	0.0307	1.227	0	107	50.8	130	1.268	3.43	30	
sec-Butylbenzene	1.43	0.0614	1.227	0	116	52.6	141	1.483	3.83	30	
4-Isopropyltoluene	1.31	0.0614	1.227	0	106	52.9	134	1.347	3.12	30	
1,3-Dichlorobenzene	1.35	0.0245	1.227	0	110	52.6	131	1.356	0.732	30	
1,4-Dichlorobenzene	1.34	0.0245	1.227	0	109	52.9	129	1.351	1.14	30	
n-Butylbenzene	1.41	0.0307	1.227	0	115	52.6	130	1.441	1.84	30	
1,2-Dichlorobenzene	1.30	0.0245	1.227	0	106	55.8	129	1.302	0.129	30	
1,2-Dibromo-3-chloropropane	0.831	0.614	1.227	0	67.7	40.5	131	0.7908	4.92	30	
1,2,4-Trimethylbenzene	1.32	0.0245	1.227	0	107	50.6	137	1.358	3.03	30	
Hexachlorobutadiene	1.48	0.0614	1.227	0	120	40.6	158	1.474	0.228	30	
Naphthalene	1.35	0.0614	1.227	0	110	52.3	124	1.252	7.77	30	
1,2,3-Trichlorobenzene	1.29	0.0245	1.227	0	105	54.4	124	1.253	2.79	30	
Surr: Dibromofluoromethane	1.49		1.534		97.0	56.5	129		0		
Surr: Toluene-d8	1.58		1.534		103	64.5	151		0		
Surr: 1-Bromo-4-fluorobenzene	1.56		1.534		102	63.1	141		0		
Sample ID 1707301-002BDUP	SampType: DUP			Units: mg/l	Kg-dry	Prep Date	: 8/3/201	7	RunNo: 378	328	
Client ID: ES-2	Batch ID: 17817					Analysis Date	8/4/201	7	SeqNo: 727	7024	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual

Sample ID 1707301-002BDUP	SampType: DUP			Units: mg/l	Kg-dry	Prep Da	te: 8/3/20 1	17	RunNo: 378	328	
Client ID: ES-2	Batch ID: 17817					Analysis Da	te: 8/4/20 1	17	SeqNo: 727	7024	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	0.0175						0		30	
Chloromethane	ND	0.0436						0		30	
Vinyl chloride	ND	0.0218						0		30	
Bromomethane	ND	0.0436						0		30	
Trichlorofluoromethane (CFC-11)	ND	0.0175						0		30	
Chloroethane	ND	0.0436						0		30	
1,1-Dichloroethene	ND	0.0175						0		30	

Original Page 57 of 61

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson Yakima EWC

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1707301-002BDUP	SampType: DUP			Units: mg/l	Kg-dry	Prep Dat	e: 8/3/20 1	17	RunNo: 378	328	
Client ID: ES-2	Batch ID: 17817					Analysis Dat	e: 8/4/20 1	17	SeqNo: 727	7024	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methylene chloride	ND	0.0175						0		30	
trans-1,2-Dichloroethene	ND	0.0175						0		30	
Methyl tert-butyl ether (MTBE)	ND	0.0436						0		30	
1,1-Dichloroethane	ND	0.0175						0		30	
2,2-Dichloropropane	ND	0.0873						0		30	Q
cis-1,2-Dichloroethene	ND	0.0175						0		30	
Chloroform	ND	0.0175						0		30	
1,1,1-Trichloroethane (TCA)	ND	0.0218						0		30	
1,1-Dichloropropene	ND	0.0175						0		30	
Carbon tetrachloride	ND	0.0218						0		30	
1,2-Dichloroethane (EDC)	ND	0.0175						0		30	
Benzene	ND	0.0175						0		30	
Trichloroethene (TCE)	ND	0.0175						0		30	
1,2-Dichloropropane	ND	0.0175						0		30	
Bromodichloromethane	ND	0.0175						0		30	
Dibromomethane	ND	0.0175						0		30	
cis-1,3-Dichloropropene	ND	0.0175						0		30	
Toluene	ND	0.0175						0		30	
trans-1,3-Dichloropropylene	ND	0.0175						0		30	
1,1,2-Trichloroethane	ND	0.0175						0		30	
1,3-Dichloropropane	ND	0.0218						0		30	
Tetrachloroethene (PCE)	ND	0.0218						0		30	
Dibromochloromethane	ND	0.0218						0		30	
1,2-Dibromoethane (EDB)	ND	0.00436						0		30	
Chlorobenzene	ND	0.0218						0		30	
1,1,1,2-Tetrachloroethane	ND	0.0218						0		30	
Ethylbenzene	ND	0.0218						0		30	
m,p-Xylene	ND	0.0436						0		30	
o-Xylene	ND	0.0218						0		30	
Styrene	ND	0.0218						0		30	
Isopropylbenzene	ND	0.0218						0		30	

Page 58 of 61 Original

Date: 8/14/2017

Work Order: 1707301

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson Yakima EWC

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1707301-002BDUP	SampType: DUP			Units: mg/h	(g-dry	Prep Da	te: 8/3/20	17	RunNo: 378	328	
Client ID: ES-2	Batch ID: 17817					Analysis Da	te: 8/4/20	17	SeqNo: 727	7024	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bromoform	ND	0.0436						0		30	
1,1,2,2-Tetrachloroethane	ND	0.0175						0		30	
n-Propylbenzene	ND	0.0218						0		30	
Bromobenzene	ND	0.0175						0		30	
1,3,5-Trimethylbenzene	ND	0.0218						0		30	
2-Chlorotoluene	ND	0.0218						0		30	
4-Chlorotoluene	ND	0.0218						0		30	
tert-Butylbenzene	ND	0.0218						0		30	
1,2,3-Trichloropropane	ND	0.0218						0		30	
1,2,4-Trichlorobenzene	ND	0.0218						0		30	
sec-Butylbenzene	ND	0.0436						0		30	
4-Isopropyltoluene	ND	0.0436						0		30	
1,3-Dichlorobenzene	ND	0.0175						0		30	
1,4-Dichlorobenzene	ND	0.0175						0		30	
n-Butylbenzene	ND	0.0218						0		30	
1,2-Dichlorobenzene	ND	0.0175						0		30	
1,2-Dibromo-3-chloropropane	ND	0.436						0		30	
1,2,4-Trimethylbenzene	ND	0.0175						0		30	
Hexachlorobutadiene	ND	0.0436						0		30	
Naphthalene	ND	0.0436						0		30	
1,2,3-Trichlorobenzene	ND	0.0175						0		30	
Surr: Dibromofluoromethane	0.952		1.091		87.3	56.5	129		0		
Surr: Toluene-d8	1.13		1.091		103	64.5	151		0		
Surr: 1-Bromo-4-fluorobenzene	0.973		1.091		89.2	63.1	141		0		

Page 59 of 61 Original

Sample Log-In Check List

C	lient Name: SW		Work Order Numb	er: 1707301	
Lo	ogged by: Erica Silv	a	Date Received:	7/31/2017 8	8:39:00 AM
<u>Cha</u>	nin of Custody				
1.	Is Chain of Custody com	plete?	Yes 🗹	No 🗌	Not Present
2.	How was the sample del	ivered?	<u>FedEx</u>		
Log	ı İn				
_	Coolers are present?		Yes 🗹	No 🗆	NA 🗆
4.	Shipping container/coole	er in good condition?	Yes 🗸	No \square	
5.	Custody Seals present of (Refer to comments for C	on shipping container/cooler? Custody Seals not intact)	Yes	No 🗹	Not Required
6.	Was an attempt made to	cool the samples?	Yes	No 🗸	NA \square
		<u>u</u>	Jnknown prior to re		
7.	Were all items received	at a temperature of >0°C to 10.0°C*	Yes 🗀	No 🗹	NA 📙
			se refer to Item Info		
•	Sample(s) in proper conf	, ,	Yes 🗹	No 🗆	
•	Sufficient sample volume	` ,	Yes 🗹	No 🗆	
10.	Are samples properly pro	eserved?	Yes 🗸	No 🗆	
11.	Was preservative added	to bottles?	Yes 🗹	No 🗀	NA 📙
40	La diama la calcia de la dia	- MOA vista	V 🗆	No. 🗆	MeOH NA ✓
	Is there headspace in the		Yes U	No ∟ No ✓	NA 💌
_		ers arrive in good condition(unbroken)?	Yes ∟ Yes ⊻		
14.	Does paperwork match i	bottie labels?	Yes 🗹	No \square	
15.	Are matrices correctly id	entified on Chain of Custody?	Yes 🗸	No \square	
16.	Is it clear what analyses	were requested?	Yes 🗸	No \square	
17.	Were all holding times a	ble to be met?	Yes 🗹	No \square	
<u>Spe</u>	cial Handling (if ap	plicable)			
18.	Was client notified of all	discrepancies with this order?	Yes 🗸	No \square	NA \square
	Person Notified:	Ben Carlson Date		7/31/2017	
	By Whom:	Erica Silva Via:	✓ eMail ☐ Pho	one 🗌 Fax 📗	In Person
	Regarding:	Sample dates/times, Metals select lists	s, Herb/Pest methods	s, lab extraction	necessary for
	Client Instructions:	See COC for edits, lab extraction for V			
10	Additional remarks:				
	Information				

Item Information

Item #	Temp °C
Cooler	21.6
Sample	22.6
Temp Blank	22.3

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

	360	00 Fremont		T		Cha	ain	of	Cı	usto	dy	Re	eco	rd	& L	ab	orato	rv S	ervi	ces	Agr	eem	ent
Frem	OIIC 3	eattle, WA Tel: 206-35		Dat				17			Pa		1	of:	4		Laborator	77.77			0-	-	
Ana	lytical	Fax: 206-35	2-7178	-					*********	E	***********						Special Ren	marks:	m	izibo	ed l	5 SK	CH
client: Shannon+ Wi	son	0.0		-						5-0							-					8-1-	
Address: 400 N 34		100	***************************************							C													
city, State, zip: Seattle,				1				_									-						
Telephone: 206 - 632										8-								0.56	-		_		13.6.33
Telephone: 200 0 32	5020			Rep	ort To	(PM):		Sria	7	Re	20	ick					Sample Dis	posal: L	Return	to client	∪ Dis	posal by lab	(after 30 day
Fax:				PM	Email:			,		,	7	_	_	,	,	_	,,	,		, ,			
Sample Name	Sample Date	Sample Time	Sample Type (Matrix)*	/3	O CENT	SEG IS	1 3	Solite Park	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		SA SE	63/63/64/84/84/84/84/84/84/84/84/84/84/84/84/84	MA (8)	of sol	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	atile of						mments	
1 ES-1	7/25/17	9:2200	5			13 14	0 14		Ť		ĺ	×	Ì	1	1		\prod	Her	6/Re	SH b			4 815
2 ES-2	7/25/17	16:30	5	X	X		3		X	X	×					K							
3 ES-3	7/26/17	16:40	S	K	K	151	W	1	Υ	×	K					×	-1-						14-
4 ES-4	7/27/17	7:45	5	K	X		ŝt.	0	X	K	K					K							
5					1		41		1	A	10				-						-		
6									1	10	5												
7									1						+	T					-		
8									1				1		+	t							
9						14		7	1	10.0				+		-							
10									1					+	+						_		
*Matrix: A = Air, AQ = Aqueous, B = Bo	ulk, O = Other, P = Pr	oduct, S=S	oil, SD = S	edime	ent, SL	= Soli	d, W	= Wate	r, DV	W = Drini	ing W	ater, (SW = G	round \	Water.	SW=	Storm Water	WW = V	Vaste Wa	ater		Turn-aroui	nd Time:
**Metals (Circle): MTCA-5 RCRA-																	b Se Sr Sn				\dashv		
Anions (Circle): Nitrate Nit	rite Chloride	Sulfate	Bromid			ospha		Fluor			ate+Ni	************************************									- 1	X Standa	rd
I represent that I am authorize each of the terms on the front	ed to enter into th	is Agreem	ent with	Frei	nont A	Analy	ytical	l on be	half	f of the	Clie	nt nan	ned al	bove a	nd th	at I l	ave verifie	d Clien	it's agr	eement	to	3 Day	
Relinquished	Date/Time	11 15 12 - 11		:35	200		Receiv	red		>		_	-	Dat	te/Time	ומ	1 10	339			77	2 Day	av
Relinquished x	Date/Time	e)	Receiv	ed						Dat	te/Time		1 03	101		anamail.		ame Day	(specify)

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Shannon & Wilson Brian Reznick 400 N. 34th Street, Suite 100 Seattle, WA 98103

RE: Yakima EWC

Work Order Number: 1708051

August 14, 2017

Attention Brian Reznick:

Fremont Analytical, Inc. received 4 sample(s) on 8/4/2017 for the analyses presented in the following report.

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Gasoline by NWTPH-Gx

Herbicides by EPA Method 8151A

Mercury by EPA Method 7471

Organochlorine Pesticides by EPA Method 8081

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Polychlorinated Biphenyls (PCB) by EPA 8082

Sample Moisture (Percent Moisture)

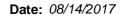
Total Metals by EPA Method 6020

Volatile Organic Compounds by EPA Method 8260C

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.


Thank you for using Fremont Analytical.

I dul c. Redy

Sincerely,

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized) Mike Ridgeway Laboratory Director

DoD/ELAP Certification #L17-135, ISO/IEC 17025:2005 ORELAP Certification: WA 100009-007 (NELAP Recognized)

CLIENT: Shannon & Wilson Work Order Sample Summary

Project: Yakima EWC Work Order: 1708051

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
1708051-001	ES-5	08/03/2017 3:56 AM	08/04/2017 1:15 PM
1708051-002	ES-6	08/03/2017 5:08 AM	08/04/2017 1:15 PM
1708051-003	ES-7	08/03/2017 5:25 AM	08/04/2017 1:15 PM
1708051-004	ES-8	08/03/2017 7:47 AM	08/04/2017 1:15 PM

Case Narrative

WO#: **1708051**Date: **8/14/2017**

CLIENT: Shannon & Wilson Project: Yakima EWC

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Prep Comments for METHOD (PREP-PCB-S), SAMPLE (1708051-002A) required Acid Cleanup Procedure (Using Method No 3665A).

Prep Comments for METHOD (PREP-PCB-S), SAMPLE (1708051-003A) required Acid Cleanup Procedure (Using Method No 3665A).

Prep Comments for METHOD (PREP-PCB-S), SAMPLE (1708051-004A) required Acid Cleanup Procedure (Using Method No 3665A).

Prep Comments for METHOD (PREP-PCB-S), SAMPLE (1708051-002A) required Florisil Cleanup Procedure (Using Method No 3620C).

Prep Comments for METHOD (PREP-PCB-S), SAMPLE (1708051-003A) required Florisil Cleanup Procedure (Using Method No 3620C).

Prep Comments for METHOD (PREP-PCB-S), SAMPLE (1708051-004A) required Florisil Cleanup Procedure (Using Method No 3620C).

Qualifiers & Acronyms

WO#: 1708051

Date Reported: 8/14/2017

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria (<20%RSD, <20% Drift or minimum RRF)
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Work Order: **1708051**Date Reported: **8/14/2017**

Client: Shannon & Wilson Collection Date: 8/3/2017 3:56:00 AM

Project: Yakima EWC

Lab ID: 1708051-001 **Matrix:** Soil

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Organochlorine Pesticides by	EPA Method 80	<u>81</u>		Batch	ı ID:	17824 Analyst: SG
Toxaphene	ND	0.106		mg/Kg-dry	1	8/7/2017 8:34:39 PM
Alpha BHC	ND	0.0106		mg/Kg-dry	1	8/7/2017 8:34:39 PM
Beta BHC	ND	0.0106		mg/Kg-dry	1	8/7/2017 8:34:39 PM
Gamma BHC (Lindane)	ND	0.0106		mg/Kg-dry	1	8/7/2017 8:34:39 PM
Delta BHC	ND	0.0106		mg/Kg-dry	1	8/7/2017 8:34:39 PM
Heptachlor	ND	0.0106		mg/Kg-dry	1	8/7/2017 8:34:39 PM
Aldrin	ND	0.0106		mg/Kg-dry	1	8/7/2017 8:34:39 PM
Heptachlor epoxide	ND	0.0106		mg/Kg-dry	1	8/7/2017 8:34:39 PM
gamma-Chlordane	ND	0.0106		mg/Kg-dry	1	8/7/2017 8:34:39 PM
Endosulfan I	ND	0.0106		mg/Kg-dry	1	8/7/2017 8:34:39 PM
alpha-Chlordane	ND	0.0106		mg/Kg-dry	1	8/7/2017 8:34:39 PM
Dieldrin	ND	0.0106		mg/Kg-dry	1	8/7/2017 8:34:39 PM
4,4´-DDE	ND	0.0106		mg/Kg-dry	1	8/7/2017 8:34:39 PM
Endrin	ND	0.0106		mg/Kg-dry	1	8/7/2017 8:34:39 PM
Endosulfan II	ND	0.0106		mg/Kg-dry	1	8/7/2017 8:34:39 PM
4,4´-DDD	ND	0.0106		mg/Kg-dry	1	8/7/2017 8:34:39 PM
Endrin aldehyde	ND	0.0106		mg/Kg-dry	1	8/7/2017 8:34:39 PM
Endosulfan sulfate	ND	0.0106		mg/Kg-dry	1	8/7/2017 8:34:39 PM
4,4´-DDT	ND	0.0106		mg/Kg-dry	1	8/7/2017 8:34:39 PM
Endrin ketone	ND	0.0106		mg/Kg-dry	1	8/7/2017 8:34:39 PM
Methoxychlor	ND	0.0106		mg/Kg-dry	1	8/7/2017 8:34:39 PM
Surr: Decachlorobiphenyl	93.8	17.8 - 157		%Rec	1	8/7/2017 8:34:39 PM
Surr: Tetrachloro-m-xylene	97.1	11 - 150		%Rec	1	8/7/2017 8:34:39 PM
Herbicides by EPA Method 815	51A			Batch	ı ID:	17825 Analyst: BT
Dicamba	ND	36.1		μg/Kg-dry	1	8/10/2017 3:58:30 AM
2,4-D	ND	30.9		μg/Kg-dry	1	8/10/2017 3:58:30 AM
2,4-DP	ND	25.8		μg/Kg-dry	1	8/10/2017 3:58:30 AM
2,4,5-TP (Silvex)	ND	20.6		μg/Kg-dry	1	8/10/2017 3:58:30 AM
2,4,5-T	ND	51.6		μg/Kg-dry	1	8/10/2017 3:58:30 AM
Dinoseb	ND	30.9		μg/Kg-dry	1	8/10/2017 3:58:30 AM
Dalapon	ND	206		μg/Kg-dry	1	8/10/2017 3:58:30 AM
2,4-DB	ND	25.8		μg/Kg-dry	1	8/10/2017 3:58:30 AM
MCPP	ND	4,540		μg/Kg-dry	1	8/10/2017 3:58:30 AM
MCPA	ND	2,890		μg/Kg-dry	1	8/10/2017 3:58:30 AM
Picloram	ND	51.6		μg/Kg-dry	1	8/10/2017 3:58:30 AM
Bentazon	ND	36.1		μg/Kg-dry	1	8/10/2017 3:58:30 AM
Chloramben	ND	20.6		μg/Kg-dry	1	8/10/2017 3:58:30 AM

Work Order: **1708051**Date Reported: **8/14/2017**

Client: Shannon & Wilson Collection Date: 8/3/2017 3:56:00 AM

Project: Yakima EWC

Lab ID: 1708051-001 **Matrix:** Soil

Analyses	Result	RL	Qual	Units DF		Da	te Analyzed
Herbicides by EPA Method 8151A				Batch	ID:	17825	Analyst: BT
Acifluorfen	ND	82.5		μg/Kg-dry	1	8/10/	2017 3:58:30 AM
3,5-Dichlorobenzoic acid	ND	41.3		μg/Kg-dry	1	8/10/	2017 3:58:30 AM
4-Nitrophenol	ND	30.9		μg/Kg-dry	1	8/10/	2017 3:58:30 AM
Dacthal (DCPA)	ND	30.9		μg/Kg-dry	1	8/10/	2017 3:58:30 AM
Surr: 2,4-Dichlorophenylacetic acid	57.0	20.1 - 168		%Rec	1	8/10/	2017 3:58:30 AM
Mercury by EPA Method 7471				Batch	ID:	17871	Analyst: WF
Mercury	ND	0.251		mg/Kg-dry	1	8/10/	2017 4:58:50 PM
Total Metals by EPA Method 6020				Batch	ID:	17834	Analyst: TN
Arsenic	4.19	0.0852		mg/Kg-dry	1	8/9/2	017 12:44:36 PM
Barium	162	0.426		mg/Kg-dry	1	8/9/2	017 12:44:36 PM
Cadmium	0.175	0.170		mg/Kg-dry	1	8/9/2	017 12:44:36 PM
Chromium	36.7	0.0852		mg/Kg-dry	1	8/9/2	017 12:44:36 PM
Copper	48.8	0.170		mg/Kg-dry	1	8/9/2	017 12:44:36 PM
Lead	7.10	0.170		mg/Kg-dry	1	8/9/2	017 12:44:36 PM
Nickel	69.1	0.0852		mg/Kg-dry	1	8/9/2	017 12:44:36 PM
Selenium	2.16	0.426		mg/Kg-dry	1	8/9/2	017 12:44:36 PM
Silver	ND	0.0813		mg/Kg-dry	1	8/10/	2017 2:27:32 PM
Zinc	82.7	0.341		mg/Kg-dry	1	8/9/2	017 12:44:36 PM
Sample Moisture (Percent Moistu	re)			Batch	ID:	R37834	Analyst: BB
Percent Moisture	6.06			wt%	1	8/7/2	017 9:08:52 AM

Work Order: **1708051**Date Reported: **8/14/2017**

Client: Shannon & Wilson Collection Date: 8/3/2017 5:08:00 AM

Project: Yakima EWC

Lab ID: 1708051-002 **Matrix:** Soil

nalyses	Result	RL	Qual	Units	DF	Date Analyzed
Polychlorinated Biphenyls (PCB)	by EPA 8082	2		Batch	ID:	17861 Analyst: S
Aroclor 1016	ND	0.295		mg/Kg-dry	1	8/9/2017 5:54:14 Pľ
Aroclor 1221	ND	0.295		mg/Kg-dry	1	8/9/2017 5:54:14 PM
Aroclor 1232	ND	0.295		mg/Kg-dry	1	8/9/2017 5:54:14 PM
Aroclor 1242	ND	0.295		mg/Kg-dry	1	8/9/2017 5:54:14 PM
Aroclor 1248	ND	0.295		mg/Kg-dry	1	8/9/2017 5:54:14 PM
Aroclor 1254	ND	0.295		mg/Kg-dry	1	8/9/2017 5:54:14 PM
Aroclor 1260	ND	0.295		mg/Kg-dry	1	8/9/2017 5:54:14 PM
Aroclor 1262	ND	0.295		mg/Kg-dry	1	8/9/2017 5:54:14 PM
Aroclor 1268	ND	0.295		mg/Kg-dry	1	8/9/2017 5:54:14 PM
Total PCBs	ND	0.295		mg/Kg-dry	1	8/9/2017 5:54:14 PM
Surr: Decachlorobiphenyl	94.1	30.8 - 168		%Rec	1	8/9/2017 5:54:14 PM
Surr: Tetrachloro-m-xylene	67.3	30.3 - 157		%Rec	1	8/9/2017 5:54:14 PM
Diesel and Heavy Oil by NWTPH-	Dx/Dx Ext.			Batch	ID:	17826 Analyst: S
Diesel (Fuel Oil)	ND	19.2		mg/Kg-dry	1	8/5/2017 3:35:13 Al
Heavy Oil	ND	48.1		mg/Kg-dry	1	8/5/2017 3:35:13 Al
Heavy Oil Range Organics (C24-37)	495	48.1		mg/Kg-dry	1	8/5/2017 3:35:13 Al
Surr: 2-Fluorobiphenyl	114	50 - 150		%Rec	1	8/5/2017 3:35:13 Al
Surr: o-Terphenyl	117	50 - 150		%Rec	1	8/5/2017 3:35:13 Al
NOTES:						
Heavy Oil Range Organics - Indicates the	e presence of unr	esolved compo	unds in the	Lube+ Oil ran	iges.	
Polyaromatic Hydrocarbons by E	PA Method 8	3270 (SIM)		Batch	ID:	17832 Analyst: B
Naphthalene	ND	119		μg/Kg-dry	1	8/7/2017 3:46:33 PI
2-Methylnaphthalene	ND	119		μg/Kg-dry	1	8/7/2017 3:46:33 PM
=						8/7/2017 3:46:33 PM
1-Methylnaphthalene	ND	119		μg/Kg-dry	1	0/1/2017 3.40.3311
	ND ND	119 119		μg/Kg-dry μg/Kg-dry	1 1	8/7/2017 3:46:33 PI
1-Methylnaphthalene						
1-Methylnaphthalene Acenaphthylene	ND	119		μg/Kg-dry	1	8/7/2017 3:46:33 PM
1-Methylnaphthalene Acenaphthylene Acenaphthene	ND ND	119 119		μg/Kg-dry μg/Kg-dry μg/Kg-dry	1 1	8/7/2017 3:46:33 Pt 8/7/2017 3:46:33 Pt
1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene	ND ND ND	119 119 119		μg/Kg-dry μg/Kg-dry	1 1 1	8/7/2017 3:46:33 Pt 8/7/2017 3:46:33 Pt 8/7/2017 3:46:33 Pt
1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene	ND ND ND ND	119 119 119 119		μg/Kg-dry μg/Kg-dry μg/Kg-dry μg/Kg-dry	1 1 1	8/7/2017 3:46:33 PI 8/7/2017 3:46:33 PI 8/7/2017 3:46:33 PI 8/7/2017 3:46:33 PI
1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	ND ND ND ND ND	119 119 119 119 119		µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry	1 1 1 1	8/7/2017 3:46:33 PI 8/7/2017 3:46:33 PI 8/7/2017 3:46:33 PI 8/7/2017 3:46:33 PI 8/7/2017 3:46:33 PI
1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	ND ND ND ND ND	119 119 119 119 119		µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry	1 1 1 1 1	8/7/2017 3:46:33 PI 8/7/2017 3:46:33 PI 8/7/2017 3:46:33 PI 8/7/2017 3:46:33 PI 8/7/2017 3:46:33 PI 8/7/2017 3:46:33 PI
1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	ND ND ND ND ND ND	119 119 119 119 119 119		µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry	1 1 1 1 1 1	8/7/2017 3:46:33 PI 8/7/2017 3:46:33 PI 8/7/2017 3:46:33 PI 8/7/2017 3:46:33 PI 8/7/2017 3:46:33 PI 8/7/2017 3:46:33 PI 8/7/2017 3:46:33 PI
1-Methylnaphthalene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene	ND ND ND ND ND ND	119 119 119 119 119 119 119		µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry µg/Kg-dry	1 1 1 1 1 1 1	8/7/2017 3:46:33 P! 8/7/2017 3:46:33 P! 8/7/2017 3:46:33 P! 8/7/2017 3:46:33 P! 8/7/2017 3:46:33 P! 8/7/2017 3:46:33 P! 8/7/2017 3:46:33 P!

Work Order: **1708051**Date Reported: **8/14/2017**

Client: Shannon & Wilson Collection Date: 8/3/2017 5:08:00 AM

Project: Yakima EWC

Lab ID: 1708051-002 **Matrix:** Soil

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by I	EPA Method 8	3270 (SIM)		Batch	ı ID:	17832 Analyst: BT
Benzo(a)pyrene	ND	119		μg/Kg-dry	1	8/7/2017 3:46:33 PM
Indeno(1,2,3-cd)pyrene	ND	119		μg/Kg-dry	1	8/7/2017 3:46:33 PM
Dibenz(a,h)anthracene	ND	119		μg/Kg-dry	1	8/7/2017 3:46:33 PM
Benzo(g,h,i)perylene	ND	119		μg/Kg-dry	1	8/7/2017 3:46:33 PM
Surr: 2-Fluorobiphenyl	80.8	24.5 - 139		%Rec	1	8/7/2017 3:46:33 PM
Surr: Terphenyl-d14 (surr)	109	46.2 - 179		%Rec	1	8/7/2017 3:46:33 PM
Gasoline by NWTPH-Gx				Batch	ID:	17870 Analyst: NG
Gasoline	ND	25.8		mg/Kg-dry	1	8/10/2017 8:25:03 PM
Surr: Toluene-d8	96.5	65 - 135		%Rec	1	8/10/2017 8:25:03 PM
Surr: 4-Bromofluorobenzene	105	65 - 135		%Rec	1	8/10/2017 8:25:03 PM
Volatile Organic Compounds by	EPA Method	8260C		Batch	ID:	17870 Analyst: NG
Dichlorodifluoromethane (CFC-12)	ND	0.103		mg/Kg-dry	1	8/10/2017 8:25:03 PM
Chloromethane	ND	0.258		mg/Kg-dry	1	8/10/2017 8:25:03 PM
Vinyl chloride	ND	0.129		mg/Kg-dry	1	8/10/2017 8:25:03 PM
Bromomethane	ND	0.258		mg/Kg-dry	1	8/10/2017 8:25:03 PM
Trichlorofluoromethane (CFC-11)	ND	0.103		mg/Kg-dry	1	8/10/2017 8:25:03 PM
Chloroethane	ND	0.258		mg/Kg-dry	1	8/10/2017 8:25:03 PM
1,1-Dichloroethene	ND	0.103		mg/Kg-dry	1	8/10/2017 8:25:03 PM
Methylene chloride	ND	0.103		mg/Kg-dry	1	8/10/2017 8:25:03 PM
trans-1,2-Dichloroethene	ND	0.103		mg/Kg-dry	1	8/10/2017 8:25:03 PM
Methyl tert-butyl ether (MTBE)	ND	0.258		mg/Kg-dry	1	8/10/2017 8:25:03 PM
1,1-Dichloroethane	ND	0.103		mg/Kg-dry	1	8/10/2017 8:25:03 PM
2,2-Dichloropropane	ND	0.516		mg/Kg-dry	1	8/10/2017 8:25:03 PM
cis-1,2-Dichloroethene	ND	0.103		mg/Kg-dry	1	8/10/2017 8:25:03 PM
Chloroform	ND	0.103		mg/Kg-dry	1	8/10/2017 8:25:03 PM
1,1,1-Trichloroethane (TCA)	ND	0.129		mg/Kg-dry	1	8/10/2017 8:25:03 PM
1,1-Dichloropropene	ND	0.103		mg/Kg-dry	1	8/10/2017 8:25:03 PM
Carbon tetrachloride	ND	0.129		mg/Kg-dry	1	8/10/2017 8:25:03 PM
1,2-Dichloroethane (EDC)	ND	0.103		mg/Kg-dry	1	8/10/2017 8:25:03 PM
Benzene	ND	0.103		mg/Kg-dry	1	8/10/2017 8:25:03 PM
Trichloroethene (TCE)	ND	0.103		mg/Kg-dry	1	8/10/2017 8:25:03 PM
1,2-Dichloropropane	ND	0.103		mg/Kg-dry	1	8/10/2017 8:25:03 PM
Bromodichloromethane	ND	0.103		mg/Kg-dry	1	8/10/2017 8:25:03 PM
Dibromomethane	ND	0.103		mg/Kg-dry	1	8/10/2017 8:25:03 PM
cis-1,3-Dichloropropene	ND	0.103		mg/Kg-dry	1	8/10/2017 8:25:03 PM

Work Order: **1708051**Date Reported: **8/14/2017**

Client: Shannon & Wilson Collection Date: 8/3/2017 5:08:00 AM

Project: Yakima EWC

Lab ID: 1708051-002 **Matrix:** Soil

Client Sample ID: ES-6

RL Qual Units DF **Date Analyzed Analyses** Result **Volatile Organic Compounds by EPA Method 8260C** Batch ID: 17870 Analyst: NG Toluene 0.177 0.103 mg/Kg-dry 8/10/2017 8:25:03 PM 1 trans-1,3-Dichloropropylene ND 0.103 mg/Kg-dry 1 8/10/2017 8:25:03 PM ND 1,1,2-Trichloroethane 0.103 mg/Kg-dry 1 8/10/2017 8:25:03 PM 1,3-Dichloropropane ND 0.129 1 8/10/2017 8:25:03 PM mg/Kg-dry Tetrachloroethene (PCE) ND 0.129 mg/Kg-dry 1 8/10/2017 8:25:03 PM Dibromochloromethane ND 8/10/2017 8:25:03 PM 0 129 mg/Kg-dry 1 1,2-Dibromoethane (EDB) ND 0.0258 mg/Kg-dry 1 8/10/2017 8:25:03 PM ND Chlorobenzene 0.129 mg/Kg-dry 1 8/10/2017 8:25:03 PM 1,1,1,2-Tetrachloroethane ND 0.129 1 8/10/2017 8:25:03 PM mg/Kg-dry Ethylbenzene ND 8/10/2017 8:25:03 PM 0 129 1 mg/Kg-dry ND 8/10/2017 8:25:03 PM m,p-Xylene 0.258 mg/Kg-dry 1 o-Xylene ND 0.129 1 8/10/2017 8:25:03 PM mg/Kg-dry Stvrene ND 0.129 mg/Kg-dry 1 8/10/2017 8:25:03 PM Isopropylbenzene ND 0.129 mg/Kg-dry 1 8/10/2017 8:25:03 PM Bromoform ND 0.258 1 8/10/2017 8:25:03 PM mg/Kg-dry 1,1,2,2-Tetrachloroethane ND 0.103 mg/Kg-dry 1 8/10/2017 8:25:03 PM n-Propylbenzene ND 0.129 1 8/10/2017 8:25:03 PM mg/Kg-dry ND 0.103 1 8/10/2017 8:25:03 PM Bromobenzene mg/Kg-dry 1,3,5-Trimethylbenzene ND 8/10/2017 8:25:03 PM 0.129 1 mg/Kg-dry 2-Chlorotoluene NΠ 0.129 mg/Kg-dry 1 8/10/2017 8:25:03 PM ND 4-Chlorotoluene 0.129 mg/Kg-dry 1 8/10/2017 8:25:03 PM tert-Butylbenzene ND 0.129 mg/Kg-dry 1 8/10/2017 8:25:03 PM ND 1 8/10/2017 8:25:03 PM 1,2,3-Trichloropropane 0.129 mg/Kg-dry 1,2,4-Trichlorobenzene 0.270 0.129 1 8/10/2017 8:25:03 PM mg/Kg-dry sec-Butylbenzene ND 0.258 mg/Kg-dry 1 8/10/2017 8:25:03 PM 4-Isopropyltoluene ND 0.258 mg/Kg-dry 1 8/10/2017 8:25:03 PM 1,3-Dichlorobenzene ND 1 8/10/2017 8:25:03 PM 0.103 mg/Kg-dry 1,4-Dichlorobenzene ND 0.103 1 8/10/2017 8:25:03 PM mg/Kg-dry ND 8/10/2017 8:25:03 PM n-Butylbenzene 0.129 mg/Kg-dry 1 ND 1,2-Dichlorobenzene 0.103 mg/Kg-dry 1 8/10/2017 8:25:03 PM 1.2-Dibromo-3-chloropropane ND 2.58 1 8/10/2017 8:25:03 PM mg/Kg-dry 1,2,4-Trimethylbenzene ND 0.103 mg/Kg-dry 1 8/10/2017 8:25:03 PM Hexachlorobutadiene ND 0.258 1 8/10/2017 8:25:03 PM mg/Kg-dry ND Naphthalene 0.258 mg/Kg-dry 1 8/10/2017 8:25:03 PM 1,2,3-Trichlorobenzene 0.270 0.103 8/10/2017 8:25:03 PM mg/Kg-dry 1 Surr: Dibromofluoromethane 94.7 56.5 - 129 %Rec 1 8/10/2017 8:25:03 PM 64.5 - 151 Surr: Toluene-d8 100 %Rec 1 8/10/2017 8:25:03 PM Surr: 1-Bromo-4-fluorobenzene 106 63.1 - 141 %Rec 1 8/10/2017 8:25:03 PM

Work Order: **1708051**Date Reported: **8/14/2017**

Client: Shannon & Wilson Collection Date: 8/3/2017 5:08:00 AM

Project: Yakima EWC

Lab ID: 1708051-002 **Matrix:** Soil

Analyses	Result	RL	Qual	Units	DF	Dat	e Analyzed
Mercury by EPA Method 7471				Batch	ı ID:	17871	Analyst: WF
Mercury	ND	0.702		mg/Kg-dry	1	8/10/2	017 5:00:27 PM
Total Metals by EPA Method 6020				Batch	ı ID:	17834	Analyst: TN
Arsenic	2.92	0.236		mg/Kg-dry	1	8/9/20	17 12:48:38 PM
Barium	72.5	1.18		mg/Kg-dry	1	8/9/20	17 12:48:38 PM
Cadmium	ND	0.473		mg/Kg-dry	1	8/9/20	17 12:48:38 PM
Chromium	5.51	0.236		mg/Kg-dry	1	8/9/20	17 12:48:38 PM
Copper	12.0	0.473		mg/Kg-dry	1	8/9/20	17 12:48:38 PM
Lead	14.2	0.473		mg/Kg-dry	1	8/9/20	17 12:48:38 PM
Nickel	5.56	0.236		mg/Kg-dry	1	8/9/20	17 12:48:38 PM
Selenium	ND	1.18		mg/Kg-dry	1	8/9/20	17 12:48:38 PM
Silver	ND	0.224		mg/Kg-dry	1	8/10/2	017 2:39:38 PM
Zinc	56.5	0.945		mg/Kg-dry	1	8/9/20	17 12:48:38 PM
Sample Moisture (Percent Moistur	<u>e)</u>			Batch	ı ID:	R37834	Analyst: BB
Percent Moisture	66.4			wt%	1	8/7/20	17 9:08:52 AM

Work Order: **1708051**Date Reported: **8/14/2017**

Client: Shannon & Wilson Collection Date: 8/3/2017 5:25:00 AM

Project: Yakima EWC

Lab ID: 1708051-003 **Matrix:** Soil

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polychlorinated Biphenyls (PC	B) by EPA 8082	2		Batch	ı ID:	17833 Analyst: SG
Aroclor 1016	ND	0.103		mg/Kg-dry	1	8/7/2017 2:10:06 PM
Aroclor 1221	ND	0.103		mg/Kg-dry	1	8/7/2017 2:10:06 PM
Aroclor 1232	ND	0.103		mg/Kg-dry	1	8/7/2017 2:10:06 PM
Aroclor 1242	ND	0.103		mg/Kg-dry	1	8/7/2017 2:10:06 PM
Aroclor 1248	ND	0.103		mg/Kg-dry	1	8/7/2017 2:10:06 PM
Aroclor 1254	ND	0.103		mg/Kg-dry	1	8/7/2017 2:10:06 PM
Aroclor 1260	ND	0.103		mg/Kg-dry	1	8/7/2017 2:10:06 PM
Aroclor 1262	ND	0.103		mg/Kg-dry	1	8/7/2017 2:10:06 PM
Aroclor 1268	ND	0.103		mg/Kg-dry	1	8/7/2017 2:10:06 PM
Total PCBs	ND	0.103		mg/Kg-dry	1	8/7/2017 2:10:06 PM
Surr: Decachlorobiphenyl	154	30.8 - 168		%Rec	1	8/7/2017 2:10:06 PM
Surr: Tetrachloro-m-xylene	130	30.3 - 157		%Rec	1	8/7/2017 2:10:06 PM
Diesel and Heavy Oil by NWTP	H-Dx/Dx Ext.			Batch	ı ID:	17826 Analyst: SB
Diesel (Fuel Oil)	ND	18.9		mg/Kg-dry	1	8/5/2017 4:40:29 AM
Heavy Oil	ND	47.3		mg/Kg-dry	1	8/5/2017 4:40:29 AM
Surr: 2-Fluorobiphenyl	88.2	50 - 150		%Rec	1	8/5/2017 4:40:29 AM
Surr: o-Terphenyl	93.3	50 - 150		%Rec	1	8/5/2017 4:40:29 AM
Polyaromatic Hydrocarbons by	EPA Method 8	3270 (SIM)		Batch	ı ID:	17832 Analyst: BT
Naphthalene	ND	37.1		μg/Kg-dry	1	8/7/2017 2:13:46 PM
2-Methylnaphthalene	ND	37.1		μg/Kg-dry	1	8/7/2017 2:13:46 PM
1-Methylnaphthalene	ND	37.1		μg/Kg-dry	1	8/7/2017 2:13:46 PM
Acenaphthylene	ND	37.1		μg/Kg-dry	1	8/7/2017 2:13:46 PM
Acenaphthene	ND	37.1		μg/Kg-dry	1	8/7/2017 2:13:46 PM
Fluorene	ND	37.1		μg/Kg-dry	1	8/7/2017 2:13:46 PM
Phenanthrene	ND	37.1		μg/Kg-dry	1	8/7/2017 2:13:46 PM
Anthracene	ND	37.1		μg/Kg-dry	1	8/7/2017 2:13:46 PM
Fluoranthene	ND	37.1		μg/Kg-dry	1	8/7/2017 2:13:46 PM
Pyrene	ND	37.1		μg/Kg-dry	1	8/7/2017 2:13:46 PM
Benz(a)anthracene	ND	37.1		μg/Kg-dry	1	8/7/2017 2:13:46 PM
Chrysene	ND	37.1		μg/Kg-dry	1	8/7/2017 2:13:46 PM
Benzo(b)fluoranthene	ND	37.1		μg/Kg-dry	1	8/7/2017 2:13:46 PM
Benzo(j,k)fluoranthene	ND	37.1		μg/Kg-dry	1	8/7/2017 2:13:46 PM
Benzo(a)pyrene	ND	37.1		μg/Kg-dry	1	8/7/2017 2:13:46 PM
Indeno(1,2,3-cd)pyrene	ND	37.1		μg/Kg-dry	1	8/7/2017 2:13:46 PM
Dibenz(a,h)anthracene	ND	37.1		μg/Kg-dry	1	8/7/2017 2:13:46 PM

Work Order: **1708051**Date Reported: **8/14/2017**

Client: Shannon & Wilson Collection Date: 8/3/2017 5:25:00 AM

Project: Yakima EWC

Lab ID: 1708051-003 **Matrix:** Soil

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by I	EPA Method 8	3270 (SIM)		Batch	ı ID:	17832 Analyst: BT
Benzo(g,h,i)perylene	ND	37.1		μg/Kg-dry	1	8/7/2017 2:13:46 PM
Surr: 2-Fluorobiphenyl	80.3	24.5 - 139		%Rec	1	8/7/2017 2:13:46 PM
Surr: Terphenyl-d14 (surr)	116	46.2 - 179		%Rec	1	8/7/2017 2:13:46 PM
Gasoline by NWTPH-Gx				Batch	ı ID:	17870 Analyst: NG
Gasoline	ND	4.51		mg/Kg-dry	1	8/10/2017 8:55:05 PM
Surr: Toluene-d8	97.1	65 - 135		%Rec	1	8/10/2017 8:55:05 PM
Surr: 4-Bromofluorobenzene	106	65 - 135		%Rec	1	8/10/2017 8:55:05 PM
Volatile Organic Compounds by	EPA Method	8260C		Batch	ı ID:	17870 Analyst: NG
Dichlorodifluoromethane (CFC-12)	ND	0.0181		mg/Kg-dry	1	8/10/2017 8:55:05 PM
Chloromethane	ND	0.0451		mg/Kg-dry	1	8/10/2017 8:55:05 PM
Vinyl chloride	ND	0.0226		mg/Kg-dry	1	8/10/2017 8:55:05 PM
Bromomethane	ND	0.0451		mg/Kg-dry	1	8/10/2017 8:55:05 PM
Trichlorofluoromethane (CFC-11)	ND	0.0181		mg/Kg-dry	1	8/10/2017 8:55:05 PM
Chloroethane	ND	0.0451		mg/Kg-dry	1	8/10/2017 8:55:05 PM
1,1-Dichloroethene	ND	0.0181		mg/Kg-dry	1	8/10/2017 8:55:05 PM
Methylene chloride	ND	0.0181		mg/Kg-dry	1	8/10/2017 8:55:05 PM
trans-1,2-Dichloroethene	ND	0.0181		mg/Kg-dry	1	8/10/2017 8:55:05 PM
Methyl tert-butyl ether (MTBE)	ND	0.0451		mg/Kg-dry	1	8/10/2017 8:55:05 PM
1,1-Dichloroethane	ND	0.0181		mg/Kg-dry	1	8/10/2017 8:55:05 PM
2,2-Dichloropropane	ND	0.0903		mg/Kg-dry	1	8/10/2017 8:55:05 PM
cis-1,2-Dichloroethene	ND	0.0181		mg/Kg-dry	1	8/10/2017 8:55:05 PM
Chloroform	ND	0.0181		mg/Kg-dry	1	8/10/2017 8:55:05 PM
1,1,1-Trichloroethane (TCA)	ND	0.0226		mg/Kg-dry	1	8/10/2017 8:55:05 PM
1,1-Dichloropropene	ND	0.0181		mg/Kg-dry	1	8/10/2017 8:55:05 PM
Carbon tetrachloride	ND	0.0226		mg/Kg-dry	1	8/10/2017 8:55:05 PM
1,2-Dichloroethane (EDC)	ND	0.0181		mg/Kg-dry	1	8/10/2017 8:55:05 PM
Benzene	ND	0.0181		mg/Kg-dry	1	8/10/2017 8:55:05 PM
Trichloroethene (TCE)	ND	0.0181		mg/Kg-dry	1	8/10/2017 8:55:05 PM
1,2-Dichloropropane	ND	0.0181		mg/Kg-dry	1	8/10/2017 8:55:05 PM
Bromodichloromethane	ND	0.0181		mg/Kg-dry	1	8/10/2017 8:55:05 PM
Dibromomethane	ND	0.0181		mg/Kg-dry	1	8/10/2017 8:55:05 PM
cis-1,3-Dichloropropene	ND	0.0181		mg/Kg-dry	1	8/10/2017 8:55:05 PM
Toluene	ND	0.0181		mg/Kg-dry	1	8/10/2017 8:55:05 PM
trans-1,3-Dichloropropylene	ND	0.0181		mg/Kg-dry	1	8/10/2017 8:55:05 PM
1,1,2-Trichloroethane	ND	0.0181		mg/Kg-dry	1	8/10/2017 8:55:05 PM

Work Order: **1708051**Date Reported: **8/14/2017**

Date Analyzed

Client: Shannon & Wilson Collection Date: 8/3/2017 5:25:00 AM

RL

Qual

Units

DF

Project: Yakima EWC

Lab ID: 1708051-003 **Matrix:** Soil

Result

Client Sample ID: ES-7

Analyses

analyses	Nesuit	116	- uui	00	٠.	Date Analyzed
Volatile Organic Compounds by I	EPA Method	8260C		Batch	ID:	17870 Analyst: NG
1,3-Dichloropropane	ND	0.0226		mg/Kg-dry	1	8/10/2017 8:55:05 PM
Tetrachloroethene (PCE)	ND	0.0226		mg/Kg-dry	1	8/10/2017 8:55:05 PM
Dibromochloromethane	ND	0.0226		mg/Kg-dry	1	8/10/2017 8:55:05 PM
1,2-Dibromoethane (EDB)	ND	0.00451		mg/Kg-dry	1	8/10/2017 8:55:05 PM
Chlorobenzene	ND	0.0226		mg/Kg-dry	1	8/10/2017 8:55:05 PM
1,1,1,2-Tetrachloroethane	ND	0.0226		mg/Kg-dry	1	8/10/2017 8:55:05 PM
Ethylbenzene	ND	0.0226		mg/Kg-dry	1	8/10/2017 8:55:05 PM
m,p-Xylene	ND	0.0451		mg/Kg-dry	1	8/10/2017 8:55:05 PM
o-Xylene	ND	0.0226		mg/Kg-dry	1	8/10/2017 8:55:05 PM
Styrene	ND	0.0226		mg/Kg-dry	1	8/10/2017 8:55:05 PM
Isopropylbenzene	ND	0.0226		mg/Kg-dry	1	8/10/2017 8:55:05 PM
Bromoform	ND	0.0451		mg/Kg-dry	1	8/10/2017 8:55:05 PM
1,1,2,2-Tetrachloroethane	ND	0.0181		mg/Kg-dry	1	8/10/2017 8:55:05 PM
n-Propylbenzene	ND	0.0226		mg/Kg-dry	1	8/10/2017 8:55:05 PM
Bromobenzene	ND	0.0181		mg/Kg-dry	1	8/10/2017 8:55:05 PM
1,3,5-Trimethylbenzene	ND	0.0226		mg/Kg-dry	1	8/10/2017 8:55:05 PM
2-Chlorotoluene	ND	0.0226		mg/Kg-dry	1	8/10/2017 8:55:05 PM
4-Chlorotoluene	ND	0.0226		mg/Kg-dry	1	8/10/2017 8:55:05 PM
tert-Butylbenzene	ND	0.0226		mg/Kg-dry	1	8/10/2017 8:55:05 PM
1,2,3-Trichloropropane	ND	0.0226		mg/Kg-dry	1	8/10/2017 8:55:05 PM
1,2,4-Trichlorobenzene	ND	0.0226		mg/Kg-dry	1	8/10/2017 8:55:05 PM
sec-Butylbenzene	ND	0.0451		mg/Kg-dry	1	8/10/2017 8:55:05 PM
4-Isopropyltoluene	ND	0.0451		mg/Kg-dry	1	8/10/2017 8:55:05 PM
1,3-Dichlorobenzene	ND	0.0181		mg/Kg-dry	1	8/10/2017 8:55:05 PM
1,4-Dichlorobenzene	ND	0.0181		mg/Kg-dry	1	8/10/2017 8:55:05 PM
n-Butylbenzene	ND	0.0226		mg/Kg-dry	1	8/10/2017 8:55:05 PM
1,2-Dichlorobenzene	ND	0.0181		mg/Kg-dry	1	8/10/2017 8:55:05 PM
1,2-Dibromo-3-chloropropane	ND	0.451		mg/Kg-dry	1	8/10/2017 8:55:05 PM
1,2,4-Trimethylbenzene	ND	0.0181		mg/Kg-dry	1	8/10/2017 8:55:05 PM
Hexachlorobutadiene	ND	0.0451		mg/Kg-dry	1	8/10/2017 8:55:05 PM
Naphthalene	ND	0.0451		mg/Kg-dry	1	8/10/2017 8:55:05 PM
1,2,3-Trichlorobenzene	ND	0.0181		mg/Kg-dry	1	8/10/2017 8:55:05 PM
Surr: Dibromofluoromethane	94.6	56.5 - 129		%Rec	1	8/10/2017 8:55:05 PM
Surr: Toluene-d8	101	64.5 - 151		%Rec	1	8/10/2017 8:55:05 PM
Surr: 1-Bromo-4-fluorobenzene	106	63.1 - 141		%Rec	1	8/10/2017 8:55:05 PM
Mercury by EPA Method 7471				Batch	ID:	17871 Analyst: WF
Mercury	ND	0.253		mg/Kg-dry	1	8/10/2017 5:02:04 PM

Work Order: **1708051**Date Reported: **8/14/2017**

Client: Shannon & Wilson Collection Date: 8/3/2017 5:25:00 AM

Project: Yakima EWC

Lab ID: 1708051-003 **Matrix:** Soil

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Method 602	0			Batch	ı ID:	17834 Analyst: TN
Arsenic	2.07	0.0852		mg/Kg-dry	1	8/9/2017 1:00:43 PM
Barium	54.2	0.426		mg/Kg-dry	1	8/9/2017 1:00:43 PM
Cadmium	ND	0.170		mg/Kg-dry	1	8/9/2017 1:00:43 PM
Chromium	23.0	0.0852		mg/Kg-dry	1	8/9/2017 1:00:43 PM
Copper	14.7	0.170		mg/Kg-dry	1	8/9/2017 1:00:43 PM
Lead	2.65	0.170		mg/Kg-dry	1	8/9/2017 1:00:43 PM
Nickel	25.0	0.0852		mg/Kg-dry	1	8/9/2017 1:00:43 PM
Selenium	1.63	0.426		mg/Kg-dry	1	8/9/2017 1:00:43 PM
Silver	ND	0.0801		mg/Kg-dry	1	8/10/2017 2:43:39 PM
Zinc	43.7	0.341		mg/Kg-dry	1	8/9/2017 1:00:43 PM
Sample Moisture (Percent Moistu	ure)			Batch	ı ID:	R37834 Analyst: BB
Percent Moisture	6.88			wt%	1	8/7/2017 9:08:52 AM

Work Order: **1708051**Date Reported: **8/14/2017**

Client: Shannon & Wilson Collection Date: 8/3/2017 7:47:00 AM

Project: Yakima EWC

Lab ID: 1708051-004 **Matrix:** Soil

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polychlorinated Biphenyls (PC	B) by EPA 808	2		Batch	ı ID:	17833 Analyst: SG
Aroclor 1016	ND	0.118		mg/Kg-dry	1	8/7/2017 2:20:07 PM
Aroclor 1221	ND	0.118		mg/Kg-dry	1	8/7/2017 2:20:07 PM
Aroclor 1232	ND	0.118		mg/Kg-dry	1	8/7/2017 2:20:07 PM
Aroclor 1242	ND	0.118		mg/Kg-dry	1	8/7/2017 2:20:07 PM
Aroclor 1248	ND	0.118		mg/Kg-dry	1	8/7/2017 2:20:07 PM
Aroclor 1254	ND	0.118		mg/Kg-dry	1	8/7/2017 2:20:07 PM
Aroclor 1260	ND	0.118		mg/Kg-dry	1	8/7/2017 2:20:07 PM
Aroclor 1262	ND	0.118		mg/Kg-dry	1	8/7/2017 2:20:07 PM
Aroclor 1268	ND	0.118		mg/Kg-dry	1	8/7/2017 2:20:07 PM
Total PCBs	ND	0.118		mg/Kg-dry	1	8/7/2017 2:20:07 PM
Surr: Decachlorobiphenyl	125	30.8 - 168		%Rec	1	8/7/2017 2:20:07 PM
Surr: Tetrachloro-m-xylene	109	30.3 - 157		%Rec	1	8/7/2017 2:20:07 PM
Diesel and Heavy Oil by NWTF	H-Dx/Dx Ext.			Batch	ı ID:	17836 Analyst: SB
Diesel (Fuel Oil)	ND	20.4		mg/Kg-dry	1	8/7/2017 10:06:35 PM
Heavy Oil	ND	51.0		mg/Kg-dry	1	8/7/2017 10:06:35 PM
Surr: 2-Fluorobiphenyl	91.8	50 - 150		%Rec	1	8/7/2017 10:06:35 PM
Surr: o-Terphenyl	91.5	50 - 150		%Rec	1	8/7/2017 10:06:35 PM
Polyaromatic Hydrocarbons by	y EPA Method 8	3270 (SIM)		Batch	ı ID:	17832 Analyst: BT
Naphthalene	ND	45.5		μg/Kg-dry	1	8/7/2017 4:09:57 PM
2-Methylnaphthalene	ND	45.5		μg/Kg-dry	1	8/7/2017 4:09:57 PM
1-Methylnaphthalene	ND	45.5		μg/Kg-dry	1	8/7/2017 4:09:57 PM
Acenaphthylene	ND	45.5		μg/Kg-dry	1	8/7/2017 4:09:57 PM
Acenaphthene	ND	45.5		μg/Kg-dry	1	8/7/2017 4:09:57 PM
Fluorene	ND	45.5		μg/Kg-dry	1	8/7/2017 4:09:57 PM
Phenanthrene	ND	45.5		μg/Kg-dry	1	8/7/2017 4:09:57 PM
Anthracene	ND	45.5		μg/Kg-dry	1	8/7/2017 4:09:57 PM
Fluoranthene	ND	45.5		μg/Kg-dry	1	8/7/2017 4:09:57 PM
Pyrene	ND	45.5		μg/Kg-dry	1	8/7/2017 4:09:57 PM
Benz(a)anthracene	ND	45.5		μg/Kg-dry	1	8/7/2017 4:09:57 PM
Chrysene	ND	45.5		μg/Kg-dry	1	8/7/2017 4:09:57 PM
Benzo(b)fluoranthene	ND	45.5		μg/Kg-dry	1	8/7/2017 4:09:57 PM
Benzo(j,k)fluoranthene	ND	45.5		μg/Kg-dry	1	8/7/2017 4:09:57 PM
Benzo(a)pyrene	ND	45.5		μg/Kg-dry	1	8/7/2017 4:09:57 PM
Indeno(1,2,3-cd)pyrene	ND	45.5		μg/Kg-dry	1	8/7/2017 4:09:57 PM
Dibenz(a,h)anthracene	ND	45.5		μg/Kg-dry	1	8/7/2017 4:09:57 PM

Work Order: **1708051**Date Reported: **8/14/2017**

Client: Shannon & Wilson Collection Date: 8/3/2017 7:47:00 AM

Project: Yakima EWC

Lab ID: 1708051-004 **Matrix:** Soil

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by I	EPA Method 8	3270 (SIM)		Batch	ı ID:	17832 Analyst: BT
Benzo(g,h,i)perylene	ND	45.5		μg/Kg-dry	1	8/7/2017 4:09:57 PM
Surr: 2-Fluorobiphenyl	65.0	24.5 - 139		%Rec	1	8/7/2017 4:09:57 PM
Surr: Terphenyl-d14 (surr)	109	46.2 - 179		%Rec	1	8/7/2017 4:09:57 PM
Gasoline by NWTPH-Gx				Batch	ı ID:	17870 Analyst: NG
Gasoline	ND	4.66		mg/Kg-dry	1	8/10/2017 9:25:02 PM
Surr: Toluene-d8	96.1	65 - 135		%Rec	1	8/10/2017 9:25:02 PM
Surr: 4-Bromofluorobenzene	104	65 - 135		%Rec	1	8/10/2017 9:25:02 PM
Volatile Organic Compounds by	EPA Method	8260C		Batch	ı ID:	17870 Analyst: NG
Dichlorodifluoromethane (CFC-12)	ND	0.0186		mg/Kg-dry	1	8/10/2017 9:25:02 PM
Chloromethane	ND	0.0466		mg/Kg-dry	1	8/10/2017 9:25:02 PM
Vinyl chloride	ND	0.0233		mg/Kg-dry	1	8/10/2017 9:25:02 PM
Bromomethane	ND	0.0466		mg/Kg-dry	1	8/10/2017 9:25:02 PM
Trichlorofluoromethane (CFC-11)	ND	0.0186		mg/Kg-dry	1	8/10/2017 9:25:02 PM
Chloroethane	ND	0.0466		mg/Kg-dry	1	8/10/2017 9:25:02 PM
1,1-Dichloroethene	ND	0.0186		mg/Kg-dry	1	8/10/2017 9:25:02 PM
Methylene chloride	ND	0.0186		mg/Kg-dry	1	8/10/2017 9:25:02 PM
trans-1,2-Dichloroethene	ND	0.0186		mg/Kg-dry	1	8/10/2017 9:25:02 PM
Methyl tert-butyl ether (MTBE)	ND	0.0466		mg/Kg-dry	1	8/10/2017 9:25:02 PM
1,1-Dichloroethane	ND	0.0186		mg/Kg-dry	1	8/10/2017 9:25:02 PM
2,2-Dichloropropane	ND	0.0931		mg/Kg-dry	1	8/10/2017 9:25:02 PM
cis-1,2-Dichloroethene	ND	0.0186		mg/Kg-dry	1	8/10/2017 9:25:02 PM
Chloroform	ND	0.0186		mg/Kg-dry	1	8/10/2017 9:25:02 PM
1,1,1-Trichloroethane (TCA)	ND	0.0233		mg/Kg-dry	1	8/10/2017 9:25:02 PM
1,1-Dichloropropene	ND	0.0186		mg/Kg-dry	1	8/10/2017 9:25:02 PM
Carbon tetrachloride	ND	0.0233		mg/Kg-dry	1	8/10/2017 9:25:02 PM
1,2-Dichloroethane (EDC)	ND	0.0186		mg/Kg-dry	1	8/10/2017 9:25:02 PM
Benzene	ND	0.0186		mg/Kg-dry	1	8/10/2017 9:25:02 PM
Trichloroethene (TCE)	ND	0.0186		mg/Kg-dry	1	8/10/2017 9:25:02 PM
1,2-Dichloropropane	ND	0.0186		mg/Kg-dry	1	8/10/2017 9:25:02 PM
Bromodichloromethane	ND	0.0186		mg/Kg-dry	1	8/10/2017 9:25:02 PM
Dibromomethane	ND	0.0186		mg/Kg-dry	1	8/10/2017 9:25:02 PM
cis-1,3-Dichloropropene	ND	0.0186		mg/Kg-dry	1	8/10/2017 9:25:02 PM
Toluene	ND	0.0186		mg/Kg-dry	1	8/10/2017 9:25:02 PM
trans-1,3-Dichloropropylene	ND	0.0186		mg/Kg-dry	1	8/10/2017 9:25:02 PM
1,1,2-Trichloroethane	ND	0.0186		mg/Kg-dry	1	8/10/2017 9:25:02 PM

Work Order: **1708051**Date Reported: **8/14/2017**

Date Analyzed

Client: Shannon & Wilson Collection Date: 8/3/2017 7:47:00 AM

RL

Qual

Units

DF

Project: Yakima EWC

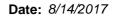
Lab ID: 1708051-004 **Matrix**: Soil

Result

Client Sample ID: ES-8

Analyses

ilalyses	Nesun		40.0			Date Analyzed
/olatile Organic Compounds by I	EPA Method	8260C		Batch	ID:	17870 Analyst: NG
1,3-Dichloropropane	ND	0.0233		mg/Kg-dry	1	8/10/2017 9:25:02 PM
Tetrachloroethene (PCE)	ND	0.0233		mg/Kg-dry	1	8/10/2017 9:25:02 PM
Dibromochloromethane	ND	0.0233		mg/Kg-dry	1	8/10/2017 9:25:02 PM
1,2-Dibromoethane (EDB)	ND	0.00466		mg/Kg-dry	1	8/10/2017 9:25:02 PM
Chlorobenzene	ND	0.0233		mg/Kg-dry	1	8/10/2017 9:25:02 PM
1,1,1,2-Tetrachloroethane	ND	0.0233		mg/Kg-dry	1	8/10/2017 9:25:02 PM
Ethylbenzene	ND	0.0233		mg/Kg-dry	1	8/10/2017 9:25:02 PM
m,p-Xylene	ND	0.0466		mg/Kg-dry	1	8/10/2017 9:25:02 PM
o-Xylene	ND	0.0233		mg/Kg-dry	1	8/10/2017 9:25:02 PM
Styrene	ND	0.0233		mg/Kg-dry	1	8/10/2017 9:25:02 PM
Isopropylbenzene	ND	0.0233		mg/Kg-dry	1	8/10/2017 9:25:02 PM
Bromoform	ND	0.0466		mg/Kg-dry	1	8/10/2017 9:25:02 PM
1,1,2,2-Tetrachloroethane	ND	0.0186		mg/Kg-dry	1	8/10/2017 9:25:02 PM
n-Propylbenzene	ND	0.0233		mg/Kg-dry	1	8/10/2017 9:25:02 PM
Bromobenzene	ND	0.0186		mg/Kg-dry	1	8/10/2017 9:25:02 PM
1,3,5-Trimethylbenzene	ND	0.0233		mg/Kg-dry	1	8/10/2017 9:25:02 PM
2-Chlorotoluene	ND	0.0233		mg/Kg-dry	1	8/10/2017 9:25:02 PM
4-Chlorotoluene	ND	0.0233		mg/Kg-dry	1	8/10/2017 9:25:02 PM
tert-Butylbenzene	ND	0.0233		mg/Kg-dry	1	8/10/2017 9:25:02 PM
1,2,3-Trichloropropane	ND	0.0233		mg/Kg-dry	1	8/10/2017 9:25:02 PM
1,2,4-Trichlorobenzene	ND	0.0233		mg/Kg-dry	1	8/10/2017 9:25:02 PM
sec-Butylbenzene	ND	0.0466		mg/Kg-dry	1	8/10/2017 9:25:02 PM
4-Isopropyltoluene	ND	0.0466		mg/Kg-dry	1	8/10/2017 9:25:02 PM
1,3-Dichlorobenzene	ND	0.0186		mg/Kg-dry	1	8/10/2017 9:25:02 PM
1,4-Dichlorobenzene	ND	0.0186		mg/Kg-dry	1	8/10/2017 9:25:02 PM
n-Butylbenzene	ND	0.0233		mg/Kg-dry	1	8/10/2017 9:25:02 PN
1,2-Dichlorobenzene	ND	0.0186		mg/Kg-dry	1	8/10/2017 9:25:02 PM
1,2-Dibromo-3-chloropropane	ND	0.466		mg/Kg-dry	1	8/10/2017 9:25:02 PM
1,2,4-Trimethylbenzene	ND	0.0186		mg/Kg-dry	1	8/10/2017 9:25:02 PM
Hexachlorobutadiene	ND	0.0466		mg/Kg-dry	1	8/10/2017 9:25:02 PM
Naphthalene	ND	0.0466		mg/Kg-dry	1	8/10/2017 9:25:02 PM
1,2,3-Trichlorobenzene	ND	0.0186		mg/Kg-dry	1	8/10/2017 9:25:02 PM
Surr: Dibromofluoromethane	93.3	56.5 - 129		%Rec	1	8/10/2017 9:25:02 PM
Surr: Toluene-d8	99.6	64.5 - 151		%Rec	1	8/10/2017 9:25:02 PM
Surr: 1-Bromo-4-fluorobenzene	104	63.1 - 141		%Rec	1	8/10/2017 9:25:02 PM
Mercury by EPA Method 7471				Batch	ID:	17871 Analyst: WF
Mercury	ND	0.288		mg/Kg-dry	1	8/10/2017 5:03:41 PM


Work Order: **1708051**Date Reported: **8/14/2017**

Client: Shannon & Wilson Collection Date: 8/3/2017 7:47:00 AM

Project: Yakima EWC

Lab ID: 1708051-004 **Matrix:** Soil

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Total Metals by EPA Method 6020				Batch	ID:	17834 Analyst: TN
Arsenic	2.10	0.0862		mg/Kg-dry	1	8/9/2017 1:04:44 PM
Barium	63.6	0.431		mg/Kg-dry	1	8/9/2017 1:04:44 PM
Cadmium	ND	0.172		mg/Kg-dry	1	8/9/2017 1:04:44 PM
Chromium	23.2	0.0862		mg/Kg-dry	1	8/9/2017 1:04:44 PM
Copper	18.7	0.172		mg/Kg-dry	1	8/9/2017 1:04:44 PM
Lead	2.29	0.172		mg/Kg-dry	1	8/9/2017 1:04:44 PM
Nickel	19.5	0.0862		mg/Kg-dry	1	8/9/2017 1:04:44 PM
Selenium	1.53	0.431		mg/Kg-dry	1	8/9/2017 1:04:44 PM
Silver	ND	0.0936		mg/Kg-dry	1	8/10/2017 2:47:40 PM
Zinc	42.2	0.345		mg/Kg-dry	1	8/9/2017 1:04:44 PM
Sample Moisture (Percent Moistur	<u>e)</u>			Batch	ID:	R37834 Analyst: BB
Percent Moisture	16.5			wt%	1	8/7/2017 9:08:52 AM

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Project: Yakima EW											
Sample ID MB-17836	SampType: MBLK			Units: mg/Kg		Prep Dat	e: 8/7/2017		RunNo: 378	352	
Client ID: MBLKS	Batch ID: 17836					Analysis Dat	e: 8/7/2017		SeqNo: 727	403	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	PD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	20.0									
Heavy Oil	ND	50.0									
Surr: 2-Fluorobiphenyl	16.1		20.00		80.7	50	150				
Surr: o-Terphenyl	16.2		20.00		81.0	50	150				
Sample ID LCS-17836	SampType: LCS			Units: mg/Kg		Prep Dat	e: 8/7/2017		RunNo: 378	352	
Client ID: LCSS	Batch ID: 17836					Analysis Dat	e: 8/7/2017		SeqNo: 727	404	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	PD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	523	20.0	500.0	0	105	65	135				
Surr: 2-Fluorobiphenyl	16.9		20.00		84.4	50	150				
Surr: o-Terphenyl	18.6		20.00		92.9	50	150				
Sample ID 1708059-001ADUP	SampType: DUP			Units: mg/Kg-	dry	Prep Dat	e: 8/7/2017		RunNo: 378	352	
Client ID: BATCH	Batch ID: 17836					Analysis Dat	e: 8/7/2017		SeqNo: 727	422	
										DDD1: "	Qual
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	PD Ref Val	%RPD	RPDLimit	Quui
	Result ND	RL 21.1	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	PD Ref Val	%RPD	RPDLIMIT 30	- Quai
Diesel (Fuel Oil)			SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R		%RPD		Quai
Diesel (Fuel Oil) Heavy Oil Surr: 2-Fluorobiphenyl	ND ND 17.8	21.1	21.13	SPK Ref Val	%REC 84.1	50	150	0	%RPD 0	30	Qual
Diesel (Fuel Oil) Heavy Oil	ND ND	21.1		SPK Ref Val				0		30	Quu
· •	ND ND 17.8	21.1	21.13	SPK Ref Val Units: mg/Kg-	84.1 84.3	50 50	150	0	0	30 30	Qual
Diesel (Fuel Oil) Heavy Oil Surr: 2-Fluorobiphenyl Surr: o-Terphenyl	ND ND 17.8 17.8	21.1	21.13		84.1 84.3	50 50 Prep Dat	150 150	0	0	30 30	
Diesel (Fuel Oil) Heavy Oil Surr: 2-Fluorobiphenyl Surr: o-Terphenyl Sample ID 1708059-001AMS Client ID: BATCH	ND ND 17.8 17.8 SampType: MS	21.1	21.13 21.13		84.1 84.3	50 50 Prep Dat Analysis Dat	150 150 e: 8/7/2017	0 0	0 0 RunNo: 378	30 30	Qual
Diesel (Fuel Oil) Heavy Oil Surr: 2-Fluorobiphenyl Surr: o-Terphenyl	ND ND 17.8 17.8 SampType: MS Batch ID: 17836	21.1 52.8	21.13 21.13	Units: mg/Kg-	84.1 84.3 dry	50 50 Prep Dat Analysis Dat	150 150 e: 8/7/2017 e: 8/7/2017	0 0	0 0 RunNo: 378 SeqNo: 727	30 30 30 352 7423	
Diesel (Fuel Oil) Heavy Oil Surr: 2-Fluorobiphenyl Surr: o-Terphenyl Sample ID 1708059-001AMS Client ID: BATCH Analyte	ND ND 17.8 17.8 SampType: MS Batch ID: 17836 Result	21.1 52.8 RL	21.13 21.13 SPK value	Units: mg/Kg- SPK Ref Val	84.1 84.3 dry %REC	50 50 Prep Dat Analysis Dat LowLimit	150 150 e: 8/7/2017 e: 8/7/2017 HighLimit R	0 0	0 0 RunNo: 378 SeqNo: 727	30 30 30 352 7423	

Original Page 20 of 66

Date: 8/14/2017

Yakima EWC

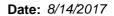
Work Order: 1708051

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.


Sample ID 1708059-001AMS SampType: MS Units: mg/Kg-dry Prep Date: 8/7/2017 RunNo: 37852

Client ID: **BATCH** Batch ID: **17836** Analysis Date: **8/7/2017** SeqNo: **727423**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Sample ID 1708059-001AMSD	SampType: MSD					Prep Da	te: 8/7/201	17	RunNo: 37852		
Client ID: BATCH	Batch ID: 17836					Analysis Da	te: 8/7/201	17	SeqNo: 727	7424	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	470	19.9	497.5	0	94.5	65	135	540.9	13.9	30	
Surr: 2-Fluorobiphenyl	16.1		19.90		80.7	50	150		0		
Surr: o-Terphenyl	17.5		19.90		88.0	50	150		0		

Original Page 21 of 66

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Sample ID MB-17826	SampType: MBLK			Units: mg/Kg		Prep Date	e: 8/4/201	7	RunNo: 378	342	
Client ID: MBLKS	Batch ID: 17826					Analysis Date	e: 8/4/201	7	SeqNo: 727	2 54	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	20.0									
Heavy Oil	ND	50.0									
Surr: 2-Fluorobiphenyl	18.4		20.00		92.0	50	150				
Surr: o-Terphenyl	20.8		20.00		104	50	150				
Sample ID LCS-17826	SampType: LCS			Units: mg/Kg		Prep Date	e: 8/4/201	7	RunNo: 378	342	
Client ID: LCSS	Batch ID: 17826					Analysis Date	e: 8/4/201	7	SeqNo: 727	7253	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	467	20.0	500.0	0	93.4	65	135				
Surr: 2-Fluorobiphenyl	20.3		20.00		102	50	150				
Surr: o-Terphenyl	24.1		20.00		120	50	150				
Sample ID 1708048-001ADUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date	e: 8/4/201	7	RunNo: 378	342	
Client ID: BATCH	Batch ID: 17826					Analysis Date	e: 8/4/201	7	SeqNo: 727	7242	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	24.9						0		30	
Heavy Oil	ND	62.4						0		30	
Heavy Oil Range Organics (C24-37)	68.1	62.4						71.68	5.14	30	
Surr: 2-Fluorobiphenyl	25.1		24.94		101	50	150		0		
Surr: o-Terphenyl	26.7		24.94		107	50	150		0		
NOTES: Heavy Oil Range Organics - Indica	ates the presence of unre	esolved con	npounds in the	Lube+ Oil ranges.							
Sample ID 1708048-001AMS	SampType: MS		Units: mg/Kg-dry		Prep Date	e: 8/4/201	7	RunNo: 378	342		
	Batch ID: 17826					Analysis Date	e: 8/4/201	7	SeqNo: 727	243	
Client ID: BATCH	201011121										
Client ID: BATCH Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual

Original Page 22 of 66

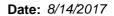
Date: 8/14/2017

Yakima EWC

Work Order: 1708051

Project:

QC SUMMARY REPORT


CLIENT: Shannon & Wilson

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Sample ID 1708048-001AMS	SampType: MS	Units: mg/Kg-dry			Prep Dat	te: 8/4/201	7	RunNo: 37842			
Client ID: BATCH	Batch ID: 17826					Analysis Da	te: 8/4/201	7	SeqNo: 72	7243	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 2-Fluorobiphenyl Surr: o-Terphenyl	15.4 18.3		23.41 23.41		65.8 78.2	50 50	150 150				

Sample ID 1708048-001AMSD	SampType: MSD	Units: mg/Kg-dry				Prep Dat	te: 8/4/201	7	RunNo: 37842		
Client ID: BATCH	Batch ID: 17826					Analysis Dat	te: 8/4/201	7	SeqNo: 727	7244	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	601	24.5	613.5	0	98.0	65	135	455.4	27.6	30	
Surr: 2-Fluorobiphenyl	24.7		24.54		101	50	150		0		
Surr: o-Terphenyl	28.1		24.54		115	50	150		0		

Original Page 23 of 66

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Gasoline by NWTPH-Gx

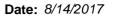
Project: Yakima EV	VC								Gasolin	e by NW	IPH-G
Sample ID LCS-17870	SampType: LCS			Units: mg/Kg		Prep Date	e: 8/10/20	17	RunNo: 379	922	
Client ID: LCSS	Batch ID: 17870					Analysis Date	e: 8/10/20	17	SeqNo: 728	3550	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	27.8	5.00	25.00	0	111	65	135				
Surr: Toluene-d8	1.30		1.250		104	65	135				
Surr: 4-Bromofluorobenzene	1.26		1.250		101	65	135				
Sample ID MB-17870	SampType: MBLK			Units: mg/Kg		Prep Date	e: 8/10/20	17	RunNo: 379	922	
Client ID: MBLKS	Batch ID: 17870					Analysis Date	e: 8/10/20	17	SeqNo: 728	3551	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	5.00									
Surr: Toluene-d8	1.20		1.250		96.0	65	135				
Surr: 4-Bromofluorobenzene	1.31		1.250		105	65	135				
Sample ID 1708101-002BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date	e: 8/10/20	17	RunNo: 379	922	
Client ID: BATCH	Batch ID: 17870					Analysis Date	e: 8/10/20	17	SeqNo: 72 9	9040	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	6.06						0		30	
Surr: Toluene-d8	1.46		1.516		96.6	65	135		0		
Surr: 4-Bromofluorobenzene	1.59		1.516		105	65	135		0		
Sample ID 1708101-003BMS	SampType: MS			Units: mg/Kg-	dry	Prep Date	e: 8/10/20	17	RunNo: 379	922	
Client ID: BATCH	Batch ID: 17870					Analysis Date	e: 8/10/20	17	SeqNo: 72 9	9041	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	20.8	5.56	27.81	0	74.6	65	135				
Surr: Toluene-d8	1.35		1.390		96.7	65	135				
Surr: 4-Bromofluorobenzene	1.48		1.390		107	65	135				

Original Page 24 of 66

Date: 8/14/2017

Work Order: 1708051

QC SUMMARY REPORT


CLIENT: Shannon & Wilson
Project: Yakima EWC

Gasoline by NWTPH-Gx

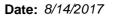
Sample ID 1708101-003BMSD	SampType: MSD			Units: mg/K	(g-dry	Prep Dat	te: 8/10/20 1	17	RunNo: 37 9	922	
Client ID: BATCH	Batch ID: 17870					Analysis Da	te: 8/10/20 1	17	SeqNo: 72	9042	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	21.9	5.56	27.81	0	78.6	65	135	20.76	5.19	30	
Surr: Toluene-d8	1.34		1.390		96.4	65	135		0		
Surr: 4-Bromofluorobenzene	1.50		1.390		108	65	135		0		
Sample ID 1708084-005BDUP	SampType: DUP			Units: ma/K	(a-drv	Prep Dat	te: 8/10/20 1	 17	RunNo: 37	922	

Sample ID 1708084-005BDUP	SampType: DUP			Units: mg/	Kg-dry	Prep Dat	e: 8/10/2 0	17	RunNo: 379	922	
Client ID: BATCH	Batch ID: 17870					Analysis Dat	e: 8/10/20	17	SeqNo: 729	9039	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	2.13						0		30	
Surr: Toluene-d8	0.527		0.5320		99.1	65	135		0		
Surr: 4-Bromofluorobenzene	0.551		0.5320		104	65	135		0		

Original Page 25 of 66

Project:

QC SUMMARY REPORT


CLIENT: Shannon & Wilson Yakima EWC

Herbicides by EPA Method 8151A

Sample ID MB-17825	SampType:	MBLK			Units: µg/Kg		Prep Da	te: 8/4/20	17	RunNo: 379	948	
Client ID: MBLKS	Batch ID:	17825					Analysis Da	te: 8/9/20	17	SeqNo: 729	9321	
Analyte	R	esult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dicamba		ND	35.0									
2,4-D		ND	30.0									
2,4-DP		ND	25.0									
2,4,5-TP (Silvex)		ND	20.0									
2,4,5-T		ND	50.0									
Dinoseb		ND	30.0									
Dalapon		ND	200									
2,4-DB		ND	25.0									
MCPP		ND	4,400									
MCPA		ND	2,800									
Picloram		ND	50.0									
Bentazon		ND	35.0									
Chloramben		ND	20.0									
Acifluorfen		ND	80.0									
3,5-Dichlorobenzoic acid		ND	40.0									
4-Nitrophenol		ND	30.0									
Dacthal (DCPA)		ND	30.0									
Surr: 2,4-Dichlorophenylacetic acid	d	716		1,000		71.6	20.1	168				

Sample ID LCS-17825	SampType: LCS			Units: µg/Kg				7	RunNo: 379	948	
Client ID: LCSS	Batch ID: 17825					Analysis Da	te: 8/9/201	7	SeqNo: 72 9	9322	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dicamba	160	35.0	200.0	0	80.2	24.7	141				
2,4-D	179	30.0	200.0	0	89.6	22.4	130				
2,4-DP	166	25.0	200.0	0	83.2	26.4	130				
2,4,5-TP (Silvex)	180	20.0	200.0	0	90.0	21.2	138				
2,4,5-T	165	50.0	200.0	0	82.6	22.8	144				
Dinoseb	140	30.0	200.0	0	69.8	5	165				
Dalapon	930	200	1,000	0	93.0	18.4	162				

Page 26 of 66 Original

CLIENT: Shannon & Wilson

Project: Yakima EWC

QC SUMMARY REPORT

Herbicides by EPA Method 8151A

Sample ID LCS-17825	SampType: LCS			Units: µg/Kg		Prep Da	te: 8/4/20 1	7	RunNo: 37 9	948	
Client ID: LCSS	Batch ID: 17825					Analysis Da	te: 8/9/20 1	7	SeqNo: 729	322	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2,4-DB	190	25.0	200.0	0	94.8	5	164				
MCPP	826	4,400	1,000	0	82.6	22.2	157				
MCPA	883	2,800	1,000	0	88.3	47.4	128				
Picloram	171	50.0	200.0	0	85.7	5	175				
Bentazon	122	35.0	200.0	0	61.0	7.59	162				
Chloramben	64.5	20.0	200.0	0	32.3	5	147				
Acifluorfen	196	80.0	200.0	0	97.9	5	163				
3,5-Dichlorobenzoic acid	160	40.0	200.0	0	79.9	18.7	139				
4-Nitrophenol	146	30.0	200.0	0	73.0	5	163				
Dacthal (DCPA)	120	30.0	200.0	0	60.2	5	164				
Surr: 2,4-Dichlorophenylacetic acid	786		1,000		78.6	20.1	168				

Sample ID 1707301-001ADUP	SampType: DUP			Units: µg/K	g-dry	Prep Dat	e: 8/4/20	17	RunNo: 37 9	948	
Client ID: BATCH	Batch ID: 17825					Analysis Dat	e: 8/10/2	017	SeqNo: 729	9336	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dicamba	ND	32.6						0		30	
2,4-D	ND	27.9						0		30	
2,4-DP	ND	23.3						0		30	
2,4,5-TP (Silvex)	ND	18.6						0		30	
2,4,5-T	ND	46.5						0		30	
Dinoseb	ND	27.9						0		30	
Dalapon	ND	186						0		30	
2,4-DB	ND	23.3						0		30	
MCPP	ND	4,090						0		30	
MCPA	ND	2,610						0		30	
Picloram	ND	46.5						0		30	
Bentazon	ND	32.6						0		30	
Chloramben	ND	18.6						0		30	
Acifluorfen	ND	74.5						0		30	

Original Page 27 of 66

Date: 8/14/2017

Yakima EWC

Work Order: 1708051

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Herbicides by EPA Method 8151A

Sample ID 1707301-001ADUP	SampType: DUP			Units: µg/	Kg-dry	Prep Date: 8/4/2017		17	RunNo: 37948		
Client ID: BATCH	Batch ID: 17825					Analysis Date	: 8/10/2 0)17	SeqNo: 729	9336	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
3,5-Dichlorobenzoic acid	ND	37.2						0		30	
4-Nitrophenol	ND	27.9						0		30	
Dacthal (DCPA)	ND	27.9						0		30	
Surr: 2,4-Dichlorophenylacetic acid	451		930.7		48.4	20.1	168		0		

Sample ID 1707301-001AMS	SampType	: MS	·		Units: µg/l	Kg-dry	Prep Dat	e: 8/4/201	7	RunNo: 379	948	·
Client ID: BATCH	Batch ID:	17825					Analysis Dat	e: 8/10/20	17	SeqNo: 729	9337	
Analyte	F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dicamba		154	35.7	204.3	0	75.6	31.9	118				
2,4-D		173	30.6	204.3	0	84.8	12.4	134				
2,4-DP		164	25.5	204.3	0	80.2	27.2	129				
2,4,5-TP (Silvex)		178	20.4	204.3	0	87.3	28.6	134				
2,4,5-T		153	51.1	204.3	0	74.7	13.1	147				
Dinoseb		208	30.6	204.3	0	102	10	179				
Dalapon		865	204	1,021	0	84.7	24.9	139				
2,4-DB		191	25.5	204.3	0	93.6	50.2	152				
MCPP		795	4,490	1,021	0	77.8	37.8	140				
MCPA		867	2,860	1,021	0	84.9	13.7	147				
Picloram		309	51.1	204.3	0	151	5	153				
Bentazon		153	35.7	204.3	0	75.1	15	140				
Chloramben		126	20.4	204.3	0	61.6	5	162				
Acifluorfen		251	81.7	204.3	0	123	15	140				
3,5-Dichlorobenzoic acid		157	40.9	204.3	0	77.0	10	164				
4-Nitrophenol		52.9	30.6	204.3	0	25.9	44.8	125				S
Dacthal (DCPA)		133	30.6	204.3	0	64.9	5	132				
Surr: 2,4-Dichlorophenylacetic acid	I	735		1,021		72.0	20.1	168				

NOTES:

Original Page 28 of 66

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Date: 8/14/2017

Yakima EWC

Work Order: 1708051

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Herbicides by EPA Method 8151A

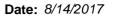
Sample ID 1707301-001AMSD	SampType	: MSD			Units: µg/k	(g-dry	Prep Dat	e: 8/4/20 1	17	RunNo: 37 9	948	
Client ID: BATCH	Batch ID:	17825					Analysis Dat	e: 8/10/2 0)17	SeqNo: 72 9	9338	
Analyte	i	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dicamba		142	34.5	196.9	0	72.1	31.9	118	154.3	8.30	30	
2,4-D		161	29.5	196.9	0	81.6	12.4	134	173.1	7.42	30	
2,4-DP		146	24.6	196.9	0	73.9	27.2	129	163.8	11.8	30	
2,4,5-TP (Silvex)		159	19.7	196.9	0	81.0	28.6	134	178.3	11.1	30	
2,4,5-T		166	49.2	196.9	0	84.5	13.1	147	152.6	8.60	30	
Dinoseb		187	29.5	196.9	0	95.1	10	179	207.6	10.3	30	
Dalapon		875	197	984.5	0	88.9	24.9	139	864.6	1.18	30	
2,4-DB		175	24.6	196.9	0	88.9	50.2	152	191.3	8.80	30	
MCPP		789	4,330	984.5	0	80.1	37.8	140	0		30	
MCPA		867	2,760	984.5	0	88.0	13.7	147	0		30	
Picloram		270	49.2	196.9	0	137	5	153	308.9	13.5	30	
Bentazon		133	34.5	196.9	0	67.5	15	140	153.4	14.4	30	
Chloramben		81.5	19.7	196.9	0	41.4	5	162	125.8	42.7	30	R
Acifluorfen		200	78.8	196.9	0	102	15	140	251.4	22.8	30	
3,5-Dichlorobenzoic acid		146	39.4	196.9	0	74.0	10	164	157.3	7.61	30	
4-Nitrophenol		55.9	29.5	196.9	0	28.4	44.8	125	52.91	5.56	30	S
Dacthal (DCPA)		114	29.5	196.9	0	58.1	5	132	132.5	14.7	30	
Surr: 2,4-Dichlorophenylacetic aci	d	691		984.5		70.2	20.1	168		0		

NOTES:

Original Page 29 of 66

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

R - High RPD observed, spike recovery is within range.

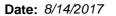


QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Project: Yakima EW							Me	rcury by EPA Metho	d 7471
Sample ID MB-17871	SampType: MBLK			Units: mg/Kg		Prep Date:	8/10/2017	RunNo: 37934	
Client ID: MBLKS	Batch ID: 17871					Analysis Date:	8/10/2017	SeqNo: 728823	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury	ND	0.250							
Sample ID LCS-17871	SampType: LCS			Units: mg/Kg		Prep Date:	8/10/2017	RunNo: 37934	
Client ID: LCSS	Batch ID: 17871					Analysis Date:	8/10/2017	SeqNo: 728824	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury	0.495	0.245	0.4902	0	101	80	120		
Sample ID 1708101-001ADUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date:	8/10/2017	RunNo: 37934	
Client ID: BATCH	Batch ID: 17871					Analysis Date:	8/10/2017	SeqNo: 728826	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury	ND	0.265					0	20	
Sample ID 1708101-001AMS	SampType: MS			Units: mg/Kg-	dry	Prep Date:	8/10/2017	RunNo: 37934	
Client ID: BATCH	Batch ID: 17871					Analysis Date:	8/10/2017	SeqNo: 728827	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury	0.579	0.281	0.5619	0.03752	96.3	70	130		
Sample ID 1708101-001AMSD	SampType: MSD			Units: mg/Kg-	dry	Prep Date:	8/10/2017	RunNo: 37934	
Client ID: BATCH	Batch ID: 17871					Analysis Date:	8/10/2017	SeqNo: 728828	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit RPD Ref Val	%RPD RPDLimit	Qual
Mercury	0.562	0.270	0.5407	0.03752	97.1	70	130 0.5788	2.88 20	

Page 30 of 66 Original


QC SUMMARY REPORT

CLIENT: Shannon & Wilson Project: Yakima EWC

Organochlorine Pesticides by EPA Method 8081

Sample ID TOX CCV A 17824	SampType: CCV			Units: mg/L		Prep Da	te: 8/7/20	17	RunNo: 378	336	
Client ID: CCV	Batch ID: 17824					Analysis Da	ite: 8/7/20	17	SeqNo: 727	7576	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toxaphene	930	0.100	1,000	0	93.0	80	120				
Sample ID MB-17824	SampType: MBLK			Units: mg/Kg		Prep Da	ite: 8/4/20	17	RunNo: 378	336	
Client ID: MBLKS	Batch ID: 17824					Analysis Da	ite: 8/7/20	17	SeqNo: 727	7577	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Toxaphene	ND	0.100									
Alpha BHC	ND	0.0100									
Beta BHC	ND	0.0100									
Gamma BHC (Lindane)	ND	0.0100									
Delta BHC	ND	0.0100									
Heptachlor	ND	0.0100									
Aldrin	ND	0.0100									
Heptachlor epoxide	ND	0.0100									
gamma-Chlordane	ND	0.0100									
Endosulfan I	ND	0.0100									
alpha-Chlordane	ND	0.0100									
Dieldrin	ND	0.0100									
4,4´-DDE	ND	0.0100									
Endrin	ND	0.0100									
Endosulfan II	ND	0.0100									
4,4´-DDD	ND	0.0100									
Endrin aldehyde	ND	0.0100									
Endosulfan sulfate	ND	0.0100									
4,4´-DDT	ND	0.0100									
Endrin ketone	ND	0.0100									
Methoxychlor	ND	0.0100									
Surr: Decachlorobiphenyl	0.0480		0.05000		95.9	17.8	157				
Surr: Tetrachloro-m-xylene	0.0469		0.05000		93.9	11	150				

Original Page 31 of 66

Toxaphene

Alpha BHC

Beta BHC

QC SUMMARY REPORT

CLIENT: Shannon & Wilson Project: Yakima EWC

Organochlorine Pesticides by EPA Method 8081

0

0

0

30

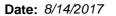
30

30

Sample ID LCS-17824	SampType: LCS			Units: mg/Kg		Prep Date:	8/4/2017	RunNo: 378	36	
Client ID: LCSS	Batch ID: 17824					Analysis Date:	8/7/2017	SeqNo: 727	578	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Alpha BHC	0.195	0.0100	0.2000	0	97.7	54.2	139			
Beta BHC	0.183	0.0100	0.2000	0	91.7	56.5	142			
Gamma BHC (Lindane)	0.195	0.0100	0.2000	0	97.5	55.5	142			
Delta BHC	0.193	0.0100	0.2000	0	96.6	47.4	157			
Heptachlor	0.209	0.0100	0.2000	0	105	50.9	153			
Aldrin	0.174	0.0100	0.2000	0	87.0	43.7	147			
Heptachlor epoxide	0.180	0.0100	0.2000	0	90.0	56.2	137			
gamma-Chlordane	0.172	0.0100	0.2000	0	86.1	58.5	136			
Endosulfan I	0.177	0.0100	0.2000	0	88.4	60	132			
alpha-Chlordane	0.173	0.0100	0.2000	0	86.6	46.1	140			
Dieldrin	0.177	0.0100	0.2000	0	88.6	61.2	133			
4,4´-DDE	0.187	0.0100	0.2000	0	93.4	55.4	142			
Endrin	0.181	0.0100	0.2000	0	90.4	56.5	143			
Endosulfan II	0.175	0.0100	0.2000	0	87.7	62	143			
4,4´-DDD	0.177	0.0100	0.2000	0	88.5	53.3	145			
Endrin aldehyde	0.168	0.0100	0.2000	0	83.8	39.5	153			
Endosulfan sulfate	0.181	0.0100	0.2000	0	90.3	53.8	148			
4,4´-DDT	0.208	0.0100	0.2000	0	104	48.2	152			
Endrin ketone	0.189	0.0100	0.2000	0	94.5	28.5	162			
Methoxychlor	0.222	0.0100	0.2000	0	111	34.6	159			
Surr: Decachlorobiphenyl	0.0516		0.05000		103	17.8	157			
Surr: Tetrachloro-m-xylene	0.0524		0.05000		105	11	150			
Sample ID 1707301-001ADUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date:	8/4/2017	RunNo: 378	36	
Client ID: BATCH	Batch ID: 17824					Analysis Date:	8/7/2017	SeqNo: 727	580	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual

Original Page 32 of 66

ND


ND

ND

0.101

0.0101

0.0101

Delta BHC

Heptachlor

0.136

0.147

0.00929

0.00929

0.1858

0.1858

QC SUMMARY REPORT

CLIENT: Shannon & Wilson Project: Yakima EWC

Organochlorine Pesticides by EPA Method 8081

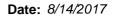
Sample ID 1707301-001ADUP	SampType: DUP			Units: mg/Kg-dry		Prep Date: 8/4/2017			RunNo: 37836		
Client ID: BATCH	Batch ID: 17824					Analysis Date: 8/7/2017			SeqNo: 727580		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gamma BHC (Lindane)	ND	0.0101						0		30	
Delta BHC	ND	0.0101						0		30	
Heptachlor	ND	0.0101						0		30	
Aldrin	ND	0.0101						0		30	
Heptachlor epoxide	ND	0.0101						0		30	
gamma-Chlordane	ND	0.0101						0		30	
Endosulfan I	ND	0.0101						0		30	
alpha-Chlordane	ND	0.0101						0		30	
Dieldrin	ND	0.0101						0		30	
4,4´-DDE	ND	0.0101						0		30	
Endrin	ND	0.0101						0		30	
Endosulfan II	ND	0.0101						0		30	
4,4´-DDD	ND	0.0101						0		30	
Endrin aldehyde	ND	0.0101						0		30	
Endosulfan sulfate	ND	0.0101						0		30	
4,4´-DDT	ND	0.0101						0		30	
Endrin ketone	ND	0.0101						0		30	
Methoxychlor	ND	0.0101						0		30	
Surr: Decachlorobiphenyl	0.0471		0.05057		93.2	17.8	157		0		
Surr: Tetrachloro-m-xylene	0.0469		0.05057		92.8	11	150		0		
Sample ID 1707301-001AMS	SampType: MS			Units: mg/Kg-dry		Prep Date	e: 8/4/201 7	7	RunNo: 37836		
Client ID: BATCH	Batch ID: 17824					Analysis Date	e: 8/7/201 7	7	SeqNo: 72	7581	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Alpha BHC	0.135	0.00929	0.1858	0	72.5	49.1	158				
Beta BHC	0.129	0.00929	0.1858	0	69.4	30.1	161				
Gamma BHC (Lindane)	0.136	0.00929	0.1858	0	73.2	40.5	158				

Original Page 33 of 66

0

0

73.0


79.0

31.5

37.9

153

156

QC SUMMARY REPORT

CLIENT: Shannon & Wilson Project: Yakima EWC

Organochlorine Pesticides by EPA Method 8081

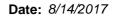
Sample ID 1707301-001AMS	SampType: MS			Units: mg/l	Kg-dry	Prep Date	e: 8/4/201	7	RunNo: 378	836	
Client ID: BATCH	Batch ID: 17824					Analysis Date	e: 8/7/201	7	SeqNo: 72	7581	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aldrin	0.121	0.00929	0.1858	0	64.9	41.9	130				
Heptachlor epoxide	0.128	0.00929	0.1858	0	68.9	41	161				
gamma-Chlordane	0.124	0.00929	0.1858	0	66.5	40.9	132				
Endosulfan I	0.126	0.00929	0.1858	0	68.0	44.7	162				
alpha-Chlordane	0.125	0.00929	0.1858	0	67.2	41.4	132				
Dieldrin	0.128	0.00929	0.1858	0	69.0	43.9	155				
4,4´-DDE	0.136	0.00929	0.1858	0	73.1	34	166				
Endrin	0.134	0.00929	0.1858	0	72.1	50.5	166				
Endosulfan II	0.134	0.00929	0.1858	0	72.3	37.9	154				
4,4´-DDD	0.135	0.00929	0.1858	0	72.4	38.9	144				
Endrin aldehyde	0.125	0.00929	0.1858	0	67.5	38.3	156				
Endosulfan sulfate	0.135	0.00929	0.1858	0	72.7	25.2	144				
4,4´-DDT	0.163	0.00929	0.1858	0	87.7	38.4	160				
Endrin ketone	0.148	0.00929	0.1858	0	79.8	40.2	119				
Methoxychlor	0.185	0.00929	0.1858	0	99.5	43.4	178				
Surr: Decachlorobiphenyl	0.0441		0.04645		94.9	17.8	157				
Surr: Tetrachloro-m-xylene	0.0372		0.04645		80.1	11	150				

Sample ID 1707301-001AMSD	SampType: MSD			Units: mg/K	g-dry	Prep Da	te: 8/4/20 1	17	RunNo: 378	336	
Client ID: BATCH	Batch ID: 17824					Analysis Da	te: 8/7/20 1	17	SeqNo: 727	7582	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Alpha BHC	0.140	0.00954	0.1907	0	73.3	49.1	158	0.1347	3.73	30	
Beta BHC	0.130	0.00954	0.1907	0	68.1	30.1	161	0.1289	0.700	30	
Gamma BHC (Lindane)	0.140	0.00954	0.1907	0	73.4	40.5	158	0.1360	2.85	30	
Delta BHC	0.135	0.00954	0.1907	0	70.5	31.5	153	0.1357	0.890	30	
Heptachlor	0.153	0.00954	0.1907	0	80.1	37.9	156	0.1468	3.97	30	
Aldrin	0.124	0.00954	0.1907	0	65.2	41.9	130	0.1206	3.10	30	
Heptachlor epoxide	0.130	0.00954	0.1907	0	68.3	41	161	0.1280	1.81	30	
gamma-Chlordane	0.125	0.00954	0.1907	0	65.4	40.9	132	0.1235	0.975	30	

Original Page 34 of 66

Date: 8/14/2017

Work Order: 1708051


QC SUMMARY REPORT

CLIENT: Shannon & Wilson Project: Yakima EWC

Organochlorine Pesticides by EPA Method 8081

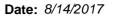
Sample ID 1707301-001AMSD	SampType: MSD			Units: mg/k	g-dry	Prep Dat	te: 8/4/201	17	RunNo: 378	336	
Client ID: BATCH	Batch ID: 17824					Analysis Da	te: 8/7/201	17	SeqNo: 72	7582	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Endosulfan I	0.127	0.00954	0.1907	0	66.4	44.7	162	0.1264	0.211	30	
alpha-Chlordane	0.126	0.00954	0.1907	0	66.0	41.4	132	0.1248	0.909	30	
Dieldrin	0.127	0.00954	0.1907	0	66.6	43.9	155	0.1282	0.926	30	
4,4´-DDE	0.135	0.00954	0.1907	0	70.6	34	166	0.1358	0.768	30	
Endrin	0.131	0.00954	0.1907	0	68.5	50.5	166	0.1341	2.50	30	
Endosulfan II	0.126	0.00954	0.1907	0	65.9	37.9	154	0.1344	6.61	30	
4,4´-DDD	0.128	0.00954	0.1907	0	67.2	38.9	144	0.1345	4.88	30	
Endrin aldehyde	0.109	0.00954	0.1907	0	57.1	38.3	156	0.1254	14.1	30	
Endosulfan sulfate	0.122	0.00954	0.1907	0	63.8	25.2	144	0.1351	10.5	30	
4,4´-DDT	0.154	0.00954	0.1907	0	81.0	38.4	160	0.1630	5.34	30	
Endrin ketone	0.133	0.00954	0.1907	0	69.7	40.2	119	0.1483	11.0	30	
Methoxychlor	0.168	0.00954	0.1907	0	88.0	43.4	178	0.1849	9.64	30	
Surr: Decachlorobiphenyl	0.0354		0.04769		74.3	17.8	157		0		
Surr: Tetrachloro-m-xylene	0.0372		0.04769		78.1	11	150		0		

Original Page 35 of 66

Yakima EWC

Work Order: 1708051

Project:


QC SUMMARY REPORT

CLIENT: Shannon & Wilson

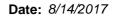
Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID MB-17832	SampType: MBLK			Units: µg/Kg		Prep Dat	te: 8/7/20 ′	17	RunNo: 378	345	
Client ID: MBLKS	Batch ID: 17832					Analysis Dat	te: 8/7/20	17	SeqNo: 727	7280	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	40.0									
2-Methylnaphthalene	ND	40.0									
1-Methylnaphthalene	ND	40.0									
Acenaphthylene	ND	40.0									
Acenaphthene	ND	40.0									
Fluorene	ND	40.0									
Phenanthrene	ND	40.0									
Anthracene	ND	40.0									
Fluoranthene	ND	40.0									
Pyrene	ND	40.0									
Benz(a)anthracene	ND	40.0									
Chrysene	ND	40.0									
Benzo(b)fluoranthene	ND	40.0									
Benzo(j,k)fluoranthene	ND	40.0									
Benzo(a)pyrene	ND	40.0									
Indeno(1,2,3-cd)pyrene	ND	40.0									
Dibenz(a,h)anthracene	ND	40.0									
Benzo(g,h,i)perylene	ND	40.0									
Surr: 2-Fluorobiphenyl	446		500.0		89.2	24.5	139				
Surr: Terphenyl-d14 (surr)	563		500.0		113	46.2	179				
Sample ID LCS-17832	SampType: LCS			Units: µg/Kg		Prep Dat	te: 8/7/20	17	RunNo: 378	345	
Client ID: LCSS	Batch ID: 17832					Analysis Dat	te: 8/7/20	17	SeqNo: 727	7281	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	644	40.0	1,000	0	64.4	46.4	125				
2-Methylnaphthalene	662	40.0	1,000	0	66.2	45.1	135				
1-Methylnaphthalene	654	40.0	1,000	0	65.4	46.2	133				
Acenaphthylene	682	40.0	1,000	0	68.2	32.8	136				
Acenaphthene	639	40.0	1,000	0	63.9	38.7	129				

Original Page 36 of 66

Project:

QC SUMMARY REPORT


CLIENT: Shannon & Wilson Yakima EWC

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

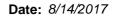
Sample ID LCS-17832	SampType: LCS			Units: µg/Kg		Prep Da	te: 8/7/20 1	17	RunNo: 37	845	
Client ID: LCSS	Batch ID: 17832					Analysis Da	te: 8/7/20 1	17	SeqNo: 72	7281	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluorene	639	40.0	1,000	0	63.9	41.4	144				
Phenanthrene	623	40.0	1,000	0	62.3	43.9	133				
Anthracene	675	40.0	1,000	0	67.5	44.2	136				
Fluoranthene	664	40.0	1,000	0	66.4	45.9	137				
Pyrene	640	40.0	1,000	0	64.0	46.2	137				
Benz(a)anthracene	640	40.0	1,000	0	64.0	41.2	141				
Chrysene	679	40.0	1,000	0	67.9	46.9	138				
Benzo(b)fluoranthene	584	40.0	1,000	0	58.4	41	155				
Benzo(j,k)fluoranthene	772	40.0	1,000	0	77.2	41.8	153				
Benzo(a)pyrene	645	40.0	1,000	0	64.5	30.2	171				
Indeno(1,2,3-cd)pyrene	622	40.0	1,000	0	62.2	31.3	159				
Dibenz(a,h)anthracene	601	40.0	1,000	0	60.1	28	158				
Benzo(g,h,i)perylene	645	40.0	1,000	0	64.5	32.4	144				
Surr: 2-Fluorobiphenyl	464		500.0		92.7	24.5	139				
Surr: Terphenyl-d14 (surr)	577		500.0		115	46.2	179				

Sample ID 1708051-003ADUP	SampType: DUP			Units: µg/Kg-c	dry	Prep Date: 8/7/20	17	RunNo: 37845	
Client ID: ES-7	Batch ID: 17832					Analysis Date: 8/7/20	17	SeqNo: 727326	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Naphthalene	ND	38.3					0	30	
2-Methylnaphthalene	ND	38.3					0	30	
1-Methylnaphthalene	ND	38.3					0	30	
Acenaphthylene	ND	38.3					0	30	
Acenaphthene	ND	38.3					0	30	
Fluorene	ND	38.3					0	30	
Phenanthrene	ND	38.3					0	30	
Anthracene	ND	38.3					0	30	
Fluoranthene	ND	38.3					0	30	
Pyrene	ND	38.3					0	30	

Page 37 of 66 Original

Project:

QC SUMMARY REPORT


CLIENT: Shannon & Wilson Yakima EWC

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID 1708051-003ADUP	SampType: DUP			Units: µg/K	g-dry	Prep Dat	e: 8/7/20 1	7	RunNo: 378	345	
Client ID: ES-7	Batch ID: 17832					Analysis Dat	e: 8/7/20 1	7	SeqNo: 72	7326	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benz(a)anthracene	ND	38.3						0		30	
Chrysene	ND	38.3						0		30	
Benzo(b)fluoranthene	ND	38.3						0		30	
Benzo(j,k)fluoranthene	ND	38.3						0		30	
Benzo(a)pyrene	ND	38.3						0		30	
Indeno(1,2,3-cd)pyrene	ND	38.3						0		30	
Dibenz(a,h)anthracene	ND	38.3						0		30	
Benzo(g,h,i)perylene	ND	38.3						0		30	
Surr: 2-Fluorobiphenyl	390		478.2		81.7	24.5	139		0		
Surr: Terphenyl-d14 (surr)	529		478.2		111	46.2	179		0		

Sample ID 1708051-003AMS	SampType: MS			Units: µg/K	g-dry	Prep Dat	te: 8/7/201	7	RunNo: 378	345	
Client ID: ES-7	Batch ID: 17832					Analysis Dat	te: 8/7/201	7	SeqNo: 727	7327	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	634	40.8	1,021	0	62.1	42.9	138				
2-Methylnaphthalene	657	40.8	1,021	0	64.4	42.8	151				
1-Methylnaphthalene	650	40.8	1,021	0	63.7	41.6	148				
Acenaphthylene	690	40.8	1,021	0	67.6	32.6	160				
Acenaphthene	624	40.8	1,021	0	61.1	46.3	142				
Fluorene	629	40.8	1,021	0	61.6	43.4	153				
Phenanthrene	604	40.8	1,021	0	59.2	45.5	140				
Anthracene	687	40.8	1,021	0	67.3	32.6	160				
Fluoranthene	684	40.8	1,021	0	67.0	44.6	161				
Pyrene	655	40.8	1,021	0	64.2	48.3	158				
Benz(a)anthracene	674	40.8	1,021	0	66.0	34.9	139				
Chrysene	646	40.8	1,021	0	63.3	45.2	146				
Benzo(b)fluoranthene	633	40.8	1,021	0	62.0	42.2	168				
Benzo(j,k)fluoranthene	767	40.8	1,021	0	75.2	34.8	147				
Benzo(a)pyrene	750	40.8	1,021	0	73.4	34.4	179				

Page 38 of 66 Original

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson Yakima EWC

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID 1708051-003AMS	SampType: MS	Units: µg/Kg-			(g-dry	Prep Da	te: 8/7/201	7	RunNo: 37		
Client ID: ES-7	Batch ID: 17832	RL SPK value SPK Ref Val %RE0				Analysis Da	te: 8/7/201	7	SeqNo: 72	7327	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Indeno(1,2,3-cd)pyrene	671	40.8	1,021	5.758	65.1	5	113				
Dibenz(a,h)anthracene	653	40.8	1,021	5.364	63.5	17.3	156				
Benzo(g,h,i)perylene	674	40.8	1,021	3.708	65.6	24.9	119				
Surr: 2-Fluorobiphenyl	416		510.4		81.5	24.5	139				
Surr: Terphenyl-d14 (surr)	541		510.4		106	46.2	179				

Sample ID 1708051-003AMSD	SampType: MSD		•	Units: µg/l	(g-dry	Prep Da	te: 8/7/20 1	17	RunNo: 378	345	
Client ID: ES-7	Batch ID: 17832					Analysis Da	te: 8/7/20 1	17	SeqNo: 727	7328	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	693	40.9	1,022	0	67.9	42.9	138	634.1	8.95	30	
2-Methylnaphthalene	720	40.9	1,022	0	70.5	42.8	151	657.1	9.15	30	
1-Methylnaphthalene	708	40.9	1,022	0	69.3	41.6	148	649.9	8.53	30	
Acenaphthylene	755	40.9	1,022	0	73.9	32.6	160	689.9	8.99	30	
Acenaphthene	678	40.9	1,022	0	66.4	46.3	142	623.7	8.38	30	
Fluorene	688	40.9	1,022	0	67.3	43.4	153	628.8	8.92	30	
Phenanthrene	659	40.9	1,022	0	64.4	45.5	140	604.5	8.56	30	
Anthracene	740	40.9	1,022	0	72.4	32.6	160	686.7	7.45	30	
Fluoranthene	740	40.9	1,022	0	72.5	44.6	161	684.4	7.86	30	
Pyrene	710	40.9	1,022	0	69.5	48.3	158	655.4	7.95	30	
Benz(a)anthracene	731	40.9	1,022	0	71.5	34.9	139	673.6	8.17	30	
Chrysene	713	40.9	1,022	0	69.8	45.2	146	646.5	9.82	30	
Benzo(b)fluoranthene	724	40.9	1,022	0	70.8	42.2	168	633.1	13.4	30	
Benzo(j,k)fluoranthene	802	40.9	1,022	0	78.5	34.8	147	767.5	4.39	30	
Benzo(a)pyrene	816	40.9	1,022	0	79.9	34.4	179	749.6	8.51	30	
Indeno(1,2,3-cd)pyrene	728	40.9	1,022	5.758	70.7	5	113	670.6	8.17	30	
Dibenz(a,h)anthracene	717	40.9	1,022	5.364	69.6	17.3	156	653.3	9.26	30	
Benzo(g,h,i)perylene	718	40.9	1,022	3.708	69.9	24.9	119	673.7	6.31	30	
Surr: 2-Fluorobiphenyl	428		510.9		83.7	24.5	139		0		
Surr: Terphenyl-d14 (surr)	594		510.9		116	46.2	179		0		

Page 39 of 66 Original

Date: 8/14/2017

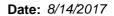
Yakima EWC

Work Order: 1708051

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson


Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID 1708051-003AMSD SampType: MSD Units: μg/Kg-dry Prep Date: 8/7/2017 RunNo: 37845

Client ID: **ES-7** Batch ID: **17832** Analysis Date: **8/7/2017** SeqNo: **727328**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Original Page 40 of 66

Yakima EWC

Work Order: 1708051

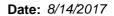
Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Polychlorinated Biphenyls (PCB) by EPA 8082

Sample ID MB-17861	SampType: MBLK			Units: mg/Kg		Prep Date	e: 8/9/201	7	RunNo: 37	910	
Client ID: MBLKS	Batch ID: 17861					Analysis Date	e: 8/9/201	7	SeqNo: 72	8407	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	ND	0.100									
Aroclor 1221	ND	0.100									
Aroclor 1232	ND	0.100									
Aroclor 1242	ND	0.100									
Aroclor 1248	ND	0.100									
Aroclor 1254	ND	0.100									
Aroclor 1260	ND	0.100									
Aroclor 1262	ND	0.100									
Aroclor 1268	ND	0.100									
Total PCBs	ND	0.100									
Surr: Decachlorobiphenyl	86.2		50.00		172	30.8	168				S
Surr: Tetrachloro-m-xylene	84.6		50.00		169	30.3	157				S
NOTES:											


S - Outlying surrogate recovery(ies) observed (high bias). Sample is non-detect; no further action required.

Sample ID LCS1-17861	SampType: LCS			Units: mg/Kg					RunNo: 379		
Client ID: LCSS	Batch ID: 17861				Analysis Date: 8/9/2017 %REC LowLimit HighLimit RPD Ref Val			7	SeqNo: 728	8408	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	1.43	0.100	1.000	0	143	38.5	149				
Aroclor 1260	1.45	0.100	1.000	0	145	35.4	154				
Surr: Decachlorobiphenyl	82.4		50.00		165	30.8	168				
Surr: Tetrachloro-m-xylene	82.0		50.00		164	30.3	157				S
NOTES:											
S - Outlying surrogate recovery	(ies) observed										

S - Outlying surrogate recovery(ies) observed.

Sample ID LCS2-17861	SampType: LCS			Units: mg/Kg		Prep Da	te: 8/9/201	7	RunNo: 379	910	
Client ID: LCSS	Batch ID: 17861					Analysis Da	te: 8/9/201	7	SeqNo: 728	3409	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1254	1.40	0.100	1.000	0	140	31.9	167				
Surr: Decachlorobiphenyl	78.4		50.00		157	30.8	168				

Page 41 of 66 Original

QC SUMMARY REPORT

CLIENT: Shannon & Wilson Project: Yakima EWC

Polychlorinated Biphenyls (PCB) by EPA 8082

Sample ID LCS2-17861	SampType: LCS			Units: mg/Kg		Prep Da	te: 8/9/201	7	RunNo: 379	910	
Client ID: LCSS	Batch ID: 17861					Analysis Da	te: 8/9/201	7	SeqNo: 728	3409	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: Tetrachloro-m-xylene	80.0		50.00		160	30.3	157				S

NOTES:

S - Outlying surrogate recovery(ies) observed.

Sample ID 1708051-002ADUP	SampType: DUP			Units: mg/	/Kg-dry	Prep Dat	e: 8/9/20	17	RunNo: 37 9	910	
Client ID: ES-6	Batch ID: 17861					Analysis Dat	e: 8/9/20	17	SeqNo: 728	3411	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	ND	0.289						0		30	
Aroclor 1221	ND	0.289						0		30	
Aroclor 1232	ND	0.289						0		30	
Aroclor 1242	ND	0.289						0		30	
Aroclor 1248	ND	0.289						0		30	
Aroclor 1254	ND	0.289						0		30	
Aroclor 1260	ND	0.289						0		30	
Aroclor 1262	ND	0.289						0		30	
Aroclor 1268	ND	0.289						0		30	
Total PCBs	ND	0.289						0		30	
Surr: Decachlorobiphenyl	165		144.7		114	30.8	168		0		
Surr: Tetrachloro-m-xylene	157		144.7		109	30.3	157		0		

Sample ID 1708051-002AMS	SampType: MS			Units: mg/	Kg-dry	Prep Da	te: 8/9/201	7	RunNo: 37910		
Client ID: ES-6	Batch ID: 17861					Analysis Da	te: 8/9/201	7	SeqNo: 728	3412	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	3.40	0.295	2.954	0	115	27.1	166				
Aroclor 1260	3.51	0.295	2.954	0.02241	118	20.6	168				
Surr: Decachlorobiphenyl	139		147.7		94.2	30.8	168				
Surr: Tetrachloro-m-xylene	126		147.7		85.3	30.3	157				

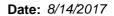
Original Page 42 of 66

Date: 8/14/2017

Yakima EWC

Work Order: 1708051

Project:

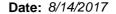

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Polychlorinated Biphenyls (PCB) by EPA 8082

Sample ID 1708051-002AMSD	SampType: MSD			Units: mg/	Kg-dry	Prep Dat	te: 8/9/201	17	RunNo: 379	910	
Client ID: ES-6	Batch ID: 17861					Analysis Dat	te: 8/9/201	17	SeqNo: 728	3413	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	3.28	0.281	2.811	0	117	27.1	166	3.397	3.55	30	
Aroclor 1260	3.33	0.281	2.811	0.02241	118	20.6	168	3.509	5.10	30	
Surr: Decachlorobiphenyl	81.1		140.6		57.7	30.8	168		0		
Surr: Tetrachloro-m-xylene	63.9		140.6		45.5	30.3	157		0		

Original Page 43 of 66



QC SUMMARY REPORT

CLIENT: Shannon & Wilson Project: Yakima EWC

Polychlorinated Biphenyls (PCB) by EPA 8082

O T										
SampType: MBLK			Units: mg/Kg		Prep Date	e: 8/7/201	7	RunNo: 378	347	
Batch ID: 17833					Analysis Date	e: 8/7/201	7	SeqNo: 727	7313	
Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
ND	0.100									
ND	0.100									
ND	0.100									
ND	0.100									
ND	0.100									
ND	0.100									
ND	0.100									
ND	0.100									
ND	0.100									
ND	0.100									
70.7		50.00		141	30.8	168				
64.7		50.00		129	30.3	157				
SampType: LCS			Units: mg/Kg		Prep Date	e: 8/7/201	7	RunNo: 378	347	
Batch ID: 17833					Analysis Date	e: 8/7/201	7	SeqNo: 727	7314	
Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
1.32	0.100	1.000	0	132	38.5	149				
1.45	0.100	1.000	0	145	35.4	154				
87.0		50.00		174	30.8	168				S
77.3		50.00		155	30.3	157				
es) observed.										
SampType: LCS			Units: mg/Kg		Prep Date	e: 8/7/201	7	RunNo: 378	347	
Batch ID: 17833					Analysis Date	e: 8/7/201	7	SeqNo: 727	7315	
Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qu
<u></u>										
1.57	0.100	1.000	0	157	31.9	167				
1.57 85.6	0.100	1.000 50.00	0	157 171	31.9 30.8	167 168				5
	Result ND ND ND ND ND ND ND ND ND ND ND ND T0.7 64.7 SampType: LCS Batch ID: 17833 Result 1.32 1.45 87.0 77.3 es) observed. SampType: LCS	Result RL ND 0.100 ND 0.100 ND 0.100 ND 0.100 ND 0.100 ND 0.100 ND 0.100 ND 0.100 ND 0.100 ND 0.100 ND 0.100 ND 0.100 To.7 64.7 SampType: LCS Batch ID: 17833 Result RL 1.32 0.100 1.45 0.100 87.0 77.3 es) observed. SampType: LCS	Result RL SPK value	Result RL SPK value SPK Ref Val	Result RL SPK value SPK Ref Val %REC	Result RL SPK value SPK Ref Val %REC LowLimit	Result RL SPK value SPK Ref Val %REC LowLimit HighLimit	Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val	Result	Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit RPD Ref Val RPDLimit RPD Ref Val RPDLimit
Original Page 44 of 66

Yakima EWC

Work Order: 1708051

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Polychlorinated Biphenyls (PCB) by EPA 8082

 Sample ID
 LCS2-17833
 SampType: LCS
 Units: mg/Kg
 Prep Date:
 8/7/2017
 RunNo:
 37847

Client ID: LCSS Batch ID: 17833 Analysis Date: 8/7/2017 SeqNo: 727315

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

NOTES:

Project:

S - Outlying surrogate recovery(ies) observed.

Sample ID 1707254-014ADUP	SampType: DUP			Units: mg	/Kg-dry	Prep Date	e: 8/7/20 1	17	RunNo: 378	347	
Client ID: BATCH	Batch ID: 17833					Analysis Dat	e: 8/7/20 1	17	SeqNo: 727	7317	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	ND	0.101						0		30	
Aroclor 1221	ND	0.101						0		30	
Aroclor 1232	ND	0.101						0		30	
Aroclor 1242	ND	0.101						0		30	
Aroclor 1248	ND	0.101						0		30	
Aroclor 1254	ND	0.101						0		30	
Aroclor 1260	ND	0.101						0		30	
Aroclor 1262	ND	0.101						0		30	
Aroclor 1268	ND	0.101						0		30	
Total PCBs	ND	0.101						0		30	
Surr: Decachlorobiphenyl	58.3		50.71		115	30.8	168		0		
Surr: Tetrachloro-m-xylene	62.5		50.71		123	30.3	157		0		

Sample ID 1707254-014AMS	SampType: MS	ID: 17833			Kg-dry	Prep Da	te: 8/7/201	7	RunNo: 37847		
Client ID: BATCH	Batch ID: 17833					Analysis Da	te: 8/7/201	7	SeqNo: 727	7318	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	1.30	0.102	1.020	0	127	27.1	166				
Aroclor 1260	1.29	0.102	1.020	0.005811	126	20.6	168				
Surr: Decachlorobiphenyl	64.7		51.00		127	30.8	168				
Surr: Tetrachloro-m-xylene	70.9		51.00		139	30.3	157				

Original Page 45 of 66

Date: 8/14/2017

Yakima EWC

Work Order: 1708051

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Polychlorinated Biphenyls (PCB) by EPA 8082

Sample ID 1707254-014AMSD	SampType: MSD			Units: mg/	Kg-dry	Prep Dat	te: 8/7/20 1	17	RunNo: 378	347	
Client ID: BATCH	Batch ID: 17833					Analysis Da	te: 8/7/20 1	17	SeqNo: 727	7319	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aroclor 1016	1.44	0.107	1.067	0	135	27.1	166	1.297	10.4	30	
Aroclor 1260	1.42	0.107	1.067	0.005811	132	20.6	168	1.287	9.71	30	
Surr: Decachlorobiphenyl	66.8		53.33		125	30.8	168		0		
Surr: Tetrachloro-m-xylene	76.7		53.33		144	30.3	157		0		

Original Page 46 of 66

Date: 8/14/2017

Yakima EWC

Work Order: 1708051

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Sample Moisture (Percent Moisture)

Sample ID 1708059-005ADUP SampType: DUP Units: wt% Prep Date: 8/7/2017 RunNo: 37834

Client ID: BATCH Batch ID: R37834 Analysis Date: 8/7/2017 SeqNo: 727111

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Percent Moisture 7.39 0.500 7.194 2.65 20

Original Page 47 of 66

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Total Metals by EPA Method 6020

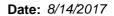
Project:	Yakima EW C								lotal Me	etals by E	PA Metho	od 6020
Sample ID	MB-17862	SampType: MBLK			Units: mg/K	g	Prep Date	8/9/201	7	RunNo: 37	928	
Client ID:	MBLKS	Batch ID: 17862					Analysis Date	8/10/20	17	SeqNo: 72	8681	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Silver		ND	0.0794									
Sample ID	LCS-17862	SampType: LCS			Units: mg/K	g	Prep Date	8/9/201	7	RunNo: 37	928	
Client ID:	LCSS	Batch ID: 17862					Analysis Date	8/10/20	17	SeqNo: 72	8682	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Silver		9.74	0.0775	9.690	0	101	80	120				
Sample ID	1708093-001ADUP	SampType: DUP			Units: mg/K	g-dry	Prep Date	8/9/201	7	RunNo: 37	928	
Client ID:	ВАТСН	Batch ID: 17862					Analysis Date	8/10/20	17	SeqNo: 72	8684	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Silver		0.204	0.0856						0.2079	1.81	20	
Sample ID	1708093-001AMS	SampType: MS			Units: mg/K	g-dry	Prep Date	: 8/9/201	7	RunNo: 37	928	
Client ID:	ВАТСН	Batch ID: 17862					Analysis Date	8/10/20	17	SeqNo: 72	8686	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Silver		9.23	0.0843	10.54	0.2079	85.6	75	125				
Sample ID	1708093-001AMSD	SampType: MSD			Units: mg/K	g-dry	Prep Date	: 8/9/201	7	RunNo: 37	928	
Client ID:	BATCH	Batch ID: 17862					Analysis Date	8/10/20	17	SeqNo: 72	8687	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Silver		10.2	0.0849	10.62	0.2079	94.5	75	125	9.226	10.4	20	

Original Page 48 of 66

Yakima EWC

Work Order: 1708051

Project:


QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Total Metals by EPA Method 6020

Sample ID MB-17834			Units: mg/Kg		Prep Date:	8/8/201	7	RunNo: 378	394		
Client ID: MBLKS	Batch ID: 17834					Analysis Date:	8/9/201	7	SeqNo: 728	3012	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	ND	0.0775									
Barium	ND	0.388									
Cadmium	ND	0.155									
Chromium	ND	0.0775									
Copper	ND	0.155									
Lead	ND	0.155									
Nickel	ND	0.0775									
Selenium	ND	0.388									
Zinc	ND	0.310									
Sample ID LCS-17834	SampType: LCS			Units: mg/Kg		Prep Date:	8/8/201	7	RunNo: 378	394	
Client ID: LCSS	Batch ID: 17834					Analysis Date:	8/9/201	7	SeqNo: 728	3013	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	38.2	0.0787	39.37	0	97.1	80	120				
Barium	35.9	0.394	39.37	0	91.2	80	120				
Cadmium	1.92	0.157	1.969	0	97.4	80	120				
Chromium	39.1	0.0787	39.37	0	99.3	80	120				
Copper	40.4	0.157	39.37	0	103	80	120				
Lead	20.8	0.157	19.69	0	106	80	120				
Nickel	39.9	0.0787	39.37	0	101	80	120				
Selenium	3.88	0.394	3.937	0	98.5	80	120				
Zinc	37.9	0.315	39.37	0	96.3	80	120				
Sample ID 1708069-001BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date:	8/8/201	7	RunNo: 378	394	
Client ID: BATCH	Batch ID: 17834					Analysis Date:	8/9/201	7	SeqNo: 728	3015	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	4.57	0.0927						4.124	10.3	20	
Barium	88.5	0.464						91.10	2.92	20	

Original Page 49 of 66

Yakima EWC

Work Order: 1708051

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Total Metals by EPA Method 6020

Sample ID 1708069-001BDUP	SampType: DUP		5 5 ,			Prep Da	te: 8/8/201	7	RunNo: 37		
Client ID: BATCH	Batch ID: 17834					Analysis Da	te: 8/9/201	7	SeqNo: 72	8015	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Cadmium	ND	0.185						0		20	
Chromium	51.6	0.0927						40.11	25.2	20	R
Copper	29.2	0.185						25.83	12.2	20	
Lead	7.11	0.185						7.870	10.1	20	
Nickel	51.1	0.0927						40.10	24.1	20	R
Selenium	1.29	0.464						1.105	15.7	20	
Zinc	56.3	0.371						47.67	16.6	20	

NOTES:

Project:

R - High RPD observed. The method is in control as indicated by the LCS.

Sample ID 1708069-001BMS	SampType: MS	s		Units: mg/	/Kg-dry	Prep Date: 8/8/2017		RunNo: 37	894		
Client ID: BATCH	Batch ID: 17834					Analysis Da	te: 8/9/201	7	SeqNo: 72	8020	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	52.9	0.0913	45.64	4.124	107	75	125				
Barium	135	0.456	45.64	91.10	95.9	75	125				
Cadmium	2.56	0.183	2.282	0.08180	109	75	125				
Chromium	81.3	0.0913	45.64	40.11	90.4	75	125				
Copper	76.1	0.183	45.64	25.83	110	75	125				
Lead	35.1	0.183	22.82	7.870	119	75	125				
Nickel	78.6	0.0913	45.64	40.10	84.4	75	125				
Selenium	5.75	0.456	4.564	1.105	102	75	125				
Zinc	88.2	0.365	45.64	47.67	88.8	75	125				
Sample ID 1708069-001BMSD	SampType: MSD			Units: mg/	/Kg-dry	Prep Da	te: 8/8/201	7	RunNo: 37	894	

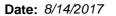
Sample ID 1708069-001BMSD	SampType: MSD			Units: mg/Kg-dry Prep D			te: 8/8/201	7	RunNo: 378	394	
Client ID: BATCH	Batch ID: 17834					Analysis Da	te: 8/9/201	7	SeqNo: 728	3021	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	51.9	0.0942	47.09	4.124	101	75	125	52.94	1.98	20	
Barium	149	0.471	47.09	91.10	124	75	125	134.9	10.1	20	
Cadmium	2.51	0.188	2.355	0.08180	103	75	125	2.565	2.33	20	

Original Page 50 of 66

Date: 8/14/2017

1708051 Work Order:

Project:

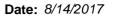

QC SUMMARY REPORT

CLIENT: Shannon & Wilson Yakima EWC

Total Metals by EPA Method 6020

Sample ID 1708069-001BMSD	SampType: MSD			Units: mg/l	Kg-dry	Prep Da	te: 8/8/20 1	17	RunNo: 37	894	
Client ID: BATCH	Batch ID: 17834	Analysis Date: 8/					te: 8/9/20 1	7	SeqNo: 72	8021	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chromium	95.6	0.0942	47.09	40.11	118	75	125	81.35	16.1	20	
Copper	74.7	0.188	47.09	25.83	104	75	125	76.13	1.86	20	
Lead	35.0	0.188	23.55	7.870	115	75	125	35.07	0.312	20	
Nickel	92.3	0.0942	47.09	40.10	111	75	125	78.64	16.0	20	
Selenium	5.85	0.471	4.709	1.105	101	75	125	5.749	1.78	20	
Zinc	98.8	0.377	47.09	47.67	109	75	125	88.18	11.3	20	

Page 51 of 66 Original

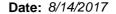

QC SUMMARY REPORT

CLIENT: Shannon & Wilson Project: Yakima EWC

Volatile Organic Compounds by EPA Method 8260C

Sample ID LCS-17870	SampType: LCS			Units: mg/Kg)17	RunNo: 37921		
Client ID: LCSS	Batch ID: 17870					Analysis Da	te: 8/10/2 0)17	SeqNo: 72	8538	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	1.39	0.0200	1.000	0	139	14.3	167				
Chloromethane	1.20	0.0500	1.000	0	120	46	144				
Vinyl chloride	1.12	0.0250	1.000	0	112	43.4	151				
Bromomethane	1.06	0.0500	1.000	0	106	40.9	157				
Trichlorofluoromethane (CFC-11)	1.06	0.0200	1.000	0	106	36.9	156				
Chloroethane	1.04	0.0500	1.000	0	104	33.1	147				
1,1-Dichloroethene	1.04	0.0200	1.000	0	104	49.7	142				
Methylene chloride	1.03	0.0200	1.000	0	103	46.3	140				
trans-1,2-Dichloroethene	1.02	0.0200	1.000	0	102	68	130				
Methyl tert-butyl ether (MTBE)	1.02	0.0500	1.000	0	102	66.3	145				
1,1-Dichloroethane	1.02	0.0200	1.000	0	102	61.9	137				
2,2-Dichloropropane	1.31	0.100	1.000	0	131	35.5	186				
cis-1,2-Dichloroethene	1.02	0.0200	1.000	0	102	71.3	135				
Chloroform	1.01	0.0200	1.000	0	101	69	145				
1,1,1-Trichloroethane (TCA)	0.982	0.0250	1.000	0	98.2	69	132				
1,1-Dichloropropene	1.04	0.0200	1.000	0	104	72.7	131				
Carbon tetrachloride	0.943	0.0250	1.000	0	94.3	63.4	137				
1,2-Dichloroethane (EDC)	1.02	0.0200	1.000	0	102	50.9	162				
Benzene	0.963	0.0200	1.000	0	96.3	64.3	133				
Trichloroethene (TCE)	0.966	0.0200	1.000	0	96.6	65.5	137				
1,2-Dichloropropane	1.03	0.0200	1.000	0	103	63.2	142				
Bromodichloromethane	0.983	0.0200	1.000	0	98.3	53.4	131				
Dibromomethane	1.01	0.0200	1.000	0	101	60.1	146				
cis-1,3-Dichloropropene	1.15	0.0200	1.000	0	115	59.1	143				
Toluene	1.03	0.0200	1.000	0	103	67.3	138				
trans-1,3-Dichloropropylene	1.14	0.0200	1.000	0	114	49.2	149				
1,1,2-Trichloroethane	1.03	0.0200	1.000	0	103	56.9	147				
1,3-Dichloropropane	1.03	0.0250	1.000	0	103	56.1	153				
Tetrachloroethene (PCE)	1.06	0.0250	1.000	0	106	52.7	150				
Dibromochloromethane	0.983	0.0250	1.000	0	98.3	70.6	144				
1,2-Dibromoethane (EDB)	1.01	0.00500	1.000	0	101	50.5	154				

Original Page 52 of 66


QC SUMMARY REPORT

CLIENT: Shannon & Wilson Project: Yakima EWC

Volatile Organic Compounds by EPA Method 8260C

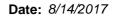
Sample ID LCS-17870	SampType: LCS			Units: mg/Kg)17	RunNo: 37 9	921	
Client ID: LCSS	Batch ID: 17870					Analysis Da	te: 8/10/2 0	17	SeqNo: 72	3538	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chlorobenzene	1.02	0.0250	1.000	0	102	76.1	123				
1,1,1,2-Tetrachloroethane	0.996	0.0250	1.000	0	99.6	65.9	141				
Ethylbenzene	1.05	0.0250	1.000	0	105	74	129				
m,p-Xylene	2.12	0.0500	2.000	0	106	70	124				
o-Xylene	1.04	0.0250	1.000	0	104	68.1	139				
Styrene	1.05	0.0250	1.000	0	105	73.3	146				
Isopropylbenzene	1.05	0.0250	1.000	0	105	70	130				
Bromoform	0.970	0.0500	1.000	0	97.0	67	154				
1,1,2,2-Tetrachloroethane	1.13	0.0200	1.000	0	113	44.8	165				
n-Propylbenzene	1.08	0.0250	1.000	0	108	74.8	125				
Bromobenzene	1.03	0.0200	1.000	0	103	49.2	144				
1,3,5-Trimethylbenzene	1.06	0.0250	1.000	0	106	74.6	123				
2-Chlorotoluene	1.04	0.0250	1.000	0	104	76.7	129				
4-Chlorotoluene	1.05	0.0250	1.000	0	105	77.5	125				
tert-Butylbenzene	1.02	0.0250	1.000	0	102	66.2	130				
1,2,3-Trichloropropane	1.04	0.0250	1.000	0	104	67.9	136				
1,2,4-Trichlorobenzene	1.06	0.0250	1.000	0	106	62.6	143				
sec-Butylbenzene	1.04	0.0500	1.000	0	104	75.6	133				
4-Isopropyltoluene	1.04	0.0500	1.000	0	104	76.8	131				
1,3-Dichlorobenzene	1.04	0.0200	1.000	0	104	72.8	128				
1,4-Dichlorobenzene	1.05	0.0200	1.000	0	105	72.6	126				
n-Butylbenzene	1.14	0.0250	1.000	0	114	65.3	136				
1,2-Dichlorobenzene	1.04	0.0200	1.000	0	104	72.8	126				
1,2-Dibromo-3-chloropropane	0.999	0.500	1.000	0	99.9	40.2	155				
1,2,4-Trimethylbenzene	1.06	0.0200	1.000	0	106	77.5	129				
Hexachlorobutadiene	1.17	0.0500	1.000	0	117	42	151				
Naphthalene	1.14	0.0500	1.000	0	114	58.4	160				
1,2,3-Trichlorobenzene	1.06	0.0200	1.000	0	106	54.8	143				
Surr: Dibromofluoromethane	1.26		1.250		101	56.5	129				
Surr: Toluene-d8	1.31		1.250		104	64.5	151				
Surr: 1-Bromo-4-fluorobenzene	1.34		1.250		107	63.1	141				

Original Page 53 of 66

QC SUMMARY REPORT

CLIENT: Shannon & Wilson Project: Yakima EWC

Volatile Organic Compounds by EPA Method 8260C

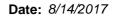

Sample ID LCS-17870 SampType: LCS Units: mg/Kg Prep Date: 8/10/2017 RunNo: 37921

Client ID: LCSS Batch ID: 17870 Analysis Date: 8/10/2017 SeqNo: 728538

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Sample ID MB-17870	SampType: MBLK			Units: mg/Kg		Prep Da	te: 8/10/2	017	RunNo: 379	921	
Client ID: MBLKS	Batch ID: 17870					Analysis Da	te: 8/10/2	017	SeqNo: 728	3539	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	0.0200									
Chloromethane	ND	0.0500									
Vinyl chloride	ND	0.0250									
Bromomethane	ND	0.0500									
Trichlorofluoromethane (CFC-11)	ND	0.0200									
Chloroethane	ND	0.0500									
1,1-Dichloroethene	ND	0.0200									
Methylene chloride	ND	0.0200									
trans-1,2-Dichloroethene	ND	0.0200									
Methyl tert-butyl ether (MTBE)	ND	0.0500									
1,1-Dichloroethane	ND	0.0200									
2,2-Dichloropropane	ND	0.100									
cis-1,2-Dichloroethene	ND	0.0200									
Chloroform	ND	0.0200									
1,1,1-Trichloroethane (TCA)	ND	0.0250									
1,1-Dichloropropene	ND	0.0200									
Carbon tetrachloride	ND	0.0250									
1,2-Dichloroethane (EDC)	ND	0.0200									
Benzene	ND	0.0200									
Trichloroethene (TCE)	ND	0.0200									
1,2-Dichloropropane	ND	0.0200									
Bromodichloromethane	ND	0.0200									
Dibromomethane	ND	0.0200									
cis-1,3-Dichloropropene	ND	0.0200									
Toluene	ND	0.0200									
											- [4 -[0

Original Page 54 of 66


QC SUMMARY REPORT

CLIENT: Shannon & Wilson Project: Yakima EWC

Volatile Organic Compounds by EPA Method 8260C

Sample ID MB-17870	SampType: MBLK			Units: mg/Kg		Prep Dat	te: 8/10/2 0	017	RunNo: 37 9	921	
Client ID: MBLKS	Batch ID: 17870					Analysis Da	te: 8/10/2 0	017	SeqNo: 728	3539	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
trans-1,3-Dichloropropylene	ND	0.0200									
1,1,2-Trichloroethane	ND	0.0200									
1,3-Dichloropropane	ND	0.0250									
Tetrachloroethene (PCE)	ND	0.0250									
Dibromochloromethane	ND	0.0250									
1,2-Dibromoethane (EDB)	ND	0.00500									
Chlorobenzene	ND	0.0250									
1,1,1,2-Tetrachloroethane	ND	0.0250									
Ethylbenzene	ND	0.0250									
m,p-Xylene	ND	0.0500									
o-Xylene	ND	0.0250									
Styrene	ND	0.0250									
Isopropylbenzene	ND	0.0250									
Bromoform	ND	0.0500									
1,1,2,2-Tetrachloroethane	ND	0.0200									
n-Propylbenzene	ND	0.0250									
Bromobenzene	ND	0.0200									
1,3,5-Trimethylbenzene	ND	0.0250									
2-Chlorotoluene	ND	0.0250									
4-Chlorotoluene	ND	0.0250									
tert-Butylbenzene	ND	0.0250									
1,2,3-Trichloropropane	ND	0.0250									
1,2,4-Trichlorobenzene	ND	0.0250									
sec-Butylbenzene	ND	0.0500									
4-Isopropyltoluene	ND	0.0500									
1,3-Dichlorobenzene	ND	0.0200									
1,4-Dichlorobenzene	ND	0.0200									
n-Butylbenzene	ND	0.0250									
1,2-Dichlorobenzene	ND	0.0200									
1,2-Dibromo-3-chloropropane	ND	0.500									
1,2,4-Trimethylbenzene	ND	0.0200									

Original Page 55 of 66

QC SUMMARY REPORT

CLIENT: Shannon & Wilson Project: Yakima EWC

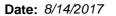
Volatile Organic Compounds by EPA Method 8260C

Sample ID MB-17870	SampType: MBLK			Units: mg/Kg Prep Date: 8/10/2017				017	RunNo: 37921		
Client ID: MBLKS	Batch ID: 17870				Analysis Date: 8/10/2017				SeqNo: 72	8539	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Hexachlorobutadiene	ND	0.0500									
Naphthalene	ND	0.0500									
1,2,3-Trichlorobenzene	ND	0.0200									
Surr: Dibromofluoromethane	1.01		1.250		81.0	56.5	129				
Surr: Toluene-d8	1.29		1.250		103	64.5	151				
Surr: 1-Bromo-4-fluorobenzene	1.32		1.250		105	63.1	141				

Sample ID 1708101-002BDUP	SampType: DUP			Units: mg/	Kg-dry	Prep Dat	e: 8/10/2 0)17	RunNo: 37 9)21	
Client ID: BATCH	Batch ID: 17870					Analysis Dat	e: 8/10/2 0)17	SeqNo: 729	055	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	0.0243						0		30	
Chloromethane	ND	0.0606						0		30	
Vinyl chloride	ND	0.0303						0		30	
Bromomethane	ND	0.0606						0		30	
Trichlorofluoromethane (CFC-11)	ND	0.0243						0		30	
Chloroethane	ND	0.0606						0		30	
1,1-Dichloroethene	ND	0.0243						0		30	
Methylene chloride	ND	0.0243						0		30	
trans-1,2-Dichloroethene	ND	0.0243						0		30	
Methyl tert-butyl ether (MTBE)	ND	0.0606						0		30	
1,1-Dichloroethane	ND	0.0243						0		30	
2,2-Dichloropropane	ND	0.121						0		30	
cis-1,2-Dichloroethene	ND	0.0243						0		30	
Chloroform	ND	0.0243						0		30	
1,1,1-Trichloroethane (TCA)	ND	0.0303						0		30	
1,1-Dichloropropene	ND	0.0243						0		30	
Carbon tetrachloride	ND	0.0303						0		30	
1,2-Dichloroethane (EDC)	ND	0.0243						0		30	
Benzene	ND	0.0243						0		30	

Original Page 56 of 66

Project:


QC SUMMARY REPORT

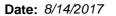
CLIENT: Shannon & Wilson Yakima EWC

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1708101-002BDUP	SampType: DUP			Units: mg/h	(g-dry	Prep Dat	te: 8/10/2 0	017	RunNo: 37	921	
Client ID: BATCH	Batch ID: 17870					Analysis Da	te: 8/10/2 0	017	SeqNo: 72	9055	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Trichloroethene (TCE)	ND	0.0243						0		30	
1,2-Dichloropropane	ND	0.0243						0		30	
Bromodichloromethane	ND	0.0243						0		30	
Dibromomethane	ND	0.0243						0		30	
cis-1,3-Dichloropropene	ND	0.0243						0		30	
Toluene	0.0349	0.0243						0.03516	0.676	30	
trans-1,3-Dichloropropylene	ND	0.0243						0		30	
1,1,2-Trichloroethane	ND	0.0243						0		30	
1,3-Dichloropropane	ND	0.0303						0		30	
Tetrachloroethene (PCE)	ND	0.0303						0		30	
Dibromochloromethane	ND	0.0303						0		30	
1,2-Dibromoethane (EDB)	ND	0.00606						0		30	
Chlorobenzene	ND	0.0303						0		30	
1,1,1,2-Tetrachloroethane	ND	0.0303						0		30	
Ethylbenzene	ND	0.0303						0		30	
m,p-Xylene	ND	0.0606						0		30	
o-Xylene	ND	0.0303						0		30	
Styrene	ND	0.0303						0		30	
Isopropylbenzene	ND	0.0303						0		30	
Bromoform	ND	0.0606						0		30	
1,1,2,2-Tetrachloroethane	ND	0.0243						0		30	
n-Propylbenzene	ND	0.0303						0		30	
Bromobenzene	ND	0.0243						0		30	
1,3,5-Trimethylbenzene	ND	0.0303						0		30	
2-Chlorotoluene	ND	0.0303						0		30	
4-Chlorotoluene	ND	0.0303						0		30	
tert-Butylbenzene	ND	0.0303						0		30	
1,2,3-Trichloropropane	ND	0.0303						0		30	
1,2,4-Trichlorobenzene	ND	0.0303						0		30	
sec-Butylbenzene	ND	0.0606						0		30	
4-Isopropyltoluene	ND	0.0606						0		30	

Page 57 of 66 Original

QC SUMMARY REPORT

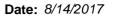

CLIENT: Shannon & Wilson Project: Yakima EWC

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1708101-002BDUP	SampType: DUP			Units: mg/Kg-dry Prep Date: 8/10/2017				017	RunNo: 37921		
Client ID: BATCH	Batch ID: 17870					Analysis Dat	e: 8/10/2 0	017	SeqNo: 72 9	9055	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,3-Dichlorobenzene	ND	0.0243						0		30	
1,4-Dichlorobenzene	ND	0.0243						0		30	
n-Butylbenzene	ND	0.0303						0		30	
1,2-Dichlorobenzene	ND	0.0243						0		30	
1,2-Dibromo-3-chloropropane	ND	0.606						0		30	
1,2,4-Trimethylbenzene	ND	0.0243						0		30	
Hexachlorobutadiene	ND	0.0606						0		30	
Naphthalene	ND	0.0606						0		30	
1,2,3-Trichlorobenzene	ND	0.0243						0		30	
Surr: Dibromofluoromethane	1.45		1.516		96.0	56.5	129		0		
Surr: Toluene-d8	1.55		1.516		102	64.5	151		0		
Surr: 1-Bromo-4-fluorobenzene	1.59		1.516		105	63.1	141		0		

Sample ID 1708101-001BMS	SampType	: MS			Units: mg	ı/Kg-dry	Prep Da	te: 8/10/2 0	17	RunNo: 37 9	921	
Client ID: BATCH	Batch ID:	17870					Analysis Da	te: 8/10/2 0	17	SeqNo: 729	9053	
Analyte	F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	(0.843	0.0174	0.8677	0	97.2	43.5	121				
Chloromethane	(0.881	0.0434	0.8677	0	102	45	130				
Vinyl chloride	(0.726	0.0217	0.8677	0	83.7	51.2	146				
Bromomethane	(0.973	0.0434	0.8677	0	112	21.3	120				
Trichlorofluoromethane (CFC-11)	(0.646	0.0174	0.8677	0	74.4	35	131				
Chloroethane	(0.625	0.0434	0.8677	0	72.0	31.9	123				
1,1-Dichloroethene	(0.610	0.0174	0.8677	0	70.3	61.9	141				
Methylene chloride	(0.785	0.0174	0.8677	0	90.4	54.7	142				
trans-1,2-Dichloroethene	(0.772	0.0174	0.8677	0	88.9	52	136				
Methyl tert-butyl ether (MTBE)		1.09	0.0434	0.8677	0	125	54.4	132				
1,1-Dichloroethane	(0.797	0.0174	0.8677	0	91.8	51.8	141				
2,2-Dichloropropane		1.67	0.0868	0.8677	0	192	36	123				S
cis-1,2-Dichloroethene	(0.823	0.0174	0.8677	0	94.9	58.6	136				

Original Page 58 of 66


QC SUMMARY REPORT

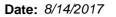
CLIENT: Shannon & Wilson Project: Yakima EWC

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1708101-001BMS	SampType: MS			Units: mg/h	Kg-dry	Prep Da	te: 8/10/2 0)17	RunNo: 37 9	921	
Client ID: BATCH	Batch ID: 17870					Analysis Da	te: 8/10/2 0	017	SeqNo: 72	9053	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloroform	0.824	0.0174	0.8677	0	95.0	53.2	129				
1,1,1-Trichloroethane (TCA)	0.766	0.0217	0.8677	0	88.3	58.3	145				
1,1-Dichloropropene	0.776	0.0174	0.8677	0	89.4	55.1	138				
Carbon tetrachloride	0.715	0.0217	0.8677	0	82.4	53.3	144				
1,2-Dichloroethane (EDC)	0.784	0.0174	0.8677	0	90.3	51.3	139				
Benzene	0.786	0.0174	0.8677	0	90.6	63.5	133				
Trichloroethene (TCE)	0.809	0.0174	0.8677	0	93.3	68.6	132				
1,2-Dichloropropane	0.784	0.0174	0.8677	0	90.4	59	136				
Bromodichloromethane	0.772	0.0174	0.8677	0	88.9	50.7	141				
Dibromomethane	0.870	0.0174	0.8677	0	100	50.6	137				
cis-1,3-Dichloropropene	0.970	0.0174	0.8677	0	112	50.4	138				
Toluene	0.787	0.0174	0.8677	0	90.7	63.4	132				
trans-1,3-Dichloropropylene	1.03	0.0174	0.8677	0	119	44.1	147				
1,1,2-Trichloroethane	0.879	0.0174	0.8677	0	101	51.6	137				
1,3-Dichloropropane	0.930	0.0217	0.8677	0	107	53.1	134				
Tetrachloroethene (PCE)	0.767	0.0217	0.8677	0	88.4	35.6	158				
Dibromochloromethane	0.780	0.0217	0.8677	0	89.9	55.3	140				
1,2-Dibromoethane (EDB)	0.911	0.00434	0.8677	0	105	50.4	136				
Chlorobenzene	0.825	0.0217	0.8677	0	95.1	60	133				
1,1,1,2-Tetrachloroethane	0.784	0.0217	0.8677	0	90.4	53.1	142				
Ethylbenzene	0.813	0.0217	0.8677	0	93.7	54.5	134				
m,p-Xylene	1.69	0.0434	1.735	0	97.3	53.1	132				
o-Xylene	0.834	0.0217	0.8677	0	96.1	53.3	139				
Styrene	0.885	0.0217	0.8677	0	102	51.1	132				
Isopropylbenzene	0.829	0.0217	0.8677	0	95.6	58.9	138				
Bromoform	0.813	0.0434	0.8677	0	93.7	57.9	130				
1,1,2,2-Tetrachloroethane	0.915	0.0174	0.8677	0	105	51.9	131				
n-Propylbenzene	0.880	0.0217	0.8677	0	101	53.6	140				
Bromobenzene	0.880	0.0174	0.8677	0	101	54.2	140				
1,3,5-Trimethylbenzene	0.881	0.0217	0.8677	0	101	51.8	136				
2-Chlorotoluene	0.812	0.0217	0.8677	0	93.6	51.6	136				

Original Page 59 of 66

QC SUMMARY REPORT

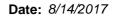

CLIENT: Shannon & Wilson
Project: Yakima FWC

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1708101-001BMS	SampType	: MS			Units: mg/l	Kg-dry	Prep Da	te: 8/10/2 0	017	RunNo: 37 9	321	
Client ID: BATCH	Batch ID:	17870					Analysis Da	te: 8/10/2 0	017	SeqNo: 729) 053	
Analyte	1	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
4-Chlorotoluene		0.894	0.0217	0.8677	0	103	50.1	139		-		
tert-Butylbenzene		0.859	0.0217	0.8677	0	99.0	50.5	135				
1,2,3-Trichloropropane		1.08	0.0217	0.8677	0	125	50.5	131				
1,2,4-Trichlorobenzene		1.10	0.0217	0.8677	0	126	50.8	130				
sec-Butylbenzene		0.854	0.0434	0.8677	0	98.4	52.6	141				
4-Isopropyltoluene		0.918	0.0434	0.8677	0	106	52.9	134				
1,3-Dichlorobenzene		0.840	0.0174	0.8677	0	96.9	52.6	131				
1,4-Dichlorobenzene		0.851	0.0174	0.8677	0	98.1	52.9	129				
n-Butylbenzene		0.934	0.0217	0.8677	0	108	52.6	130				
1,2-Dichlorobenzene		0.869	0.0174	0.8677	0	100	55.8	129				
1,2-Dibromo-3-chloropropane		1.03	0.434	0.8677	0	118	40.5	131				
1,2,4-Trimethylbenzene		0.905	0.0174	0.8677	0	104	50.6	137				
Hexachlorobutadiene		1.01	0.0434	0.8677	0	117	40.6	158				
Naphthalene		1.32	0.0434	0.8677	0	153	52.3	124				S
1,2,3-Trichlorobenzene		1.10	0.0174	0.8677	0	126	54.4	124				S
Surr: Dibromofluoromethane		1.07		1.085		98.7	56.5	129				
Surr: Toluene-d8		1.11		1.085		102	64.5	151				
Surr: 1-Bromo-4-fluorobenzene		1.21		1.085		112	63.1	141				

Sample ID 1708101-001BMSD	SampType: MSD			Units: mg/h	(g-dry	Prep Da	te: 8/10/2 0)17	RunNo: 379	921	
Client ID: BATCH	Batch ID: 17870					Analysis Da	te: 8/10/2 0)17	SeqNo: 729	9054	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	0.780	0.0174	0.8677	0	89.9	43.5	121	0.8434	7.83	30	
Chloromethane	0.905	0.0434	0.8677	0	104	45	130	0.8812	2.63	30	
Vinyl chloride	0.706	0.0217	0.8677	0	81.3	51.2	146	0.7263	2.87	30	
Bromomethane	0.925	0.0434	0.8677	0	107	21.3	120	0.9733	5.04	30	
Trichlorofluoromethane (CFC-11)	0.628	0.0174	0.8677	0	72.4	35	131	0.6460	2.80	30	
Chloroethane	0.604	0.0434	0.8677	0	69.7	31.9	123	0.6250	3.35	30	
1,1-Dichloroethene	0.635	0.0174	0.8677	0	73.2	61.9	141	0.6097	4.02	30	

Original Page 60 of 66


QC SUMMARY REPORT

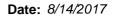
CLIENT: Shannon & Wilson Project: Yakima EWC

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1708101-001BMSD	SampType: MSD			Units: mg/k	(g-dry	Prep Da	te: 8/10/2 0)17	RunNo: 379	921	
Client ID: BATCH	Batch ID: 17870					Analysis Da	te: 8/10/2 0)17	SeqNo: 729	9054	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Methylene chloride	0.797	0.0174	0.8677	0	91.8	54.7	142	0.7846	1.53	30	
trans-1,2-Dichloroethene	0.789	0.0174	0.8677	0	91.0	52	136	0.7715	2.29	30	
Methyl tert-butyl ether (MTBE)	1.09	0.0434	0.8677	0	126	54.4	132	1.087	0.348	30	
1,1-Dichloroethane	0.798	0.0174	0.8677	0	92.0	51.8	141	0.7969	0.134	30	
2,2-Dichloropropane	1.62	0.0868	0.8677	0	187	36	123	1.668	2.87	30	S
cis-1,2-Dichloroethene	0.806	0.0174	0.8677	0	92.8	58.6	136	0.8231	2.14	30	
Chloroform	0.831	0.0174	0.8677	0	95.7	53.2	129	0.8239	0.827	30	
1,1,1-Trichloroethane (TCA)	0.767	0.0217	0.8677	0	88.4	58.3	145	0.7661	0.123	30	
1,1-Dichloropropene	0.763	0.0174	0.8677	0	87.9	55.1	138	0.7758	1.70	30	
Carbon tetrachloride	0.696	0.0217	0.8677	0	80.2	53.3	144	0.7152	2.68	30	
1,2-Dichloroethane (EDC)	0.790	0.0174	0.8677	0	91.1	51.3	139	0.7838	0.804	30	
Benzene	0.791	0.0174	0.8677	0	91.2	63.5	133	0.7858	0.709	30	
Trichloroethene (TCE)	0.808	0.0174	0.8677	0	93.2	68.6	132	0.8093	0.110	30	
1,2-Dichloropropane	0.795	0.0174	0.8677	0	91.7	59	136	0.7841	1.41	30	
Bromodichloromethane	0.779	0.0174	0.8677	0	89.7	50.7	141	0.7717	0.896	30	
Dibromomethane	0.889	0.0174	0.8677	0	102	50.6	137	0.8699	2.18	30	
cis-1,3-Dichloropropene	0.984	0.0174	0.8677	0	113	50.4	138	0.9700	1.39	30	
Toluene	0.790	0.0174	0.8677	0	91.0	63.4	132	0.7871	0.324	30	
trans-1,3-Dichloropropylene	1.04	0.0174	0.8677	0	120	44.1	147	1.033	1.09	30	
1,1,2-Trichloroethane	0.880	0.0174	0.8677	0	101	51.6	137	0.8786	0.210	30	
1,3-Dichloropropane	0.918	0.0217	0.8677	0	106	53.1	134	0.9302	1.32	30	
Tetrachloroethene (PCE)	0.761	0.0217	0.8677	0	87.7	35.6	158	0.7669	0.729	30	
Dibromochloromethane	0.787	0.0217	0.8677	0	90.7	55.3	140	0.7801	0.925	30	
1,2-Dibromoethane (EDB)	0.927	0.00434	0.8677	0	107	50.4	136	0.9114	1.69	30	
Chlorobenzene	0.842	0.0217	0.8677	0	97.0	60	133	0.8248	2.02	30	
1,1,1,2-Tetrachloroethane	0.799	0.0217	0.8677	0	92.1	53.1	142	0.7841	1.88	30	
Ethylbenzene	0.826	0.0217	0.8677	0	95.2	54.5	134	0.8129	1.65	30	
m,p-Xylene	1.72	0.0434	1.735	0	98.8	53.1	132	1.688	1.58	30	
o-Xylene	0.847	0.0217	0.8677	0	97.6	53.3	139	0.8342	1.51	30	
Styrene	0.897	0.0217	0.8677	0	103	51.1	132	0.8854	1.26	30	
Isopropylbenzene	0.845	0.0217	0.8677	0	97.4	58.9	138	0.8295	1.84	30	

Original Page 61 of 66

Project:

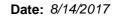

QC SUMMARY REPORT

CLIENT: Shannon & Wilson Yakima EWC

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1708101-001BMSD	SampType: MSD			Units: mg/K	g-dry	Prep Date:	8/10/20	17	RunNo: 379	921	
Client ID: BATCH	Batch ID: 17870					Analysis Date	8/10/20	17	SeqNo: 72 9	9054	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bromoform	0.829	0.0434	0.8677	0	95.5	57.9	130	0.8132	1.90	30	
1,1,2,2-Tetrachloroethane	0.953	0.0174	0.8677	0	110	51.9	131	0.9150	4.03	30	
n-Propylbenzene	0.887	0.0217	0.8677	0	102	53.6	140	0.8797	0.819	30	
Bromobenzene	0.889	0.0174	0.8677	0	102	54.2	140	0.8799	1.07	30	
1,3,5-Trimethylbenzene	0.898	0.0217	0.8677	0	103	51.8	136	0.8806	1.95	30	
2-Chlorotoluene	0.836	0.0217	0.8677	0	96.3	51.6	136	0.8124	2.81	30	
4-Chlorotoluene	0.919	0.0217	0.8677	0	106	50.1	139	0.8938	2.74	30	
tert-Butylbenzene	0.860	0.0217	0.8677	0	99.1	50.5	135	0.8591	0.119	30	
1,2,3-Trichloropropane	1.13	0.0217	0.8677	0	130	50.5	131	1.085	4.28	30	
1,2,4-Trichlorobenzene	1.16	0.0217	0.8677	0	134	50.8	130	1.095	5.99	30	S
sec-Butylbenzene	0.859	0.0434	0.8677	0	99.0	52.6	141	0.8538	0.572	30	
1-Isopropyltoluene	0.922	0.0434	0.8677	0	106	52.9	134	0.9184	0.423	30	
1,3-Dichlorobenzene	0.878	0.0174	0.8677	0	101	52.6	131	0.8405	4.42	30	
1,4-Dichlorobenzene	0.884	0.0174	0.8677	0	102	52.9	129	0.8508	3.78	30	
n-Butylbenzene	0.963	0.0217	0.8677	0	111	52.6	130	0.9336	3.11	30	
1,2-Dichlorobenzene	0.915	0.0174	0.8677	0	105	55.8	129	0.8686	5.23	30	
1,2-Dibromo-3-chloropropane	1.09	0.434	0.8677	0	126	40.5	131	1.028	5.96	30	
1,2,4-Trimethylbenzene	0.935	0.0174	0.8677	0	108	50.6	137	0.9049	3.32	30	
Hexachlorobutadiene	1.03	0.0434	0.8677	0	119	40.6	158	1.014	1.49	30	
Naphthalene	1.44	0.0434	0.8677	0	166	52.3	124	1.324	8.34	30	S
1,2,3-Trichlorobenzene	1.16	0.0174	0.8677	0	134	54.4	124	1.095	5.99	30	S
Surr: Dibromofluoromethane	1.07		1.085		98.7	56.5	129		0		
Surr: Toluene-d8	1.10		1.085		101	64.5	151		0		
Surr: 1-Bromo-4-fluorobenzene	1.21		1.085		111	63.1	141		0		
Sample ID 1708084-005BDUP	SampType: DUP			Units: mg/K	g-dry	Prep Date:	8/10/20	17	RunNo: 379	921	
Client ID: BATCH	Batch ID: 17870			_	-	Analysis Date	8/10/20 ⁻	17	SeqNo: 729	9052	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Dichlorodifluoromethane (CFC-12)	ND	0.00851						0		30	

Page 62 of 66 Original


QC SUMMARY REPORT

CLIENT: Shannon & Wilson Project: Yakima EWC

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1708084-005BDUP	SampType: DUP			Units: mg/l	Kg-dry	Prep Dat	e: 8/10/2 0	017	RunNo: 379	21	
Client ID: BATCH	Batch ID: 17870					Analysis Dat	e: 8/10/2 0	017	SeqNo: 729	052	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Chloromethane	ND	0.0213						0		30	
Vinyl chloride	ND	0.0106						0		30	
Bromomethane	ND	0.0213						0		30	
Trichlorofluoromethane (CFC-11)	ND	0.00851						0		30	
Chloroethane	ND	0.0213						0		30	
1,1-Dichloroethene	ND	0.00851						0		30	
Methylene chloride	ND	0.00851						0		30	
trans-1,2-Dichloroethene	ND	0.00851						0		30	
Methyl tert-butyl ether (MTBE)	ND	0.0213						0		30	
1,1-Dichloroethane	ND	0.00851						0		30	
2,2-Dichloropropane	ND	0.0426						0		30	
cis-1,2-Dichloroethene	ND	0.00851						0		30	
Chloroform	ND	0.00851						0		30	
1,1,1-Trichloroethane (TCA)	ND	0.0106						0		30	
1,1-Dichloropropene	ND	0.00851						0		30	
Carbon tetrachloride	ND	0.0106						0		30	
1,2-Dichloroethane (EDC)	ND	0.00851						0		30	
Benzene	ND	0.00851						0		30	
Trichloroethene (TCE)	ND	0.00851						0		30	
1,2-Dichloropropane	ND	0.00851						0		30	
Bromodichloromethane	ND	0.00851						0		30	
Dibromomethane	ND	0.00851						0		30	
cis-1,3-Dichloropropene	ND	0.00851						0		30	
Toluene	ND	0.00851						0		30	
trans-1,3-Dichloropropylene	ND	0.00851						0		30	
1,1,2-Trichloroethane	ND	0.00851						0		30	
1,3-Dichloropropane	ND	0.0106						0		30	
Tetrachloroethene (PCE)	ND	0.0106						0		30	
Dibromochloromethane	ND	0.0106						0		30	
1,2-Dibromoethane (EDB)	ND	0.00213						0		30	
Chlorobenzene	ND	0.0106						0		30	

Original Page 63 of 66

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson Yakima EWC

Volatile Organic Compounds by EPA Method 8260C

Sample ID 1708084-005BDUP	SampType: DUP			Units: mg/K	g-dry	Prep Da	te: 8/10/2 0	017	RunNo: 37 9	921	
Client ID: BATCH	Batch ID: 17870					Analysis Da	te: 8/10/2 0	017	SeqNo: 72 9	9052	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1,2-Tetrachloroethane	ND	0.0106						0		30	
Ethylbenzene	ND	0.0106						0		30	
m,p-Xylene	ND	0.0213						0		30	
o-Xylene	ND	0.0106						0		30	
Styrene	ND	0.0106						0		30	
Isopropylbenzene	ND	0.0106						0		30	
Bromoform	ND	0.0213						0		30	
1,1,2,2-Tetrachloroethane	ND	0.00851						0		30	
n-Propylbenzene	ND	0.0106						0		30	
Bromobenzene	ND	0.00851						0		30	
1,3,5-Trimethylbenzene	ND	0.0106						0		30	
2-Chlorotoluene	ND	0.0106						0		30	
4-Chlorotoluene	ND	0.0106						0		30	
tert-Butylbenzene	ND	0.0106						0		30	
1,2,3-Trichloropropane	ND	0.0106						0		30	
1,2,4-Trichlorobenzene	ND	0.0106						0		30	
sec-Butylbenzene	ND	0.0213						0		30	
4-Isopropyltoluene	ND	0.0213						0		30	
1,3-Dichlorobenzene	ND	0.00851						0		30	
1,4-Dichlorobenzene	ND	0.00851						0		30	
n-Butylbenzene	ND	0.0106						0		30	
1,2-Dichlorobenzene	ND	0.00851						0		30	
1,2-Dibromo-3-chloropropane	ND	0.213						0		30	
1,2,4-Trimethylbenzene	ND	0.00851						0		30	
Hexachlorobutadiene	ND	0.0213						0		30	
Naphthalene	ND	0.0213						0		30	
1,2,3-Trichlorobenzene	ND	0.00851						0		30	
Surr: Dibromofluoromethane	0.485		0.5320		91.1	56.5	129		0		
Surr: Toluene-d8	0.516		0.5320		96.9	64.5	151		0		
Surr: 1-Bromo-4-fluorobenzene	0.552		0.5320		104	63.1	141		0		

Page 64 of 66 Original

Sample Log-In Check List

С	lient Name:	sw				Work O	rder Numl	ber: 1708051		
Lo	ogged by:	Clare Grig	gs			Date Re	ceived:	8/4/2017	1:15:00 PM	
Cha	nin of Custo	od <u>v</u>								
	Is Chain of C	-	lete?			Yes	✓	No 🗌	Not Present	
2.	How was the	sample deliv	rered?			Clien	<u>nt</u>			
Log	ı İn									
_	Coolers are p	resent?				Yes	✓	No 🗌	NA 🗌	
0.	·									
4.	Shipping con	tainer/cooler	in good condition	?		Yes	✓	No \square		
5.			shipping contain ustody Seals not			Yes		No 🗌	Not Required 🗹	
6.	Was an atten	npt made to	cool the samples	?		Yes	✓	No 🗌	NA \square	
7.	Were all item	s received a	t a temperature o	f >0°C to 10	.0°C*	Yes	✓	No 🗆	NA \square	
8.	Sample(s) in	proper conta	iner(s)?			Yes	✓	No \square		
9.	Sufficient sar	nple volume	for indicated test	(s)?		Yes	✓	No \square		
10.	Are samples	properly pres	served?			Yes	✓	No \square		
11.	Was preserva	ative added t	o bottles?			Yes		No 🗸	NA \square	
12.	Is there head	space in the	VOA vials?			Yes		No 🗌	NA 🗸	
13.	Did all sample	es containers	s arrive in good co	ondition(unbr	oken)?	Yes	✓	No \square		
14.	Does paperw	ork match bo	ottle labels?			Yes	✓	No \square		
15.	Are matrices	correctly ide	ntified on Chain o	f Custody?		Yes	✓	No 🗌		
16.	Is it clear wha	at analyses v	vere requested?			Yes	✓	No 🗌		
17.	Were all hold	ing times ab	le to be met?			Yes	✓	No \square		
Spe	cial Handli	ing (if app	olicable)							
-		•	iscrepancies with	this order?		Yes		No 🗌	NA 🗸	
	Person	Notified:			Date					
	By Who				Via:	eMa	il 🗌 Ph	none Fax	☐ In Person	
	Regardi									
	Client In	structions:								
19.	Additional rer	marks:								_
<u>ltem</u>	<u>Information</u>									
		Item #		Temp °C						
	Cooler			8.4						

3.4

Original

Sample

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Page 1 of 2

COC 1.2 - 2.22.17

www.fremontanalytical.com

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Shannon & Wilson
Dave Randall
400 N. 34th Street, Suite 100
Seattle, WA 98103

RE: Cascade Mill Parkway
Work Order Number: 2104132

April 29, 2021

Attention Dave Randall:

Fremont Analytical, Inc. received 4 sample(s) on 4/8/2021 for the analyses presented in the following report.

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Gasoline by NWTPH-Gx

Mercury by EPA Method 7471

Sample Moisture (Percent Moisture)

Semi-Volatile Organic Compounds by EPA 8270 (SIM)

Total Metals by EPA Method 6020B

Volatile Organic Compounds by EPA Method 8260D

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Date: 04/29/2021

CLIENT: Shannon & Wilson Work Order Sample Summary

Project: Cascade Mill Parkway

Work Order: 2104132

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2104132-001	B-10-21/S-3@15.5	04/05/2021 11:05 PM	04/08/2021 5:37 PM
2104132-002	B-10-21/A9@48	04/06/2021 10:30 PM	04/08/2021 5:37 PM
2104132-003	B-9-21/R-10@48	04/07/2021 11:05 PM	04/08/2021 5:37 PM
2104132-004	Trip Blank	03/03/2021 10:10 AM	04/08/2021 5:37 PM

Case Narrative

WO#: **2104132**Date: **4/29/2021**

CLIENT: Shannon & Wilson
Project: Cascade Mill Parkway

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

4/29/2021: Revision 1 includes additional analysis requested by client.

Qualifiers & Acronyms

WO#: **2104132**

Date Reported: 4/29/2021

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

DUP - Sample Duplicate

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Work Order: **2104132**Date Reported: **4/29/2021**

Client: Shannon & Wilson Collection Date: 4/5/2021 11:05:00 PM

Project: Cascade Mill Parkway

Lab ID: 2104132-001 **Matrix:** Soil

Client Sample ID: B-10-21/S-3@15.5

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH-	Dx/Dx Ext.			Batch	n ID: 32	2091 Analyst: MM
Diesel (Fuel Oil)	ND	52.1	Н	mg/Kg-dry	1	4/26/2021 5:33:39 PM
Heavy Oil	1,120	104	Н	mg/Kg-dry	1	4/26/2021 5:33:39 PM
Total Petroleum Hydrocarbons	1,120	156	Н	mg/Kg-dry	1	4/26/2021 5:33:39 PM
Surr: 2-Fluorobiphenyl	75.3	50 - 150	Н	%Rec	1	4/26/2021 5:33:39 PM
Surr: o-Terphenyl	98.5	50 - 150	Н	%Rec	1	4/26/2021 5:33:39 PM
Semi-Volatile Organic Compound	ds by EPA 82	70 (SIM)		Batch	n ID: 32	2072 Analyst: SB
Naphthalene	ND	19.1	Н	μg/Kg-dry	1	4/26/2021 10:45:00 AM
2-Methylnaphthalene	ND	19.1	Н	μg/Kg-dry	1	4/26/2021 10:45:00 AM
1-Methylnaphthalene	ND	19.1	Н	μg/Kg-dry	1	4/26/2021 10:45:00 AM
Acenaphthene	ND	19.1	Н	μg/Kg-dry	1	4/26/2021 10:45:00 AM
Acenaphthylene	ND	19.1	Н	μg/Kg-dry	1	4/26/2021 10:45:00 AM
Fluorene	ND	19.1	Н	μg/Kg-dry	1	4/26/2021 10:45:00 AM
Pentachlorophenol	ND	76.6	Н	μg/Kg-dry	1	4/26/2021 10:45:00 AM
Phenanthrene	ND	38.3	Н	μg/Kg-dry	1	4/26/2021 10:45:00 AM
Anthracene	ND	38.3	Н	μg/Kg-dry	1	4/26/2021 10:45:00 AM
Fluoranthene	ND	38.3	Н	μg/Kg-dry	1	4/26/2021 10:45:00 AM
Pyrene	ND	38.3	Н	μg/Kg-dry	1	4/26/2021 10:45:00 AM
Benz(a)anthracene	ND	19.1	Н	μg/Kg-dry	1	4/26/2021 10:45:00 AM
Chrysene	ND	38.3	Н	μg/Kg-dry	1	4/26/2021 10:45:00 AM
Benzo(b)fluoranthene	ND	19.1	Н	μg/Kg-dry	1	4/26/2021 10:45:00 AM
Benzo(k)fluoranthene	ND	19.1	Н	μg/Kg-dry	1	4/26/2021 10:45:00 AM
Benzo(a)pyrene	ND	19.1	Н	μg/Kg-dry	1	4/26/2021 10:45:00 AM
Indeno(1,2,3-cd)pyrene	ND	38.3	Н	μg/Kg-dry	1	4/26/2021 10:45:00 AM
Dibenz(a,h)anthracene	ND	38.3	Н	μg/Kg-dry	1	4/26/2021 10:45:00 AM
Benzo(g,h,i)perylene	ND	19.1	Н	μg/Kg-dry	1	4/26/2021 10:45:00 AM
Surr: 2,4,6-Tribromophenol	65.5	19.4 - 153	Н	%Rec	1	4/26/2021 10:45:00 AM
Surr: 2-Fluorobiphenyl	59.9	19 - 135	Н	%Rec	1	4/26/2021 10:45:00 AM
Surr: Terphenyl-d14 (surr)	75.0	42.9 - 156	Н	%Rec	1	4/26/2021 10:45:00 AM
Gasoline by NWTPH-Gx				Batch	n ID: 32	2073 Analyst: CR
Gasoline	ND	131	DH	mg/Kg-dry	20	4/26/2021 8:09:19 AM
Gasoline Range Organics (C6-C12)	1,030	131	DH	mg/Kg-dry	20	4/26/2021 8:09:19 AM
Surr: Toluene-d8	94.0	65 - 135	DH	%Rec	20	4/26/2021 8:09:19 AM
Surr: 4-Bromofluorobenzene	162	65 - 135	DSH	%Rec	20	4/26/2021 8:09:19 AM

Batch ID: 32073

Batch ID: 32073

Batch ID: 32120

Work Order: **2104132**Date Reported: **4/29/2021**

Analyst: CR

Analyst: CR

Analyst: I B

Client: Shannon & Wilson Collection Date: 4/5/2021 11:05:00 PM

Project: Cascade Mill Parkway

Lab ID: 2104132-001 **Matrix**: Soil

Client Sample ID: B-10-21/S-3@15.5

Analyses Result RL Qual Units DF Date Analyzed

Gasoline by NWTPH-Gx

NOTES:

GRO - Indicates the presence of unresolved compounds eluting from hexane to dodecane (~C6-C12). Beginning pattern matches mineral spirits, end pattern is a different product.

S - Outlying surrogate recovery(ies) observed.

Benzene	ND	0.0263	Н	mg/Kg-dry	1	4/23/2021 2:14:08 PM
Toluene	ND	0.0854	Н	mg/Kg-dry	1	4/23/2021 2:14:08 PM
Ethylbenzene	ND	0.0328	Н	mg/Kg-dry	1	4/23/2021 2:14:08 PM
m,p-Xylene	ND	0.0657	Н	mg/Kg-dry	1	4/23/2021 2:14:08 PM
o-Xylene	ND	0.0328	Н	mg/Kg-dry	1	4/23/2021 2:14:08 PM
Surr: Dibromofluoromethane	92.6	81.9 - 113	Н	%Rec	1	4/23/2021 2:14:08 PM
Surr: Toluene-d8	96.7	82.7 - 115	Н	%Rec	1	4/23/2021 2:14:08 PM
Surr: 1-Bromo-4-fluorobenzene	130	87.9 - 109	SH	%Rec	1	4/23/2021 2:14:08 PM

NOTES:

Mercury by FPA Method 7471

Mercury by EFA Method 7471			Datonic	7. 02120	Allalyst. LD
Mercury	ND	0.235	mg/Kg-dry	1 4/29	/2021 12:18:36 PM
Total Metals by EPA Method 6020	<u>)B</u>		Batch IE): 32067	Analyst: EH
Arsenic	2.58	0.101	mg/Kg-dry	1 4/26	/2021 3:21:18 PM
Barium	70.2	0.505	mg/Kg-dry	1 4/26	/2021 3:21:18 PM
Cadmium	ND	0.168	mg/Kg-dry	1 4/26	/2021 3:21:18 PM
Chromium	29.7	0.336	mg/Kg-dry	1 4/26	/2021 3:21:18 PM
Lead	3.06	0.168	mg/Kg-dry	1 4/26	/2021 3:21:18 PM
Selenium	1.52	0.168	mg/Kg-dry	1 4/27	/2021 6:08:48 PM
Silver	ND	0.126	mg/Kg-dry	1 4/26	/2021 3:21:18 PM
Sample Moisture (Percent Moistu	<u>ıre)</u>		Batch IE): R66768	Analyst: mch
Percent Moisture	4.88	0.500	wt%	1 4/23	/2021 1:42:51 PM

S - Outlying surrogate recovery(ies) observed.

Work Order: **2104132**Date Reported: **4/29/2021**

Client: Shannon & Wilson Collection Date: 4/6/2021 10:30:00 PM

Project: Cascade Mill Parkway

Lab ID: 2104132-002 **Matrix:** Soil

Client Sample ID: B-10-21/A9@48

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPI	H-Dx/Dx Ext.			Batch	n ID: 31	933 Analyst: MM
Diesel (Fuel Oil)	ND	53.2		mg/Kg-dry	1	4/12/2021 2:12:10 AM
Heavy Oil	ND ND	106		mg/Kg-dry	1	4/12/2021 2:12:10 AM
Total Petroleum Hydrocarbons	ND ND	79.8		mg/Kg-dry	1	4/12/2021 2:12:10 AM
Surr: 2-Fluorobiphenyl	85.8	50 - 150		%Rec	1	4/12/2021 2:12:10 AM
Surr: o-Terphenyl	95.0	50 - 150		%Rec	1	4/12/2021 2:12:10 AM
Semi-Volatile Organic Compou	nds by EPA 82	70 (SIM)		Batch	n ID: 31	963 Analyst: SB
Naphthalene	ND	20.2		μg/Kg-dry	1	4/14/2021 9:35:30 AM
2-Methylnaphthalene	ND	20.2		μg/Kg-dry	1	4/14/2021 9:35:30 AM
1-Methylnaphthalene	ND	20.2		μg/Kg-dry	1	4/14/2021 9:35:30 AM
Acenaphthene	ND	20.2		μg/Kg-dry	1	4/14/2021 9:35:30 AM
Acenaphthylene	ND	20.2		μg/Kg-dry	1	4/14/2021 9:35:30 AM
Fluorene	ND	20.2		μg/Kg-dry	1	4/14/2021 9:35:30 AM
Pentachlorophenol	ND	80.9		μg/Kg-dry	1	4/14/2021 9:35:30 AM
Phenanthrene	ND	40.4		μg/Kg-dry	1	4/14/2021 9:35:30 AM
Anthracene	ND	40.4		μg/Kg-dry	1	4/14/2021 9:35:30 AM
Fluoranthene	ND	40.4		μg/Kg-dry	1	4/14/2021 9:35:30 AM
Pyrene	ND	40.4		μg/Kg-dry	1	4/14/2021 9:35:30 AM
Benz(a)anthracene	ND	20.2		μg/Kg-dry	1	4/14/2021 9:35:30 AM
Chrysene	ND	40.4		μg/Kg-dry	1	4/14/2021 9:35:30 AM
Benzo(b)fluoranthene	ND	20.2		μg/Kg-dry	1	4/14/2021 9:35:30 AM
Benzo(k)fluoranthene	ND	20.2		μg/Kg-dry	1	4/14/2021 9:35:30 AM
Benzo(a)pyrene	ND	20.2		μg/Kg-dry	1	4/14/2021 9:35:30 AM
Indeno(1,2,3-cd)pyrene	ND	40.4		μg/Kg-dry	1	4/14/2021 9:35:30 AM
Dibenz(a,h)anthracene	ND	40.4		μg/Kg-dry	1	4/14/2021 9:35:30 AM
Benzo(g,h,i)perylene	ND	20.2		μg/Kg-dry	1	4/14/2021 9:35:30 AM
Surr: 2,4,6-Tribromophenol	80.0	19.4 - 153		%Rec	1	4/14/2021 9:35:30 AM
Surr: 2-Fluorobiphenyl	86.8	19 - 135		%Rec	1	4/14/2021 9:35:30 AM
Surr: Terphenyl-d14 (surr)	99.8	42.9 - 156		%Rec	1	4/14/2021 9:35:30 AM
Gasoline by NWTPH-Gx				Batch	n ID: 31	943 Analyst: KT
Gasoline	ND	5.46		mg/Kg-dry	1	4/9/2021 9:56:18 PM
Surr: Toluene-d8	94.6	65 - 135		%Rec	1	4/9/2021 9:56:18 PM
Surr: 4-Bromofluorobenzene	100	65 - 135		%Rec	1	4/9/2021 9:56:18 PM

Work Order: **2104132**Date Reported: **4/29/2021**

Client: Shannon & Wilson Collection Date: 4/6/2021 10:30:00 PM

Project: Cascade Mill Parkway

Lab ID: 2104132-002 **Matrix:** Soil

Client Sample ID: B-10-21/A9@48

Analyses	Result	RL	Qual	Units	DF	F Date Analyzed	
Volatile Organic Compounds by	EPA Method	8260D		Batch ID:		31943 Analyst: KT	
Benzene	ND	0.0218		mg/Kg-dry	1	4/9/2021 9:56:18 PM	
Toluene	ND	0.0710		mg/Kg-dry	1	4/9/2021 9:56:18 PM	
Ethylbenzene	ND	0.0273		mg/Kg-dry	1	4/9/2021 9:56:18 PM	
m,p-Xylene	ND	0.0546		mg/Kg-dry	1	4/9/2021 9:56:18 PM	
o-Xylene	ND	0.0273		mg/Kg-dry	1	4/9/2021 9:56:18 PM	
Surr: Dibromofluoromethane	78.4	82.3 - 112	S	%Rec	1	4/9/2021 9:56:18 PM	
Surr: Toluene-d8	104	90.7 - 109		%Rec	1	4/9/2021 9:56:18 PM	
Surr: 1-Bromo-4-fluorobenzene	99.0	88.4 - 109		%Rec	1	4/9/2021 9:56:18 PM	
NOTES:							
S - Outlying surrogate recovery(ies) obse	erved.						
Mercury by EPA Method 7471				Batch	ı ID:	31945 Analyst: LB	
Mercury	ND	0.245		mg/Kg-dry	1	4/12/2021 4:28:42 PM	
Total Metals by EPA Method 602	<u>0B</u>			Batch	ı ID:	31944 Analyst: EH	
Arsenic	2.00	0.102		mg/Kg-dry	1	4/12/2021 5:22:11 PM	
Barium	50.5	0.509		mg/Kg-dry	1	4/15/2021 5:16:01 PM	
Cadmium	ND	0.170		mg/Kg-dry	1	4/12/2021 5:22:11 PM	
Chromium	14.2	0.340		mg/Kg-dry	1	4/12/2021 5:22:11 PM	
Lead	1.96	0.170		mg/Kg-dry	1	4/12/2021 5:22:11 PM	
Selenium	2.25	0.170		mg/Kg-dry	1	4/12/2021 5:22:11 PM	
Silver	ND	0.127		mg/Kg-dry	1	4/12/2021 5:22:11 PM	
Sample Moisture (Percent Moist	ure)			Batch	ı ID:	R66595 Analyst: RL	
Percent Moisture	7.23	0.500		wt%	1	4/15/2021 4:59:25 PM	

Work Order: **2104132**Date Reported: **4/29/2021**

Client: Shannon & Wilson Collection Date: 4/7/2021 11:05:00 PM

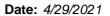
Project: Cascade Mill Parkway

Lab ID: 2104132-003 **Matrix:** Soil

Client Sample ID: B-9-21/R-10@48

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH-D	x/Dx Ext.			Batch	n ID: 31	933 Analyst: MM
•						
Diesel (Fuel Oil)	ND	52.0		mg/Kg-dry	1	4/12/2021 3:07:52 PM
Heavy Oil	ND	104		mg/Kg-dry	1	4/12/2021 3:07:52 PM
Total Petroleum Hydrocarbons	ND	78.0		mg/Kg-dry	1	4/12/2021 3:07:52 PM
Surr: 2-Fluorobiphenyl	101	50 - 150		%Rec	1	4/12/2021 3:07:52 PM
Surr: o-Terphenyl	102	50 - 150		%Rec	1	4/12/2021 3:07:52 PM
Semi-Volatile Organic Compounds	by EPA 82	70 (SIM)		Batch	n ID: 31	963 Analyst: SB
Naphthalene	ND	21.3		μg/Kg-dry	1	4/14/2021 6:12:21 PM
2-Methylnaphthalene	ND	21.3		μg/Kg-dry	1	4/14/2021 6:12:21 PM
1-Methylnaphthalene	ND	21.3		μg/Kg-dry	1	4/14/2021 6:12:21 PM
Acenaphthene	ND	21.3		μg/Kg-dry	1	4/14/2021 6:12:21 PM
Acenaphthylene	ND	21.3		μg/Kg-dry	1	4/14/2021 6:12:21 PM
Fluorene	ND	21.3		μg/Kg-dry	1	4/14/2021 6:12:21 PM
Pentachlorophenol	ND	85.2		μg/Kg-dry	1	4/14/2021 6:12:21 PM
Phenanthrene	ND	42.6		μg/Kg-dry	1	4/14/2021 6:12:21 PM
Anthracene	ND	42.6		μg/Kg-dry	1	4/14/2021 6:12:21 PM
Fluoranthene	ND	42.6		μg/Kg-dry	1	4/14/2021 6:12:21 PM
Pyrene	ND	42.6		μg/Kg-dry	1	4/14/2021 6:12:21 PM
Benz(a)anthracene	ND	21.3		μg/Kg-dry	1	4/14/2021 6:12:21 PM
Chrysene	ND	42.6		μg/Kg-dry	1	4/14/2021 6:12:21 PM
Benzo(b)fluoranthene	ND	21.3		μg/Kg-dry	1	4/14/2021 6:12:21 PM
Benzo(k)fluoranthene	ND	21.3		μg/Kg-dry	1	4/14/2021 6:12:21 PM
Benzo(a)pyrene	ND	21.3		μg/Kg-dry	1	4/14/2021 6:12:21 PM
Indeno(1,2,3-cd)pyrene	ND	42.6		μg/Kg-dry	1	4/14/2021 6:12:21 PM
Dibenz(a,h)anthracene	ND	42.6		μg/Kg-dry	1	4/14/2021 6:12:21 PM
Benzo(g,h,i)perylene	ND	21.3		μg/Kg-dry	1	4/14/2021 6:12:21 PM
Surr: 2,4,6-Tribromophenol	71.2	19.4 - 153		%Rec	1	4/14/2021 6:12:21 PM
Surr: 2-Fluorobiphenyl	84.0	19 - 135		%Rec	1	4/14/2021 6:12:21 PM
Surr: Terphenyl-d14 (surr)	94.1	42.9 - 156		%Rec	1	4/14/2021 6:12:21 PM
Gasoline by NWTPH-Gx				Batch	1D: 31	943 Analyst: KT
Gasoline	ND	5.37		mg/Kg-dry	1	4/9/2021 10:26:35 PM
Surr: Toluene-d8	96.2	65 - 135		%Rec	1	4/9/2021 10:26:35 PM
Surr: 4-Bromofluorobenzene	101	65 - 135		%Rec	1	4/9/2021 10:26:35 PM

Work Order: **2104132**Date Reported: **4/29/2021**


Client: Shannon & Wilson Collection Date: 4/7/2021 11:05:00 PM

Project: Cascade Mill Parkway

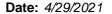
Lab ID: 2104132-003 **Matrix:** Soil

Client Sample ID: B-9-21/R-10@48

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method	8260D		Batch	ID:	31943 Analyst: KT
Benzene	ND	0.0215		mg/Kg-dry	1	4/9/2021 10:26:35 PM
Toluene	ND	0.0699		mg/Kg-dry	1	4/9/2021 10:26:35 PM
Ethylbenzene	ND	0.0269		mg/Kg-dry	1	4/9/2021 10:26:35 PM
m,p-Xylene	ND	0.0537		mg/Kg-dry	1	4/9/2021 10:26:35 PM
o-Xylene	ND	0.0269		mg/Kg-dry	1	4/9/2021 10:26:35 PM
Surr: Dibromofluoromethane	78.8	82.3 - 112	S	%Rec	1	4/9/2021 10:26:35 PM
Surr: Toluene-d8	106	90.7 - 109		%Rec	1	4/9/2021 10:26:35 PM
Surr: 1-Bromo-4-fluorobenzene	99.3	88.4 - 109		%Rec	1	4/9/2021 10:26:35 PM
NOTES:						
S - Outlying surrogate recovery(ies) obs	erved.					
Mercury by EPA Method 7471				Batch	ID:	31945 Analyst: LB
Mercury	ND	0.238		mg/Kg-dry	1	4/12/2021 4:30:19 PM
Total Metals by EPA Method 602	<u>20B</u>			Batch	ID:	31944 Analyst: EH
Arsenic	2.41	0.100		mg/Kg-dry	1	4/12/2021 5:27:45 PM
Barium	52.7	0.501		mg/Kg-dry	1	4/15/2021 5:21:35 PM
Cadmium	ND	0.167		mg/Kg-dry	1	4/12/2021 5:27:45 PM
Chromium	15.8	0.334		mg/Kg-dry	1	4/12/2021 5:27:45 PM
Lead	1.97	0.167		mg/Kg-dry	1	4/12/2021 5:27:45 PM
Selenium	2.40	0.167		mg/Kg-dry	1	4/12/2021 5:27:45 PM
Silver	ND	0.125		mg/Kg-dry	1	4/12/2021 5:27:45 PM
Sample Moisture (Percent Moist	ure)			Batch	ID:	R66595 Analyst: RL
Percent Moisture	7.94	0.500		wt%	1	4/15/2021 4:59:25 PM

QC SUMMARY REPORT

CLIENT: Shannon & Wilson
Project: Cascade Mill Parkway


Total Metals by EPA Method 6020B

Sample ID: MB-31944	SampType: MBLK			Units: mg/Kg		Prep Da	te: 4/12/2 0	021	RunNo: 664	198	
Client ID: MBLKS	Batch ID: 31944				Analysis Date: 4/12/2021			SeqNo: 133			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	ND	0.0968									
Barium	ND	0.484									
Cadmium	ND	0.161									
Chromium	ND	0.323									
Lead	ND	0.161									
Selenium	ND	0.161									
Silver	ND	0.121									

Sample ID: LCS-31944	SampType: LCS			Units: mg/Kg	g Prep Date: 4/12/2021			21	RunNo: 66498		
Client ID: LCSS	Batch ID: 31944				Analysis Date: 4/12/2021			SeqNo: 133			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	40.1	0.0952	39.68	0	101	80	120				
Barium	40.6	0.476	39.68	0	102	80	120				
Cadmium	2.06	0.159	1.984	0	104	80	120				
Chromium	40.5	0.317	39.68	0	102	80	120				
Lead	19.5	0.159	19.84	0	98.4	80	120				
Selenium	3.87	0.159	3.968	0	97.5	80	120				
Silver	2.10	0.119	1.984	0	106	80	120				

Sample ID: 2104143-002AMS	SampType: MS			Units: mg/	/Kg-dry	Prep Da	te: 4/12/20	21	RunNo: 664	98	
Client ID: BATCH	Batch ID: 31944					Analysis Da	te: 4/12/20	21	SeqNo: 133	8020	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	59.5	0.104	43.44	15.87	101	75	125				
Barium	208	0.521	43.44	147.7	140	75	125				S
Cadmium	2.48	0.174	2.172	0.1740	106	75	125				
Chromium	83.2	0.348	43.44	27.64	128	75	125				S
Lead	34.7	0.174	21.72	14.39	93.7	75	125				

Revision v1 Page 11 of 39

QC SUMMARY REPORT

CLIENT: Shannon & Wilson
Project: Cascade Mill Parkway

Total Metals by EPA Method 6020B

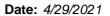
Sample ID: 2104143-002AMS	SampType: MS	Units: mg/Kg-dry			Prep Da	te: 4/12/20	21	RunNo: 664				
Client ID: BATCH	Batch ID: 31944			Analysis Date: 4/12/2021						SeqNo: 1338020		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Selenium	5.68	0.174	4.344	1.245	102	75	125					
Silver	2.21	0.130	2.172	0.1049	96.9	75	125					

NOTES:

- S Outlying spike recovery(ies) observed for Ba. A duplicate analysis was performed with similar results indicating a possible matrix effect.
- S Outlying spike recovery(ies) observed for Cr and Zn. A duplicate analysis was performed and recovered within range.

Sample ID: 2104143-002AMSD	SampType: MSD							21	RunNo: 66498			
Client ID: BATCH	Batch ID: 31944					Analysis Da	te: 4/12/20	21	SeqNo: 133	38021		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Arsenic	63.9	0.105	43.79	15.87	110	75	125	59.53	7.06	20		
Barium	229	0.526	43.79	147.7	187	75	125	208.4	9.61	20	ES	
Cadmium	2.47	0.175	2.190	0.1740	105	75	125	2.482	0.373	20		
Chromium	79.4	0.350	43.79	27.64	118	75	125	83.22	4.67	20		
Lead	50.2	0.175	21.90	14.39	164	75	125	34.74	36.5	20	RS	
Selenium	5.48	0.175	4.379	1.245	96.7	75	125	5.681	3.63	20		
Silver	2.22	0.131	2.190	0.1049	96.7	75	125	2.210	0.500	20		

NOTES:


- S Outlying spike recovery(ies) observed for Ba. A duplicate analysis was performed with similar results indicating a possible matrix effect.
- S Outlying spike recovery(ies) observed for Pb. A duplicate analysis was performed and recovered within range.
- R High RPD observed.

Sample ID: 2104143-002APDS	SampType: PDS			Units: mg	/Kg-dry	Prep Da	te: 4/12/20	21	RunNo: 664	198	
Client ID: BATCH	Batch ID: 31944					Analysis Da	te: 4/12/20	21	SeqNo: 133	38024	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Barium	216	0.526	43.8	148	156	75	125				S

NOTES:

S - Outlying spike recovery(ies) observed.

Revision v1 Page 12 of 39

ND

ND

0.160

0.120

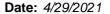
Work Order: 2104132

Selenium

Silver

QC SUMMARY REPORT

CLIENT: Shannon & Wilson
Project: Cascade Mill Parkway


Total Metals by EPA Method 6020B

	<u> </u>										
Sample ID: MB-32067	SampType: MBLK	. ,.		Units: mg/Kg		Prep Da	te: 4/23/2 0)21	RunNo: 667	785	
Client ID: MBLKS	Batch ID: 32067					Analysis Da	te: 4/23/2 0)21	SeqNo: 134	14664	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	ND	0.0960									
Barium	ND	0.480									
Cadmium	ND	0.160									
Chromium	ND	0.320									
Lead	ND	0.160									

Sample ID: LCS-32067	SampType: LCS	tch ID: 32067		Units: mg/Kg		Prep Da	te: 4/23/20	21	RunNo: 667	785	
Client ID: LCSS	Batch ID: 32067					Analysis Da	te: 4/23/20	21	SeqNo: 134	14665	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	35.4	0.0930	38.76	0	91.3	80	120				
Barium	37.2	0.465	38.76	0	96.0	80	120				
Cadmium	1.87	0.155	1.938	0	96.5	80	120				
Chromium	37.2	0.310	38.76	0	96.1	80	120				
Lead	18.9	0.155	19.38	0	97.6	80	120				
Selenium	3.54	0.155	3.876	0	91.2	80	120				
Silver	2.10	0.116	1.938	0	108	80	120				

Sample ID: 2104274-007AMS	SampType: MS			Units: mg/	/Kg-dry	Prep Da	te: 4/23/20	21	RunNo: 667	785	
Client ID: BATCH	Batch ID: 32067					Analysis Da	te: 4/23/20	21	SeqNo: 134	14668	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	45.8	0.104	43.13	3.651	97.6	75	125				
Barium	104	0.518	43.13	58.34	106	75	125				
Cadmium	1.94	0.173	2.157	0.9874	44.1	75	125				S
Chromium	78.6	0.345	43.13	34.29	103	75	125				
Lead	22.8	0.173	21.57	2.393	94.4	75	125				

Revision v1 Page 13 of 39

QC SUMMARY REPORT

CLIENT: Shannon & Wilson
Project: Cascade Mill Parkway

Total Metals by EPA Method 6020B

Sample ID: 2104274-007AMS	SampType: MS			Units: mg/	Kg-dry	Prep Da	e: 4/23/20	21	RunNo: 667	785	
Client ID: BATCH	Batch ID: 32067					Analysis Da	te: 4/23/20	21	SeqNo: 134	14668	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Selenium Silver	5.07 1.89	0.173 0.129	4.313 2.157	0.8973 0.05103	96.7 85.2	75 75	125 125				

NOTES:

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Sample ID: 2104274-007AMSD	SampType: MSD							RunNo: 66785			
Client ID: BATCH	Batch ID: 32067					Analysis Da	te: 4/23/20	21	SeqNo: 134	44669	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	44.6	0.104	43.13	3.651	95.0	75	125	45.76	2.52	20	
Barium	104	0.518	43.13	58.34	106	75	125	103.9	0.0709	20	
Cadmium	1.98	0.173	2.157	0.9874	46.1	75	125	1.939	2.17	20	S
Chromium	81.2	0.345	43.13	34.29	109	75	125	78.63	3.19	20	
Lead	22.2	0.173	21.57	2.393	91.8	75	125	22.75	2.53	20	
Selenium	4.99	0.173	4.313	0.8973	95.0	75	125	5.070	1.51	20	
Silver	1.94	0.129	2.157	0.05103	87.7	75	125	1.889	2.76	20	
NOTES											

NOTES:

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Sample ID: 2104274-007APDS	SampType: PDS			Units: mg/l	Kg-dry	Prep Da	te: 4/23/20 2	21	RunNo: 667	785	
Client ID: BATCH	Batch ID: 32067					Analysis Da	te: 4/23/20 2	21	SeqNo: 134	44670	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	45.0	0.104	43.1	3.65	95.8	75	125				
Barium	101	0.518	43.1	58.3	98.3	75	125				
Cadmium	1.88	0.173	2.16	0.987	41.6	75	125				S
Chromium	78.6	0.345	43.1	34.3	103	75	125				
Lead	21.6	0.173	21.6	2.39	89.2	75	125				
Selenium	5.01	0.173	4.31	0.897	95.4	75	125				
Silver	1.97	0.129	2.16	0.0510	88.8	75	125				

Revision v1 Page 14 of 39

Date: 4/29/2021

Cascade Mill Parkway

Work Order: 2104132

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Total Metals by EPA Method 6020B

Sample ID: 2104274-007APDS

SampType: PDS

Units: mg/Kg-dry

Prep Date: 4/23/2021

RunNo: 66785

Batch ID: 32067

Analysis Date: 4/23/2021

SeqNo: 1344670

Client ID: BATCH

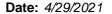
Result

RL

SPK value SPK Ref Val

%REC LowLimit HighLimit RPD Ref Val

%RPD RPDLimit Qual


NOTES:

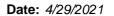
Analyte

Project:

S - Outlying spike recovery(ies) observed.

Page 15 of 39 Revision v1

CLIENT:


Shannon & Wilson

Project: Cascade Mill Parkway **QC SUMMARY REPORT**

Mercury by EPA Method 7471

Sample ID: MB-31945 Prep Date: 4/12/2021 RunNo: 66489 SampType: MBLK Units: mg/Kg Client ID: MBLKS Batch ID: 31945 Analysis Date: 4/12/2021 SeqNo: 1338591 SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Analyte Result RI Qual ND 0.250 Mercury Sample ID: LCS-31945 SampType: LCS Units: mq/Kq Prep Date: 4/12/2021 RunNo: 66489 Client ID: LCSS Batch ID: 31945 Analysis Date: 4/12/2021 SeqNo: 1338592 SPK value SPK Ref Val LowLimit HighLimit RPD Ref Val %RPD RPDLimit Result RI %REC Qual Analyte 0.530 80 120 Mercury 0.250 0.5000 0 106 Sample ID: 2103316-022ADUP SampType: **DUP** Units: mg/Kg-dry Prep Date: 4/12/2021 RunNo: 66489 Client ID: BATCH Batch ID: 31945 Analysis Date: 4/12/2021 SeqNo: 1338594 Analyte Result RLSPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual Mercury ND 0.257 0 20 Sample ID: 2103316-022AMS SampType: MS Units: mg/Kq-dry Prep Date: 4/12/2021 RunNo: 66489 Client ID: BATCH Batch ID: 31945 Analysis Date: 4/12/2021 SeqNo: 1338595 Analyte Result RLSPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual 0.453 0.242 0.4849 0.03031 87.1 70 130 Mercury Sample ID: 2103316-022AMSD SampType: MSD Units: mg/Kg-dry Prep Date: 4/12/2021 RunNo: 66489 Client ID: **BATCH** Analysis Date: 4/12/2021 Batch ID: 31945 SeqNo: 1338596 Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD **RPDLimit** Qual Mercury 0.534 0.234 0.4675 0.03031 108 70 130 0.4529 16.4 20

Page 16 of 39 Revision v1

CLIENT: Shannon & Wilson


Project: Cascade Mill Parkway

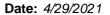
QC SUMMARY REPORT

Mercury by EPA Method 7471

Project: Cascade M	ill Parkway							IVICIO		A WELLIO	u /4/ i
Sample ID: MB-32120	SampType: MBLK			Units: mg/Kg		Prep Date:	4/28/20	21	RunNo: 668	375	
Client ID: MBLKS	Batch ID: 32120					Analysis Date:	4/29/20	21	SeqNo: 134	16835	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	ND	0.250									
Sample ID: LCS-32120	SampType: LCS			Units: mg/Kg		Prep Date:	4/28/20	21	RunNo: 668	375	
Client ID: LCSS	Batch ID: 32120					Analysis Date:	4/29/20	21	SeqNo: 134	16836	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.492	0.250	0.5000	0	98.4	80	120				
Sample ID: 2104132-001ADUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date:	: 4/28/20	21	RunNo: 668	375	
Client ID: B-10-21/S-3@15.5	Batch ID: 32120					Analysis Date:	4/29/20	21	SeqNo: 134	16838	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	ND	0.258						0		20	
Sample ID: 2104132-001AMS	SampType: MS			Units: mg/Kg-	dry	Prep Date:	: 4/28/20	21	RunNo: 668	375	
Client ID: B-10-21/S-3@15.5	Batch ID: 32120					Analysis Date:	4/29/20	21	SeqNo: 134	16839	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.391	0.253	0.5054	0	77.4	70	130				
Sample ID: 2104132-001AMSD	SampType: MSD			Units: mg/Kg-	dry	Prep Date:	: 4/28/20	21	RunNo: 668	375	
Client ID: B-10-21/S-3@15.5	Batch ID: 32120					Analysis Date:	4/29/20	21	SeqNo: 134	16840	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.433	0.248	0.4959	0	87.4	70	130	0.3912	10.2	20	

Revision v1 Page 17 of 39

QC SUMMARY REPORT

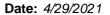

CLIENT: Shannon & Wilson

Project: Cascade Mill Parkway

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Project: Cascade Mi	ll Parkway										
Sample ID: 2104083-029ADUP	SampType: DUP			Units: mg/K	g-dry	Prep Date	e: 4/9/202	1	RunNo: 664	185	
Client ID: BATCH	Batch ID: 31933					Analysis Date	e: 4/12/20	21	SeqNo: 133	37701	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	104						0		30	
Heavy Oil	4,990	209						6,610	27.9	30	
Total Petroleum Hydrocarbons	5,040	157						6,655	27.6	30	
Surr: 2-Fluorobiphenyl	21.4		20.87		103	50	150		0		
Surr: o-Terphenyl	21.6		20.87		103	50	150		0		
Sample ID: MB-31933	SampType: MBLK			Units: mg/K		Prep Date	e: 4/9/202	<u> </u>	RunNo: 664	185	
Client ID: MBLKS	Batch ID: 31933					Analysis Date	e: 4/12/20	21	SeqNo: 133	37713	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	50.0									
Heavy Oil	ND	100									
Total Petroleum Hydrocarbons	ND	75.0									
Surr: 2-Fluorobiphenyl	11.0		10.00		110	50	150				
Surr: o-Terphenyl	11.7		10.00		117	50	150				
Sample ID: LCS-31933	SampType: LCS			Units: mg/K	<u> </u>	Prep Date	e: 4/9/202	.1	RunNo: 664	185	
Client ID: LCSS	Batch ID: 31933					Analysis Date	e: 4/12/20	21	SeqNo: 134	12812	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	570	50.0	500.0	0	114	73.7	114				
Surr: 2-Fluorobiphenyl	11.4		10.00		114	50	150				
Surr: o-Terphenyl	14.3		10.00		143	50	150				
Sample ID: 2104137-001AMS	SampType: MS			Units: mg/K	g-dry	Prep Date	e: 4/9/202	.1	RunNo: 664	185	
Client ID: BATCH	Batch ID: 31933					Analysis Date	e: 4/12/20	21	SeqNo: 133	37730	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual

Revision v1 Page 18 of 39


QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Project: Cascade Mi	ill Parkway						Diesei e	and neavy	Oll by NW		
Sample ID: 2104137-001AMS	SampType: MS			Units: mg/k	(g-dry	Prep Date	: 4/9/202	1	RunNo: 664	185	
Client ID: BATCH	Batch ID: 31933					Analysis Date	e: 4/12/20	21	SeqNo: 133	37730	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 2-Fluorobiphenyl	10.6		10.18		104	50	150				
Surr: o-Terphenyl	13.5		10.18		133	50	150				
Sample ID: 2104137-001AMSD	SampType: MSD			Units: mg/k	(g-dry	Prep Date	e: 4/9/202	1	RunNo: 664	185	
Client ID: BATCH	Batch ID: 31933					Analysis Date	e: 4/12/20	21	SeqNo: 133	37731	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	600	48.4	484.4	0	124	61.4	129	613.7	2.22	30	
Surr: 2-Fluorobiphenyl	10.1		9.688		104	50	150		0		
Surr: o-Terphenyl	12.9		9.688		133	50	150		0		
Sample ID: 2104137-002ADUP	SampType: DUP			Units: mg/k	(g-dry	Prep Date	e: 4/9/202	1	RunNo: 664	185	
Client ID: BATCH	Batch ID: 31933					Analysis Date	e: 4/12/20	21	SeqNo: 133	37719	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	50.0						0		30	
Heavy Oil	ND	100						0		30	
Total Petroleum Hydrocarbons	ND	75.0						0		30	
Surr: 2-Fluorobiphenyl	10.1		10.00		101	50	150		0		
Surr: o-Terphenyl	11.0		10.00		110	50	150		0		
Sample ID: MB-32091	SampType: MBLK			Units: mg/k	(g	Prep Date	e: 4/26/20	21	RunNo: 668	348	
Client ID: MBLKS	Batch ID: 32091					Analysis Date	e: 4/26/20	21	SeqNo: 134	16062	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	50.0									
Heavy Oil	ND	100									
Total Petroleum Hydrocarbons	ND	150									
Surr: 2-Fluorobiphenyl	10.0		10.00		100	50	150				

Revision v1 Page 19 of 39

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Project: Cascade M	ill Parkway						Diesei a	and neavy	Oll by NW	ו אם-טא/ו	DX EX
Sample ID: MB-32091	SampType: MBLK			Units: mg/Kg		Prep Date	e: 4/26/20	21	RunNo: 668	348	
Client ID: MBLKS	Batch ID: 32091					Analysis Date	e: 4/26/20	21	SeqNo: 13 4	16062	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: o-Terphenyl	10.2		10.00		102	50	150				
Sample ID: LCS-32091	SampType: LCS			Units: mg/Kg		Prep Date	e: 4/26/20	21	RunNo: 668	348	
Client ID: LCSS	Batch ID: 32091					Analysis Date	e: 4/26/20	21	SeqNo: 13 4	16063	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	502	50.0	500.0	0	100	73.7	114				
Surr: 2-Fluorobiphenyl	9.61		10.00		96.1	50	150				
Surr: o-Terphenyl	11.5		10.00		115	50	150				
Sample ID: 2104292-001ADUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date	e: 4/26/20	21	RunNo: 668	348	
Client ID: BATCH	Batch ID: 32091					Analysis Date	e: 4/26/20	21	SeqNo: 13 4	16066	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	96.3						0		30	
Heavy Oil	ND	193						0		30	
Total Petroleum Hydrocarbons	ND	289						0		30	
Surr: 2-Fluorobiphenyl	9.63		19.26		50.0	50	150		0		
Surr: o-Terphenyl	14.1		19.26		73.0	50	150		0		
Sample ID: 2104303-002AMS	SampType: MS			Units: mg/Kg-	dry	Prep Date	e: 4/26/20	21	RunNo: 668	348	
Client ID: BATCH	Batch ID: 32091					Analysis Date	e: 4/26/20	21	SeqNo: 13 4	16070	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	540	52.5	525.4	0	103	61.4	129				
Surr: 2-Fluorobiphenyl	9.89		10.51		94.1	50	150				
Surr: o-Terphenyl	10.8		10.51		103	50	150				

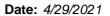
Revision v1 Page 20 of 39

Date: 4/29/2021

Cascade Mill Parkway

Work Order: 2104132

Project:


QC SUMMARY REPORT

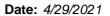
CLIENT: Shannon & Wilson

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Sample ID: 2104303-002AMSD	SampType: MSD			Units: mg/K	g-dry	Prep Da	te: 4/26/20	21	RunNo: 668	348	
Client ID: BATCH	Batch ID: 32091					Analysis Da	te: 4/26/20	21	SeqNo: 13 4	16071	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	474	48.6	486.4	0	97.3	61.4	129	540.3	13.2	30	
Surr: 2-Fluorobiphenyl	8.78		9.729		90.2	50	150		0		
Surr: o-Terphenyl	9.59		9.729		98.6	50	150		0		

Revision v1 Page 21 of 39

QC SUMMARY REPORT


CLIENT: Shannon & Wilson Project:

Semi-Volatile Organic Compounds by EPA 8270 (SIM)

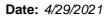
Project: Cascade M	lill Parkway				S	Semi-Volati	le Organic Com	oounds by EPA 8270	(SIM)
Sample ID: MB-31963	SampType: MBLK			Units: µg/Kg		Prep Date:	4/13/2021	RunNo: 66578	
Client ID: MBLKS	Batch ID: 31963					Analysis Date:	4/14/2021	SeqNo: 1340147	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD RPDLimit	Qual
Naphthalene	ND	20.0							
2-Methylnaphthalene	ND	20.0							
1-Methylnaphthalene	ND	20.0							
Acenaphthene	ND	20.0							
Acenaphthylene	ND	20.0							
Fluorene	ND	20.0							
Pentachlorophenol	ND	80.0							
Phenanthrene	ND	40.0							
Anthracene	ND	40.0							
Fluoranthene	ND	40.0							
Pyrene	ND	40.0							
Benz(a)anthracene	ND	20.0							
Chrysene	ND	40.0							
Benzo(b)fluoranthene	ND	20.0							
Benzo(k)fluoranthene	ND	20.0							
Benzo(a)pyrene	ND	20.0							
Indeno(1,2,3-cd)pyrene	ND	40.0							
Dibenz(a,h)anthracene	ND	40.0							
Benzo(g,h,i)perylene	ND	20.0							
Surr: 2,4,6-Tribromophenol	1,260		2,000		63.2	19.4	153		
Surr: 2-Fluorobiphenyl	912		1,000		91.2	19	135		
Surr: Terphenyl-d14 (surr)	1,040		1,000		104	42.9	156		
Sample ID: LCS-31963	SampType: LCS			Units: µg/Kg		Prep Date:	4/13/2021	RunNo: 66578	

Sample ID: LCS-31963	SampType: LCS			Units: µg/Kg		Prep Da	te: 4/13/20	21	RunNo: 665	78	
Client ID: LCSS	Batch ID: 31963					Analysis Da	te: 4/14/20	21	SeqNo: 134	0148	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,680	20.0	2,000	0	83.9	62.7	127				
2-Methylnaphthalene	1,710	20.0	2,000	0	85.6	62.7	132				
1-Methylnaphthalene	1,710	20.0	2,000	0	85.7	61.4	131				

Page 22 of 39 Revision v1

QC SUMMARY REPORT

CLIENT: Shannon & Wilson


Project: Cascade Mill Parkway

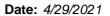
Semi-Volatile Organic Compounds by EPA 8270 (SIM)

SampType: LCS Units: µg/Kg Prep Date: 4/13/2021 RunNo: 66578	
Batch ID: 31963 Analysis Date: 4/14/2021 SeqNo: 1340148	
Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit	Qua
1,660 20.0 2,000 0 83.1 59.2 132	
1,610 20.0 2,000 0 80.5 62 132	
1,750 20.0 2,000 0 87.5 59.1 136	
1,010 80.0 2,000 0 50.7 5 112	
1,790 40.0 2,000 0 89.7 54.1 139	
1,770 40.0 2,000 0 88.7 55.5 136	
1,790 40.0 2,000 0 89.6 52.8 149	
1,730 40.0 2,000 0 86.3 53.6 146	
1,770 20.0 2,000 0 88.3 49.7 153	
1,850 40.0 2,000 0 92.3 52.6 147	
1,900 20.0 2,000 0 95.2 50.6 151	
1,780 20.0 2,000 0 89.1 47.1 155	
2,020 20.0 2,000 0 101 48.3 169	
1,870 40.0 2,000 0 93.3 52.3 145	
1,910 40.0 2,000 0 95.3 53 144	
1,720 20.0 2,000 0 86.0 49.7 144	
1,860 2,000 93.2 19.4 153	
898 1,000 89.8 19 135	
1,010 1,000 101 42.9 156	
1,010 1,000 101 42.9 190	

Sample ID: 2104132-002AMS	SampType: MS			Units: µg/K	g-dry	Prep Da	te: 4/13/2 0	21	RunNo: 665	578	
Client ID: B-10-21/A9@48	Batch ID: 31963					Analysis Da	te: 4/14/20	21	SeqNo: 134	10678	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,620	19.6	1,962	0	82.5	28.7	139				
2-Methylnaphthalene	1,660	19.6	1,962	0	84.8	43.5	130				
1-Methylnaphthalene	1,660	19.6	1,962	0	84.5	42.6	127				
Acenaphthene	1,590	19.6	1,962	0	81.1	45.1	123				
Acenaphthylene	1,570	19.6	1,962	0	79.9	45.3	129				
Fluorene	1,660	19.6	1,962	0	84.8	41.6	128				

Revision v1 Page 23 of 39

QC SUMMARY REPORT


CLIENT: Shannon & Wilson
Project: Cascade Mill Parkway

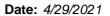
Semi-Volatile Organic Compounds by EPA 8270 (SIM)

Sample ID: 2104132-002AMS Client ID: B-10-21/A9@48	SampType: MS Batch ID: 31963			Units: µg/K		Prep Da Analysis Da	te: 4/13/20 te: 4/14/20		RunNo: 669 SeqNo: 134		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pentachlorophenol	1,460	78.5	1,962	0	74.4	5	188				
Phenanthrene	1,720	39.2	1,962	0	87.7	24.2	142				
Anthracene	1,700	39.2	1,962	0	86.6	33.1	143				
Fluoranthene	1,690	39.2	1,962	0	86.2	35.5	147				
Pyrene	1,640	39.2	1,962	0	83.4	38.3	141				
Benz(a)anthracene	1,710	19.6	1,962	0	87.1	42.5	145				
Chrysene	1,710	39.2	1,962	0	86.9	39.7	134				
Benzo(b)fluoranthene	1,830	19.6	1,962	0	93.4	29.9	152				
Benzo(k)fluoranthene	1,650	19.6	1,962	0	84.4	33.2	143.5				
Benzo(a)pyrene	1,920	19.6	1,962	0	97.8	38.2	156				
Indeno(1,2,3-cd)pyrene	1,750	39.2	1,962	0	89.1	41.4	128				
Dibenz(a,h)anthracene	1,790	39.2	1,962	0	91.5	40.4	129				
Benzo(g,h,i)perylene	1,600	19.6	1,962	0	81.7	34.2	131				
Surr: 2,4,6-Tribromophenol	1,750		1,962		89.4	19.4	153				
Surr: 2-Fluorobiphenyl	863		980.9		88.0	19	135				
Surr: Terphenyl-d14 (surr)	935		980.9		95.3	42.9	156				

Sample ID: 2104132-002AMSD	SampType: MSD			Units: µg/K	g-dry	Prep Da	te: 4/13/2 0	21	RunNo: 665	578	
Client ID: B-10-21/A9@48	Batch ID: 31963					Analysis Da	te: 4/14/20	21	SeqNo: 134	10679	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,730	20.9	2,093	0	82.4	28.7	139	1,619	6.34	30	
2-Methylnaphthalene	1,750	20.9	2,093	0	83.5	43.5	130	1,664	4.85	30	
1-Methylnaphthalene	1,750	20.9	2,093	0	83.6	42.6	127	1,657	5.42	30	
Acenaphthene	1,690	20.9	2,093	0	80.8	45.1	123	1,590	6.21	30	
Acenaphthylene	1,660	20.9	2,093	0	79.4	45.3	129	1,567	5.88	30	
Fluorene	1,760	20.9	2,093	0	84.3	41.6	128	1,664	5.83	30	
Pentachlorophenol	1,580	83.7	2,093	0	75.4	5	188	1,460	7.80	30	
Phenanthrene	1,800	41.9	2,093	0	86.1	24.2	142	1,721	4.66	30	
Anthracene	1,790	41.9	2,093	0	85.6	33.1	143	1,700	5.28	30	

Revision v1 Page 24 of 39

QC SUMMARY REPORT

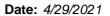

CLIENT: Shannon & Wilson
Project: Cascade Mill Parkway

Semi-Volatile Organic Compounds by EPA 8270 (SIM)

Sample ID: 2104132-002AMSD	SampType: MSD			Units: µg/K	g-dry	Prep Dat	e: 4/13/20	21	RunNo: 665	578	
Client ID: B-10-21/A9@48	Batch ID: 31963					Analysis Dat	e: 4/14/20	21	SeqNo: 134	10679	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluoranthene	1,790	41.9	2,093	0	85.5	35.5	147	1,690	5.69	30	
Pyrene	1,730	41.9	2,093	0	82.6	38.3	141	1,636	5.52	30	
Benz(a)anthracene	1,780	20.9	2,093	0	85.2	42.5	145	1,709	4.25	30	
Chrysene	1,810	41.9	2,093	0	86.5	39.7	134	1,705	5.94	30	
Benzo(b)fluoranthene	1,740	20.9	2,093	0	83.2	29.9	152	1,832	5.09	30	
Benzo(k)fluoranthene	1,930	20.9	2,093	0	92.2	33.2	143.5	1,655	15.4	30	
Benzo(a)pyrene	2,010	20.9	2,093	0	96.1	38.2	156	1,918	4.73	30	
Indeno(1,2,3-cd)pyrene	1,860	41.9	2,093	0	88.9	41.4	128	1,747	6.25	30	
Dibenz(a,h)anthracene	1,910	41.9	2,093	0	91.4	40.4	129	1,794	6.37	30	
Benzo(g,h,i)perylene	1,710	20.9	2,093	0	81.6	34.2	131	1,602	6.41	30	
Surr: 2,4,6-Tribromophenol	1,800		2,093		86.2	19.4	153		0		
Surr: 2-Fluorobiphenyl	913		1,047		87.2	19	135		0		
Surr: Terphenyl-d14 (surr)	995		1,047		95.1	42.9	156		0		

Sample ID: MB-32072	SampType: MBLK			Units: µg/Kg		Prep Dat	te: 4/23/2 0)21	RunNo: 66	790	
Client ID: MBLKS	Batch ID: 32072					Analysis Da	te: 4/26/2 0)21	SeqNo: 134	44826	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	20.0									
2-Methylnaphthalene	ND	20.0									
1-Methylnaphthalene	ND	20.0									
Acenaphthene	ND	20.0									
Acenaphthylene	ND	20.0									
Fluorene	ND	20.0									
Pentachlorophenol	ND	80.0									
Phenanthrene	ND	40.0									
Anthracene	ND	40.0									
Fluoranthene	ND	40.0									
Pyrene	ND	40.0									
Benz(a)anthracene	ND	20.0									

Revision v1 Page 25 of 39


QC SUMMARY REPORT

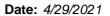
CLIENT: Shannon & Wilson
Project: Cascade Mill Parkway

Semi-Volatile Organic Compounds by EPA 8270 (SIM)

Sample ID: MB-32072	SampType: MBLK			Units: µg/Kg		Prep Date	e: 4/23/2021	RunNo: 66790	
Client ID: MBLKS	Batch ID: 32072					Analysis Date	e: 4/26/2021	SeqNo: 1344826	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Chrysene	ND	40.0							
Benzo(b)fluoranthene	ND	20.0							
Benzo(k)fluoranthene	ND	20.0							
Benzo(a)pyrene	ND	20.0							
Indeno(1,2,3-cd)pyrene	ND	40.0							
Dibenz(a,h)anthracene	ND	40.0							
Benzo(g,h,i)perylene	ND	20.0							
Surr: 2,4,6-Tribromophenol	794		2,000		39.7	19.4	153		
Surr: 2-Fluorobiphenyl	616		1,000		61.6	19	135		
Surr: Terphenyl-d14 (surr)	768		1,000		76.8	42.9	156		
Sample ID: LCS-32072	SampType: LCS			Units: μg/Kg		Prep Date	e: 4/23/2021	RunNo: 66790	
Client ID: LCSS	Batch ID: 32072					Analysis Date	e: 4/26/2021	SeqNo: 1344827	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Naphthalene	1,500	20.0	2,000	0	75.1	62.7	127		
2-Methylnaphthalene	1,490	20.0	2,000	0	74.4	62.7	132		
1-Methylnaphthalene	1,510	20.0	2,000	0	75.6	61.4	131		
Acenaphthene	1,480	20.0	2,000	0	74.2	59.2	132		
Acenaphthylene	1,450	20.0	2,000	0	72.6	62	132		
Fluorene	1,540	20.0	2,000	0	77.1	59.1	136		
Pentachlorophenol	978	80.0	2,000	0	48.9	5	112		
· critacino opriono.	310								
Phenanthrene	1,550	40.0	2,000	0	77.6	54.1	139		
•				0 0	77.6 75.9	54.1 55.5	139 136		
Phenanthrene	1,550	40.0	2,000						
Phenanthrene Anthracene	1,550 1,520	40.0 40.0	2,000 2,000	0	75.9	55.5	136		
Phenanthrene Anthracene Fluoranthene	1,550 1,520 1,540	40.0 40.0 40.0	2,000 2,000 2,000	0 0	75.9 77.2	55.5 52.8	136 149		
Phenanthrene Anthracene Fluoranthene Pyrene	1,550 1,520 1,540 1,490	40.0 40.0 40.0 40.0	2,000 2,000 2,000 2,000	0 0 0	75.9 77.2 74.3	55.5 52.8 53.6	136 149 146		
Phenanthrene Anthracene Fluoranthene Pyrene Benz(a)anthracene	1,550 1,520 1,540 1,490 1,550	40.0 40.0 40.0 40.0 20.0	2,000 2,000 2,000 2,000 2,000	0 0 0	75.9 77.2 74.3 77.3	55.5 52.8 53.6 49.7	136 149 146 153		

Revision v1 Page 26 of 39

QC SUMMARY REPORT


CLIENT: Shannon & Wilson
Project: Cascade Mill Parkway

Semi-Volatile Organic Compounds by EPA 8270 (SIM)

Sample ID: LCS-32072	SampType: LCS			Units: µg/Kg		Prep Dat	te: 4/23/2021	RunNo: 667	790	
Client ID: LCSS	Batch ID: 32072 Analysis Date: 4/26/2021						SeqNo: 134	14827		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Benzo(a)pyrene	1,680	20.0	2,000	0	84.2	48.3	169			
Indeno(1,2,3-cd)pyrene	1,610	40.0	2,000	0	80.6	52.3	145			
Dibenz(a,h)anthracene	1,650	40.0	2,000	0	82.4	53	144			
Benzo(g,h,i)perylene	1,510	20.0	2,000	0	75.6	49.7	144			
Surr: 2,4,6-Tribromophenol	1,500		2,000		74.8	19.4	153			
Surr: 2-Fluorobiphenyl	651		1,000		65.1	19	135			
Surr: Terphenyl-d14 (surr)	807		1,000		80.7	42.9	156			

Sample ID: 2104252-002AMS	SampType: MS			Units: µg/K	g-dry	Prep Da	te: 4/23/20	21	RunNo: 667	790	
Client ID: BATCH	Batch ID: 32072					Analysis Da	te: 4/26/20	21	SeqNo: 134	14830	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,390	25.0	2,496	0	55.5	28.7	139				
2-Methylnaphthalene	1,430	25.0	2,496	0	57.2	43.5	130				
1-Methylnaphthalene	1,430	25.0	2,496	0	57.3	42.6	127				
Acenaphthene	1,380	25.0	2,496	0	55.1	45.1	123				
Acenaphthylene	1,360	25.0	2,496	0	54.3	45.3	129				
Fluorene	1,450	25.0	2,496	0	57.9	41.6	128				
Pentachlorophenol	1,380	99.8	2,496	0	55.2	5	188				
Phenanthrene	1,430	49.9	2,496	0	57.5	24.2	142				
Anthracene	1,440	49.9	2,496	0	57.7	33.1	143				
Fluoranthene	1,460	49.9	2,496	0	58.5	35.5	147				
Pyrene	1,390	49.9	2,496	0	55.9	38.3	141				
Benz(a)anthracene	1,470	25.0	2,496	0	58.8	42.5	145				
Chrysene	1,430	49.9	2,496	0	57.3	39.7	134				
Benzo(b)fluoranthene	1,480	25.0	2,496	0	59.1	29.9	152				
Benzo(k)fluoranthene	1,450	25.0	2,496	0	58.2	33.2	143.5				
Benzo(a)pyrene	1,580	25.0	2,496	0	63.4	38.2	156				
Indeno(1,2,3-cd)pyrene	1,490	49.9	2,496	0	59.7	41.4	128				
Dibenz(a,h)anthracene	1,530	49.9	2,496	0	61.2	40.4	129				

Revision v1 Page 27 of 39

QC SUMMARY REPORT

CLIENT: Shannon & Wilson
Project: Cascade Mill Parkway

Semi-Volatile Organic Compounds by EPA 8270 (SIM)

Sample ID: 2104252-002AMS	SampType: MS	• • •			(g-dry	Prep Da	te: 4/23/2 0	21	RunNo: 667	790	
Client ID: BATCH	Batch ID: 32072					Analysis Da	te: 4/26/20	21	SeqNo: 134	14830	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzo(g,h,i)perylene	1,380	25.0	2,496	0	55.1	34.2	131				
Surr: 2,4,6-Tribromophenol	1,490		2,496		59.8	19.4	153				
Surr: 2-Fluorobiphenyl	659		1,248		52.8	19	135				
Surr: Terphenyl-d14 (surr)	779		1,248		62.4	42.9	156				

Sample ID: 2104252-002AMSD	SampType: MSD			Units: µg/K	g-dry	Prep Dat	e: 4/23/20	21	RunNo: 667	790	·
Client ID: BATCH	Batch ID: 32072					Analysis Dat	e: 4/26/20	21	SeqNo: 134	14831	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,600	24.7	2,474	0	64.6	28.7	139	1,386	14.2	30	
2-Methylnaphthalene	1,640	24.7	2,474	0	66.2	43.5	130	1,428	13.7	30	
1-Methylnaphthalene	1,640	24.7	2,474	0	66.1	42.6	127	1,430	13.4	30	
Acenaphthene	1,580	24.7	2,474	0	63.8	45.1	123	1,375	13.8	30	
Acenaphthylene	1,560	24.7	2,474	0	62.9	45.3	129	1,355	13.8	30	
Fluorene	1,650	24.7	2,474	0	66.8	41.6	128	1,446	13.3	30	
Pentachlorophenol	1,450	99.0	2,474	0	58.5	5	188	1,378	4.90	30	
Phenanthrene	1,640	49.5	2,474	0	66.5	24.2	142	1,434	13.7	30	
Anthracene	1,620	49.5	2,474	0	65.3	33.1	143	1,440	11.6	30	
Fluoranthene	1,660	49.5	2,474	0	66.9	35.5	147	1,460	12.5	30	
Pyrene	1,590	49.5	2,474	0	64.2	38.3	141	1,394	13.0	30	
Benz(a)anthracene	1,660	24.7	2,474	0	67.0	42.5	145	1,468	12.1	30	
Chrysene	1,610	49.5	2,474	0	64.9	39.7	134	1,431	11.5	30	
Benzo(b)fluoranthene	1,730	24.7	2,474	0	69.8	29.9	152	1,476	15.6	30	
Benzo(k)fluoranthene	1,550	24.7	2,474	0	62.5	33.2	143.5	1,453	6.20	30	
Benzo(a)pyrene	1,780	24.7	2,474	0	72.1	38.2	156	1,583	12.0	30	
Indeno(1,2,3-cd)pyrene	1,690	49.5	2,474	0	68.2	41.4	128	1,491	12.4	30	
Dibenz(a,h)anthracene	1,730	49.5	2,474	0	69.8	40.4	129	1,527	12.2	30	
Benzo(g,h,i)perylene	1,560	24.7	2,474	0	63.1	34.2	131	1,377	12.6	30	
Surr: 2,4,6-Tribromophenol	1,600		2,474		64.7	19.4	153		0		
Surr: 2-Fluorobiphenyl	737		1,237		59.6	19	135		0		

Revision v1 Page 28 of 39

Date: 4/29/2021

Cascade Mill Parkway

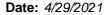
Work Order: 2104132

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Semi-Volatile Organic Compounds by EPA 8270 (SIM)

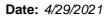

Sample ID: 2104252-002AMSD SampType: MSD Units: μg/Kg-dry Prep Date: 4/23/2021 RunNo: 66790

Client ID: **BATCH** Batch ID: **32072** Analysis Date: **4/26/2021** SeqNo: **1344831**

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Surr: Terphenyl-d14 (surr) 846 1,237 68.4 42.9 156 0

Revision v1 Page 29 of 39


QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Gasoline by NWTPH-Gx

Project: Cascade M	ill Parkway									Gasonne	: Dy INVV I	F 11-0
Sample ID: LCS-31943	SampType	e: LCS			Units: mg/Kg	J	Prep Da	te: 4/9/202	21	RunNo: 664	l81	
Client ID: LCSS	Batch ID:	31943					Analysis Da	te: 4/9/202	21	SeqNo: 133	37620	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Gasoline		24.9	5.00	25.00	0	99.6	65	135				
Surr: Toluene-d8		1.17		1.250		93.6	65	135				
Surr: 4-Bromofluorobenzene		1.35		1.250		108	65	135				
Sample ID: MB-31943	SampType	e: MBLK			Units: mg/Kg]	Prep Da	te: 4/9/20 2	21	RunNo: 664	l81	
Client ID: MBLKS	Batch ID:	31943					Analysis Da	te: 4/9/202	21	SeqNo: 133	37621	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Gasoline		ND	5.00									
Surr: Toluene-d8		1.19		1.250		95.2	65	135				
Surr: 4-Bromofluorobenzene		1.26		1.250		101	65	135				
Sample ID: 2104137-001BDUP	SampType	e: DUP			Units: mg/Kg	g-dry	Prep Da	te: 4/9/202	<u> </u>	RunNo: 664	l81	
Client ID: BATCH	Batch ID:	31943					Analysis Da	te: 4/9/20 2	21	SeqNo: 133	37617	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Gasoline		ND	5.50						0		30	
Surr: Toluene-d8		1.25		1.375		90.9	65	135		0		
Surr: 4-Bromofluorobenzene		1.37		1.375		99.8	65	135		0		
Sample ID: 2104132-003BMS	SampType	e: MS			Units: mg/Kg	g-dry	Prep Da	te: 4/9/20 2	21	RunNo: 664	ļ81	
Client ID: B-9-21/R-10@48	Batch ID:	31943					Analysis Da	te: 4/10/2 0	021	SeqNo: 133	37615	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Gasoline		82.2	5.37	26.87	0	306	65	135				S
Surr: Toluene-d8		1.31		1.344		97.6	65	135				
Surr: 4-Bromofluorobenzene		1.38		1.344		103	65	135				

Revision v1 Page 30 of 39

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Gasoline by NWTPH-Gx

Project: Cascade M	ill Parkway								Gasonne	By INVI	1711-0
Sample ID: LCS-32073	SampType: LCS			Units: mg/Kg		Prep Da	te: 4/23/2 0)21	RunNo: 667	784	
Client ID: LCSS	Batch ID: 32073					Analysis Da	te: 4/23/2 0	021	SeqNo: 134	14765	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	23.6	5.00	25.00	0	94.3	65	135				
Surr: Toluene-d8	1.25		1.250		100	65	135				
Surr: 4-Bromofluorobenzene	1.33		1.250		106	65	135				
Sample ID: MB-32073	SampType: MBLK			Units: mg/Kg		Prep Da	te: 4/23/20)21	RunNo: 667	784	
Client ID: MBLKS	Batch ID: 32073					Analysis Da	te: 4/23/2 0	021	SeqNo: 134	14764	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Gasoline	ND	5.00									
Surr: Toluene-d8	1.20		1.250		96.0	65	135				
Surr: 4-Bromofluorobenzene	1.22		1.250		97.3	65	135				
Sample ID: 2104274-013BDUP	SampType: DUP			Units: mg/Kg	-dry	Prep Da	te: 4/23/2 0)21	RunNo: 667	784	
Client ID: BATCH	Batch ID: 32073					Analysis Da	te: 4/23/2 0	021	SeqNo: 134	14736	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Gasoline	ND	5.09						0		30	
Surr: Toluene-d8	1.22		1.273		95.7	65	135		0		
Surr: 4-Bromofluorobenzene	1.27		1.273		99.9	65	135		0		
Sample ID: 2104292-001BDUP	SampType: DUP			Units: mg/Kg	-dry	Prep Da	te: 4/23/20)21	RunNo: 667	784	
Client ID: BATCH	Batch ID: 32073					Analysis Da	te: 4/23/2 0	021	SeqNo: 134	14742	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Gasoline	ND	12.2						0		30	
Surr: Toluene-d8	2.99		3.058		97.7	65	135		0		
Surr: 4-Bromofluorobenzene	2.95		3.058		96.6	65	135		0		

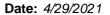
Revision v1 Page 31 of 39

Date: 4/29/2021

Cascade Mill Parkway

Work Order: 2104132

Project:

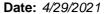

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Gasoline by NWTPH-Gx

Sample ID: 2104274-015BMS	SampType: MS			Units: mg/K	g-dry	Prep Da	te: 4/23/20	21	RunNo: 667	784	
Client ID: BATCH	Batch ID: 32073		Analysis Date: 4/23/2021					21	SeqNo: 1344738		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	20.2	4.67	23.33	0	86.8	65	135				
Surr: Toluene-d8	1.18		1.167		101	65	135				
Surr: 4-Bromofluorobenzene	1.22		1.167		105	65	135				

Revision v1 Page 32 of 39


QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Volatile Organic Compounds by EPA Method 8260D

Sample ID: LCS-31943	SampType: LCS			Units: µg/L		Prep Date	: 4/9/202	21	RunNo: 66 4	179	
Client ID: LCSS	Batch ID: 31943					Analysis Date	: 4/9/202	21	SeqNo: 133	37596	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	0.942	0.0200	1.000	0	94.2	80	120				
Toluene	0.973	0.0650	1.000	0	97.3	80	120				
Ethylbenzene	1.05	0.0250	1.000	0	105	80	120				
m,p-Xylene	2.00	0.0500	2.000	0	99.9	80	120				
o-Xylene	0.995	0.0250	1.000	0	99.5	80	120				
Surr: Dibromofluoromethane	1.02		1.250		81.5	80	120				
Surr: Toluene-d8	1.21		1.250		96.6	80	120				
Surr: 1-Bromo-4-fluorobenzene	1.26		1.250		101	80	120				
Sample ID: MB-31943	SampType: MBLK			Units: mg/Kg		Prep Date	: 4/9/202	<u> </u>	RunNo: 66 4	179	
Client ID: MBLKS	Batch ID: 31943					Analysis Date	: 4/9/202	<u>!</u> 1	SeqNo: 133	37595	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	0.0200									
Toluene	ND	0.0650									
Ethylbenzene	ND	0.0250									
m,p-Xylene	ND	0.0500									
o-Xylene	ND	0.0250									
Surr: Dibromofluoromethane	0.953		1.250		76.3	82.3	112				S
Surr: Toluene-d8	1.30		1.250		104	90.7	109				
Surr: 1-Bromo-4-fluorobenzene	1.25		1.250		99.7	88.4	109				
Sample ID: 2104137-001BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date	: 4/9/202	<u></u> !1	RunNo: 664	179	
Client ID: BATCH	Batch ID: 31943					Analysis Date	: 4/9/202	! 1	SeqNo: 133	37590	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	0.0220						0		30	
Toluene	ND	0.0715						0		30	
Ethylbenzene	ND	0.0275						0		30	

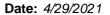
Revision v1 Page 33 of 39

QC SUMMARY REPORT

CLIENT: Shannon & Wilson
Project: Cascade Mill Parkway

Volatile Organic Compounds by EPA Method 8260D

Sample ID: 2104137-001BDUP	SampType: DUP			Units: mg/k	(g-dry	Prep Da	te: 4/9/202	1	RunNo: 664	479	
Client ID: BATCH	Batch ID: 31943					Analysis Da	te: 4/9/202	:1	SeqNo: 133	37590	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
m,p-Xylene	ND	0.0550						0		30	
o-Xylene	ND	0.0275						0		30	
Surr: Dibromofluoromethane	1.06		1.375		77.1	82.3	112		0		S
Surr: Toluene-d8	1.39		1.375		101	90.7	109		0		
Surr: 1-Bromo-4-fluorobenzene	1.36		1.375		98.5	88.4	109		0		
NOTES:											

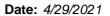

S - Outlying surrogate recovery(ies) observed.

Sample ID: 2104137-002BMS	SampType: MS			Units: mg/K	(g-dry	Prep Da	te: 4/9/202	:1	RunNo: 664	179	
Client ID: BATCH	Batch ID: 31943			Analysis Date: 4/10/2021			21	SeqNo: 133	37592		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	1.09	0.0249	1.247	0	87.3	76.8	129				
Toluene	1.24	0.0811	1.247	0	99.1	77.8	127				
Ethylbenzene	1.30	0.0312	1.247	0	104	78.7	130				
m,p-Xylene	2.41	0.0624	2.494	0	96.7	79.3	127				
o-Xylene	1.20	0.0312	1.247	0	96.3	80.7	124				
Surr: Dibromofluoromethane	0.644		1.559		41.3	82.3	112				S
Surr: Toluene-d8	1.59		1.559		102	90.7	109				
Surr: 1-Bromo-4-fluorobenzene NOTES:	1.56		1.559		100	88.4	109				

S - Outlying surrogate recovery(ies) observed.

Sample ID: LCS-32073	SampType: LCS	. ,.				Prep Dat	e: 4/23/2021	RunNo: 66783	
Client ID: LCSS	Batch ID: 32073					Analysis Dat	e: 4/23/2021	SeqNo: 1344702	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Va	l %RPD RPDLimit	Qual
Benzene	0.969	0.0200	1.000	0	96.9	80	120		
Toluene	0.999	0.0650	1.000	0	99.9	80	120		
Ethylbenzene	1.00	0.0250	1.000	0	100	80	120		
m,p-Xylene	2.01	0.0500	2.000	0	100	80	120		

Revision v1 Page 34 of 39


QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Volatile Organic Compounds by EPA Method 8260D

Project: Cascade Mil	ll Parkway					voiatile	Organic	Compoun	as by EPA	wetnoa	82601
Sample ID: LCS-32073	SampType: LCS			Units: mg/Kg		Prep Dat	e: 4/23/20	21	RunNo: 667	783	
Client ID: LCSS	Batch ID: 32073					Analysis Dat	e: 4/23/20	21	SeqNo: 134	14702	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
o-Xylene	0.990	0.0250	1.000	0	99.0	80	120				
Surr: Dibromofluoromethane	1.20		1.250		95.7	80	120				
Surr: Toluene-d8	1.26		1.250		101	80	120				
Surr: 1-Bromo-4-fluorobenzene	1.29		1.250		103	80	120				
Sample ID: MB-32073	SampType: MBLK			Units: mg/Kg		Prep Dat	e: 4/23/20	21	RunNo: 667	783	
Client ID: MBLKS	Batch ID: 32073					Analysis Dat	e: 4/23/20	21	SeqNo: 134	14700	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	0.0200									
Toluene	ND	0.0650									
Ethylbenzene	ND	0.0250									
m,p-Xylene	ND	0.0500									
o-Xylene	ND	0.0250									
Surr: Dibromofluoromethane	1.20		1.250		95.9	81.9	113				
Surr: Toluene-d8	1.21		1.250		96.6	82.7	115				
Surr: 1-Bromo-4-fluorobenzene	1.26		1.250		101	87.9	109				
Sample ID: 2104274-013BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Dat	e: 4/23/20	21	RunNo: 667	783	
Client ID: BATCH	Batch ID: 32073					Analysis Dat	e: 4/23/20	21	SeqNo: 134	14676	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	0.0204						0		30	
Toluene	ND	0.0662						0		30	
Ethylbenzene	ND	0.0255						0		30	
m,p-Xylene	ND	0.0509						0		30	
o-Xylene	ND	0.0255						0		30	
Surr: Dibromofluoromethane	1.24		1.273		97.4	81.9	113		0		
Surr: Toluene-d8	1.23		1.273		96.3	82.7	115		0		

Revision v1 Page 35 of 39

QC SUMMARY REPORT

CLIENT: Shannon & Wilson
Project: Cascade Mill Parkway

Volatile Organic Compounds by EPA Method 8260D

Sample ID: 2104274-013BDUP	SampType: DUP	Units: mg/Kg-dry Prep Date: 4/23/20			21	RunNo: 667	783				
Client ID: BATCH	Batch ID: 32073					Analysis Da	te: 4/23/20	21	SeqNo: 134	14676	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 1-Bromo-4-fluorobenzene	1.30		1.273		102	87.9	109		0		

Sample ID: 2104292-001BDUP	SampType: DUP			Units: mg/	Kg-dry	Prep Da	te: 4/23/20	21	RunNo: 667	783	
Client ID: BATCH	Batch ID: 32073					Analysis Da	te: 4/23/20	21	SeqNo: 134	14682	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	0.0489						0		30	
Toluene	ND	0.159						0		30	
Ethylbenzene	ND	0.0612						0		30	
m,p-Xylene	ND	0.122						0		30	
o-Xylene	ND	0.0612						0		30	
Surr: Dibromofluoromethane	2.97		3.058		97.3	81.9	113		0		
Surr: Toluene-d8	2.93		3.058		95.8	82.7	115		0		
Surr: 1-Bromo-4-fluorobenzene	3.06		3.058		100	87.9	109		0		

Sample ID: 2104274-015BMS	SampType: MS			Units: mg	/Kg-dry	Prep Da	te: 4/23/20	21	RunNo: 667	783	
Client ID: BATCH	Batch ID: 32073					Analysis Da	te: 4/23/20	21	SeqNo: 134	14678	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	0.922	0.0187	0.9333	0	98.8	76.8	129				
Toluene	0.956	0.0607	0.9333	0	102	77.8	127				
Ethylbenzene	0.986	0.0233	0.9333	0	106	78.7	130				
m,p-Xylene	1.99	0.0467	1.867	0	106	79.3	127				
o-Xylene	0.970	0.0233	0.9333	0	104	80.7	124				
Surr: Dibromofluoromethane	1.09		1.167		93.3	81.9	113				
Surr: Toluene-d8	1.17		1.167		100	82.7	115				
Surr: 1-Bromo-4-fluorobenzene	1.20		1.167		103	87.9	109				

Revision v1 Page 36 of 39

Sample Log-In Check List

CI	ient Name:	sw		Work O	rder Num	nber: 2104132		
Lo	ogged by:	Gabrielle Coeuille		Date Re	ceived:	4/8/2021	5:37:00 PM	
<u>Cha</u>	in of Custo	<u>ody</u>						
1.	Is Chain of C	ustody complete?		Yes	✓	No \square	Not Present	
2.	How was the	sample delivered?		Clier	<u>nt</u>			
Log	<u>In</u>							
3.	Coolers are p	present?		Yes	•	No 🗆	NA 🗆	
4.	Shipping con	tainer/cooler in good condition	?	Yes	✓	No \square		
5.		s present on shipping contain iments for Custody Seals not		Yes		No 🗌	Not Present ✓	
6.	Was an atten	npt made to cool the samples'	?	Yes	✓	No 🗌	NA 🗆	
7.	Were all item	s received at a temperature o	>2°C to 6°C *	Yes	✓	No 🗌	NA 🗆	
8.	Sample(s) in	proper container(s)?		Yes	✓	No 🗌		
9.	Sufficient sar	nple volume for indicated test(s)?	Yes	✓	No 🗌		
10.	Are samples	properly preserved?		Yes	✓	No 🗌		
11.	Was preserva	ative added to bottles?		Yes		No 🗸	NA \square	
12.	Is there head	space in the VOA vials?		Yes		No 🗌	NA 🗸	
13.	Did all sample	es containers arrive in good co	ondition(unbroken)?	Yes	✓	No 🗌		
14.	Does paperw	ork match bottle labels?		Yes	✓	No 🗌		
15.	Are matrices	correctly identified on Chain o	f Custody?	Yes	✓	No 🗌		
16.	Is it clear wha	at analyses were requested?		Yes	✓	No 🗌		
17.	Were all hold	ing times able to be met?		Yes		No 🗸		
Spe	cial Handli	ing (if applicable)						
18.	Was client no	otified of all discrepancies with	this order?	Yes	✓	No 🗌	NA \square	
	Person	Notified: David Randall	Dat	e: [4/22/2021		
	By Who	m: Gabrielle Coeuille	e Via:	еМа	il 🗸 Ph	hone 🗌 Fax	☐ In Person	
	Regardi	ng: Ok to run sample	1 out of hold for Dx,	PAHs, and	Gx/BTE	X?		
	Client In	structions: Yes.						
19.	Additional rer	marks:						_
<u>ltem</u>	Information							
		Item #	Temp °C					

3.5

Sample 1

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

変形「こうらう」	3	Chain of Custody Record & Laboratory Services Agreement	oratory Services Agreement
	Tel: 206-352-3790	Date: 4 7 2 Page: \ of: \	Laboratory Project No (internal): 1 1 1 1 1
Analytical	Fax: 206-352-7178	ENAME: CASCADE MILL PARLE	Special Remarks:
Client SHANNON & WILSON	87	106384	
Address: 400 N. 34+h	27	Collected by: KXM	
City, State, Zip: SEATTLY W4		Location: VAKIMA	
Telephone:	***************************************	REPORT TO (PM): DAY FAND 4	Sample Disposal: Return to client Disposal by lab (after 30 days)
Fax:		PMEmail: DJR & CHANNIC COM	
Sample Name	Sample Sample Type		
1 B-10-21/5-3015.5 "	2305	×	HACK AND AND SOLIT
2 B-10-21/ASE48 "	4/6/21 2230	XXX	
	4/1/21 2305	XXXX	
6			
, /			
8	/		
9	/	7	
*Matrix: A = Air, AQ = Aqueous, B = Bulk, O = Other,	P = Product, (S = Soil.)	SD = Sediment SL = Solid: W = Water DW = Drinking Water GW = Ground Water SW =	SW = Storm Water WW = Waste Water Turn-ground Time:
**Metals (Circle): MTCA-5 RCRA-8 Prio	ollutants TAL	Mg Mn Mo Na Ni	Pb Sb Se Sr Sn Ti Ti U V Zn
***Anions (Circle): Nitrate Nitrite	Chloride Sulfate Bromide	ide O-Phosphate Fluoride Nitrate+Nitrite	
I represent that I am authorized to enter into this Agreement each of the terms on the front and backside of this Agreement.	ter into this Agreement wit ekside of this Agreement.	I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above and that I have verified Client's agreement to each of the terms on the front and backside of this Agreement.	
Relinquished X X X M. J.	4/8/21 17:20		4/8/21 7:20 Next Day
* Diang Europe De	Date/Time 4/8/24	" My (h) dros 4/8/21	P17:37 Same Day Specify

		100						9			
Same Day (specify)	P.17:37	4/8/21	Horry	* Wyo Childres	200000000000000000000000000000000000000	18/21	Jac 4/8/24	2	me D	Davis RANDER	* 1
☐ Next Day	4/8/21 7:20	Poste/Time	AD PADEC	Received A A		17:20	4/8/2		That	x X M M	×
2 Day	I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above and that I have verified Client's agreement to each of the terms on the front and backside of this Agreement.	amed above and that I	of the Client n	ytical on behalf	Fremont Anal	greement with	into this Ag de of this A	d to enter nd backsi	am authorized on the front a	I represent that I am authorized to enter into this Agreement each of the terms on the front and backside of this Agreement	0 -
X	NO 30 36 31 30 11 11 02 42 00	NE WIN BY NOW HAN BIN	Nitrate+Nitrite	Bromide O-Phosphate Fluoride	e O-Phosphate	Sulfate Bromide	Chloride Sul	te Chi	Nitrate Nitrite	**Anions (Circle):	1
Turn-around Time:	iter, W	GW = Ground Water,	V = Drinking Water,	d. W = Water, DV	ediment, SL = Solid.	P = Product, (S = Soil) SD = Sediment,	D = Other, P = Product	7	AQ = Aqueous, B = Bulk,	A = Air,	*Matrix:
											10
		7					/			_	9
		_			/		/			\	100
	/				/					/	7
	/				\						0
	\		1					4			(n
			×	×	X	2305	भाग्य २३		R-10048	8-9-21/	w
			×	8	X	2130	4/6/21 27		ASE 48	B-10-21/	2
457513	HOLD FOLL WHALAST		E		X	2305	-	5 4/5/21	15-3015.	B-10-211	1
Comments			24. Ca 25. Can 14.	The state of the s	\$\\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Sample Type Time (Matrix)*	Sample San	Sa		Sample Name	Sa
	1111111	63	100	2746	PM Email:		-				Fax:
Disposal by lab (after 30 days	Sample Disposal: Return to client Disposal by lab (after 30 days)		FAMBALL	Devis	Report To (PM):	***************************************	***************************************	***************************************		Telephone:	Tel
			A	VAKIMA	Location:	***************************************	***************************************	4	SEATTLY WA	City, State, Zip:	9
		***************************************	***************************************	KXM	Collected by:	***************************************	±	+5 4+KE	400 N 34	Address:	Ad
	4/22/21- gac	*	ed b disappy a man does not not not not not not not not not not	K82901	Project No:		Z	MICSON	4	MONNAHE TH	Client:
1. taken off hold per DR	Special Remarks: Run Sample 1. taken	PLANUNY	-	CASCADE MILL	Project Name:	Fax: 206-352-7178	Fax: 2	STONY MILEGIA	Anal		
110412	Laboratory Project No (internal):	of: 1	Page:	17 2	Date:	Tel: 206-352-3790	Tel: 2		GIII		
Agreement	Chain of Custody Record & Laboratory Services Agreement	ecord & Lat	istody R	ain of Cu	Cha	3600 Fremont Ave N.	3600 Fre	Ĺ	Fomont		-

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Shannon & Wilson
Dave Randall
400 N. 34th Street, Suite 100
Seattle, WA 98103

RE: Cascade Mill Parkway
Work Order Number: 2104041

April 09, 2021

Attention Dave Randall:

Fremont Analytical, Inc. received 2 sample(s) on 4/2/2021 for the analyses presented in the following report.

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Gasoline by NWTPH-Gx

Mercury by EPA Method 7471

Sample Moisture (Percent Moisture)

Semi-Volatile Organic Compounds by EPA 8270 (SIM)

Total Metals by EPA Method 6020B

Volatile Organic Compounds by EPA Method 8260D

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Date: 04/09/2021

CLIENT: Shannon & Wilson Work Order Sample Summary

Project: Cascade Mill Parkway

Work Order: 2104041

 Lab Sample ID
 Client Sample ID
 Date/Time Collected
 Date/Time Received

 2104041-001
 B-11P-21/R-10@51'
 03/30/2021 1:30 AM
 04/02/2021 5:31 PM

 2104041-002
 B-12P-21/R-11@50'
 04/01/2021 1:15 AM
 04/02/2021 5:31 PM

Case Narrative

WO#: **2104041**Date: **4/9/2021**

CLIENT: Shannon & Wilson
Project: Cascade Mill Parkway

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: 2104041

Date Reported: 4/9/2021

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

DUP - Sample Duplicate

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Work Order: **2104041**Date Reported: **4/9/2021**

Client: Shannon & Wilson Collection Date: 3/30/2021 1:30:00 AM

Project: Cascade Mill Parkway

Lab ID: 2104041-001 **Matrix:** Soil

Client Sample ID: B-11P-21/R-10@51'

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPl	H-Dx/Dx Ext.			Batch	n ID: 31	906 Analyst: MM
Diesel (Fuel Oil)	ND	46.8		mg/Kg-dry	1	4/8/2021 9:28:22 AM
Heavy Oil	ND ND	93.6		mg/Kg-dry	1	4/8/2021 9:28:22 AM
Total Petroleum Hydrocarbons	ND	70.2		mg/Kg-dry	1	4/8/2021 9:28:22 AM
Surr: 2-Fluorobiphenyl	82.0	50 - 150		%Rec	1	4/8/2021 9:28:22 AM
Surr: o-Terphenyl	90.4	50 - 150		%Rec	1	4/8/2021 9:28:22 AM
Semi-Volatile Organic Compou	nds by EPA 82	70 (SIM)		Batch	n ID: 31	880 Analyst: IH
Naphthalene	ND	19.0		μg/Kg-dry	1	4/6/2021 2:58:16 PM
2-Methylnaphthalene	ND	19.0		μg/Kg-dry	1	4/6/2021 2:58:16 PM
1-Methylnaphthalene	ND	19.0		μg/Kg-dry	1	4/6/2021 2:58:16 PM
Acenaphthene	ND	19.0		μg/Kg-dry	1	4/6/2021 2:58:16 PM
Acenaphthylene	ND	19.0		μg/Kg-dry	1	4/6/2021 2:58:16 PM
Fluorene	ND	19.0		μg/Kg-dry	1	4/6/2021 2:58:16 PM
Pentachlorophenol	ND	75.9		μg/Kg-dry	1	4/6/2021 2:58:16 PM
Phenanthrene	ND	37.9		μg/Kg-dry	1	4/6/2021 2:58:16 PM
Anthracene	ND	37.9		μg/Kg-dry	1	4/6/2021 2:58:16 PM
Fluoranthene	ND	37.9		μg/Kg-dry	1	4/6/2021 2:58:16 PM
Pyrene	ND	37.9		μg/Kg-dry	1	4/6/2021 2:58:16 PM
Benz(a)anthracene	ND	19.0		μg/Kg-dry	1	4/6/2021 2:58:16 PM
Chrysene	ND	37.9		μg/Kg-dry	1	4/6/2021 2:58:16 PM
Benzo(b)fluoranthene	ND	19.0		μg/Kg-dry	1	4/6/2021 2:58:16 PM
Benzo(k)fluoranthene	ND	19.0		μg/Kg-dry	1	4/6/2021 2:58:16 PM
Benzo(a)pyrene	ND	19.0		μg/Kg-dry	1	4/6/2021 2:58:16 PM
Indeno(1,2,3-cd)pyrene	ND	37.9		μg/Kg-dry	1	4/6/2021 2:58:16 PM
Dibenz(a,h)anthracene	ND	37.9		μg/Kg-dry	1	4/6/2021 2:58:16 PM
Benzo(g,h,i)perylene	ND	19.0		μg/Kg-dry	1	4/6/2021 2:58:16 PM
Surr: 2,4,6-Tribromophenol	79.6	19.4 - 153		%Rec	1	4/6/2021 2:58:16 PM
Surr: 2-Fluorobiphenyl	64.5	19 - 135		%Rec	1	4/6/2021 2:58:16 PM
Surr: Terphenyl-d14 (surr)	78.8	42.9 - 156		%Rec	1	4/6/2021 2:58:16 PM
Gasoline by NWTPH-Gx				Batch	n ID: 31	908 Analyst: CR
Gasoline	ND	4.44		mg/Kg-dry	1	4/7/2021 10:03:10 PM
Surr: Toluene-d8	99.6	65 - 135		%Rec	1	4/7/2021 10:03:10 PM
Surr: 4-Bromofluorobenzene	99.2	65 - 135		%Rec	1	4/7/2021 10:03:10 PM

Work Order: **2104041**Date Reported: **4/9/2021**

Client: Shannon & Wilson Collection Date: 3/30/2021 1:30:00 AM

Project: Cascade Mill Parkway

Lab ID: 2104041-001 **Matrix:** Soil

Client Sample ID: B-11P-21/R-10@51'

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method	8260D		Batch	ı ID:	31908 Analyst: CR
Benzene	ND	0.0178		mg/Kg-dry	1	4/7/2021 10:03:10 PM
Toluene	ND	0.0577		mg/Kg-dry	1	4/7/2021 10:03:10 PM
Ethylbenzene	ND	0.0222		mg/Kg-dry	1	4/7/2021 10:03:10 PM
m,p-Xylene	ND	0.0444		mg/Kg-dry	1	4/7/2021 10:03:10 PM
o-Xylene	ND	0.0222		mg/Kg-dry	1	4/7/2021 10:03:10 PM
Surr: Dibromofluoromethane	94.4	82.3 - 112		%Rec	1	4/7/2021 10:03:10 PM
Surr: Toluene-d8	97.4	90.7 - 109		%Rec	1	4/7/2021 10:03:10 PM
Surr: 1-Bromo-4-fluorobenzene	97.9	88.4 - 109		%Rec	1	4/7/2021 10:03:10 PM
Mercury by EPA Method 7471				Batch	ı ID:	31892 Analyst: LB
Mercury	ND	0.247		mg/Kg-dry	1	4/6/2021 3:25:22 PM
Total Metals by EPA Method 602	<u>0B</u>			Batch	ı ID:	31911 Analyst: EH
Arsenic	2.25	0.104		mg/Kg-dry	1	4/9/2021 1:52:38 PM
Barium	68.6	0.519		mg/Kg-dry	1	4/9/2021 1:52:38 PM
Cadmium	ND	0.173		mg/Kg-dry	1	4/8/2021 6:24:35 PM
Chromium	14.7	0.346		mg/Kg-dry	1	4/8/2021 6:24:35 PM
Lead	2.04	0.173		mg/Kg-dry	1	4/8/2021 6:24:35 PM
Selenium	2.47	0.173		mg/Kg-dry	1	4/9/2021 1:52:38 PM
Silver	ND	0.130		mg/Kg-dry	1	4/8/2021 6:24:35 PM
Sample Moisture (Percent Moist	ure)			Batch	ı ID:	R66414 Analyst: OK
Percent Moisture	9.71			wt%	1	4/8/2021 10:55:13 AM

Work Order: **2104041**Date Reported: **4/9/2021**

Client: Shannon & Wilson Collection Date: 4/1/2021 1:15:00 AM

Project: Cascade Mill Parkway

Lab ID: 2104041-002 **Matrix:** Soil

Client Sample ID: B-12P-21/R-11@50'

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTP	H-Dx/Dx Ext.			Batch	n ID: 3	1906 Analyst: MM
Diesel (Fuel Oil)	ND	47.4		mg/Kg-dry	1	4/8/2021 9:41:12 AM
Heavy Oil	ND	94.7		mg/Kg-dry	1	4/8/2021 9:41:12 AM
Total Petroleum Hydrocarbons	ND	71.0		mg/Kg-dry	1	4/8/2021 9:41:12 AM
Surr: 2-Fluorobiphenyl	82.3	50 - 150		%Rec	1	4/8/2021 9:41:12 AM
Surr: o-Terphenyl	91.0	50 - 150		%Rec	1	4/8/2021 9:41:12 AM
Semi-Volatile Organic Compou	ınds by EPA 82	70 (SIM)		Batch	n ID: 3	1880 Analyst: IH
Naphthalene	ND	21.9		μg/Kg-dry	1	4/6/2021 3:19:38 PM
2-Methylnaphthalene	ND	21.9		μg/Kg-dry	1	4/6/2021 3:19:38 PM
1-Methylnaphthalene	ND	21.9		μg/Kg-dry	1	4/6/2021 3:19:38 PM
Acenaphthene	ND	21.9		μg/Kg-dry	1	4/6/2021 3:19:38 PM
Acenaphthylene	ND	21.9		μg/Kg-dry	1	4/6/2021 3:19:38 PM
Fluorene	ND	21.9		μg/Kg-dry	1	4/6/2021 3:19:38 PM
Pentachlorophenol	ND	87.5		μg/Kg-dry	1	4/6/2021 3:19:38 PM
Phenanthrene	ND	43.7		μg/Kg-dry	1	4/6/2021 3:19:38 PM
Anthracene	ND	43.7		μg/Kg-dry	1	4/6/2021 3:19:38 PM
Fluoranthene	ND	43.7		μg/Kg-dry	1	4/6/2021 3:19:38 PM
Pyrene	ND	43.7		μg/Kg-dry	1	4/6/2021 3:19:38 PM
Benz(a)anthracene	ND	21.9		μg/Kg-dry	1	4/6/2021 3:19:38 PM
Chrysene	ND	43.7		μg/Kg-dry	1	4/6/2021 3:19:38 PM
Benzo(b)fluoranthene	ND	21.9		μg/Kg-dry	1	4/6/2021 3:19:38 PM
Benzo(k)fluoranthene	ND	21.9		μg/Kg-dry	1	4/6/2021 3:19:38 PM
Benzo(a)pyrene	ND	21.9		μg/Kg-dry	1	4/6/2021 3:19:38 PM
Indeno(1,2,3-cd)pyrene	ND	43.7		μg/Kg-dry	1	4/6/2021 3:19:38 PM
Dibenz(a,h)anthracene	ND	43.7		μg/Kg-dry	1	4/6/2021 3:19:38 PM
Benzo(g,h,i)perylene	ND	21.9		μg/Kg-dry	1	4/6/2021 3:19:38 PM
Surr: 2,4,6-Tribromophenol	86.5	19.4 - 153		%Rec	1	4/6/2021 3:19:38 PM
Surr: 2-Fluorobiphenyl	64.4	19 - 135		%Rec	1	4/6/2021 3:19:38 PM
Surr: Terphenyl-d14 (surr)	85.4	42.9 - 156		%Rec	1	4/6/2021 3:19:38 PM
Gasoline by NWTPH-Gx				Batch	1D: 3	1908 Analyst: CR
Gasoline	ND	5.88		mg/Kg-dry	1	4/7/2021 10:33:33 PM
Surr: Toluene-d8	100	65 - 135		%Rec	1	4/7/2021 10:33:33 PM
Surr: 4-Bromofluorobenzene	99.0	65 - 135		%Rec	1	4/7/2021 10:33:33 PM

Work Order: **2104041**Date Reported: **4/9/2021**

Client: Shannon & Wilson Collection Date: 4/1/2021 1:15:00 AM

Project: Cascade Mill Parkway

Lab ID: 2104041-002 **Matrix:** Soil

Client Sample ID: B-12P-21/R-11@50'

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method	8260D		Batch	ı ID:	31908 Analyst: CR
Benzene	ND	0.0235		mg/Kg-dry	1	4/7/2021 10:33:33 PM
Toluene	ND	0.0765		mg/Kg-dry	1	4/7/2021 10:33:33 PM
Ethylbenzene	ND	0.0294		mg/Kg-dry	1	4/7/2021 10:33:33 PM
m,p-Xylene	ND	0.0588		mg/Kg-dry	1	4/7/2021 10:33:33 PM
o-Xylene	ND	0.0294		mg/Kg-dry	1	4/7/2021 10:33:33 PM
Surr: Dibromofluoromethane	94.5	82.3 - 112		%Rec	1	4/7/2021 10:33:33 PM
Surr: Toluene-d8	98.2	90.7 - 109		%Rec	1	4/7/2021 10:33:33 PM
Surr: 1-Bromo-4-fluorobenzene	97.7	88.4 - 109		%Rec	1	4/7/2021 10:33:33 PM
Mercury by EPA Method 7471				Batch	ı ID:	31892 Analyst: LB
Mercury	ND	0.248		mg/Kg-dry	1	4/6/2021 3:26:58 PM
Total Metals by EPA Method 602	<u>:0B</u>			Batch	ı ID:	31911 Analyst: EH
Arsenic	1.99	0.105		mg/Kg-dry	1	4/9/2021 1:58:12 PM
Barium	68.1	0.526		mg/Kg-dry	1	4/9/2021 1:58:12 PM
Cadmium	ND	0.175		mg/Kg-dry	1	4/8/2021 6:30:09 PM
Chromium	17.1	0.351		mg/Kg-dry	1	4/8/2021 6:30:09 PM
Lead	2.15	0.175		mg/Kg-dry	1	4/8/2021 6:30:09 PM
Selenium	1.68	0.175		mg/Kg-dry	1	4/9/2021 1:58:12 PM
Silver	ND	0.131		mg/Kg-dry	1	4/8/2021 6:30:09 PM
Sample Moisture (Percent Moist	ure)			Batch	ı ID:	R66414 Analyst: OK
Percent Moisture	11.6			wt%	1	4/8/2021 10:55:13 AM

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Project: Cascade Mill Parkway

Total Metals by EPA Method 6020B

	o min r ammay										
Sample ID: MB-31911	SampType: MBLK			Units: mg/Kg		Prep Dat	te: 4/7/202	1	RunNo: 664	137	
Client ID: MBLKS	Batch ID: 31911					Analysis Dat	te: 4/8/202	1	SeqNo: 133	36653	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	ND	0.0960									
Barium	ND	0.480									
Cadmium	ND	0.160									

Caumum	ND	0.100
Chromium	ND	0.320
Lead	ND	0.160
Selenium	ND	0.160
Silver	ND	0.120

Sample ID: LCS-31911	SampType: LCS			Units: mg/Kg	Units: mg/Kg Prep Date: 4/7/2021				RunNo: 66437			
Client ID: LCSS	Batch ID: 31911					Analysis Da	te: 4/8/202	1	SeqNo: 133	36654		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Arsenic	38.3	0.0960	40.00	0	95.8	80	120					
Barium	40.9	0.480	40.00	0	102	80	120					
Cadmium	1.93	0.160	2.000	0	96.5	80	120					
Chromium	41.6	0.320	40.00	0	104	80	120					
Lead	19.2	0.160	20.00	0	96.0	80	120					
Selenium	3.73	0.160	4.000	0	93.4	80	120					
Silver	2.03	0.120	2.000	0	102	80	120					

Sample ID: 2104091-002AMS	SampType: MS			Units: mg/	/Kg-dry	Prep Da	te: 4/7/202	:1	RunNo: 664	137	
Client ID: BATCH	Batch ID: 31911					Analysis Da	te: 4/8/202	:1	SeqNo: 133	86657	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	48.1	0.102	42.52	5.317	101	75	125				
Barium	117	0.510	42.52	53.67	149	75	125				S
Cadmium	2.45	0.170	2.126	0.2302	104	75	125				
Chromium	90.8	0.340	42.52	51.57	92.2	75	125				
Lead	25.1	0.170	21.26	5.121	94.0	75	125				

Original Page 9 of 22

Date: 4/9/2021

Work Order: 2104041

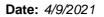
QC SUMMARY REPORT

CLIENT: Shannon & Wilson
Project: Cascade Mill Parkway

Total Metals by EPA Method 6020B

Sample ID: 2104091-002AMS	SampType: MS		Units: mg/Kg-dry Prep Date: 4/7/2021						RunNo: 66437				
Client ID: BATCH	Batch ID: 31911					Analysis Da	te: 4/8/202	:1	SeqNo: 133	36657			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual		
Selenium	6.66	0.170	4.252	2.211	105	75	125						
Silver	2.03	0.128	2.126	0.09239	91.0	75	125						

NOTES:


S - Outlying spike recovery(ies) observed. A duplicate analysis was performed with similar results indicating a possible matrix effect.

Sample ID: 2104091-002AMSD	SampType: MSD			Units: mg/	Kg-dry	1	RunNo: 66437				
Client ID: BATCH	Batch ID: 31911					Analysis Da	te: 4/8/202	1	SeqNo: 133	36658	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	49.8	0.102	42.52	5.317	105	75	125	48.08	3.44	20	
Barium	111	0.510	42.52	53.67	136	75	125	116.9	4.90	20	S
Cadmium	2.41	0.170	2.126	0.2302	102	75	125	2.446	1.60	20	
Chromium	103	0.340	42.52	51.57	122	75	125	90.79	12.9	20	
Lead	24.9	0.170	21.26	5.121	93.2	75	125	25.10	0.632	20	
Selenium	6.34	0.170	4.252	2.211	97.0	75	125	6.658	4.98	20	
Silver	1.94	0.128	2.126	0.09239	87.0	75	125	2.026	4.20	20	

NOTES:

Original Page 10 of 22

S - Outlying spike recovery(ies) observed for Ba. A duplicate analysis was performed with similar results indicating a possible matrix effect.

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

	0								Merc	cury by EP	A Metho	d 747
Project:	Cascade M	III Parkway										
Sample ID: ME	3-31892	SampType: MBLK			Units: mg/Kg	9	Prep Date	4/6/202	1	RunNo: 663	369	
Client ID: ME	BLKS	Batch ID: 31892					Analysis Date	4/6/202	1	SeqNo: 133	35288	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		ND	0.250									
Sample ID: LC	S-31892	SampType: LCS			Units: mg/Kg	g	Prep Date:	4/6/202	1	RunNo: 663	369	
Client ID: LC	ss	Batch ID: 31892					Analysis Date	4/6/202	1	SeqNo: 133	35289	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		0.529	0.250	0.5000	0	106	80	120				
Sample ID: 21	03402-001ADUP	SampType: DUP			Units: mg/Kg	g-dry	Prep Date:	4/6/202	1	RunNo: 663	369	
Client ID: BA	АТСН	Batch ID: 31892					Analysis Date	4/6/202	1	SeqNo: 133	35291	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury NOTES:		ND	0.661						0		20	Q
	s an analyte with a c	continuing calibration that o	loes not me	et established	acceptance criteria	ı						
Sample ID: 21	03402-001AMS	SampType: MS			Units: mg/Kg	g-dry	Prep Date	4/6/202	1	RunNo: 663	369	
Client ID: BA	АТСН	Batch ID: 31892					Analysis Date	4/6/202	1	SeqNo: 133	35292	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		1.41	0.674	1.347	0.3755	76.9	70	130		-		
Sample ID: 21	03402-001AMSD	SampType: MSD			Units: mg/Kg	g-dry	Prep Date:	4/6/202	1	RunNo: 663	369	
Client ID: BA	АТСН	Batch ID: 31892					Analysis Date	4/6/202	1	SeqNo: 133	35293	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		1.63	0.661	1.323	0.3755	94.8	70	130	1.412	14.3	20	

Page 11 of 22 Original

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Project: Cascade Mi	II Parkway						Diesei	and Heavy (Oli by NW	IPH-DX/L	DX EX
Sample ID: MB-31906	SampType: MBLK			Units: mg/Kg		Prep Date	4/7/202	1	RunNo: 664	15	
Client ID: MBLKS	Batch ID: 31906					Analysis Date	4/8/202	1	SeqNo: 133	6532	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	50.0									
Heavy Oil	ND	100									
Total Petroleum Hydrocarbons	ND	75.0									
Surr: 2-Fluorobiphenyl	9.57		10.00		95.7	50	150				
Surr: o-Terphenyl	10.3		10.00		103	50	150				
Sample ID: LCS-31906	SampType: LCS			Units: mg/Kg		Prep Date	: 4/7/202	1	RunNo: 664	15	
Client ID: LCSS	Batch ID: 31906					Analysis Date	: 4/8/202	1	SeqNo: 133	6533	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	504	50.0	500.0	0	101	73.7	114				
Surr: 2-Fluorobiphenyl	9.11		10.00		91.1	50	150				
Surr: o-Terphenyl	10.2		10.00		102	50	150				
Sample ID: 2104041-002AMS	SampType: MS			Units: mg/Kg-	dry	Prep Date	: 4/7/202	1	RunNo: 664	115	
Client ID: B-12P-21/R-11@50'	Batch ID: 31906					Analysis Date	: 4/8/202	1	SeqNo: 133	6536	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	561	56.4	563.7	0	99.5	61.4	129				
Surr: 2-Fluorobiphenyl	9.48		11.27		84.1	50	150				
Surr: o-Terphenyl	10.8		11.27		96.2	50	150				
Sample ID: 2104041-002AMSD	SampType: MSD			Units: mg/Kg-	dry	Prep Date	: 4/7/202	1	RunNo: 664	115	
Client ID: B-12P-21/R-11@50'	Batch ID: 31906					Analysis Date	: 4/8/202	1	SeqNo: 133	6537	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	481	48.0	480.0	0	100	61.4	129	561.2	15.4	30	
Surr: 2-Fluorobiphenyl	7.63		9.600		79.5	50	150		0		

Original Page 12 of 22

Date: 4/9/2021

Cascade Mill Parkway

Work Order: 2104041

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Sample ID: 2104041-002AMSD SampType: MSD Units: mg/Kg-dry Prep Date: 4/7/2021 RunNo: 66415

Client ID: B-12P-21/R-11@50' Batch ID: 31906 Analysis Date: 4/8/2021 SeqNo: 1336537

Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val %RPD RPDLimit Qual

Sample ID: 2104071-009ADUP	SampType: DUP				(g-dry	Prep Da	te: 4/7/202	1	RunNo: 664	115	
Client ID: BATCH	Batch ID: 31906					Analysis Da	te: 4/8/202	1	SeqNo: 133	36546	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	54.6						0		30	
Heavy Oil	ND	109						0		30	
Total Petroleum Hydrocarbons	ND	82.0						0		0	
Surr: 2-Fluorobiphenyl	8.84		10.93		80.9	50	150		0		
Surr: o-Terphenyl	9.85		10.93		90.1	50	150		0		

Original Page 13 of 22

Cascade Mill Parkway

Work Order: 2104041

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

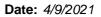
Semi-Volatile Organic Compounds by EPA 8270 (SIM)

Sample ID: MB-31880	SampType: MBLK			Units: µg/Kg		Prep Date	4/5/202	1	RunNo: 664	149	
Client ID: MBLKS	Batch ID: 31880					Analysis Date	4/6/202	1	SeqNo: 133	86911	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	20.0									
2-Methylnaphthalene	ND	20.0									
1-Methylnaphthalene	ND	20.0									
Acenaphthene	ND	20.0									
Acenaphthylene	ND	20.0									
Fluorene	ND	20.0									
Pentachlorophenol	ND	80.0									
Phenanthrene	ND	40.0									
Anthracene	ND	40.0									
Fluoranthene	ND	40.0									
Pyrene	ND	40.0									
Benz(a)anthracene	ND	20.0									
Chrysene	ND	40.0									
Benzo(b)fluoranthene	ND	20.0									
Benzo(k)fluoranthene	ND	20.0									
Benzo(a)pyrene	ND	20.0									
Indeno(1,2,3-cd)pyrene	ND	40.0									
Dibenz(a,h)anthracene	ND	40.0									
Benzo(g,h,i)perylene	ND	20.0									
Surr: 2,4,6-Tribromophenol	1,350		2,000		67.7	19.4	153				
Surr: 2-Fluorobiphenyl	796		1,000		79.6	19	135				
Surr: Terphenyl-d14 (surr)	947		1,000		94.7	42.9	156				
Cample ID: I CC 24000	SampType: LCS			Lipito:		Prop Data	. 4/5/000		PunNo: 664	140	

Sample ID: LCS-31880	SampType: LCS	. ,,				Prep Dat	Prep Date: 4/5/2021			RunNo: 66449		
Client ID: LCSS	Batch ID: 31880					Analysis Dat	e: 4/6/202	:1	SeqNo: 133	6912		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Naphthalene	1,790	20.0	2,000	0	89.5	62.7	127					
2-Methylnaphthalene	1,820	20.0	2,000	0	90.9	62.7	132					
1-Methylnaphthalene	1,840	20.0	2,000	0	91.8	61.4	131					

Original Page 14 of 22

QC SUMMARY REPORT


CLIENT: Shannon & Wilson
Project: Cascade Mill Parkway

Semi-Volatile Organic Compounds by EPA 8270 (SIM)

Sample ID: LCS-31880	SampType: LCS			Units: µg/Kg		Prep Dat	e: 4/5/202	1	RunNo: 664	149	
Client ID: LCSS	Batch ID: 31880					Analysis Dat	e: 4/6/202	1	SeqNo: 133	86912	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	1,780	20.0	2,000	0	88.9	59.2	132				
Acenaphthylene	1,850	20.0	2,000	0	92.4	62	132				
Fluorene	1,880	20.0	2,000	0	94.0	59.1	136				
Pentachlorophenol	1,340	80.0	2,000	0	67.1	5	112				
Phenanthrene	1,860	40.0	2,000	0	93.0	54.1	139				
Anthracene	1,850	40.0	2,000	0	92.7	55.5	136				
Fluoranthene	1,900	40.0	2,000	0	95.2	52.8	149				
Pyrene	1,830	40.0	2,000	0	91.6	53.6	146				
Benz(a)anthracene	1,900	20.0	2,000	0	95.2	49.7	153				
Chrysene	1,810	40.0	2,000	0	90.5	52.6	147				
Benzo(b)fluoranthene	2,060	20.0	2,000	0	103	50.6	151				
Benzo(k)fluoranthene	1,860	20.0	2,000	0	92.8	47.1	155				
Benzo(a)pyrene	2,180	20.0	2,000	0	109	48.3	169				
Indeno(1,2,3-cd)pyrene	1,960	40.0	2,000	0	97.9	52.3	145				
Dibenz(a,h)anthracene	2,000	40.0	2,000	0	99.8	53	144				
Benzo(g,h,i)perylene	1,830	20.0	2,000	0	91.7	49.7	144				
Surr: 2,4,6-Tribromophenol	2,050		2,000		103	19.4	153				
Surr: 2-Fluorobiphenyl	863		1,000		86.3	19	135				
Surr: Terphenyl-d14 (surr)	961		1,000		96.1	42.9	156				

Sample ID: 2103370-004AMS	SampType: MS			Units: μg/Kg-dry Prep Date: 4/5/2021			1	RunNo: 66449			
Client ID: BATCH	Batch ID: 31880				Analysis Date: 4/6/2021			1	SeqNo: 133	36914	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,330	18.7	1,871	0	70.9	28.7	139				
2-Methylnaphthalene	1,370	18.7	1,871	0	73.1	43.5	130				
1-Methylnaphthalene	1,390	18.7	1,871	0	74.3	42.6	127				
Acenaphthene	1,340	18.7	1,871	0	71.7	45.1	123				
Acenaphthylene	1,410	18.7	1,871	0	75.3	45.3	129				
Fluorene	1,420	18.7	1,871	0	76.0	41.6	128				

Original Page 15 of 22

QC SUMMARY REPORT

CLIENT: Shannon & Wilson
Project: Cascade Mill Parkway

Semi-Volatile Organic Compounds by EPA 8270 (SIM)

Sample ID: 2103370-004AMS	SampType: MS			Units: µg/K	g-dry	Prep Date	: 4/5/202	1	RunNo: 664	149	
Client ID: BATCH	Batch ID: 31880					Analysis Date	: 4/6/202	1	SeqNo: 13	36914	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pentachlorophenol	1,440	74.8	1,871	0	77.2	5	188				
Phenanthrene	1,420	37.4	1,871	12.51	75.2	24.2	142				
Anthracene	1,420	37.4	1,871	0	75.8	33.1	143				
Fluoranthene	1,520	37.4	1,871	33.69	79.3	35.5	147				
Pyrene	1,430	37.4	1,871	24.53	75.0	38.3	141				
Benz(a)anthracene	1,500	18.7	1,871	6.865	79.8	42.5	145				
Chrysene	1,380	37.4	1,871	18.99	72.8	39.7	134				
Benzo(b)fluoranthene	1,400	18.7	1,871	12.44	74.4	29.9	152				
Benzo(k)fluoranthene	1,600	18.7	1,871	9.164	85.1	33.2	143.5				
Benzo(a)pyrene	1,640	18.7	1,871	8.077	87.0	38.2	156				
Indeno(1,2,3-cd)pyrene	1,460	37.4	1,871	0	78.3	41.4	128				
Dibenz(a,h)anthracene	1,490	37.4	1,871	0	79.6	40.4	129				
Benzo(g,h,i)perylene	1,350	18.7	1,871	12.17	71.6	34.2	131				
Surr: 2,4,6-Tribromophenol	1,650		1,871		88.2	19.4	153				
Surr: 2-Fluorobiphenyl	687		935.4		73.4	19	135				
Surr: Terphenyl-d14 (surr)	763		935.4		81.6	42.9	156				

Sample ID: 2103370-004AMSD	SampType: MSD			Units: µg/K	g-dry	Prep Da	te: 4/5/202	1	RunNo: 664	149	
Client ID: BATCH	Batch ID: 31880					Analysis Da	te: 4/6/202	:1	SeqNo: 133	36915	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,330	20.7	2,067	0	64.4	28.7	139	1,326	0.363	30	
2-Methylnaphthalene	1,360	20.7	2,067	0	65.9	43.5	130	1,367	0.366	30	
1-Methylnaphthalene	1,390	20.7	2,067	0	67.1	42.6	127	1,390	0.193	30	
Acenaphthene	1,350	20.7	2,067	0	65.4	45.1	123	1,341	0.804	30	
Acenaphthylene	1,400	20.7	2,067	0	67.8	45.3	129	1,409	0.560	30	
Fluorene	1,410	20.7	2,067	0	68.4	41.6	128	1,422	0.594	30	
Pentachlorophenol	1,420	82.7	2,067	0	68.7	5	188	1,444	1.70	30	
Phenanthrene	1,470	41.3	2,067	12.51	70.4	24.2	142	1,419	3.36	30	
Anthracene	1,440	41.3	2,067	0	69.8	33.1	143	1,419	1.71	30	

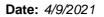
Original Page 16 of 22

Date: 4/9/2021

Cascade Mill Parkway

Work Order: 2104041

Project:


QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Semi-Volatile Organic Compounds by EPA 8270 (SIM)

Sample ID: 2103370-004AMSD	SampType: MSD			Units: µg/K	g-dry	Prep Da	te: 4/5/202	21	RunNo: 664	149	
Client ID: BATCH	Batch ID: 31880					Analysis Da	te: 4/6/202	21	SeqNo: 133	36915	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluoranthene	1,510	41.3	2,067	33.69	71.6	35.5	147	1,517	0.183	30	
Pyrene	1,440	41.3	2,067	24.53	68.4	38.3	141	1,428	0.768	30	
Benz(a)anthracene	1,500	20.7	2,067	6.865	72.3	42.5	145	1,500	0.137	30	
Chrysene	1,360	41.3	2,067	18.99	64.9	39.7	134	1,380	1.41	30	
Benzo(b)fluoranthene	1,420	20.7	2,067	12.44	68.2	29.9	152	1,405	1.31	30	
Benzo(k)fluoranthene	1,570	20.7	2,067	9.164	75.5	33.2	143.5	1,601	1.97	30	
Benzo(a)pyrene	1,660	20.7	2,067	8.077	80.0	38.2	156	1,636	1.53	30	
Indeno(1,2,3-cd)pyrene	1,480	41.3	2,067	0	71.5	41.4	128	1,464	0.926	30	
Dibenz(a,h)anthracene	1,510	41.3	2,067	0	73.0	40.4	129	1,490	1.34	30	
Benzo(g,h,i)perylene	1,370	20.7	2,067	12.17	65.6	34.2	131	1,352	1.12	30	
Surr: 2,4,6-Tribromophenol	1,560		2,067		75.6	19.4	153		0		
Surr: 2-Fluorobiphenyl	636		1,034		61.5	19	135		0		
Surr: Terphenyl-d14 (surr)	712		1,034		68.9	42.9	156		0		

Original Page 17 of 22

QC SUMMARY REPORT

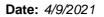
CLIENT: Shannon & Wilson

Project: Cascade Mill Parkway

Gasoline by NWTPH-Gx

Project: Cascade Mi	ill Parkway								Gasoniic	by itti	\
Sample ID: LCS-31908	SampType: LCS			Units: mg/Kg)	Prep Da	ite: 4/7/202	21	RunNo: 664	110	
Client ID: LCSS	Batch ID: 31908					Analysis Da	ite: 4/7/202	21	SeqNo: 133	86177	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Gasoline	25.7	5.00	25.00	0	103	65	135				
Surr: Toluene-d8	1.23		1.250		98.6	65	135				
Surr: 4-Bromofluorobenzene	1.26		1.250		101	65	135				
Sample ID: MB-31908	SampType: MBLK			Units: mg/Kg]	Prep Da	ite: 4/7/202	21	RunNo: 664	110	
Client ID: MBLKS	Batch ID: 31908					Analysis Da	ite: 4/7/202	21	SeqNo: 133	86178	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Gasoline	ND	5.00									
Surr: Toluene-d8	1.23		1.250		98.7	65	135				
Surr: 4-Bromofluorobenzene	1.24		1.250		99.4	65	135				
Sample ID: 2104041-002BDUP	SampType: DUP			Units: mg/Kg	g-dry	Prep Da	ite: 4/7/202	21	RunNo: 664	110	
Client ID: B-12P-21/R-11@50'	Batch ID: 31908					Analysis Da	ite: 4/7/202	21	SeqNo: 133	86167	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Gasoline	ND	5.88						0		30	
Surr: Toluene-d8	1.46		1.471		99.1	65	135		0		
Surr: 4-Bromofluorobenzene	1.45		1.471		98.5	65	135		0		
Sample ID: 2104042-007BMS	SampType: MS			Units: mg/Kg	g-dry	Prep Da	ite: 4/7/202	21	RunNo: 664	110	
Client ID: BATCH	Batch ID: 31908					Analysis Da	ite: 4/8/202	21	SeqNo: 133	86172	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Gasoline	24.9	4.61	23.06	0	108	65	135				
Surr: Toluene-d8	1.15		1.153		99.7	65	135				
Surr: 4-Bromofluorobenzene	1.16		1.153		100	65	135				

Original Page 18 of 22


QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Volatile Organic Compounds by EPA Method 8260D

Sample ID: LCS-31908	SampType: LCS			Units: mg/Kg		Prep Date	4/7/202	21	RunNo: 664	109	
Client ID: LCSS	Batch ID: 31908					Analysis Date	: 4/7/202	<u>:</u> 1	SeqNo: 133	86312	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	0.985	0.0200	1.000	0	98.5	80	120				
Toluene	1.06	0.0650	1.000	0	106	80	120				
Ethylbenzene	1.08	0.0250	1.000	0	108	80	120				
m,p-Xylene	2.06	0.0500	2.000	0	103	80	120				
o-Xylene	1.02	0.0250	1.000	0	102	80	120				
Surr: Dibromofluoromethane	1.22		1.250		97.7	80	120				
Surr: Toluene-d8	1.28		1.250		102	80	120				
Surr: 1-Bromo-4-fluorobenzene	1.26		1.250		101	80	120				
Sample ID: MB-31908	SampType: MBLK			Units: mg/Kg		Prep Date	: 4/7/202	<u> </u>	RunNo: 66 4	109	
Client ID: MBLKS	Batch ID: 31908					Analysis Date	: 4/7/202	! 1	SeqNo: 133	86313	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	ND	0.0200									
Toluene	ND	0.0650									
Ethylbenzene	ND	0.0250									
m,p-Xylene	ND	0.0500									
o-Xylene	ND	0.0250									
Surr: Dibromofluoromethane	1.17		1.250		93.7	82.3	112				
Surr: Toluene-d8	1.20		1.250		96.3	90.7	109				
Surr: 1-Bromo-4-fluorobenzene	1.23		1.250		98.1	88.4	109				
Sample ID: 2104041-002BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date	: 4/7/202	<u></u> !1	RunNo: 664	109	
Client ID: B-12P-21/R-11@50'	Batch ID: 31908					Analysis Date	: 4/7/202	<u>:</u> 1	SeqNo: 133	86304	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	ND	0.0235						0		30	
Toluene	ND	0.0765						0		30	
Ethylbenzene	ND	0.0294						0		30	

Original Page 19 of 22

QC SUMMARY REPORT

CLIENT: Shannon & Wilson
Project: Cascade Mill Parkway

Volatile Organic Compounds by EPA Method 8260D

Sample ID: 2104041-002BDUP	SampType: DUP			Units: mg/K	g-dry	Prep Dat	te: 4/7/202	1	RunNo: 664	109	
Client ID: B-12P-21/R-11@50'	Batch ID: 31908					Analysis Dat	te: 4/7/202	1	SeqNo: 133	36304	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
m,p-Xylene	ND	0.0588						0		30	
o-Xylene	ND	0.0294						0		30	
Surr: Dibromofluoromethane	1.40		1.471		95.1	82.3	112		0		
Surr: Toluene-d8	1.45		1.471		98.6	90.7	109		0		
Surr: 1-Bromo-4-fluorobenzene	1.43		1.471		97.3	88.4	109		0		

Sample ID: 2104042-005BMS	SampType: MS			Units: mg	/Kg-dry	Prep Da	te: 4/7/202	<u>!</u> 1	RunNo: 664	109	
Client ID: BATCH	Batch ID: 31908					Analysis Da	te: 4/8/202	:1	SeqNo: 133	36307	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	1.09	0.0214	1.068	0	102	76.8	129				
Toluene	1.09	0.0694	1.068	0	102	77.8	127				
Ethylbenzene	1.16	0.0267	1.068	0	108	78.7	130				
m,p-Xylene	2.17	0.0534	2.137	0	102	79.3	127				
o-Xylene	1.09	0.0267	1.068	0	102	80.7	124				
Surr: Dibromofluoromethane	1.34		1.335		100	82.3	112				
Surr: Toluene-d8	1.34		1.335		100	90.7	109				
Surr: 1-Bromo-4-fluorobenzene	1.35		1.335		101	88.4	109				

Original Page 20 of 22

Sample Log-In Check List

CI	ient Name:	sw		Work O	rder Numb	per: 2104041		
Lo	gged by:	Gabrielle Coeuille		Date Re	eceived:	4/2/2021 5	:31:00 PM	
Cha	in of Cust	ody						
		ustody complete?		Yes	✓	No \square	Not Present	
2.	How was the	sample delivered?		Clier	<u>nt</u>			
Log	In							
_	Coolers are p	aresent?		Yes	~	No 🗆	NA 🗆	
٥.	Oddicis are p	incocnt:		103		но 🗀	NA 🗀	
4.	Shipping con	tainer/cooler in good condition	?	Yes	✓	No 🗌		
5.		s present on shipping contain iments for Custody Seals not		Yes	✓	No 🗌	Not Present	
6.	Was an atten	npt made to cool the samples'	?	Yes	✓	No 🗌	NA \square	
7.	Were all item	s received at a temperature o	f >2°C to 6°C *	Yes	✓	No 🗆	NA 🗆	
8.	Sample(s) in	proper container(s)?		Yes	✓	No 🗌		
9.	Sufficient sar	nple volume for indicated test(s)?	Yes	✓	No \square		
10.	Are samples	properly preserved?		Yes	✓	No 🗌		
11.	Was preserva	ative added to bottles?		Yes		No 🗸	NA \square	
12.	Is there head	space in the VOA vials?		Yes		No 🗌	NA 🗹	
		es containers arrive in good co	ondition(unbroken)?	Yes	✓	No 🗌		
14.	Does paperw	ork match bottle labels?		Yes	✓	No 🗌		
45	Ara matricas	correctly identified on Chain a	f Custody?	Voo	✓	No 🗆		
_		correctly identified on Chain on a contract of the contract of	Custody?	Yes Yes	✓	No \square		
		ing times able to be met?		Yes	✓	No \square		
		·						
<u>Spe</u>	<u>cial Handl</u>	ing (if applicable)						
18.	Was client no	otified of all discrepancies with	this order?	Yes		No 🗌	NA 🗹	
	Person	Notified:	Dat	e:				
	By Who	m:	Via	: ема	ail 🗌 Pho	one 🗌 Fax [] In Person	
	Regardi							
	Client Ir	structions:						
19.	Additional rer	marks:						
<u>ltem</u>	Information							
		Item #	Temp °C					
	Sample 1		1.1					

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Page 22 of 22

COC 1.3 - 11 06 20

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Shannon & Wilson Dave Randall 400 N. 34th Street, Suite 100 Seattle, WA 98103

RE: Cascade Mill Parkway Work Order Number: 2103484

April 07, 2021

Attention Dave Randall:

Fremont Analytical, Inc. received 4 sample(s) on 3/29/2021 for the analyses presented in the following report.

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Gasoline by NWTPH-Gx

Mercury by EPA Method 7471

Sample Moisture (Percent Moisture)

Semi-Volatile Organic Compounds by EPA 8270 (SIM)

Total Metals by EPA Method 6020B

Volatile Organic Compounds by EPA Method 8260D

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Date: 04/07/2021

CLIENT: Shannon & Wilson Work Order Sample Summary

Project: Cascade Mill Parkway

Work Order: 2103484

Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2103484-001	B-15P-21/S-5 @ 21'	03/22/2021 4:00 PM	03/29/2021 9:06 AM
2103484-002	B-13-21/R-9 @ 47'	03/25/2021 11:55 PM	03/29/2021 9:06 AM
2103484-003	B-14-21/R-9 @ 48'	03/27/2021 12:40 AM	03/29/2021 9:06 AM
2103484-004	Trip Blank		03/29/2021 9:06 AM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: **2103484**Date: **4/7/2021**

CLIENT: Shannon & Wilson
Project: Cascade Mill Parkway

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2103484**

Date Reported: **4/7/2021**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

DUP - Sample Duplicate

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Work Order: **2103484**Date Reported: **4/7/2021**

Client: Shannon & Wilson Collection Date: 3/22/2021 4:00:00 PM

Project: Cascade Mill Parkway

Lab ID: 2103484-001 **Matrix:** Soil

Client Sample ID: B-15P-21/S-5 @ 21'

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTPH	I-Dx/Dx Ext.			Batch	ID:	31813 Analyst: MM
Diesel (Fuel Oil)	ND	52.6		mg/Kg-dry	1	3/29/2021 6:29:35 PM
Heavy Oil	ND	105		mg/Kg-dry	1	3/29/2021 6:29:35 PM
Surr: 2-Fluorobiphenyl	87.2	50 - 150		%Rec	1	3/29/2021 6:29:35 PM
Surr: o-Terphenyl	87.7	50 - 150		%Rec	1	3/29/2021 6:29:35 PM
Semi-Volatile Organic Compour	nds by EPA 82	270 (SIM)		Batch	ID:	31842 Analyst: SB
Naphthalene	ND	20.6		μg/Kg-dry	1	3/31/2021 7:51:27 PM
2-Methylnaphthalene	ND	20.6		μg/Kg-dry	1	3/31/2021 7:51:27 PM
1-Methylnaphthalene	ND	20.6		μg/Kg-dry	1	3/31/2021 7:51:27 PM
Acenaphthene	ND	20.6		μg/Kg-dry	1	3/31/2021 7:51:27 PM
Acenaphthylene	ND	20.6		μg/Kg-dry	1	3/31/2021 7:51:27 PM
Fluorene	ND	20.6		μg/Kg-dry	1	3/31/2021 7:51:27 PM
Pentachlorophenol	ND	82.3		μg/Kg-dry	1	3/31/2021 7:51:27 PM
Phenanthrene	ND	41.1		μg/Kg-dry	1	3/31/2021 7:51:27 PM
Anthracene	ND	41.1		μg/Kg-dry	1	3/31/2021 7:51:27 PM
Fluoranthene	ND	41.1		μg/Kg-dry	1	3/31/2021 7:51:27 PM
Pyrene	ND	41.1		μg/Kg-dry	1	3/31/2021 7:51:27 PM
Benz(a)anthracene	ND	20.6		μg/Kg-dry	1	3/31/2021 7:51:27 PM
Chrysene	ND	41.1		μg/Kg-dry	1	3/31/2021 7:51:27 PM
Benzo(b)fluoranthene	ND	20.6		μg/Kg-dry	1	3/31/2021 7:51:27 PM
Benzo(k)fluoranthene	ND	20.6		μg/Kg-dry	1	3/31/2021 7:51:27 PM
Benzo(a)pyrene	ND	20.6		μg/Kg-dry	1	3/31/2021 7:51:27 PM
Indeno(1,2,3-cd)pyrene	ND	41.1		μg/Kg-dry	1	3/31/2021 7:51:27 PM
Dibenz(a,h)anthracene	ND	41.1		μg/Kg-dry	1	3/31/2021 7:51:27 PM
Benzo(g,h,i)perylene	ND	20.6		μg/Kg-dry	1	3/31/2021 7:51:27 PM
Surr: 2,4,6-Tribromophenol	80.7	19.4 - 153		%Rec	1	3/31/2021 7:51:27 PM
Surr: 2-Fluorobiphenyl	78.6	19 - 135		%Rec	1	3/31/2021 7:51:27 PM
Surr: Terphenyl-d14 (surr)	92.6	42.9 - 156		%Rec	1	3/31/2021 7:51:27 PM
Gasoline by NWTPH-Gx				Batch	ID:	31836 Analyst: KT
Gasoline	ND	5.46		mg/Kg-dry	1	3/31/2021 11:20:57 AM
Surr: Toluene-d8	98.6	65 - 135		%Rec	1	3/31/2021 11:20:57 AM
Surr: 4-Bromofluorobenzene	99.4	65 - 135		%Rec	1	3/31/2021 11:20:57 AM
Volatile Organic Compounds by	/ EPA Method	8260D		Batch	ID:	31836 Analyst: KT
Benzene	ND	0.0218		mg/Kg-dry	1	3/31/2021 11:20:57 AM

Work Order: **2103484**Date Reported: **4/7/2021**

Client: Shannon & Wilson Collection Date: 3/22/2021 4:00:00 PM

Project: Cascade Mill Parkway

Lab ID: 2103484-001 **Matrix:** Soil

Client Sample ID: B-15P-21/S-5 @ 21'

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method	8260D		Batch	ı ID:	31836 Analyst: KT
Toluene	ND	0.0710		mg/Kg-dry	1	3/31/2021 11:20:57 AM
Ethylbenzene	ND	0.0273		mg/Kg-dry	1	3/31/2021 11:20:57 AM
m,p-Xylene	ND	0.0546		mg/Kg-dry	1	3/31/2021 11:20:57 AM
o-Xylene	ND	0.0273		mg/Kg-dry	1	3/31/2021 11:20:57 AM
Surr: Dibromofluoromethane	102	82.3 - 112		%Rec	1	3/31/2021 11:20:57 AM
Surr: Toluene-d8	102	90.7 - 109		%Rec	1	3/31/2021 11:20:57 AM
Surr: 1-Bromo-4-fluorobenzene	98.0	88.4 - 109		%Rec	1	3/31/2021 11:20:57 AM
Mercury by EPA Method 7471				Batch	ı ID:	31871 Analyst: LB
Mercury	ND	0.273		mg/Kg-dry	1	4/5/2021 2:44:37 PM
Total Metals by EPA Method 602	<u>0B</u>			Batch	ı ID:	31896 Analyst: EH
Arsenic	2.77	0.101		mg/Kg-dry	1	4/7/2021 3:56:44 PM
Barium	50.5	0.507		mg/Kg-dry	1	4/7/2021 3:56:44 PM
Cadmium	ND	0.169		mg/Kg-dry	1	4/7/2021 3:56:44 PM
Chromium	15.7	0.338		mg/Kg-dry	1	4/7/2021 3:56:44 PM
Lead	2.15	0.169		mg/Kg-dry	1	4/7/2021 3:56:44 PM
Selenium	2.19	0.169		mg/Kg-dry	1	4/7/2021 3:56:44 PM
Silver	ND	0.127		mg/Kg-dry	1	4/7/2021 3:56:44 PM
Sample Moisture (Percent Moistu	ure)			Batch	ı ID:	R66167 Analyst: CH
Percent Moisture	10.3			wt%	1	3/29/2021 2:09:28 PM

Work Order: **2103484**Date Reported: **4/7/2021**

Client: Shannon & Wilson Collection Date: 3/25/2021 11:55:00 PM

Project: Cascade Mill Parkway

Lab ID: 2103484-002 **Matrix:** Soil

Client Sample ID: B-13-21/R-9 @ 47'

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTF	PH-Dx/Dx Ext.			Batch	ı ID:	31813 Analyst: MM
Diesel (Fuel Oil)	ND	51.4		mg/Kg-dry	1	3/30/2021 9:11:49 AM
Heavy Oil	ND	103		mg/Kg-dry	1	3/30/2021 9:11:49 AM
Surr: 2-Fluorobiphenyl	91.3	50 - 150		%Rec	1	3/30/2021 9:11:49 AM
Surr: o-Terphenyl	92.4	50 - 150		%Rec	1	3/30/2021 9:11:49 AM
Semi-Volatile Organic Compo	unds by EPA 82	270 (SIM)		Batch	ı ID:	31842 Analyst: SB
Naphthalene	ND	19.5		μg/Kg-dry	1	3/31/2021 8:58:21 PM
2-Methylnaphthalene	ND	19.5		μg/Kg-dry	1	3/31/2021 8:58:21 PM
1-Methylnaphthalene	ND	19.5		μg/Kg-dry	1	3/31/2021 8:58:21 PM
Acenaphthene	ND	19.5		μg/Kg-dry	1	3/31/2021 8:58:21 PM
Acenaphthylene	ND	19.5		μg/Kg-dry	1	3/31/2021 8:58:21 PM
Fluorene	ND	19.5		μg/Kg-dry	1	3/31/2021 8:58:21 PM
Pentachlorophenol	ND	78.0		μg/Kg-dry	1	3/31/2021 8:58:21 PM
Phenanthrene	ND	39.0		μg/Kg-dry	1	3/31/2021 8:58:21 PM
Anthracene	ND	39.0		μg/Kg-dry	1	3/31/2021 8:58:21 PM
Fluoranthene	ND	39.0		μg/Kg-dry	1	3/31/2021 8:58:21 PM
Pyrene	ND	39.0		μg/Kg-dry	1	3/31/2021 8:58:21 PM
Benz(a)anthracene	ND	19.5		μg/Kg-dry	1	3/31/2021 8:58:21 PM
Chrysene	ND	39.0		μg/Kg-dry	1	3/31/2021 8:58:21 PM
Benzo(b)fluoranthene	ND	19.5		μg/Kg-dry	1	3/31/2021 8:58:21 PM
Benzo(k)fluoranthene	ND	19.5		μg/Kg-dry	1	3/31/2021 8:58:21 PM
Benzo(a)pyrene	ND	19.5		μg/Kg-dry	1	3/31/2021 8:58:21 PM
Indeno(1,2,3-cd)pyrene	ND	39.0		μg/Kg-dry	1	3/31/2021 8:58:21 PM
Dibenz(a,h)anthracene	ND	39.0		μg/Kg-dry	1	3/31/2021 8:58:21 PM
Benzo(g,h,i)perylene	ND	19.5		μg/Kg-dry	1	3/31/2021 8:58:21 PM
Surr: 2,4,6-Tribromophenol	75.9	19.4 - 153		%Rec	1	3/31/2021 8:58:21 PM
Surr: 2-Fluorobiphenyl	76.2	19 - 135		%Rec	1	3/31/2021 8:58:21 PM
Surr: Terphenyl-d14 (surr)	87.2	42.9 - 156		%Rec	1	3/31/2021 8:58:21 PM
Gasoline by NWTPH-Gx				Batch	ı ID:	31836 Analyst: KT
Gasoline	ND	5.41		mg/Kg-dry	1	3/31/2021 12:21:45 PM
Surr: Toluene-d8	99.1	65 - 135		%Rec	1	3/31/2021 12:21:45 PM
Surr: 4-Bromofluorobenzene	99.6	65 - 135		%Rec	1	3/31/2021 12:21:45 PM
Volatile Organic Compounds	by EPA Method	8260D		Batch	ı ID:	31836 Analyst: KT
Benzene	ND	0.0216		mg/Kg-dry	1	3/31/2021 12:21:45 PM

Work Order: **2103484**Date Reported: **4/7/2021**

Client: Shannon & Wilson Collection Date: 3/25/2021 11:55:00 PM

Project: Cascade Mill Parkway

Lab ID: 2103484-002 **Matrix:** Soil

Client Sample ID: B-13-21/R-9 @ 47'

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Volatile Organic Compounds by	EPA Method	8260D		Batch	ID:	31836 Analyst: KT
Toluene	ND	0.0703		mg/Kg-dry	1	3/31/2021 12:21:45 PM
Ethylbenzene	ND	0.0270		mg/Kg-dry	1	3/31/2021 12:21:45 PM
m,p-Xylene	ND	0.0541		mg/Kg-dry	1	3/31/2021 12:21:45 PM
o-Xylene	ND	0.0270		mg/Kg-dry	1	3/31/2021 12:21:45 PM
Surr: Dibromofluoromethane	101	82.3 - 112		%Rec	1	3/31/2021 12:21:45 PM
Surr: Toluene-d8	102	90.7 - 109		%Rec	1	3/31/2021 12:21:45 PM
Surr: 1-Bromo-4-fluorobenzene	98.1	88.4 - 109		%Rec	1	3/31/2021 12:21:45 PM
Mercury by EPA Method 7471				Batch	ID:	31871 Analyst: LB
Mercury	ND	0.263		mg/Kg-dry	1	4/5/2021 2:51:06 PM
Total Metals by EPA Method 602	20B			Batch	ID:	31896 Analyst: EH
Arsenic	2.46	0.102		mg/Kg-dry	1	4/7/2021 4:02:18 PM
Barium	67.2	0.508		mg/Kg-dry	1	4/7/2021 4:02:18 PM
Cadmium	ND	0.169		mg/Kg-dry	1	4/7/2021 4:02:18 PM
Chromium	16.6	0.339		mg/Kg-dry	1	4/7/2021 4:02:18 PM
Lead	2.49	0.169		mg/Kg-dry	1	4/7/2021 4:02:18 PM
Selenium	1.72	0.169		mg/Kg-dry	1	4/7/2021 4:02:18 PM
Silver	ND	0.127		mg/Kg-dry	1	4/7/2021 4:02:18 PM
Sample Moisture (Percent Moist	ure)			Batch	ID:	R66167 Analyst: CH
Percent Moisture	6.97			wt%	1	3/29/2021 2:09:28 PM

Work Order: **2103484**Date Reported: **4/7/2021**

Client: Shannon & Wilson Collection Date: 3/27/2021 12:40:00 AM

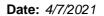
Project: Cascade Mill Parkway

Lab ID: 2103484-003 **Matrix:** Soil

Client Sample ID: B-14-21/R-9 @ 48'

Diesel and Heavy Oil by NWTPH-Dx/ Diesel (Fuel Oil) Heavy Oil Surr: 2-Fluorobiphenyl Surr: o-Terphenyl Semi-Volatile Organic Compounds I	ND ND 87.6 88.4 DY EPA 82		mg/Kg-dry mg/Kg-dry %Rec %Rec	1 1 1	3/30/2021 9:24:15 AM 3/30/2021 9:24:15 AM 3/30/2021 9:24:15 AM 3/30/2021 9:24:15 AM
Heavy Oil Surr: 2-Fluorobiphenyl Surr: o-Terphenyl	ND 87.6 88.4 DY EPA 82 ND	94.9 50 - 150 50 - 150 270 (SIM)	mg/Kg-dry %Rec %Rec	1 1 1	3/30/2021 9:24:15 AM 3/30/2021 9:24:15 AM
Surr: 2-Fluorobiphenyl Surr: o-Terphenyl	87.6 88.4 DY EPA 82 ND	50 - 150 50 - 150 270 (SIM)	%Rec %Rec	1 1	3/30/2021 9:24:15 AM
Surr: o-Terphenyl	88.4 DY EPA 82 ND	50 - 150 270 (SIM)	%Rec	1	
	DY EPA 82	270 (SIM)			3/30/2021 9:24:15 AM
Semi-Volatile Organic Compounds I	ND		Batch	ID.	
		40.4		10.	31842 Analyst: SB
Naphthalene	ND	18.1	μg/Kg-dry	1	3/31/2021 9:20:37 PM
2-Methylnaphthalene	ND	18.1	μg/Kg-dry	1	3/31/2021 9:20:37 PM
1-Methylnaphthalene	ND	18.1	μg/Kg-dry	1	3/31/2021 9:20:37 PM
Acenaphthene	ND	18.1	μg/Kg-dry	1	3/31/2021 9:20:37 PM
Acenaphthylene	ND	18.1	μg/Kg-dry	1	3/31/2021 9:20:37 PM
Fluorene	ND	18.1	μg/Kg-dry	1	3/31/2021 9:20:37 PM
Pentachlorophenol	ND	72.5	μg/Kg-dry	1	3/31/2021 9:20:37 PM
Phenanthrene	ND	36.3	μg/Kg-dry	1	3/31/2021 9:20:37 PM
Anthracene	ND	36.3	μg/Kg-dry	1	3/31/2021 9:20:37 PM
Fluoranthene	ND	36.3	μg/Kg-dry	1	3/31/2021 9:20:37 PM
Pyrene	ND	36.3	μg/Kg-dry	1	3/31/2021 9:20:37 PM
Benz(a)anthracene	ND	18.1	μg/Kg-dry	1	3/31/2021 9:20:37 PM
Chrysene	ND	36.3	μg/Kg-dry	1	3/31/2021 9:20:37 PM
Benzo(b)fluoranthene	ND	18.1	μg/Kg-dry	1	3/31/2021 9:20:37 PM
Benzo(k)fluoranthene	ND	18.1	μg/Kg-dry	1	3/31/2021 9:20:37 PM
Benzo(a)pyrene	ND	18.1	μg/Kg-dry	1	3/31/2021 9:20:37 PM
Indeno(1,2,3-cd)pyrene	ND	36.3	μg/Kg-dry	1	3/31/2021 9:20:37 PM
Dibenz(a,h)anthracene	ND	36.3	μg/Kg-dry	1	3/31/2021 9:20:37 PM
Benzo(g,h,i)perylene	ND	18.1	μg/Kg-dry	1	3/31/2021 9:20:37 PM
Surr: 2,4,6-Tribromophenol	72.0	19.4 - 153	%Rec	1	3/31/2021 9:20:37 PM
Surr: 2-Fluorobiphenyl	68.3	19 - 135	%Rec	1	3/31/2021 9:20:37 PM
Surr: Terphenyl-d14 (surr)	84.0	42.9 - 156	%Rec	1	3/31/2021 9:20:37 PM
Gasoline by NWTPH-Gx			Batch	ID:	31836 Analyst: KT
Gasoline	ND	7.33	mg/Kg-dry	1	3/31/2021 12:52:12 PM
Surr: Toluene-d8	99.3	65 - 135	%Rec	1	3/31/2021 12:52:12 PM
Surr: 4-Bromofluorobenzene	97.3	65 - 135	%Rec	1	3/31/2021 12:52:12 PM
Volatile Organic Compounds by EP	A Method	8260D	Batch	ID:	31836 Analyst: KT
Benzene	ND	0.0293	mg/Kg-dry	1	3/31/2021 12:52:12 PM

Work Order: **2103484**Date Reported: **4/7/2021**


Client: Shannon & Wilson Collection Date: 3/27/2021 12:40:00 AM

Project: Cascade Mill Parkway

Lab ID: 2103484-003 **Matrix:** Soil

Client Sample ID: B-14-21/R-9 @ 48'

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	
Volatile Organic Compounds by	y EPA Method	8260D		Batch	ID:	31836 Analyst: KT	
Toluene	ND	0.0953		mg/Kg-dry	1	3/31/2021 12:52:12 PM	
Ethylbenzene	ND	0.0366		mg/Kg-dry	1	3/31/2021 12:52:12 PM	
m,p-Xylene	ND	0.0733		mg/Kg-dry	1	3/31/2021 12:52:12 PM	
o-Xylene	ND	0.0366		mg/Kg-dry	1	3/31/2021 12:52:12 PM	
Surr: Dibromofluoromethane	102	82.3 - 112		%Rec	1	3/31/2021 12:52:12 PM	
Surr: Toluene-d8	102	90.7 - 109		%Rec	1	3/31/2021 12:52:12 PM	
Surr: 1-Bromo-4-fluorobenzene	95.9	88.4 - 109		%Rec	1	3/31/2021 12:52:12 PM	
Mercury by EPA Method 7471				Batch	ID:	31871 Analyst: LB	
Mercury	ND	0.251		mg/Kg-dry	1	4/5/2021 2:52:42 PM	
Total Metals by EPA Method 60	<u>20B</u>			Batch	ID:	31896 Analyst: EH	
Arsenic	3.45	0.101		mg/Kg-dry	1	4/7/2021 3:17:35 PM	
Barium	63.9	0.503		mg/Kg-dry	1	4/7/2021 3:17:35 PM	
Cadmium	ND	0.168		mg/Kg-dry	1	4/7/2021 3:17:35 PM	
Chromium	18.8	0.336		mg/Kg-dry	1	4/7/2021 3:17:35 PM	
Lead	5.54	0.168		mg/Kg-dry	1	4/7/2021 3:17:35 PM	
Selenium	1.85	0.168		mg/Kg-dry	1	4/7/2021 3:17:35 PM	
Silver	ND	0.126		mg/Kg-dry	1	4/7/2021 3:17:35 PM	
Sample Moisture (Percent Mois	ture)			Batch	ID:	R66167 Analyst: CH	
Percent Moisture	6.13			wt%	1	3/29/2021 2:09:28 PM	

QC SUMMARY REPORT

CLIENT. Shannon & Wilson

CLIENT: Shannon	& Wilson							T (1 1 2 1			0000
Project: Cascade	Mill Parkway							Total Meta	als by EPA	wethod	6020
Sample ID: MB-31896	SampType: MBLK			Units: mg/Kg		Prep Date	: 4/6/202	<u>.</u> 1	RunNo: 663	399	
Client ID: MBLKS	Batch ID: 31896					Analysis Date	: 4/7/202	1	SeqNo: 133	35933	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	ND	0.0968									
Barium	ND	0.484									
Cadmium	ND	0.161									
Chromium	ND	0.323									
Lead	ND	0.161									
Selenium	ND	0.161									
Silver	ND	0.121									
Sample ID: LCS-31896	SampType: LCS			Units: mg/Kg		Prep Date:	: 4/6/202	<u></u> :1	RunNo: 663	399	-
Client ID: LCSS	Batch ID: 31896					Analysis Date	: 4/7/202	1	SeqNo: 133	35935	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	36.1	0.0938	39.06	0	92.3	80	120				
Barium	36.3	0.469	39.06	0	93.0	80	120				
Cadmium	1.87	0.156	1.953	0	95.8	80	120				
Chromium	38.4	0.312	39.06	0	98.3	80	120				
Lead	19.2	0.156	19.53	0	98.4	80	120				
Selenium	3.46	0.156	3.906	0	88.5	80	120				
Silver	1.99	0.117	1.953	0	102	80	120				
Sample ID: 2103484-003AMS	SampType: MS			Units: mg/Kg-	dry	Prep Date	: 4/6/202	<u></u>	RunNo: 663	399	
Client ID: B-14-21/R-9 @ 48'	Batch ID: 31896					Analysis Date	: 4/7/202	1	SeqNo: 133	35938	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	36.5	0.101	41.94	3.189	79.4	75	125				
Barium	103	0.503	41.94	70.37	77.3	75	125				
Cadmium	1.80	0.168	2.097	0.05875	83.2	75	125				
Chromium	58.9	0.336	41.94	21.21	89.9	75	125				
· · · · · · · · · · · · · · · · · · ·	00.0				00.0	. •					

Page 11 of 25 Original

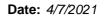
Date: 4/7/2021

Work Order: 2103484

QC SUMMARY REPORT

CLIENT: Shannon & Wilson
Project: Cascade Mill Parkway

Total Metals by EPA Method 6020B

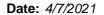

Sample ID: 2103484-003AMS	SampType: MS	Units: mg/Kg-dry			Kg-dry	Prep Da	te: 4/6/202	1	RunNo: 66399		
Client ID: B-14-21/R-9 @ 48'	Batch ID: 31896					Analysis Da	te: 4/7/202	1	SeqNo: 133	35938	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Selenium	5.41	0.168	4.194	1.706	88.2	75	125				
Silver	1.74	0.126	2.097	0.07841	79.1	75	125				

NOTES:

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed and recovered within range.

Sample ID: 2103484-003AMSD	SampType: MSD			Units: mg/	Kg-dry	Prep Date: 4/6/2021			RunNo: 663		
Client ID: B-14-21/R-9 @ 48'	Batch ID: 31896					Analysis Da	te: 4/7/202	SeqNo: 1335939			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	42.6	0.101	41.94	3.189	94.0	75	125	36.49	15.5	20	
Barium	118	0.503	41.94	70.37	113	75	125	102.8	13.4	20	
Cadmium	1.98	0.168	2.097	0.05875	91.6	75	125	1.805	9.30	20	
Chromium	58.4	0.336	41.94	21.21	88.7	75	125	58.92	0.849	20	
Lead	23.1	0.168	20.97	5.234	85.1	75	125	20.92	9.83	20	
Selenium	5.99	0.168	4.194	1.706	102	75	125	5.405	10.3	20	
Silver	1.89	0.126	2.097	0.07841	86.4	75	125	1.737	8.48	20	

Original Page 12 of 25

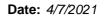

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Mercury by EPA Method 7471

Project: Cascade M	lill Parkway							Merc	cury by EF	A Metho	d 7471
Sample ID: MB-31871	SampType: MBLK			Units: mg/Kg		Prep Date:	4/5/202	1	RunNo: 663	344	
Client ID: MBLKS	Batch ID: 31871					Analysis Date:	4/5/202	1	SeqNo: 13 3	34723	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	ND	0.250									
Sample ID: LCS-31871	SampType: LCS			Units: mg/Kg		Prep Date:	4/5/202	1	RunNo: 663	344	
Client ID: LCSS	Batch ID: 31871					Analysis Date:	4/5/202	1	SeqNo: 13 3	34724	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.488	0.250	0.5000	0	97.6	80	120				
Sample ID: 2103484-001ADUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date:	4/5/202	1	RunNo: 663	344	
Client ID: B-15P-21/S-5 @ 21'	Batch ID: 31871					Analysis Date:	4/5/202	1	SeqNo: 13 3	34726	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	ND	0.263						0		20	
Sample ID: 2103484-001AMS	SampType: MS			Units: mg/Kg-	dry	Prep Date:	4/5/202	1	RunNo: 663	344	
Client ID: B-15P-21/S-5 @ 21'	Batch ID: 31871					Analysis Date:	4/5/202	1	SeqNo: 133	34727	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.570	0.258	0.5161	0.01486	108	70	130				
Sample ID: 2103484-001AMSD	SampType: MSD			Units: mg/Kg-	dry	Prep Date:	4/5/202	1	RunNo: 663	344	
Client ID: B-15P-21/S-5 @ 21'	Batch ID: 31871					Analysis Date:	4/5/202	1	SeqNo: 13 3	34728	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit F	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	0.680	0.263	0.5258	0.01486	127	70	130	0.5698	17.7	20	

Original Page 13 of 25


QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Project: Cascade M	ill Parkway						Diesei	and neavy	Oli by NVV	I PH-DX/L	DX E
Sample ID: MB-31813	SampType: MBLK			Units: mg/Kg		Prep Dat	e: 3/29/20	21	RunNo: 66200		
Client ID: MBLKS	Batch ID: 31813					Analysis Dat	e: 3/29/20	21	SeqNo: 1332127		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	ND	50.0									
Heavy Oil	ND	100									
Surr: 2-Fluorobiphenyl	8.86		10.00		88.6	50	150				
Surr: o-Terphenyl	8.78		10.00		87.8	50	150				
Sample ID: LCS-31813	SampType: LCS	Units: mg/Kg			Prep Date: 3/29/2021		RunNo: 66200				
Client ID: LCSS	Batch ID: 31813					Analysis Dat	e: 3/29/20	21	SeqNo: 133	2128	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	400	50.0	500.0	0	80.1	73.7	114				
Surr: 2-Fluorobiphenyl	8.36		10.00		83.6	50	150				
Surr: o-Terphenyl	9.05		10.00		90.5	50	150				
Sample ID: 2103472-001AMS	SampType: MS	Units: mg/Kg-dry		Prep Date: 3/29/2021		RunNo: 66200					
Client ID: BATCH	Batch ID: 31813					Analysis Date: 3/29/2021			SeqNo: 1332130		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	420	51.6	516.0	0	81.4	61.4	129				
Surr: 2-Fluorobiphenyl	8.41		10.32		81.5	50	150				
Surr: o-Terphenyl	9.18		10.32		89.0	50	150				
Sample ID: 2103472-001AMSD	SampType: MSD		Units: mg/Kg-dry		Prep Date: 3/29/2021		RunNo: 66200				
Client ID: BATCH	Batch ID: 31813					Analysis Date: 3/29/2021			SeqNo: 1332131		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	378	45.7	457.3	0	82.7	61.4	129	419.8	10.4	30	
	7.00		9.147		86.7	50	150		0		
Surr: 2-Fluorobiphenyl	7.93		9.147		00.7	50	150		U		

Original Page 14 of 25

Cascade Mill Parkway

Work Order: 2103484

1-Methylnaphthalene

1,860

20.0

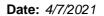
2,000

QC SUMMARY REPORT

CLIENT: Shannon & Wilson Project:

Semi-Volatile Organic Compounds by EPA 8270 (SIM)

Sample ID: MB-31842	SampType: MBLK			Units: µg/Kg		Prep Dat	te: 3/31/20	21	RunNo: 662	<u>1</u> 91	
Client ID: MBLKS	Batch ID: 31842					Analysis Dat	e: 3/31/20	21	SeqNo: 133	3537	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	20.0									
2-Methylnaphthalene	ND	20.0									
1-Methylnaphthalene	ND	20.0									
Acenaphthene	ND	20.0									
Acenaphthylene	ND	20.0									
Fluorene	ND	20.0									
Pentachlorophenol	ND	80.0									
Phenanthrene	ND	40.0									
Anthracene	ND	40.0									
Fluoranthene	ND	40.0									
Pyrene	ND	40.0									
Benz(a)anthracene	ND	20.0									
Chrysene	ND	40.0									
Benzo(b)fluoranthene	ND	20.0									
Benzo(k)fluoranthene	ND	20.0									
Benzo(a)pyrene	ND	20.0									
Indeno(1,2,3-cd)pyrene	ND	40.0									
Dibenz(a,h)anthracene	ND	40.0									
Benzo(g,h,i)perylene	ND	20.0									
Surr: 2,4,6-Tribromophenol	1,400		2,000		70.1	19.4	153				
Surr: 2-Fluorobiphenyl	793		1,000		79.3	19	135				
Surr: Terphenyl-d14 (surr)	1,040		1,000		104	42.9	156				
Sample ID: LCS-31842	SampType: LCS			Units: µg/Kg		Prep Dat	te: 3/31/20 2	21	RunNo: 662	<u> </u>	
Client ID: LCSS	Batch ID: 31842					Analysis Dat	e: 3/31/20	21	SeqNo: 133	3538	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,890	20.0	2,000	0	94.3	62.7	127				
2-Methylnaphthalene	1,990	20.0	2,000	0	99.4	62.7	132				


Page 15 of 25 Original

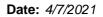
0

92.9

61.4

131

QC SUMMARY REPORT


CLIENT: Shannon & Wilson
Project: Cascade Mill Parkway

Semi-Volatile Organic Compounds by EPA 8270 (SIM)

Sample ID: LCS-31842	SampType: LCS			Units: µg/Kg		Prep Dat	e: 3/31/2 0	21	RunNo: 662	291	
Client ID: LCSS	Batch ID: 31842					Analysis Dat	te: 3/31/2 0	21	SeqNo: 133	33538	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	1,820	20.0	2,000	0	91.0	59.2	132				
Acenaphthylene	1,910	20.0	2,000	0	95.5	62	132				
Fluorene	1,840	20.0	2,000	0	92.0	59.1	136				
Pentachlorophenol	1,830	80.0	2,000	0	91.6	5	112				
Phenanthrene	1,850	40.0	2,000	0	92.3	54.1	139				
Anthracene	1,860	40.0	2,000	0	93.2	55.5	136				
Fluoranthene	1,940	40.0	2,000	0	97.2	52.8	149				
Pyrene	1,910	40.0	2,000	0	95.3	53.6	146				
Benz(a)anthracene	1,810	20.0	2,000	0	90.5	49.7	153				
Chrysene	1,930	40.0	2,000	0	96.5	52.6	147				
Benzo(b)fluoranthene	1,900	20.0	2,000	0	95.1	50.6	151				
Benzo(k)fluoranthene	1,930	20.0	2,000	0	96.7	47.1	155				
Benzo(a)pyrene	2,050	20.0	2,000	0	103	48.3	169				
Indeno(1,2,3-cd)pyrene	1,890	40.0	2,000	0	94.5	52.3	145				
Dibenz(a,h)anthracene	1,720	40.0	2,000	0	85.8	53	144				
Benzo(g,h,i)perylene	1,790	20.0	2,000	0	89.6	49.7	144				
Surr: 2,4,6-Tribromophenol	2,170		2,000		109	19.4	153				
Surr: 2-Fluorobiphenyl	995		1,000		99.5	19	135				
Surr: Terphenyl-d14 (surr)	1,050		1,000		105	42.9	156				

Sample ID: 2103484-001AMS	SampType: MS			Units: µg/Kg	-dry	Prep Da	te: 3/31/2021	RunNo: 662 9	91	
Client ID: B-15P-21/S-5 @ 21'	Batch ID: 31842					Analysis Da	te: 3/31/2021	SeqNo: 133 3	3540	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,790	21.0	2,095	0	85.2	28.7	139			
2-Methylnaphthalene	1,890	21.0	2,095	0	90.4	43.5	130			
1-Methylnaphthalene	1,740	21.0	2,095	0	83.1	42.6	127			
Acenaphthene	1,700	21.0	2,095	0	81.2	45.1	123			
Acenaphthylene	1,800	21.0	2,095	0	85.8	45.3	129			
Fluorene	1,740	21.0	2,095	0	83.3	41.6	128			

Original Page 16 of 25

QC SUMMARY REPORT

CLIENT: Shannon & Wilson
Project: Cascade Mill Parkway

Semi-Volatile Organic Compounds by EPA 8270 (SIM)

Sample ID: 2103484-001AMS	SampType:	MS			Units: µg/	Kg-dry	Prep Dat	te: 3/31/20	21	RunNo: 66	291	
Client ID: B-15P-21/S-5 @ 21'	Batch ID:	31842					Analysis Dat	te: 3/31/20	21	SeqNo: 13	33540	
Analyte	R	lesult	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pentachlorophenol	2	2,010	83.8	2,095	0	95.8	5	188				
Phenanthrene	•	1,740	41.9	2,095	0	82.8	24.2	142				
Anthracene	•	1,760	41.9	2,095	0	84.1	33.1	143				
Fluoranthene	•	1,840	41.9	2,095	0	87.6	35.5	147				
Pyrene	•	1,780	41.9	2,095	0	85.1	38.3	141				
Benz(a)anthracene	•	1,700	21.0	2,095	0	81.3	42.5	145				
Chrysene	•	1,820	41.9	2,095	0	86.8	39.7	134				
Benzo(b)fluoranthene	•	1,590	21.0	2,095	0	75.9	29.9	152				
Benzo(k)fluoranthene	•	1,650	21.0	2,095	0	78.8	33.2	143.5				
Benzo(a)pyrene	•	1,940	21.0	2,095	0	92.7	38.2	156				
Indeno(1,2,3-cd)pyrene	•	1,710	41.9	2,095	0	81.5	41.4	128				
Dibenz(a,h)anthracene	•	1,710	41.9	2,095	0	81.4	40.4	129				
Benzo(g,h,i)perylene	•	1,660	21.0	2,095	0	79.2	34.2	131				
Surr: 2,4,6-Tribromophenol	2	2,050		2,095		97.6	19.4	153				
Surr: 2-Fluorobiphenyl		929		1,048		88.6	19	135				
Surr: Terphenyl-d14 (surr)		956		1,048		91.3	42.9	156				

Sample ID: 2103484-001AMSD	SampType: MSD			Units: µg/Kç	j-dry	Prep Da	te: 3/31/20	21	RunNo: 662	291	
Client ID: B-15P-21/S-5 @ 21'	Batch ID: 31842					Analysis Da	te: 3/31/20	21	SeqNo: 133	33541	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,690	20.3	2,027	0	83.3	28.7	139	1,786	5.65	30	
2-Methylnaphthalene	1,760	20.3	2,027	0	86.8	43.5	130	1,895	7.37	30	
1-Methylnaphthalene	1,680	20.3	2,027	0	82.7	42.6	127	1,741	3.78	30	
Acenaphthene	1,610	20.3	2,027	0	79.5	45.1	123	1,702	5.48	30	
Acenaphthylene	1,690	20.3	2,027	0	83.2	45.3	129	1,797	6.34	30	
Fluorene	1,640	20.3	2,027	0	80.9	41.6	128	1,745	6.17	30	
Pentachlorophenol	1,910	81.1	2,027	0	94.2	5	188	2,008	5.01	30	
Phenanthrene	1,660	40.5	2,027	0	82.1	24.2	142	1,736	4.27	30	
Anthracene	1,680	40.5	2,027	0	82.7	33.1	143	1,763	4.97	30	

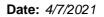
Original Page 17 of 25

Date: 4/7/2021

Cascade Mill Parkway

Work Order: 2103484

Project:


QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Semi-Volatile Organic Compounds by EPA 8270 (SIM)

Sample ID: 2103484-001AMSD Client ID: B-15P-21/S-5 @ 21'	SampType: MSD Batch ID: 31842			Units: µg/K	•	Prep Da	te: 3/31/20		RunNo: 662 SegNo: 133		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit		RPD Ref Val	%RPD	RPDLimit	Qual
Fluoranthene	1,730	40.5	2,027	0	85.5	35.5	147	1,836	5.73	30	
Pyrene	1,680	40.5	2,027	0	82.7	38.3	141	1,784	6.21	30	
Benz(a)anthracene	1,600	20.3	2,027	0	79.0	42.5	145	1,703	6.14	30	
Chrysene	1,700	40.5	2,027	0	83.6	39.7	134	1,819	7.03	30	
Benzo(b)fluoranthene	1,690	20.3	2,027	0	83.3	29.9	152	1,590	5.98	30	
Benzo(k)fluoranthene	1,720	20.3	2,027	0	84.6	33.2	143.5	1,651	3.83	30	
Benzo(a)pyrene	1,780	20.3	2,027	0	87.9	38.2	156	1,942	8.63	30	
Indeno(1,2,3-cd)pyrene	1,650	40.5	2,027	0	81.5	41.4	128	1,708	3.32	30	
Dibenz(a,h)anthracene	1,600	40.5	2,027	0	78.9	40.4	129	1,705	6.46	30	
Benzo(g,h,i)perylene	1,560	20.3	2,027	0	77.2	34.2	131	1,660	5.96	30	
Surr: 2,4,6-Tribromophenol	1,930		2,027		95.1	19.4	153		0		
Surr: 2-Fluorobiphenyl	869		1,013		85.7	19	135		0		
Surr: Terphenyl-d14 (surr)	898		1,013		88.6	42.9	156		0		

Original Page 18 of 25

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Gasoline by NWTPH-Gx

Project: Cascade Mill	Parkway								Gasoline	by NWT	PH-G
Sample ID: LCS-31836	SampType: LCS			Units: mg/Kg		Prep Dat	e: 3/31/20 2	21	RunNo: 662	269	
Client ID: LCSS	Batch ID: 31836					Analysis Dat	e: 3/31/20 2	21	SeqNo: 133	33239	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	24.3	5.00	25.00	0	97.4	65	135				
Surr: Toluene-d8	1.23		1.250		98.1	65	135				
Surr: 4-Bromofluorobenzene	1.27		1.250		102	65	135				
Sample ID: MB-31836	SampType: MBLK			Units: mg/Kg		Prep Dat	e: 3/31/20 2	21	RunNo: 662	269	
Client ID: MBLKS	Batch ID: 31836					Analysis Dat	e: 3/31/20 2	21	SeqNo: 133	33240	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	5.00									
Surr: Toluene-d8	1.24		1.250		99.0	65	135				
Surr: 4-Bromofluorobenzene	1.25		1.250		99.9	65	135				
Sample ID: 2103484-001BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Dat	e: 3/31/20 2	<u> </u>	RunNo: 662	269	
Client ID: B-15P-21/S-5 @ 21'	Batch ID: 31836					Analysis Dat	e: 3/31/20 2	21	SeqNo: 133	33220	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	5.46						0		30	
Surr: Toluene-d8	1.35		1.365		99.1	65	135		0		
Surr: 4-Bromofluorobenzene	1.36		1.365		99.8	65	135		0		
Sample ID: 2103508-001BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Dat	e: 3/31/20 2	21	RunNo: 662	269	
Client ID: BATCH	Batch ID: 31836					Analysis Dat	e: 3/31/20 2	21	SeqNo: 133	33224	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
		4.13						0		30	
Gasoline	ND	7.10									
Gasoline Gasoline Range Organics (C6-C12)	ND 4.59	4.13						4.448	3.24	30	
			1.033		99.6	65	135	4.448	3.24	30	

Original Page 19 of 25

Date: 4/7/2021

Cascade Mill Parkway

Work Order: 2103484

QC SUMMARY REPORT

Shannon & Wilson CLIENT:

Gasoline by NWTPH-Gx

Sample ID: 2103508-001BDUP

SampType: DUP

Units: mg/Kg-dry

Prep Date: 3/31/2021

RunNo: 66269

Result

Analysis Date: 3/31/2021

SeqNo: 1333224

Client ID: BATCH

Batch ID: 31836

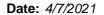
SPK value SPK Ref Val

%REC LowLimit HighLimit RPD Ref Val

%RPD RPDLimit Qual

NOTES:

Analyte


Project:

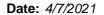
GRO - Indicates the presence of unresolved compounds eluting from hexane to dodecane (~C6-C12). Pattern does not resemble a known petroleum distillate.

RL

Sample ID: 2103508-002BMS	SampType: MS			Units: mg/K	g-dry	Prep Da	te: 3/31/2 0)21	RunNo: 662	:69	
Client ID: BATCH	Batch ID: 31836					Analysis Da	te: 3/31/2 0)21	SeqNo: 133	3226	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	28.2	5.53	27.63	0	102	65	135				
Surr: Toluene-d8	1.36		1.382		98.7	65	135				
Surr: 4-Bromofluorobenzene	1.42		1.382		103	65	135				

Page 20 of 25 Original

QC SUMMARY REPORT


CLIENT: Shannon & Wilson

Project: Cascade Mill Parkway

Volatile Organic Compounds by EPA Method 8260D

Project: Cascade Mil	l Parkway						- 3		us by Li A		
Sample ID: LCS-31836	SampType: LCS			Units: mg/Kg		Prep Date	e: 3/31/202	<u>.</u> 1	RunNo: 662	68	
Client ID: LCSS	Batch ID: 31836					Analysis Date	e: 3/31/202	21	SeqNo: 133	3217	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	1.02	0.0200	1.000	0	102	80	120				
Toluene	1.01	0.0650	1.000	0	101	80	120				
Ethylbenzene	1.08	0.0250	1.000	0	108	80	120				
m,p-Xylene	2.08	0.0500	2.000	0	104	80	120				
o-Xylene	1.03	0.0250	1.000	0	103	80	120				
Surr: Dibromofluoromethane	1.27		1.250		102	80	120				
Surr: Toluene-d8	1.24		1.250		98.9	80	120				
Surr: 1-Bromo-4-fluorobenzene	1.28		1.250		102	80	120				
Sample ID: MB-31836	SampType: MBLK			Units: mg/Kg		Prep Date	e: 3/31/202	<u> </u>	RunNo: 662	68	
Client ID: MBLKS	Batch ID: 31836			, , , , , , , , , , , , , , , , , , ,		Analysis Date	e: 3/31/202	<u>!</u> 1	SeqNo: 133	3216	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	ND	0.0200									
Toluene	ND	0.0650									
Ethylbenzene	ND	0.0250									
m,p-Xylene	ND	0.0500									
o-Xylene	ND	0.0250									
Surr: Dibromofluoromethane	1.29		1.250		103	82.3	112				
Surr: Toluene-d8	1.28		1.250		102	90.7	109				
Surr: 1-Bromo-4-fluorobenzene	1.23		1.250		98.5	88.4	109				
Sample ID: 2103484-001BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date	e: 3/31/202	<u>.</u>	RunNo: 662	:68	
Client ID: B-15P-21/S-5 @ 21'	Batch ID: 31836					Analysis Date	e: 3/31/202	21	SeqNo: 133	3196	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	ND	0.0218						0		30	
Toluene	ND	0.0710						0		30	
Ethylbenzene	ND	0.0273						0		30	

Original Page 21 of 25

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Volatile Organic Compounds by EPA Method 8260D

Project: Cascade Mil	l Parkway					voiatile	Organic	Compoun	us by EPA	wethou	020UL
Sample ID: 2103484-001BDUP	SampType: DUP			Units: mg/l	Kg-dry	Prep Date	e: 3/31/20	21	RunNo: 662	268	
Client ID: B-15P-21/S-5 @ 21'	Batch ID: 31836					Analysis Date	e: 3/31/20	21	SeqNo: 133	3196	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
m,p-Xylene	ND	0.0546						0		30	
o-Xylene	ND	0.0273						0		30	
Surr: Dibromofluoromethane	1.39		1.365		101	82.3	112		0		
Surr: Toluene-d8	1.39		1.365		102	90.7	109		0		
Surr: 1-Bromo-4-fluorobenzene	1.34		1.365		98.3	88.4	109		0		
Sample ID: 2103508-001BDUP	SampType: DUP			Units: mg/l	Kg-dry	Prep Date	e: 3/31/20	21	RunNo: 662	268	
Client ID: BATCH	Batch ID: 31836					Analysis Date	e: 3/31/20	21	SeqNo: 133	3201	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	0.0165						0		30	
Toluene	ND	0.0537						0		30	
Ethylbenzene	ND	0.0207						0		30	
m,p-Xylene	ND	0.0413						0		30	
o-Xylene	ND	0.0207						0		30	
Surr: Dibromofluoromethane	1.04		1.033		101	82.3	112		0		
Surr: Toluene-d8	1.06		1.033		102	90.7	109		0		
Surr: 1-Bromo-4-fluorobenzene	1.01		1.033		97.6	88.4	109		0		
Sample ID: 2103484-002BMS	SampType: MS			Units: mg/l	Kg-dry	Prep Date	e: 3/31/20	21	RunNo: 662	268	
Client ID: B-13-21/R-9 @ 47'	Batch ID: 31836					Analysis Date	e: 3/31/20	21	SeqNo: 133	3198	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	1.16	0.0216	1.081	0	107	76.8	129				
Toluene	1.16	0.0703	1.081	0	107	77.8	127				
Ethylbenzene	1.18	0.0270	1.081	0	109	78.7	130				
m,p-Xylene	2.24	0.0541	2.163	0	104	79.3	127				
o-Xylene	1.10	0.0270	1.081	0	101	80.7	124				
Surr: Dibromofluoromethane	1.44		1.352		107	82.3	112				

Original Page 22 of 25

Date: 4/7/2021

Cascade Mill Parkway

Work Order: 2103484

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Volatile Organic Compounds by EPA Method 8260D

Sample ID: 2103484-002BMS	SampType: MS			Units: mg/K	g-dry	Prep Da	te: 3/31/202	1	RunNo: 662	268	
Client ID: B-13-21/R-9 @ 47'	Batch ID: 31836			J	•	Analysis Da	te: 3/31/202	1	SeqNo: 133	33198	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit F	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: Toluene-d8	1.41		1.352		104	90.7	109				
Surr: 1-Bromo-4-fluorobenzene	1.40		1.352		104	88.4	109				

Original Page 23 of 25

Sample Log-In Check List

Client Name: SW		Work Order Num	ber: 2103484		
Logged by: Gabrielle Coeuille		Date Received:	3/29/2021 9	9:06:00 AM	
Chain of Custody					
1. Is Chain of Custody complete?		Yes 🗹	No \square	Not Present	
2. How was the sample delivered?		<u>Client</u>			
<u>Log In</u>					
3. Coolers are present?		Yes 🗸	No 🗆	na 🗆	
4. Shipping container/cooler in good conditi	ion?	Yes 🗸	No 🗌		
Custody Seals present on shipping conta (Refer to comments for Custody Seals no		Yes	No 🗌	Not Present ✓	
6. Was an attempt made to cool the sample	es?	Yes 🗸	No 🗆	NA \square	
7. Were all items received at a temperature	e of >2°C to 6°C *	Yes 🗸	No 🗆	na 🗆	
8. Sample(s) in proper container(s)?		Yes 🗸	No 🗆		
9. Sufficient sample volume for indicated to	est(s)?	Yes 🗸	No 🗆		
10. Are samples properly preserved?		Yes 🗸	No \square		
11. Was preservative added to bottles?		Yes	No 🗸	NA 🗌	
12. Is there headspace in the VOA vials?		Yes	No 🗆	NA 🗸	
13. Did all samples containers arrive in good	d condition(unbroken)?	Yes 🗸	No \square		
14. Does paperwork match bottle labels?		Yes 🗹	No \square		
15. Are matrices correctly identified on Chair	n of Custody?	Yes 🗸	No 🗌		
16. Is it clear what analyses were requested	?	Yes 🗸	No 🗌		
17. Were all holding times able to be met?		Yes 🗸	No \square		
Special Handling (if applicable)					
18. Was client notified of all discrepancies w	vith this order?	Yes 🗹	No \square	NA \square	
Person Notified: Dave Randall	Date:		3/29/2021		
By Whom: Gabrielle Coeu	uille Via:	✓ eMail Ph	none Fax	In Person	
Regarding: Unable to test	PCP by 85-40. Is 8270S	IM ok?			
Client Instructions: Yes.					
19. Additional remarks:					

Item Information

Item #	Temp °C
Sample 1	1.3

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Page 1 o	com	www.fremontanalytical.com	emonta	www.fr					8	COC 1.3- 11.06.20
W Shins	No C	(H)	*	0820	24/2	(c)	ronl	DANDRANDAL	ac	大大な
Try b Privo rec 3/28/2/ 123/	THE DAY	Received Stenatural		3/28/2/ 12:30	me Barelline	Fana	enisten Mutanarel	MY MAN	- My John	* Kuster
Print Name Date/Time) Prin	Received (Signature)			Date/Time			Print Name	nature)	Relinquished (Signature)
I represent that I am authorized to enter into this Agreement with Fremont Analytical on behalf of the Client named above, that I have verified Client's agreement (specify)	med above, that I have	the Client na	behalf of t	Analytical or	Fremont	ement.	is Agreen f this Agr	enter into th	I represent that I am authorized to enter into this Agreement wit to each of the terms on the front and backside of this Agreement.	I represent
☐ 3 Day ☐ Same Day		Nitrate+Nitrite	Fluoride 1	O-Phosphate F	e O-Ph	Bromide	Sulfate	Chloride	e): Nitrate Nitrite	***Anions (Circle):
b Se Sr Sn Ti Ti V Zn Standard Next Day	Mg Mn Mo Na Ni Pb Sb	Cu Fe Hg K	Ca Cd Co Cr		Individual: Ag Al As B Ba Be	Individue	IAI E	Priority Pollutants	(RCRA-8)	**Metals (Circle): MTCA-5
ro	GW = Ground Water, SW = S	DW = Drinking Water,		= Solid, W = Water,	ediment, St	so = s	oduct, G=	O = Other, P = Product, S = Soil SD = Sediment, SL = Soild,	AQ = Aqueous, B = Bulk,	*Matrix: A = Air,
										10
	1	1		E E			(9
/	\	/								06
	_			2					\	7
					1				1	6
			1	1					1	5
)										4
	×	×	×	×	CH	SOIL	00:40	3/11/12	/R-9@48'	3 B- 14-21
	×	×	×	×	(i)	2016	23:55	3/15/21	/R-9 C 47'	28-13-21
				×	CH	2011	16:00	3/22/21	1/5-5 @ 21'	1B-15P-21
Comments	14 17 18 18 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Street Street Street Street		College Col	a of Cont.	Sample Type (Matrix)*	Sample	Sample Date		Sample Name
1116011	1	3/3	Shan	dir 6	PM Email:					Fax:
Sample Disposal: Return to client Disposal by lab (after 30 days)	er de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	Randal	dRa		Report To (PM):				And the state of t	Telephone:
			×	hakina	Location:			98103	seattle, WA	City, State, Zip:
Pa		and the state of t		EXE.	Collected by:		000	Jute 1	Address: 400 N 34th St,	Address: 407
oge 2			4	106384	Project No:			Wilson	and	client Shammon
Special Remarks:	1	Mill parteman		e Cascade	Project Name:		Fax: 206-352-7178		Analysical	
t No (Internal): 20 8484	of:	Page:		3/27/21	Date: 3		Tel: 206-352-3790		LIGHTOHE	
Laboratory Services Agreement	1	Chain of Custody Record &	Custo	nain of	C	Ave N.	3600 Fremont Ave N.	3		多是
		-								

COC 1.3-11.06.20

Page 1 of 2

3600 Fremont Ave. N.
Seattle, WA 98103
T: (206) 352-3790
F: (206) 352-7178
info@fremontanalytical.com

Shannon & Wilson
Dave Randall
400 N. 34th Street, Suite 100
Seattle, WA 98103

RE: Cascade Mill Parkway Work Order Number: 2104312

April 29, 2021

Attention Dave Randall:

Fremont Analytical, Inc. received 1 sample(s) on 4/22/2021 for the analyses presented in the following report.

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Gasoline by NWTPH-Gx

Mercury by EPA Method 7471

Sample Moisture (Percent Moisture)

Semi-Volatile Organic Compounds by EPA 8270 (SIM)

Total Metals by EPA Method 6020B

Volatile Organic Compounds by EPA Method 8260D

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Date: 04/29/2021

CLIENT: Shannon & Wilson Work Order Sample Summary

Project: Cascade Mill Parkway

Work Order: 2104312

Lab Sample ID Client Sample ID Date/Time Collected Date/Time Received

2104312-001 B-13-21/R-8@39 04/22/2021 1:31 PM 04/22/2021 3:41 PM

Case Narrative

WO#: **2104312**Date: **4/29/2021**

CLIENT: Shannon & Wilson

Project: Cascade Mill Parkway

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2104312**

Date Reported: 4/29/2021

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

CCB - Continued Calibration Blank

CCV - Continued Calibration Verification

DF - Dilution Factor

DUP - Sample Duplicate

HEM - Hexane Extractable Material

ICV - Initial Calibration Verification

LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

MDL - Method Detection Limit

MS/MSD - Matrix Spike / Matrix Spike Duplicate

PDS - Post Digestion Spike

Ref Val - Reference Value

REP - Sample Replicate

RL - Reporting Limit

RPD - Relative Percent Difference

SD - Serial Dilution

SGT - Silica Gel Treatment

SPK - Spike

Surr - Surrogate

Analytical Report

Work Order: **2104312**Date Reported: **4/29/2021**

Client: Shannon & Wilson Collection Date: 4/22/2021 1:31:00 PM

Project: Cascade Mill Parkway

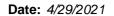
Lab ID: 2104312-001 **Matrix:** Soil

Client Sample ID: B-13-21/R-8@39

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Diesel and Heavy Oil by NWTP	H-Dx/Dx Ext.			Batch	ID:	32091 Analyst: MM
Diesel (Fuel Oil)	ND	50.2		mg/Kg-dry	1	4/27/2021 10:59:21 AM
Heavy Oil	ND	100		mg/Kg-dry	1	4/27/2021 10:59:21 AM
Total Petroleum Hydrocarbons	ND	151		mg/Kg-dry	1	4/27/2021 10:59:21 AM
Surr: 2-Fluorobiphenyl	90.7	50 - 150		%Rec	1	4/27/2021 10:59:21 AM
Surr: o-Terphenyl	92.7	50 - 150		%Rec	1	4/27/2021 10:59:21 AM
Semi-Volatile Organic Compou	nds by EPA 82	70 (SIM)		Batch	ID:	32099 Analyst: SB
Naphthalene	ND	18.5		μg/Kg-dry	1	4/27/2021 8:46:39 PM
2-Methylnaphthalene	ND	18.5		μg/Kg-dry	1	4/27/2021 8:46:39 PM
1-Methylnaphthalene	ND	18.5		μg/Kg-dry	1	4/27/2021 8:46:39 PM
Acenaphthene	ND	18.5		μg/Kg-dry	1	4/27/2021 8:46:39 PM
Acenaphthylene	ND	18.5		μg/Kg-dry	1	4/27/2021 8:46:39 PM
Fluorene	ND	18.5		μg/Kg-dry	1	4/27/2021 8:46:39 PM
Pentachlorophenol	ND	73.9		μg/Kg-dry	1	4/27/2021 8:46:39 PM
Phenanthrene	ND	36.9		μg/Kg-dry	1	4/27/2021 8:46:39 PM
Anthracene	ND	36.9		μg/Kg-dry	1	4/27/2021 8:46:39 PM
Fluoranthene	ND	36.9		μg/Kg-dry	1	4/27/2021 8:46:39 PM
Pyrene	ND	36.9		μg/Kg-dry	1	4/27/2021 8:46:39 PM
Benz(a)anthracene	ND	18.5		μg/Kg-dry	1	4/27/2021 8:46:39 PM
Chrysene	ND	36.9		μg/Kg-dry	1	4/27/2021 8:46:39 PM
Benzo(b)fluoranthene	ND	18.5		μg/Kg-dry	1	4/27/2021 8:46:39 PM
Benzo(k)fluoranthene	ND	18.5		μg/Kg-dry	1	4/27/2021 8:46:39 PM
Benzo(a)pyrene	ND	18.5		μg/Kg-dry	1	4/27/2021 8:46:39 PM
Indeno(1,2,3-cd)pyrene	ND	36.9		μg/Kg-dry	1	4/27/2021 8:46:39 PM
Dibenz(a,h)anthracene	ND	36.9		μg/Kg-dry	1	4/27/2021 8:46:39 PM
Benzo(g,h,i)perylene	ND	18.5		μg/Kg-dry	1	4/27/2021 8:46:39 PM
Surr: 2,4,6-Tribromophenol	84.6	19.4 - 153		%Rec	1	4/27/2021 8:46:39 PM
Surr: 2-Fluorobiphenyl	75.9	19 - 135		%Rec	1	4/27/2021 8:46:39 PM
Surr: Terphenyl-d14 (surr)	97.1	42.9 - 156		%Rec	1	4/27/2021 8:46:39 PM
Gasoline by NWTPH-Gx				Batch	ID:	32102 Analyst: CR
Gasoline	ND	15.4		mg/Kg-dry	1	4/28/2021 4:04:06 AM
Surr: Toluene-d8	105	65 - 135		%Rec	1	4/28/2021 4:04:06 AM
Surr: 4-Bromofluorobenzene	103	65 - 135		%Rec	1	4/28/2021 4:04:06 AM

Analytical Report

Work Order: **2104312**Date Reported: **4/29/2021**


Client: Shannon & Wilson Collection Date: 4/22/2021 1:31:00 PM

Project: Cascade Mill Parkway

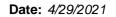
Lab ID: 2104312-001 **Matrix:** Soil

Client Sample ID: B-13-21/R-8@39

Analyses	Result	RL	Qual	Units	DF	Date	Analyzed
Volatile Organic Compounds by	EPA Method	8260D		Batch	ı ID:	32102	Analyst: CR
Benzene	ND	0.0615		mg/Kg-dry	1	4/28/202	1 4:04:06 AM
Toluene	ND	0.200		mg/Kg-dry	1	4/28/202	1 4:04:06 AM
Ethylbenzene	ND	0.0769		mg/Kg-dry	1	4/28/202	1 4:04:06 AM
m,p-Xylene	ND	0.154		mg/Kg-dry	1	4/28/202	1 4:04:06 AM
o-Xylene	ND	0.0769		mg/Kg-dry	1	4/28/202	1 4:04:06 AM
Surr: Dibromofluoromethane	91.3	81.9 - 113		%Rec	1	4/28/202	1 4:04:06 AM
Surr: Toluene-d8	92.0	82.7 - 115		%Rec	1	4/28/202	1 4:04:06 AM
Surr: 1-Bromo-4-fluorobenzene	98.0	87.9 - 109		%Rec	1	4/28/202	1 4:04:06 AM
Mercury by EPA Method 7471				Batch	ı ID:	32120	Analyst: LB
Mercury	ND	0.260		mg/Kg-dry	1	4/29/202	1 12:39:41 PM
Total Metals by EPA Method 602	<u>0B</u>			Batch	ı ID:	32085	Analyst: EH
Arsenic	2.48	0.102		mg/Kg-dry	1	4/27/202	1 8:50:00 PM
Barium	64.8	0.509		mg/Kg-dry	1	4/28/202	1 4:59:58 PM
Cadmium	ND	0.170		mg/Kg-dry	1	4/27/202	1 8:50:00 PM
Chromium	20.6	0.339		mg/Kg-dry	1	4/27/202	1 8:50:00 PM
Lead	4.45	0.170		mg/Kg-dry	1	4/27/202	1 8:50:00 PM
Selenium	1.54	0.170		mg/Kg-dry	1	4/27/202	1 8:50:00 PM
Silver	ND	0.127		mg/Kg-dry	1	4/27/202	1 8:50:00 PM
Sample Moisture (Percent Moist	ure)			Batch	ı ID:	R66813	Analyst: CJ
Percent Moisture	5.67			wt%	1	4/27/202	1 11:06:46 AM

QC SUMMARY REPORT

CLIENT: Shannon & Wilson
Project: Cascade Mill Parkway


Total Metals by EPA Method 6020B

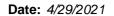
110,000.	o min r armay									
Sample ID: MB-32085	SampType: MBLK			Units: mg/Kg		Prep Date	e: 4/27/2021	RunNo: 66	345	
Client ID: MBLKS	Batch ID: 32085					Analysis Date	e: 4/27/2021	SeqNo: 13	45980	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	ND	0.0952								
Barium	ND	0.476								
Cadmium	ND	0.159								
Chromium	ND	0.317								
Lead	ND	0.159								
Selenium	ND	0.159								
Silver	ND	0.119								

Sample ID: LCS-32085	SampType: LCS			Units: mg/Kg		Prep Dat	te: 4/27/20	21	RunNo: 668	345	
Client ID: LCSS	Batch ID: 32085					Analysis Da	te: 4/27/20	21	SeqNo: 134	45981	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	39.9	0.0952	39.68	0	100	80	120				
Barium	36.9	0.476	39.68	0	92.9	80	120				
Cadmium	1.85	0.159	1.984	0	93.4	80	120				
Chromium	42.5	0.317	39.68	0	107	80	120				
Lead	22.1	0.159	19.84	0	111	80	120				
Selenium	3.83	0.159	3.968	0	96.6	80	120				
Silver	2.02	0.119	1.984	0	102	80	120				

Sample ID: 2104303-003AMS	SampType: MS			Units: mg	/Kg-dry	Prep Da	te: 4/27/2 0)21	RunNo: 668	345	
Client ID: BATCH	Batch ID: 32085					Analysis Da	te: 4/27/2 0)21	SeqNo: 13 4	5986	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	47.7	0.106	43.98	3.174	101	75	125				
Barium	85.8	0.528	43.98	41.67	100	75	125				
Cadmium	2.19	0.176	2.199	0.06338	96.7	75	125				
Chromium	79.7	0.352	43.98	32.86	106	75	125				
Lead	25.7	0.176	21.99	2.577	105	75	125				

Original Page 7 of 22

QC SUMMARY REPORT

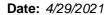

CLIENT: Shannon & Wilson
Project: Cascade Mill Parkway

Total Metals by EPA Method 6020B

Sample ID: 2104303-003AMS	SampType: MS			Units: mg/	Kg-dry	Prep Da	te: 4/27/2 0	21	RunNo: 66	345	
Client ID: BATCH	Batch ID: 32085					Analysis Da	te: 4/27/20	21	SeqNo: 13	45986	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Selenium	5.15	0.176	4.398	0.8593	97.7	75	125				
Silver	2.11	0.132	2.199	0.04517	93.8	75	125				

Sample ID: 2104303-003AMSD	SampType: MSD			Units: mg/l	Kg-dry	Prep Da	te: 4/27/2 0)21	RunNo: 66	845	
Client ID: BATCH	Batch ID: 32085					Analysis Da	te: 4/27/2 0	21	SeqNo: 13	45987	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Arsenic	45.7	0.106	43.98	3.174	96.6	75	125	47.74	4.48	20	
Barium	84.8	0.528	43.98	41.67	98.0	75	125	85.85	1.28	20	
Cadmium	2.10	0.176	2.199	0.06338	92.7	75	125	2.190	4.05	20	
Chromium	73.5	0.352	43.98	32.86	92.3	75	125	79.69	8.12	20	
Lead	24.1	0.176	21.99	2.577	97.8	75	125	25.70	6.46	20	
Selenium	4.89	0.176	4.398	0.8593	91.6	75	125	5.155	5.26	20	
Silver	2.09	0.132	2.199	0.04517	92.9	75	125	2.109	0.958	20	

Original Page 8 of 22



QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Project:	Cascade M	lill Parkway							Merc	cury by EF	PA Metho	d 7471
Sample ID:	MB-32120	SampType: MBLK			Units: mg/Kg		Prep Date:	4/28/202	21	RunNo: 668	875	
Client ID:	MBLKS	Batch ID: 32120					Analysis Date:	4/29/202	21	SeqNo: 134	46835	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		ND	0.250									
Sample ID:	LCS-32120	SampType: LCS			Units: mg/Kg		Prep Date:	4/28/202	21	RunNo: 668	875	
Client ID:	LCSS	Batch ID: 32120					Analysis Date:	4/29/202	21	SeqNo: 134	46836	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		0.492	0.250	0.5000	0	98.4	80	120				
Sample ID:	2104132-001ADUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date:	4/28/202	<u> </u>	RunNo: 668	875	
Client ID:	ВАТСН	Batch ID: 32120					Analysis Date:	4/29/202	21	SeqNo: 134	46838	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		ND	0.258						0		20	
Sample ID:	2104132-001AMS	SampType: MS			Units: mg/Kg-	dry	Prep Date:	4/28/202	21	RunNo: 668	875	
Client ID:	ВАТСН	Batch ID: 32120					Analysis Date:	4/29/202	21	SeqNo: 134	46839	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		0.391	0.253	0.5054	0	77.4	70	130				
Sample ID:	2104132-001AMSD	SampType: MSD			Units: mg/Kg-	dry	Prep Date:	4/28/202	21	RunNo: 668	875	
Client ID:	ВАТСН	Batch ID: 32120					Analysis Date:	4/29/202	21	SeqNo: 134	46840	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury		0.433	0.248	0.4959	0	87.4	70	130	0.3912	10.2	20	

Page 9 of 22 Original

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Sample ID: MB-32091 SampType: MBLK Units: mg/Kg Prep Date: 4/26/2021 Client ID: MBLKS Batch ID: 32091 Fesult RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val Diesel (Fuel Oil) Heavy Oil Total Petroleum Hydrocarbons Surr: 2-Fluorobiphenyl ND 150	RunNo: 66848 SeqNo: 1346062 al %RPD RPDLimit Qua
Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Value SPK Ref	•
Diesel (Fuel Oil) ND 50.0 Heavy Oil ND 100 Total Petroleum Hydrocarbons ND 150	al %RPD RPDLimit Qua
Heavy Oil ND 100 Total Petroleum Hydrocarbons ND 150	
Total Petroleum Hydrocarbons ND 150	
,	
Surr: 2-Fluorobiphenyl 10.0 10.00 100 50 150	
Surr: o-Terphenyl 10.2 10.00 102 50 150	
Sample ID: LCS-32091 SampType: LCS Units: mg/Kg Prep Date: 4/26/2021	RunNo: 66848
Client ID: LCSS Batch ID: 32091 Analysis Date: 4/26/2021	SeqNo: 1346063
Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Val	al %RPD RPDLimit Qua
Diesel (Fuel Oil) 502 50.0 500.0 0 100 73.7 114	
Surr: 2-Fluorobiphenyl 9.61 10.00 96.1 50 150	
Surr: o-Terphenyl 11.5 10.00 115 50 150	
Sample ID: 2104292-001ADUP SampType: DUP Units: mg/Kg-dry Prep Date: 4/26/2021	RunNo: 66848
Client ID: BATCH Batch ID: 32091 Analysis Date: 4/26/2021	SeqNo: 1346066
Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Va	al %RPD RPDLimit Qua
Diesel (Fuel Oil) ND 96.3	0 30
Heavy Oil ND 193	0 30
Total Petroleum Hydrocarbons ND 289	0 30
Surr: 2-Fluorobiphenyl 9.63 19.26 50.0 50 150	0
Surr: o-Terphenyl 14.1 19.26 73.0 50 150	0
Sample ID: 2104303-002AMS SampType: MS Units: mg/Kg-dry Prep Date: 4/26/2021	RunNo: 66848
Client ID: BATCH Batch ID: 32091 Analysis Date: 4/26/2021	SeqNo: 1346070
	al %RPD RPDLimit Qua
Analyte Result RL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Ref Va	

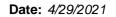
Original Page 10 of 22

Date: 4/29/2021

Work Order: 2104312

Project:

QC SUMMARY REPORT


CLIENT: Shannon & Wilson Cascade Mill Parkway

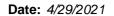
Diesel and Heavy Oil by NWTPH-Dx/Dx Ext.

Sample ID: 2104303-002AMS	SampType: MS			Units: mg/Kg	-dry	Prep Da	te: 4/26/20	21	RunNo: 668	348	
Client ID: BATCH	Batch ID: 32091					Analysis Da	te: 4/26/20	21	SeqNo: 13 4	16070	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 2-Fluorobiphenyl Surr: o-Terphenyl	9.89 10.8		10.51 10.51		94.1 103	50 50	150 150				

Sample ID: 2104303-002AMSD	SampType: MSD	SampType: MSD			g-dry	ry Prep Date: 4/26/2021			RunNo: 668		
Client ID: BATCH	Batch ID: 32091					Analysis Dat	e: 4/26/20)21	SeqNo: 134	16071	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Diesel (Fuel Oil)	474	48.6	486.4	0	97.3	61.4	129	540.3	13.2	30	
Surr: 2-Fluorobiphenyl	8.78		9.729		90.2	50	150		0		
Surr: o-Terphenyl	9.59		9.729		98.6	50	150		0		

Page 11 of 22 Original

QC SUMMARY REPORT


CLIENT: Shannon & Wilson
Project: Cascade Mill Parkway

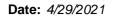
Semi-Volatile Organic Compounds by EPA 8270 (SIM)

Sample ID: MB-32099	SampType: MBLK			Units: µg/Kg		Prep Da	te: 4/27/2 0)21	RunNo: 668	350	
Client ID: MBLKS	Batch ID: 32099					Analysis Da	te: 4/27/2 0)21	SeqNo: 134	1 6170	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	20.0									
2-Methylnaphthalene	ND	20.0									
1-Methylnaphthalene	ND	20.0									
Acenaphthene	ND	20.0									
Acenaphthylene	ND	20.0									
Fluorene	ND	20.0									
Pentachlorophenol	ND	80.0									
Phenanthrene	ND	40.0									
Anthracene	ND	40.0									
Fluoranthene	ND	40.0									
Pyrene	ND	40.0									
Benz(a)anthracene	ND	20.0									
Chrysene	ND	40.0									
Benzo(b)fluoranthene	ND	20.0									
Benzo(k)fluoranthene	ND	20.0									
Benzo(a)pyrene	ND	20.0									
Indeno(1,2,3-cd)pyrene	ND	40.0									
Dibenz(a,h)anthracene	ND	40.0									
Benzo(g,h,i)perylene	ND	20.0									
Surr: 2,4,6-Tribromophenol	1,220		2,000		60.8	19.4	153				
Surr: 2-Fluorobiphenyl	838		1,000		83.8	19	135				
Surr: Terphenyl-d14 (surr)	1,110		1,000		111	42.9	156				

Sample ID: LCS-32099	SampType: LCS					Prep Da	te: 4/27/2 0)21	RunNo: 66850		
Client ID: LCSS	Batch ID: 32099					Analysis Da	te: 4/27/2 0)21	SeqNo: 134	6171	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,780	20.0	2,000	0	89.2	62.7	127				
2-Methylnaphthalene	1,770	20.0	2,000	0	88.3	62.7	132				
1-Methylnaphthalene	1,810	20.0	2,000	0	90.3	61.4	131				

Original Page 12 of 22

QC SUMMARY REPORT


CLIENT: Shannon & Wilson
Project: Cascade Mill Parkway

Semi-Volatile Organic Compounds by EPA 8270 (SIM)

Sample ID: LCS-32099	SampType: LCS			Units: µg/Kg		Prep Dat	te: 4/27/2021		RunNo: 668	350	
Client ID: LCSS	Batch ID: 32099					Analysis Dat	te: 4/27/2021		SeqNo: 134	16171	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RI	PD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	1,780	20.0	2,000	0	89.2	59.2	132				
Acenaphthylene	1,690	20.0	2,000	0	84.7	62	132				
Fluorene	1,860	20.0	2,000	0	92.8	59.1	136				
Pentachlorophenol	1,150	80.0	2,000	0	57.3	5	112				
Phenanthrene	1,950	40.0	2,000	0	97.7	54.1	139				
Anthracene	1,880	40.0	2,000	0	94.0	55.5	136				
Fluoranthene	1,920	40.0	2,000	0	96.1	52.8	149				
Pyrene	1,860	40.0	2,000	0	93.2	53.6	146				
Benz(a)anthracene	1,900	20.0	2,000	0	95.1	49.7	153				
Chrysene	1,910	40.0	2,000	0	95.3	52.6	147				
Benzo(b)fluoranthene	1,780	20.0	2,000	0	88.8	50.6	151				
Benzo(k)fluoranthene	2,040	20.0	2,000	0	102	47.1	155				
Benzo(a)pyrene	2,020	20.0	2,000	0	101	48.3	169				
Indeno(1,2,3-cd)pyrene	1,940	40.0	2,000	0	97.2	52.3	145				
Dibenz(a,h)anthracene	2,000	40.0	2,000	0	99.8	53	144				
Benzo(g,h,i)perylene	1,830	20.0	2,000	0	91.7	49.7	144				
Surr: 2,4,6-Tribromophenol	1,890		2,000		94.6	19.4	153				
Surr: 2-Fluorobiphenyl	822		1,000		82.2	19	135				
Surr: Terphenyl-d14 (surr)	1,070		1,000		107	42.9	156				

Sample ID: 2104303-001AMS	SampType: MS			Units: µg/Kg				21	RunNo: 668		
Client ID: BATCH	Batch ID: 32099				Analysis Date: 4/27/2021				SeqNo: 134	46173	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,710	19.6	1,959	0	87.3	28.7	139				
2-Methylnaphthalene	1,740	19.6	1,959	0	88.7	43.5	130				
1-Methylnaphthalene	1,740	19.6	1,959	0	88.7	42.6	127				
Acenaphthene	1,710	19.6	1,959	0	87.5	45.1	123				
Acenaphthylene	1,630	19.6	1,959	0	83.1	45.3	129				
Fluorene	1,810	19.6	1,959	0	92.3	41.6	128				

Original Page 13 of 22

Cascade Mill Parkway

Work Order: 2104312

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Semi-Volatile Organic Compounds by EPA 8270 (SIM)

Sample ID: 2104303-001AMS	SampType: MS			Units: µg/K	g-dry	Prep Dat	e: 4/27/2 0	21	RunNo: 668	350	
Client ID: BATCH	Batch ID: 32099					Analysis Dat	e: 4/27/2 0	21	SeqNo: 134	46173	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Pentachlorophenol	1,540	78.4	1,959	0	78.7	5	188				
Phenanthrene	1,850	39.2	1,959	0	94.7	24.2	142				
Anthracene	1,820	39.2	1,959	0	92.7	33.1	143				
Fluoranthene	1,860	39.2	1,959	0	94.8	35.5	147				
Pyrene	1,800	39.2	1,959	0	91.7	38.3	141				
Benz(a)anthracene	1,880	19.6	1,959	0	95.8	42.5	145				
Chrysene	1,830	39.2	1,959	0	93.5	39.7	134				
Benzo(b)fluoranthene	1,700	19.6	1,959	0	86.9	29.9	152				
Benzo(k)fluoranthene	2,000	19.6	1,959	0	102	33.2	143.5				
Benzo(a)pyrene	2,010	19.6	1,959	0	102	38.2	156				
Indeno(1,2,3-cd)pyrene	1,850	39.2	1,959	0	94.3	41.4	128				
Dibenz(a,h)anthracene	1,890	39.2	1,959	0	96.3	40.4	129				
Benzo(g,h,i)perylene	1,720	19.6	1,959	0	87.9	34.2	131				
Surr: 2,4,6-Tribromophenol	1,810		1,959		92.3	19.4	153				
Surr: 2-Fluorobiphenyl	792		979.7		80.8	19	135				
Surr: Terphenyl-d14 (surr)	1,000		979.7		102	42.9	156				

Sample ID: 2104303-001AMSD	SampType: MSD			Units: μg/Kg-dry Prep Date: 4/27/2021 Analysis Date: 4/27/2021					RunNo: 668	350	
Client ID: BATCH	Batch ID: 32099)21	SeqNo: 134	16174			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,690	20.5	2,047	0	82.6	28.7	139	1,711	1.24	30	
2-Methylnaphthalene	1,740	20.5	2,047	0	85.2	43.5	130	1,738	0.326	30	
1-Methylnaphthalene	1,740	20.5	2,047	0	84.8	42.6	127	1,739	0.176	30	
Acenaphthene	1,750	20.5	2,047	0	85.3	45.1	123	1,714	1.88	30	
Acenaphthylene	1,640	20.5	2,047	0	80.3	45.3	129	1,629	0.897	30	
Fluorene	1,840	20.5	2,047	0	89.7	41.6	128	1,808	1.58	30	
Pentachlorophenol	1,590	81.9	2,047	0	77.8	5	188	1,542	3.14	30	
Phenanthrene	1,950	40.9	2,047	0	95.5	24.2	142	1,855	5.22	30	
Anthracene	1,870	40.9	2,047	0	91.6	33.1	143	1,816	3.18	30	

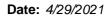
Original Page 14 of 22

Date: 4/29/2021

Cascade Mill Parkway

Work Order: 2104312

Project:


QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Semi-Volatile Organic Compounds by EPA 8270 (SIM)

Sample ID: 2104303-001AMSD	SampType: MSD		Units: µg,			Prep Da	te: 4/27/2 0)21	RunNo: 66850		
Client ID: BATCH	Batch ID: 32099					Analysis Da	te: 4/27/2 0	21	SeqNo: 134	46174	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Fluoranthene	1,940	40.9	2,047	0	94.7	35.5	147	1,857	4.31	30	
Pyrene	1,870	40.9	2,047	0	91.4	38.3	141	1,797	3.98	30	
Benz(a)anthracene	1,940	20.5	2,047	0	94.9	42.5	145	1,877	3.49	30	
Chrysene	1,900	40.9	2,047	0	92.7	39.7	134	1,833	3.42	30	
Benzo(b)fluoranthene	2,000	20.5	2,047	0	97.9	29.9	152	1,702	16.3	30	
Benzo(k)fluoranthene	1,790	20.5	2,047	0	87.6	33.2	143.5	2,003	11.0	30	
Benzo(a)pyrene	2,080	20.5	2,047	0	102	38.2	156	2,005	3.82	30	
Indeno(1,2,3-cd)pyrene	1,920	40.9	2,047	0	94.0	41.4	128	1,847	4.09	30	
Dibenz(a,h)anthracene	1,970	40.9	2,047	0	96.0	40.4	129	1,886	4.12	30	
Benzo(g,h,i)perylene	1,790	20.5	2,047	0	87.7	34.2	131	1,723	4.08	30	
Surr: 2,4,6-Tribromophenol	1,840		2,047		89.9	19.4	153		0		
Surr: 2-Fluorobiphenyl	798		1,023		77.9	19	135		0		
Surr: Terphenyl-d14 (surr)	1,030		1,023		101	42.9	156		0		

Original Page 15 of 22

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

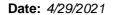
Gasoline by NWTPH-Gx

Project: Cascade Mi	ill Parkway								Gasoline	by NWT	PH-G
Sample ID: LCS-32102	SampType: LCS			Units: mg/Kg		Prep Dat	e: 4/27/202	21	RunNo: 668	347	
Client ID: LCSS	Batch ID: 32102					Analysis Dat	e: 4/27/20 2	21	SeqNo: 134	16096	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	29.1	5.00	25.00	0	116	65	135				
Surr: Toluene-d8	1.29		1.250		104	65	135				
Surr: 4-Bromofluorobenzene	1.26		1.250		101	65	135				
Sample ID: MB-32102	SampType: MBLK			Units: mg/Kg		Prep Dat	e: 4/27/20 2	<u> </u>	RunNo: 668	347	
Client ID: MBLKS	Batch ID: 32102					Analysis Dat	e: 4/27/20 2	21	SeqNo: 134	16059	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	5.00									
Surr: Toluene-d8	1.40		1.250		112	65	135				
Surr: 4-Bromofluorobenzene	1.28		1.250		102	65	135				
Sample ID: 2104302-001BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Dat	e: 4/27/202	21	RunNo: 668	347	
Client ID: BATCH	Batch ID: 32102					Analysis Dat	e: 4/27/202	21	SeqNo: 134	16043	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	5.27						0		30	
Surr: Toluene-d8	1.45		1.318		110	65	135		0		
Surr: 4-Bromofluorobenzene	1.34		1.318		102	65	135		0		
Sample ID: 2104303-002BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Dat	e: 4/27/20 2	<u> </u>	RunNo: 668	347	
Client ID: BATCH	Batch ID: 32102					Analysis Dat	e: 4/27/202	21	SeqNo: 134	16046	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	ND	5.08						0		30	
Surr: Toluene-d8	1.39		1.270		110	65	135		0		
Surr: 4-Bromofluorobenzene	1.26		1.270		99.6	65	135		0		

Original Page 16 of 22

Date: 4/29/2021

Work Order: 2104312

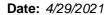

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Gasoline by NWTPH-Gx

Project: Cascad	de Mill Parkway								Gasoline	by NWT	PH-G
Sample ID: 2104303-003BM	S SampType: MS			Units: mg/	Kg-dry	Prep Da	te: 4/27/20	21	RunNo: 66	847	
Client ID: BATCH	Batch ID: 32102					Analysis Da	te: 4/27/20	21	SeqNo: 13	46048	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Gasoline	32.6	5.36	26.79	2.628	112	65	135				
Surr: Toluene-d8	1.49		1.339		111	65	135				
Surr: 4-Bromofluorobenzer	ne 1.40		1.339		104	65	135				

Page 17 of 22 Original


QC SUMMARY REPORT

CLIENT: Shannon & Wilson Cascade Mill Parkway

Volatile Organic Compounds by EPA Method 8260D

Sample ID: LCS-32102	SampType: LCS			Units: mg/Kg		Prep Date	e: 4/27/2021	RunNo: 6684	16
Client ID: LCSS	Batch ID: 32102					Analysis Date	e: 4/27/2021	SeqNo: 1346	6038
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD	RPDLimit Qua
Benzene	0.877	0.0200	1.000	0	87.7	80	120		
Toluene	0.888	0.0650	1.000	0	88.8	80	120		
Ethylbenzene	0.971	0.0250	1.000	0	97.1	80	120		
n,p-Xylene	1.98	0.0500	2.000	0	98.8	80	120		
o-Xylene	0.995	0.0250	1.000	0	99.5	80	120		
Surr: Dibromofluoromethane	1.20		1.250		96.3	80	120		
Surr: Toluene-d8	1.17		1.250		93.4	80	120		
Surr: 1-Bromo-4-fluorobenzene	1.27		1.250		102	80	120		
Sample ID: MB-32102	SampType: MBLK			Units: mg/Kg		Prep Date	e: 4/27/2021	RunNo: 6684	ļ6
Client ID: MBLKS	Batch ID: 32102					Analysis Date	e: 4/27/2021	SeqNo: 1346	6033
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD	RPDLimit Qua
Benzene	ND	0.0200							
Γoluene	ND	0.0650							
Ethylbenzene	ND	0.0250							
n,p-Xylene	ND	0.0500							
p-Xylene	ND	0.0250							
Surr: Dibromofluoromethane	1.12		1.250		89.8	81.9	113		
Surr: Toluene-d8	1.15		1.250		91.9	82.7	115		
Surr: 1-Bromo-4-fluorobenzene	1.21		1.250		97.0	87.9	109		
Sample ID: 2104302-001BDUP	SampType: DUP			Units: mg/Kg-	dry	Prep Date	e: 4/27/2021	RunNo: 6684	ļ6
Client ID: BATCH	Batch ID: 32102					Analysis Date	e: 4/27/2021	SeqNo: 1346	6014
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD	RPDLimit Qua
Benzene	ND	0.0211					0		30
Toluene	ND	0.0685					0		30
Ethylbenzene	ND	0.0264					0		30

Page 18 of 22 Original

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Project: Cascade Mill Parkway

Volatile Organic Compounds by EPA Method 8260D

Project: Cascade Mili	ii Parkway										
Sample ID: 2104302-001BDUP	SampType: DUP			Units: mg/	/Kg-dry	Prep Dat	te: 4/27/202	1	RunNo: 668	346	
Client ID: BATCH	Batch ID: 32102					Analysis Dat	te: 4/27/202	1	SeqNo: 134	16014	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
m,p-Xylene	ND	0.0527						0		30	
o-Xylene	ND	0.0264						0		30	
Surr: Dibromofluoromethane	1.17		1.318		88.9	81.9	113		0		
Surr: Toluene-d8	1.23		1.318		93.6	82.7	115		0		
Surr: 1-Bromo-4-fluorobenzene	1.26		1.318		95.8	87.9	109		0		
Sample ID: 2104303-002BDUP	SampType: DUP			Units: mg/	/Kg-dry	Prep Dat	te: 4/27/202	1	RunNo: 668	346	
Client ID: BATCH	Batch ID: 32102					Analysis Dat	te: 4/27/202	1	SeqNo: 134	16018	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	0.0203						0		30	
Toluene	ND	0.0660						0		30	
Ethylbenzene	ND	0.0254						0		30	
m,p-Xylene	ND	0.0508						0		30	
o-Xylene	ND	0.0254						0		30	
Surr: Dibromofluoromethane	1.15		1.270		90.3	81.9	113		0		
Surr: Toluene-d8	1.21		1.270		95.3	82.7	115		0		
Surr: 1-Bromo-4-fluorobenzene	1.20		1.270		94.4	87.9	109		0		
Sample ID: 2104303-001BMS	SampType: MS			Units: mg/	/Kg-dry	Prep Dat	te: 4/27/202	1	RunNo: 668	346	
Client ID: BATCH	Batch ID: 32102					Analysis Dat	te: 4/27/202	1	SeqNo: 134	16016	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	0.790	0.0162	0.8107	0	97.5	76.8	129				
Toluene	0.808	0.0527	0.8107	0	99.7	77.8	127				
Ethylbenzene	0.854	0.0203	0.8107	0	105	78.7	130				
m,p-Xylene	1.72	0.0405	1.621	0	106	79.3	127				
o-Xylene	0.864	0.0203	0.8107	0	107	80.7	124				
Surr: Dibromofluoromethane	0.986		1.013		97.3	81.9	113				

Original Page 19 of 22

Date: 4/29/2021

Cascade Mill Parkway

Work Order: 2104312

Project:

QC SUMMARY REPORT

CLIENT: Shannon & Wilson

Volatile Organic Compounds by EPA Method 8260D

Sample ID: 2104303-001BMS	SampType: MS			Units: mg/K	g-dry	Prep Da	te: 4/27/20	21	RunNo: 668	346	
Client ID: BATCH	Batch ID: 32102					Analysis Da	te: 4/27/20	21	SeqNo: 134	16016	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: Toluene-d8	0.946		1.013		93.3	82.7	115				
Surr: 1-Bromo-4-fluorobenzene	1.07		1.013		106	87.9	109				

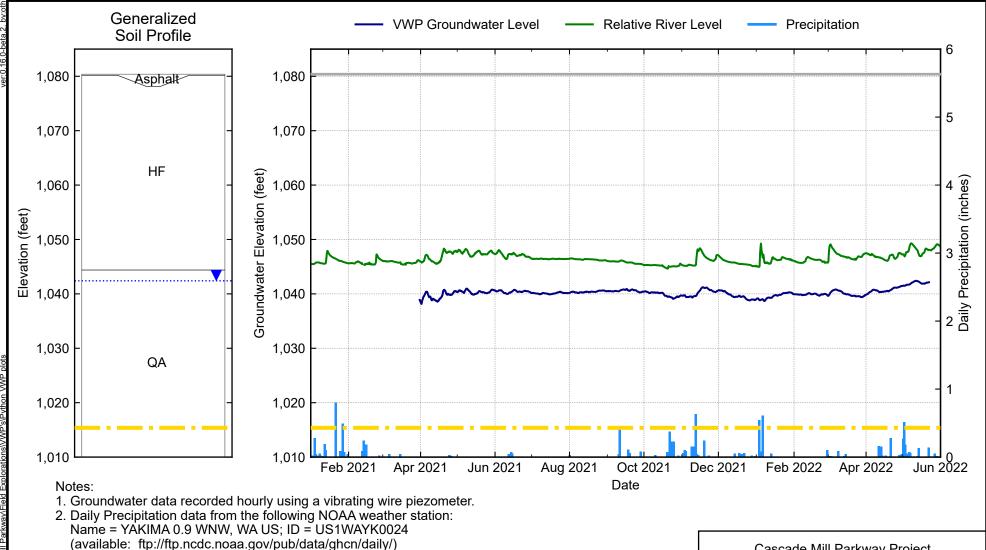
Original Page 20 of 22

Sample Log-In Check List

Client Name: SW		sw	Work O	Work Order Number: 2104312				
Logged by: Clare Griggs		Clare Griggs	Date Received:		4/22/2021	1 3:41:00 PM		
Cha	in of Custo	<u>ody</u>						
		ustody complete?	Yes	✓	No \square	Not Present		
2.	How was the	sample delivered?	Clien	<u>nt</u>				
Log	ln .							
_	Coolers are p	resent?	Yes	✓	No 🗌	NA \square		
٥.	occiois are p	i cociii:	100		но 🗀	14. C		
4.	Shipping conf	tainer/cooler in good condition?	Yes	✓	No \square			
5.	Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact)				No \square	Not Present ✓		
6.	Was an attempt made to cool the samples?			✓	No 🗌	NA \square		
7.	Were all items received at a temperature of >2°C to 6°C *		Yes	✓	No 🗌	NA 🗆		
8.	Sample(s) in	proper container(s)?	Yes	✓	No 🗆			
9.	9. Sufficient sample volume for indicated test(s)?			✓	No \square			
10.	Are samples	properly preserved?	Yes	✓	No \square			
11.	Was preservative added to bottles?		Yes		No 🗸	NA \square		
12.	Is there head	space in the VOA vials?	Yes		No 🗌	NA 🗹		
13.	13. Did all samples containers arrive in good condition(unbroken)?			✓	No \square			
14.	14. Does paperwork match bottle labels?		Yes	•	No 🗌			
15.	Are matrices	correctly identified on Chain of Custody?	Yes	✓	No \square			
16.	Is it clear wha	at analyses were requested?	Yes	✓	No \square			
17.	Were all hold	ing times able to be met?	Yes	✓	No \square			
Spe	cial Handli	ing (if applicable)						
-		otified of all discrepancies with this order?	Yes		No \square	NA 🗸		
	Person	Notified: Date:						
	By Who	<u> </u>	eMa	il Phon	e 🗍 Fax	In Person		
	Regardi							
	Client In	structions:						
19.	Additional rer	narks:						
ltem	Information							
		Item # Temn °C						

Sample

^{*} Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C


Page 22 of 22

Appendix E

Groundwater Observations

CONTENTS

- Figure E-1: Groundwater Level Readings Boring B-11P-21
- Figure E-2: Groundwater Level Readings Boring B-12P-21
- Figure E-3: Groundwater Level Readings Boring B-15P-21
- Figure E-4: Observation Well B-2-17 Hydrograph
- Figure E-5: Groundwater Level Vs Precipitation Boring EWC-B-01-14
- Figure E-6: Groundwater Level Vs Precipitation Boring EWC-B-02-14
- Figure E-7: Groundwater Level Vs Precipitation Boring EWC-B-03-14
- Figure E-8: Groundwater Level Vs Precipitation Boring EWC-B-04-14

3. Relative river levels shown represent gage heights from a USGS river gage upstream of the boring location at a different elevation. Levels shown have been shifted such that the lowest gage height aligns with the bottom of the Levee Fill layer. Relative river levels are therefore not actual elevations of the river at the boring locations. Gage height data was retrieved from the following USGS gage site:

Site Name = YAKIMA RIVER ABOVE AHTANUM CREEK AT UNION GAP, WA (No. 12500450) (Available: https://waterservices.usgs.gov/rest/IV-Test-Tool.html)

Cascade Mill Parkway Project Yakima County, Washington

GROUNDWATER LEVEL READINGS BORING B-11P-21

March 2023

106384-002

SHANNON & WILSON, INC.
Geotechnical and Environmental Consultants

FIG. E-1

FIG. E-1

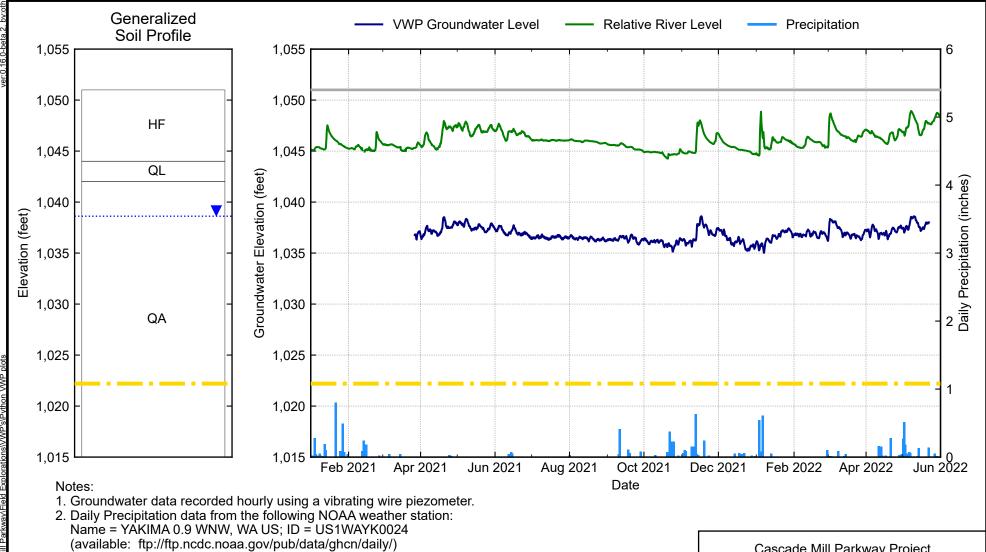
 Daily Precipitation data from the following NOAA weather station: Name = YAKIMA 0.9 WNW, WA US; ID = US1WAYK0024 (available: ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/)

3. Relative river levels shown represent gage heights from a USGS river gage upstream of the boring location at a different elevation. Levels shown have been shifted such that the lowest gage height aligns with the bottom of the Levee Fill layer. Relative river levels are therefore not actual elevations of the river at the boring locations. Gage height data was retrieved from the following USGS gage site:

Site Name = YAKIMA RIVER ABOVE AHTANUM CREEK AT UNION GAP, WA (No. 12500450) (Available: https://waterservices.usgs.gov/rest/IV-Test-Tool.html)

Cascade Mill Parkway Project Yakima County, Washington

GROUNDWATER LEVEL READINGS BORING B-12P-21


March 2023

106384-002

SHANNON & WILSON, INC.
Geotechnical and Environmental Consultants

FIG. E-2

FIG. E-2

3. Relative river levels shown represent gage heights from a USGS river gage upstream of the boring location at a different elevation. Levels shown have been shifted such that the lowest gage height aligns with the bottom of the Levee Fill layer. Relative river levels are therefore not actual elevations of the river at the boring locations. Gage height data was retrieved from the following USGS gage site:

Site Name = YAKIMA RIVER ABOVE AHTANUM CREEK AT UNION GAP, WA (No. 12500450) (Available: https://waterservices.usgs.gov/rest/IV-Test-Tool.html)

Cascade Mill Parkway Project Yakima County, Washington

GROUNDWATER LEVEL READINGS BORING B-15P-21

March 2023

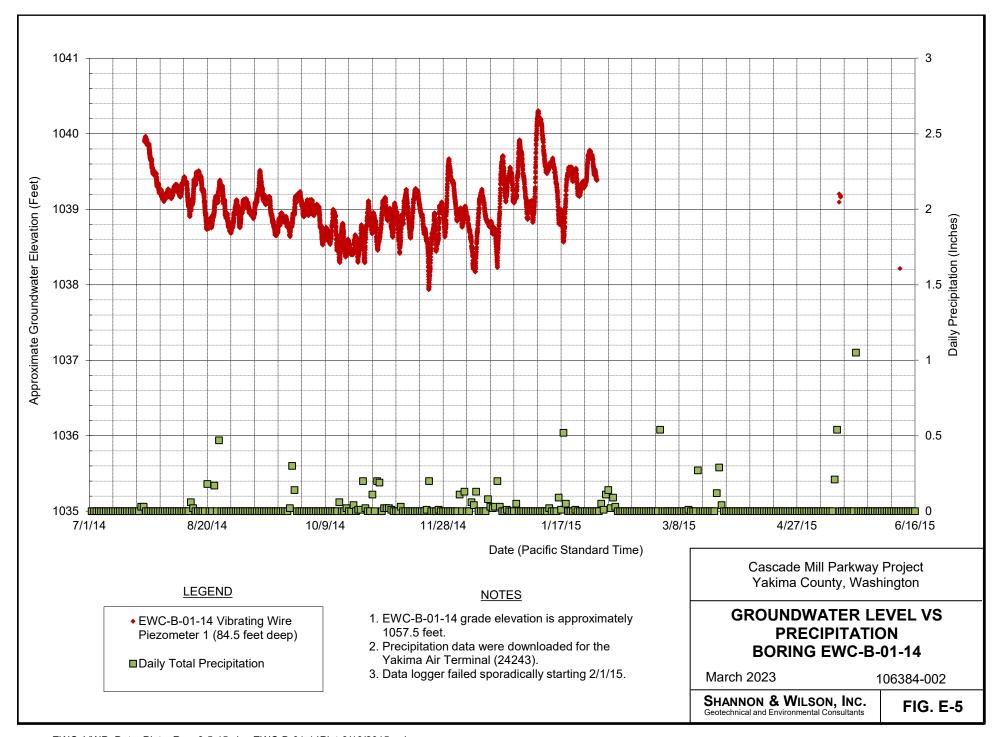
106384-002

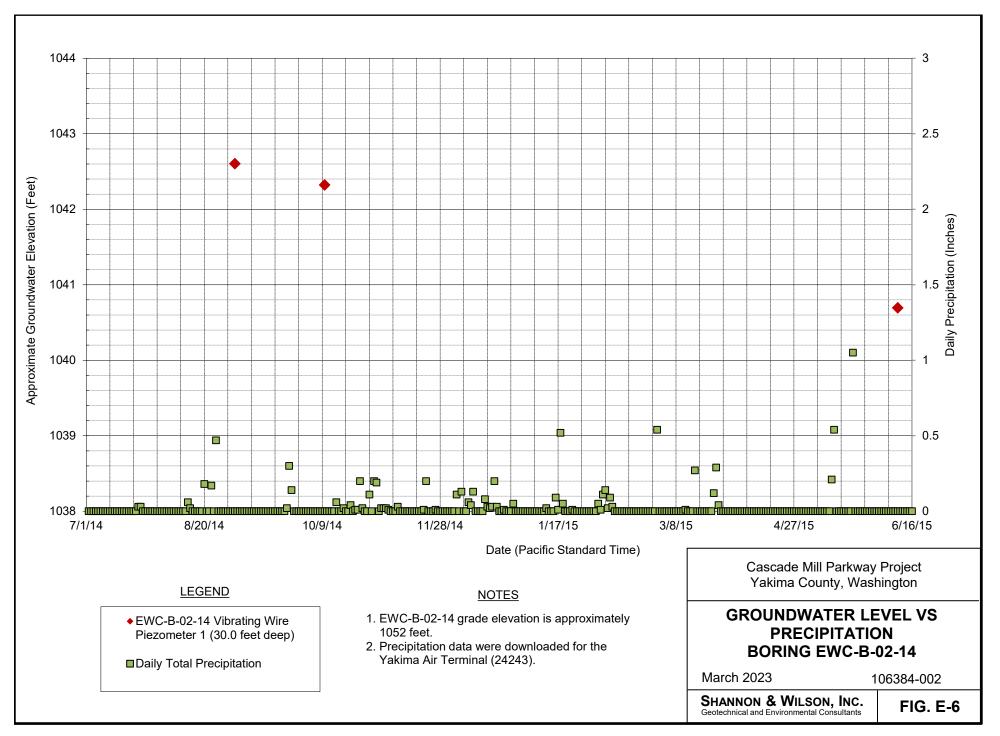
SHANNON & WILSON, INC.
Geotechnical and Environmental Consultants

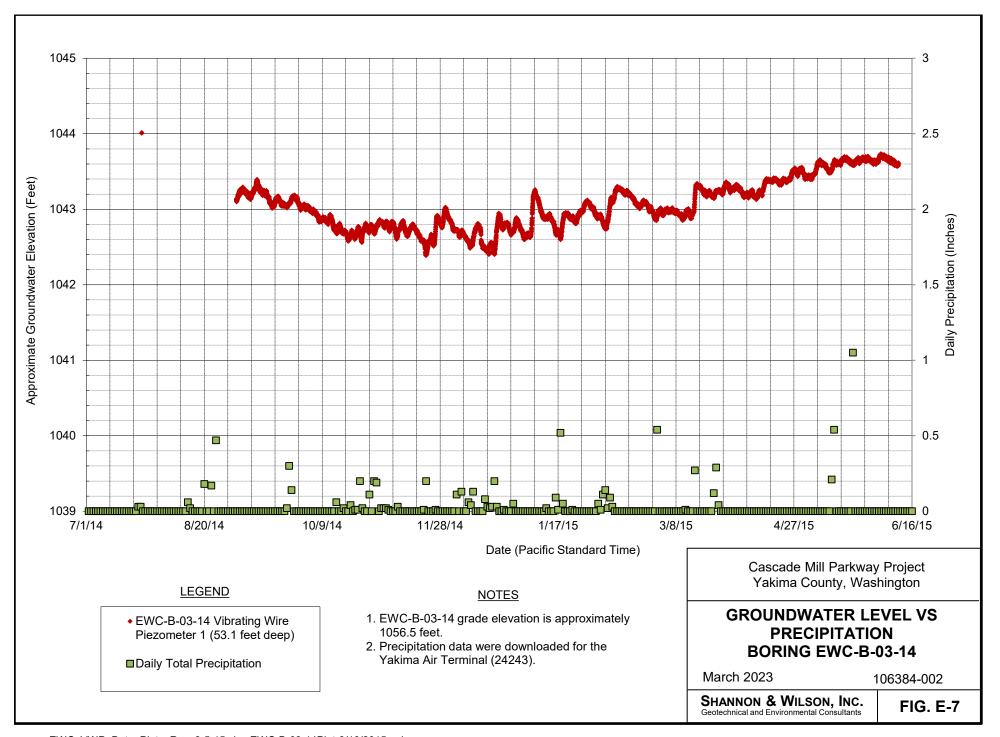
FIG. E-3

FIG. E-3

- 2. Grade elevation at B-2-17 is approximately 1,055 feet NAVD88.
- 3. Black and white reproduction of this color original may lead to incorrect interpretation.


HYDROGRAPH


March 2023


106384-002

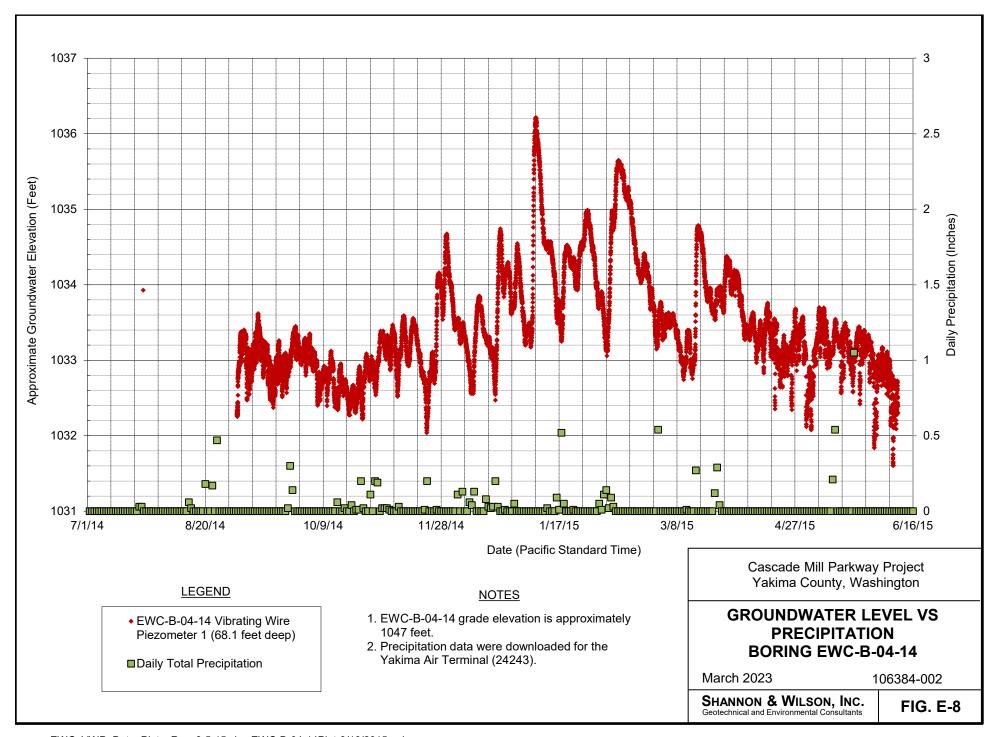

SHANNON & WILSON, INC. Geotechnical and Environmental Consultants

FIG. E-4

Appendix F

Global Stability Analyses

CONTENTS

F.1	INTRO	ODUCTION	F-1
F.2	ANAI	LYSIS LOCATIONS AND GEOMETRIES	F-1
	F.2.1	Yakima River Bridge East Abutment and Approach Embankment	F-1
	F.2.2	YRB West Abutment and Approach Embankment	F-2
	F.2.3	Fill Embankment West of I-82	F-2
F.3	REQU	UREMENTS	F-3
F.4	METH	HODOLOGY	F-3
	F.4.1	Limit Equilibrium Analyses	F-3
	F.4.2	Soil Parameters	F-4
	F.4.3	Design Loads	F-5
F.5	ANAI	LYSIS DETAILS AND RESULTS	F-6
F.6	REFEI	RENCES	F-6
Exhil	bits		
Exhil	bit F-1:	Location of YRB East Abutment Global Stability Analyses	F-1
Exhil	bit F-2:	Location of YRB West Abutment Global Stability Analyses	F-2
Exhil	bit F-3:	Location of Fill Embankment West of I-82 Global Stability Analysis	F-3

Tables

Table F-1: Materials

Figures

Figures F-1 to F-10: SLOPE/W Global Stability Analyses Results

F.1 INTRODUCTION

This appendix presents global stability modeling performed for the Cascade Mill Parkway (CMP) project in Yakima County. This appendix describes the analysis methods, soil parameters, and other assumptions made in the analyses.

F.2 ANALYSIS LOCATIONS AND GEOMETRIES

We evaluated global stability at three locations. Details for each location are provided in the following sections.

F.2.1 Yakima River Bridge East Abutment and Approach Embankment

We evaluated global stability for the longitudinal (east-west) and transverse (north-south) directions at the proposed Yakima River Bridge (YRB) east abutment. Locations of these analyses are indicated in Exhibit F-1. Figures F-1 through F-4 show our geometric assumptions for these analyses.

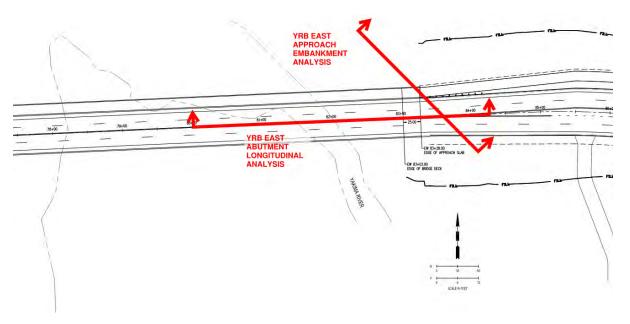


Exhibit F-1: Location of YRB East Abutment Global Stability Analyses

For the approach embankment analysis, we considered a skewed transverse analysis to account for the influence of river scour. Both abutment and approach embankment analyses assume post-scoured conditions for static and seismic conditions.

YRB WEST ABUTMENT TRANSVERSE ANALYSIS YRB WEST ABUTMENT LONGITUDINAL ANALYSIS DOT OF WINGLES ANALYSIS YANIA RIVER YANIA RIVER YANIA RIVER

F.2.2 YRB West Abutment and Approach Embankment

Exhibit F-2: Location of YRB West Abutment Global Stability Analyses

We evaluated global stability for the longitudinal (east-west) and transverse (north-south) directions at the proposed YRB west abutment. Locations of these analyses are indicated in Exhibit F-2. Figures F-5 through F-8 show our geometric assumptions for these analyses.

We assume the post-scour conditions for the longitudinal west abutment analysis. We did not consider scour for the west approach embankment (transverse) analysis due to the presence of the existing levee along the west bank of the Yakima River. See main text for more details on scour.

F.2.3 Fill mbankment West of I-82

We evaluated global stability in the transverse (north-south) direction of the proposed fill embankment west of I-82. The location of this analysis is shown in Exhibit F-3. Figures F-9 and F-10 show our geometric assumptions for this analysis.

This analysis is in an area formerly used as a municipal solid waste (MSW) and wood waste storage site. We understand the City of Yakima removed the MSW and wood waste within the CMP Project footprint. Based on preliminary plans, the City of Yakima had a 50-foot temporary easement outside of the CMP right-of-way and excavated into the MSW and wood waste material at a 2 Horizontal to 1 Vertical (2H:1V) cut slope (see Figures 9 and 10). Based on the City of Yakima preliminary plans, we understand the excavations were backfilled with material consistent with Washington State Department of Transportation (WSDOT) Common Borrow.

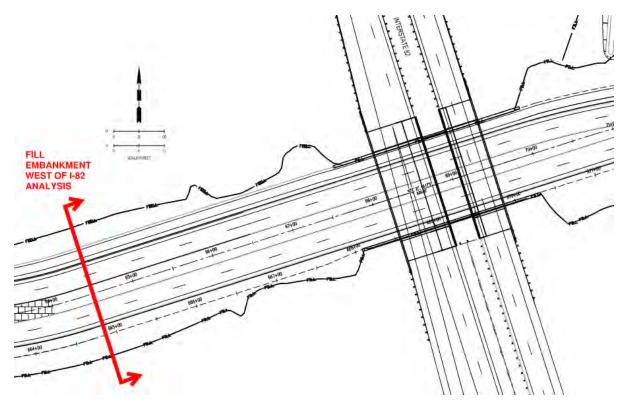


Exhibit F-3: Location of Fill Embankment West of I-82 Global Stability Analysis

F.3 REQUIREMENTS

The slope stability factor of safety (FS) is the ratio of forces resisting sliding to forces driving sliding. If the FS is less than 1.0, then the driving forces are greater than the resisting forces, and the slope is in a state of failure. If the FS is greater than 1.0, the resisting forces are greater than the driving forces, and the slope is in a stable state.

The WSDOT Geotechnical Design Manual (GDM) (WSDOT, 2022) requires the following minimum FS values:

- 1.3 for static loading of slopes adjacent to but not directly supporting structures,
- 1.5 for static loading of slopes directly supporting structures, and
- 1.1 for seismic and post-seismic loading of slopes adjacent to or supporting structures.

F.4 METHODOLOGY

F.4.1 Limit Equilibrium Analyses

We evaluated the slope stability FS using limit equilibrium analyses. Limit equilibrium analyses treat the slide mass as a rigid body, subdivide the mass into slices, and calculate

the forces acting on each slice. We used the Morgenstern-Price limit equilibrium method (Morgenstern and Price, 1965), which:

- Includes both normal and shear interslice forces,
- Satisfies both moment and force equilibrium, and
- Allows for variable distributions of interslice forces.

We used the computer program SLOPE/W (GeoStudio International, 2021) to perform the Morgenstern-Price analyses. We used SLOPE/W to specify the potential limits of a slide mass and to calculate the FS of potential slip surfaces in the slide mass. The critical slip surface is the slip surface with the lowest FS.

For our static analyses, we included surcharge loads as specified in the American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design Bridge Design Specifications (AASHTO, 2020).

In accordance with WSDOT (2022), we analyzed seismic slope stability using a pseudo-static approach. We modeled the earthquake loading by applying a horizontal seismic coefficient, k_h , of one-half the site peak ground acceleration (PGA). The horizontal seismic coefficient is less than the PGA because:

- The PGA occurs only once during an earthquake record, while kh is applied as a static force:
- Wave scattering effects tend to reduce the acceleration in the slide mass; and
- The slide mass is allowed to displace a small amount.

F.4.2 Soil Parameters

We selected soil parameters for the model based on laboratory and field testing performed for I-82 and other projects, our experience, and judgment.

We estimated the soil parameters by reviewing:

- The generalized subsurface profiles (see main text Figures 3 through 5) and boring logs (see Appendices A and C), and
- The results of laboratory and field testing (see Appendices B and C).

Input properties for soil layers include weight, cohesion, and friction angle. The soil properties are shown in Figures F-1 through F-10 and are summarized in Table F-1.

Table F-1: Materials

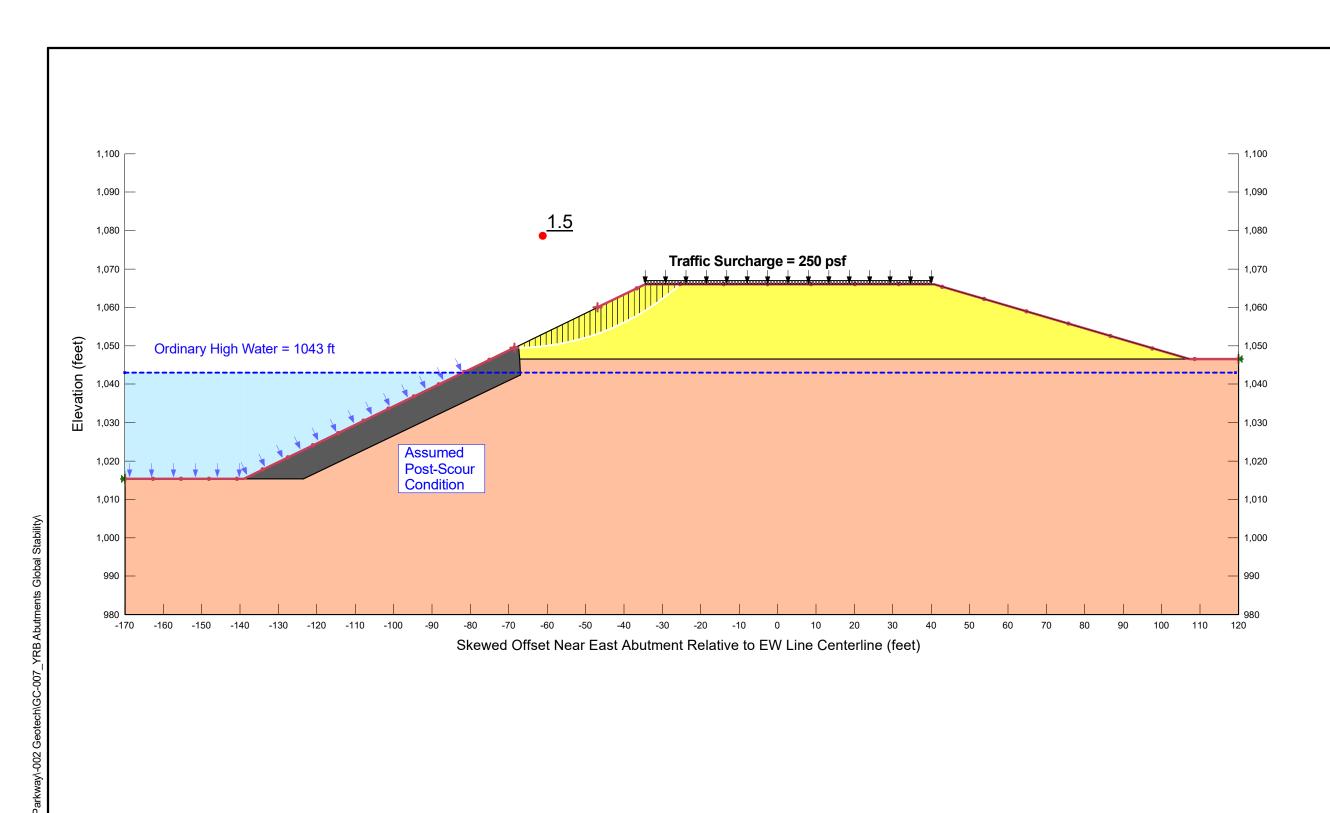
Material Name	Color in Figures	Unit Weight (pcf)	Effective Stress Friction Angle (degrees)	Effective Stress Cohesion Intercept (psf)	Description / Note
Concrete Abutment		150	n/a	n/a	Cast-in-place concrete for YRB abutment stem wall and cap beam – assumed impenetrable in our analyses.
Embankment Fill		125	32	0	Proposed CMP Project embankment fill.
Wall Backfill		135	38	0	Proposed CMP Project gravel backfill for retaining walls.
MSW and/or Wood Waste		50	18	0	Assumed MSW and/or wood waste material west of the I-82 embankment not removed by the City of Yakima.
City Replacement Fill		125	32	0	Assumed fill material placed by City of Yakima in 2021 to replace MSW and Wood Waste material within CMP footprint west of I-82 embankment.
Loose Silty Gravel (GM) with Wood Waste		120	24	0	Assumed material containing abundant wood waste between the I-82 embankment and the Yakima River.
County Replacement Fill		125	32	0	Assumed fill material to be placed for the CMP Project to replace wood waste material within CMP footprint between the I-82 embankment and the Yakima River.
Riprap		115	45	0	Proposed launchable riprap blanket scour protection at YRB east abutment.

MSW = municipal solid waste; n/a = not applicable; pcf = pounds per cubic foot; psf = pounds per square foot

F.4.3 Design Loads

We applied a factored traffic surcharge of 250 pounds per square foot above abutments and embankments at the CMP roadway grade.

Surcharge loads associated with the bridge superstructure or live traffic loading are not included in our analyses because these loads will be resisted by the drilled shafts.

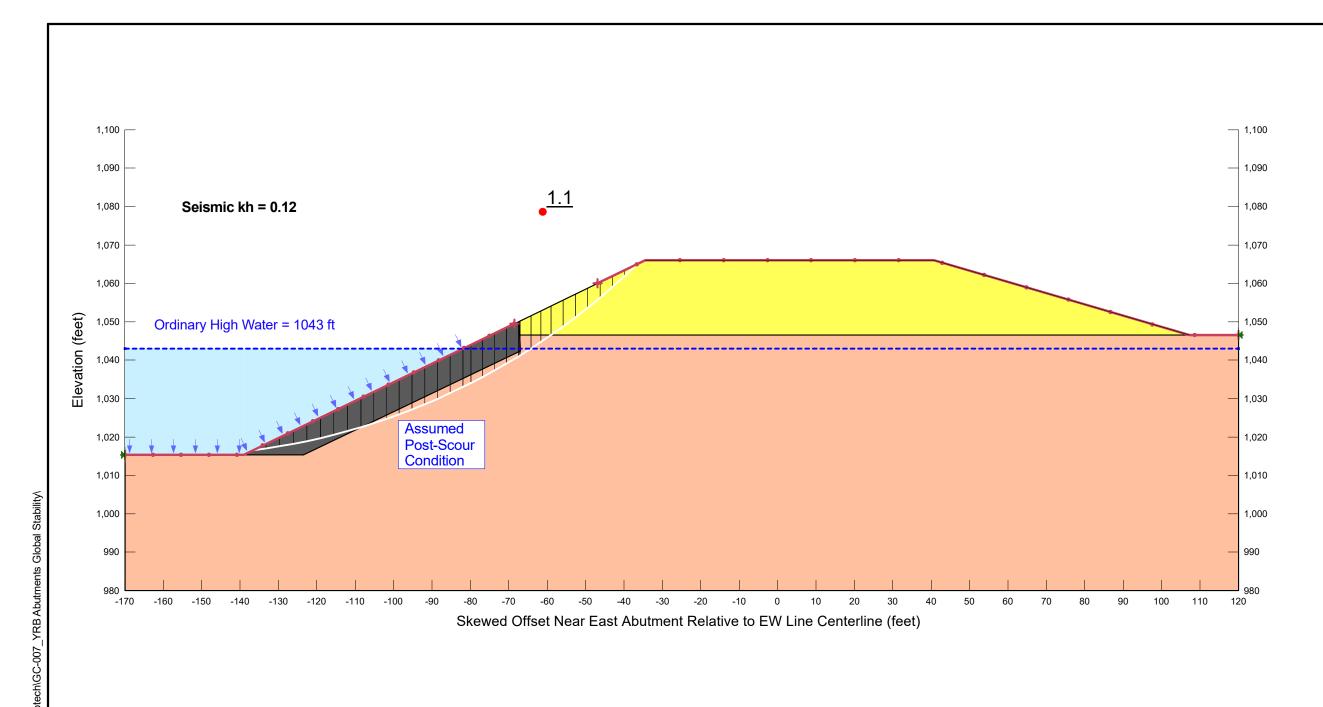

Drilled shaft foundations are shown our global stability output figures for reference purposes only. We did not account for the lateral resistance of the shafts in our global stability analyses.

F.5 ANALYSIS DETAILS AND RESULTS

Our global stability analyses are presented as Figures F-1 through F-10. As shown in the figures, we confirmed that the geometry of the selected cross sections will meet the WSDOT GDM FS criteria for both static and seismic conditions.

F.6 REFERENCES

- American Association of State Highway and Transportation Officials (AASHTO), 2020, AASHTO LRFD bridge design specifications (9th ed.): Washington, D.C., AASHTO, 2 v.
- Geo-Slope International, 2021, SLOPE/W v. 2021.4: Calgary, Alberta, Geo-Slope International.
- Morgenstern, N.R. and Price, V.E., 1965, The analysis of the stability of general slip surfaces: Geotechnique, v. 15. no. 1, p. 79-93.
- Washington State Department of Transportation (WSDOT), 2022, Geotechnical design Manual: Olympia, Wash., WSDOT, Manual M 46-03, 1 v., February, available: https://www.wsdot.wa.gov/Publications/Manuals/M46-03.htm.

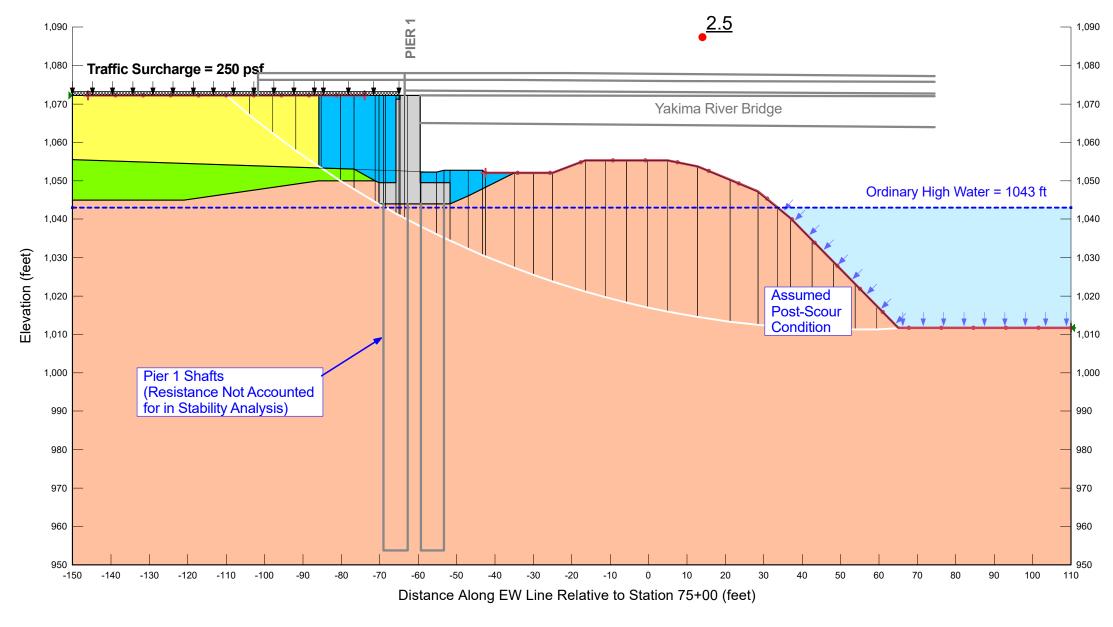

Color	Name	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	Embankment Fill	125	0	32
	Quaternary Alluvium	140	0	40
	Riprap	115	0	45

GLOBAL STABILITY ANALYSIS YRB EAST APPROACH EMBANKMENT STATIC CASE

March 2023

106384-002

SHANNON & WILSON, INC.
Geotechnical and Environmental Consultants

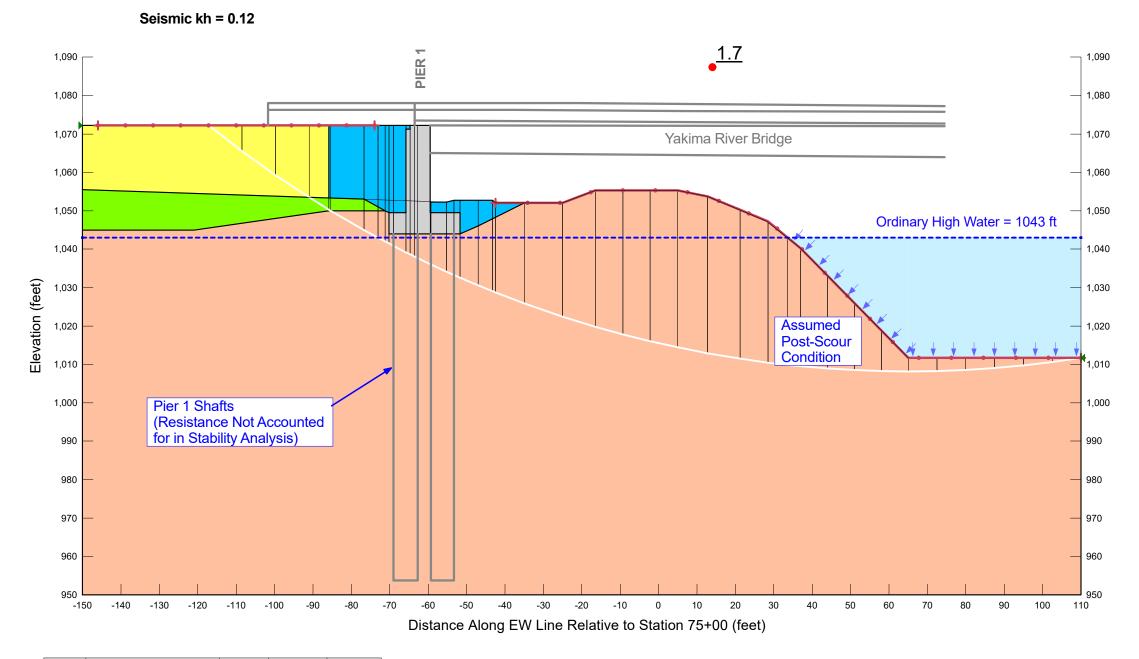

Color	Name	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	Embankment Fill	125	0	32
	Quaternary Alluvium	140	0	40
	Riprap	115	0	45

GLOBAL STABILITY ANALYSIS YRB EAST APPROACH EMBANKMENT SEISMIC CASE

March 2023

106384-002

SHANNON & WILSON, INC.
Geotechnical and Environmental Consultants

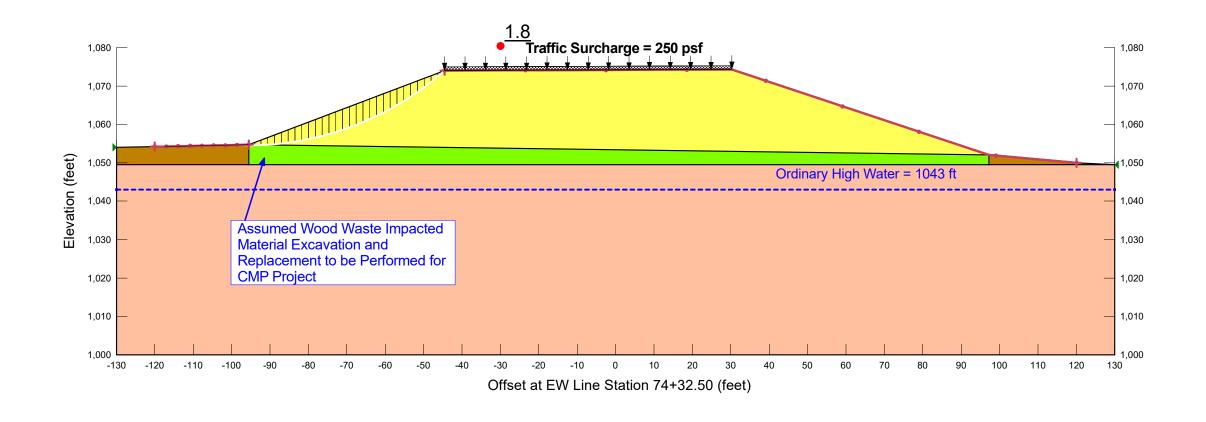

Color	Name	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	Concrete Abutment	150		
	County Replacement Fill	125	0	32
	Embankment Fill	125	0	32
	Quaternary Alluvium	140	0	40
	Wall Backfill	135	0	38

GLOBAL STABILITY ANALYSIS YRB WEST ABUTMENT STATIC CASE

March 2023

106384-002

SHANNON & WILSON, INC.
Geotechnical and Environmental Consultants

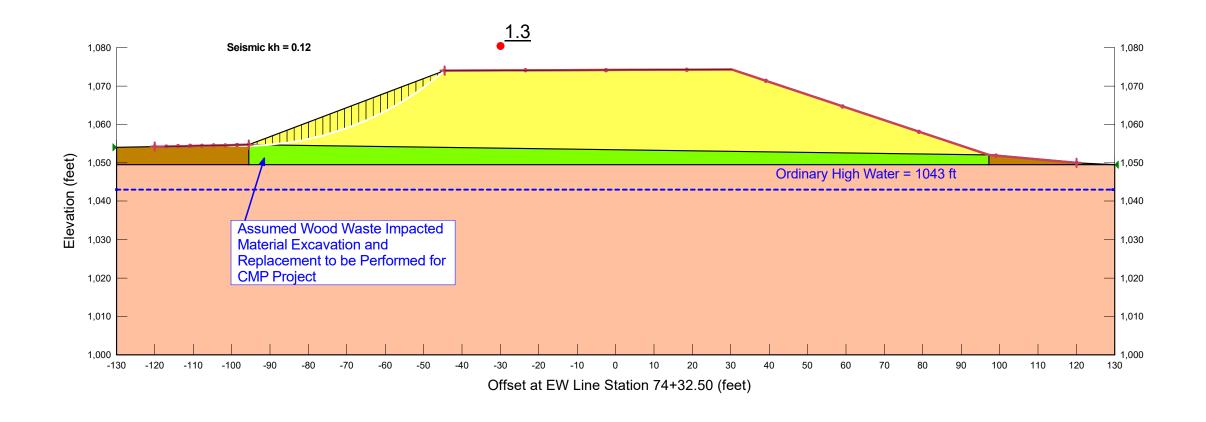

Color	Name	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	Concrete Abutment	150		
	County Replacement Fill	125	0	32
	Embankment Fill	125	0	32
	Quaternary Alluvium	140	0	40
	Wall Backfill	135	0	38

GLOBAL STABILITY ANALYSIS YRB WEST ABUTMENT SEISMIC CASE

March 2023

106384-002

SHANNON & WILSON, INC.
Geotechnical and Environmental Consultants

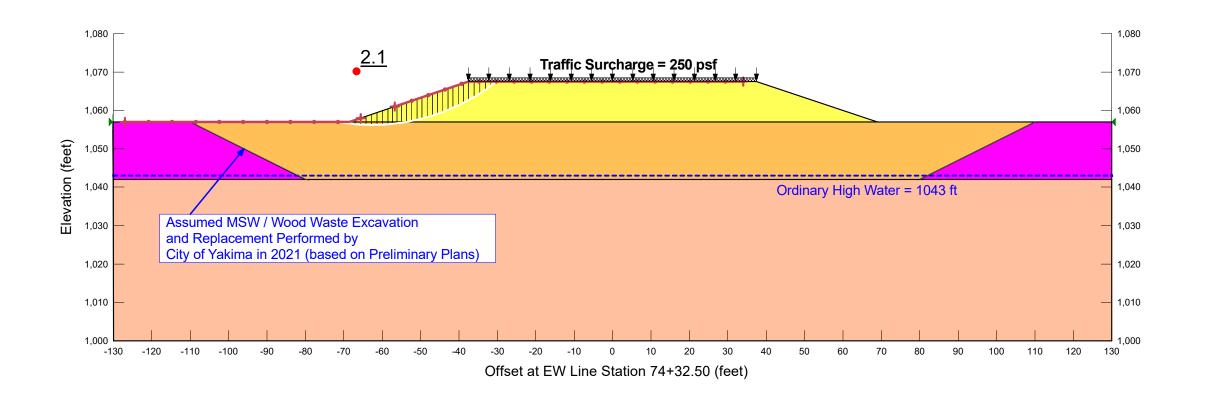

Color	Name	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	County Replacement Fill	125	0	32
	Embankment Fill	125	0	32
	Loose GM with Wood Waste	120	0	24
	Quaternary Alluvium	140	0	40

GLOBAL STABILITY ANALYSIS YRB WEST APPROACH EMBANKMENT STATIC CASE

March 2023

106384-002

SHANNON & WILSON, INC.
Geotechnical and Environmental Consultants

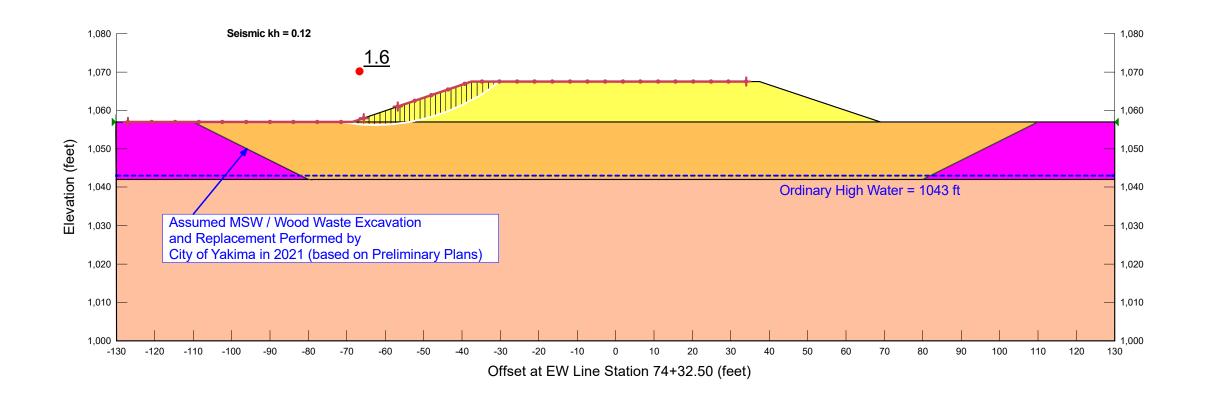

Color	Name	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	County Replacement Fill	125	0	32
	Embankment Fill	125	0	32
	Loose GM with Wood Waste	120	0	24
	Quaternary Alluvium	140	0	40

GLOBAL STABILITY ANALYSIS YRB WEST APPROACH EMBANKMENT SEISMIC CASE

March 2023

106384-002

SHANNON & WILSON, INC.
Geotechnical and Environmental Consultants


Color	Name	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	City Replacement Fill	125	0	32
	Embankment Fill	125	0	32
	MSW and/or Wood Waste	50	0	18
	Quaternary Alluvium	140	0	40

GLOBAL STABILITY ANALYSIS FILL EMBANKMENT WEST OF I-82 STATIC CASE

March 2023

106384-002

SHANNON & WILSON, INC.
Geotechnical and Environmental Consultants

Color	Name	Unit Weight (pcf)	Effective Cohesion (psf)	Effective Friction Angle (°)
	City Replacement Fill	125	0	32
	Embankment Fill	125	0	32
	MSW and/or Wood Waste	50	0	18
	Quaternary Alluvium	140	0	40

GLOBAL STABILITY ANALYSIS FILL EMBANKMENT WEST OF I-82 SEISMIC CASE

March 2023

106384-002

SHANNON & WILSON, INC.
Geotechnical and Environmental Consultants

Important Information

About Your Geotechnical/Environmental Report

CONSULTING SERVICES ARE PERFORMED FOR SPECIFIC PURPOSES AND FOR SPECIFIC CLIENTS.

Consultants prepare reports to meet the specific needs of specific individuals. A report prepared for a civil engineer may not be adequate for a construction contractor or even another civil engineer. Unless indicated otherwise, your consultant prepared your report expressly for you and expressly for the purposes you indicated. No one other than you should apply this report for its intended purpose without first conferring with the consultant. No party should apply this report for any purpose other than that originally contemplated without first conferring with the consultant.

THE CONSULTANT'S REPORT IS BASED ON PROJECT-SPECIFIC FACTORS.

A geotechnical/environmental report is based on a subsurface exploration plan designed to consider a unique set of project-specific factors. Depending on the project, these may include the general nature of the structure and property involved; its size and configuration; its historical use and practice; the location of the structure on the site and its orientation; other improvements such as access roads, parking lots, and underground utilities; and the additional risk created by scope-of-service limitations imposed by the client. To help avoid costly problems, ask the consultant to evaluate how any factors that change subsequent to the date of the report may affect the recommendations. Unless your consultant indicates otherwise, your report should not be used (1) when the nature of the proposed project is changed (for example, if an office building will be erected instead of a parking garage, or if a refrigerated warehouse will be built instead of an unrefrigerated one, or chemicals are discovered on or near the site); (2) when the size, elevation, or configuration of the proposed project is altered; (3) when the location or orientation of the proposed project is modified; (4) when there is a change of ownership; or (5) for application to an adjacent site. Consultants cannot accept responsibility for problems that may occur if they are not consulted after factors that were considered in the development of the report have changed.

SUBSURFACE CONDITIONS CAN CHANGE.

Subsurface conditions may be affected as a result of natural processes or human activity. Because a geotechnical/environmental report is based on conditions that existed at the time of subsurface exploration, construction decisions should not be based on a report whose adequacy may have been affected by time. Ask the consultant to advise if additional tests are desirable before construction starts; for example, groundwater conditions commonly vary seasonally.

Construction operations at or adjacent to the site and natural events such as floods, earthquakes, or groundwater fluctuations may also affect subsurface conditions and, thus, the continuing adequacy of a geotechnical/environmental report. The consultant should be kept apprised of any such events and should be consulted to determine if additional tests are necessary.

MOST RECOMMENDATIONS ARE PROFESSIONAL JUDGMENTS.

Site exploration and testing identifies actual surface and subsurface conditions only at those points where samples are taken. The data were extrapolated by your consultant, who then applied judgment to render an opinion about overall subsurface conditions. The actual interface between materials may be far more gradual or abrupt than your report indicates. Actual conditions in areas not sampled may differ from those predicted in your report. While nothing can be done to prevent such situations, you and your consultant can work together to help reduce their impacts. Retaining

your consultant to observe subsurface construction operations can be particularly beneficial in this respect.

A REPORT'S CONCLUSIONS ARE PRELIMINARY.

The conclusions contained in your consultant's report are preliminary, because they must be based on the assumption that conditions revealed through selective exploratory sampling are indicative of actual conditions throughout a site. Actual subsurface conditions can be discerned only during earthwork; therefore, you should retain your consultant to observe actual conditions and to provide conclusions. Only the consultant who prepared the report is fully familiar with the background information needed to determine whether or not the report's recommendations based on those conclusions are valid and whether or not the contractor is abiding by applicable recommendations. The consultant who developed your report cannot assume responsibility or liability for the adequacy of the report's recommendations if another party is retained to observe construction.

THE CONSULTANT'S REPORT IS SUBJECT TO MISINTERPRETATION.

Costly problems can occur when other design professionals develop their plans based on misinterpretation of a geotechnical/environmental report. To help avoid these problems, the consultant should be retained to work with other project design professionals to explain relevant geotechnical, geological, hydrogeological, and environmental findings, and to review the adequacy of their plans and specifications relative to these issues.

BORING LOGS AND/OR MONITORING WELL DATA SHOULD NOT BE SEPARATED FROM THE REPORT.

Final boring logs developed by the consultant are based upon interpretation of field logs (assembled by site personnel), field test results, and laboratory and/or office evaluation of field samples and data. Only final boring logs and data are customarily included in geotechnical/environmental reports. These final logs should not, under any circumstances, be redrawn for inclusion in architectural or other design drawings, because drafters may commit errors or omissions in the transfer process.

To reduce the likelihood of boring log or monitoring well misinterpretation, contractors should be given ready access to the complete geotechnical engineering/environmental report prepared or authorized for their use. If access is provided only to the report prepared for you, you should advise contractors of the report's limitations, assuming that a contractor was not one of the specific persons for whom the report was prepared, and that developing construction cost estimates was not one of the specific purposes for which it was prepared. While a contractor may gain important knowledge from a report prepared for another party, the contractor should discuss the report with your consultant and perform the additional or alternative work believed necessary to obtain the data specifically appropriate for construction cost estimating purposes. Some clients hold the mistaken impression that simply disclaiming responsibility for the accuracy of subsurface information always insulates them from attendant liability. Providing the best available information to contractors helps prevent costly construction problems and the adversarial attitudes that aggravate them to a disproportionate scale.

READ RESPONSIBILITY CLAUSES CLOSELY.

Because geotechnical/environmental engineering is based extensively on judgment and opinion, it is far less exact than other design disciplines. This situation has resulted in wholly unwarranted claims

being lodged against consultants. To help prevent this problem, consultants have developed a number of clauses for use in their contracts, reports, and other documents. These responsibility clauses are not exculpatory clauses designed to transfer the consultant's liabilities to other parties; rather, they are definitive clauses that identify where the consultant's responsibilities begin and end. Their use helps all parties involved recognize their individual responsibilities and take appropriate action. Some of these definitive clauses are likely to appear in your report, and you are encouraged to read them closely. Your consultant will be pleased to give full and frank answers to your questions.

The preceding paragraphs are based on information provided by the ASFE/Association of Engineering Firms Practicing in the Geosciences, Silver Spring, Maryland