

October 9, 2024

Zak Wall
Washington State Department of Ecology
Toxics Cleanup Program
Northwest Regional Office
15700 Dayton Avenue North
Shoreline, Washington 98133

RE: AUGUST 2024 GROUNDWATER MONITORING PROGRESS REPORT

UNION STATION PROPERTY FACILITY SITE ID NO.: 2060 411 SOUTH JACKSON STREET SEATTLE, WASHINGTON FARALLON PN: 2644-001

Dear Zak Wall:

Farallon Consulting, L.L.C. (Farallon) has prepared this progress report to present the results of the August 2024 quarterly groundwater monitoring event conducted at Union Station Property at 411 South Jackson Street in Seattle, Washington (herein referred to as the Site) (Figure 1). The Site is identified by Ecology as Union Station and is assigned Washington State Department of Ecology (Ecology) Facility Site ID No. 2060.

The summary of the Site background and results from the quarterly groundwater monitoring event are provided below.

SITE DESCRIPTION AND BACKGROUND

The Site consists of King County Parcel Nos. 8809700000, 5247801292, and 7669800004, and is developed with a commercial building, including office and retail use. The Site spans six city blocks and includes portions of the grade level, which is beneath elevated viaduct portions of South Jackson Street, South Airport Way, and 4th Avenue South.

In accordance with Prospective Purchaser Consent Decree (PPCD) No. 97-2-18963-5 SEA and the Cleanup Action Plan (CAP), periodic groundwater monitoring is required at downgradient wells MW-101R, MW-102R, MW-104, MW-105, MW-107R, and MW-108R, and upgradient wells B-4R and B-6R (Figure 1). Based on the 2019 Groundwater Monitoring

Compliance Report,¹ constituents of concern (COCs) were detected at concentrations exceeding the cleanup levels established for the Site, triggering the requirement in the CAP for a subsequent groundwater monitoring event. In October 2021, Farallon conducted a subsequent groundwater monitoring event for monitoring wells B-4R, B-6R, MW-101R, MW-102R, MW-105, and MW-107R. COCs were detected at concentrations exceeding the cleanup levels established for the Site in groundwater samples collected from four of the six monitoring wells sampled.

Table 3 of the CAP states, "if the second sample is less than the cleanup levels, return to annual groundwater monitoring" or "if the second sample exceeds cleanup levels commence quarterly monitoring for 1 year." In accordance with the CAP and in response to the Washington State Department of Ecology (Ecology) comment letter dated January 24, 2024 (January 2024 Ecology Letter), 2 quarterly monitoring is being conducted for 1 year beginning in April 2024.

This letter report includes a description of the field activities conducted during the second quarterly groundwater monitoring event and a summary of the analytical results.

GROUNDWATER MONITORING ACTIVITIES

A groundwater monitoring event was conducted on August 27, 2024. The groundwater monitoring event included measuring depth to groundwater and collecting groundwater samples from monitoring wells MW-101R, MW-102R, MW-104, MW-105, MW-107R, MW-108R, B-4R, and B-6R. In addition, depth to groundwater was measured in accessible downgradient monitoring wells MW-16D (Ecology well tag number BCS 199) and MW-21 (Ecology well tag number BKP 479), which are not part of the monitoring well network identified by the PPCD. Farallon staff were unable to locate MW-22.

Depth to water measurements, sample collection, and sample analysis were conducted per the Ecology-approved Groundwater Monitoring Work Plan.³ Groundwater sampling was

¹ Landau Associates, Inc. 2020. 2019 Groundwater Monitoring Compliance Report, Union Station Property, Seattle, Washington. Prepared for Union Station. January 6 (2019 Groundwater Monitoring Compliance Report).

² Ecology. 2024. Letter Regarding Ecology Review of Response to Ecology Comments on Periodic Review, dated March 28, 2022; Union Station Facility ID#: 2060, 411 South Jackson Street, Seattle, Washington. From Zak Wall. To Kevin Daniels, Union Station. January 24 (January 2024 Ecology Letter).

³ Farallon Consulting, L.L.C. 2024. Letter Regarding Groundwater Monitoring Work Plan, Union Station Property, Facility Site ID No.: 2060, 411 South Jackson Street, Seattle, Washington. From Courtney van Stolk and Suzy Stumpf. To Zak Wall, Washington State Department of Ecology. April 9.

conducted at monitoring wells MW-101R, MW-102R, MW-104, MW-105, MW-107R, MW-108R, B-4R, and B-6R.

The monitoring wells were purged at a low-flow rate until the water quality parameters stabilized in accordance with U.S. Environmental Protection Agency (EPA) low-flow (minimal drawdown) groundwater sampling procedures. The water quality parameters monitored included temperature, pH, dissolved oxygen, oxidation-reduction potential, turbidity, and specific conductance. Samples collected for analysis of dissolved arsenic by EPA Method 6020B were field filtered using a 0.45-micron filter and placed into a laboratory-prepared sample container preserved with nitric acid and labeled as field filtered for analysis of dissolved arsenic. Samples collected for analysis of total arsenic by EPA Method 6020B were placed directly into a laboratory-prepared sample container preserved with nitric acid and labeled for analysis of total arsenic. Additional sample volume was collected in an unpreserved laboratory-prepared sample container for laboratory filtration prior to analysis for dissolved arsenic, as needed.

The groundwater sample containers were placed on ice in a cooler and transported by a courier to Apex Laboratories, Inc. of Tigard, Oregon under standard chain-of-custody protocols for analysis of the following COCs:

- Diesel-range organics (DRO) and oil-range organics (ORO) by NWTPH-Dx;
- Gasoline-range organics (GRO) by NWTPH-Gx;
- Polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270E and PAH homologs by modified EPA Method 8270E;
- Carcinogenic polycyclic aromatic hydrocarbons (cPAHs) by EPA Method 8270E/SIM;
- Benzene, toluene, ethylbenzene, and xylenes by EPA Method 8260D with speciation of xylenes;
- Total and dissolved arsenic by EPA Method 6020B/200.8;
- Total dissolved solids by Standard Method 2540C;
- Total suspended solids by Standard Method 2540D;
- Methane by RSK 175 method;
- Alkalinity by Standard Method 2320B; and
- Nitrate and sulfate by EPA Method 300 Series.

Draft—Issued for Client and Counsel Review Privileged and Confidential

Groundwater samples collected from MW-101R and MW-107R were also analyzed for DRO and ORO by NWTPH-Dx with silica gel cleanup and for PAH homologs by EPA Method 8270E Modified. Dissolved arsenic was analyzed from field-filtered sample containers.

Purge water generated from the groundwater monitoring event was stored in a 55-gallon steel drum on the Site pending characterization and disposal.

RESULTS

Synoptic depth-to-groundwater measurements from the monitoring wells at the Site and corresponding calculated groundwater elevations are provided in Table 1 and on Figure 2. The interpreted groundwater flow direction of the shallow groundwater-bearing zone within the fill layer is to the west to northwest, consistent with regional groundwater flow west toward Elliot Bay.

Laboratory analytical results for analysis of Site COCs are presented in Tables 2 through 5 and on Figure 3, and laboratory reports and gas chromatograms are provided in Attachment A. Overall, the concentrations of COCs have remained similar in magnitude over two decades as demonstrated with the last ten groundwater monitoring events conducted between 2001 and 2024. Relevant results include the following:

- Petroleum hydrocarbons were detected at concentrations exceeding the groundwater screening level protective of marine surface water aquatic receptors in the groundwater sample collected from monitoring well MW-101R (Table 2). The CAP and Consent Decree did not establish Site-Specific cleanup levels for petroleum hydrocarbons.
- Interpretation of the petroleum hydrocarbon analytical data and gas chromatograms by a Senior Chemist at Apex Laboratories, Inc., indicates that detected concentrations of GRO, DRO and ORO are due to the presence of one or more non-petroleum based materials. The material impacting the groundwater is characteristic of a pyrogenic based material such as coal tar, MGP waste, or similar materials.
- Groundwater samples collected from monitoring wells MW-101R and MW-107R were evaluated for the presence of PAH homologs, associated with coal tar, and isooctane, a common blending component in gasoline. The groundwater samples collected from monitoring wells MW-101R and MW-107R contained the highest detected concentrations of DRO and GRO, respectively.

Draft—Issued for Client and Counsel Review Privileged and Confidential

- Groundwater samples collected from monitoring wells MW-101R and MW-107R were
 evaluated for the presence of isooctane, a common blending component in gasoline.
 Isooctane was not present in either sample, which indicates that the GRO detections
 in these samples are not attributable to an automotive gasoline source.
- A modified 8270E analysis was completed to evaluate for the presence of PAH homologs. The purpose of this evaluation was to determine what fraction of PAHs and PAH homologs elute in the DRO range. DRO was detected at a concentration of 1,457.4 micrograms per liter (μg/L) in the groundwater sample collected from monitoring well MW-101R of which 48.6 percent is attributable to PAHs and PAH homologs detected within the NWTPH-Dx analysis (Table 5).
- Benzene was detected at a concentration exceeding the Site-specific groundwater cleanup level in the groundwater samples collected from monitoring wells MW-101R and MW-105. The detected concentrations also exceeded screening levels protective of indoor air and marine surface water aquatic receptors (Table 2).
- Ethylbenzene was detected at a concentration exceeding the groundwater screening level protective of marine surface water aquatic receptors in the groundwater sample collected from monitoring well MW-101R (Table 2).
- Acenaphthene, a noncarcinogenic PAH, was detected at a concentration exceeding
 the Site-specific groundwater cleanup level in the groundwater sample collected from
 monitoring well MW-101R (Table 3).
- Dissolved arsenic was detected at concentrations exceeding the Site-specific groundwater cleanup level in groundwater samples collected from monitoring wells B-4R, B-6R, MW-101R, MW-105, and MW-107R, but less than the Puget Sound background concentration for dissolved arsenic in groundwater (background concentration) (Table 4). The laboratory-filtered groundwater sample from monitoring well B-6R was analyzed for dissolved arsenic and the detected concentration was less than the background concentration (Table 4).
- Total arsenic was detected at concentrations exceeding the Site-specific groundwater cleanup level in groundwater samples collected from monitoring wells B-4R, B-6R, MW-101R, MW-105, and MW-107R. The detected concentrations from MW-105 and MW-107R were less than the background concentration (Table 4).

Draft—Issued for Client and Counsel Review
Privileged and Confidential

Water quality parameters measured in the field are presented in Table 6. Laboratory analyses performed to evaluate conditions for Monitored Natural Attenuation are presented in Table 7.

SCHEDULE

The next groundwater monitoring event at the Site is scheduled for November 2024, per the Groundwater Monitoring Work Plan.

CLOSING

Please contact either of the undersigned at (425) 295-0800 if you have questions or need additional information.

Sincerely,

Farallon Consulting, L.L.C.

James Welles, L.H.G. Senior Hydrogeologist Suzy Stumpf, P.E. Principal Engineer

Attachments: Figure 1, Site Plan

Figure 2, Groundwater Elevation Contour Map - August 27, 2024

Figure 3, Groundwater Analytical Results

Table 1, Summary of Groundwater Elevation Data

Table 2, Summary of Groundwater Analytical Results for TPH and BTEX

Table 3, Summary of Groundwater Analytical Results for PAHs Table 4, Summary of Groundwater Analytical Results for Arsenic

Table 5, Summary of Groundwater Analytical Results for PAHs and PAH

Homologs

Table 6, Summary of Groundwater Field Parameters

Table 7, Summary of Groundwater Monitored Natural Attenuation Parameters

Attachment A, Laboratory Analytical Results and Gas Chromatograms

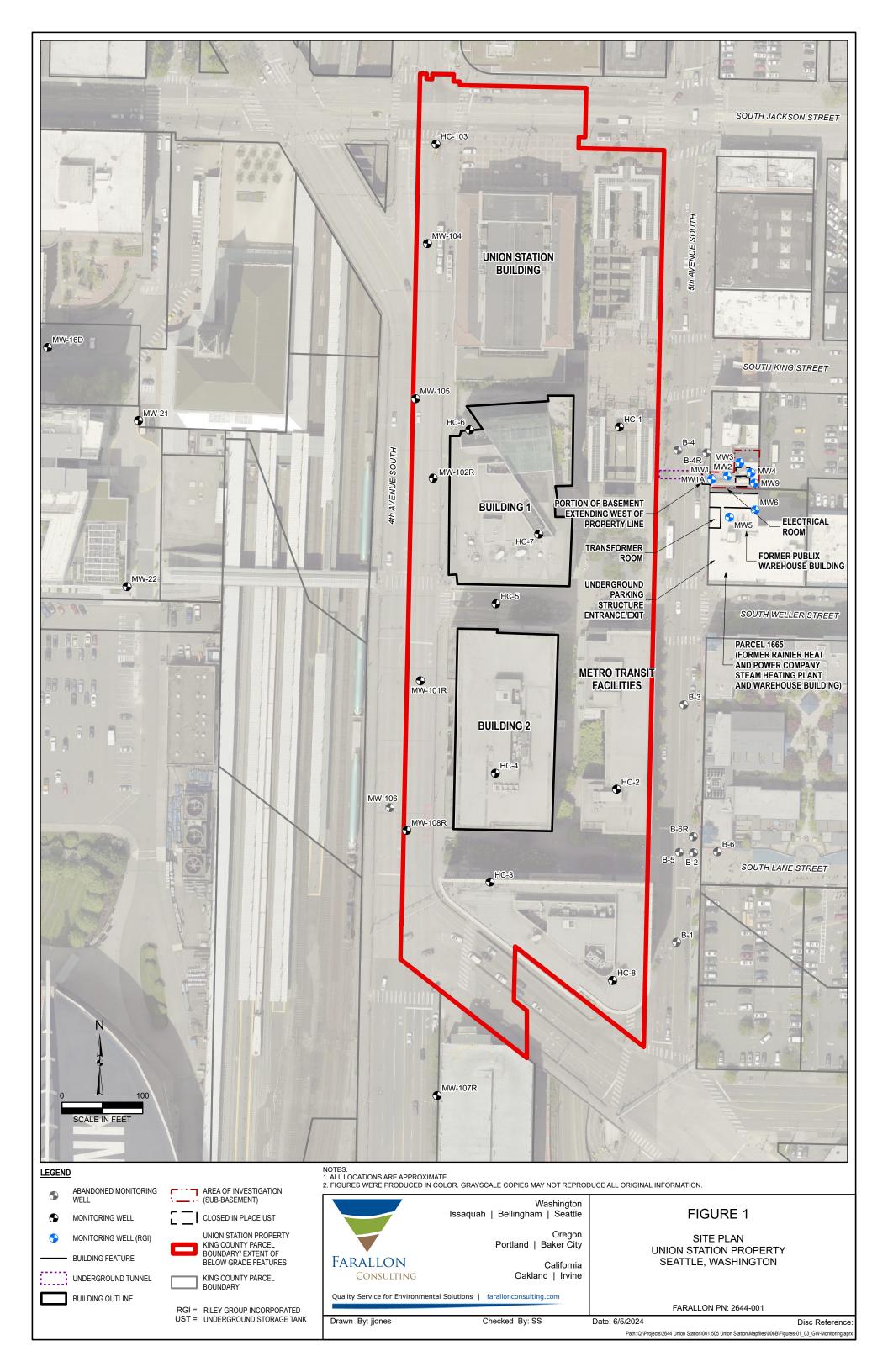
cc: Coleen Spratt, Union Station Associates, LLC Kevin Daniels, Union Station Associates, LLC Bradley Marten, Marten Law

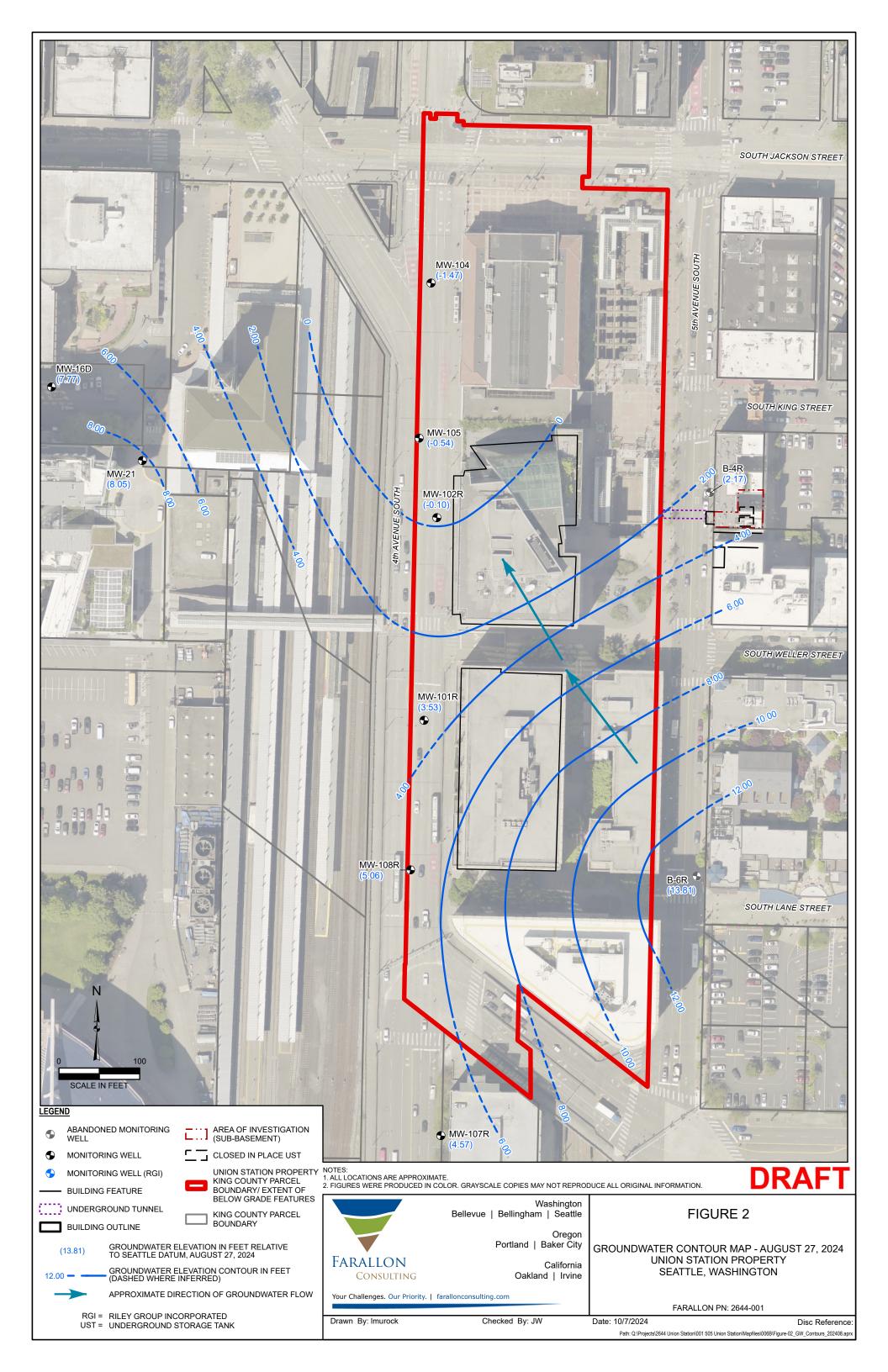
Emma Lautanen, Marten Law

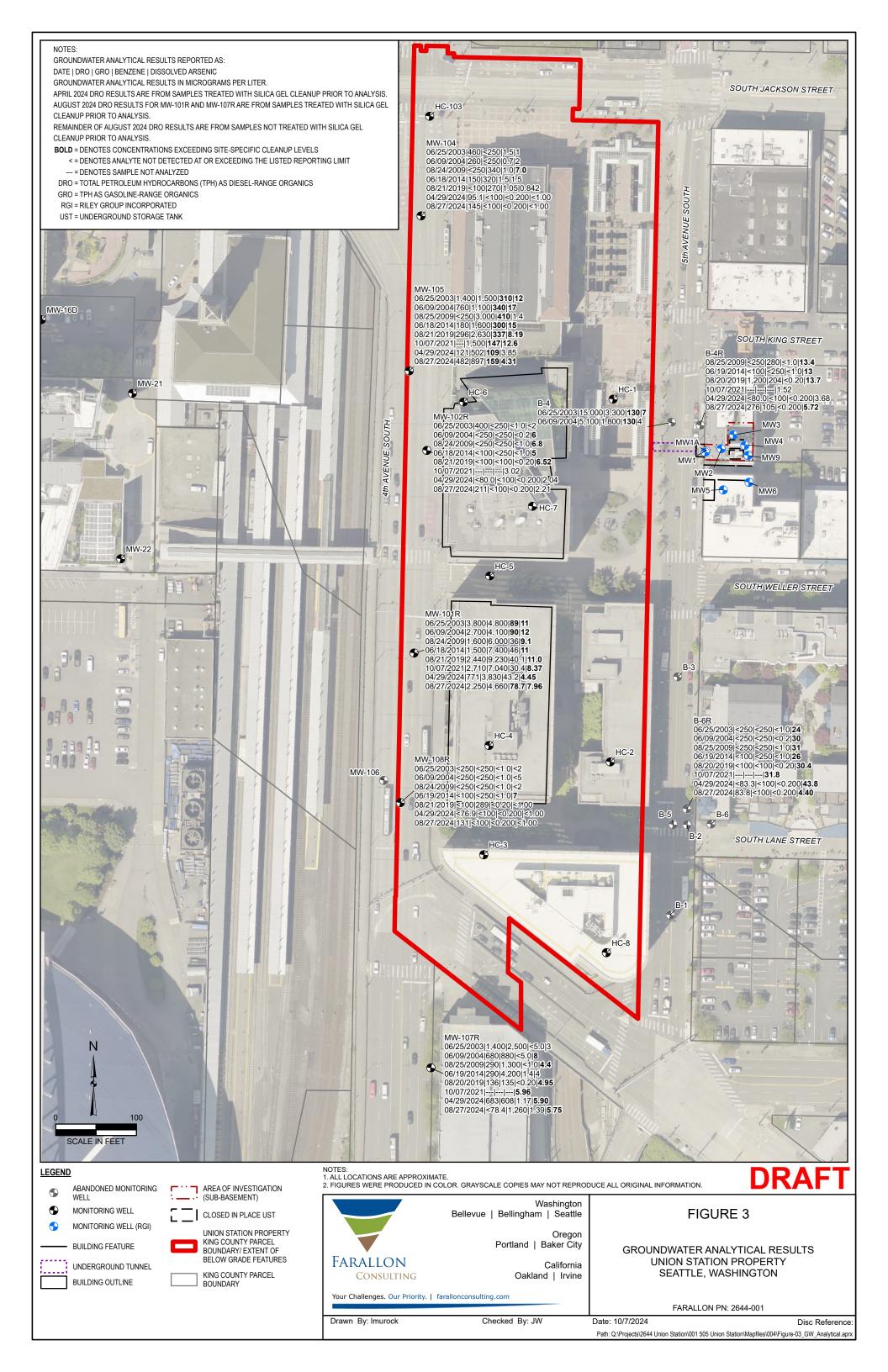
JW/CvS/SES:mbg

LIMITATIONS

The conclusions contained in this report/assessment are based on professional opinions with regard to the subject matter. These opinions have been arrived at in accordance with currently accepted hydrogeologic and engineering standards and practices applicable to this location. The conclusions contained herein are subject to the following inherent limitations:


- Accuracy of Information. Farallon reviewed certain information used in this report/assessment
 from sources that were believed to be reliable. Farallon's conclusions, opinions, and
 recommendations are based in part on such information. Farallon's services did not include
 verification of its accuracy. Should the information upon which Farallon relied prove to be
 inaccurate, Farallon may revise its conclusions, opinions, and/or recommendations.
- Reconnaissance and/or Characterization. Farallon performed a reconnaissance and/or characterization of the Site that is the subject of this report/assessment to document current conditions. Farallon focused on areas deemed more likely to exhibit hazardous materials conditions. Contamination may exist in other areas of the Site that were not investigated or were inaccessible. Site activities beyond Farallon's control could change at any time after the completion of this report/assessment.


Farallon does not guarantee that the Site is free of hazardous or potentially hazardous substances or conditions, or that latent or undiscovered conditions will not become evident in the future. Farallon's observations, findings, and opinions are as of the date of the report.


This report/assessment has been prepared in accordance with the contract for services between Farallon and Union Station Associates, LLC. No other warranties, representations, or certifications are made.

FIGURES

AUGUST 2024 GROUNDWATER
MONITORING PROGRESS REPORT
Union Station Property
411 South Jackson Street
Seattle, Washington

TABLES

AUGUST 2024 GROUNDWATER
MONITORING PROGRESS REPORT
Union Station Property
411 South Jackson Street
Seattle, Washington

Table 1 Summary of Groundwater Elevation Data Union Station Property Seattle, Washington

Farallon PN: 2644-001

Well Location	Sampled By	Total Well Depth (feet bgs) ¹	Screened Interval Depth (feet bgs) ¹	Screened Interval Elevation (feet Seattle Datum) ¹	Top of Casing Elevation (feet Seattle Datum) ²	Monitoring Date	Depth to Water (feet) ³	Water Level Elevation (feet Seattle Datum) ²
4	Farallon			,	•	4/29/2024	33.35	3.00
B-4R ⁴	Farallon	40.61	31.0 to 41.0	5.74 to -4.26	36.35	8/28/2024	34.18	2.17
B-6R	Farallon	43.98	23.98 to 43.98	10.4 to -9.6	24.20	4/29/2024	20.20	14.18
D-0K	Farallon	43.90	23.90 10 43.90	10.4 10 -9.6	34.38	8/28/2024	20.57	13.81
MW-101R	Farallon	16.26	6.97 to 16.97	2.8 to -7.2	9.06	4/29/2024	5.28	3.78
IVIVV-101K	Farallon	10.20	0.97 10 10.97	2.0 10 -7.2	9.00	8/28/2024	5.53	3.53
MW-102R	Farallon	22.3	13.67 to 23.67	-3.7 to -13.7	8.60	4/29/2024	8.93	-0.33
IVIVV-1UZR	Farallon	22.3	13.07 10 23.07	-3.7 10 -13.7	0.00	8/28/2024	8.70	-0.10
MW-104	Farallon	19.69	10.75 to 20.75	-0.1 to -10.1	9.59	4/29/2024	11.19	-1.60
10100-104	Farallon	19.09	10.75 to 20.75	-0.1 to -10.1	9.59	8/28/2024	11.06	-1.47
MW-105	Farallon	22.92	14.57 to 24.07	-4.5 to -14.0	8.92	4/29/2024	9.33	-0.41
10100-100	Farallon	22.92	14.57 to 24.07	-4.5 to -14.0	0.92	8/28/2024	9.46	-0.54
MW-107R	Farallon	19.43	14.49 to 19.99	-1.5 to -7.0	12.43	4/29/2024	7.35	5.08
IVIVV-107K	Farallon	19.43	14.49 (0 19.99	-1.5 to -7.0	12.43	8/28/2024	7.86	4.57
MW-108R	Farallon	22.18	12.96 to 22.96	-3.4 to -13.4	8.78	4/29/2024	3.82	4.96
IVIVV-1UOK	Farallon	22.10	12.90 to 22.90	-3.4 (0 -13.4	0.70	8/28/2024	3.72	5.06
MW-16D	Farallon	23	13.00 to 23.00	4.6 to -5.4	17.60	4/29/2024	9.86	7.74
ואואי- וטט	Farallon	23	13.00 to 23.00	4.0 10 -0.4	17.00	8/28/2024	9.83	7.77
MW-21	Farallon	14.9	5.00 to 15.00	12.17 to 2.17	17.17	4/29/2024	9.17	8.00
IVIVV-Z I	Farallon	14.5	3.00 10 13.00	12.17 10 2.17	17.17	8/28/2024	9.12	8.05

Notes:

--- denotes information unknown

bgs = below ground surface

Farallon = Farallon Consulting, L.L.C.

Landau = Landau Associates, Inc.

NAVD88 = North American Vertical Datum of 1988

¹ In feet below ground surface.

² In feet referenced to City of Seattle Datum, unless otherwise noted.

³ In feet below top of well casing.

⁴ Elevations in feet referenced to NAVD88.

Table 2
Groundwater Analytical Results for TPH and BTEX
Union Station Property
Seattle, Washington
Farallon PN: 2644-001

								Analytical Resu	Its (micrograms	per liter)				
				NWTPH-D	x ¹	NWTPH-	-Dx-SG ¹							Total
Sample Location	Sampled By	Sample Date	Sample Identification	DRO	ORO	DRO	ORO	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	m,p-Xylenes ³	o-Xylene ³	Xylenes ³
•	Landau	6/16/1999	AK50J	2,300	< 500			4,500	260 J	3.8	310 J	8.2	11	
	Landau	12/16/1999	BD02I	2,900	< 500			3,100 J	140	< 10	200	160	< 10	
	Landau	3/22/2000	BK98J	3,600	< 500			6,200	150	< 10	220	< 10	< 10	
	Landau	6/14/2000	BT43J	7,700	1,300			9,000	94	< 10	160	130	< 10	
	Landau	9/27/2000	CF72G	4,700	1,300			4,800	130	< 10	200 J	< 10	< 10	
	Landau	12/20/2000	CP44A	5,900	1,100			6,000	140	< 5.0	220	< 5.0	6.7	
D 4	Landau	3/14/2001	CV96H	4,200	< 500			6,000	120	< 5.0	200	5.3	6	
B-4	Landau	6/22/2001	DH51I	6,400 J	1,200			5,200	130	< 5.0	220	< 5.0	5.4	
	Landau	9/26/2001	DQ61G	8,000 J	2,900 J			6,500	140	< 5.0	230	< 5.0	6	
	Landau	12/19/2001	DY69A	2,600	570			6.000 J	130	< 5.0	190	< 5.0	< 5.0	
	Landau	3/20/2002	EE79H	6.100	< 2.500			5.700	150	< 5.0	230	< 5.0	5.6	
	Landau	6/19/2002	EM41H	3.800	620			5.400	130	< 5.0	190	< 5.0	< 5.0	
	Landau	6/25/2003	FP47G/P	15,000	6,800			3,300	130	< 5.0	160	< 5.0	< 5.0	
	Landau	6/9/2004	GS18I	5.100	2,000			1,800	130	< 5.0	110	< 5.0	< 5.0	
	Landau	8/25/2009	PL85B	< 250	< 500			280	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	06/19/2014	YO99D	< 100	< 200			< 250 J	< 1.0 J	< 1.0 J	< 1.0 J	< 2.0 J	< 1.0 J	
B-4R	Landau	8/20/2019	19H0298	1,200 J	780 J			204	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.60
	Farallon	4/29/2024	B-4R-20240429	178 F-13	< 160	< 80.0	< 160	< 100	< 0.200	< 1.00	< 0.500			< 1.50
	Farallon	8/27/2024	B-4R-20240827	276 F-13	< 152			105 F-03	< 0.200	< 1.00	< 0.500	< 1.00	< 0.500	< 1.50
B-6	Landau	6/16/1999	AK50H	< 250	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
-	Landau	12/16/1999	BD02H	< 250	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	3/22/2000	BK98H	< 250	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	3/22/2000*	BK98I	< 250	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	6/14/2000	BT43I	< 250	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	9/27/2000	CF72F	< 250	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	12/20/2000	CP44H	< 250	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	3/14/2001	CV96I	< 250 J	< 500 J			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	6/22/2001	DH51D	< 250	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	9/26/2001	DQ61H	< 250	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
B-6R	Landau	12/19/2001	DY69B	< 250	< 500			< 250 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
D-0K	Landau	3/20/2002	EE79I	< 250	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	3/20/2002*	EE79G	< 250	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	6/19/2002	EM41I	250	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	6/25/2003	FP47H/Q	< 250	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	6/9/2004	GS18J	< 250	< 500			< 250	< 0.2	< 0.2	< 0.2	< 0.4	0.2	
	Landau	8/25/2009	PL85A	< 250	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	06/19/2014	YO99E	< 100	< 200			< 250	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	
	Landau	8/20/2019	19H0298	< 100	< 200			< 100	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.60
	Farallon	4/29/2024	B-6R-20240429	115 F-11	< 167	< 83.3	< 167	< 100	< 0.200	< 1.00	< 0.500			< 1.50
	Farallon 8/27/2024 B-6R-082724		B-6R-082724	83.8	< 150			< 100	< 0.200	< 1.00	< 0.500	< 1.00	< 0.500	< 1.50
Site-Specific Cleanup	Level for Groun	ndwater⁴		NE ⁵	NE⁵	NE ⁵	NE ⁵	NE ⁵	71	485	276	NE	NE	NE
Groundwater SL Prote	oundwater SL Protective of Indoor Air ⁶				NE	NE	NE	NE	2.4	15,000	2,800	32		320
Marine Surface Water	SL Protective o	of Aquatic Recept	tors ⁷	2,100		2,1	00	1,700	23	102	21	10)6	106

Table 2
Groundwater Analytical Results for TPH and BTEX
Union Station Property
Seattle, Washington
Farallon PN: 2644-001

								Analytical Resul	ts (micrograms	per liter)				
				NWTPH-D	x ¹	NWTPH-	·Dx-SG ¹							Total
Sample Location	Sampled By	Sample Date	Sample Identification	DRO	ORO	DRO	ORO	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	m,p-Xylenes ³	o-Xylene³	Xylenes ³
	Landau	6/16/1999	AK50A	2,200	< 500			5,200	75	16 J	160 J	55 J	33 J	
	Landau	6/16/1999*	AK50B	2,600	< 500			4,500	87	23 J	280 J	93 J	54 J	
	Landau	12/16/1999	BD02A	2,400	< 500			4,700	54	< 10	120	42	23	
	Landau	3/22/2000	BK98G	3,500	< 500			6,200	64	12	210	61	33	
	Landau	6/14/2000	BT43A	4,000	< 500			9,500	82	12	290	71	41	
	Landau	9/27/2000	CF72H	3,000	< 1,000			5,700	72	< 10	240 J	56 J	23 J	
	Landau	12/20/2000	CP44B	3,100	< 500			6,700	64	18	200	90	42	
	Landau	3/14/2001	CV96A	3,500	< 500			6,000	82	11	250	64	36	
	Landau	6/22/2001	DH51F	2,900	< 500			6,100	72	14	250 J	83 J	39 J	
	Landau 6/22/2001* DH518 Landau 9/26/2001 DQ61A Landau 12/19/2001 DY690		DH51E	2,900	< 500			7,400	64	18	130 J	110 J	52 J	
	Landau 9/26/2001 DQ61A Landau 12/19/2001 DY690 Landau 3/20/2002 EE79A		DQ61A	3,400	< 500			5,300	54	8.4	170	60	27	
	Landau 9/26/2001 DQ61. Landau 12/19/2001 DY690 Landau 3/20/2002 EE790		DY69C	2,400	< 500			6,300 J	48 J	< 5.0 J	130 J	46 J	18 J	
MW-101R	Landau	3/20/2002	EE79A	3,300	< 500			6,300	78	7.6	260	92	37	
10100-10110	Landau	6/19/2002	EM41A	4,200	< 500			5,400	70	5.7	250	46	23	
	Landau	6/19/2002*	EM41B	3,800	< 500			5,400	69	5.5	240	43	22	
	Landau	6/25/2003	FP47A/J	3,800	< 500			4,800	89	< 5.0	300	45	17	
	Landau	6/25/2003*	FP47F/O	3,900	< 500			4,800	96	4.1	260	48	19	
	Landau	6/9/2004	GS18F	2,700	< 500			4,100	90	5.5	210	38	17	
	Landau	6/9/2004*	GS18G	2,600	< 500			4,100	92	6.0	230	43	19	
	Landau	8/24/2009	PL72A	1,600	< 500			6,000	36	2.2	150	25	18 J	
	Landau	8/24/2009*	PL72E	1,500	< 500			6,000	36	2.3	150	25	< 1.0 J	
	Landau	06/18/2014	YO69E	1,500	< 200			7,400	46	5.9	200	42	34	
	Landau	8/21/2019	19H0324	2,440	< 200			9,230	40.1	1.9	120	15	19	33.9
	Farallon	10/7/2021	MW-101R-20211007	2,710 PRES F-17	< 195 PRES			7,040 F-03	30.4	< 5.00	100			21.5
	Farallon	4/29/2024	MW-101R-20240429	1,660 F-13	< 150	771 F-17	< 150	3,830 F-03	43.2	< 2.00	85.3			19.0
	Farallon	8/27/2024	MW-101R-20240827	3,000 F-13	< 154	2,250 F-17	< 154	4,660	78.7	1.46	81.8	8.25	10.3	18.6
ite-Specific Cleanup	Level for Groun	ndwater ⁴		NE ⁵	NE ⁵	NE ⁵	NE ⁵	NE ⁵	71	485	276	NE	NE	NE
Froundwater SL Prote	ective of Indoor	Air ⁶		NE	NE	NE	NE	NE	2.4	15,000	2,800	32	:0	320
/larine Surface Water	SI Protective o	f Aquatic Recept	tors ⁷	2.100		2.1	00	1.700	23	102	21	10	6	106

Table 2
Groundwater Analytical Results for TPH and BTEX
Union Station Property
Seattle, Washington
Farallon PN: 2644-001

								Analytical Resu	ılts (micrograms	per liter)				
				NWTPH-	Dx ¹	NWTPH	-Dx-SG ¹							Total
Sample Location	Sampled By	Sample Date	Sample Identification	DRO	ORO	DRO	ORO	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	m,p-Xylenes ³	o-Xylene ³	Xylenes ³
	Landau	6/16/1999	AK50C	< 250	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	12/16/1999	BD02C	< 250	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	12/16/1999*	BD02B	< 250	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	3/22/2000	BK98D	< 250	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	6/14/2000	BT43B	< 250	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	6/14/2000*	BT43E	< 250	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	9/27/2000	CF72A	< 250	< 500	-		< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	-
	Landau	12/20/2000	CP44E	280	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	12/20/2000*	CP44I	310	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	3/14/2001	CV96B	320	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	6/22/2001	DH51B	320	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-102R	Landau	9/26/2001	DQ61B	340	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	9/26/2001*	DQ61I	320	< 500			< 250 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	12/19/2001	DY69D	370	< 500			< 250 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	3/20/2002	EE79B	300	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	6/19/2002	EM41C	400	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	6/25/2003	FP47B/K	400	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	6/9/2004	GS18E	< 250	< 500			< 250	< 0.2	< 0.2	< 0.2	< 0.4	< 0.2	
	Landau	8/24/2009	PL72B	< 250	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	06/18/2014	YO69D	< 100	< 200			< 250	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	
	Landau	8/21/2019	19H0324	< 100	< 200			< 100	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.60
	Farallon	4/29/2024	MW-102R-20240429	208 F-11	< 160	< 80.0	< 160	< 100	< 0.200	< 1.00	< 0.500			< 1.50
	Farallon	8/27/2024	MW-102R-08272024	211 F-13	< 154			< 100	< 0.200	< 1.00	< 0.500	< 1.00	< 0.500	< 1.50
e-Specific Cleanup	Landau 8/24/2009 PL72E Landau 06/18/2014 YO69E Landau 8/21/2019 19H032 Farallon 4/29/2024 MW-102R-20 Farallon 8/27/2024 MW-102R-08 ific Cleanup Level for Groundwater ⁴ ater SL Protective of Indoor Air ⁶			NE ⁵	NE ⁵	NE ⁵	NE ⁵	NE ⁵	71	485	276	NE	NE	NE
	cific Cleanup Level for Groundwater ⁴ vater SL Protective of Indoor Air ⁶ urface Water SL Protective of Aquatic Recentors ⁷			NE	NE	NE	NE	NE	2.4	15,000	2,800	32	:0	320
rine Surface Water				2,100		2,1	00	1,700	23	102	21	10	6	106

Table 2
Groundwater Analytical Results for TPH and BTEX
Union Station Property
Seattle, Washington
Farallon PN: 2644-001

								Analytical Resu	ılts (micrograms	per liter)				
				NWTPH-	Dx ¹	NWTPH-	-Dx-SG ¹							Total
Sample Location	Sampled By	Sample Date	Sample Identification	DRO	ORO	DRO	ORO	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	m,p-Xylenes ³	o-Xylene ³	Xylenes ³
•	Landau	6/16/1999	AK50E	420	< 500			320	7.0	2.1	5.2	6.0	4.5	
	Landau	12/16/1999	BD02E	420	< 500			290	< 10	< 10	< 10	< 10	< 10	
	Landau	3/22/2000	BK98B	520	< 500			320	< 10	< 10	< 10	< 10	< 10	
	Landau	6/14/2000	BT43D	440	< 500			530	2.2	< 2.0	2.3	4.0	< 2.0	
	Landau	9/27/2000	CF72C	500	< 500			290	1.4	< 1.0	1.2 J	2.4 J	< 1.0	
	Landau	12/20/2000	CP44F	500	< 500			360	1.4	< 1.0	1.0	2.8	1.0 J	
	Landau 9/27/2000 CF72 Landau 12/20/2000 CP44 Landau 3/14/2001 CV96 Landau 6/22/2001 DH5 Landau 9/26/2001 DQ6 104 Landau 12/19/2001 DY69 Landau 3/20/2002 EE75			560	< 500			370	1.9	< 1.0	1.2	3.1	1.2	
	Landau	6/22/2001	DH51C	380	< 500			310	1.7	< 1.0	1.5	2.2	< 1.0	
	Landau	9/26/2001	DQ61C	390	< 500			260	1.0	< 1.0	< 1.0	1.8	< 1.0	
MW-104	Landau	12/19/2001	DY69E	470	< 500			260 J	1.6	< 1.0	< 1.0	1.9	< 1.0	
	Landau 9/26/2001 DQ6 Landau 12/19/2001 DY6 Landau 3/20/2002 EE79		EE79C	480	< 500			290	2.1	< 1.0	1.4	2.7	< 1.0	
	V-104 Landau 12/19/2001 DY69 Landau 3/20/2002 EE79			360	< 500			< 250	1.1	< 1.0	< 1.0	1.9	< 1.0	
	Landau	6/25/2003	FP47C/L	460	< 500			< 250	1.5	< 1.0	1.1	1.6	< 1.0	
	Landau	6/9/2004	GS18B	260	< 500			< 250	0.7	< 0.2	0.6	1.5	< 0.2	
	Landau	8/24/2009	PL72D	< 250	< 500			340	1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	06/18/2014	YO69B	150	< 200			320	1.5	< 1.0	< 1.0	< 2.0	< 1.0	
	Landau	8/21/2019	19H0324	< 100	< 200			270	1.05	0.20	0.94	0.80	0.30	1.10
	Farallon	4/29/2024	MW-104-20240429	259 F-13	< 168	95.1 F-12	< 168	< 100	< 0.200	< 1.00	< 0.500			< 1.50
	Farallon	8/27/2024	MW-104-082724	145 F-13	< 152			< 100	< 0.200	< 1.00	< 0.500	< 1.00	< 0.500	< 1.50
ite-Specific Cleanup	Level for Grour	ndwater ⁴		NE ⁵	NE ⁵	NE ⁵	NE ⁵	NE ⁵	71	485	276	NE	NE	NE
roundwater SL Prote	ective of Indoor	Air ⁶		NE	NE	NE	NE	NE	2.4	15,000	2,800	32	20	320
larine Surface Water	SL Protective o	of Aquatic Recept	tors ⁷	2,100		2,1	00	1,700	23	102	21	10)6	106

Table 2
Groundwater Analytical Results for TPH and BTEX
Union Station Property
Seattle, Washington
Farallon PN: 2644-001

								Analytical Result	ts (micrograms	per liter)				
				NWTPH-D	x ¹	NWTPH-	Dx-SG ¹							Total
Sample Location	Sampled By	Sample Date	Sample Identification	DRO	ORO	DRO	ORO	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	m,p-Xylenes ³	o-Xylene ³	Xylenes ³
	Landau 6/16/1999 AKS Landau 12/16/1999 BDC Landau 3/22/2000 BKS Landau 6/14/2000 BT4 Landau 9/27/2000 CF5 Landau 9/27/2000* CF7 Landau 12/20/2000 CP4 Landau 12/20/2000 CP4 Landau 6/22/2001 DH5 Landau 9/26/2001 DQ6 Landau 12/19/2001 DY6 Landau 12/19/2001 DY6 Landau 3/20/2002 EE7 Landau 6/19/2002 EM4 Landau 6/9/2004 GS1 Landau 6/9/2004 GS1 Landau 8/25/2009 PL8 Landau 8/21/2019 19H6 Farallon 10/7/2021 MW-105-2 Farallon 8/27/2024 MW-105-2			1,200	< 500			1,500	360	52	65	82	46	
	Landau 6/16/1999 BD021 Landau 12/16/1999 BD021 Landau 3/22/2000 BK980 Landau 6/14/2000 BT436 Landau 9/27/2000 CF72 Landau 9/27/2000* CF720 Landau 12/20/2000 CP440 Landau 12/20/2000 CP440 Landau 3/14/2001 CV960 Landau 6/22/2001 DH510 Landau 9/26/2001 DQ611 Landau 12/19/2001 DY690 Landau 12/19/2001 DY690 Landau 3/20/2002 EE790 Landau 6/19/2002 EM410 Landau 6/25/2003 FP47D0 Landau 6/9/2004 GS180 Landau 8/25/2009 PL850 Landau 8/25/2009 PL850 Landau 8/21/2019 19H033 Farallon 10/7/2021 MW-105-202		BD02F	1,500	< 500			1,800	170	48	38	52	22	
	Landau	3/22/2000	BK98C	1,800	< 500			2,100	300	51	66	77	36	
	Landau	6/14/2000	BT43F	1,600	< 500			3,300	430	38	88	82	46	
	Landau	9/27/2000	CF72I	1,600	< 500			2,300	360	53 J	81 J	86 J	37 J	
	Landau	9/27/2000*	CF72D	1,500	< 500			2,600	340	70 J	100 J	110 J	57 J	
	Landau	12/20/2000	CP44C	1,500	< 500			2,500	200	30	47	52	27	
	Landau 9/27/2000* CF72D Landau 12/20/2000 CP44C Landau 3/14/2001 CV96D Landau 6/22/2001 DH51G Landau 9/26/2001 DQ61D V-105 Landau 12/19/2001 DY69F Landau 3/20/2002 EE79D Landau 6/19/2002 EM41E Landau 6/25/2003 FP47D/M			1,200	< 500			2,700	310	30	76	69	42	
	Landau	6/22/2001	DH51G	1,200	< 500			2,400 J	390	23	82	60	42	
	Landau 6/14/2000 BT43F Landau 9/27/2000 CF72I Landau 9/27/2000* CF72D Landau 12/20/2000 CP44C Landau 3/14/2001 CV96D Landau 6/22/2001 DH51G Landau 9/26/2001 DQ61D Landau 12/19/2001 DY69F Landau 12/19/2001 DY69F Landau 3/20/2002 EE79D Landau 6/19/2002 EM41E Landau 6/25/2003 FP47D/N Landau 6/9/2004 GS18D Landau 8/25/2009 PL85D Landau 06/18/2014 YO69C Landau 8/21/2019 19H0324		DQ61D	1,600	< 500			2,300 J	330	33	69	56	37	
MW-105	Landau	12/19/2001	DY69F	1,400	< 500			2,100 J	270 J	18 J	56 J	38 J	29 J	
	Landau 6/22/2001 DH510 Landau 9/26/2001 DQ610 V-105 Landau 12/19/2001 DY69F Landau 3/20/2002 EE79D Landau 6/19/2002 EM410			1,600	< 500			2,000	330	29	68	47	29	
	Landau	6/19/2002	EM41E	1,500	< 500			1,600 J	220	22	50	36	21	
	Landau	6/25/2003	FP47D/M	1,400	< 500			1,500	310	32	52	37	19	
	Landau	6/9/2004	GS18D	760	< 500			1,100	340	41	49	39	15	
	Landau	8/25/2009	PL85D	< 250	< 500			3,000	410	92	66	66	24	
	Landau	06/18/2014	YO69C	180	< 200			1,600	300	63	43	38	16	
	Landau	8/21/2019	19H0324	296	< 200			2,630	337	33.9	33.5	24.4	10.9	35.4
	Farallon	10/7/2021	MW-105-20211007					1,500 F-03 V-01	147 V-01	15.4 V-01	17.9 V-01			17.6 V-01
	Farallon	4/29/2024	MW-105-20240429	413 F-13	< 157	121 F-17	< 157	502	109	4.49	6.78			4.44
	Farallon	8/27/2024	MW-105-20240827	482 PRES F-13	< 155			897 F-03 V-01	159 V-01	< 1.00 V-01	0.760 V-01	< 1.00 V-01	< 0.500 V-01	< 1.50 V-01
Site-Specific Cleanup	Level for Groun	ndwater ⁴	·	NE ⁵	NE ⁵	NE ⁵	NE ⁵	NE ⁵	71	485	276	NE	NE	NE
Groundwater SL Prote	ective of Indoor	Air ⁶		NE	NE	NE	NE	NE	2.4	15,000	2,800	32	20	320
Marine Surface Water	SL Protective o	of Aquatic Recept	tors ⁷	2,100		2,10	00	1,700	23	102	21	10	06	106

Table 2
Groundwater Analytical Results for TPH and BTEX
Union Station Property
Seattle, Washington
Farallon PN: 2644-001

								Analytical Resu	Its (micrograms	per liter)				
			Ī	NWTPH-	Ox ¹	NWTPH-	-Dx-SG ¹							Total
Sample Location	Sampled By	Sample Date	Sample Identification	DRO	ORO	DRO	ORO	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	m,p-Xylenes ³	o-Xylene ³	Xylenes ³
•	Landau	6/16/1999	AK50F	< 250	< 500			550	< 1.0	3.7	22	17	8.6	
	Landau	12/16/1999	BD02G	580	< 500			990	< 10	< 10	27	19	10	
	Landau 6/16/1999 AK5 Landau 12/16/1999 BD0 Landau 3/22/2000 BK9 Landau 6/14/2000 BT4 Landau 9/27/2000 CF7 Landau 12/20/2000 CP4 Landau 3/14/2001 CV9 Landau 3/14/2001* CV9 Landau 6/22/2001 DH5 Landau 9/26/2001 DQ6 Landau 12/19/2001 DY6 Landau 12/19/2001 DY6 Landau 6/22/2001 DY6 Landau 6/25/2001 DY6 Landau 6/19/2002 EE7 Landau 6/19/2002 EM4 Landau 6/9/2004 GS1 Landau 8/25/2009 PL8 Landau 06/19/2014 YO9			360	< 500			840	< 10	< 10	23	21	12	
	Landau	6/14/2000	BT43G	740	< 500			3,400	< 10	14	73	59	33	
	Landau	9/27/2000	CF72J	600	< 500			780	< 10	< 10	14 J	13 J	< 10	
	Landau	12/20/2000	CP44D	540	< 500			1,400	< 5.0	4.9 J	33	24	19	
	Landau	3/14/2001	CV96E	1,200	< 500			1,800 J	< 5.0	8.6	46	33	23	
	Landau 6/16/1999 AK5 Landau 12/16/1999 BD0 Landau 3/22/2000 BK9 Landau 6/14/2000 BT4 Landau 9/27/2000 CF7 Landau 12/20/2000 CP4 Landau 3/14/2001 CV9 Landau 3/14/2001* CV9 Landau 6/22/2001 DH5 Landau 9/26/2001 DQ6 Landau 12/19/2001 DY6 Landau 12/19/2001 EE7 Landau 6/19/2002 EE7 Landau 6/25/2003 FP47 Landau 6/9/2004 GS1 Landau 8/25/2009 PL8: Landau 8/25/2009 PL8: Landau 8/20/2019 19H0 Landau 8/20/2019* 19H0 Landau 8/20/2019* 19H0 Landau 8/20/2024 MW-107R-5			1,100	< 500			1,400 J	1.2	7.6	44	33	23	
	Landau 6/16/1999 AKS Landau 12/16/1999 BDC Landau 3/22/2000 BKS Landau 6/14/2000 BTC Landau 9/27/2000 CFC Landau 12/20/2000 CFC Landau 12/20/2000 CFC Landau 3/14/2001 CVS Landau 3/14/2001 CVS Landau 6/22/2001 DHS Landau 9/26/2001 DQC Landau 12/19/2001 DYC Landau 12/19/2001 DYC Landau 6/19/2002 EEC Landau 6/19/2002 EMC Landau 6/25/2003 FP45 Landau 6/9/2004 GSC Landau 8/25/2009 PLS Landau 8/25/2009 PLS Landau 8/20/2019 19HC Landau 8/20/2019* 19HC Landau 8/20/2024 MW-107R Farallon 8/27/2024 MW-107R		DH51H	890	< 500			1,500	< 5.0	7.3	47	32	20	
	Landau 12/16/1999 BD0 Landau 3/22/2000 BK9 Landau 6/14/2000 BT4 Landau 9/27/2000 CF7 Landau 12/20/2000 CP4 Landau 3/14/2001 CV9 Landau 3/14/2001* CV9 Landau 6/22/2001 DH5 Landau 9/26/2001 DQ6 Landau 12/19/2001 DY6 Landau 12/19/2001 DY6 Landau 6/19/2002 EE7 Landau 6/19/2002 EM4 Landau 6/9/2004 GS1 Landau 8/25/2009 PL8 Landau 8/20/2019 19H0 Landau 8/20/2019* 19H0 Farallon 8/27/2024 MW-107R- Farallon 8/27/2024 MW-107R-		DQ61E	1,900	< 500			3,900	5.7	22	110	89	66	
MW-107R	Landau 12/16/1999 BD0: Landau 3/22/2000 BK9 Landau 6/14/2000 BT4: Landau 9/27/2000 CF7: Landau 12/20/2000 CP4: Landau 3/14/2001 CV9: Landau 3/14/2001* CV9: Landau 6/22/2001 DH5: Landau 9/26/2001 DQ6 Landau 12/19/2001 DY6: Landau 12/19/2001 EE7: Landau 6/19/2002 EE7: Landau 6/19/2002 EM4: Landau 6/9/2004 GS1: Landau 6/9/2004 GS1: Landau 8/25/2009 PL8: Landau 8/20/2019 19H0: Landau 8/20/2019* 19H0: Landau 8/20/2019* 19H0: Farallon 4/29/2024 MW-107R-2		DY69G	630	< 500			780 J	< 5.0 J	< 5.0 J	21 J	15 J	11 J	
	Landau 3/14/2001 CV96 Landau 3/14/2001* CV96 Landau 6/22/2001 DH5 Landau 9/26/2001 DQ6 Landau 12/19/2001 DY69 Landau 3/20/2002 EE79 Landau 6/19/2002 EM4 Landau 6/25/2003 FP476 Landau 6/9/2004 GS18 Landau 8/25/2009 PL88			1,200	< 500			1,200	< 5.0	< 5.0	33	23	15	
	Landau	6/19/2002	EM41F	1,000	< 500			1,700	< 5.0	< 5.0	32	23	13	
	Landau	6/25/2003	FP47E/N	1,400	< 500			2,500	< 5.0	9.0	72	45	30	
	Landau	6/9/2004	GS18C	680	< 500			880	< 5.0	< 5.0	24	15	11	
	Landau	8/25/2009	PL85C	290	< 500			1,300	< 1.0	< 1.0	15	7.8	5.9	
	Landau	06/19/2014	YO99C	290	< 200			4,200	1.4	1.1	32	16	11	
	Landau	8/20/2019	19H0298	136	< 200			135	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.60
	Landau 8/20/2019 19H029 Landau 8/20/2019* 19H029			< 100	< 200			138	< 0.20	< 0.20	< 0.20	< 0.40	< 0.20	< 0.60
	Farallon 4/29/2024 MW-107R-202			1,200 F-13	< 154	683 F-17	< 154	608 F-03	1.17	< 1.00	4.68			4.39
	Farallon	8/27/2024	MW-107R-082724	693 F-13	< 157	< 78.4	< 157	1,260	1.39	< 1.00	6.18	3.69	3.59	7.28
Site-Specific Cleanup	Level for Groun	ndwater ⁴		NE ⁵	NE ⁵	NE ⁵	NE ⁵	NE ⁵	71	485	276	NE	NE	NE
Groundwater SL Prot	ective of Indoor	Air ⁶		NE	NE	NE	NE	NE	2.4	15,000	2,800	32	0	320
Marine Surface Water	SL Protective o	f Aquatic Recept	tors ⁷	2,100		2,1	00	1,700	23	102	21	10	6	106

Table 2 **Summary of Groundwater Analytical Results for TPH and BTEX Union Station Property** Seattle, Washington

Farallon PN: 2644-001

								Analytical Resu	lts (micrograms	per liter)				
				NWTPH-	Ox ¹	NWTPH	-Dx-SG ¹							Total
Sample Location	Sampled By	Sample Date	Sample Identification	DRO	ORO	DRO	ORO	GRO ²	Benzene ³	Toluene ³	Ethylbenzene ³	m,p-Xylenes³	o-Xylene ³	Xylenes ³
	Landau	6/16/1999	AK50G	< 250	< 500			< 250	< 1.0	< 1.0	1.9	< 1.0	< 1.0	
	Landau	12/16/1999	BD02K	< 250	< 500			< 250	< 1.0	< 1.0	1.3	< 1.0	< 1.0	
	Landau	3/22/2000	BK98F	< 250	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	6/14/2000	BT43H	< 250	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	9/27/2000	CF72E	< 250	< 500			< 250	1.0	< 1.0	2.7 J	1.1 J	< 1.0	
	Landau	12/20/2000	CP44G	< 250	< 500			< 250	< 1.0	< 1.0	1.4	0.6 J	0.5 J	
	Landau	3/14/2001	CV96F	< 250	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	6/22/2001	DH51A	< 250	< 500			< 250 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	9/26/2001	DQ61F	< 250	< 500			250 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	12/19/2001	DY69H	< 250	< 500			< 250 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
MW-108R	Landau	12/19/2001*	DY69I	< 250	< 500			< 250 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	3/20/2002	EE79F	< 250	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	6/19/2002	EM41G	330	< 500			< 250 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	6/25/2003	FP47I/R	< 250	< 500			< 250	< 1.0	< 1.0	2.5	< 1.0	< 1.0	
	Landau	6/9/2004	GS18H	< 250	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	8/24/2009	PL72C	< 250	< 500			< 250	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
	Landau	06/19/2014	YO99B	< 100	< 200			< 250	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	
	Landau	06/19/2014*	YO99A	< 100	< 200			< 250	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	
	Landau	8/21/2019	19H0324	< 100	< 200			289 J	< 0.20 J	< 0.20 J	0.21 J	< 0.40 J	< 0.20 J	< 0.60
	Farallon	4/29/2024	MW-108R-20240429	92.1 F-11	< 154	< 76.9	< 154	< 100	< 0.200	< 1.00	< 0.500			< 1.50
	Farallon	8/27/2024	MW-108R-20240827	131 F-13	< 157			< 100 H	< 0.200 H	< 1.00 H	< 0.500 H	< 1.00 H	< 0.500 H	< 1.50 H
Site-Specific Cleanup	Level for Groun	ndwater ⁴		NE ⁵	NE ⁵	NE ⁵	NE ⁵	NE ⁵	71	485	276	NE	NE	NE
Groundwater SL Prote	ctive of Indoor	Air ⁶		NE	NE	NE	NE	NE	2.4	15,000	2,800	32	20	320
Marine Surface Water	SL Protective o	f Aquatic Recept	tors ⁷	2,100		2,1	00	1,700	23	102	21	10)6	106
OTES:			-											

Results in **bold** denote concentrations exceeding site-specific cleanup levels.

Results highlighted gold denote concentrations exceeding screening levels protectective of indoor air or aquatic receptors.

- < denotes analyte not detected at or above the reporting limit listed.
- --- denotes sample not analyzed.
- * denotes sample is a field duplicate.
- ¹Analyzed by Northwest Method NWTPH-Dx or NWTPH-Dx with Silica Gel Cleanup (NWTPH-Dx-SG).
- ²Analyzed by Northwest Method NWTPH-Gx.

BTEX = benzene, toluene, ethylbenzene, and xylenes

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

F-03 = The result for this hydrocarbon range is elevated due to the presence of individual analyte peaks in the quantitation range that are not representative of the fuel pattern reported.

F-11 = the hydrocarbon pattern indicates weathered possible weathered diesel, mineral oil, or a contribution from a related component

F-12 = the result is primarily due to the presence of individual peaks in the quantitation range. No fuel pattern detected.

F-13 = The sample chromatographic pattern does not resemble the fuel standard used for quantitation

F-17 = no fuel pattern detected. The diesel result represents carbon range C12 to C24 (or C10 to C25 for 2024 results), and the oil result represents >C24 to C40 (or >C25 to C40 for 2024 results).

Farallon = Farallon Consulting, L.L.C.

GRO = TPH as gasoline-range organics

H = sample analyzed outside of holding time

J = result is an estimate

Landau = Landau Associates, Inc.

NE = not established

ORO = TPH as oil-range organics

PRES = incomplete field preservation. Additional preservative was added to adjust the pH within the range appropriate for this analysis.

V-01 = sample aliquot taken from VOA vial with headspace (air bubble greater than 6mm diameter)

³Analyzed by U.S. Environmental Protection Agency Method 8260/8021MOD/8260D.

⁴Site-specific groundwater cleanup levels from Table 1 of the Cleanup Action Plan for Union Station Property prepared by Landau Associates, Inc., July 28, 1997.

⁵If TPH is detected, the data will be reviewed to evaluate whether groundwater is adequately protected pursuant to WAC 173-340-720 (3) (c).

⁶Washington State Cleanup Levels and Risk Calculations (CLARC) under Washington State MTCA, Standard Method B Formula Values for Soil from CLARC Master spreadsheet, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC

¹Marine surface water screening levels protective of aquatic receptors derived from the Washington State Department of Ecology Implementation Memorandum No. 23, Concentrations of Gasoline and Diesel Range Organics Predicted to be Protective of Aquatic Receptors in Surface Waters, dated August 25, 2021.

Table 3
Summary of Groundwater Analytical Results for PAHs
Union Station Property
Seattle, Washington
Farallon PN: 2644-001

												Analytical	Results (m	icrograms	per liter) ¹								
									Non-Carcino	genic PAH	S	-	•	-	,				Carcinoge	nic PAHs			'
Sample Location	Sampled By	Sample Date	Sample Identification	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Acenaphthylene	Acenaphthene	Dibenzofuran	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(g,h,i)perylene	Benzo(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene	Dibenzo(a,h)anthracene	Total Benzofluoranthenes
	Landau	6/16/1999	AK50J	33		190	3.7	280		82	51	7.3	6.2	6.8	< 1.1	0.44	0.37	0.06 J	0.12	0.13	< 0.11	< 0.11	
	Landau	6/16/1999	AK50J^		-			-								0.44	0.06 J			0.37	0.13	0.12	< 0.11
	Landau	12/16/1999	BD02I	5,200	-	860	1.9	450		55	59	12	6.1	9.2	< 1.0	0.53	0.43	0.08 J	0.10	0.16	< 0.10	< 0.10	
	Landau	12/16/1999	BD02I^													0.53	0.08 J			0.43	0.16	< 0.10	< 0.10
	Landau	3/22/2000	BK98J	4,100 J		580	4.3 J	350		100	120	18 J	20 J	19 J	2.4 J	9.8	9.0	6.8	6.2	9.8	5.4	1.3	
	Landau	3/22/2000	BK98J^													9.8	6.8			9.0	9.8	6.2	5.4
	Landau	6/14/2000	BT43J	4,200 J		650	2.6	420		150	160	22	17	20	1.4	6.0	4.5	2.8	2.3	4.2	2.6	0.28	
	Landau	6/14/2000	BT43J^													6.0	2.8			4.5	4.2	2.3	2.6
	Landau	9/27/2000	CF72G	3,800 J		660 J	2.7	370 J		110	130	16	13	14 J	< 1.0	4.0	3.3	1.3	2.5	3.1	1.6	0.45	
	Landau	9/27/2000	CF72G [^]													4.0	1.3			3.3	3.1	2.5	1.6
B-4	Landau	12/20/2000	CP44A	3,800		540	< 30	390		120	120	< 30	< 30	< 30	< 30	0.39	0.34 J	0.04 J	0.05 J	0.07 J	< 0.1	< 0.1	
	Landau	12/20/2000	CP44A [^]													0.39	0.04 J			0.34 J	0.07 J	0.05 J	< 0.10
	Landau	3/14/2001	CV96H	3,100		670	8.8	430		150	230	28	42	46	7.5	17	16	9.6	13	17	6.8	2.1	
	Landau	3/14/2001	CV96H [^]													17	9.6			16	17	13	6.8
	Landau	6/22/2001	DH51I	3,200		510	2.0	350		69	79	13	9.3	9.8	< 1.0	1.0	0.83	0.22	0.33	0.34	0.15	< 0.10	
	Landau	6/22/2001	DH51I^													1.0	0.22			0.83	0.34	0.33	0.15
	Landau	9/26/2001	DQ61G	2,600 J		450	6.5	350		120	130	22	23	32	3.6	8.3	7.4	4.3	5.6	7.2	3.6	0.98	
	Landau	12/19/2001	DY69A	2,700 J		480	3.2	330 J		88	110	16	14	14	< 1.0	1.7	1.5	0.61	1.2	1.3	0.57	< 0.2	
	Landau	3/20/2002	EE79H	2,400 J		510	3.0	320		96	110	15	11	11	< 1.0	1.4	1.3 J	0.46	1.0	1.0	0.53	0.2 J	
	Landau	6/19/2002	EM41H	1,200		260	10	270		78	69	10	9.1	9.1	< 1.0	0.41	0.36	< 0.10	< 0.10	0.12	< 0.10	< 0.10	
	Landau	6/25/2003	FP47G/P	710 J		160	1.6	120		45	46	9.1	8.3	12	0.53	2.1	2.0	0.77	0.55	0.16			
	Landau	6/9/2004	GS18I	0.41		0.46	2.9	69		18	7.8	4.6	9.0	12	0.45	2.0	1.7	1.1	1.1	1.2	0.44	0.28	
	Landau	8/25/2009	PL85B	4.6		< 1.0	< 1.0	6.6		< 1.0	1.7	< 1.0	< 1.0	< 1.0	< 1.0	0.37	0.45	0.17	0.26	0.36	0.17	< 0.1	
	Landau	06/19/2014	YO99D	< 1.1		< 1.1	< 1.1	4.2		< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 0.12	< 0.12			< 0.12	< 0.12	< 0.12	< 0.12
B-4R	Landau	8/20/2019	19H0298	< 1.1	< 1.1	< 1.1	< 1.1	12.7		< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1			< 1.1	< 1.1	< 1.1	< 2.1
	Landau	8/20/2019	19H0298^													< 0.11	< 0.11			< 0.11	< 0.11	< 0.11	< 0.22
	Farallon	4/29/2024	B-4R-20240429	< 0.400	2.48	< 0.400	< 0.200	21.7	< 0.200	4.44	0.924	0.372	0.467	0.599	< 0.200	0.250	< 0.200	< 0.300	< 0.300	0.376	< 0.200	< 0.200	
	Farallon	8/27/2024	B-4R-20240827	1.19	4.54	0.384 J	1.61	26.5	< 0.183	4.97	1.01	0.320 J	0.192 J	0.229 J	< 0.183	< 0.0915	< 0.0915	< 0.0915	< 0.0915	< 0.0915	< 0.0915	< 0.0915	
Site-Specific Clear	nup Level fo	r Groundwater	2	9,880	NE	NE	NE	225	NE	2,422	NE	25,900	27.1	777	NE	1.0	1.0	1.0	1.0	1.0	1.0	1.0	NE

Table 3
Groundwater Analytical Results for PAHs
Union Station Property
Seattle, Washington
Farallon PN: 2644-001

												per liter) ¹											
									Non-Carcino	genic PAH	s								Carcinoge	nic PAHs			
Sample Location	Sampled By	Sample Date	Sample Identification	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Acenaphthylene	Acenaphthene	Dibenzofuran	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(g,h,i)perylene	Benzo(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene	Dibenzo(a,h)anthracene	Total Benzofluoranthenes
B-6	Landau	6/16/1999 12/16/1999	AK50H BD02H	< 1.0 < 1.0		< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0		< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 0.10 < 0.10	< 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	
-	Landau Landau	3/22/2000	BK98H	4.0 J		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10 < 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	3/22/2000*	BK98I	< 1.0 J		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	6/14/2000	BT43I	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	9/27/2000	CF72F	< 1.0		< 1.0	< 1.0	< 1.0 J		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 J	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	12/20/2000	CP44H	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.03 J	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	3/14/2001	CV96I	3.6		< 1.0	< 1.0	< 1.0		< 1.0	1.8	< 1.0	< 1.0	< 1.0	< 1.0	0.13 J	0.13 J	0.05 J	0.08 J	0.09 J	0.04 J	< 0.10 J	
	Landau	6/22/2001	DH51D	< 1.0		< 1.0	< 1.0	< 1.0 J		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	9/26/2001	DQ61H	7.1 J		1.4	< 1.0	1.1		< 1.0	1.3	< 1.0	< 1.0	< 1.0	< 1.0	0.26	0.23	0.15	0.16	0.21	0.11	< 0.10	
	Landau	12/19/2001	DY69B	4.9 J		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
B-6R	Landau	3/20/2002	EE79I	4.0 J		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	3/20/2002*	EE79G	2.9 J		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	6/19/2002	EM41I	< 1.0		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	6/25/2003	FP47H/Q	0.14		0.090	< 0.010	0.050		0.020	0.080	0.040	0.060	0.080	< 0.010	0.020	0.020	< 0.010	< 0.01	< 0.01	< 0.01	< 0.01	
	Landau	6/9/2004	GS18J	< 0.13		< 0.030	0.010 J	< 0.14		0.053	0.16	0.065	0.081	0.11	0.019	0.035	0.030	0.016	0.016	0.023	0.016	< 0.01	
	Landau	8/25/2009	PL85A	2.6		< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.19	0.21	0.15	0.11	0.19	0.11	< 0.10	
	Landau	06/19/2014	YO99E	< 1.2		< 1.2	< 1.2	< 1.2		< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2	< 0.12	< 0.12			< 0.12	< 0.12	< 0.12	< 0.12
	Landau	8/20/2019	19H0298	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1		< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1			< 1.1	< 1.1	< 1.1	< 2.1
	Landau	8/20/2019	19H0298^													< 0.11	< 0.11			< 0.11	< 0.11	< 0.11	< 0.22
	Farallon	4/29/2024	B-6R-20240429	< 0.0396	< 0.0396	< 0.0396	< 0.0198	0.0609	< 0.0198	0.0263	0.106	< 0.0198	0.0517	0.0510	< 0.0198	0.0205	< 0.0198	0.0300	< 0.0297	0.0321	< 0.0198	< 0.0198	
	Farallon	8/27/2024	B-6R-082724	0.169	< 0.0397	< 0.0397	0.0635	< 0.0744	< 0.0198	< 0.0198	< 0.0397	< 0.0198	< 0.0198	< 0.0198	< 0.0198	< 0.00992	< 0.00992	< 0.00992	< 0.00992	< 0.00992	< 0.00992	< 0.00992	
Site-Specific Clear	nup Level fo	r Groundwater ²	2	9,880	NE	NE	NE	225	NE	2,422	NE	25,900	27.1	777	NE	1.0	1.0	1.0	1.0	1.0	1.0	1.0	NE

Table 3
Groundwater Analytical Results for PAHs
Union Station Property
Seattle, Washington
Farallon PN: 2644-001

												Analytica	Results (m	icrograms	per liter) ¹								
								l	Non-Carcin	ogenic PAH	S	•	,		,				Carcinoge	nic PAHs			
Sample Location	Sampled By	Sample Date	Sample Identification	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Acenaphthylene	Acenaphthene	Dibenzofuran	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(g,h,i)perylene	Benzo(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene	Dibenzo(a,h)anthracene	Total Benzofluoranthenes
	Landau	6/16/1999	AK50A	4,000		450	2.8 J	210		80	74 J	4.8	4.8	3.7	< 1.0	0.19	0.18	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	6/16/1999*	AK50B	3,600		400	4.1 J	200		81 J	68 J	5.7	4.8	4.9	< 1.0	0.19	0.14	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	12/16/1999	BD02A	2,400		520	1.7	290		60	60	5.6	5.2	5.9	< 1.0	0.27	0.20	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	3/22/2000	BK98G	2,800 J		440	1.1 J	200		67 J	64 J	4.2 J	3.2 J	3.0 J	< 1.0	0.29	0.22	0.05 J	0.07 J	0.08 J	< 0.10	< 0.10	
	Landau	6/14/2000	BT43A	4,500 J		710	1.8	340		110	130	8.7	6.9	6.6	< 1.0	0.39	0.27	0.05 J	0.07 J	0.09 J	0.04 J	< 0.10	
	Landau	9/27/2000	CF72H	3,000 J		480 J	1.5	280 J		74	80 J	6.5	6.2	6.1 J	< 1.0	0.41	0.30	0.07 J	0.12	0.12	0.05 J	< 0.10	
	Landau	12/20/2000	CP44B	2,400		460	1.8	330		95	65	6.4	5.3	5.4	< 1.0	0.27	0.20 J	0.03 J	0.04 J	0.03 J	< 0.10	< 0.10	
	Landau	3/14/2001	CV96A	3,900		590	1.4	330		58	59	5.7	5.1	4.8	< 1.0	0.49	0.44	0.20	0.24	0.30	0.14	< 0.10	
	Landau	6/22/2001	DH51F	3,100		600	1.5	330 J		78	74	7.1	6.1	6.0	< 1.0	0.27	0.18	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	6/22/2001*	DH51E	3,200		570	1.3	330 J		64	63	6.8	5.8	5.5	< 1.0	0.29	0.20	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	9/26/2001	DQ61A	4,900 J		700	2.4	350		70	73	6.0	5.4	5.2	< 1.0	0.37	0.27	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	12/19/2001	DY69C	2,000 J		350	1.0 J	240 J		72	97	6.9	5.4	5.1	< 1.0	0.16	0.15	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	3/20/2002	EE79A	3,400 J		570	1.5	330		75	77	7.4	4.7	4.2	< 1.0	0.25	0.14 J	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
MW-101R	Landau	6/19/2002	EM41A	3,200		530	2.4	310		83	92	6.5	5.4	5.0	< 1.0	0.17	0.14	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	6/19/2002*	EM41B	3,400		530	2.1	310		88	99	6.4	5.2	5.2	< 1.0	0.17	0.13	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	6/25/2003	FP47A/J	2,900 J		490 J	0.58 J	260		79	63	7.2	5.4	6.1	< 0.010	0.20	0.15	0.030	0.030	0.040	< 0.010	< 0.010	
	Landau	6/25/2003*	FP47F/O	2,000 J		600 J	0.53 J	280		90	68	8.2	5.3	6.1	< 0.010	0.20	0.13	0.020	0.040	0.040	< 0.010	< 0.010	
	Landau	6/9/2004	GS18F	1,800		280	2.0	250		72	66	6.5	5.0	4.6	< 0.050	0.23	0.16	0.048 J	0.048 J	0.052	< 0.050	< 0.050	
	Landau	6/9/2004*	GS18G	1,800		290	2.3	260		79	75	7.6	5.6	5.3	< 0.050	0.25	0.17	0.048 J	0.071	0.060	< 0.050	< 0.050	
	Landau	8/24/2009	PL72A	1,500		440	< 1.0	240		85	93	7.6	6.8	6.2	< 1.0	0.28 J	0.20 J	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	8/24/2009*	PL72E	1,400		400	< 1.0	220		76	86	7.1	6.0	5.3	< 1.0	0.43 J	0.33 J	< 0.10	< 0.10	0.14	< 0.10	< 0.10	
	Landau	06/18/2014	YO69E	1,200		300	1.5	150	-	54	63	3.9	3.4	3.4	< 1.2	0.24	0.18			< 0.11	< 0.11	< 0.11	0.13
	Landau	8/21/2019	19H0324	1,770	412.0	551	< 1.0	275		95.9	99.8	8.1	6.2	8.3	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	< 1.0	< 102.0
	Landau	8/21/2019	19H0324^						-							0.22	0.16			< 0.10	< 0.10	< 0.10	< 0.20
	Farallon	10/7/2021	MW-101R-20211007					166								0.120	0.0871	< 0.0506	< 0.0506	< 0.0506	< 0.0506	< 0.0506	
	Farallon	4/29/2024	MW-101R-20240429	163	125	108	< 1.13	108	8.77	42.9	48.9	6.13	5.35	5.19	< 0.755	0.948	< 0.755	1.30	< 1.13	1.63	< 0.755	< 0.755	
	Farallon	8/27/2024	MW-101R-20240827	322	388	432	< 9.59	235	14.9	73.8	56.7	6.94	4.57	4.66	< 1.83	< 0.913	< 0.913	< 0.913	< 0.913	< 0.913	< 0.913	< 0.913	
Site-Specific Clear	nup Level fo	r Groundwater	. 2	9,880	NE	NE	NE	225	NE	2,422	NE	25,900	27.1	777	NE	1.0	1.0	1.0	1.0	1.0	1.0	1.0	NE

Table 3
Groundwater Analytical Results for PAHs
Union Station Property
Seattle, Washington
Farallon PN: 2644-001

												Analytica	l Results (m	icrograms p	oer liter) ¹								
								l	Non-Carcino	genic PAH	S								Carcinoge	nic PAHs			
Sample Location	Sampled By	Sample Date	Sample Identification	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Acenaphthylene	Acenaphthene	Dibenzofuran	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(g,h,i)perylene	Benzo(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene	Dibenzo(a,h)anthracene	Total Benzofluoranthenes
	Landau	6/16/1999	AK50C	1.0		< 1.0	< 1.0	7.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	12/16/1999	BD02C	< 1.0		< 1.0	< 1.0	11		2.4	< 1.0	0.8 J	1.0	0.9 J	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	12/16/1999*	BD02B	< 1.0		< 1.0	< 1.0	11		2.1	< 1.0	0.7 J	1.0	1.1	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	3/22/2000	BK98D	3.7 J		< 1.0	< 1.0	11		1.8	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	6/14/2000	BT43B	9.3 J		1.8	< 1.0	13		2.7	3.2	1.0	1.0	< 1.0	< 1.0	0.06 J	0.04 J	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	6/14/2000*	BT43E	2.8 J		< 1.0	< 1.0	11		2.6	3.2	< 1.0	< 1.0	< 1.0	< 1.0	0.05 J	0.03 J	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	9/27/2000	CF72A	3.3 J		1.0 J	< 1.0	11 J		2.8	4.2	< 1.0	< 1.0	< 1.0 J	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	12/20/2000	CP44E	< 1.0		3.5	< 1.0	14		3.2	0.6 J	1.0 J	0.9 J	1.0 J	< 1.0	0.07 J	0.04 J	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	12/20/2000*	CP44I	< 1.0		3.2	< 1.0	12		3.2	1.4	0.8 J	0.9 J	0.8 J	< 1.0	0.06 J	0.04 J	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	3/14/2001	CV96B	1.7		< 1.0	< 1.0	13		2.9	< 1.0	< 1.0	1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	6/22/2001	DH51B	< 1.0		< 1.0	< 1.0	12 J		3.2	4.3	< 1.0	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
MW-102R	Landau Landau	9/26/2001	DQ61B	8.4 J		1.8	< 1.0	11		2.9	4.3	< 1.0	1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	9/26/2001*	DQ61I DY69D	1.0 J		< 1.0	< 1.0	12		3.0	4.3	1.1	1.1	1.0	< 1.0	< 0.10 < 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	12/19/2001 3/20/2002	EE79B	12 J 22 J		2.1 2.6	< 1.0 < 1.0	15 J 17		3.4 3.7	3.3 3.8	< 1.0 1.1	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	
	Landau	6/19/2002	EM41C	1.5		< 1.0	< 1.0	13		2.6	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	6/25/2003	FP47B/K	< 0.06 J		0.12 J	0.16 J	11		2.0	2.7	0.84 J	0.48 J	0.40 J	< 0.010 J	0.030 J	0.020 J	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	6/9/2004	GS18E	< 0.00 3		0.12 3	0.10 3	13		3.2	3.8	0.98	1.0	0.40 3	0.059	0.030 3	0.020 3	0.064	0.068	0.064	0.069	0.074	
	Landau	8/24/2009	PL72B	3.1		< 1.0	< 1.0	11		2.8	3.5	< 1.0	< 1.0	< 1.0	< 1.0	< 0.12	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	06/18/2014	YO69D	2.4		< 1.2	< 1.2	7.6		1.8	1.6	< 1.2	< 1.2	< 1.2	< 1.2	< 0.12	< 0.12			< 0.12	< 0.12	< 0.12	< 0.12
	Landau	8/21/2019	19H0324	< 1.0	< 1.0	< 1.0	< 1.0	10.6		2.1	3.1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	< 1.0	< 2.0
	Landau	8/21/2019	19H0324^													< 0.10	< 0.10			< 0.10	< 0.10	< 0.10	< 0.20
	Farallon	4/29/2024	MW-102R-20240429	< 0.400	< 0.400	< 0.400	< 0.200	6.80	0.203	2.11	0.473	0.535	0.574	0.472	< 0.200	< 0.200	< 0.200	< 0.300	< 0.300	< 0.300	< 0.200	< 0.200	
	Farallon	8/27/2024	MW-102R-08272024	< 0.142	0.180 J	< 0.142	1.22	13.1	0.294	4.19	1.15	0.918	0.683	0.559	< 0.0712	< 0.0356	< 0.0356	< 0.0356	< 0.0356	< 0.0356	< 0.0356	< 0.0356	
Site-Specific Clear	nup Level fo		•	9,880	NE	NE	NE	225	NE	2,422	NE	25,900	27.1	777	NE	1.0	1.0	1.0	1.0	1.0	1.0	1.0	NE

Table 3
Groundwater Analytical Results for PAHs
Union Station Property
Seattle, Washington
Farallon PN: 2644-001

												Analytical	Results (m	icrograms _l	per liter) ¹								
									Non-Carcino	genic PAH	s								Carcinoge	nic PAHs			
Sample Location	Sampled By	Sample Date	Sample Identification	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Acenaphthylene	Acenaphthene	Dibenzofuran	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(g,h,i)perylene	Benzo(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene	Dibenzo(a,h)anthracene	Total Benzofluoranthenes
	Landau	6/16/1999	AK50E	< 1.0		< 1.0	< 1.0	58		11	4.5	1.2	1.4	1.2	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	12/16/1999	BD02E	< 1.0		< 1.0	2.0	37		13	7.9	1.6	1.8	1.7	< 1.0	0.10	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	3/22/2000	BK98B	1.1 J		< 1.0	< 1.0	37		10	5.7	1.3	1.4	1.2	< 1.0	0.11	0.09 J	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	6/14/2000	BT43D	< 1.0		< 1.0	< 1.0	43 J		9.6	< 1.0	1.3	1.9	1.5	< 1.0	0.12	0.09 J	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	9/27/2000	CF72C	< 1.0		< 1.0	< 1.0	47 J		12	5.0	1.5	1.5	1.2 J	< 1.0	0.10	0.09 J	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	12/20/2000	CP44F	< 1.0		24	< 1.0	62		17	8.7	1.7	1.9	1.6	< 1.0	0.14 J	0.12 J	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	3/14/2001	CV96C	< 1.0		< 1.0	1.1	40		11	3.1	1.2	1.6	1.2	< 1.0	0.11	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	6/22/2001	DH51C	< 1.0		< 1.0	< 1.0	43 J		11	< 1.0	1.3	1.5	1.1	< 1.0	0.13	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	9/26/2001	DQ61C	< 1.0 J		4.9	1.4	46		10	1.6	1.0	1.5	1.1	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
MW-104	Landau	12/19/2001	DY69E	< 1.0		< 1.0	< 1.0	64 J		11	< 1.0	1.1	1.7	1.4	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	3/20/2002	EE79C	< 1.0 J		2.0	< 1.0	50		10	1.2	1.2	1.4	1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	6/19/2002	EM41D	< 1.0		< 1.0	2.3	50		6.8	< 1.0	< 1.0	1.4	1.1	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	6/25/2003	FP47C/L	0.40		9.3	0.47	48		8.5	< 0.010	0.77	1.4	1.3	< 0.010	0.090	0.060	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	
	Landau	6/9/2004	GS18B	< 0.75		1.5	0.70	45		4.0	0.36	< 0.01	1.4	1.1	< 0.010	0.070	0.047	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	
	Landau	8/24/2009	PL72D	4.5		7.8	< 1.0	55		15	15	1.7	1.8	1.3	< 1.0	0.14	0.13	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	06/18/2014	YO69B	1.9		11	< 1.2	54		15	12	2.1	1.6	1.6	< 1.2	0.18	0.23			0.14	< 0.12	< 0.12	0.24
	Landau	8/21/2019	19H0324	< 1.0	10.2	1.9	12.4	45.1		10.4	2.8	1.0	1.4	1.6	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	< 1.0	< 2.0
	Landau	8/21/2019	19H0324^													< 0.10	< 0.10			< 0.10	< 0.10	< 0.10	< 0.20
	Farallon	4/29/2024	MW-104-20240429	< 0.421	0.471	< 0.421	0.445	26.7	< 0.211	2.72	< 0.211	< 0.211	1.04	0.787	< 0.211	< 0.211	< 0.211	< 0.316	< 0.316	< 0.316	< 0.211	< 0.211	
	Farallon	8/27/2024	MW-104-082724	< 0.362	0.601 J	< 0.362	2.07	51.7	0.221 J	5.78	< 0.362	0.321 J	1.42	1.08	< 0.181	< 0.0904	< 0.0904	< 0.0904	< 0.0904	< 0.0904	< 0.0904	< 0.0904	
Site-Specific Clea	nup Level fo	or Groundwater	.2	9,880	NE	NE	NE	225	NE	2,422	NE	25,900	27.1	777	NE	1.0	1.0	1.0	1.0	1.0	1.0	1.0	NE

Table 3
Groundwater Analytical Results for PAHs
Union Station Property
Seattle, Washington
Farallon PN: 2644-001

												Analytical	Results (m	icrograms p	oer liter) ¹								
									Non-Carcin	genic PAH	s								Carcinoge	nic PAHs			
Sample Location	Sampled By	Sample Date	Sample Identification	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Acenaphthylene	Acenaphthene	Dibenzofuran	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(g,h,i)perylene	Benzo(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene	Dibenzo(a,h)anthracene	Total Benzofluoranthenes
•	Landau	6/16/1999	AK50I	1,700		70	13	72		38	72	7.1	7.1	6.1	< 1.0	0.28	0.20	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	12/16/1999	BD02F	1,300		190	7.6	80		39	67	8.2	9.1	9.5	< 1.0	0.32	0.23	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	3/22/2000	BK98C	860 J		75 J	2.8 J	70 J		27 J	61 J	5.1 J	5.7 J	4.3 J	< 1.0	0.30	0.20	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	6/14/2000	BT43F	1,500 J		120	2.7	75		31	72	9.5	8.7	7.6	< 1.0	0.49	0.32	0.04 J	0.05 J	0.05 J	< 0.10	< 0.10	
	Landau	9/27/2000	CF72I	820 J		90 J	2.9	73 J		31	66	7.6	6.9	5.8 J	< 1.0	0.38	0.31	0.08 J	0.12	0.14	0.05 J	< 0.10	
	Landau	9/27/2000*	CF72D	1,200 J		120 J	3.1	100 J		32	66	8.0	7.7	5.8 J	< 1.0	0.34	0.21	0.03 J	0.06 J	0.06 J	< 0.10	< 0.10	
	Landau	12/20/2000	CP44C	1,000		100	2.3	100		42	57	7.4	9.2	9.6	< 1.0	0.33	0.25 J	0.03 J	0.04 J	0.02 J	< 0.10	< 0.10	
	Landau	3/14/2001	CV96D	1,000		130	1.6	67		32	58	8.1	11	9.6	< 1.0	0.76	0.69	0.23	0.35	0.36	0.15	< 0.10	
	Landau	6/22/2001	DH51G	770		110	1.2	70		32	59	7.0	9.5	8.1	< 1.0	0.52	0.35	0.12	0.13	0.15	< 0.10	< 0.10	
	Landau	9/26/2001	DQ61D	610 J		89	1.7	67		29	60	6.4	8.1	6.6	< 1.0	0.41	0.27	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
MW-105	Landau	12/19/2001	DY69F	860 J		74	1.2	80 J		35	73	9.6	11	9.8	< 1.0	0.77 J	0.56 J	0.20 J	0.32 J	0.4 J	0.19 J	< 0.10 J	
10100-105	Landau	3/20/2002	EE79D	940 J		96	< 1.0	79		30	65	8.1	11	8.2	< 1.0	0.85	0.66 J	0.17	0.36	0.41	0.15	< 0.10	
	Landau	6/19/2002	EM41E	410		76	1.1	75		32	57	5.8	7.4	6.8	< 1.0	0.24	0.16	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	6/25/2003	FP47D/M	480 J		71	0.29 J	54		24	40	5.6	5.9	6.1	< 0.010	0.24	0.15	0.030	0.040	0.040	< 0.010	< 0.010	
	Landau	6/9/2004	GS18D	540		62	0.98	48		20	34	4.8	6.5	5.7	0.062	0.46	0.28	0.10	0.12	0.14	0.068	0.053	
	Landau	8/25/2009	PL85D	240		29	< 1.0	50		19	30	4.3	6.0	4.8	< 1.0	1.2	1.1	0.55	0.74	1.0	0.48	0.17	
	Landau	06/18/2014	YO69C	180		19	< 1.2	33		12	23	3.1	4.7	4.6	< 1.2	0.35	0.28			0.19	< 0.12	< 0.12	0.29
	Landau	8/21/2019	19H0324	269	30.6	26.8	< 1.0	39.5		15.3	31	3.5	6.1	7.3	< 1.0	1.1	< 1.0			< 1.0	< 1.0	< 1.0	< 2.1
	Landau	8/21/2019	19H0324^													0.27	0.24			0.12	< 0.10	< 0.10	< 0.21
	Farallon	10/7/2021	MW-105-20211007													0.124	0.0888	< 0.0426	< 0.0426	< 0.0426	< 0.0426	< 0.0426	
	Farallon	4/29/2024	MW-105-20240429	10.2	4.09	< 1.50	< 0.748	30.1	4.53	9.23	< 0.748	2.41	4.69	3.97	< 0.748	< 0.748	< 0.748	< 1.12	< 1.12	< 1.12	< 0.748	< 0.748	
	Farallon	8/27/2024	MW-105-20240827	19.6	20.3	14.3	3.11	36.9	5.26	9.36	1.67	1.89	2.81	2.35	< 0.184	0.216	0.138 J	0.0966 J	< 0.0920	0.115 J	< 0.0920	< 0.0920	
Site-Specific Clear	ite-Specific Cleanup Level for Groundwater ² 9,880 NE NE NE 225 NE 2,422 NE								25,900	27.1	777	NE	1.0	1.0	1.0	1.0	1.0	1.0	1.0	NE			

Table 3
Groundwater Analytical Results for PAHs
Union Station Property
Seattle, Washington
Farallon PN: 2644-001

												Analytica	Results (m	icrograms _l	per liter) ¹								
									Non-Carcino	genic PAH	s								Carcinoge	nic PAHs			
Sample Location	Sampled By	Sample Date	Sample Identification	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Acenaphthylene	Acenaphthene	Dibenzofuran	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(g,h,i)perylene	Benzo(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene	Dibenzo(a,h)anthracene	Total Benzofluoranthenes
	Landau	6/16/1999	AK50F	2.1		6.8	< 1.0	5.9		1.5	1.4	< 1.0	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	12/16/1999	BD02G	390		44	< 1.0	18		4.8	3.2	< 1.0	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	3/22/2000	BK98A	600 J		39	< 1.0	14 J		3.2	2.3	< 1.0	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau Landau	6/14/2000 9/27/2000	BT43G CF72J	2,000 J 900 J		130 78 J	< 1.0 < 1.0	47 36 J		12 9.2	9.1 6.7	< 1.0 < 1.0	< 1.0	< 1.0 < 1.0 J	< 1.0 < 1.0	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	< 0.10 < 0.10	
	Landau	12/20/2000	CF72J CP44D	740		78 J 63	< 1.0	36 J		9.2 8.9	5.9	< 1.0	< 1.0 < 1.0	< 1.0 J	< 1.0	0.04 J	0.03 J	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	3/14/2001	CV96E	2,200		170	< 1.0	53		16	12	1.0	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	3/14/2001*	CV96G	1,900		150	< 1.0	53		17	12	1.0	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	6/22/2001	DH51H	1,300		130	< 1.0	47		14	9.8	< 1.0	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	9/26/2001	DQ61E	1,400 J		150	< 1.0	56		15	12	1.0	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	12/19/2001	DY69G	990 J		66	< 1.0	38 J		10	7.6	< 1.0	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
MW-107R	Landau	3/20/2002	EE79E	2,200 J		150	< 1.0	63		17	14	1.0	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	6/19/2002	EM41F	1,000		77	< 1.0	43		13	8.8	< 1.0	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	6/25/2003	FP47E/N	1,400 J		220	0.3 J	76		27	18	1.4	0.49	0.44	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	
	Landau	6/9/2004	GS18C	1,200		140	0.47	58		19	14	1.0	0.47	0.49	< 0.050	0.053	0.051	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	
	Landau	8/25/2009	PL85C	480		100	< 1.0	44		12	8.7	< 1.0	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	06/19/2014	YO99C	160		57	< 3.4	29		8.5	8.4	< 3.4	< 3.4	< 3.4	< 3.4	< 0.12	< 0.12			< 0.12	< 0.12	< 0.12	< 0.12
	Landau	8/20/2019	19H0298	2.8 J	18.4 J	19.1 J	< 1	18.6 J		5.7 J	5.4 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	< 1.0	< 2.0
	Landau	8/20/2019*	19H0298	4.8 J	23.5 J	26.0 J	< 1.0	24.1 J		7.5 J	6.8 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	< 1.0	< 2.1
	Landau	8/20/2019	19H0298^													< 0.10	< 0.10			< 0.10	< 0.10	< 0.10	< 0.20
	Landau	8/20/2019*	19H0298^													< 0.10	< 0.10			< 0.10	< 0.10	< 0.10	< 0.20
	Farallon	4/29/2024	MW-107R-20240429	24.8	48.3	26.7	< 2.69	56.1	2.89	19.9	11.0	1.53	0.809	0.805	< 0.769	< 0.769	< 0.769	< 1.15	< 1.15	< 1.15	< 0.769	< 0.769	
	Farallon	8/27/2024	MW-107R-082724	0.168	0.0531 J	0.0702 J	5.06	< 0.0640	< 0.0629	< 0.166	0.0655 J	0.338	< 0.0190	0.0213 J	< 0.0190	< 0.00949	< 0.00949	< 0.00949	< 0.00949	< 0.00949	< 0.00949	< 0.00949	
Site-Specific Clear	nup Level fo	r Groundwateı	, ²	9,880	NE	NE	NE	225	NE	2,422	NE	25,900	27.1	777	NE	1.0	1.0	1.0	1.0	1.0	1.0	1.0	NE

Table 3 **Groundwater Analytical Results for PAHs Union Station Property** Seattle, Washington Farallon PN: 2644-001

												Analytical	Results (m	icrograms	per liter) ¹								
			•					N	Non-Carcino	genic PAH	S		•	-					Carcinoge	nic PAHs			
Sample Location	Sampled By	Sample Date	Sample Identification	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Acenaphthylene	Acenaphthene	Dibenzofuran	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benzo(g,h,i)perylene	Benzo(a)anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1,2,3-cd)pyrene	Dibenzo(a,h)anthracene	Total Benzofluoranthenes
	Landau	6/16/1999	AK50G	67		11	< 1.0	5.8		1.6	1.8	< 1.0	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	12/16/1999	BD02K	50		10	< 1.0	5.7		1.9	2.5	< 1.0	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	3/22/2000	BK98F	20 J		4.5	< 1.0	2.3		< 1.0	2.0	< 1.0	< 1.0	< 1.0	< 1.0	0.05 J	0.04 J	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	6/14/2000	BT43H	50 J		7.7	< 1.0	4.1		1.3	2.0	< 1.0	< 1.0	< 1.0	< 1.0	0.05 J	0.04 J	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	9/27/2000	CF72E	100 J		14 J	< 1.0	7.7 J		1.8	2.6	< 1.0	< 1.0	< 1.0 J	< 1.0	0.08 J	0.06 J	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau Landau	12/20/2000	CP44G	53		9.4	< 1.0	6.8		2.1	2.3	< 1.0	< 1.0	< 1.0	< 1.0	0.06 J	0.04 J	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	3/14/2001	CV96F	19		4.0	< 1.0	2.5		1.1	2.1	< 1.0	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
		6/22/2001	DH51A	30		5.4	< 1.0	3.8 J		1.1	1.7	< 1.0	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau Landau	9/26/2001	DQ61F	22 J		3.9	< 1.0	2.6		1.0	1.8	< 1.0	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	12/19/2001	DY69H	31 J		4.7	< 1.0	3.0 J		1.1	2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
MW-108R	Landau	12/19/2001*	DY69I	20 J		3.7	< 1.0	2.3 J		< 1.0	1.7	< 1.0	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	3/20/2002	EE79F	27 J		5.0	< 1.0	3.0		1.0	1.6	< 1.0	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	6/19/2002 6/25/2003	EM41G FP47I/R	49 33 J		7.9 6.2	< 1.0 0.040	4.6 3.3		1.4	1.7	< 1.0 0.22	< 1.0 0.16	< 1.0 0.21	< 1.0	< 0.10 0.030	< 0.10 0.020	< 0.10 < 0.01	< 0.10 < 0.010	< 0.10 < 0.010	< 0.10 < 0.010	< 0.10 < 0.010	
	Landau	6/9/2004	GS18H	33 J 11		2.8	< 0.040	2.1		1.1 1.0	1.5 1.9	0.22	0.16	0.21	< 0.010 0.058	0.030	0.020	0.055	0.074	0.066	0.070	0.070	
	Landau	8/24/2009	PL72C	12		1.6	< 1.0	2.1		< 1.0	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
	Landau	06/19/2014	YO99B	1.4		< 1.1	< 1.1	1.3		< 1.0	< 1.1	< 1.0	< 1.0	< 1.0	< 1.1	< 0.10	< 0.10			< 0.10	< 0.10	< 0.10	< 0.12
	Landau	06/19/2014*	YO99A	1.7		< 1.1	< 1.1	1.2		< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 1.1	< 0.12	< 0.12			< 0.12	< 0.12	< 0.12	< 0.12
	Landau	8/21/2019	19H0324	< 1	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.2	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	< 1.0	< 2.1
	Landau	8/21/2019	19H0324^													< 0.10	< 0.10			< 0.10	< 0.10	< 0.10	< 0.21
	Farallon	4/29/2024	MW-108R-20240429	0.0510	0.0560	< 0.0385	< 0.0192	0.309	0.0439	0.165	0.375	0.0513	0.0979	0.0999	< 0.0192	< 0.10	< 0.10	< 0.0288	< 0.0288	< 0.10	< 0.10	< 0.10	
	Farallon	8/27/2024	MW-108R-20240429	< 0.0378	< 0.0378	< 0.0363	0.0192 0.0274 J	0.352	0.0439	0.103	0.373	0.0313	0.0979	0.0999	< 0.0192	0.0192 0.0104 J	< 0.0192	< 0.0288	< 0.0288	< 0.0288	< 0.0192	< 0.00946	
Site-Specific Class			•	9.880	NE	NE	0.0274 3 NE	225	0.0349 NE	2.422	0.274 NE	25,900	27.1	777	NE			1.0		1.0		1.0	NE
Site-Specific Clear	-Specific Cleanup Level for Groundwater ²				NE	NE	NE	225	NE	2,422	NE	25,900	27.1	111	NE	1.0	1.0	1.0	1.0	1.0	1.0	1.0	NE

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels. < denotes analyte not detected at or exceeding the reporting limit listed.

- --- denotes sample not analyzed.
- * denotes sample is a field duplicate.
- ^ denotes sample analyzed by 8270D SIM

for Union Station Property prepared by Landau Associates, Inc., July 28, 1997.

cPAHs = carcinogenic polycyclic aromatic hydrocarbons Farallon = Farallon Consulting, L.L.C. J = result is an estimate Landau = Landau Associates, Inc. PAHs = polycyclic aromatic hydrocarbons NE = not established

¹Analyzed by U.S. Environmental Protection Agency Method 8270D/8270E unless otherwise noted.

²Site-specific groundwater cleanup levels from Table 1 of the Cleanup Action Plan

				Analytica	
				(microgram	•
Sample			Sample	Total Amends	Dissolved
Location	Sampled By	Sample Date	Identification	Total Arsenic	Arsenic
	Landau	6/16/1999	AK50J		2
	Landau	12/16/1999	BD02I		< 5
	Landau	3/22/2000	BK98J		3
	Landau	6/14/2000	BT43J		3
	Landau	9/27/2000	CF72G		3
	Landau	12/20/2000	CP44A		3
B-4	Landau	3/14/2001	CV96H		2
	Landau	6/22/2001	DH51I		3
	Landau	9/26/2001	DQ61G		3
	Landau	12/19/2001	DY69A		3 J
	Landau	3/20/2002	EE79H		3
	Landau	6/19/2002	EM41H		3.2
	Landau	6/25/2003	FP47G/P		7
	Landau	6/9/2004	GS18I		4
	Landau	8/25/2009	PL85B		13.4
	Landau	06/19/2014	YO99D		13
	Landau	8/20/2019	19H0298		13.7
B-4R	Farallon	10/7/2021	B-4R-20211007	2.37	1.52
	Farallon	4/29/2024	B-4R-20240429	3.92	3.68 3.41 F1 H-12
	Farallon	8/27/2024	B-4R-20240827	10.5	5.72
B-6	Landau	6/16/1999	AK50H		13
	Landau	12/16/1999	BD02H		6
	Landau	3/22/2000	BK98H		20
	Landau	3/22/2000*	BK98I		20
	Landau	6/14/2000	BT43I		17
	Landau	9/27/2000	CF72F		35
	Landau	12/20/2000	CP44H		21
	Landau	3/14/2001	CV96I		27
	Landau	6/22/2001	DH51D		33
	Landau	9/26/2001	DQ61H		31
	Landau	12/19/2001	DY69B		22 J
	Landau	3/20/2002	EE79I		27 J
B-6R	Landau	3/20/2002*	EE79G		38 J
	Landau	6/19/2002	EM41I		25
	Landau	6/25/2003	FP47H/Q		24
	Landau	6/9/2004	GS18J		30
	Landau	8/25/2009	PL85A		31
	Landau	06/19/2014	YO99E		26
	Landau	8/20/2019	19H0298		30.4
	Farallon	10/7/2021	B-6R-20211007	36.0	31.8
	Farallon	4/29/2024	B-6R-20240429	43.3	43.8 22.3 F1 H-12
	Farallon	8/27/2024	B-6R-082724	28.0	20.5 4.40 F1
					7.40
ita-Specific	Cleanun Lovel	for Groundwate	ا 2	4	1

				Analytica (microgram	ıl Results ıs per liter) ¹
Sample			Sample		Dissolved
Location	Sampled By	Sample Date	Identification	Total Arsenic	Arsenic
	Landau	6/16/1999	AK50A		13
	Landau	6/16/1999*	AK50B		12
	Landau	12/16/1999	BD02A		14
	Landau	3/22/2000	BK98G		12
	Landau	6/14/2000	BT43A		12
	Landau	9/27/2000	CF72H		13
	Landau	12/20/2000	CP44B		13
	Landau	3/14/2001	CV96A		12
	Landau	6/22/2001	DH51F		12
	Landau	6/22/2001*	DH51E		12
	Landau	9/26/2001	DQ61A		14
	Landau	12/19/2001	DY69C		10 J
	Landau	3/20/2002	EE79A		11
MW-101R	Landau	6/19/2002	EM41A		10
	Landau	6/19/2002*	EM41B		11
	Landau	6/25/2003	FP47A/J		11
	Landau	6/25/2003*	FP47F/O		11
	Landau	6/9/2004	GS18F		12
	Landau	6/9/2004*	GS18G		12
	Landau	8/24/2009	PL72A		9.1
	Landau	8/24/2009*	PL72E		9.5
	Landau	06/18/2014	YO69E		11
	Landau	8/21/2019	19H0324		11.0
	Farallon	10/7/2021	MW-101R-20211007	9.10	8.37
	Farallon	4/29/2024	MW-101R-20240429	5.13	4.45 < 1.00 F1 H-12
	Farallon	8/27/2024	MW-101R-20240827	8.31	7.96
Site-Specific	Cleanup Level	for Groundwate	er ²		4
MTCA Cleanu	p Levels for G	roundwater ³		8	4

					al Results ns per liter)¹
Sample			Sample		Dissolved
Location	Sampled By	Sample Date	Identification	Total Arsenic	Arsenic
	Landau	6/16/1999	AK50C		4
	Landau	12/16/1999	BD02C		5
	Landau	12/16/1999*	BD02B		6
	Landau	3/22/2000	BK98D		7
	Landau	6/14/2000	BT43B		8
	Landau	6/14/2000*	BT43E		7
	Landau	9/27/2000	CF72A		10
	Landau	12/20/2000	CP44E		9
	Landau	12/20/2000*	CP44I		10
	Landau	3/14/2001	CV96B		6
	Landau	6/22/2001	DH51B		7
	Landau	9/26/2001	DQ61B		11
MW-102R	Landau	9/26/2001*	DQ61I		11
	Landau	12/19/2001	DY69D		3 J
	Landau	3/20/2002	EE79B		5
	Landau	6/19/2002	EM41C		4
	Landau	6/25/2003	FP47B/K		< 2
	Landau	6/9/2004	GS18E		6
	Landau	8/24/2009	PL72B		6.8
	Landau	06/18/2014	YO69D		5
	Landau	8/21/2019	19H0324		6.52
	Farallon	10/7/2021	MW-102R-20211007	4.59	3.02
	Farallon	4/29/2024	MW-102R-20240429	2.24	2.04 < 1.00 F1 H-12
	Farallon	8/27/2024	MW-102R-08272024	2.59	2.21
Site-Specific	Cleanup Level	for Groundwate	er ²		4
	p Levels for G			8	3 ⁴

				Analytical	
				(micrograms	s per liter) ¹
Sample			Sample		Dissolved
Location	Sampled By	Sample Date	Identification	Total Arsenic	Arsenic
	Landau	6/16/1999	AK50E		< 1
	Landau	12/16/1999	BD02E		1
	Landau	3/22/2000	BK98B		< 1
	Landau	6/14/2000	BT43D		< 1
	Landau	9/27/2000	CF72C		1
	Landau	12/20/2000	CP44F		< 1
	Landau	3/14/2001	CV96C		1
	Landau	6/22/2001	DH51C		1
	Landau	9/26/2001	DQ61C		1
MW-104	Landau	12/19/2001	DY69E		1 J
	Landau	3/20/2002	EE79C		1
	Landau	6/19/2002	EM41D		1.0
	Landau	6/25/2003	FP47C/L		1
	Landau	6/9/2004	GS18B		2
	Landau	8/24/2009	PL72D		7.0
	Landau	06/18/2014	YO69B		1.5
	Landau	8/21/2019	19H0324		0.842
	Farallon	4/29/2024	MW-104-20240429	< 1.00	< 1.00
	Farallon	8/27/2024	MW-104-082724	< 1.00	< 1.00
	Landau	6/16/1999	AK50I		6
	Landau	12/16/1999	BD02F		14
	Landau	3/22/2000	BK98C		10
	Landau	6/14/2000	BT43F		14
	Landau	9/27/2000	CF72I		7
	Landau	9/27/2000*	CF72D		6
	Landau	12/20/2000	CP44C		18
	Landau	3/14/2001	CV96D		14
	Landau	6/22/2001	DH51G		14
	Landau	9/26/2001	DQ61D		14
MW-105	Landau	12/19/2001	DY69F		18 J
10100-103	Landau	3/20/2002	EE79D		19
	Landau	6/19/2002	EM41E		12
	Landau	6/25/2003	FP47D/M		12
	Landau	6/9/2004	GS18D		17
	Landau	8/25/2009	PL85D		1.4
	Landau	06/18/2014	YO69C		15
	Landau	8/21/2019	19H0324		8.19
	Farallon	10/7/2021	MW-105-20211007	13.3	12.6
	Farallon	4/29/2024	MW-105-20240429	5.47	3.85 1.66 F1 H-12
	Farallon	8/27/2024	MW-105-20240827	4.79	4.31
te-Specific	Cleanup Level	for Groundwate	er ²	4	
ΓCΔ Cleani	up Levels for G	roundwater ³		8	ı

				Analytica (microgram	
Sample			Sample		Dissolved
Location	Sampled By	Sample Date	Identification	Total Arsenic	Arsenic
	Landau	6/16/1999	AK50F		8
	Landau	12/16/1999	BD02G		6
	Landau	3/22/2000	BK98A		6
	Landau	6/14/2000	BT43G		6
	Landau	9/27/2000	CF72J		5
	Landau	12/20/2000	CP44D		6
	Landau	3/14/2001	CV96E		7
	Landau	3/14/2001*	CV96G		8
	Landau	6/22/2001	DH51H		8
	Landau	9/26/2001	DQ61E		8
	Landau	12/19/2001	DY69G		7 J
MW-107R	Landau	3/20/2002	EE79E		7
	Landau	6/19/2002	EM41F		5
	Landau	6/25/2003	FP47E/N		3
	Landau	6/9/2004	GS18C		8
	Landau	8/25/2009	PL85C		4.4
	Landau	06/19/2014	YO99C		4
	Landau	8/20/2019	19H0298		4.95
	Landau	8/20/2019*	19H0298		4.88
	Farallon	10/7/2021	MW-107R-20211007	6.58	5.96
	Farallon	4/29/2024	MW-107R-20240429	6.02	5.90 4.67 F1 H-12
	Farallon	8/27/2024	MW-107R-082724	5.95	5.75
Site-Specific	Cleanup Level	for Groundwate	er ²	4	
MTCA Cleanu	p Levels for G	roundwater ³		8	4

Farallon PN: 2644-001

				Analytical (micrograms	
Sample			Sample		Dissolved
Location	Sampled By	Sample Date	Identification	Total Arsenic	Arsenic
	Landau	6/16/1999	AK50G		10
	Landau	12/16/1999	BD02K		4
	Landau	3/22/2000	BK98F		< 8
	Landau	6/14/2000	BT43H		5
	Landau	9/27/2000	CF72E		< 2
	Landau	12/20/2000	CP44G		15
	Landau	3/14/2001	CV96F		4
	Landau	6/22/2001	DH51A		6
	Landau	9/26/2001	DQ61F		4
	Landau	12/19/2001	DY69H		9 J
MW-108R	Landau	12/19/2001*	DY69I		14 J
	Landau	3/20/2002	EE79F		6
	Landau	6/19/2002	EM41G		5
	Landau	6/25/2003	FP47I/R		< 2
	Landau	6/9/2004	GS18H		< 5
	Landau	8/24/2009	PL72C		< 2
	Landau	06/19/2014	YO99B		7
	Landau	06/19/2014*	YO99A		7
	Landau	8/21/2019	19H0324		< 1.00
	Farallon	4/29/2024	MW-108R-20240429	< 1.00	< 1.00
	Farallon	8/27/2024	MW-108R-20240827	< 1.00	< 1.00
Site-Specific	Cleanup Level	for Groundwate	er ²	4	
MTCA Cleanu	p Levels for G	roundwater ³		8 ⁴	

NOTES:

Results in \boldsymbol{bold} denote concentrations exceeding applicable cleanup levels.

Farallon = Farallon Consulting, L.L.C.

F1 = sample was lab filtered and acid preserved prior to analysis

H12 = sample filtration performed >15 minutes after sample collection.

J = result is an estimate

Landau = Landau Associates, Inc.

< denotes analyte not detected at or exceeding the reporting limit listed.

^{*} denotes sample is a field duplicate.

¹Analyzed by U.S. Environmental Protection Agency Method 200.8/6010/6020B. ²Site-specific groundwater cleanup levels from Table 1 of the Cleanup Action Plan

²Site-specific groundwater cleanup levels from Table 1 of the Cleanup Action Plate for Union Station Property prepared by Landau Associates, Inc., July 28, 1997.

³Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Cleanup Levels for Groundwater,

Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013, unless otherwise noted.

⁴Puget Sound Basin background threshold value from *Natural Background Groundwater Arsenic Concentrations in Washington State, Study Results*, Washington State Department of Ecology, Publication No. 14-09-044, January 2022.

Table 5

Summary of Groundwater Analytical Results for PAHs and PAH Homologs

Union Station Property Seattle, Washington Farallon PN: 2644-001

	Sample Location	MW-101R		MW-107R	
	Sample Indentification	MW-101R-202408	27	MW-107R-0827	724
	Sample Date	8/27/2024		8/27/2024	
	Site-Specific				
	Cleanup Level for				
Parameter	Groundwater ¹				
Polyaromatic Hydrocarbons (PAHs) and	PAH Homologs ³ (ug/L)				
cis-Decalin	NE NE	< 0.800		< 0.0748	
C1-Decalin	NE	< 4.00		< 0.374	
C2-Decalin	NE	< 4.00		< 0.374	
C3-Decalin	NE	< 8.00		< 0.748	
C4-Decalin	NE	< 8.00		< 0.748	
Naphthalene	9,880	445	В	< 0.150	
C1-Naphthalenes	NE	607		< 0.374	
C2-Naphthalenes	NE	93.9		< 0.374	
C3-Naphthalenes	NE	7.93		< 0.374	
C4-Naphthalenes	NE NE	<4.00		0.713	\dashv
Acenaphthene	25,900	159		26.1	В
Acenaphthylene	NE NE	< 1.20		1.94	
Dibenzofuran	NE	12.9		0.805	
Fluorene	2,422	57.3	В	3.62	В
C1-Fluorenes	NE	< 4.00		0.413	
C2-Fluorenes	NE	< 4.00		< 0.374	
C3-Fluorenes	NE	< 4.00		< 0.374	
Dibenzothiophene	NE	3.67		0.381	
C1-Dibenzothiophene	NE	< 4.00		0.399	
C2-Dibenzothiophene	NE	< 4.00		< 0.374	
C3-Dibenzothiophene	NE	< 4.00		< 0.374	
C4-Dibenzothiophene	NE	<8.00		<0.748	
Phenanthrene	NE	50.7		< 0.0748	
Anthracene	25,900	4.85		0.256	
C1-Phenanthrenes/Anthracenes	NE	5.96		< 0.374	
C2-Phenanthrenes/Anthracenes	NE	< 4.00		< 0.374	
C3-Phenanthrenes/Anthracenes	NE	< 4.00		< 0.374	
C4-Phenanthrenes/Anthracenes	NE	< 8.00		< 0.748	
Fluoranthene	27.1	4.75		0.514	
Pyrene	777	3.99		0.560	
C1-Fluoranthenes/Pyrenes	NE	< 4.00		< 0.374	
C2-Fluoranthenes/Pyrenes	NE	< 4.00		< 0.374	
C3-Fluoranthenes/Pyrenes	NE	< 4.00		< 0.374	
C4-Fluoranthenes/Pyrenes	NE	< 8.00		< 0.748	
Chrysene	1.0	< 0.400		< 0.0374	
Benzo(a)Anthracene	1.0	0.419	J	< 0.0374	
C1-Chrysenes/Benz(a)anthracenes	NE	< 4.00		< 0.374	
C2-Chrysenes/Benz(a)anthracenes	NE	< 4.00		< 0.374	
C3-Chrysenes/Benz(a)anthracenes	NE	< 4.00		< 0.374	
C4-Chrysenes/Benz(a)anthracenes	NE	< 8.00		< 0.748	
Benzo(b,j)fluoranthenes		<0.600	, ,	<0.0561	
Benzo(k)Fluoranthene	1.0	< 0.913	$\sqcup \downarrow$	< 0.00949	
Benzo(a)Pyrene	1.0	< 0.913	$\sqcup \downarrow$	< 0.00949	
Benzo(e)pyrene	NE	< 0.400	\sqcup	< 0.0374	
Perylene	NE	< 0.400	\sqcup	< 0.0374	
Indeno(1,2,3-cd)Pyrene	1.0	< 0.400	\longmapsto	< 0.0374	
Dibenzo(a,h)Anthracene	1.0	< 0.913	\sqcup	< 0.00949	
Benzo(g,h,i)Perylene	NE	< 1.83	\sqcup	< 0.0190	
	al PAH & Homologs (µg/L)	1457.4		35.7	
Total PAH & I	Homologs / Total DRO (%)	48.6%		5.2%	1

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

B = analyte detected in associated method blank

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Analyzed by U.S. Environmental Protection Agency Method 8270E unless otherwise noted.

²Analyzed by U.S. Environmental Protection Agency Method 8270E unless otherwise noted.

³Site-specific groundwater cleanup levels from Table 1 of the Cleanup Action Plan for Union Station Property prepared

Site-specific groundwater cleanup levels from Table 1 of the Cleanup Action Plan for Union Station Property prepared by Landau Associates, Inc., July 28, 1997.

J = result is an estimate

Table 6
Groundwater Field Parameters
Union Station Property
Seattle, Washington
Farallon PN: 2644-001

Sample Location	Measured By	Sample Date	Sample Identification	рН	Specific Conductance (µS/cm)	Temperature (°C)	Oxidation- Reduction Potential (mV)	Ferrous Iron (mg/L)	Manganese (mg/L)	Dissolved Oxygen (mg/L)
	Landau	6/16/1999	AK50J	NM	NM	NM				
	Landau	12/16/1999	BD02I	NM	NM	NM				
	Landau	3/22/2000	BK98J	NM	NM	NM				
	Landau	6/14/2000	BT43J	6.78	1,288	16.6				
	Landau	9/27/2000	CF72G	7.04	1,340	17.1				
	Landau	12/20/2000	CP44A	6.68	1,500	14.6				
B-4	Landau	3/14/2001	CV96H	NM	NM	NM				
B-4	Landau	6/22/2001	DH51I	NM	NM	NM				
	Landau	9/26/2001	DQ61G	NM	NM	NM				
	Landau	12/19/2001	DY69A	NM	NM	NM				
	Landau	3/20/2002	EE79H	NM	NM	NM				
	Landau	6/19/2002	EM41H	NM	NM	NM				
	Landau	6/25/2003	FP47G/P	NM	NM	NM				
	Landau	6/9/2004	GS18I	NM	NM	NM				
	Landau	8/25/2009	PL85B	7.36	1,398	15.01				
	Landau	06/19/2014	YO99D	6.68	763	15.48				
	Landau	8/20/2019	19H0298	6.97	741	16.7	-31.0			
B-4R	Farallon	10/7/2021	B-4R-20211007	6.70	1,271	17.1	-69.5			
	Farallon	4/29/2024	B-4R-20240429	6.84	814	16.0	-53.7	1.0	0.3	2.93
	Farallon	8/27/2024	B-4R-20240827	6.73	714	17.8	66.9	1.0	0.4	2.92
B-6	Landau	6/16/1999	AK50H	7.27	1,770	17.3				
	Landau	12/16/1999	BD02H	6.76	1,440	16.9				
	Landau	3/22/2000	BK98H	6.99	1,700	15.9				
	Landau	3/22/2000*	BK98I	6.99	1,660	15.9				
	Landau	6/14/2000	BT43I	7.18	1,301	16.9				
	Landau	9/27/2000	CF72F	6.59	1,685	17.7				
	Landau	12/20/2000	CP44H	6.19	2,693	14.5				
	Landau	3/14/2001	CV96I	7.90	2,720	15.1				
	Landau	6/22/2001	DH51D	6.66	1,698	16.8				
	Landau	9/26/2001	DQ61H	6.75	2,370	16.1				
	Landau	12/19/2001	DY69B	NM	NM	NM				
B-6R	Landau	3/20/2002	EE79I	6.65	1,340	15.0				
	Landau	3/20/2002*	EE79G	6.90	1,733	14.1				
	Landau	6/19/2002	EM41I	6.95	1,348	16.1				
	Landau	6/25/2003	FP47H/Q	7.06	1,708	16.8				
	Landau	6/9/2004	GS18J	6.89	1,570	16.6				
	Landau	8/25/2009	PL85A	7.39	2,392	15.5				
	Landau	06/19/2014	YO99E	6.87	995	16.4				
	Landau	8/20/2019	19H0298	6.92	1,061	16.4	35.8			
	Farallon	10/7/2021	B-6R-20211007	6.66	1,647	16.4	-82.0			
	Farallon	4/29/2024	B-6R-20240429	6.65	2,159	14.9	-50.6	3.5	0.0	0.55
	Farallon	8/27/2024	B-6R-082724	6.73	1,044	17.45	-43.6	2.5	0.2	0.47

Table 6
Groundwater Field Parameters
Union Station Property
Seattle, Washington
Farallon PN: 2644-001

Sample Location	Measured By	Sample Date	Sample Identification	рН	Specific Conductance (µS/cm)	Temperature (°C)	Oxidation- Reduction Potential (mV)	Ferrous Iron (mg/L)	Manganese (mg/L)	Dissolved Oxygen (mg/L)
Location	Landau	6/16/1999	AK50A	6.13	2,200	14.3		(mg/L)	(IIIg/L)	(mg/L)
	Landau	6/16/1999*	AK50B	6.13	2,200	14.3				
	Landau	12/16/1999	BD02A	5.75	2,490	14.3				
	Landau	3/22/2000	BK98G	6.83	3,680	12.9				
	Landau	6/14/2000	BT43A	6.93	1,650	13.4				
			CF72H		-					
	Landau	9/27/2000		6.65	2,410	16.6				
	Landau	12/20/2000	CP44B	6.49	2,580	13.9				
	Landau	3/14/2001	CV96A	7.46	1,918	12.8				
	Landau	6/22/2001	DH51F	6.83	2,535	14.8				
	Landau	6/22/2001*	DH51E	6.81	2,908	14.9				
	Landau	9/26/2001	DQ61A	7.25	2,310	16.4				
1	Landau	12/19/2001	DY69C	NM	NM	NM				
MW-101R	Landau	3/20/2002	EE79A	6.70	2,540	14.2				
	Landau	6/19/2002	EM41A	6.92	1,860	12.8				
	Landau	6/19/2002*	EM41B	6.98	2,418	13.6				
	Landau	6/25/2003	FP47A/J	6.96	1,510	14.8				
	Landau	6/25/2003*	FP47F/O	6.96	1,510	14.8				
	Landau	6/9/2004	GS18F	6.67	2,012	15.3				
	Landau	6/9/2004*	GS18G	6.67	2,012	15.3				
	Landau	8/24/2009	PL72A	6.88	2,899	15.0				
	Landau	8/24/2009*	PL72E	6.88	2,899	15.0				
	Landau	06/18/2014	YO69E	8.15	2,405	14.3				
	Landau	8/21/2019	19H0324	6.74	2,276	17.4	-43.3			
	Farallon	10/7/2021	MW-101R-20211007	6.47	2,179	16.6	-240.1			
	Farallon	4/29/2024	MW-101R-20240429	6.86	1,000	13.7	-37.8	2.0	0.8	0.49
	Farallon	8/27/2024	MW-101R-20240827	6.68	1,754	16.6	-87.2	4.5	1.0	0.35
	Landau	6/16/1999	AK50C	6.41	3,420	15.1				
	Landau	12/16/1999	BD02C	5.85	2,990	15.1				
	Landau	12/16/1999*	BD02B	5.85	2,990	15.2				
	Landau	3/22/2000	BK98D	6.89	3,960	14.1				
	Landau	6/14/2000	BT43B	7.11	3,010	14.8				
	Landau	6/14/2000*	BT43E	7.11	3,010	14.8				
	Landau	9/27/2000	CF72A	6.76	3,470	17.3				
	·		CP44E	2 22		15.1				
	Landau	12/20/2000 12/20/2000*	CP44I	6.02	3,750 3,740	15.1				
	Landau				-					
	Landau	3/14/2001	CV96B	7.23	3,920	14.5				
	Landau	6/22/2001	DH51B	6.60	3,875	16.0				
MW-102R	Landau	9/26/2001	DQ61B	6.53	3,750	16.2				
	Landau	9/26/2001*	DQ61I	6.53	3,750	16.1				
	Landau	12/19/2001	DY69D	6.47	3,740	15.1				
1	Landau	3/20/2002	EE79B	6.64	3,090	14.2				
	Landau	6/19/2002	EM41C	6.70	3,753	15.0				
1	Landau	6/25/2003	FP47B/K	6.80	2,710	15.6				
	Landau	6/9/2004	GS18E	6.65	2,415	15.9				
1	Landau	8/24/2009	PL72B	6.43	3,262	16.2				
	Landau	06/18/2014	YO69D	8.33	2,391	15.3				
1	Landau	8/21/2019	19H0324	6.90	2,725	17.6	-51.3			
	Farallon	10/7/2021	MW-102R-20211007	6.45	3,589	17.6	-42.2			
	Farallon	4/29/2024	MW-102R-20240429	6.57	3,280	14.6	-39.8	3.5	0.8	0.48
	Farallon	8/27/2024	MW-102R-08272024	6.62	3,159	16.4	-81.2	1	0.8	0.52

Table 6
Groundwater Field Parameters
Union Station Property
Seattle, Washington
Farallon PN: 2644-001

Sample Location	Measured By	Sample Date	Sample Identification	рН	Specific Conductance (µS/cm)	Temperature (°C)	Oxidation- Reduction Potential (mV)	Ferrous Iron (mg/L)	Manganese (mg/L)	Dissolved Oxygen (mg/L)
	Landau	6/16/1999	AK50E	6.98	1,070	16.7				
	Landau	12/16/1999	BD02E	5.75	832	25.5				
	Landau	3/22/2000	BK98B	7.23	1,020	14.1				
	Landau	6/14/2000	BT43D	7.17	814	15.1				
	Landau	9/27/2000	CF72C	6.94	8,635	16.8				
	Landau	12/20/2000	CP44F	6.86	990	15.3				
	Landau	3/14/2001	CV96C	7.59	1,170	13.1				
	Landau	6/22/2001	DH51C	6.74	955	14.7				
	Landau	9/26/2001	DQ61C	7.26	1,020	16.5				
MW-104	Landau	12/19/2001	DY69E	6.82	1,270	13.2				
	Landau	3/20/2002	EE79C	7.27	920	11.4				
	Landau	6/19/2002	EM41D	7.32	1,088	14.6				
	Landau	6/25/2003	FP47C/L	7.26	641	15.4				
	Landau	6/9/2004	GS18B	6.86	930	15.2				
	Landau	8/24/2009	PL72D	7.88	1,314	16.6				
	Landau	06/18/2014	YO69B	8.13	724	15.9				
	Landau	8/21/2019	19H0324	6.92	701	18.2	-89.4			
	Farallon	4/29/2024	MW-104-20240429	7.18	711	15.9	-94.4	0.0	0.0	0.52
	Farallon	8/27/2024	MW-104-082724	7.07	676	17.1	-82.3	1.0	0.0	0.56
	Landau	6/16/1999	AK50I	5.95	4,850	17.7				
	Landau	12/16/1999	BD02F	5.47	3,740	16.2				
	Landau	3/22/2000	BK98C	6.97	6,480	16.0				
	Landau	6/14/2000	BT43F	6.84	4,660	17.0				
	Landau	9/27/2000	CF72I	6.62	6,043	18.4				
	Landau	9/27/2000*	CF72D	6.62	6,043	18.4				
	Landau	12/20/2000	CP44C	6.74	5,205	17.0				
	Landau	3/14/2001	CV96D	7.26	7,310	15.8				
	Landau	6/22/2001	DH51G	7.01	7,525	17.6				
	Landau	9/26/2001	DQ61D	6.72	6,230	18.9				
MW-105	Landau	12/19/2001	DY69F	6.73	5,850	16.6				
10100-100	Landau	3/20/2002	EE79D	6.87	5,460	15.8				
	Landau	6/19/2002	EM41E	6.94	6,830	17.0				
	Landau	6/25/2003	FP47D/M	7.08	6,610	17.0				
	Landau	6/9/2004	GS18D	7.06	5,262	17.3				
	Landau	8/25/2009	PL85D	NM	NM	NM				
	Landau	06/18/2014	YO69C	8.34	4,239	17.7				
		8/21/2019	19H0324	7.06	6,446	18.3	-40.3			
	Landau	10/7/2021	MW-105-20211007	6.53	4,002	18.7	-40.5 -217.5			
	Farallon	4/29/2024	MW-105-20211007	6.88	4,002		-217.5 -104.1	2.5	0.4	0.38
	Farallon Farallon	8/27/2024	MW-105-20240429 MW-105-20240827	7.11	4,946 6,662	16.5 18.4	-104.1 -99.4	2.5 2.5	0.4	0.38

Table 6 **Summary of Groundwater Field Parameters** Union Station Property Seattle, Washington Farallon PN: 2644-001

Sample Location	Measured By	Sample Date	Sample Identification	рН	Specific Conductance (µS/cm)	Temperature (°C)	Oxidation- Reduction Potential (mV)	Ferrous Iron (mg/L)	Manganese (mg/L)	Dissolved Oxygen (mg/L)
	Landau	6/16/1999	AK50F	6.42	4,190	13.4				
	Landau	12/16/1999	BD02G	6.02	5,070	13.5				
	Landau	3/22/2000	BK98A	6.94	3,520	12.3				
	Landau	6/14/2000	BT43G	7.22	1,840	13.1				
	Landau	9/27/2000	CF72J	6.74	3,778	14.4				
	Landau	12/20/2000	CP44D	6.29	3,423	13.2				
	Landau	3/14/2001	CV96E	8.22	4,350	12.3				
	Landau	3/14/2001*	CV96G	8.24	4,350	12.3				
	Landau	6/22/2001	DH51H	6.84	3,550	13.6				
	Landau	9/26/2001	DQ61E	7.31	2,900	14.6				
MW-107R	Landau	12/19/2001	DY69G	6.79	3,710	12.4				
IVIVV-107K	Landau	3/20/2002	EE79E	6.85	2,780	11.9				
	Landau	6/19/2002	EM41F	6.90	3,303	13.0				
	Landau	6/25/2003	FP47E/N	6.94	2,630	14.0				
	Landau	6/9/2004	GS18C	6.85	2,792	14.0				
	Landau	8/25/2009	PL85C	7.36	3,107	13.1				
	Landau	06/19/2014	YO99C	6.67	1,208	13.0				
	Landau	8/20/2019	19H0298	6.73	1,222	13.7	-47.0			
	Landau	8/20/2019*	19H0298	6.73	1,223	13.7	-50.4			
	Farallon	10/7/2021	MW-107R-20211007	6.67	2,227	14.3	-113.4			
	Farallon	4/29/2024	MW-107R-20240429	7.05	996	12.5	3.9	1.5	0.2	0.63
	Farallon	8/27/2024	MW-107R-082724	6.81	1,602	14.2	-58.6	2	0.0	0.36
	Landau	6/16/1999	AK50G	6.06	1,933	14.0				
	Landau	12/16/1999	BD02K	5.19	1,830	14.1				
	Landau	3/22/2000	BK98F	6.70	1,970	13.1				
	Landau	6/14/2000	BT43H	6.59	1,710	14.0				
	Landau	9/27/2000	CF72E	6.35	15,125	15.0				
	Landau	12/20/2000	CP44G	6.67	19,350	14.5				
	Landau	3/14/2001	CV96F	7.12	19,675	13.2				
	Landau	6/22/2001	DH51A	6.72	18,925	15.0				
	Landau	9/26/2001	DQ61F	7.39	18,800	16.2				
	Landau	12/19/2001	DY69H	6.76	19,300	13.6				
MW-108R	Landau	12/19/2001*	DY69I	6.77	19,300	13.4				
	Landau	3/20/2002	EE79F	6.72	1,800	13.1				
	Landau	6/19/2002	EM41G	6.73	2,548	14.4				
	Landau	6/25/2003	FP47I/R	6.71	21,100	15.2				
	Landau	6/9/2004	GS18H	6.76	11,900	15.4				
	Landau	8/24/2009	PL72C	6.45	16,760	15.5				
	Landau	06/19/2014	YO99B	6.62	12,780	16.1				
	Landau	06/19/2014*	YO99A	6.62	12,748	16.1				
	Landau	8/21/2019	19H0324	7.06	14,461	17.5	-40.6			
	Farallon	4/29/2024	MW-108R-20240429	6.84	8,585	15.0	-6.5	1.0	0.0	0.48
	Farallon	8/27/2024	MW-108R-20240827	6.65	13,454	17.0	-76.9	3.0	0.0	0.31

Measurements collected in the field with a multi-parameter water quality meter.

Farallon = Farallon Consulting, L.L.C. J = result is an estimate Landau = Landau Associates, Inc. mg/L = milligrams per liter mV = millivolts NM = not measured μS/cm = microsiemens per centimeter

NOTES:
* denotes sample is a field duplicate.

Table 7 **Summary of Groundwater Monitored Natural Attenuation Parameters** Union Station Property Seattle, Washington Farallon PN: 2644-001

Sample Location	Measured By	Sample Date	Sample Identification	Total Dissolved Solids (mg/L) ¹	Total Suspended Solids (mg/L) ²	Alkalinity (mg CaCO ₃ /L) ³	Bicarbonate Alkalinity (mg CaCO ₃ /L) ³	Carbonate Alkalinity (mg CaCO ₃ /L) ³	Hydroxide Alkalinity (mg CaCO ₃ /L) ³	Nitrate (mg/L) ⁴	Sulfate (mg/L) ⁴	Methane mg/L)⁵
	Landau	6/16/1999	AK50J	730	63							
	Landau	12/16/1999	BD02I	820	680							
	Landau	3/22/2000	BK98J	720	930							
	Landau	6/14/2000	BT43J	NM	NM							
	Landau	9/27/2000	CF72G	670	620							
	Landau	12/20/2000	CP44A	750	440							
B-4	Landau	3/14/2001	CV96H	820 J	1,800							
D -4	Landau	6/22/2001	DH51I	810 J	1,000 J							
	Landau	9/26/2001	DQ61G	780 J	400							
	Landau	12/19/2001	DY69A	770	1,400 J							
	Landau	3/20/2002	EE79H	740	920							
	Landau	6/19/2002	EM41H	790	680							
	Landau	6/25/2003	FP47G/P	790	270							
	Landau	6/9/2004	GS18I	751	938					-		
	Landau	8/25/2009	PL85B	538	8,300							
	Landau	06/19/2014	YO99D	498	4,130							
B-4R	Landau	8/20/2019	19H0298	530	4,600							
	Farallon	10/7/2021	B-4R-20211007									
	Farallon	4/29/2024	B-4R-20240429	494	5.00 T	380	380	< 20.0	< 20.0	< 0.250	< 1.00	3.5
	Farallon	8/27/2024	B-4R-20240827	451	65.0 B	361	361	< 20.0	< 20.0	< 0.250	< 1.00	4,400
B-6	Landau	6/16/1999	AK50H	890	14							
	Landau	12/16/1999	BD02H	830	680							
	Landau	3/22/2000	BK98H	900	460							
	Landau	3/22/2000*	BK98I	900	460							
	Landau	6/14/2000	BT43I	820 J	890							
	Landau	9/27/2000	CF72F	1000	1,600							
	Landau	12/20/2000	CP44H	800	1,500							
	Landau	3/14/2001	CV96I	1,100 J	2,400							
	Landau	6/22/2001	DH51D	1,200 J	370 J							
	Landau	9/26/2001	DQ61H	1,100 J	500							
	Landau	12/19/2001	DY69B	780	1,400 J							
B-6R	Landau	3/20/2002	EE79I	780 J	360 J							
	Landau	3/20/2002*	EE79G	1,100 J	790 J							
	Landau	6/19/2002	EM41I	890	1,100							
	Landau	6/25/2003	FP47H/Q	790	430							
	Landau	6/9/2004	GS18J	923	940							
	Landau	8/25/2009	PL85A	891	1,040							
	Landau	06/19/2014	YO99E	518	927							
	Landau	8/20/2019	19H0298	666	324							
	Farallon	10/7/2021	B-6R-20211007									
	Farallon	4/29/2024	B-6R-20240429	1,180	31.0	976	976	< 20.0	< 20.0	< 0.250	< 1.00	11
	Farallon	8/27/2024	B-6R-082724	663	13.0 T	531	531	< 20.0	< 20.0	0.638	< 1.00	7,500

Table 7 Monitored Natural Attenuation Parameters Union Station Property Seattle, Washington Farallon PN: 2644-001

Sample Location	Measured By	Sample Date	Sample Identification	Total Dissolved Solids (mg/L) ¹	Total Suspended Solids (mg/L) ²	Alkalinity (mg CaCO ₃ /L) ³	Bicarbonate Alkalinity (mg CaCO ₃ /L) ³	Carbonate Alkalinity (mg CaCO ₃ /L) ³	Hydroxide Alkalinity (mg CaCO ₃ /L) ³	Nitrate (mg/L) ⁴	Sulfate (mg/L) ⁴	Methane mg/L) ⁵
	Landau	6/16/1999	AK50A	1,300	80							
	Landau	6/16/1999*	AK50B	1,300	76							
	Landau	12/16/1999	BD02A	1,400	120							
	Landau	3/22/2000	BK98G	1,300	120							
	Landau	6/14/2000	BT43A	1,100 J	79							
	Landau	9/27/2000	CF72H	960	85							
	Landau	12/20/2000	CP44B	1,100	74							
	Landau	3/14/2001	CV96A	1,000 J	76							
	Landau	6/22/2001	DH51F	1,000 J	76 J							
	Landau	6/22/2001*	DH51E	1,100 J	98 J							
	Landau	9/26/2001	DQ61A	1,000 J	79							
	Landau	12/19/2001	DY69C	1,100	65 J							
MM 404D	Landau	3/20/2002	EE79A	970	71							
MW-101R	Landau	6/19/2002	EM41A	1,000	72							
	Landau	6/19/2002*	EM41B	1,000	72							
	Landau	6/25/2003	FP47A/J	960	79							
	Landau	6/25/2003*	FP47F/O	950	78							
	Landau	6/9/2004	GS18F	1,250	284 J							
	Landau	6/9/2004*	GS18G	1,390	90.1 J							
	Landau	8/24/2009	PL72A	1,130	60.4							
-	Landau	8/24/2009*	PL72E	1,080	59.3							
	Landau	06/18/2014	YO69E	1,610	357							
	Landau	8/21/2019	19H0324	1,480	459							
	Farallon	10/7/2021	MW-101R-20211007									
	Farallon	4/29/2024	MW-101R-20240429	996	48.0	782	782	< 20.0	< 20.0	< 0.250	< 1.00	8.3
	Farallon	8/27/2024	MW-101R-20240827	1,050	79.0 B	816	816	< 20.0	< 20.0	< 0.250	< 1.00	10,000
	Landau	6/16/1999	AK50C	1,500	43							
	Landau	12/16/1999	BD02C	1,700	57							
	Landau	12/16/1999*	BD02B	1,600	58							
	Landau	3/22/2000	BK98D	1,800	65							
	Landau	6/14/2000	BT43B	1,900 J	60							
	Landau	6/14/2000*	BT43E	1,900 J	62							
	Landau	9/27/2000	CF72A	1,900	74							
	Landau	12/20/2000	CP44E	1,800	56							
	Landau	12/20/2000*	CP44I	1,700	54							
	Landau	3/14/2001	CV96B	2,100 J	53							
	Landau	6/22/2001	DH51B	2,100 J	67 J							
		9/26/2001	DQ61B	2,100 J	72							
MW-102R	Landau	9/26/2001*	DQ61I	2,100 J 2,000 J	83							
	Landau	12/19/2001	DY69D	1,900	61 J							
	Landau	3/20/2002	EE79B	1,800	51							
	Landau		EM41C	· ·								
	Landau	6/19/2002	FP47B/K	1,900	41 51							
	Landau	6/25/2003		1,500	51							
	Landau	6/9/2004	GS18E	1,590	40.6							
	Landau	8/24/2009	PL72B	1,700	45.5							
	Landau	06/18/2014	YO69D	1,530	53.4							
	Landau	8/21/2019	19H0324	1,630	98							
	Farallon	10/7/2021	MW-102R-20211007	1.000		700	700					
	Farallon	4/29/2024	MW-102R-20240429	1,860	18.0 T	769	769	< 20.0	< 20.0	< 0.250	< 1.00	8.4
	Farallon	8/27/2024	MW-102R-08272024	1,720	35.0	729	729	< 20.0	< 20.0	< 0.250	< 1.00	9,700

Table 7
Monitored Natural Attenuation Parameters
Union Station Property
Seattle, Washington
Farallon PN: 2644-001

Sample Location	Measured By	Sample Date	Sample Identification	Total Dissolved Solids (mg/L) ¹	Total Suspended Solids (mg/L) ²	Alkalinity (mg CaCO ₃ /L) ³	Bicarbonate Alkalinity (mg CaCO ₃ /L) ³	Carbonate Alkalinity (mg CaCO ₃ /L) ³	Hydroxide Alkalinity (mg CaCO ₃ /L) ³	Nitrate (mg/L) ⁴	Sulfate (mg/L) ⁴	Methane mg/L) ⁵
	Landau	6/16/1999	AK50E	600	16							
	Landau	12/16/1999	BD02E	600	41							
	Landau	3/22/2000	BK98B	560	16							
	Landau	6/14/2000	BT43D	600 J	9.3							
	Landau	9/27/2000	CF72C	510	18							
	Landau	12/20/2000	CP44F	450	25							
	Landau	3/14/2001	CV96C	570 J	12							
	Landau	6/22/2001	DH51C	550 J	19 J							
	Landau	9/26/2001	DQ61C	530 J	5.1							
MW-104	Landau	12/19/2001	DY69E	550	11 J							
	Landau	3/20/2002	EE79C	530	19							
	Landau	6/19/2002	EM41D	530	4.9							
	Landau	6/25/2003	FP47C/L	510	6.2							
	Landau	6/9/2004	GS18B	500	7.9							
	Landau	8/24/2009	PL72D	502	14.8							
	Landau	06/18/2014	YO69B	455	4,630							
	Landau	8/21/2019	19H0324	437	17							
	Farallon	4/29/2024	MW-104-20240429	425	< 5.00 T	330	330	< 20.0	< 20.0	< 0.250	4.72	8.5
	Farallon	8/27/2024	MW-104-082724	401	10.0 T	316	316	< 20.0	< 20.0	< 0.250	3.72	9,100
	Landau	6/16/1999	AK50I	2,400	65							
	Landau	12/16/1999	BD02F	2,100	140							
	Landau	3/22/2000	BK98C	2,800	73							
	Landau	6/14/2000	BT43F	3,900 J	87							
	Landau	9/27/2000	CF72I	3,400	80							
	Landau	9/27/2000*	CF72D	3,400	78							
	Landau	12/20/2000	CP44C	2,200	66							
	Landau	3/14/2001	CV96D	3,400 J	83							
	Landau	6/22/2001	DH51G	3,200 J	85 J							
	Landau	9/26/2001	DQ61D	3,400 J	100							
MW-105	Landau	12/19/2001	DY69F	2,700	110 J							
	Landau	3/20/2002	EE79D	2,700	97							
	Landau	6/19/2002	EM41E	3,300	88							
	Landau	6/25/2003	FP47D/M	2,400	98							
	Landau	6/9/2004	GS18D	3,510	44.9							
	Landau	8/25/2009	PL85D	3,100	91.1							
	Landau	06/18/2014	YO69C	2,800	996							
	Landau	8/21/2019	19H0324	3,860	46							
	Farallon	10/7/2021	MW-105-20211007									
	Farallon	4/29/2024	MW-105-20240429	2,990	7.00 T	1,270	1,270	< 20.0	< 20.0	< 0.250	< 1.00	8.4
	Farallon	8/27/2024	MW-105-20240827	2610	8.00 T	1,800	1800	< 20.0	< 20.0	< 0.250	< 1.00	7,300

Table 7 **Monitored Natural Attenuation Parameters Union Station Property** Seattle, Washington

ocuttic,	III	ımıgıcıı
Farallon	PN: 2	2644-001

Sample Location	Measured By	Sample Date	Sample Identification	Total Dissolved Solids (mg/L) ¹	Total Suspended Solids (mg/L) ²	Alkalinity (mg CaCO₃/L)³	Bicarbonate Alkalinity (mg CaCO ₃ /L) ³	Carbonate Alkalinity (mg CaCO ₃ /L) ³	Hydroxide Alkalinity (mg CaCO ₃ /L) ³	Nitrate (mg/L) ⁴	Sulfate (mg/L) ⁴	Methane mg/L)⁵
	Landau	6/16/1999	AK50F	2,400	62							
	Landau	12/16/1999	BD02G	2,000	84							
	Landau	3/22/2000	BK98A	1,800	62							
	Landau	6/14/2000	BT43G	2,000 J	54							
	Landau	9/27/2000	CF72J	1,800	49							
	Landau	12/20/2000	CP44D	1,700	59							
	Landau	3/14/2001	CV96E	1,900 J	56							
	Landau	3/14/2001*	CV96G	1,800 J	53							
	Landau	6/22/2001	DH51H	1,900 J	65 J							
	Landau	9/26/2001	DQ61E	1,300 J	63							
MW-107R	Landau	12/19/2001	DY69G	1,700	53 J							
1V1VV-1071X	Landau	3/20/2002	EE79E	1,500	46							
	Landau	6/19/2002	EM41F	1,800	48							
	Landau	6/25/2003	FP47E/N	1,500	53							
	Landau	6/9/2004	GS18C	1,550	45.8							
	Landau	8/25/2009	PL85C	1,250	38.4							
	Landau	06/19/2014	YO99C	917	28.6							
	Landau	8/20/2019	19H0298	900	32							
	Landau	8/20/2019*	19H0298	909	30							
	Farallon	10/7/2021	MW-107R-20211007									
	Farallon	4/29/2024	MW-107R-20240429	1,020	9.00 T	794	794	< 20.0	< 20.0	< 0.250	< 1.00	13
	Farallon	8/27/2024	MW-107R-082724	1020	9.00 T	775	775	< 20.0	< 20.0	< 0.250	< 1.00	12,000
	Landau	6/16/1999	AK50G	10,000	86							
	Landau	12/16/1999	BD02K	10,000	110							
	Landau	3/22/2000	BK98F	12,000	99							
	Landau	6/14/2000	BT43H	10,000 J	89							
	Landau	9/27/2000	CF72E	9,300	97							
	Landau	12/20/2000	CP44G	9,800	84							
	Landau	3/14/2001	CV96F	11,000 J	88							
	Landau	6/22/2001	DH51A	11,000 J	130 J							
	Landau	9/26/2001	DQ61F	11,000 J	99							
	Landau	12/19/2001	DY69H	9,900	130 J							
MW-108R	Landau	12/19/2001*	DY69I	9,800	94 J							
	Landau	3/20/2002	EE79F	10,000	87							
	Landau	6/19/2002	EM41G	10,000	84							
	Landau	6/25/2003	FP47I/R	11,000	86							
	Landau	6/9/2004	GS18H	8,970	79.1							
	Landau	8/24/2009	PL72C	9,040	60.1							
	Landau	06/19/2014	YO99B	5,760	135							
	Landau	06/19/2014*	YO99A	6,400	136							
	Landau	8/21/2019	19H0324	9,340	167							
	Farallon	4/29/2024	MW-108R-20240429	12,100	41.0	2,850	2,850	< 20.0	< 20.0	< 0.250	< 1.00	3.9
	Farallon	8/27/2024	MW-108R-20240827	7,100	39.0	2790	2,790	< 20.0	< 20.0	3.50 J	< 1.00	4,200

B = analyte detected in associated method blank

NOTES:
* denotes sample is a field duplicate.

¹Analyzed by Standard Method 2540C.

²Analyzed by Standard Method 2540D.

³Analyzed by Standard Method 2320B.

⁴Analyzed by US Environmental Protection Agency (EPA) Method 300.0 ⁵Analyzed by EPA Method RSK 175.

mg CaCO₃/L = milligrams calcium carbonate per liter

J = result is an estimate

mg/L = milligrams per liter
T = dried residue was less than 2.5mg specified in method

ATTACHMENT A LABORATORY ANALYTICAL RESULTS

AUGUST 2024 GROUNDWATER
MONITORING PROGRESS REPORT
Union Station Property
411 South Jackson Street
Seattle, Washington

Farallon PN: 2644-001

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Friday, September 27, 2024

James Welles

Farallon Consulting - Bellevue

13555 SE 36th Street, Suite 320

Bellevue, WA 98006

RE: A4H1527 - Union Station - 2644-001

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A4H1527, which was received by the laboratory on 8/28/2024 at 1:42:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: cobrien@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler	Receipt	Information
--------	---------	-------------

Acceptable Receipt Temperature is less than, or equal to, 6 degC (not frozen), or received on ice the same day as sampling.

(See Cooler Receipt Form for details)

Cooler #1	2.6	degC	Cooler #2	0.6	degC
Cooler #3	4.6	degC	Cooler #4	2.3	degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

COSi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320

Bellevue, WA 98006

Project: Union Station
Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION									
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received					
MW-108R-20240827	A4H1527-01	Water	08/27/24 11:40	08/28/24 13:42					
MW-105-20240827	A4H1527-02	Water	08/27/24 13:30	08/28/24 13:42					
MW-101R-20240827	А4Н1527-03	Water	08/27/24 15:05	08/28/24 13:42					
B-4R-20240827	A4H1527-04	Water	08/27/24 18:10	08/28/24 13:42					
MW-102R-08272024	A4H1527-05	Water	08/27/24 11:17	08/28/24 13:42					
MW-104-082724	A4H1527-06	Water	08/27/24 12:47	08/28/24 13:42					
MW-107R-082724	A4H1527-07	Water	08/27/24 14:43	08/28/24 13:42					
B-6R-082724	A4H1527-08	Water	08/27/24 16:50	08/28/24 13:42					

Apex Laboratories

COSi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

ANALYTICAL CASE NARRATIVE

Work Order: A4H1527 Apex Laboratories

Subcontract

This report is complete only if it includes the attached subcontract laboratory report from Air Technology Laboratories .

Cameron O'Brien Project Manager

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

ANALYTICAL SAMPLE RESULTS

			-	bons by NWTP		-		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
<u> </u>	Result	Dillit	Dillit			•		11010
MW-108R-20240827 (A4H1527-01)			5 0 :	Matrix: Wat			: 2410016	P. 42
Diesel Oil	131 ND		78.4 157	ug/L	1	09/04/24 08:12 09/04/24 08:12	NWTPH-Dx LL NWTPH-Dx LL	F-13
Surrogate: o-Terphenyl (Surr)	ND	 Paco	very: 91 %	ug/L Limits: 50-150 %		09/04/24 08:12	NWTPH-Dx LL	
Surrogaie. o-terpnenyi (Surr)		кесо	very: 91 %	Limits: 30-130 7	o 1	09/04/24 08:12	NWIFH-DX LL	
MW-105-20240827 (A4H1527-02RE1)				Matrix: Wat	er	Batch	: 2410016	PRES
Diesel	482		77.7	ug/L	1	09/04/24 10:29	NWTPH-Dx LL	F-13
Oil	ND		155	ug/L	1	09/04/24 10:29	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 85 %	Limits: 50-150 %	6 1	09/04/24 10:29	NWTPH-Dx LL	
MW-101R-20240827 (A4H1527-03)				Matrix: Wat	er	Batch	: 24H1121	
Diesel	3000		76.9	ug/L	1	08/31/24 00:18	NWTPH-Dx LL	F-13
Oil	ND		154	ug/L	1	08/31/24 00:18	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 86 %	Limits: 50-150 %	6 I	08/31/24 00:18	NWTPH-Dx LL	
B-4R-20240827 (A4H1527-04)				Matrix: Wat	er	Batch	: 24H1121	
Diesel	276		76.2	ug/L	1	08/31/24 01:06	NWTPH-Dx LL	F-13
Oil	ND		152	ug/L	1	08/31/24 01:06	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 88 %	Limits: 50-150 %	6 I	08/31/24 01:06	NWTPH-Dx LL	
MW-102R-08272024 (A4H1527-05)				Matrix: Wat	er	Batch	: 2410225	
Diesel	211		76.9	ug/L	1	09/10/24 03:48	NWTPH-Dx LL	F-13
Oil	ND		154	ug/L	1	09/10/24 03:48	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 73 %	Limits: 50-150 %	6 1	09/10/24 03:48	NWTPH-Dx LL	
MW-104-082724 (A4H1527-06)				Matrix: Wat	er	Batch	: 2410225	
Diesel	145		76.2	ug/L	1	09/10/24 04:09	NWTPH-Dx LL	F-13
Oil	ND		152	ug/L	1	09/10/24 04:09	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 60 %	Limits: 50-150 %	6 1	09/10/24 04:09	NWTPH-Dx LL	
MW-107R-082724 (A4H1527-07)				Matrix: Wat	er	Batch	: 24H1121	
Diesel	693		78.4	ug/L	1	08/31/24 01:53	NWTPH-Dx LL	F-13
Oil	ND		157	ug/L	1	08/31/24 01:53	NWTPH-Dx LL	
Surrogate: o-Terphenyl (Surr)		Reco	very: 91 %	Limits: 50-150 %	6 I	08/31/24 01:53	NWTPH-Dx LL	

Apex Laboratories

COSi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

ANALYTICAL SAMPLE RESULTS

	Diesel and/or Oil Hydrocarbons by NWTPH-Dx											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
B-6R-082724 (A4H1527-08)				Matrix: Wate	24H1121							
Diesel	83.8		74.8	ug/L	1	08/30/24 21:57	NWTPH-Dx LL					
Oil	ND		150	ug/L	1	08/30/24 21:57	NWTPH-Dx LL					
Surrogate: o-Terphenyl (Surr)		Reco	very: 73 %	Limits: 50-150 %	6 I	08/30/24 21:57	NWTPH-Dx LL					

Apex Laboratories

COSi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

ANALYTICAL SAMPLE RESULTS

Diesel	and/or Oil H	ydrocarbons	by NWTPH	-Dx with Silica	Gel Colu	mn Cleanup		
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-101R-20240827 (A4H1527-03)			Matrix: Water Batch: 2410646					
Diesel	2250		76.9	ug/L	1	09/21/24 03:34	NWTPH-Dx/SGC	F-17
Oil	ND		154	ug/L	1	09/21/24 03:34	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Reco	very: 95 %	Limits: 50-150 %	1	09/21/24 03:34	NWTPH-Dx/SGC	
MW-107R-082724 (A4H1527-07)				Matrix: Wate	er	Batch	: 2410646	
Diesel	ND		78.4	ug/L	1	09/21/24 03:58	NWTPH-Dx/SGC	
Oil	ND		157	ug/L	1	09/21/24 03:58	NWTPH-Dx/SGC	
Surrogate: o-Terphenyl (Surr)		Reco	very: 75 %	Limits: 50-150 %	<i>i I</i>	09/21/24 03:58	NWTPH-Dx/SGC	

Apex Laboratories

COSi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
MW-108R-20240827 (A4H1527-01RE1)				Matrix: Water		Batch: 24I0307		H-01
Gasoline Range Organics	ND		100	ug/L	1	09/11/24 11:20	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery.	107 %	Limits: 50-150 %	% 1	09/11/24 11:20	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			112 %	50-150 %	% 1	09/11/24 11:20	NWTPH-Gx (MS)	
MW-105-20240827 (A4H1527-02)				Matrix: Wat	er	Batch	: 2410209	V-01
Gasoline Range Organics	897		100	ug/L	1	09/09/24 14:20	NWTPH-Gx (MS)	F-03
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	v: 98 %	Limits: 50-150 %	% 1	09/09/24 14:20	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			102 %	50-150 %	% 1	09/09/24 14:20	NWTPH-Gx (MS)	
MW-101R-20240827 (A4H1527-03)				Matrix: Wat	er	Batch	: 2410209	
Gasoline Range Organics	4660		100	ug/L	1	09/09/24 14:41	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	v: 98 %	Limits: 50-150 %	% 1	09/09/24 14:41	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			99 %	50-150 %	% 1	09/09/24 14:41	NWTPH-Gx (MS)	
B-4R-20240827 (A4H1527-04)				Matrix: Wat	er	Batch	: 2410209	
Gasoline Range Organics	105		100	ug/L	1	09/09/24 15:24	NWTPH-Gx (MS)	F-03
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	v: 93 %	Limits: 50-150 %	% 1	09/09/24 15:24	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			89 %	50-150 %	% 1	09/09/24 15:24	NWTPH-Gx (MS)	
MW-102R-08272024 (A4H1527-05)				Matrix: Wat	er	Batch	: 2410209	
Gasoline Range Organics	ND		100	ug/L	1	09/09/24 15:45	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	v: 93 %	Limits: 50-150 %	% 1	09/09/24 15:45	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			90 %	50-150 %	% 1	09/09/24 15:45	NWTPH-Gx (MS)	
MW-104-082724 (A4H1527-06)				Matrix: Wat	er	Batch	: 2410209	
Gasoline Range Organics	ND		100	ug/L	1	09/09/24 16:06	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	v: 92 %	Limits: 50-150 %	% 1	09/09/24 16:06	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			93 %	50-150 %	% 1	09/09/24 16:06	NWTPH-Gx (MS)	
MW-107R-082724 (A4H1527-07)				Matrix: Wat	er	Batch	: 2410209	
Gasoline Range Organics	1260		100	ug/L	1	09/09/24 16:28	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recover	v: 93 %	Limits: 50-150 %	% 1	09/09/24 16:28	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			93 %	50-150 9	% 1	09/09/24 16:28	NWTPH-Gx (MS)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

COSi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

ANALYTICAL SAMPLE RESULTS

Gasol	Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx											
	Sample	Detection	Reporting			Date						
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes				
B-6R-082724 (A4H1527-08)				Matrix: Wat	er	Batch	n: 24I0209					
Gasoline Range Organics	ND		100	ug/L	1	09/09/24 17:10	NWTPH-Gx (MS)					
Surrogate: 4-Bromofluorobenzene (Sur)		Reco	very: 91 %	Limits: 50-150 %	6 1	09/09/24 17:10	NWTPH-Gx (MS)					
1,4-Difluorobenzene (Sur)			92 %	50-150 %	6 1	09/09/24 17:10	NWTPH-Gx (MS)					

Apex Laboratories

COSi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

ANALYTICAL SAMPLE RESULTS

		BTEX Co	mpounds b	y EPA 8260D				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-108R-20240827 (A4H1527-01RE1)				Matrix: Wate	er	Batch:	2410307	H-01
Benzene	ND		0.200	ug/L	1	09/11/24 11:20	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/11/24 11:20	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/11/24 11:20	EPA 8260D	
m,p-Xylene	ND		1.00	ug/L	1	09/11/24 11:20	EPA 8260D	
o-Xylene	ND		0.500	ug/L	1	09/11/24 11:20	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/11/24 11:20	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 105 %	Limits: 80-120 %	1	09/11/24 11:20	EPA 8260D	
Toluene-d8 (Surr)			98 %	80-120 %	1	09/11/24 11:20	EPA 8260D	
4-Bromofluorobenzene (Surr)			102 %	80-120 %	1	09/11/24 11:20	EPA 8260D	
MW-105-20240827 (A4H1527-02)		Matrix: Water		Batch:	2410209	V-01		
Benzene	159		0.200	ug/L	1	09/09/24 14:20	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/09/24 14:20	EPA 8260D	
Ethylbenzene	0.760		0.500	ug/L	1	09/09/24 14:20	EPA 8260D	
m,p-Xylene	ND		1.00	ug/L	1	09/09/24 14:20	EPA 8260D	
o-Xylene	ND		0.500	ug/L	1	09/09/24 14:20	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/09/24 14:20	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 102 %	Limits: 80-120 %	1	09/09/24 14:20	EPA 8260D	
Toluene-d8 (Surr)			100 %	80-120 %	1	09/09/24 14:20	EPA 8260D	
4-Bromofluorobenzene (Surr)			101 %	80-120 %	1	09/09/24 14:20	EPA 8260D	
MW-101R-20240827 (A4H1527-03)				Matrix: Wate	er	Batch:	2410209	
Benzene	78.7		0.200	ug/L	1	09/09/24 14:41	EPA 8260D	
Toluene	1.46		1.00	ug/L	1	09/09/24 14:41	EPA 8260D	
Ethylbenzene	81.8		0.500	ug/L	1	09/09/24 14:41	EPA 8260D	
m,p-Xylene	8.25		1.00	ug/L	1	09/09/24 14:41	EPA 8260D	
o-Xylene	10.3		0.500	ug/L	1	09/09/24 14:41	EPA 8260D	
Xylenes, total	18.6		1.50	ug/L	1	09/09/24 14:41	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	very: 98 %	Limits: 80-120 %	1	09/09/24 14:41	EPA 8260D	
Toluene-d8 (Surr)			100 %	80-120 %	1	09/09/24 14:41	EPA 8260D	
4-Bromofluorobenzene (Surr)			101 %	80-120 %	1	09/09/24 14:41	EPA 8260D	
B-4R-20240827 (A4H1527-04)				Matrix: Wate	er	Batch:	2410209	
Benzene	ND		0.200	ug/L	1	09/09/24 15:24	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/09/24 15:24	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/09/24 15:24	EPA 8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Page 9 of 68

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

ANALYTICAL SAMPLE RESULTS

		BTEX Co	mpounds b	y EPA 8260D				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-4R-20240827 (A4H1527-04)				Matrix: Wate	er	Batch:	2410209	
m,p-Xylene	ND		1.00	ug/L	1	09/09/24 15:24	EPA 8260D	
o-Xylene	ND		0.500	ug/L	1	09/09/24 15:24	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/09/24 15:24	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 97 %	Limits: 80-120 %	1	09/09/24 15:24	EPA 8260D	
Toluene-d8 (Surr)			97 %	80-120 %	1	09/09/24 15:24	EPA 8260D	
4-Bromofluorobenzene (Surr)			108 %	80-120 %	1	09/09/24 15:24	EPA 8260D	
MW-102R-08272024 (A4H1527-05)				Matrix: Wate	er	Batch:	2410209	
Benzene	ND		0.200	ug/L	1	09/09/24 15:45	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/09/24 15:45	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/09/24 15:45	EPA 8260D	
m,p-Xylene	ND		1.00	ug/L	1	09/09/24 15:45	EPA 8260D	
o-Xylene	ND		0.500	ug/L	1	09/09/24 15:45	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/09/24 15:45	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recov	ery: 100 %	Limits: 80-120 %	1	09/09/24 15:45	EPA 8260D	
Toluene-d8 (Surr)			97 %	80-120 %	1	09/09/24 15:45	EPA 8260D	
4-Bromofluorobenzene (Surr)			107 %	80-120 %	1	09/09/24 15:45	EPA 8260D	
MW-104-082724 (A4H1527-06)				Matrix: Wate	er	Batch: 24I0209		
Benzene	ND		0.200	ug/L	1	09/09/24 16:06	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/09/24 16:06	EPA 8260D	
Ethylbenzene	ND		0.500	ug/L	1	09/09/24 16:06	EPA 8260D	
m,p-Xylene	ND		1.00	ug/L	1	09/09/24 16:06	EPA 8260D	
o-Xylene	ND		0.500	ug/L	1	09/09/24 16:06	EPA 8260D	
Xylenes, total	ND		1.50	ug/L	1	09/09/24 16:06	EPA 8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 99 %	Limits: 80-120 %	1	09/09/24 16:06	EPA 8260D	
Toluene-d8 (Surr)			98 %	80-120 %	1	09/09/24 16:06	EPA 8260D	
4-Bromofluorobenzene (Surr)			104 %	80-120 %	1	09/09/24 16:06	EPA 8260D	
MW-107R-082724 (A4H1527-07)				Matrix: Wate	er	Batch:	2410209	
Benzene	1.39		0.200	ug/L	1	09/09/24 16:28	EPA 8260D	
Toluene	ND		1.00	ug/L	1	09/09/24 16:28	EPA 8260D	
Ethylbenzene	6.18		0.500	ug/L	1	09/09/24 16:28	EPA 8260D	
m,p-Xylene	3.69		1.00	ug/L	1	09/09/24 16:28	EPA 8260D	
o-Xylene	3.59		0.500	ug/L	1	09/09/24 16:28	EPA 8260D	
Xylenes, total	7.28		1.50	ug/L	1	09/09/24 16:28	EPA 8260D	

Apex Laboratories

COSi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project: Union Station
Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

ANALYTICAL SAMPLE RESULTS

BTEX Compounds by EPA 8260D											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
MW-107R-082724 (A4H1527-07)				Matrix: Wate	er	Batch:	2410209				
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 98 %	Limits: 80-120 %	5 1	09/09/24 16:28	EPA 8260D				
Toluene-d8 (Surr)			98 %	80-120 %	5 1	09/09/24 16:28	EPA 8260D				
4-Bromofluorobenzene (Surr)			102 %	80-120 %	<i>I</i>	09/09/24 16:28	EPA 8260D				
B-6R-082724 (A4H1527-08)				Matrix: Wate	er	Batch:	2410209				
Benzene	ND		0.200	ug/L	1	09/09/24 17:10	EPA 8260D				
Toluene	ND		1.00	ug/L	1	09/09/24 17:10	EPA 8260D				
Ethylbenzene	ND		0.500	ug/L	1	09/09/24 17:10	EPA 8260D				
m,p-Xylene	ND		1.00	ug/L	1	09/09/24 17:10	EPA 8260D				
o-Xylene	ND		0.500	ug/L	1	09/09/24 17:10	EPA 8260D				
Xylenes, total	ND		1.50	ug/L	1	09/09/24 17:10	EPA 8260D				
Surrogate: 1,4-Difluorobenzene (Surr)		Reco	very: 98 %	Limits: 80-120 %	5 1	09/09/24 17:10	EPA 8260D				
Toluene-d8 (Surr)			99 %	80-120 %	<i>I</i>	09/09/24 17:10	EPA 8260D				
4-Bromofluorobenzene (Surr)			107 %	80-120 %	1	09/09/24 17:10	EPA 8260D				

Apex Laboratories

COSi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-108R-20240827 (A4H1527-01RE2)				Matrix: Wate	er	Batch: 24I0001		DCNT
Acenaphthene	0.352	0.0189	0.0378	ug/L	1	09/03/24 12:11	EPA 8270E LVI	
Acenaphthylene	0.0274	0.0189	0.0378	ug/L	1	09/03/24 12:11	EPA 8270E LVI	J
Anthracene	0.132	0.0189	0.0378	ug/L	1	09/03/24 12:11	EPA 8270E LVI	
Benz(a)anthracene	0.0104	0.00946	0.0189	ug/L	1	09/03/24 12:11	EPA 8270E LVI	J
Benzo(a)pyrene	ND	0.00946	0.0189	ug/L	1	09/03/24 12:11	EPA 8270E LVI	
Benzo(b)fluoranthene	ND	0.00946	0.0189	ug/L	1	09/03/24 12:11	EPA 8270E LVI	
Benzo(k)fluoranthene	ND	0.00946	0.0189	ug/L	1	09/03/24 12:11	EPA 8270E LVI	
Benzo(g,h,i)perylene	ND	0.0189	0.0378	ug/L	1	09/03/24 12:11	EPA 8270E LVI	
Chrysene	ND	0.00946	0.0189	ug/L	1	09/03/24 12:11	EPA 8270E LVI	
Dibenz(a,h)anthracene	ND	0.00946	0.0189	ug/L	1	09/03/24 12:11	EPA 8270E LVI	
Fluoranthene	0.0624	0.0189	0.0378	ug/L	1	09/03/24 12:11	EPA 8270E LVI	
Fluorene	0.193	0.0189	0.0378	ug/L	1	09/03/24 12:11	EPA 8270E LVI	
Indeno(1,2,3-cd)pyrene	ND	0.00946	0.0189	ug/L	1	09/03/24 12:11	EPA 8270E LVI	
1-Methylnaphthalene	ND	0.0378	0.0757	ug/L	1	09/03/24 12:11	EPA 8270E LVI	
2-Methylnaphthalene	ND	0.0378	0.0757	ug/L	1	09/03/24 12:11	EPA 8270E LVI	
Naphthalene	ND	0.0378	0.0757	ug/L	1	09/03/24 12:11	EPA 8270E LVI	
Phenanthrene	0.274	0.0378	0.0757	ug/L	1	09/03/24 12:11	EPA 8270E LVI	
Pyrene	0.0615	0.0189	0.0378	ug/L	1	09/03/24 12:11	EPA 8270E LVI	
Dibenzofuran	0.0549	0.0189	0.0378	ug/L	1	09/03/24 12:11	EPA 8270E LVI	
Surrogate: Acenaphthylene-d8 (Surr)		Reco	very: 94 %	Limits: 78-134 %	1	09/03/24 12:11	EPA 8270E LVI	
Benzo(a)pyrene-d12 (Surr)			110 %	80-132 %	1	09/03/24 12:11	EPA 8270E LVI	

MW-105-20240827 (A4H1527-02RE2)				Matrix: Wat	er	Batch	: 2410001	DCNT
Acenaphthene	36.9	0.184	0.368	ug/L	10	09/03/24 12:45	EPA 8270E LVI	
Acenaphthylene	3.11	0.184	0.368	ug/L	10	09/03/24 12:45	EPA 8270E LVI	
Anthracene	1.89	0.184	0.368	ug/L	10	09/03/24 12:45	EPA 8270E LVI	
Benz(a)anthracene	0.216	0.0920	0.184	ug/L	10	09/03/24 12:45	EPA 8270E LVI	
Benzo(a)pyrene	0.115	0.0920	0.184	ug/L	10	09/03/24 12:45	EPA 8270E LVI	J
Benzo(b)fluoranthene	0.0966	0.0920	0.184	ug/L	10	09/03/24 12:45	EPA 8270E LVI	J
Benzo(k)fluoranthene	ND	0.0920	0.184	ug/L	10	09/03/24 12:45	EPA 8270E LVI	
Benzo(g,h,i)perylene	ND	0.184	0.368	ug/L	10	09/03/24 12:45	EPA 8270E LVI	
Chrysene	0.138	0.0920	0.184	ug/L	10	09/03/24 12:45	EPA 8270E LVI	J
Dibenz(a,h)anthracene	ND	0.0920	0.184	ug/L	10	09/03/24 12:45	EPA 8270E LVI	
Fluoranthene	2.81	0.184	0.368	ug/L	10	09/03/24 12:45	EPA 8270E LVI	
Fluorene	9.36	0.184	0.368	ug/L	10	09/03/24 12:45	EPA 8270E LVI	
Indeno(1,2,3-cd)pyrene	ND	0.0920	0.184	ug/L	10	09/03/24 12:45	EPA 8270E LVI	
1-Methylnaphthalene	20.3	0.368	0.736	ug/L	10	09/03/24 12:45	EPA 8270E LVI	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
MW-105-20240827 (A4H1527-02RE2)				Matrix: Wate	r	Batch:	: 2410001	DCNT
2-Methylnaphthalene	14.3	0.368	0.736	ug/L	10	09/03/24 12:45	EPA 8270E LVI	
Naphthalene	19.6	0.368	0.736	ug/L	10	09/03/24 12:45	EPA 8270E LVI	
Phenanthrene	1.67	0.368	0.736	ug/L	10	09/03/24 12:45	EPA 8270E LVI	
Pyrene	2.35	0.184	0.368	ug/L	10	09/03/24 12:45	EPA 8270E LVI	
Dibenzofuran	5.26	0.184	0.368	ug/L	10	09/03/24 12:45	EPA 8270E LVI	
Surrogate: Acenaphthylene-d8 (Surr)		Reco	very: 62 %	Limits: 78-134 %	10	09/03/24 12:45	EPA 8270E LVI	S-05
Benzo(a)pyrene-d12 (Surr)			111 %	80-132 %	10	09/03/24 12:45	EPA 8270E LVI	S-05
MW-101R-20240827 (A4H1527-03RE1)				Matrix: Wate	r	Batch:	: 2410001	DCNT
Acenaphthene	235	1.83	3.65	ug/L	100	09/03/24 13:17	EPA 8270E LVI	
Acenaphthylene	ND	9.59	9.59	ug/L	100	09/03/24 13:17	EPA 8270E LVI	R-02
Anthracene	6.94	1.83	3.65	ug/L	100	09/03/24 13:17	EPA 8270E LVI	
Benz(a)anthracene	ND	0.913	1.83	ug/L	100	09/03/24 13:17	EPA 8270E LVI	
Benzo(a)pyrene	ND	0.913	1.83	ug/L	100	09/03/24 13:17	EPA 8270E LVI	
Benzo(b)fluoranthene	ND	0.913	1.83	ug/L	100	09/03/24 13:17	EPA 8270E LVI	
Benzo(k)fluoranthene	ND	0.913	1.83	ug/L	100	09/03/24 13:17	EPA 8270E LVI	
Benzo(g,h,i)perylene	ND	1.83	3.65	ug/L	100	09/03/24 13:17	EPA 8270E LVI	
Chrysene	ND	0.913	1.83	ug/L	100	09/03/24 13:17	EPA 8270E LVI	
Dibenz(a,h)anthracene	ND	0.913	1.83	ug/L	100	09/03/24 13:17	EPA 8270E LVI	
Fluoranthene	4.57	1.83	3.65	ug/L	100	09/03/24 13:17	EPA 8270E LVI	
Fluorene	73.8	1.83	3.65	ug/L	100	09/03/24 13:17	EPA 8270E LVI	
Indeno(1,2,3-cd)pyrene	ND	0.913	1.83	ug/L	100	09/03/24 13:17	EPA 8270E LVI	
1-Methylnaphthalene	388	3.65	7.31	ug/L	100	09/03/24 13:17	EPA 8270E LVI	
2-Methylnaphthalene	432	3.65	7.31	ug/L	100	09/03/24 13:17	EPA 8270E LVI	
Naphthalene	322	3.65	7.31	ug/L	100	09/03/24 13:17	EPA 8270E LVI	
Phenanthrene	56.7	3.65	7.31	ug/L	100	09/03/24 13:17	EPA 8270E LVI	
Pyrene	4.66	1.83	3.65	ug/L	100	09/03/24 13:17	EPA 8270E LVI	
Dibenzofuran	14.9	1.83	3.65	ug/L	100	09/03/24 13:17	EPA 8270E LVI	
Surrogate: Acenaphthylene-d8 (Surr)		Re	covery: %	Limits: 78-134 %	100	09/03/24 13:17	EPA 8270E LVI	S-01
Benzo(a)pyrene-d12 (Surr)		122 % 80-132 % 100 09/03/24 13:17 EPA 8270E LVI		EPA 8270E LVI	S-05			
B-4R-20240827 (A4H1527-04RE1)				Matrix: Water Batch: 24H1080				
Acenaphthene	26.5	0.183	0.366	ug/L	10	08/29/24 23:28	EPA 8270E LVI	
Acenaphthylene	1.61	0.183	0.366	ug/L	10	08/29/24 23:28	EPA 8270E LVI	
Anthracene	0.320	0.183	0.366	ug/L	10	08/29/24 23:28	EPA 8270E LVI	J
Benz(a)anthracene	ND	0.0915	0.183	ug/L	10	08/29/24 23:28	EPA 8270E LVI	

Apex Laboratories

_

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
B-4R-20240827 (A4H1527-04RE1)				Matrix: Wate	r	Batch:	24H1080	
Benzo(a)pyrene	ND	0.0915	0.183	ug/L	10	08/29/24 23:28	EPA 8270E LVI	
Benzo(b)fluoranthene	ND	0.0915	0.183	ug/L	10	08/29/24 23:28	EPA 8270E LVI	
Benzo(k)fluoranthene	ND	0.0915	0.183	ug/L	10	08/29/24 23:28	EPA 8270E LVI	
Benzo(g,h,i)perylene	ND	0.183	0.366	ug/L	10	08/29/24 23:28	EPA 8270E LVI	
Chrysene	ND	0.0915	0.183	ug/L	10	08/29/24 23:28	EPA 8270E LVI	
Dibenz(a,h)anthracene	ND	0.0915	0.183	ug/L	10	08/29/24 23:28	EPA 8270E LVI	
Fluoranthene	0.192	0.183	0.366	ug/L	10	08/29/24 23:28	EPA 8270E LVI	J
Fluorene	4.97	0.183	0.366	ug/L	10	08/29/24 23:28	EPA 8270E LVI	
Indeno(1,2,3-cd)pyrene	ND	0.0915	0.183	ug/L	10	08/29/24 23:28	EPA 8270E LVI	
1-Methylnaphthalene	4.54	0.366	0.732	ug/L	10	08/29/24 23:28	EPA 8270E LVI	
2-Methylnaphthalene	0.384	0.366	0.732	ug/L	10	08/29/24 23:28	EPA 8270E LVI	J
Naphthalene	1.19	0.366	0.732	ug/L	10	08/29/24 23:28	EPA 8270E LVI	
Phenanthrene	1.01	0.366	0.732	ug/L	10	08/29/24 23:28	EPA 8270E LVI	
Pyrene	0.229	0.183	0.366	ug/L	10	08/29/24 23:28	EPA 8270E LVI	J
Dibenzofuran	ND	0.183	0.366	ug/L	10	08/29/24 23:28	EPA 8270E LVI	
Surrogate: Acenaphthylene-d8 (Surr)		Reco	very: 66 %	Limits: 78-134 %	10	08/29/24 23:28	EPA 8270E LVI	S-05
Benzo(a)pyrene-d12 (Surr)			102 %	80-132 %	10	08/29/24 23:28	EPA 8270E LVI	S-05
MW-102R-08272024 (A4H1527-05RE2)				Matrix: Wate	r	Batch	: 2410001	DCNT
Acenaphthene	13.1	0.0712	0.142	ug/L	4	09/03/24 13:50	EPA 8270E LVI	
Acenaphthylene	1.22	0.0712	0.142	ug/L	4	09/03/24 13:50	EPA 8270E LVI	
Anthracene	0.918	0.0712	0.142	ug/L	4	09/03/24 13:50	EPA 8270E LVI	
Benz(a)anthracene	ND	0.0356	0.0712	ug/L	4	09/03/24 13:50	EPA 8270E LVI	
Benzo(a)pyrene	ND	0.0356	0.0712	ug/L	4	09/03/24 13:50	EPA 8270E LVI	
Benzo(b)fluoranthene	ND	0.0356	0.0712	ug/L	4	09/03/24 13:50	EPA 8270E LVI	
Benzo(k)fluoranthene	ND	0.0356	0.0712	ug/L	4	09/03/24 13:50	EPA 8270E LVI	
Benzo(g,h,i)perylene	ND	0.0712	0.142	ug/L	4	09/03/24 13:50	EPA 8270E LVI	
Chrysene	ND	0.0356	0.0712	ug/L	4	09/03/24 13:50	EPA 8270E LVI	
Dibenz(a,h)anthracene	ND	0.0356	0.0712	ug/L	4	09/03/24 13:50	EPA 8270E LVI	
Fluoranthene	0.683	0.0712	0.142	ug/L	4	09/03/24 13:50	EPA 8270E LVI	
Fluorene	4.19	0.0712	0.142	ug/L	4	09/03/24 13:50	EPA 8270E LVI	
Indeno(1,2,3-cd)pyrene	ND	0.0356	0.0712	ug/L	4	09/03/24 13:50	EPA 8270E LVI	
1-Methylnaphthalene	0.180	0.142	0.285	ug/L	4	09/03/24 13:50	EPA 8270E LVI	J
2-Methylnaphthalene	ND	0.142	0.285	ug/L	4	09/03/24 13:50	EPA 8270E LVI	-
Naphthalene	ND	0.142	0.285	ug/L	4	09/03/24 13:50	EPA 8270E LVI	
Phenanthrene	1.15	0.142	0.285	ug/L	4	09/03/24 13:50	EPA 8270E LVI	

Apex Laboratories

COSi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

ANALYTICAL SAMPLE RESULTS

	G 1	ъ:	n .:			ъ.,		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-102R-08272024 (A4H1527-05RE2)				Matrix: Wate	r	Batch: 24I0001		DCNT
Dibenzofuran	0.294	0.0712	0.142	ug/L	4	09/03/24 13:50	EPA 8270E LVI	
Surrogate: Acenaphthylene-d8 (Surr)		Reco	very: 82 %	Limits: 78-134 %	4	09/03/24 13:50	EPA 8270E LVI	S-05
Benzo(a)pyrene-d12 (Surr)			113 %	80-132 %	4	09/03/24 13:50	EPA 8270E LVI	S-05
MW-104-082724 (A4H1527-06RE2)				Matrix: Wate	r	Batch	: 2410001	DCNT
Acenaphthene	51.7	0.181	0.362	ug/L	10	09/03/24 14:23	EPA 8270E LVI	
Acenaphthylene	2.07	0.181	0.362	ug/L	10	09/03/24 14:23	EPA 8270E LVI	
Anthracene	0.321	0.181	0.362	ug/L	10	09/03/24 14:23	EPA 8270E LVI	J
Benz(a)anthracene	ND	0.0904	0.181	ug/L	10	09/03/24 14:23	EPA 8270E LVI	
Benzo(a)pyrene	ND	0.0904	0.181	ug/L	10	09/03/24 14:23	EPA 8270E LVI	
Benzo(b)fluoranthene	ND	0.0904	0.181	ug/L	10	09/03/24 14:23	EPA 8270E LVI	
Benzo(k)fluoranthene	ND	0.0904	0.181	ug/L	10	09/03/24 14:23	EPA 8270E LVI	
Benzo(g,h,i)perylene	ND	0.181	0.362	ug/L	10	09/03/24 14:23	EPA 8270E LVI	
Chrysene	ND	0.0904	0.181	ug/L	10	09/03/24 14:23	EPA 8270E LVI	
Dibenz(a,h)anthracene	ND	0.0904	0.181	ug/L	10	09/03/24 14:23	EPA 8270E LVI	
Fluoranthene	1.42	0.181	0.362	ug/L	10	09/03/24 14:23	EPA 8270E LVI	
Fluorene	5.78	0.181	0.362	ug/L	10	09/03/24 14:23	EPA 8270E LVI	
Indeno(1,2,3-cd)pyrene	ND	0.0904	0.181	ug/L	10	09/03/24 14:23	EPA 8270E LVI	
1-Methylnaphthalene	0.601	0.362	0.723	ug/L	10	09/03/24 14:23	EPA 8270E LVI	J
2-Methylnaphthalene	ND	0.362	0.723	ug/L	10	09/03/24 14:23	EPA 8270E LVI	
Naphthalene	ND	0.362	0.723	ug/L	10	09/03/24 14:23	EPA 8270E LVI	
Phenanthrene	ND	0.362	0.723	ug/L	10	09/03/24 14:23	EPA 8270E LVI	
Pyrene	1.08	0.181	0.362	ug/L	10	09/03/24 14:23	EPA 8270E LVI	
Dibenzofuran	0.221	0.181	0.362	ug/L	10	09/03/24 14:23	EPA 8270E LVI	J
Surrogate: Acenaphthylene-d8 (Surr)		Reco	very: 60 %	Limits: 78-134 %	10	09/03/24 14:23	EPA 8270E LVI	S-05
Benzo(a)pyrene-d12 (Surr)			103 %	80-132 %	10	09/03/24 14:23	EPA 8270E LVI	S-05
MW-107R-082724 (A4H1527-07RE2)				Matrix: Wate	r	Batch	: 2410001	DCNT
Acenaphthene	ND	0.0640	0.0640	ug/L	1	09/03/24 14:56	EPA 8270E LVI	R-02
Acenaphthylene	5.06	0.0190	0.0380	ug/L	1	09/03/24 14:56	EPA 8270E LVI	
Anthracene	0.338	0.0190	0.0380	ug/L	1	09/03/24 14:56	EPA 8270E LVI	
Benz(a)anthracene	ND	0.00949	0.0190	ug/L	1	09/03/24 14:56	EPA 8270E LVI	
Benzo(a)pyrene	ND	0.00949	0.0190	ug/L	1	09/03/24 14:56	EPA 8270E LVI	
Benzo(b)fluoranthene	ND	0.00949	0.0190	ug/L	1	09/03/24 14:56	EPA 8270E LVI	
Benzo(k)fluoranthene	ND	0.00949	0.0190	ug/L	1	09/03/24 14:56	EPA 8270E LVI	
Benzo(g,h,i)perylene	ND	0.0190	0.0380	ug/L	1	09/03/24 14:56	EPA 8270E LVI	

Apex Laboratories

(BDi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon Consulting - BellevueProject:13555 SE 36th Street, Suite 320Project NurBellevue, WA 98006Project Man

 Project Number:
 2644-001
 Report ID:

 Project Manager:
 James Welles
 A4H1527 - 09 27 24 1522

ANALYTICAL SAMPLE RESULTS

Union Station

Polya	romatic Hyd	Irocarbons (F	PAHs) by EF	PA 8270E (Large	e Volume	Injection)		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-107R-082724 (A4H1527-07RE2)				Matrix: Wate	: Water Batch: 2		: 2410001	DCNT
Chrysene	ND	0.00949	0.0190	ug/L	1	09/03/24 14:56	EPA 8270E LVI	
Dibenz(a,h)anthracene	ND	0.00949	0.0190	ug/L	1	09/03/24 14:56	EPA 8270E LVI	
Fluoranthene	ND	0.0190	0.0380	ug/L	1	09/03/24 14:56	EPA 8270E LVI	
Fluorene	ND	0.166	0.166	ug/L	1	09/03/24 14:56	EPA 8270E LVI	R-02
Indeno(1,2,3-cd)pyrene	ND	0.00949	0.0190	ug/L	1	09/03/24 14:56	EPA 8270E LVI	
1-Methylnaphthalene	0.0531	0.0380	0.0759	ug/L	1	09/03/24 14:56	EPA 8270E LVI	J
2-Methylnaphthalene	0.0702	0.0380	0.0759	ug/L	1	09/03/24 14:56	EPA 8270E LVI	J
Naphthalene	0.168	0.0380	0.0759	ug/L	1	09/03/24 14:56	EPA 8270E LVI	
Phenanthrene	0.0655	0.0380	0.0759	ug/L	1	09/03/24 14:56	EPA 8270E LVI	J
Pyrene	0.0213	0.0190	0.0380	ug/L	1	09/03/24 14:56	EPA 8270E LVI	J
Dibenzofuran	ND	0.0629	0.0629	ug/L	1	09/03/24 14:56	EPA 8270E LVI	R-02
Surrogate: Acenaphthylene-d8 (Surr)		Reco	very: 93 %	Limits: 78-134 %	5 1	09/03/24 14:56	EPA 8270E LVI	
Benzo(a)pyrene-d12 (Surr)			113 %	80-132 %	<i>i</i> 1	09/03/24 14:56	EPA 8270E LVI	

B-6R-082724 (A4H1527-08)				Matrix: Water		Batch:	24H1080	DCNT
Acenaphthene	ND	0.0744	0.0744	ug/L	1	08/29/24 18:32	EPA 8270E LVI	R-02
Acenaphthylene	0.0635	0.0198	0.0397	ug/L	1	08/29/24 18:32	EPA 8270E LVI	
Anthracene	ND	0.0198	0.0397	ug/L	1	08/29/24 18:32	EPA 8270E LVI	
Benz(a)anthracene	ND	0.00992	0.0198	ug/L	1	08/29/24 18:32	EPA 8270E LVI	
Benzo(a)pyrene	ND	0.00992	0.0198	ug/L	1	08/29/24 18:32	EPA 8270E LVI	
Benzo(b)fluoranthene	ND	0.00992	0.0198	ug/L	1	08/29/24 18:32	EPA 8270E LVI	
Benzo(k)fluoranthene	ND	0.00992	0.0198	ug/L	1	08/29/24 18:32	EPA 8270E LVI	
Benzo(g,h,i)perylene	ND	0.0198	0.0397	ug/L	1	08/29/24 18:32	EPA 8270E LVI	
Chrysene	ND	0.00992	0.0198	ug/L	1	08/29/24 18:32	EPA 8270E LVI	
Dibenz(a,h)anthracene	ND	0.00992	0.0198	ug/L	1	08/29/24 18:32	EPA 8270E LVI	
Fluoranthene	ND	0.0198	0.0397	ug/L	1	08/29/24 18:32	EPA 8270E LVI	
Fluorene	ND	0.0198	0.0397	ug/L	1	08/29/24 18:32	EPA 8270E LVI	
Indeno(1,2,3-cd)pyrene	ND	0.00992	0.0198	ug/L	1	08/29/24 18:32	EPA 8270E LVI	
1-Methylnaphthalene	ND	0.0397	0.0794	ug/L	1	08/29/24 18:32	EPA 8270E LVI	
2-Methylnaphthalene	ND	0.0397	0.0794	ug/L	1	08/29/24 18:32	EPA 8270E LVI	
Naphthalene	0.169	0.0397	0.0794	ug/L	1	08/29/24 18:32	EPA 8270E LVI	
Phenanthrene	ND	0.0397	0.0794	ug/L	1	08/29/24 18:32	EPA 8270E LVI	
Pyrene	ND	0.0198	0.0397	ug/L	1	08/29/24 18:32	EPA 8270E LVI	
Dibenzofuran	ND	0.0198	0.0397	ug/L	1	08/29/24 18:32	EPA 8270E LVI	
Surrogate: Acenaphthylene-d8 (Surr)		Recovery:	103 %	Limits: 78-134 %	1	08/29/24 18:32	EPA 8270E LVI	
Benzo(a)pyrene-d12 (Surr)			107 %	80-132 %	1	08/29/24 18:32	EPA 8270E LVI	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon Consulting - BellevueProject:Union Station13555 SE 36th Street, Suite 320Project Number:2644-001Bellevue, WA 98006Project Manager:James Welles

Report ID: A4H1527 - 09 27 24 1522

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
MW-101R-20240827 (A4H1527-03)				Matrix: Water		Batch: 24I0006		PRES
cis-Decalin	ND	0.800	1.60	ug/L	40	09/03/24 18:04	EPA 8270m	
C1-Decalin	ND	4.00	4.00	ug/L	40	09/03/24 18:04	EPA 8270m	
C2-Decalin	ND	4.00	4.00	ug/L	40	09/03/24 18:04	EPA 8270m	
C3-Decalin	ND	8.00	8.00	ug/L	40	09/03/24 18:04	EPA 8270m	
C4-Decalin	ND	8.00	8.00	ug/L	40	09/03/24 18:04	EPA 8270m	
1-Methylnaphthalene	213	0.800	1.60	ug/L	40	09/03/24 18:04	EPA 8270m	В
2-Methylnaphthalene	263	0.800	1.60	ug/L	40	09/03/24 18:04	EPA 8270m	В
C2-Naphthalenes	93.9	4.00	4.00	ug/L	40	09/03/24 18:04	EPA 8270m	
C3-Naphthalenes	7.93	4.00	4.00	ug/L	40	09/03/24 18:04	EPA 8270m	
C4-Naphthalenes	ND	4.00	4.00	ug/L	40	09/03/24 18:04	EPA 8270m	
Acenaphthene	159	0.400	0.800	ug/L	40	09/03/24 18:04	EPA 8270m	В
Acenaphthylene	ND	1.20	1.20	ug/L	40	09/03/24 18:04	EPA 8270m	R-02
Dibenzofuran	12.9	0.400	0.800	ug/L	40	09/03/24 18:04	EPA 8270m	
Fluorene	57.3	0.400	0.800	ug/L	40	09/03/24 18:04	EPA 8270m	B-02
C1-Fluorenes	ND	4.00	4.00	ug/L	40	09/03/24 18:04	EPA 8270m	
C2-Fluorenes	ND	4.00	4.00	ug/L	40	09/03/24 18:04	EPA 8270m	
C3-Fluorenes	ND	4.00	4.00	ug/L	40	09/03/24 18:04	EPA 8270m	
Dibenzothiophene	3.67	0.400	0.800	ug/L	40	09/03/24 18:04	EPA 8270m	
C1-Dibenzothiophene	ND	4.00	4.00	ug/L	40	09/03/24 18:04	EPA 8270m	
C2-Dibenzothiophene	ND	4.00	4.00	ug/L	40	09/03/24 18:04	EPA 8270m	
C3-Dibenzothiophene	ND	4.00	4.00	ug/L	40	09/03/24 18:04	EPA 8270m	
C4-Dibenzothiophene	ND	8.00	8.00	ug/L	40	09/03/24 18:04	EPA 8270m	
Phenanthrene	50.7	0.400	0.800	ug/L	40	09/03/24 18:04	EPA 8270m	
Anthracene	4.85	0.400	0.800	ug/L	40	09/03/24 18:04	EPA 8270m	
1-Methylphenanthrene	1.03	0.400	0.800	ug/L	40	09/03/24 18:04	EPA 8270m	M-05
C1-Phenanthrenes/Anthracenes	5.96	4.00	4.00	ug/L	40	09/03/24 18:04	EPA 8270m	
C2-Phenanthrenes/Anthracenes	ND	4.00	4.00	ug/L	40	09/03/24 18:04	EPA 8270m	
C3-Phenanthrenes/Anthracenes	ND	4.00	4.00	ug/L	40	09/03/24 18:04	EPA 8270m	
C4-Phenanthrenes/Anthracenes	ND	8.00	8.00	ug/L	40	09/03/24 18:04	EPA 8270m	
Fluoranthene	4.75	0.400	0.800	ug/L	40	09/03/24 18:04	EPA 8270m	
Pyrene	3.99	0.400	0.800	ug/L	40	09/03/24 18:04	EPA 8270m	
C1-Fluoranthenes/Pyrenes	ND	4.00	4.00	ug/L	40	09/03/24 18:04	EPA 8270m	
C2-Fluoranthenes/Pyrenes	ND	4.00	4.00	ug/L	40	09/03/24 18:04	EPA 8270m	
C3-Fluoranthenes/Pyrenes	ND	4.00	4.00	ug/L	40	09/03/24 18:04	EPA 8270m	
C4-Fluoranthenes/Pyrenes	ND	8.00	8.00	ug/L	40	09/03/24 18:04	EPA 8270m	
Chrysene	ND	0.400	0.800	ug/L	40	09/03/24 18:04	EPA 8270m	
Benz(a)anthracene	0.419	0.400	0.800	ug/L	40	09/03/24 18:04	EPA 8270m	J

Apex Laboratories

CODI

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon Consulting - BellevueProject:Union Station13555 SE 36th Street, Suite 320Project Number:2644-001Bellevue, WA 98006Project Manager:James Welles

Report ID: A4H1527 - 09 27 24 1522

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
MW-101R-20240827 (A4H1527-03)				Matrix: Water	r	Batch:	2410006	PRES
C1-Chrysenes/Benz(a)anthracenes	ND	4.00	4.00	ug/L	40	09/03/24 18:04	EPA 8270m	
C2-Chrysenes/Benz(a)anthracenes	ND	4.00	4.00	ug/L	40	09/03/24 18:04	EPA 8270m	
C3-Chrysenes/Benz(a)anthracenes	ND	4.00	4.00	ug/L	40	09/03/24 18:04	EPA 8270m	
C4-Chrysenes/Benz(a)anthracenes	ND	8.00	8.00	ug/L	40	09/03/24 18:04	EPA 8270m	
Benzo(b)fluoranthene	ND	0.600	1.20	ug/L	40	09/03/24 18:04	EPA 8270m	
Benzo(k)fluoranthene	ND	0.600	1.20	ug/L	40	09/03/24 18:04	EPA 8270m	
Benzo(a)pyrene	ND	0.600	1.20	ug/L	40	09/03/24 18:04	EPA 8270m	
Benzo(e)pyrene	ND	0.400	0.800	ug/L	40	09/03/24 18:04	EPA 8270m	
Perylene	ND	0.400	0.800	ug/L	40	09/03/24 18:04	EPA 8270m	
Indeno(1,2,3-cd)pyrene	ND	0.400	0.800	ug/L	40	09/03/24 18:04	EPA 8270m	
Dibenz(a,h)anthracene	ND	0.400	0.800	ug/L	40	09/03/24 18:04	EPA 8270m	
Benzo(g,h,i)perylene	ND	0.400	0.800	ug/L	40	09/03/24 18:04	EPA 8270m	
1,1'-Biphenyl	ND	2.00	4.00	ug/L	40	09/03/24 18:04	EPA 8270m	
2,6-Dimethylnaphthalene	24.1	0.800	1.60	ug/L	40	09/03/24 18:04	EPA 8270m	M-05
1,6,7-Trimethylnaphthalene	1.51	0.800	1.60	ug/L	40	09/03/24 18:04	EPA 8270m	J
Surrogate: Nitrobenzene-d5 (Surr)		Recover	y: 79 %	Limits: 44-120 %	40	09/03/24 18:04	EPA 8270m	
2-Fluorobiphenyl (Surr)			75 %	44-120 %	40	09/03/24 18:04	EPA 8270m	
Acenaphthylene-d8 (Surr)			80 %	45-120 %	40	09/03/24 18:04	EPA 8270m	
p-Terphenyl-d14 (Surr)			81 %	50-134 %	40	09/03/24 18:04	EPA 8270m	
Benzo(a)pyrene-d12 (Surr)			107 %	63-120 %	40	09/03/24 18:04	EPA 8270m	
MW-101R-20240827 (A4H1527-03RE1)				Matrix: Water	r	Batch:	2410006	
Naphthalene	445	8.00	16.0	ug/L	400	09/03/24 19:12	EPA 8270m	В
C1-Naphthalenes	607	40.0	40.0	ug/L	400	09/03/24 19:12	EPA 8270m	В
MW-107R-082724 (A4H1527-07RE2)				Matrix: Water	r	Batch:	2410006	
cis-Decalin	ND	0.0748	0.150	ug/L	4	09/04/24 09:58	EPA 8270m	
C1-Decalin	ND	0.374	0.374	ug/L	4	09/04/24 09:58	EPA 8270m	
C2-Decalin	ND	0.374	0.374	ug/L	4	09/04/24 09:58	EPA 8270m	
C3-Decalin	ND	0.748	0.748	ug/L	4	09/04/24 09:58	EPA 8270m	
C4-Decalin	ND	0.748	0.748	ug/L	4	09/04/24 09:58	EPA 8270m	
Naphthalene	ND	0.150	0.150	ug/L	4	09/04/24 09:58	EPA 8270m	
1-Methylnaphthalene	0.179	0.0748	0.150	ug/L	4	09/04/24 09:58	EPA 8270m	В
2-Methylnaphthalene	ND	0.0748	0.150	ug/L	4	09/04/24 09:58	EPA 8270m	
C1-Naphthalenes	ND	0.374	0.374	ug/L	4	09/04/24 09:58	EPA 8270m	
C2-Naphthalenes	ND	0.374	0.374	ug/L	4	09/04/24 09:58	EPA 8270m	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon Consulting - BellevueProject:Union Station13555 SE 36th Street, Suite 320Project Number:2644-001Bellevue, WA 98006Project Manager:James Welles

Report ID: A4H1527 - 09 27 24 1522

ANALYTICAL SAMPLE RESULTS

Polyare	mane myare	carbons (PA	i ioj aliu PAH	nomologs	Dy EPA 821	ve woarrea		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-107R-082724 (A4H1527-07RE2)				Matrix: Wa	ater	Batch:	2410006	
C3-Naphthalenes	ND	0.374	0.374	ug/L	4	09/04/24 09:58	EPA 8270m	
C4-Naphthalenes	0.713	0.374	0.374	ug/L	4	09/04/24 09:58	EPA 8270m	
Acenaphthene	26.1	0.0374	0.0748	ug/L	4	09/04/24 09:58	EPA 8270m	В
Acenaphthylene	1.94	0.0374	0.0748	ug/L	4	09/04/24 09:58	EPA 8270m	
Dibenzofuran	0.805	0.0374	0.0748	ug/L	4	09/04/24 09:58	EPA 8270m	
Fluorene	3.62	0.0374	0.0748	ug/L	4	09/04/24 09:58	EPA 8270m	B-02
C1-Fluorenes	0.413	0.374	0.374	ug/L	4	09/04/24 09:58	EPA 8270m	
C2-Fluorenes	ND	0.374	0.374	ug/L	4	09/04/24 09:58	EPA 8270m	
C3-Fluorenes	ND	0.374	0.374	ug/L	4	09/04/24 09:58	EPA 8270m	
Dibenzothiophene	0.381	0.0374	0.0748	ug/L	4	09/04/24 09:58	EPA 8270m	
C1-Dibenzothiophene	0.399	0.374	0.374	ug/L	4	09/04/24 09:58	EPA 8270m	
C2-Dibenzothiophene	ND	0.374	0.374	ug/L	4	09/04/24 09:58	EPA 8270m	
C3-Dibenzothiophene	ND	0.374	0.374	ug/L	4	09/04/24 09:58	EPA 8270m	
C4-Dibenzothiophene	ND	0.748	0.748	ug/L	4	09/04/24 09:58	EPA 8270m	
Phenanthrene	ND	0.0748	0.0748	ug/L	4	09/04/24 09:58	EPA 8270m	
Anthracene	0.256	0.0374	0.0748	ug/L	4	09/04/24 09:58	EPA 8270m	
1-Methylphenanthrene	ND	0.0748	0.0748	ug/L	4	09/04/24 09:58	EPA 8270m	
C1-Phenanthrenes/Anthracenes	ND	0.374	0.374	ug/L	4	09/04/24 09:58	EPA 8270m	
C2-Phenanthrenes/Anthracenes	ND	0.374	0.374	ug/L	4	09/04/24 09:58	EPA 8270m	
C3-Phenanthrenes/Anthracenes	ND	0.374	0.374	ug/L	4	09/04/24 09:58	EPA 8270m	
C4-Phenanthrenes/Anthracenes	ND	0.748	0.748	ug/L	4	09/04/24 09:58	EPA 8270m	
Fluoranthene	0.514	0.0374	0.0748	ug/L	4	09/04/24 09:58	EPA 8270m	
Pyrene	0.560	0.0374	0.0748	ug/L	4	09/04/24 09:58	EPA 8270m	
C1-Fluoranthenes/Pyrenes	ND	0.374	0.374	ug/L	4	09/04/24 09:58	EPA 8270m	
C2-Fluoranthenes/Pyrenes	ND	0.374	0.374	ug/L	4	09/04/24 09:58	EPA 8270m	
C3-Fluoranthenes/Pyrenes	ND	0.374	0.374	ug/L	4	09/04/24 09:58	EPA 8270m	
C4-Fluoranthenes/Pyrenes	ND	0.748	0.748	ug/L	4	09/04/24 09:58	EPA 8270m	
Chrysene	ND	0.0374	0.0748	ug/L	4	09/04/24 09:58	EPA 8270m	
Benz(a)anthracene	ND	0.0374	0.0748	ug/L	4	09/04/24 09:58	EPA 8270m	
C1-Chrysenes/Benz(a)anthracenes	ND	0.374	0.374	ug/L	4	09/04/24 09:58	EPA 8270m	
C2-Chrysenes/Benz(a)anthracenes	ND	0.374	0.374	ug/L	4	09/04/24 09:58	EPA 8270m	
C3-Chrysenes/Benz(a)anthracenes	ND	0.374	0.374	ug/L	4	09/04/24 09:58	EPA 8270m	
C4-Chrysenes/Benz(a)anthracenes	ND	0.748	0.748	ug/L	4	09/04/24 09:58	EPA 8270m	
Benzo(b)fluoranthene	ND	0.0561	0.112	ug/L	4	09/04/24 09:58	EPA 8270m	
Benzo(k)fluoranthene	ND	0.0561	0.112	ug/L	4	09/04/24 09:58	EPA 8270m	
Benzo(a)pyrene	ND	0.0561	0.112	ug/L	4	09/04/24 09:58	EPA 8270m	
Benzo(e)pyrene	ND	0.0374	0.0748	ug/L	4	09/04/24 09:58	EPA 8270m	

Apex Laboratories

COSi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: Union Station
Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		Note:
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
MW-107R-082724 (A4H1527-07RE2)				Matrix: Wate	2410006	0006		
Perylene	ND	0.0374	0.0748	ug/L	4	09/04/24 09:58	EPA 8270m	
Indeno(1,2,3-cd)pyrene	ND	0.0374	0.0748	ug/L	4	09/04/24 09:58	EPA 8270m	
Dibenz(a,h)anthracene	ND	0.0374	0.0748	ug/L	4	09/04/24 09:58	EPA 8270m	
Benzo(g,h,i)perylene	ND	0.0374	0.0748	ug/L	4	09/04/24 09:58	EPA 8270m	
1,1'-Biphenyl	ND	0.187	0.374	ug/L	4	09/04/24 09:58	EPA 8270m	
2,6-Dimethylnaphthalene	ND	0.0748	0.150	ug/L	4	09/04/24 09:58	EPA 8270m	
1,6,7-Trimethylnaphthalene	ND	0.0748	0.150	ug/L	4	09/04/24 09:58	EPA 8270m	
Surrogate: Nitrobenzene-d5 (Surr)		Recov	very: 67 %	Limits: 44-120 %	6 4	09/04/24 09:58	EPA 8270m	Q-41
2-Fluorobiphenyl (Surr)			60 %	44-120 %	6 4	09/04/24 09:58	EPA 8270m	
Acenaphthylene-d8 (Surr)			66 %	45-120 %	6 4	09/04/24 09:58	EPA 8270m	
p-Terphenyl-d14 (Surr)			53 %	50-134 %	6 4	09/04/24 09:58	EPA 8270m	
Benzo(a)pyrene-d12 (Surr)			96 %	63-120 %	6 4	09/04/24 09:58	EPA 8270m	

Apex Laboratories

COSi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

ANALYTICAL SAMPLE RESULTS

		Total Meta	als by EPA 60	20B (ICPMS	')					
	Sample	Detection	Reporting			Date		_ 		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes		
MW-108R-20240827 (A4H1527-01)				Matrix: Wa	ater					
Batch: 24I0133										
Arsenic	ND		1.00	ug/L	1	09/05/24 22:11	EPA 6020B			
MW-105-20240827 (A4H1527-02)				Matrix: Wa	iter					
Batch: 24I0133										
Arsenic	4.79		1.00	ug/L	1	09/05/24 22:30	EPA 6020B			
MW-101R-20240827 (A4H1527-03)				Matrix: Wa	iter					
Batch: 24I0133										
Arsenic	8.31		1.00	ug/L	1	09/05/24 22:37	EPA 6020B			
B-4R-20240827 (A4H1527-04)		Matrix: Water								
Batch: 24I0133										
Arsenic	10.5		1.00	ug/L	1	09/05/24 22:43	EPA 6020B			
MW-102R-08272024 (A4H1527-05)				Matrix: Wa	iter					
Batch: 24I0133										
Arsenic	2.59		1.00	ug/L	1	09/05/24 22:49	EPA 6020B			
MW-104-082724 (A4H1527-06)				Matrix: Wa	iter					
Batch: 24I0133										
Arsenic	ND		1.00	ug/L	1	09/05/24 22:56	EPA 6020B			
MW-107R-082724 (A4H1527-07)				Matrix: Wa	ıter					
Batch: 24I0133										
Arsenic	5.95		1.00	ug/L	1	09/05/24 23:01	EPA 6020B			
B-6R-082724 (A4H1527-08)				Matrix: Wa	nter					
Batch: 24I0133										
Arsenic	28.0		1.00	ug/L	1	09/05/24 23:08	EPA 6020B			

Apex Laboratories

COSi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: **Union Station**Project Number: **2644-001**Project Manager: **James Welles**

Report ID: A4H1527 - 09 27 24 1522

ANALYTICAL SAMPLE RESULTS

		Dissolved M	etals by EPA	6020B (ICP	MS)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-108R-20240827 (A4H1527-01)				Matrix: W	ater			
Batch: 24I0202								
Arsenic	ND		1.00	ug/L	1	09/09/24 13:39	EPA 6020B (Diss)	
MW-105-20240827 (A4H1527-02)				Matrix: W	ater			
Batch: 24I0202								
Arsenic	4.31		1.00	ug/L	1	09/09/24 14:05	EPA 6020B (Diss)	
MW-101R-20240827 (A4H1527-03)				Matrix: W	ater			
Batch: 24I0202								
Arsenic	7.96		1.00	ug/L	1	09/09/24 14:12	EPA 6020B (Diss)	
B-4R-20240827 (A4H1527-04)				Matrix: W	ater			
Batch: 24I0202								
Arsenic	5.72		1.00	ug/L	1	09/09/24 14:18	EPA 6020B (Diss)	
MW-102R-08272024 (A4H1527-05)				Matrix: W	ater			
Batch: 24I0202								
Arsenic	2.21		1.00	ug/L	1	09/09/24 14:38	EPA 6020B (Diss)	
MW-104-082724 (A4H1527-06)				Matrix: W	ater			
Batch: 24I0202								
Arsenic	ND		1.00	ug/L	1	09/09/24 14:45	EPA 6020B (Diss)	
MW-107R-082724 (A4H1527-07)				Matrix: W	ater			
Batch: 24I0202								
Arsenic	5.75		1.00	ug/L	1	09/09/24 14:51	EPA 6020B (Diss)	
B-6R-082724 (A4H1527-08)				Matrix: W	ater			
Batch: 24I0202								
Arsenic	20.5		1.00	ug/L	1	09/09/24 14:58	EPA 6020B (Diss)	
B-6R-082724 (A4H1527-08RE1)				Matrix: W	ater			
Batch: 24I0193								
Arsenic	4.40		1.00	ug/L	1	09/19/24 17:51	EPA 6020B (Diss)	FILT1

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: **Union Station**Project Number: **2644-001**Project Manager: **James Welles**

Report ID: A4H1527 - 09 27 24 1522

ANALYTICAL SAMPLE RESULTS

		Anions	by Ion Chrom	atography				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-108R-20240827 (A4H1527-01)				Matrix: W	ater			
Batch: 24H1035								
Nitrate-Nitrogen	3.50		0.250	mg/L	1	08/28/24 19:55	EPA 300.0	Q-42
Sulfate	ND		1.00	mg/L	1	08/28/24 19:55	EPA 300.0	
MW-105-20240827 (A4H1527-02)				Matrix: Wa	ater			
Batch: 24H1035								
Nitrate-Nitrogen	ND		0.250	mg/L	1	08/28/24 21:00	EPA 300.0	
Sulfate	ND		1.00	mg/L	1	08/28/24 21:00	EPA 300.0	
MW-101R-20240827 (A4H1527-03)				Matrix: Wa	ater			
Batch: 24H1035								
Nitrate-Nitrogen	ND		0.250	mg/L	1	08/28/24 21:21	EPA 300.0	
Sulfate	ND		1.00	mg/L	1	08/28/24 21:21	EPA 300.0	
B-4R-20240827 (A4H1527-04)				Matrix: Wa	ater			
Batch: 24H1035								
Nitrate-Nitrogen	ND		0.250	mg/L	1	08/28/24 21:43	EPA 300.0	
Sulfate	ND		1.00	mg/L	1	08/28/24 21:43	EPA 300.0	
MW-102R-08272024 (A4H1527-05)				Matrix: W	ater			
Batch: 24H1035								
Nitrate-Nitrogen	ND		0.250	mg/L	1	08/28/24 22:04	EPA 300.0	
Sulfate	ND		1.00	mg/L	1	08/28/24 22:04	EPA 300.0	
MW-104-082724 (A4H1527-06)				Matrix: Wa	ater			
Batch: 24H1035								
Nitrate-Nitrogen	ND		0.250	mg/L	1	08/28/24 23:09	EPA 300.0	
Sulfate	3.72		1.00	mg/L	1	08/28/24 23:09	EPA 300.0	
MW-107R-082724 (A4H1527-07)				Matrix: Wa	ater			
Batch: 24H1035								
Nitrate-Nitrogen	ND		0.250	mg/L	1	08/28/24 23:31	EPA 300.0	
Sulfate	ND		1.00	mg/L	1	08/28/24 23:31	EPA 300.0	
B-6R-082724 (A4H1527-08)				Matrix: W	ater			
Batch: 24H1035								

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

COSi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project: Union Station
Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

ANALYTICAL SAMPLE RESULTS

	Anions by Ion Chromatography									
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
B-6R-082724 (A4H1527-08)		Matrix: Water								
Nitrate-Nitrogen Sulfate	0.638 ND		0.250 1.00	mg/L mg/L	1	08/28/24 23:52 08/28/24 23:52	EPA 300.0 EPA 300.0			

Apex Laboratories

COSi

Cameron O'Brien, Project Manager

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project: Union Station
Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

ANALYTICAL SAMPLE RESULTS

		Solid and	Moisture Det	erminations	<u> </u>			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
MW-108R-20240827 (A4H1527-01)				Matrix: Wa	ter			
Batch: 24H1098								
Total Dissolved Solids	7100		500	mg/L	1	08/29/24 18:43	SM 2540 C	
MW-108R-20240827 (A4H1527-01RE1)				Matrix: Wa	iter			
Batch: 24H1132								
Total Suspended Solids	39.0		5.00	mg/L	1	08/30/24 15:41	SM 2540 D	
MW-105-20240827 (A4H1527-02)				Matrix: Wa	iter			
Batch: 24H1098								
Total Dissolved Solids	2610		50.0	mg/L	1	08/29/24 18:43	SM 2540 C	
MW-105-20240827 (A4H1527-02RE1)				Matrix: Wa	iter			
Batch: 24H1132		<u> </u>						
Total Suspended Solids	8.00		5.00	mg/L	1	08/30/24 15:41	SM 2540 D	TSS
MW-101R-20240827 (A4H1527-03)				Matrix: Wa	iter			
Batch: 24H1095					_			_
Total Suspended Solids Batch: 24H1098	79.0		5.00	mg/L	1	08/29/24 18:15	SM 2540 D	В
Total Dissolved Solids	1050		10.0	mg/L	1	08/29/24 18:43	SM 2540 C	
B-4R-20240827 (A4H1527-04)				Matrix: Wa	iter			
Batch: 24H1095								
Total Suspended Solids Batch: 24H1098	65.0		5.00	mg/L	1	08/29/24 18:15	SM 2540 D	В
Total Dissolved Solids	451		5.00	mg/L	1	08/29/24 18:43	SM 2540 C	
MW-102R-08272024 (A4H1527-05)				Matrix: Wa	iter			
Batch: 24H1098								
Total Dissolved Solids	1720		50.0	mg/L	1	08/29/24 18:43	SM 2540 C	
MW-102R-08272024 (A4H1527-05RE1)				Matrix: Wa	iter			
Batch: 24H1132								
Total Suspended Solids	35.0		5.00	mg/L	1	08/30/24 15:41	SM 2540 D	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: **Union Station**Project Number: **2644-001**Project Manager: **James Welles**

Report ID: A4H1527 - 09 27 24 1522

ANALYTICAL SAMPLE RESULTS

		Solid and	Moisture Det	erminations	5			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
MW-104-082724 (A4H1527-06)				Matrix: Wa	ater			
Batch: 24H1098								
Total Dissolved Solids	401		5.00	mg/L	1	08/29/24 18:43	SM 2540 C	
MW-104-082724 (A4H1527-06RE1)				Matrix: Wa	ater			
Batch: 24H1132								
Total Suspended Solids	10.0		5.00	mg/L	1	08/30/24 15:41	SM 2540 D	TSS
MW-107R-082724 (A4H1527-07)				Matrix: Wa	ater			
Batch: 24H1098								
Total Dissolved Solids	1020		10.0	mg/L	1	08/29/24 18:43	SM 2540 C	
MW-107R-082724 (A4H1527-07RE1)				Matrix: Wa	ater			
Batch: 24H1132								
Total Suspended Solids	9.00		5.00	mg/L	1	08/30/24 15:41	SM 2540 D	TSS
B-6R-082724 (A4H1527-08)				Matrix: Wa	ater			
Batch: 24H1098								
Total Dissolved Solids	663		5.00	mg/L	1	08/29/24 18:43	SM 2540 C	
B-6R-082724 (A4H1527-08RE1)				Matrix: Wa	ater			
Batch: 24H1132								
Total Suspended Solids	13.0		5.00	mg/L	1	08/30/24 15:41	SM 2540 D	TSS

Apex Laboratories

COSi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: **Union Station**Project Number: **2644-001**Project Manager: **James Welles**

Report ID: A4H1527 - 09 27 24 1522

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting	_	_	Date	_	_		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note		
MW-108R-20240827 (A4H1527-01)	Matrix: Water									
Batch: 24H1066										
Total Alkalinity	2790		20.0	mg CaCO3/L	1	08/29/24 10:32	SM 2320 B			
Bicarbonate Alkalinity	2790		20.0	mg CaCO3/L	1	08/29/24 10:32	SM 2320 B			
Carbonate Alkalinity	ND		20.0	mg CaCO3/L	1	08/29/24 10:32	SM 2320 B			
Hydroxide Alkalinity	ND		20.0	mg CaCO3/L	1	08/29/24 10:32	SM 2320 B			
MW-105-20240827 (A4H1527-02)	Matrix: Water									
Batch: 24H1066										
Total Alkalinity	1800		20.0	mg CaCO3/L	1	08/29/24 11:15	SM 2320 B			
Bicarbonate Alkalinity	1800		20.0	mg CaCO3/L	1	08/29/24 11:15	SM 2320 B			
Carbonate Alkalinity	ND		20.0	mg CaCO3/L	1	08/29/24 11:15	SM 2320 B			
Hydroxide Alkalinity	ND		20.0	mg CaCO3/L	1	08/29/24 11:15	SM 2320 B			
MW-101R-20240827 (A4H1527-03)				Matrix: Wate	er					
Batch: 24H1066										
Total Alkalinity	816		20.0	mg CaCO3/L	1	08/29/24 11:44	SM 2320 B			
Bicarbonate Alkalinity	816		20.0	mg CaCO3/L	1	08/29/24 11:44	SM 2320 B			
Carbonate Alkalinity	ND		20.0	mg CaCO3/L	1	08/29/24 11:44	SM 2320 B			
Hydroxide Alkalinity	ND		20.0	mg CaCO3/L	1	08/29/24 11:44	SM 2320 B			
B-4R-20240827 (A4H1527-04)				Matrix: Wate	er					
Batch: 24H1066										
Total Alkalinity	361		20.0	mg CaCO3/L	1	08/29/24 11:58	SM 2320 B			
Bicarbonate Alkalinity	361		20.0	mg CaCO3/L	1	08/29/24 11:58	SM 2320 B			
Carbonate Alkalinity	ND		20.0	mg CaCO3/L	1	08/29/24 11:58	SM 2320 B			
Hydroxide Alkalinity	ND		20.0	mg CaCO3/L	1	08/29/24 11:58	SM 2320 B			
MW-102R-08272024 (A4H1527-05)				Matrix: Wate	er					
Batch: 24H1066								_		
Total Alkalinity	729		20.0	mg CaCO3/L	1	08/29/24 12:07	SM 2320 B			
Bicarbonate Alkalinity	729		20.0	mg CaCO3/L	1	08/29/24 12:07	SM 2320 B			
Carbonate Alkalinity	ND		20.0	mg CaCO3/L	1	08/29/24 12:07	SM 2320 B			
Hydroxide Alkalinity	ND		20.0	mg CaCO3/L	1	08/29/24 12:07	SM 2320 B			
//W-104-082724 (A4H1527-06)	Matrix: Water									
Batch: 24H1066										

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: **Union Station**Project Number: **2644-001**Project Manager: **James Welles**

Report ID: A4H1527 - 09 27 24 1522

ANALYTICAL SAMPLE RESULTS

Conventional Chemistry Parameters												
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
MW-104-082724 (A4H1527-06)	Matrix: Water											
Total Alkalinity	316		20.0	mg CaCO3/L	1	08/29/24 14:41	SM 2320 B					
Bicarbonate Alkalinity	316		20.0	mg CaCO3/L	1	08/29/24 14:41	SM 2320 B					
Carbonate Alkalinity	ND		20.0	mg CaCO3/L	1	08/29/24 14:41	SM 2320 B					
Hydroxide Alkalinity	ND		20.0	mg CaCO3/L	1	08/29/24 14:41	SM 2320 B					
MW-107R-082724 (A4H1527-07)	Matrix: Water											
Batch: 24H1066												
Total Alkalinity	775		20.0	mg CaCO3/L	1	08/29/24 12:23	SM 2320 B					
Bicarbonate Alkalinity	775		20.0	mg CaCO3/L	1	08/29/24 12:23	SM 2320 B					
Carbonate Alkalinity	ND		20.0	mg CaCO3/L	1	08/29/24 12:23	SM 2320 B					
Hydroxide Alkalinity	ND		20.0	mg CaCO3/L	1	08/29/24 12:23	SM 2320 B					
B-6R-082724 (A4H1527-08)	Matrix: Water											
Batch: 24H1066												
Total Alkalinity	531		20.0	mg CaCO3/L	1	08/29/24 12:45	SM 2320 B					
Bicarbonate Alkalinity	531		20.0	mg CaCO3/L	1	08/29/24 12:45	SM 2320 B					
Carbonate Alkalinity	ND		20.0	mg CaCO3/L	1	08/29/24 12:45	SM 2320 B					
Hydroxide Alkalinity	ND		20.0	mg CaCO3/L	1	08/29/24 12:45	SM 2320 B					

Apex Laboratories

COSi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/c	r Oil Hyd	Irocarbor	ns by NW7	TPH-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24H1121 - EPA 3510C	(Fuels/Acid	Ext.)					Wat	er				
Blank (24H1121-BLK1)		Prepared	: 08/30/24 11:	12 Analyz	zed: 08/30/2	4 20:23						
NWTPH-Dx LL												
Diesel	ND		80.0	ug/L	1							
Oil	ND		160	ug/L	1							
Mineral Oil	ND		160	ug/L	1							
Surr: o-Terphenyl (Surr)		Rec	overy: 82 %	Limits: 50	0-150 %	Dilt	ution: Ix					
LCS (24H1121-BS1)		Prepared	: 08/30/24 11:	12 Analyz	zed: 08/30/2	4 20:47						
NWTPH-Dx LL												
Diesel	354		80.0	ug/L	1	500		71	36 - 132%			
Surr: o-Terphenyl (Surr)		Reco	overy: 80 %	Limits: 50	0-150 %	Dilt	ution: 1x					
LCS Dup (24H1121-BSD1)		Prepared	: 08/30/24 11:	12 Analyz	zed: 08/30/2	4 21:10						Q-
NWTPH-Dx LL												
Diesel	392		80.0	ug/L	1	500		78	36 - 132%	10	30%	
Surr: o-Terphenyl (Surr)		Rec	overy: 88 %	Limits: 50	0-150 %	Dilı	ution: 1x					

 $No\ Client\ related\ Batch\ QC\ samples\ analyzed\ for\ this\ batch.\ See\ notes\ page\ for\ more\ information.$

Batch 24I0016 - EPA 3510C (F	uels/Acid Ex	rt.)					Wat	er				
Blank (24I0016-BLK1)		Prepared: 0	9/03/24 09:	58 Analyze	1: 09/03/2	4 20:13						
NWTPH-Dx LL												
Diesel	ND		80.0	ug/L	1							
Oil	ND		160	ug/L	1							
Surr: o-Terphenyl (Surr)		Recove	ery: 88 %	Limits: 50-1	50 %	Dila	ution: 1x					
LCS (24I0016-BS1)		Prepared: 0	9/03/24 09:	58 Analyze	d: 09/03/2	4 20:37						
NWTPH-Dx LL												
Diesel	361		80.0	ug/L	1	500		72	36 - 132%			
Surr: o-Terphenyl (Surr)		Recove	ery: 89 %	Limits: 50-1	50 %	Dila	ution: 1x					
LCS Dup (24I0016-BSD1)		Prepared: 0	9/03/24 09:	58 Analyze	1: 09/03/2	4 21:00						Q-19
NWTPH-Dx LL												
Diesel	374		80.0	ug/L	1	500		75	36 - 132%	3	30%	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006

LCS Dup (24I0016-BSD1)

Surr: o-Terphenyl (Surr)

Project Number: **Union Station**Project Number: **2644-001**Project Manager: **James Welles**

Report ID: A4H1527 - 09 27 24 1522

Q-19

QUALITY CONTROL (QC) SAMPLE RESULTS Diesel and/or Oil Hydrocarbons by NWTPH-Dx

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24I0016 - EPA 3510C (F	uels/Acid	Ext.)					Wate	er				

Dilution: 1x

Limits: 50-150 %

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Recovery: 87 %

Prepared: 09/03/24 09:58 Analyzed: 09/03/24 21:00

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/c	r Oil Hyd	Irocarbor	s by NW	ГРН-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24I0225 - EPA 3510C (Fuels/Acid	Ext.)					Wat	er				
Blank (24I0225-BLK1)		Prepared	: 09/09/24 10:	12 Analyz	zed: 09/09/2	4 20:33						
NWTPH-Dx LL												
Diesel	ND		80.0	ug/L	1							
Oil	ND		160	ug/L	1							
Surr: o-Terphenyl (Surr)		Rec	overy: 72 %	Limits: 50	0-150 %	Dili	ution: 1x					
LCS (24I0225-BS1)		Prepared	: 09/09/24 10:	12 Analyz	zed: 09/09/2	4 20:54						
NWTPH-Dx LL												
Diesel	386		80.0	ug/L	1	500		77	36 - 132%			
Surr: o-Terphenyl (Surr)		Rec	overy: 77 %	Limits: 50	0-150 %	Dili	ution: 1x					
LCS Dup (24I0225-BSD1)		Prepared	: 09/09/24 10:	12 Analyz	zed: 09/09/2	4 21:15						Q-19
NWTPH-Dx LL												
Diesel	400		80.0	ug/L	1	500		80	36 - 132%	4	30%	
Surr: o-Terphenyl (Surr)		Rec	overy: 78 %	Limits: 50	0-150 %	Dilt	ution: 1x					

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

COSi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

QUALITY CONTROL (QC) SAMPLE RESULTS

	Diesel	and/or Oil	Hydrocarb	ons by N	WTPH-Dx	with Silic	ca Gel Co	lumn Cle	eanup			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24I0646 - EPA 3510C (Fuels/Acid	Ext.) w/SGC	;				Wat	er				
Blank (24I0646-BLK1)		Prepared	: 08/30/24 11	:12 Analyz	ed: 09/21/2	4 02:24						
NWTPH-Dx/SGC												
Diesel	ND		80.0	ug/L	1							
Oil	ND		160	ug/L	1							
Surr: o-Terphenyl (Surr)		Rece	overy: 90 %	Limits: 50	0-150 %	Dilı	ution: 1x					
LCS (24I0646-BS1)		Prepared	: 08/30/24 11:	:12 Analyz	zed: 09/21/2	4 02:47						
NWTPH-Dx/SGC												
Diesel	353		80.0	ug/L	1	500		71	36 - 132%			
Surr: o-Terphenyl (Surr)		Rece	overy: 81 %	Limits: 50	0-150 %	Dilı	ution: 1x					
LCS Dup (24I0646-BSD1)		Prepared	: 08/30/24 11	:12 Analyz	zed: 09/21/2	4 03:11						Q-
NWTPH-Dx/SGC												
Diesel	372		80.0	ug/L	1	500		74	36 - 132%	5	30%	
Surr: o-Terphenyl (Surr)		Rece	overy: 90 %	Limits: 50	0-150 %	Dilı	ution: 1x					

 $No\ Client\ related\ Batch\ QC\ samples\ analyzed\ for\ this\ batch.\ See\ notes\ page\ for\ more\ information.$

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolii	ne Range H	ydrocarbo	ns (Benz	zene thro	ugh Naph	thalene)	by NWTP	PH-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24I0209 - EPA 5030C							Wat	er				
Blank (24I0209-BLK1)		Prepared:	09/09/24 07:	58 Analyz	zed: 09/09/2	4 10:48						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		100	ug/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 92 %	Limits: 50	0-150 %	Dilt	ution: 1x					
1,4-Difluorobenzene (Sur)			98 %	50	0-150 %		"					
LCS (24I0209-BS2)		Prepared:	09/09/24 07:	58 Analyz	zed: 09/09/2	4 10:27						
NWTPH-Gx (MS)												
Gasoline Range Organics	445		100	ug/L	1	500		89	80 - 120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 93 %	Limits: 50	0-150 %	Dilt	ution: 1x					
1,4-Difluorobenzene (Sur)			98 %	50	0-150 %		"					
Duplicate (24I0209-DUP1)		Prepared:	09/09/24 07:	58 Analyz	zed: 09/09/2	4 15:02						
QC Source Sample: MW-101R-20 NWTPH-Gx (MS)	240827 (A4	H1527-03)										
Gasoline Range Organics	3910		100	ug/L	1		4660			18	30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 96 %	Limits: 50	0-150 %	Dilt	ution: 1x					
1,4-Difluorobenzene (Sur)			94 %	50	0-150 %		"					
Duplicate (24I0209-DUP2)		Prepared:	09/09/24 07:	58 Analyz	zed: 09/09/2	4 16:49						
QC Source Sample: MW-107R-08	2724 (A4H1	527-07)										
NWTPH-Gx (MS)	1250		100	/¥	1		1260			1	200/	
Gasoline Range Organics	1250		100	ug/L	1		1260			1	30%	
Surr: 4-Bromofluorobenzene (Sur)		Reco	•	Limits: 50		Dili	ution: 1x					
1,4-Difluorobenzene (Sur)			93 %	50	0-150 %		"					

Apex Laboratories

COSi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasoli	ne Range H	lydrocarbo	ns (Benz	ene thro	ugh Naph	thalene)	by NWTF	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24I0307 - EPA 5030C							Wat	er				
Blank (24I0307-BLK1)		Prepared:	: 09/11/24 07:	19 Analyz	zed: 09/11/24	1 09:59						
NWTPH-Gx (MS)												
Gasoline Range Organics	ND		100	ug/L	1							
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 92 %	Limits: 50	0-150 %	Dilı	ıtion: 1x					
1,4-Difluorobenzene (Sur)			98 %	50	0-150 %		"					
LCS (24I0307-BS2)		Prepared:	: 09/11/24 07:	19 Analyz	zed: 09/11/24	1 09:37						
NWTPH-Gx (MS)												
Gasoline Range Organics	440		100	ug/L	1	500		88	80 - 120%			
Surr: 4-Bromofluorobenzene (Sur)		Reco	overy: 93 %	Limits: 50	0-150 %	Dilı	ıtion: 1x					
1,4-Difluorobenzene (Sur)			96 %	50	0-150 %		"					

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project: Union Station
Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	nds by E	PA 8260D	1					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24I0209 - EPA 5030C							Wate	er				
Blank (24I0209-BLK1)		Prepared	: 09/09/24 07:	58 Analyz	ed: 09/09/2	4 10:48						
EPA 8260D												
Benzene	ND		0.200	ug/L	1							
Гoluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 97 %	Limits: 80	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			102 %	80-	-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80-	-120 %		"					
LCS (24I0209-BS1)		Prepared	: 09/09/24 07:	58 Analyz	ed: 09/09/2	4 09:16						
EPA 8260D												
Benzene	19.3		0.200	ug/L	1	20.0		96	80 - 120%			
Toluene	18.9		1.00	ug/L	1	20.0		95	80 - 120%			
Ethylbenzene	20.3		0.500	ug/L	1	20.0		101	80 - 120%			
Xylenes, total	60.7		1.50	ug/L	1	60.0		101	80 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Rece	overy: 98 %	Limits: 80	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			99 %	80-	-120 %		"					
4-Bromofluorobenzene (Surr)			102 %	80-	-120 %		"					
Duplicate (24I0209-DUP1)		Prepared	: 09/09/24 07:	58 Analyz	ed: 09/09/2	4 15:02						
QC Source Sample: MW-101R-202	40827 (A4	H1527-03)										
EPA 8260D												
Benzene	76.0		0.200	ug/L	1		78.7			4	30%	
Toluene	1.51		1.00	ug/L	1		1.46			3	30%	
Ethylbenzene	80.6		0.500	ug/L	1		81.8			1	30%	
Xylenes, total	19.2		1.50	ug/L	1		18.6			3	30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 98 %	Limits: 80	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			97 %	80-	-120 %		"					
4-Bromofluorobenzene (Surr)			104 %	80-	-120 %		"					
Duplicate (24I0209-DUP2)		Prenared	: 09/09/24 07:	58 Analyz	ed: 09/09/2	4 16·49						

QC Source Sample: MW-107R-082724 (A4H1527-07)

EPA 8260D

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project: Union Station
Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	ınds by E	PA 8260D						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24I0209 - EPA 5030C							Wat	er				
Duplicate (24I0209-DUP2)		Prepared	09/09/24 07:	58 Analyz	ed: 09/09/2	4 16:49						
QC Source Sample: MW-107R-082	2724 (A4H1	1527-07)										
Benzene	1.39		0.200	ug/L	1		1.39			0	30%	
Toluene	ND		1.00	ug/L	1		ND				30%	
Ethylbenzene	6.59		0.500	ug/L	1		6.18			6	30%	
Xylenes, total	7.40		1.50	ug/L	1		7.28			2	30%	
Surr: 1,4-Difluorobenzene (Surr)		Rece	overy: 98 %	Limits: 80)-120 %	Dilu	tion: 1x					
Toluene-d8 (Surr)			98 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			104 %	80	-120 %		"					

Apex Laboratories

COSi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

QUALITY CONTROL (QC) SAMPLE RESULTS

			BTEX	Compou	ınds by E	PA 8260D						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24I0307 - EPA 5030C							Wat	er				
Blank (24I0307-BLK1)		Prepared	: 09/11/24 07:	19 Analyz	ed: 09/11/24	1 09:59						
EPA 8260D												
Benzene	ND		0.200	ug/L	1							
Toluene	ND		1.00	ug/L	1							
Ethylbenzene	ND		0.500	ug/L	1							
Xylenes, total	ND		1.50	ug/L	1							
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 96 %	Limits: 80	0-120 %	Dilu	tion: 1x					
Toluene-d8 (Surr)			101 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			104 %	80)-120 %		"					
LCS (24I0307-BS1)		Prepared	: 09/11/24 07:	19 Analyz	ed: 09/11/24	1 09:16						
EPA 8260D												
Benzene	18.8		0.200	ug/L	1	20.0		94	80 - 120%			
Toluene	18.9		1.00	ug/L	1	20.0		94	80 - 120%			
Ethylbenzene	20.6		0.500	ug/L	1	20.0		103	80 - 120%			
Xylenes, total	61.5		1.50	ug/L	1	60.0		103	80 - 120%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	overy: 93 %	Limits: 80	0-120 %	Dilu	ition: 1x					
Toluene-d8 (Surr)			99 %	80	-120 %		"					
4-Bromofluorobenzene (Surr)			96 %	80	-120 %		"					

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

COSi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project: Union Station
Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	D .:			G '1	C		0/ BEC		DDD	
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24H1080 - EPA 3511 (B	ottle Extra	ction)					Wate	er				
Blank (24H1080-BLK1)		Prepared:	08/29/24 11:0	4 Analyz	ed: 08/29/2	4 15:14						
EPA 8270E LVI												
Acenaphthene	ND	0.0160	0.0320	ug/L	1							
Acenaphthylene	ND	0.0160	0.0320	ug/L	1							
Anthracene	ND	0.0160	0.0320	ug/L	1							
Benz(a)anthracene	ND	0.00800	0.0160	ug/L	1							
Benzo(a)pyrene	ND	0.00800	0.0160	ug/L	1							
Benzo(b)fluoranthene	ND	0.00800	0.0160	ug/L	1							
Benzo(k)fluoranthene	ND	0.00800	0.0160	ug/L	1							
Benzo(g,h,i)perylene	ND	0.0160	0.0320	ug/L	1							
Chrysene	ND	0.00800	0.0160	ug/L	1							
Dibenz(a,h)anthracene	ND	0.00800	0.0160	ug/L	1							
Fluoranthene	ND	0.0160	0.0320	ug/L	1							
Fluorene	ND	0.0160	0.0320	ug/L	1							
Indeno(1,2,3-cd)pyrene	ND	0.00800	0.0160	ug/L	1							
1-Methylnaphthalene	ND	0.0320	0.0640	ug/L	1							
2-Methylnaphthalene	ND	0.0320	0.0640	ug/L	1							
Naphthalene	ND	0.0320	0.0640	ug/L	1							
Phenanthrene	ND	0.0320	0.0640	ug/L	1							
Pyrene	ND	0.0160	0.0320	ug/L	1							
Carbazole	ND	0.0160	0.0320	ug/L	1							
Dibenzofuran	ND	0.0160	0.0320	ug/L	1							
Surr: Acenaphthylene-d8 (Surr)		Recove	ry: 103 %	Limits: 78	2-134 %	Dilı	ution: 1x					
Benzo(a)pyrene-d12 (Surr)			105 %	80	-132 %		"					
LCS (24H1080-BS1)		Prepared:	08/29/24 11:0)4 Analyz	ed: 08/29/24	4 15:48						
EPA 8270E LVI		-										
Acenaphthene	1.64	0.0160	0.0320	ug/L	1	1.60		102	80 - 120%			
Acenaphthylene	1.85	0.0160	0.0320	ug/L	1	1.60		116	80 - 124%			
Anthracene	1.55	0.0160	0.0320	ug/L	1	1.60		97	80 - 123%			
Benz(a)anthracene	1.61	0.00800	0.0160	ug/L	1	1.60		101	80 - 122%			
Benzo(a)pyrene	1.78	0.00800	0.0160	ug/L	1	1.60		111	80 - 129%			
Benzo(b)fluoranthene	1.69	0.00800	0.0160	ug/L	1	1.60		106	80 - 124%			
Benzo(k)fluoranthene	1.75	0.00800	0.0160	ug/L	1	1.60		109	80 - 125%			
Benzo(g,h,i)perylene	1.47	0.0160	0.0320	ug/L	1	1.60		92	80 - 120%			

Apex Laboratories

CODI

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project: Union Station
Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24H1080 - EPA 3511 (Be	ottle Extra	ction)					Wat	er				
LCS (24H1080-BS1)		Prepared:	08/29/24 11:0)4 Analyz	red: 08/29/24	1 15:48						
Chrysene	1.55	0.00800	0.0160	ug/L	1	1.60		97	80 - 120%			
Dibenz(a,h)anthracene	1.59	0.00800	0.0160	ug/L	1	1.60		99	80 - 120%			
Fluoranthene	1.89	0.0160	0.0320	ug/L	1	1.60		118	80 - 126%			
Fluorene	1.72	0.0160	0.0320	ug/L	1	1.60		108	77 - 127%			
ndeno(1,2,3-cd)pyrene	1.43	0.00800	0.0160	ug/L	1	1.60		90	80 - 121%			
l-Methylnaphthalene	2.00	0.0320	0.0640	ug/L	1	1.60		125	53 - 148%			
2-Methylnaphthalene	1.95	0.0320	0.0640	ug/L	1	1.60		122	48 - 150%			
Naphthalene	1.70	0.0320	0.0640	ug/L	1	1.60		106	78 - 120%			
Phenanthrene	1.48	0.0320	0.0640	ug/L	1	1.60		92	80 - 120%			
Pyrene	1.88	0.0160	0.0320	ug/L	1	1.60		118	80 - 125%			
Carbazole	1.71	0.0160	0.0320	ug/L	1	1.60		107	65 - 141%			
Dibenzofuran	1.78	0.0160	0.0320	ug/L	1	1.60		111	76 - 121%			
Surr: Acenaphthylene-d8 (Surr)		Reco	very: 99 %	Limits: 78	8-134 %	Dilı	ution: 1x					
Benzo(a)pyrene-d12 (Surr)			108 %	80	0-132 %		"					
LCS Dup (24H1080-BSD1)		Prenared:	08/29/24 11:0)4 Analyz	red: 08/29/24	1 16:21						Q-
EPA 8270E LVI		110puisu.	00/2/21 1110		.00.00,2,,2	. 10.21						<u> </u>
Acenaphthene	1.71	0.0160	0.0320	ug/L	1	1.60		107	80 - 120%	5	30%	
Acenaphthylene	1.92	0.0160	0.0320	ug/L	1	1.60		120	80 - 124%	3	30%	
Anthracene	1.69	0.0160	0.0320	ug/L	1	1.60		105	80 - 123%	8	30%	
Benz(a)anthracene	1.75	0.00800	0.0160	ug/L	1	1.60		110	80 - 122%	8	30%	
Benzo(a)pyrene	1.91	0.00800	0.0160	ug/L	1	1.60		120	80 - 129%	7	30%	
Benzo(b)fluoranthene	1.81	0.00800	0.0160	ug/L	1	1.60		113	80 - 124%	7	30%	
Benzo(k)fluoranthene	1.92	0.00800	0.0160	ug/L ug/L	1	1.60		120	80 - 125%	9	30%	
Benzo(g,h,i)perylene	1.62	0.0160	0.0320	ug/L ug/L	1	1.60		101	80 - 120%	9	30%	
Chrysene	1.68	0.00800	0.0320	ug/L ug/L	1	1.60		105	80 - 120%	8	30%	
Dibenz(a,h)anthracene	1.67	0.00800	0.0160	ug/L ug/L	1	1.60		103	80 - 120%	5	30%	
Fluoranthene	2.08	0.0160	0.0100	ug/L ug/L	1	1.60			80 - 126%	10	30%	Q-29
Fluorene	1.80	0.0160	0.0320	ug/L ug/L	1	1.60		113	77 - 127%	5	30%	K =-
ndeno(1,2,3-cd)pyrene	1.55	0.00800	0.0320	ug/L ug/L	1	1.60		97	80 - 121%	8	30%	
l-Methylnaphthalene	2.02	0.0320	0.0160	_	1	1.60		126	53 - 148%	1	30%	
• 1				ug/L	1	1.60			48 - 150%		30%	
2-Methylnaphthalene	1.95	0.0320	0.0640	ug/L	1	1.00		122	40 - 130%	0.02	30%	
Naphthalene	1.73	0.0320	0.0640	ug/L	1	1.60		108	78 - 120%	2	30%	

Apex Laboratories

90 i

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project: Union Station
Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	No	otes
Batch 24H1080 - EPA 3511 (B	ottle Extra	ction)					Wat	er					
LCS Dup (24H1080-BSD1)		Prepared:	08/29/24 11:0	04 Analyz	zed: 08/29/2	4 16:21							Q-1
Pyrene	2.07	0.0160	0.0320	ug/L	1	1.60		129	80 - 125%	9	30%	Q-29	
Carbazole	1.79	0.0160	0.0320	ug/L	1	1.60		112	65 - 141%	5	30%		
Dibenzofuran	1.82	0.0160	0.0320	ug/L	1	1.60		114	76 - 121%	2	30%		
Surr: Acenaphthylene-d8 (Surr)		Recov	very: 100 %	Limits: 78	8-134 %	Dilı	ution: 1x						
Benzo(a)pyrene-d12 (Surr)			106 %	80	0-132 %		"						

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

COSi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project: Union Station
Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

QUALITY CONTROL (QC) SAMPLE RESULTS

	Polya	romatic Hy	drocarbon	s (PAHs)	by EPA 8	3270E (La	rge Volur	ne Inject	ion)			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24I0001 - EPA 3511 (Bo	ttle Extrac	tion)					Wat	er				
Blank (24I0001-BLK1)		Prepared:	09/03/24 07:1	0 Analyz	ed: 09/03/24	1 10:33						
EPA 8270E LVI												
Acenaphthene	ND	0.0160	0.0320	ug/L	1							
Acenaphthylene	ND	0.0160	0.0320	ug/L	1							
Anthracene	ND	0.0160	0.0320	ug/L	1							
Benz(a)anthracene	ND	0.00800	0.0160	ug/L	1							
Benzo(a)pyrene	ND	0.00800	0.0160	ug/L	1							
Benzo(b)fluoranthene	ND	0.00800	0.0160	ug/L	1							
Benzo(k)fluoranthene	ND	0.00800	0.0160	ug/L	1							
Benzo(g,h,i)perylene	ND	0.0160	0.0320	ug/L	1							
Chrysene	ND	0.00800	0.0160	ug/L	1							
Dibenz(a,h)anthracene	ND	0.00800	0.0160	ug/L	1							
Fluoranthene	ND	0.0160	0.0320	ug/L	1							
Fluorene	ND	0.0160	0.0320	ug/L	1							
Indeno(1,2,3-cd)pyrene	ND	0.00800	0.0160	ug/L	1							
1-Methylnaphthalene	ND	0.0320	0.0640	ug/L	1							
2-Methylnaphthalene	ND	0.0320	0.0640	ug/L	1							
Naphthalene	ND	0.0320	0.0640	ug/L	1							
Phenanthrene	ND	0.0320	0.0640	ug/L	1							
Pyrene	ND	0.0160	0.0320	ug/L	1							
Carbazole	ND	0.0160	0.0320	ug/L	1							
Dibenzofuran	ND	0.0160	0.0320	ug/L	1							
Surr: Acenaphthylene-d8 (Surr)		Reco	very: 93 %	Limits: 78	3-134 %	Dilı	ution: 1x					
Benzo(a)pyrene-d12 (Surr)			105 %)-132 %		"					
LCS (24I0001-BS1)		Prepared:	09/03/24 07:1	10 Analyz	zed: 09/03/24	11:06						
EPA 8270E LVI												
Acenaphthene	1.81	0.0160	0.0320	ug/L	1	1.60		113	80 - 120%			
Acenaphthylene	1.88	0.0160	0.0320	ug/L	1	1.60		117	80 - 124%			
Anthracene	1.69	0.0160	0.0320	ug/L	1	1.60		105	80 - 123%			
Benz(a)anthracene	1.69	0.00800	0.0160	ug/L	1	1.60		106	80 - 122%			
Benzo(a)pyrene	1.85	0.00800	0.0160	ug/L	1	1.60		115	80 - 129%			
Benzo(b)fluoranthene	1.77	0.00800	0.0160	ug/L	1	1.60		111	80 - 124%			
Benzo(k)fluoranthene	1.82	0.00800	0.0160	ug/L	1	1.60		114	80 - 125%			
Benzo(g,h,i)perylene	1.57	0.0160	0.0320	ug/L	1	1.60		98	80 - 120%			

Apex Laboratories

COSi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project: Union Station
Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

QUALITY CONTROL (QC) SAMPLE RESULTS

		Detection	Reporting			Spike	Source		% REC		RPD	
Analyte	Result	Limit	Limit	Units	Dilution	Amount	Result	% REC	Limits	RPD	Limit	Notes
Batch 24I0001 - EPA 3511 (Bo	ttle Extrac	tion)					Wate	er				
LCS (24I0001-BS1)		Prepared:	09/03/24 07:1	0 Analyz	ed: 09/03/24	4 11:06						
Chrysene	1.62	0.00800	0.0160	ug/L	1	1.60		101	80 - 120%			
Dibenz(a,h)anthracene	1.59	0.00800	0.0160	ug/L	1	1.60		100	80 - 120%			
Fluoranthene	1.96	0.0160	0.0320	ug/L	1	1.60		123	80 - 126%			
Fluorene	1.98	0.0160	0.0320	ug/L	1	1.60		124	77 - 127%			
Indeno(1,2,3-cd)pyrene	1.47	0.00800	0.0160	ug/L	1	1.60		92	80 - 121%			
l-Methylnaphthalene	2.14	0.0320	0.0640	ug/L	1	1.60		134	53 - 148%			
2-Methylnaphthalene	2.09	0.0320	0.0640	ug/L	1	1.60		131	48 - 150%			
Naphthalene	1.88	0.0320	0.0640	ug/L	1	1.60		117	78 - 120%			
Phenanthrene	1.58	0.0320	0.0640	ug/L	1	1.60		99	80 - 120%			
Pyrene	1.96	0.0160	0.0320	ug/L	1	1.60		123	80 - 125%			
Carbazole	1.82	0.0160	0.0320	ug/L	1	1.60		114	65 - 141%			
Dibenzofuran	1.84	0.0160	0.0320	ug/L	1	1.60		115	76 - 121%			
Surr: Acenaphthylene-d8 (Surr)		Recor	very: 96 %	Limits: 78	-134 %	Dilı	ution: 1x					
Benzo(a)pyrene-d12 (Surr)			107 %	80	-132 %		"					
LCS Dup (24I0001-BSD1)		Prepared:	09/03/24 07:1	0 Analyz	ed: 09/03/24	4 11:38						Q-
EPA 8270E LVI												
Acenaphthene	1.81	0.0160	0.0320	ug/L	1	1.60		113	80 - 120%	0.1	30%	
Acenaphthylene	1.85	0.0160	0.0320	ug/L	1	1.60		116	80 - 124%	1	30%	
Anthracene	1.67	0.0160	0.0320	ug/L	1	1.60		104	80 - 123%	1	30%	
Benz(a)anthracene	1.72	0.00800	0.0160	ug/L	1	1.60		108	80 - 122%	2	30%	
Benzo(a)pyrene	1.90	0.00800	0.0160	ug/L	1	1.60		118	80 - 129%	3	30%	
Benzo(b)fluoranthene	1.74	0.00800	0.0160	ug/L	1	1.60		108	80 - 124%	2	30%	
Benzo(k)fluoranthene	1.84	0.00800	0.0160	ug/L	1	1.60		115	80 - 125%	0.9	30%	
Benzo(g,h,i)perylene	1.51	0.0160	0.0320	ug/L	1	1.60			80 - 120%	4	30%	
Chrysene	1.62	0.00800	0.0160	ug/L	1	1.60			80 - 120%	0.2	30%	
Dibenz(a,h)anthracene	1.64	0.00800	0.0160	ug/L	1	1.60			80 - 120%	3	30%	
Fluoranthene	1.96	0.0160	0.0320	ug/L	1	1.60			80 - 126%	0.1	30%	
Fluorene	2.01	0.0160	0.0320	ug/L	1	1.60			77 - 127%	1	30%	
ndeno(1,2,3-cd)pyrene	1.43	0.00800	0.0160	ug/L	1	1.60			80 - 121%	3	30%	
l-Methylnaphthalene	2.09	0.0320	0.0640	ug/L ug/L	1	1.60			53 - 148%	2	30%	
2-Methylnaphthalene	2.07	0.0320	0.0640	ug/L ug/L	1	1.60			48 - 150%	1	30%	
Naphthalene	1.84	0.0320	0.0640	ug/L	1	1.60			78 - 120%	2	30%	
Aupmaiaiche	1.04	0.0320	0.0070	ug/L	1	1.60		113	80 - 120%	3	30%	

Apex Laboratories

(B)

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project: Union Station
Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

QUALITY CONTROL (QC) SAMPLE RESULTS

	Polya	romatic Hy	drocarbon	s (PAHs) by EPA	8270E (La	rge Volui	me Injec	tion)			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24l0001 - EPA 3511 (Bo	ttle Extrac	tion)					Wat	er				
LCS Dup (24I0001-BSD1)		Prepared:	09/03/24 07:	10 Analyz	zed: 09/03/2	4 11:38						Q-19
Pyrene	1.94	0.0160	0.0320	ug/L	1	1.60		122	80 - 125%	0.8	30%	
Carbazole	1.85	0.0160	0.0320	ug/L	1	1.60		115	65 - 141%	2	30%	
Dibenzofuran	1.88	0.0160	0.0320	ug/L	1	1.60		117	76 - 121%	2	30%	
Surr: Acenaphthylene-d8 (Surr)		Reco	overy: 95 %	Limits: 78	8-134 %	Dilı	ution: 1x					
Benzo(a)pyrene-d12 (Surr)			108 %	80	0-132 %		"					

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

COSi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24l0006 - EPA 3510C (A	cid Extrac	tion)		_			Wat	er	_			_
Blank (24I0006-BLK1)		Prepared:	09/03/24 09:0)9 Analyz	zed: 09/03/24	4 16:23						
EPA 8270m												
cis-Decalin	ND	0.0200	0.0400	ug/L	1							
C1-Decalin	ND	0.100	0.100	ug/L	1							
C2-Decalin	ND	0.100	0.100	ug/L	1							
C3-Decalin	ND	0.200	0.200	ug/L	1							
C4-Decalin	ND	0.200	0.200	ug/L	1							
Naphthalene	0.251	0.0200	0.0400	ug/L	1							В
l-Methylnaphthalene	0.124	0.0200	0.0400	ug/L	1							В
2-Methylnaphthalene	0.141	0.0200	0.0400	ug/L	1							В
C1-Naphthalenes	0.264	0.100	0.100	ug/L	1							В
C2-Naphthalenes	ND	0.100	0.100	ug/L	1							
C3-Naphthalenes	ND	0.100	0.100	ug/L	1							
C4-Naphthalenes	ND	0.100	0.100	ug/L	1							
Acenaphthene	0.0712	0.0100	0.0200	ug/L	1							В
Acenaphthylene	ND	0.0100	0.0200	ug/L	1							
Dibenzofuran	ND	0.0100	0.0200	ug/L	1							
Fluorene	0.0127	0.0100	0.0200	ug/L	1							B-02, J
C1-Fluorenes	ND	0.100	0.100	ug/L	1							
C2-Fluorenes	ND	0.100	0.100	ug/L	1							
C3-Fluorenes	ND	0.100	0.100	ug/L	1							
Dibenzothiophene	ND	0.0100	0.0200	ug/L	1							
C1-Dibenzothiophene	ND	0.100	0.100	ug/L	1							
C2-Dibenzothiophene	ND	0.100	0.100	ug/L	1							
C3-Dibenzothiophene	ND	0.100	0.100	ug/L	1							
C4-Dibenzothiophene	ND	0.200	0.200	ug/L	1							
Phenanthrene	ND	0.0100	0.0200	ug/L	1							
Anthracene	ND	0.0100	0.0200	ug/L	1							
l-Methylphenanthrene	ND	0.0100	0.0200	ug/L	1							
C1-Phenanthrenes/Anthracenes	ND	0.100	0.100	ug/L	1							
C2-Phenanthrenes/Anthracenes	ND	0.100	0.100	ug/L	1							
C3-Phenanthrenes/Anthracenes	ND	0.100	0.100	ug/L	1							
C4-Phenanthrenes/Anthracenes	ND	0.200	0.200	ug/L	1							
Fluoranthene	ND	0.0100	0.0200	ug/L	1							
Pyrene	ND	0.0100	0.0200	ug/L	1							

Apex Laboratories

COSi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project: Union Station
Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

QUALITY CONTROL (QC) SAMPLE RESULTS

		D-4	D			C '1	C		0/ BEC		DDD	
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24I0006 - EPA 3510C (Ac	id Extrac	tion)					Wate	ər				
Blank (24I0006-BLK1)			09/03/24 09:0)9 Analyz	ed: 09/03/24	1 16:23						
C1-Fluoranthenes/Pyrenes	ND	0.100	0.100	ug/L	1							
C2-Fluoranthenes/Pyrenes	ND	0.100	0.100	ug/L	1							
C3-Fluoranthenes/Pyrenes	ND	0.100	0.100	ug/L	1							
C4-Fluoranthenes/Pyrenes	ND	0.200	0.200	ug/L	1							
Chrysene	ND	0.0100	0.0200	ug/L	1							
Benz(a)anthracene	ND	0.0100	0.0200	ug/L	1							
C1-Chrysenes/Benz(a)anthracenes	ND	0.100	0.100	ug/L	1							
C2-Chrysenes/Benz(a)anthracenes	ND	0.100	0.100	ug/L	1							
C3-Chrysenes/Benz(a)anthracenes	ND	0.100	0.100	ug/L	1							
C4-Chrysenes/Benz(a)anthracenes	ND	0.200	0.200	ug/L	1							
Benzo(b)fluoranthene	ND	0.0150	0.0300	ug/L	1							
Benzo(k)fluoranthene	ND	0.0150	0.0300	ug/L	1							
Benzo(a)pyrene	ND	0.0150	0.0300	ug/L	1							
Benzo(e)pyrene	ND	0.0100	0.0200	ug/L	1							
Perylene	ND	0.0100	0.0200	ug/L	1							
Indeno(1,2,3-cd)pyrene	ND	0.0100	0.0200	ug/L	1							
Dibenz(a,h)anthracene	ND	0.0100	0.0200	ug/L	1							
Benzo(g,h,i)perylene	ND	0.0100	0.0200	ug/L	1							
1,1'-Biphenyl	ND	0.0500	0.100	ug/L	1							
2,6-Dimethylnaphthalene	ND	0.0200	0.0400	ug/L	1							
1,6,7-Trimethylnaphthalene	ND	0.0200	0.0400	ug/L	1							
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 94 %	Limits: 44	1-120 %	Dilı	ution: 1x					
2-Fluorobiphenyl (Surr)			75 %	44	-120 %		"					
Acenaphthylene-d8 (Surr)			78 %	45	-120 %		"					
p-Terphenyl-d14 (Surr)			73 %	50	-134 %		"					
Benzo(a)pyrene-d12 (Surr)			92 %	63	-120 %		"					
LCS (24I0006-BS1)		Prepared:	09/03/24 09:0)9 Analyz	ed: 09/03/24	16:56						
EPA 8270m		r				,						
eis-Decalin	2.55	0.0200	0.0400	ug/L	1	4.00		64 4	10 - 120%			
Naphthalene	3.06	0.0200	0.0400	ug/L	1	4.00			10 - 121%			В
l-Methylnaphthalene	3.22	0.0200	0.0400	ug/L	1	4.00			11 - 120%			В
2-Methylnaphthalene	3.39	0.0200	0.0400	ug/L	1	4.00			10 - 121%			В
Acenaphthene	3.10	0.0100	0.0200	ug/L	1	4.00			17 - 122%			В

Apex Laboratories

COSi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project: Union Station
Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24I0006 - EPA 3510C (A	Acid Extrac	ction)					Wat	er				
LCS (24I0006-BS1)		Prepared:	09/03/24 09:09	Analyz	zed: 09/03/24	4 16:56						
Acenaphthylene	3.07	0.0100	0.0200	ug/L	1	4.00		77 4	41 - 130%			
Dibenzofuran	3.24	0.0100	0.0200	ug/L	1	4.00		81	53 - 120%			
Fluorene	3.22	0.0100	0.0200	ug/L	1	4.00		80	52 - 124%			B-02
Dibenzothiophene	3.29	0.0100	0.0200	ug/L	1	4.00		82	40 - 120%			
Phenanthrene	3.11	0.0100	0.0200	ug/L	1	4.00		78	59 - 120%			
Anthracene	3.13	0.0100	0.0200	ug/L	1	4.00		78	57 - 123%			
l-Methylphenanthrene	3.61	0.0100	0.0200	ug/L	1	4.00		90	40 - 120%			
Fluoranthene	3.81	0.0100	0.0200	ug/L	1	4.00		95	57 - 128%			
Pyrene	3.29	0.0100	0.0200	ug/L	1	4.00		82	57 - 126%			
Chrysene	3.37	0.0100	0.0200	ug/L	1	4.00		84	59 - 123%			
Benz(a)anthracene	3.59	0.0100	0.0200	ug/L	1	4.00		90	58 - 125%			
Benzo(b)fluoranthene	3.76	0.0150	0.0300	ug/L	1	4.00		94	53 - 131%			
Benzo(k)fluoranthene	3.67	0.0150	0.0300	ug/L	1	4.00		92	57 - 129%			
Benzo(a)pyrene	3.69	0.0150	0.0300	ug/L	1	4.00		92	54 - 128%			
Benzo(e)pyrene	3.70	0.0100	0.0200	ug/L	1	4.00		92	67 - 120%			
Perylene	3.22	0.0100	0.0200	ug/L	1	4.00		81	62 - 130%			
Indeno(1,2,3-cd)pyrene	3.30	0.0100	0.0200	ug/L	1	4.00		82	52 - 134%			
Dibenz(a,h)anthracene	3.26	0.0100	0.0200	ug/L	1	4.00		81	51 - 134%			
Benzo(g,h,i)perylene	3.22	0.0100	0.0200	ug/L	1	4.00		81	50 - 134%			
1,1'-Biphenyl	3.17	0.0500	0.100	ug/L	1	4.00		79	49 - 120%			
2,6-Dimethylnaphthalene	3.11	0.0200	0.0400	ug/L	1	4.00		78	35 - 120%			
1,6,7-Trimethylnaphthalene	3.19	0.0200	0.0400	ug/L	1	4.00		80	40 - 120%			
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 98 % 1	imits: 44	4-120 %	Dilı	ıtion: 1x					
2-Fluorobiphenyl (Surr)			79 %	44	1-120 %		"					
Acenaphthylene-d8 (Surr)			87 %	45	5-120 %		"					
p-Terphenyl-d14 (Surr)			81 %		0-134 %		"					
Benzo(a)pyrene-d12 (Surr)			98 %	63	3-120 %		"					
LCS Dup (24I0006-BSD1)		Prepared:	09/03/24 09:09	Analyz	red: 09/03/24	4 17:30						0
EPA 8270m		*										`
cis-Decalin	2.51	0.0200	0.0400	ug/L	1	4.00		63	40 - 120%	2	30%	
Naphthalene	2.97	0.0200	0.0400	ug/L	1	4.00		74	40 - 121%	3	30%	В
l-Methylnaphthalene	3.25	0.0200	0.0400	ug/L	1	4.00		81	41 - 120%	0.8	30%	В
2-Methylnaphthalene	3.43	0.0200	0.0400	ug/L	1	4.00			40 - 121%	1	30%	В

Apex Laboratories

Poi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24l0006 - EPA 3510C (A	Acid Extrac	ction)					Wate	er				
LCS Dup (24I0006-BSD1)		Prepared:	09/03/24 09:0)9 Analyz	ed: 09/03/2	4 17:30						Q-
Acenaphthene	3.07	0.0100	0.0200	ug/L	1	4.00		77	47 - 122%	1	30%	В
Acenaphthylene	3.05	0.0100	0.0200	ug/L	1	4.00		76	41 - 130%	0.6	30%	
Dibenzofuran	3.23	0.0100	0.0200	ug/L	1	4.00		81	53 - 120%	0.4	30%	
Fluorene	3.19	0.0100	0.0200	ug/L	1	4.00		80	52 - 124%	0.7	30%	B-02
Dibenzothiophene	3.22	0.0100	0.0200	ug/L	1	4.00		81	40 - 120%	2	30%	
Phenanthrene	3.06	0.0100	0.0200	ug/L	1	4.00		76	59 - 120%	2	30%	
Anthracene	3.21	0.0100	0.0200	ug/L	1	4.00		80	57 - 123%	3	30%	
l-Methylphenanthrene	3.57	0.0100	0.0200	ug/L	1	4.00		89	40 - 120%	1	30%	
Fluoranthene	3.77	0.0100	0.0200	ug/L	1	4.00		94	57 - 128%	1	30%	
Pyrene	3.18	0.0100	0.0200	ug/L	1	4.00		79	57 - 126%	4	30%	
Chrysene	3.20	0.0100	0.0200	ug/L	1	4.00		80	59 - 123%	5	30%	
Benz(a)anthracene	3.51	0.0100	0.0200	ug/L	1	4.00		88	58 - 125%	2	30%	
Benzo(b)fluoranthene	3.54	0.0150	0.0300	ug/L	1	4.00		89	53 - 131%	6	30%	
Benzo(k)fluoranthene	3.34	0.0150	0.0300	ug/L	1	4.00		83	57 - 129%	9	30%	
Benzo(a)pyrene	3.52	0.0150	0.0300	ug/L	1	4.00		88	54 - 128%	5	30%	
Benzo(e)pyrene	3.46	0.0100	0.0200	ug/L	1	4.00		87	67 - 120%	6	30%	
Perylene	2.92	0.0100	0.0200	ug/L	1	4.00		73	62 - 130%	10	30%	
ndeno(1,2,3-cd)pyrene	2.98	0.0100	0.0200	ug/L	1	4.00		74	52 - 134%	10	30%	
Dibenz(a,h)anthracene	2.90	0.0100	0.0200	ug/L	1	4.00		72	51 - 134%	12	30%	
Benzo(g,h,i)perylene	2.86	0.0100	0.0200	ug/L	1	4.00		72	50 - 134%	12	30%	
1,1'-Biphenyl	3.26	0.0500	0.100	ug/L	1	4.00		81	49 - 120%	3	30%	
2,6-Dimethylnaphthalene	3.21	0.0200	0.0400	ug/L	1	4.00		80	35 - 120%	3	30%	
1,6,7-Trimethylnaphthalene	3.16	0.0200	0.0400	ug/L	1	4.00		79	40 - 120%	0.9	30%	
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 95 %	Limits: 44	1-120 %	Dilı	ıtion: 1x					
2-Fluorobiphenyl (Surr)			76 %	44	-120 %		"					
Acenaphthylene-d8 (Surr)			86 %	45	-120 %		"					
p-Terphenyl-d14 (Surr)			76 %	50	-134 %		"					
Benzo(a)pyrene-d12 (Surr)			96 %	63	-120 %		"					

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Page 47 of 68

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	letals by	EPA 6020	B (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24I0133 - EPA 3015A							Wat	er				
Blank (24I0133-BLK1)		Prepared	: 09/05/24 14:	52 Analyz	zed: 09/05/2	4 21:44						
EPA 6020B												
Arsenic	ND		1.00	ug/L	1							
LCS (24I0133-BS1)		Prepared	: 09/05/24 14:	52 Analyz	zed: 09/05/24	4 21:49						
<u>EPA 6020B</u>												
Arsenic	55.1		1.00	ug/L	1	55.6		99	80 - 120%			

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

QUALITY CONTROL (QC) SAMPLE RESULTS

			Dissolved	Metals	by EPA 60)20B (ICP	MS)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24I0193 - Matrix Matche	d Direct I	nject					Wat	er				
Blank (24I0193-BLK1)		Prepared:	09/06/24 15:2	4 Analyz	ed: 09/19/2	4 17:01						
EPA 6020B (Diss) Arsenic	ND		1.00	ug/L	1							FILT3
LCS (24I0193-BS1)		Prepared:	09/06/24 15:2	4 Analyz	red: 09/19/2	4 17:06						
EPA 6020B (Diss) Arsenic	53.7		1.00	ug/L	1	55.6		97	80 - 120%			
Duplicate (24I0193-DUP1)		Prepared	09/06/24 15:2	4 Analyz	red: 09/19/2	4 17:18						
OC Source Sample: MW-108R-20 EPA 6020B (Diss)	240827 (A4	H1527-01RE1)	_									
Arsenic	ND		1.00	ug/L	1		ND				20%	FILT1
Matrix Spike (24I0193-MS1)		Prepared	09/06/24 15:2	4 Analyz	ed: 09/19/2	1 17:44						
QC Source Sample: MW-105-2024 EPA 6020B (Diss)	40827 (A4H	1527-02RE1)										
Arsenic	59.8		1.00	ug/L	1	55.6	1.52	105	75 - 125%			FILT1

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

QUALITY CONTROL (QC) SAMPLE RESULTS

			Dissolved	Metals	by EPA 60	20B (ICP	MS)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24I0202 - Matrix Matche	ed Direct I	nject					Wat	er				
Blank (24I0202-BLK1)		Prepared	: 09/06/24 17:4	1 Analyz	ed: 09/09/2	4 13:28						
EPA 6020B (Diss) Arsenic	ND		1.00	ug/L	1							
LCS (24I0202-BS1)		Prepared	: 09/06/24 17:4	1 Analyz	ed: 09/09/24	1 13:34						
EPA 6020B (Diss) Arsenic	54.3		1.00	ug/L	1	55.6		98	80 - 120%			
Duplicate (24I0202-DUP1)		Prepared	: 09/06/24 17:4	1 Analyz	red: 09/09/24	4 13:46						
QC Source Sample: MW-108R-20 EPA 6020B (Diss)	240827 (A4	H1527-01)										
Arsenic	ND		1.00	ug/L	1		ND				20%	
Matrix Spike (24I0202-MS1)		Prepared	: 09/06/24 17:4	1 Analyz	red: 09/09/24	4 13:59						
QC Source Sample: MW-108R-20 EPA 6020B (Diss)	240827 (A4	H1527-01)										
Arsenic	67.9		1.00	ug/L	1	55.6	ND	122	75 - 125%			

Apex Laboratories

COSi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

QUALITY CONTROL (QC) SAMPLE RESULTS

			Anio	ns by Ion	Chroma	tography						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24H1035 - Method Prep	: Aq						Wat	er				
Blank (24H1035-BLK1)		Prepared	: 08/28/24 13:1	l6 Analyz	ed: 08/28/2	4 14:32						
EPA 300.0												
Nitrate-Nitrogen	ND		0.250	mg/L	1							
Sulfate	ND		1.00	mg/L	1							
LCS (24H1035-BS1)		Prepared	: 08/28/24 13:1	l6 Analyz	ed: 08/28/24	4 14:53						
EPA 300.0												
Nitrate-Nitrogen	1.97		0.250	mg/L	1	2.00		98	90 - 110%			
Sulfate	8.04		1.00	mg/L	1	8.00		100	90 - 110%			
Duplicate (24H1035-DUP2)		Prepared	: 08/28/24 13:1	l6 Analyz	ed: 08/28/24	4 20:17						
QC Source Sample: MW-108R-20	240827 (A4	H1527-01)										
EPA 300.0												
Nitrate-Nitrogen	3.56		0.250	mg/L	1		3.50			2	10%	
Sulfate	ND		1.00	mg/L	1		ND				10%	
Matrix Spike (24H1035-MS2)		Prepared	: 08/28/24 13:1	l6 Analyz	ed: 08/28/2	4 20:38						
QC Source Sample: MW-108R-20	240827 (A4	H1527-01)										
EPA 300.0												
Nitrate-Nitrogen	4.97		0.312	mg/L	1	2.50	3.50	59	87 - 112%			Q-02
Sulfate	9.60		1.25	mg/L	1	10.0	ND	96	88 - 115%			

Apex Laboratories

COSi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

QUALITY CONTROL (QC) SAMPLE RESULTS

	Solid and Moisture Determinations											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24H1095 - Total Susper	nded Solid	s - 2022					Wat	er				
Blank (24H1095-BLK1)		Prepared	: 08/29/24 18:1	5 Analyz	ed: 08/29/2	4 18:15						
SM 2540 D												
Total Suspended Solids	5.00		5.00	mg/L	1							В
Reference (24H1095-SRM1)		Prepared	: 08/29/24 18:1	5 Analyz	ed: 08/29/2	4 18:15						
SM 2540 D												
Total Suspended Solids	869			mg/L	1	842		103	85 - 115%			В

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

QUALITY CONTROL (QC) SAMPLE RESULTS

Solid and Moisture Determinations												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24H1098 - Total Dissolv	ed Solids	- 2022					Wat	er				
Blank (24H1098-BLK1)		Prepared	: 08/29/24 18:4	43 Analyz	zed: 08/29/2	1 18:43						
SM 2540 C Total Dissolved Solids	ND		5.00	mg/L	1							
Duplicate (24H1098-DUP2)		Prepared	: 08/29/24 18:4	43 Analyz	zed: 08/29/2	4 18:43						
QC Source Sample: MW-108R-20 SM 2540 C	0240827 (A4	H1527-01)										
Total Dissolved Solids	7800		500	mg/L	1		7100			9.40	10%	
Reference (24H1098-SRM1)		Prepared	: 08/29/24 18:4	43 Analyz	zed: 08/29/2	4 18:43						
SM 2540 C Total Dissolved Solids	2470			mg/L	1	2320		107	82 - 118%			

Apex Laboratories

COSi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

QUALITY CONTROL (QC) SAMPLE RESULTS

	Solid and Moisture Determinations											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24H1132 - Total Susper	nded Solid	s - 2022					Wat	er				
Blank (24H1132-BLK1)		Prepared	: 08/30/24 15:4	l Analyz	red: 08/30/2	4 15:41						
SM 2540 D												
Total Suspended Solids	ND		5.00	mg/L	1							
Reference (24H1132-SRM1)		Prepared	: 08/30/24 15:4	ll Analyz	ed: 08/30/2	4 15:41						
SM 2540 D												
Total Suspended Solids	857			mg/L	1	842		102	85 - 115%			

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

COSi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

QUALITY CONTROL (QC) SAMPLE RESULTS

Conventional Chemistry Parameters												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 24H1066 - Method Pre	p: Aq						Wat	er				
Blank (24H1066-BLK1)		Prepared	: 08/29/24 08:	35 Analyze	ed: 08/29/2	1 10:02						
SM 2320 B												
Total Alkalinity	ND		20.0	mg CaCO3/I	1							
Bicarbonate Alkalinity	ND		20.0	mg CaCO3/I	1							
Carbonate Alkalinity	ND		20.0	mg CaCO3/I	1							
Hydroxide Alkalinity	ND		20.0	mg CaCO3/I	1							
LCS (24H1066-BS1)		Prepared	: 08/29/24 08:	35 Analyze	ed: 08/29/24	4 10:15						
SM 2320 B												
Total Alkalinity	108		20.0	mg CaCO3/I	1	100		108	90 - 115%			
Duplicate (24H1066-DUP1)		Prepared	: 08/29/24 08:	35 Analyze	ed: 08/29/2	4 10:53						
QC Source Sample: MW-108R-2	0240827 (A4	H1527-01)										
SM 2320 B												
Total Alkalinity	2820		20.0	mg CaCO3/I	1		2790			1	5%	
Bicarbonate Alkalinity	2820		20.0	mg CaCO3/I	1		2790			1	5%	
Carbonate Alkalinity	ND		20.0	mg CaCO3/I	1		ND				5%	
Hydroxide Alkalinity	ND		20.0	mg CaCO3/I	1		ND				5%	

Apex Laboratories

COSi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: **Union Station**Project Number: **2644-001**Project Manager: **James Welles**

Report ID: A4H1527 - 09 27 24 1522

SAMPLE PREPARATION INFORMATION

	Diesel and/or Oil Hydrocarbons by NWTPH-Dx											
Prep: EPA 3510C (F	Fuels/Acid Ext.)				Sample	Default	RL Prep					
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor					
Batch: 24H1121												
A4H1527-03	Water	NWTPH-Dx LL	08/27/24 15:05	08/30/24 11:12	1040mL/2mL	1000mL/2mL	0.96					
A4H1527-04	Water	NWTPH-Dx LL	08/27/24 18:10	08/30/24 11:12	1050mL/2mL	1000mL/2mL	0.95					
A4H1527-07	Water	NWTPH-Dx LL	08/27/24 14:43	08/30/24 11:12	1020mL/2mL	1000mL/2mL	0.98					
A4H1527-08	Water	NWTPH-Dx LL	08/27/24 16:50	08/30/24 11:12	1070 mL/2 mL	1000 mL/2 mL	0.94					
Batch: 24I0016												
A4H1527-01	Water	NWTPH-Dx LL	08/27/24 11:40	09/03/24 09:58	1020mL/2mL	1000mL/2mL	0.98					
A4H1527-02RE1	Water	NWTPH-Dx LL	08/27/24 13:30	09/03/24 09:58	1030 mL/2 mL	1000mL/2mL	0.97					
Batch: 24I0225												
A4H1527-05	Water	NWTPH-Dx LL	08/27/24 11:17	09/09/24 10:12	1040mL/2mL	1000mL/2mL	0.96					
A4H1527-06	Water	NWTPH-Dx LL	08/27/24 12:47	09/09/24 10:12	1050mL/2mL	1000mL/2mL	0.95					

	Diesel and/or Oil Hydrocarbons by NWTPH-Dx with Silica Gel Column Cleanup											
Prep: EPA 3510C (Fuels/Acid Ext.) w/SGC			Sample	Default	RL Prep					
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor					
Batch: 24I0646												
A4H1527-03	Water	NWTPH-Dx/SGC	08/27/24 15:05	08/30/24 11:12	1040 mL/2 mL	1000mL/2mL	0.96					
A4H1527-07	Water	NWTPH-Dx/SGC	08/27/24 14:43	08/30/24 11:12	1020mL/2mL	1000mL/2mL	0.98					

Prep: EPA 5030C			-		Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24I0209							
A4H1527-02	Water	NWTPH-Gx (MS)	08/27/24 13:30	09/09/24 08:58	5mL/5mL	5mL/5mL	1.00
A4H1527-03	Water	NWTPH-Gx (MS)	08/27/24 15:05	09/09/24 08:58	5mL/5mL	5mL/5mL	1.00
A4H1527-04	Water	NWTPH-Gx (MS)	08/27/24 18:10	09/09/24 08:58	5mL/5mL	5mL/5mL	1.00
A4H1527-05	Water	NWTPH-Gx (MS)	08/27/24 11:17	09/09/24 08:58	5mL/5mL	5mL/5mL	1.00
A4H1527-06	Water	NWTPH-Gx (MS)	08/27/24 12:47	09/09/24 08:58	5mL/5mL	5mL/5mL	1.00
A4H1527-07	Water	NWTPH-Gx (MS)	08/27/24 14:43	09/09/24 08:58	5mL/5mL	5mL/5mL	1.00
A4H1527-08	Water	NWTPH-Gx (MS)	08/27/24 16:50	09/09/24 08:58	5mL/5mL	5mL/5mL	1.00
Batch: 24I0307							
A4H1527-01RE1	Water	NWTPH-Gx (MS)	08/27/24 11:40	09/11/24 09:00	5mL/5mL	5mL/5mL	1.00

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

SAMPLE PREPARATION INFORMATION

BTEX Compounds by EPA 8260D											
Prep: EPA 5030C					Sample	Default	RL Prep				
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
Batch: 24I0209											
A4H1527-02	Water	EPA 8260D	08/27/24 13:30	09/09/24 08:58	5mL/5mL	5mL/5mL	1.00				
A4H1527-03	Water	EPA 8260D	08/27/24 15:05	09/09/24 08:58	5mL/5mL	5mL/5mL	1.00				
A4H1527-04	Water	EPA 8260D	08/27/24 18:10	09/09/24 08:58	5mL/5mL	5mL/5mL	1.00				
A4H1527-05	Water	EPA 8260D	08/27/24 11:17	09/09/24 08:58	5mL/5mL	5mL/5mL	1.00				
A4H1527-06	Water	EPA 8260D	08/27/24 12:47	09/09/24 08:58	5mL/5mL	5mL/5mL	1.00				
A4H1527-07	Water	EPA 8260D	08/27/24 14:43	09/09/24 08:58	5mL/5mL	5mL/5mL	1.00				
A4H1527-08	Water	EPA 8260D	08/27/24 16:50	09/09/24 08:58	5mL/5mL	5mL/5mL	1.00				
Batch: 24I0307											
A4H1527-01RE1	Water	EPA 8260D	08/27/24 11:40	09/11/24 09:00	5mL/5mL	5mL/5mL	1.00				

	Polyaromatic Hydrocarbons (PAHs) by EPA 8270E (Large Volume Injection)												
Prep: EPA 3511 (Bo	ttle Extraction)				Sample	Default	RL Prep						
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor						
Batch: 24H1080													
A4H1527-04RE1	Water	EPA 8270E LVI	08/27/24 18:10	08/29/24 11:04	109.29mL/5mL	125mL/5mL	1.14						
A4H1527-08	Water	EPA 8270E LVI	08/27/24 16:50	08/29/24 11:04	100.76mL/5mL	125mL/5mL	1.24						
Batch: 24I0001													
A4H1527-01RE2	Water	EPA 8270E LVI	08/27/24 11:40	09/03/24 07:10	105.74mL/5mL	125mL/5mL	1.18						
A4H1527-02RE2	Water	EPA 8270E LVI	08/27/24 13:30	09/03/24 07:10	108.71mL/5mL	125mL/5mL	1.15						
A4H1527-03RE1	Water	EPA 8270E LVI	08/27/24 15:05	09/03/24 07:10	109.48mL/5mL	125mL/5mL	1.14						
A4H1527-05RE2	Water	EPA 8270E LVI	08/27/24 11:17	09/03/24 07:10	112.39mL/5mL	125mL/5mL	1.11						
A4H1527-06RE2	Water	EPA 8270E LVI	08/27/24 12:47	09/03/24 07:10	110.62mL/5mL	125mL/5mL	1.13						
A4H1527-07RE2	Water	EPA 8270E LVI	08/27/24 14:43	09/03/24 07:10	105.39mL/5mL	125mL/5mL	1.19						

	Polyaromatic Hydrocarbons (PAHs) and PAH Homologs by EPA 8270E Modified											
Prep: EPA 3510C (Acid Extraction)				Sample	Default	RL Prep					
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor					
Batch: 24I0006												
A4H1527-03	Water	EPA 8270m	08/27/24 15:05	09/03/24 09:09	1000 mL/1 mL	1000 mL/1 mL	1.00					
A4H1527-03RE1	Water	EPA 8270m	08/27/24 15:05	09/03/24 09:09	1000 mL/1 mL	1000 mL/1 mL	1.00					
A4H1527-07RE2	Water	EPA 8270m	08/27/24 14:43	09/03/24 09:09	1070 mL/1 mL	1000 mL/1 mL	0.94					

Total Metals by EPA 6020B (ICPMS)

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: **Union Station**Project Number: **2644-001**Project Manager: **James Welles**

Report ID: A4H1527 - 09 27 24 1522

SAMPLE PREPARATION INFORMATION

Total Metals by EPA 6020B (ICPMS)											
Prep: EPA 3015A					Sample	Default	RL Prep				
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
Batch: 24I0133											
A4H1527-01	Water	EPA 6020B	08/27/24 11:40	09/05/24 14:52	45mL/50mL	45mL/50mL	1.00				
A4H1527-02	Water	EPA 6020B	08/27/24 13:30	09/05/24 14:52	45mL/50mL	45mL/50mL	1.00				
A4H1527-03	Water	EPA 6020B	08/27/24 15:05	09/05/24 14:52	45mL/50mL	45mL/50mL	1.00				
A4H1527-04	Water	EPA 6020B	08/27/24 18:10	09/05/24 14:52	45mL/50mL	45mL/50mL	1.00				
A4H1527-05	Water	EPA 6020B	08/27/24 11:17	09/05/24 14:52	45mL/50mL	45mL/50mL	1.00				
A4H1527-06	Water	EPA 6020B	08/27/24 12:47	09/05/24 14:52	45mL/50mL	45mL/50mL	1.00				
A4H1527-07	Water	EPA 6020B	08/27/24 14:43	09/05/24 14:52	45mL/50mL	45mL/50mL	1.00				
A4H1527-08	Water	EPA 6020B	08/27/24 16:50	09/05/24 14:52	45mL/50mL	45mL/50mL	1.00				

Prep: Matrix Match	ed Direct Inject				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 24I0193							
A4H1527-08RE1	Water	EPA 6020B (Diss)	08/27/24 16:50	09/06/24 15:24	45mL/50mL	45mL/50mL	1.00
Batch: 24I0202							
A4H1527-01	Water	EPA 6020B (Diss)	08/27/24 11:40	09/06/24 17:41	45mL/50mL	45mL/50mL	1.00
A4H1527-02	Water	EPA 6020B (Diss)	08/27/24 13:30	09/06/24 17:41	45mL/50mL	45mL/50mL	1.00
A4H1527-03	Water	EPA 6020B (Diss)	08/27/24 15:05	09/06/24 17:41	45mL/50mL	45mL/50mL	1.00
A4H1527-04	Water	EPA 6020B (Diss)	08/27/24 18:10	09/06/24 17:41	45mL/50mL	45mL/50mL	1.00
A4H1527-05	Water	EPA 6020B (Diss)	08/27/24 11:17	09/06/24 17:41	45mL/50mL	45mL/50mL	1.00
A4H1527-06	Water	EPA 6020B (Diss)	08/27/24 12:47	09/06/24 17:41	45mL/50mL	45mL/50mL	1.00
A4H1527-07	Water	EPA 6020B (Diss)	08/27/24 14:43	09/06/24 17:41	45mL/50mL	45mL/50mL	1.00
A4H1527-08	Water	EPA 6020B (Diss)	08/27/24 16:50	09/06/24 17:41	45mL/50mL	45mL/50mL	1.00

Anions by Ion Chromatography								
Prep: Method Pre	p: Aq				Sample	Default	RL Prep	
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor	
Batch: 24H1035								
A4H1527-01	Water	EPA 300.0	08/27/24 11:40	08/28/24 13:16	5mL/5mL	5mL/5mL	1.00	
A4H1527-02	Water	EPA 300.0	08/27/24 13:30	08/28/24 13:16	5mL/5mL	5mL/5mL	1.00	
A4H1527-03	Water	EPA 300.0	08/27/24 15:05	08/28/24 13:16	5mL/5mL	5mL/5mL	1.00	
A4H1527-04	Water	EPA 300.0	08/27/24 18:10	08/28/24 13:16	5mL/5mL	5mL/5mL	1.00	
A4H1527-05	Water	EPA 300.0	08/27/24 11:17	08/28/24 13:16	5mL/5mL	5mL/5mL	1.00	
A4H1527-06	Water	EPA 300.0	08/27/24 12:47	08/28/24 13:16	5mL/5mL	5mL/5mL	1.00	

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: **Union Station**Project Number: **2644-001**Project Manager: **James Welles**

Report ID: A4H1527 - 09 27 24 1522

SAMPLE PREPARATION INFORMATION

Anions by Ion Chromatography								
Prep: Method Prep: Aq Sample Default RL Pro						RL Prep		
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor	
A4H1527-07	Water	EPA 300.0	08/27/24 14:43	08/28/24 13:16	5mL/5mL	5mL/5mL	1.00	
A4H1527-08	Water	EPA 300.0	08/28/24 13:16	5mL/5mL	5mL/5mL	1.00		

Solid and Moisture Determinations								
Prep: Total Dissolve	ed Solids - 2022				Sample	Default	RL Pre	
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor	
Batch: 24H1098			-					
A4H1527-01	Water	SM 2540 C	08/27/24 11:40	08/29/24 18:43			NA	
A4H1527-02	Water	SM 2540 C	08/27/24 13:30	08/29/24 18:43			NA	
A4H1527-03	Water	SM 2540 C	08/27/24 15:05	08/29/24 18:43			NA	
A4H1527-04	Water	SM 2540 C	08/27/24 18:10	08/29/24 18:43			NA	
A4H1527-05	Water	SM 2540 C	08/27/24 11:17	08/29/24 18:43			NA	
A4H1527-06	Water	SM 2540 C	08/27/24 12:47	08/29/24 18:43			NA	
A4H1527-07	Water	SM 2540 C	08/27/24 14:43	08/29/24 18:43			NA	
A4H1527-08	Water	SM 2540 C	08/27/24 16:50	08/29/24 18:43			NA	
Prep: Total Suspend	ded Solids - 202	12			Sample	Default	RL Prep	
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor	
Batch: 24H1095								
A4H1527-03	Water	SM 2540 D	08/27/24 15:05	08/29/24 18:15			NA	
A4H1527-04	Water	SM 2540 D	08/27/24 18:10	08/29/24 18:15			NA	
Batch: 24H1132								

Lab Number	Matrix	Method	Sampled	Prepared	mittal/1 mai	imital/i mai	1 actor
Batch: 24H1095							
A4H1527-03	Water	SM 2540 D	08/27/24 15:05	08/29/24 18:15			NA
A4H1527-04	Water	SM 2540 D	08/27/24 18:10	08/29/24 18:15			NA
Batch: 24H1132							
A4H1527-01RE1	Water	SM 2540 D	08/27/24 11:40	08/30/24 15:41			NA
A4H1527-02RE1	Water	SM 2540 D	08/27/24 13:30	08/30/24 15:41			NA
A4H1527-05RE1	Water	SM 2540 D	08/27/24 11:17	08/30/24 15:41			NA
A4H1527-06RE1	Water	SM 2540 D	08/27/24 12:47	08/30/24 15:41			NA
A4H1527-07RE1	Water	SM 2540 D	08/27/24 14:43	08/30/24 15:41			NA
A4H1527-08RE1	Water	SM 2540 D	08/27/24 16:50	08/30/24 15:41			NA

Conventional Chemistry Parameters									
Prep: Method Prep: Aq Sample						Default	RL Prep		
Lab Number	b Number Matrix Method Sampled Prepared				Initial/Final	Initial/Final	Factor		
Batch: 24H1066	Batch: 24H1066								
A4H1527-01	Water	SM 2320 B	08/27/24 11:40	08/29/24 08:35	60mL/60mL	60mL/60mL	NA		

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: **Union Station**Project Number: **2644-001**Project Manager: **James Welles**

Report ID: A4H1527 - 09 27 24 1522

SAMPLE PREPARATION INFORMATION

Conventional Chemistry Parameters								
Prep: Method Pre	p: Aq				Sample	Default	RL Prep	
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor	
A4H1527-02	Water	SM 2320 B	08/27/24 13:30	08/29/24 08:35	60mL/60mL	60mL/60mL	NA	
A4H1527-03	Water	SM 2320 B	08/27/24 15:05	08/29/24 08:35	60mL/60mL	60 mL / 60 mL	NA	
A4H1527-04	Water	SM 2320 B	08/27/24 18:10	08/29/24 08:35	60mL/60mL	60 mL / 60 mL	NA	
A4H1527-05	Water	SM 2320 B	08/27/24 11:17	08/29/24 08:35	60mL/60mL	60 mL / 60 mL	NA	
A4H1527-06	Water	SM 2320 B	08/27/24 12:47	08/29/24 08:35	60mL/60mL	60 mL / 60 mL	NA	
A4H1527-07	Water	SM 2320 B	08/27/24 14:43	08/29/24 08:35	60mL/60mL	60 mL / 60 mL	NA	
A4H1527-08	Water	SM 2320 B	08/27/24 16:50	08/29/24 08:35	60mL/60mL	60 mL / 60 mL	NA	

Lab Filtration								
Prep: Lab Filtration	<u>n</u>				Sample	Default	RL Prep	
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor	
Batch: 24I0084								
A4H1527-01	Water	NA	08/27/24 11:40	09/04/24 14:37	150 mL/150 mL		NA	
A4H1527-02	Water	NA	08/27/24 13:30	09/04/24 14:39	150 mL/150 mL		NA	
A4H1527-03	Water	NA	08/27/24 15:05	09/04/24 14:40	150mL/150mL		NA	
A4H1527-04	Water	NA	08/27/24 18:10	09/04/24 14:42	150 mL/150 mL		NA	
A4H1527-05	Water	NA	08/27/24 11:17	09/04/24 14:44	150 mL/150 mL		NA	
A4H1527-06	Water	NA	08/27/24 12:47	09/04/24 14:47	150mL/150mL		NA	
A4H1527-07	Water	NA	08/27/24 14:43	09/04/24 14:49	150 mL/150 mL		NA	
A4H1527-08	Water	NA	08/27/24 16:50	09/04/24 14:56	150mL/150mL		NA	

Apex Laboratories

COSi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

В	Analyte detected in an associated blank at a level above the MRL. (See Notes and Conventions below.)
B-02	Analyte detected in an associated blank at a level between one-half the MRL and the MRL. (See Notes and Conventions below.)
DCNT	Sample decanted due to the presence of sediment. Sample bottle not rinsed with solvent.
F-03	The result for this hydrocarbon range is elevated due to the presence of individual analyte peaks in the quantitation range that are not representative of the fuel pattern reported.
F-13	The chromatographic pattern does not resemble the fuel standard used for quantitation
F-17	No fuel pattern detected. The Diesel result represents carbon range C10 to C25, and the Oil result represents >C25 to C40.
FILT1	Sample was lab filtered and acid preserved prior to analysis. See sample preparation section of report for date and time of filtration.
FILT3	This is a laboratory filtration blank, associated with filtration batch 24i0084. See Prep page of report for associated samples.
H-01	Analyzed outside the recommended holding time.
J	Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified DL.
M-05	Estimated results. Peak separation for structural isomers is insufficient for accurate quantification.
PRES	Incomplete field preservation. Additional preservative was added to adjust the pH within the appropriate range for this analysis.
Q-02	Spike recovery is outside of established control limits due to matrix interference.
Q-19	Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
Q-29	Recovery for Lab Control Spike (LCS) is above the upper control limit. Data may be biased high.
Q-41	Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.
Q-42	Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)
R-02	The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.
S-01	Surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interference.
S-05	Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference.
TSS	Dried residue was less than 2.5mg as specified in the method. Results meet regulatory requirements.

Sample aliquot taken from VOA vial with headspace (air bubble greater than 6 mm diameter).

Apex Laboratories

V-01

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon Consulting - BellevueProject:Union Station13555 SE 36th Street, Suite 320Project Number:2644-001Bellevue, WA 98006Project Manager:James Welles

Report ID: A4H1527 - 09 27 24 1522

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported.

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"__" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) are not included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

'---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"*** " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to one half of the Reporting Limit (RL).

Blank results for gravimetric analyses are evaluated to the Reporting Level, not to half of the Reporting Level.

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

Apex Laboratories

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon Consulting - Bellevue Project:

13555 SE 36th Street, Suite 320 Project Nut

Bellevue. WA 98006 Project Mar

Project Number:2644-001Report ID:Project Manager:James WellesA4H1527 - 09 27 24 1522

REPORTING NOTES AND CONVENTIONS (Cont.):

Union Station

Blanks (Cont.):

Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Cameron O'Brien, Project Manager

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon Consulting - BellevueProject:Union Station13555 SE 36th Street, Suite 320Project Number:2644-001Bellevue, WA 98006Project Manager:James Welles

Report ID: A4H1527 - 09 27 24 1522

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix	Analysis	TNI_ID	Analyte	TNI_ID	Accreditation
Water	EPA 8270m		1,6,7-Trimethylnaphthalene	6852	
Water	EPA 8270m		2,6-Dimethylnaphthalene	6188	
Water	EPA 8270m		C1-Chrysenes/Benz(a)anthracenes	6639	
Water	EPA 8270m		C1-Decalin	6604	
Water	EPA 8270m		C1-Dibenzothiophene	6591	
Water	EPA 8270m		C1-Fluoranthenes/Pyrenes	6606	
Water	EPA 8270m		C1-Fluorenes	6607	
Water	EPA 8270m		C1-Naphthalenes	6609	
Water	EPA 8270m		C1-Phenanthrenes/Anthracenes	6611	
Water	EPA 8270m		C2-Chrysenes/Benz(a)anthracenes	6641	
Water	EPA 8270m		C2-Decalin	6616	
Water	EPA 8270m		C2-Dibenzothiophene	6592	
Water	EPA 8270m		C2-Fluoranthenes/Pyrenes		
Water	EPA 8270m		C2-Fluorenes	6618	
Water	EPA 8270m		C2-Naphthalenes	6619	
Water	EPA 8270m		C2-Phenanthrenes/Anthracenes	6621	
Water	EPA 8270m		C3-Chrysenes/Benz(a)anthracenes	6643	
Water	EPA 8270m		C3-Decalin	6626	
Water	EPA 8270m		C3-Dibenzothiophene	6593	
Water	EPA 8270m		C3-Fluoranthenes/Pyrenes		
Water	EPA 8270m		C3-Fluorenes	6628	
Water	EPA 8270m		C3-Naphthalenes	6629	
Water	EPA 8270m		C3-Phenanthrenes/Anthracenes	6631	
Water	EPA 8270m		C4-Chrysenes/Benz(a)anthracenes	6649	
Water	EPA 8270m		C4-Decalin	6636	
Water	EPA 8270m		C4-Dibenzothiophene	6594	
Water	EPA 8270m		C4-Fluoranthenes/Pyrenes		
Water	EPA 8270m		C4-Naphthalenes	6637	

Apex Laboratories

CODI

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon Consulting - Bellevue	Project: <u>Union Station</u>	
13555 SE 36th Street, Suite 320	Project Number: 2644-001	Report ID:
Bellevue, WA 98006	Project Manager: James Welles	A4H1527 - 09 27 24 1522

Water	EPA 8270m	C4-Phenanthrenes/Anthracenes	6638
Water	EPA 8270m	cis-Decalin	NA
Water	EPA 8270m	Dibenzothiophene	5910

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

	ŀ					-								-				ŀ							
Company: + arallon	d.	Project Mgr. James Welles	(7)	2 me	<u>ت</u>	Jel	65		Proje	ct Na	Project Name: United	15	Š	5	to t	Statist		뀹	oject #	Project #: 26 44 - 00.1	44	ŏ			
Address: 13555 SE 36th	St Bell	Bellevue	3	_	Ph	Phone:					mail:	June	9501	3	200	Email: Jue 105 @ Les collen consol +102 Longo#	701	1	#						
Sampled by: S. L'Od?	Blackupi	1100										S. C.			NAL	ANALYSIS BEOLIEST	<u> </u>								
		-	_	 	<u> </u>						2	35			<u> </u>	K² Sp² Sq²	ano	باز ا	50	Eb.it	2				
				C.N.				s				CT IID				Be, (T	SOA	1100	1663	L12	1975	240		
State IN H			aixi	-	_		*)Ce			A SIC				,££	'SS		(50)	ruz	150		110		_
County CING			-		1		EX		A OI				-			['s¥	ıa		5.10	30	7		C +	əla	
SAMPLE ID	HTAC	IME	CIRTAN	OE CO	IALMN	MALA	EE 0978	EN 0978	BH 0928	OA 0978	US 0278	19S 04Z8	9082 PC	SCRA I	riority)	l, Sb, As, Mg, Mg, As, As, Mg, As, As, M	TVIO	CCLP N TAINT	5020	2/1040 5050 101040 125 2 1 2 40	inuta	ולמווייו	1464	ma2 blo	¥ uəzo.
MN-1080-70240877	3	-	-	, ~	\times	\perp	×				- 1	-		-	-	V	1		HČ	1 ×	Ν×		ν×	Н	1
MW-105-70740827	_	330		-		-	1_			1		+	-	+	╀		-		, -	: -	-	_		-	+
100000000000				-	+	+	士		T	\dagger	1	+	+	+	\perp					+	\pm	\pm	-	-	-
1 7.00 k7.07 - 7 101 - MW	2	505		+	+	7					_	-	\dashv	\dashv	-			7	7	_	_			\dashv	
B-42-2024 0827	2	010																							
MW-162 B-08272024	=	<u></u>										-													
MW-104-082724	į,	247																							
MW-107B-082724	-	14473																							
B-62-082724	- -1	. 059	_											_				<u> </u>	<u> </u>	`		_	_1 ·		
· managara da m																									
												-						-							
Standard Turn Around Time (TAT) = 10 Business Days	Around Time	(TAT) =)	10 Busin	ess Day						Ī	SPECIAL INSTRUCTIONS	K IN	STRU	CTIO	is.			1		-					-
	1 Day	2.1	2 Day		3 Day					., .	F No	15	يَ ا	2	ਹੈ ਹੁੰ	+ No Silica gl Clean up									
TAT Requested (circle)	5 Day	Stan	Standard	_	Other:						*	~ ~	للآ	n	7	* * ATLENE SFFLIATION	Š.								
SAMPLE	SAMPLES ARE HELD FOR 30 DAYS	FOR 30 D	AYS							Τ															
UISHED BY:	Note:	88 S	RECEIVER BY:	, BY:			į			-	RELINQUISHED BY:	ESIZ (ED B	ندا				2 3	SCEN.	RECEIVED BY	1	1			
18	W5/818	<u> </u>		~ 3		C		9	2	2	0	6			`	Q	7			X	W	_	Serie: Selection of the series	42	_
ame:	Time:	王	1	X		7	ij i	Time:	7	<u> </u>	Tip di				1	Time:	7	E	Printed Name	iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	4		Time:	9	
Samh Dath	1000	77	Fani Nale	14	ρ.		9	10:02	a		F ON	۶ç		Jake		CA: 42	40	_ 	\leq	on 10, 10, rale	્ટ્રે	5	\overline{c}	1342pm	⋛
Company		.g `	mpany:	sunc:	9	ç		2000		<u> </u>	Company	s: (9	ompany:			•	රි	mpany Y	Ś	ρ,				
1011		_	レニー	5	1	_	_			-	ر	ò	2	2	_			_	Ý	7	2				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

	WO# AUN627
COC/Containe	er Discrepancies
COC Reads	Container Reads/Comments MW-102R-48277007-082724 NO + ON 112 HCI Ambers 1/2 HCI Amber a FF Nither read: MW-101R-202408 1/2 HCI Amber 4 FF Nither read: B-4R-202408
NW-1028-08272024	MW-1028-08272624082724
3-6R-082724 MN-101R-20240827 -4R-20240827	Nn + on 1/2 Hay Ambers
MN-1010-20240027	1/2 LICI AMBRE & FF NithEL YEAR! MINI-1018-202408
10 20210827	112 1101 Applyance + 2012/2012 - 42 - 2012/05
- TR-20270127	THE ATTOM STATE TRANS
AND THE PROPERTY OF THE PROPER	
A	
William William Committee	
With the second	
(490)	
	NAME OF THE OWNER OWNER OF THE OWNER
	The second of th
VVVV44444V44	
	Form Y-004 R-00

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

(ODi

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Farallon Consulting - Bellevue</u> 13555 SE 36th Street, Suite 320 Bellevue, WA 98006 Project: Union Station
Project Number: 2644-001
Project Manager: James Welles

Report ID: A4H1527 - 09 27 24 1522

	APEXLABS COOLER RECEIPT FORM
Client:	-avallon Element WO#: A441527
Project/Proj	ject #: Union Station 21044-001
Delivery Info	<u>o</u> :
Date/time re	eccived: \$178/74 @ 1342 By: WAYS 118kg
Delivered by	y: Apex_Client_ESSFedEx_UPS_RadioMorganSDSEvergreenX_Other_X_
From USDA	A Regulated Origin? Yes No
Cooler Inspe	ection Date/time inspected: 878 W @ 1357 By: WAYS
Chain of Cu	stody included? Yes No
Signed/dated	d by client? Yes No No
Contains US	SDA Reg. Soils? Yes No Unsure (email RegSoils)
	Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Temperature	e(°C) 2.6 0.6 U.6 2.3
Custody seal	ls? (Y/N) /
Received on	ice? (Y/N) 4
Temp. blank	:s? (Y/N)
Ice type: (Ge	el/Real/Other) Peal
Condition (In	n/Out):
Green dots a Out of tempe	of temp? (Y/L) Possible reason why:
	intact? Yes No Comments:
	994 3423
Bottle labels	COCs agree? Yes No Comments: MW-62R-08242024 Cont. IDs regol
E-11-10-00-1-10-0	2-002724 See Erm
	ner discrepancies form initiated? Yes No
Containers/ve	rolumes received appropriate for analysis? Yes No Comments:
Do VOA via	ls have visible headspace? Yes X No NA NA
Comments 1	MW-108R and MW-105 6/6 voAs have HS
Water sample	es: pH checked: Yes No NA pH appropriate? Yes No NA pH ID: M3T 7
Comments: B-	ph=7 for 1L Ambus 1/2 MW-108R, MW-105, MW-101R, B-4R, MW-107R CR. MW-107R 1/2 IL Ambers are two full to preserve
Labeled by:	Witness: Cooler Inspected by: Form Y-003 R-02

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

(BC) -

September 19, 2024

Apex Laboratories ATTN: Cameron O'Brien 6700 S.W. Sandburg St. Tigard, OR 97223

EPA Methods TO3, TO14A, TO15, 25C/3C, ASTM D1946, RSK-175

> TX Cert T104704450-14-6 EPA Methods TO14A, TO15

UT Cert CA0133332015-3 EPA Methods TO3, TO14A, TO15, RSK-175

> ALASKA CS-LAP 24-002 EPA Methods TO14A, TO15

LABORATORY TEST RESULTS

Project Reference: A4H1527

Lab Number:

R083007-01/08

Enclosed are results for sample(s) received 8/30/24 by Air Technology Laboratories. Samples were received intact and chilled to 4° C. Analyses were performed according to specifications on the chain of custody provided with the sample(s).

Report Narrative:

- Unless otherwise noted in the report, sample analyses were performed within method performance criteria and meet all requirements of the TNI Standards.
- The enclosed results relate only to the sample(s).

ATL appreciates the opportunity to provide testing services to your company. If you have any questions regarding these results, please call me at (626) 964-4032.

Sincerely,

Mark Johnson

Operations Manager

MJohnson@AirTechLabs.com

Note: The cover letter is an integral part of this analytical report.

SUBCONTRACT ORDER

Apex Laboratories

OF Stroky A4H1527 MW

R083007-01/08

SENDING LABORATORY:

Apex Laboratories

6700 S.W. Sandburg Street

Tigard, OR 97223 Phone: (503) 718-2323 Fax: (503) 336-0745

Project Manager: Cameron O'Brien

RECEIVING LABORATORY:

Air Technology Laboratories, Inc 18501 E. Gale Ave Suite 130 City of Industry, CA 91748 Phone :(626) 964-4032

Fax: (626) 964-5832

Sample Name: MW-108R-20240827		Water	Sampled: 08/27/24 11:40	(A4H1527-01
Analysis	Due	Expires	Comments	
RSK 175 Preserved (Meth, Eth, Eth) (Sub) Containers Supplied: (D)40 mL VOA - HCL (E)40 mL VOA - HCL (F)40 mL VOA - HCL	09/11/24 17:00	09/10/24 11:40	Methane only 3/3 your have Ab 8128	e HS -ny
Sample Name: MW-105-20240827		Water	Sampled: 08/27/24 13:30	(A4H1527-0
Analysis	Due	Expires	Comments	
RSK 175 Preserved (Meth, Eth, Eth) (Sub) Containers Supplied: (D)40 mL VOA - HCL (E)40 mL VOA - HCL (F)40 mL VOA - HCL	09/11/24 17:00	09/10/24 13:30	Methane only 3/3 voas have and small	HS 4
Sample Name: MW-101R-20240827		Water	1/2 1L Amber and 250ml Sampled: 08/27/24 15:05	FF Nitric reads MV (A4H1527-0
Analysis	Due	Expires	Comments	
RSK 175 Preserved (Meth, Eth, Eth) (Sub) Containers Supplied: (D)40 mL VOA - HCL (E)40 mL VOA - HCL (F)40 mL VOA - HCL	09/11/24 17:00	09/10/24 15:05	Methane only	

40

UPS (Shipper)

Released By
UPS (Shipper)

Released By

OPS (Snipper)

3/30/24 10:18

Received By

Received By

B/30/24 (0:18)

Date

SUBCONTRACT ORDER

Apex Laboratories

OB Shony A4H1527

R083007-01/08

	0,000		12000	- 100
Sample Name: B-4R-20240827	-	Water	1/2 1L Amber B-4R-202 Sampled: 08/27/24 18:10	40824 (A4H1527-04)
Analysis	Due	Expires	Comments	(111111327 01)
RSK 175 Preserved (Meth, Eth, Eth) (Sub) Containers Supplied: (D)40 mL VOA - HCL (E)40 mL VOA - HCL (F)40 mL VOA - HCL	09/11/24 17:00	09/10/24 18:10	Methane only	
Sample Name: MW-102R-08272024		Water	Conts. reads MW-102-08 Sampled: 08/27/24 11:17	(A4H1527-05)
Analysis	Due	Expires	Comments	(114111321-03)
RSK 175 Preserved (Meth, Eth, Eth) (Sub) Containers Supplied: (D)40 mL VOA - HCL (E)40 mL VOA - HCL (F)40 mL VOA - HCL	09/11/24 17:00	09/10/24 11:17	Methane only	
9 Sample Name: MW-104-082724		Water	Sampled: 08/27/24 12:47	(A4H1527-06)
Analysis	Due	Expires	Comments	(
RSK 175 Preserved (Meth, Eth, Eth) (Sub) Containers Supplied: (D)40 mL VOA - HCL (E)40 mL VOA - HCL (F)40 mL VOA - HCL	09/11/24 17:00	09/10/24 12:47	Methane only	
Sample Name: MW-107R-082724		Water	Sampled: 08/27/24 14:43	(A4H1527-07)
Analysis	Due	Expires	Comments	
RSK 175 Preserved (Meth, Eth, Eth) (Sub) Containers Supplied: (D)40 mL VOA - HCL (E)40 mL VOA - HCL (F)40 mL VOA - HCL	09/11/24 17:00	09/10/24 14:43	Methane only	
	Standard	! TAT		
				· · · · · · ·

UPS (Shipper)

Received By

Received By

10:18

Released By

Released By

UP8 (Shipper)

9/30/24 10:18 Date

Date

SUBCONTRACT ORDER

Apex Laboratories

MS8N8MY

A4H1527

R083007-01/08

ample Name: B-6R-082724		Water	No t on 1/2 1L Ambers Sampled: 08/27/24 16:50	(A4H1527-08
Analysis	Due	Expires	Comments	
RSK 175 Preserved (Meth, Eth, Eth) (Sub)	09/11/24 17:00	09/10/24 16:50	Methane only	
Containers Supplied: (D)40 mL VOA - HCL				
(E)40 mL VOA - HCL				
(F)40 mL VOA - HCL				

Standard TAT

H°C Ho

Released By Date Received By Date

UPS (Shipper)

Released By Date

Received By Date

Date

Received By Date

Received By Date

Client:

Apex Laboratories

Attn:

Cameron O'Brien

Project Name:

NA

Project No.:

A4H1527

Date Received:

08/30/24

Matrix:

Water

Reporting Units: ug/L

RS	K1	75

R08300	07-01	R08300	07-02	R08300	07-03	R08300	07-04
8/27/24	11:40	8/27/24	13:30	8/27/24	15:05	8/27/24	18:10
9/9/24 1	15:32	9/9/24 1	15:44	9/9/24	15:58	9/9/24 1	6:11
240909G	C8A2	240909G	C8A2	2409090	C8A2	240909G	C8A2
AS/k	Œ	AS/k	KD .	AS/F	KD .	AS/k	Œ
1.0		1.0)	1.0)	1.0	
Result ug/L	RL ug/L	Result ug/L	RL ug/L	Result ug/L	RL ug/L	Result ug/L	RL ug/L
4,200	1.0	7,300	1.0	10,000	1.0	4,400	1.0
	MW-108R- (A4H152 8/27/24 9/9/24 1 240909G AS/K 1.0 Result ug/L	ug/L ug/L	R083007-01 R08300 MW-108R-20240827 MW-105-2 (A4H1527-01) (A4H1527-01)	R083007-01 R083007-02 MW-108R-20240827 (A4H1527-01) (A4H1527-02) 8/27/24 11:40 8/27/24 13:30 9/9/24 15:32 9/9/24 15:44 240909GC8A2 240909GC8A2 AS/KD AS/KD 1.0 1.0 Result RL Result RL ug/L ug/L	R083007-01 R083007-02 R08300 MW-108R-20240827 MW-105-20240827 MW-101R-(A4H1527-02) (A4H1527-01) (A4H1527-02) (A4H1527-02) 8/27/24 11:40 8/27/24 13:30 8/27/24 9/9/24 15:32 9/9/24 15:44 9/9/24 1 240909GC8A2 240909GC8A2 240909G AS/KD AS/KD AS/KD 1.0 1.0 1.0 Result ug/L RL ug/L ug/L ug/L	R083007-01 R083007-02 R083007-03 MW-108R-20240827 (A4H1527-01) MW-105-20240827 (A4H1527-02) MW-101R-20240827 (A4H1527-03) 8/27/24 11:40 8/27/24 13:30 8/27/24 15:05 9/9/24 15:32 9/9/24 15:44 9/9/24 15:58 240909GC8A2 240909GC8A2 240909GC8A2 AS/KD AS/KD AS/KD 1.0 1.0 1.0 Result ug/L RL ug/L ug/L ug/L	MW-108R-20240827 (A4H1527-01) MW-105-20240827 (A4H1527-02) MW-101R-20240827 (A4H1527-03) B-4R-202 (A4H1527-03) B-4R-202 (A

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Operations Manager

The cover letter is an integral part of this analytical report

Client:

Apex Laboratories

Attn:

Cameron O'Brien

Project Name:

NA

Project No.:

A4H1527

Date Received:

08/30/24

Matrix:

Water

Reporting Units: ug/L

RSK	17	5

TL.NI.	D0000)= 0 =						
Lab No.:	R08300	07-05	R08300	07-06	R08300	07-07	R08300	07-08
Client Sample I.D.:	MW-102R- (A4H152		MW-104- (A4H152		MW-107R (A4H152		B-6R-08 (A4H152	
Date/Time Sampled:	8/27/24	11:17	8/27/24	12:47	8/27/24	14:43	8/27/24	16:50
Date/Time Analyzed:	9/9/24 1	16:23	9/9/24 1	16:36	9/9/24 1	16:47	9/10/24	8:12
QC Batch No.:	240909G	GC8A2	240909G	C8A2	240909G	C8A2	240909G	C8A2
Analyst Initials:	AS/k	Œ	AS/k	XD	AS/k	(D	AS/k	(D
Dilution Factor:	1.0		1.0		1.0)	1.0	
ANALYTE	Result ug/L	RL ug/L	Result ug/L	RL ug/L	Result ug/L	RL ug/L	Result ug/L	RL ug/L
Methane	9,700	1.0	9,100	1.0	12,000	1.0	7,500	1.0

ND = Not Detected (below RL)

RL = Reporting Limit

Reviewed/Approved By:

Operations Manager

The cover letter is an integral part of this analytical report

QC Batch No:

240909GC8A2

Matrix:

Water

Reporting Units:

ug/L

RSK 175	
LABORATORY CONTROL SAMPLE	SUMMARY

Lab No.:	METHOD BLANK			LCS		LCSD					
Date/Time Analyzed:	9/9/24 15:13			9/9/2	4 14:39	9/9/24 14:51					
Analyst Initials:	AS/KD			AS	S/KD	AS/KD					
Dilution Factor:	1.0				1.0	1.0			Limits		
ANALYTE	Result ug/L	RL ug/L	SPIKE AMT. ug/L	Result ug/L	% Rec.	Result ug/L	% Rec.	RPD %	Low %Rec	High %Rec	Max. RPD
Methane	ND	1.0	650	588	90	548	84	7.1	70	130	30

ND = Not Detected (below RL)

RL = **Reporting Limit**

Operations Manager

Γ

ate 9 19 24

The cover letter is an integral part of this analytical report

From: Kurt Johnson
To: James Welles
Subject: FW: from Kurt

Date: Tuesday, October 8, 2024 4:26:30 PM

Attachments: <u>image001.png</u>

James,

Per your request we have reviewed the analytical results and NWTPH-D c-grams for your recent water sampling event at your Union Station, Project 2644-001 provided in the Apex Laboratories report for Work Order A4D1728 and A4H1527. <u>Based on this review the NWTPH quantifications for gasoline, diesel and oil range organics (GRO/DRO/ORO) are due to the presence of one or more non-petroleum based materials. The material impacting the groundwater is characteristic of a pyrogenic based material such as coal tar, MGP waste, or similar materials. This finding is based on:</u>

- 1. Review of the NWTPH-D c-grams do not show the characteristic pattern of peaks and/or unresolved complex mixtures (UCMS) expected for the water soluble fraction of automotive gasoline, diesel fuel, or similar products.
- 2. The **two** samples with the highest GRO/DRO contaminant mass (MW-101R and MW-107R) were evaluated for the presence of isooctane, a common blending component in gasoline. Isooctane was not identified in either sample.
- 3. Testing for parent and alkylated PAHs was completed on the samples MW-101R and MW-107R. For MW-101R the parent and alkylated PAHs quantified account for at least 48% of the DRO present which is typical for the water soluble fraction of coal tar and similar materials; and not typical for petroleum fuels such as gasoline and diesel fuel.
 - In addition, the relative abundance of the parent and alkylated PAHs in the sample MW-101R is indicative of a pyrogenic and not petroleum source material. The parent and alkylated results for the MW-107R sample accounted for approximately 5% of the DRO present in this sample but, as stated in item 1, the pattern of peaks present on the DRO GC/FID trace indicate a non-petroleum source.
- 4. It should also be noted that a cursory GCMS library search was completed on the samples MW-101R and MW-107R that tentatively identified and quantified relatively high levels of indane in both samples, and lesser amounts of indene. Although these constituents are present in crude oil as well as coal tar, their elevated level in conjunction with PAHs at this Site provides further evidence that the source material is not petroleum based and the GRO/DRO quantified in these samples is not due to gasoline or diesel releases. Both indane and indene elute in a range that can be quantified in both the NWTPH-GRO and NWTPH-DRO ranges.

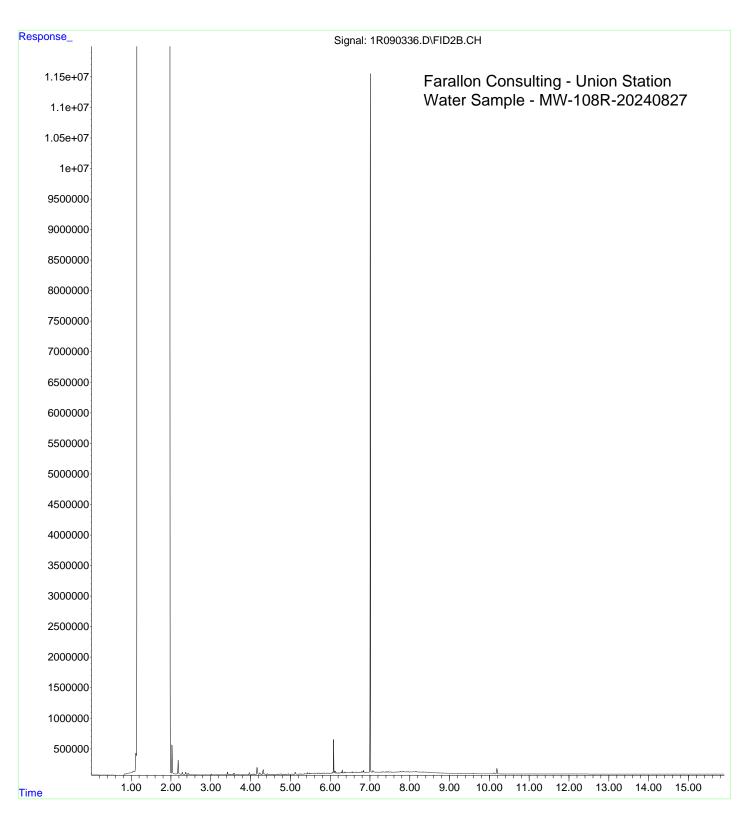
In addition, based on the initial results of total arsenic, dissolved arsenic (field filtered), and TDS/TSS we were concerned that your field filters were not adequately removing particles above 0.45 um in size at the Site. We ran an additional filtration at our laboratory using an absolute 0.45 um filter and confirmed that your field filters have insufficient capacity to remove all of the particulates in this size range. As shown in the results, there was an additional reduction of 79% of the arsenic mass after the laboratory filtration was completed at the B-6R location. This issue is not unique to this Site and we would recommend that further testing/sampling include lab filtration until the field filter issue is resolved.

If you would like a more detailed report of our evaluation, please let us know.

Respectfully,

Kurt Johnson, Senior Chemist Director of Forensic Services 6700 SW Sandburg St. Tigard, OR 97223 O: (503) 718-2323 Ext. 237 C: (206) 852-9663 kjohnson@apex-labs.com www.apex-forensics.com

We Welcome Your Feedback
Help us improve your experience by taking our short survey.
Apex Client Survey

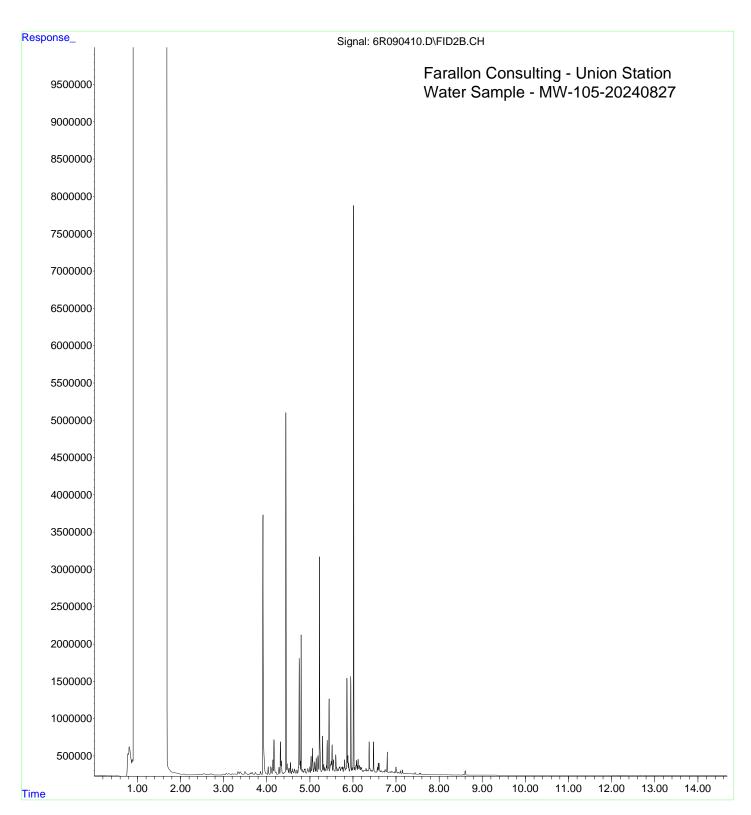

DISCLAIMER: The information in this email, including any attachments, is intended only for the person or entity to which it is addressed and may contain confidential and/or privileged material. If you are not the intended recipient, or believe you have received this communication in error, please do not print, copy, or otherwise use or transmit the information. Please notify the sender by return email immediately and delete this message.

File : C: \msdchem1\copied data\4I03060\1R090336. D

Operator : BLL

Acquired : 04 Sep 2024 8:12 amusing AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: A4H 527-01

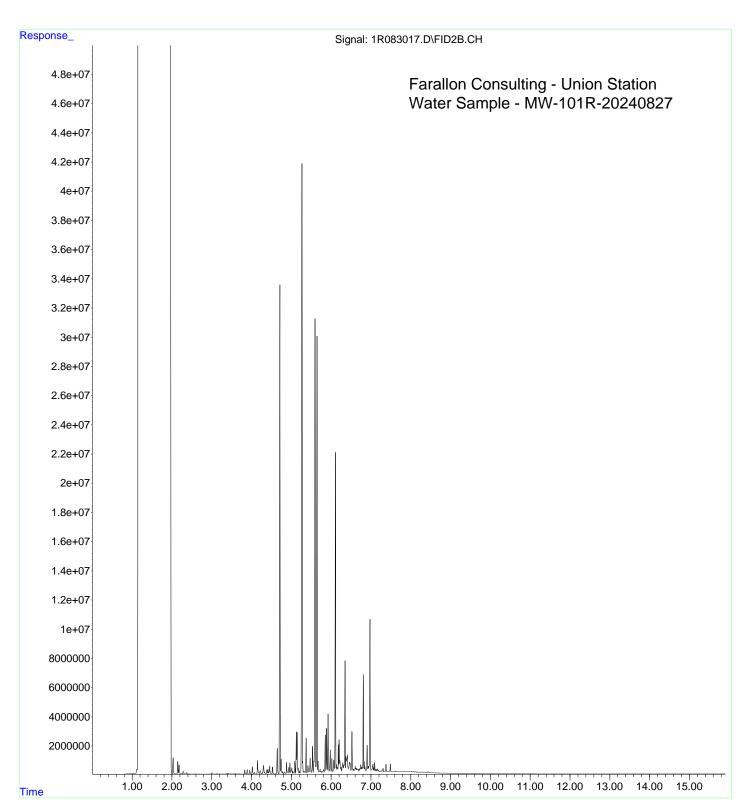


File : C: \msdchem\1\copied data\4I04035\6R090410. D

Operator : BLL

Acquired : 04 Sep 2024 10: 29 amusing AcqMethod 6F71215A. M

Instrument: HP G1530A Sample Name: A4H 527-02RE1

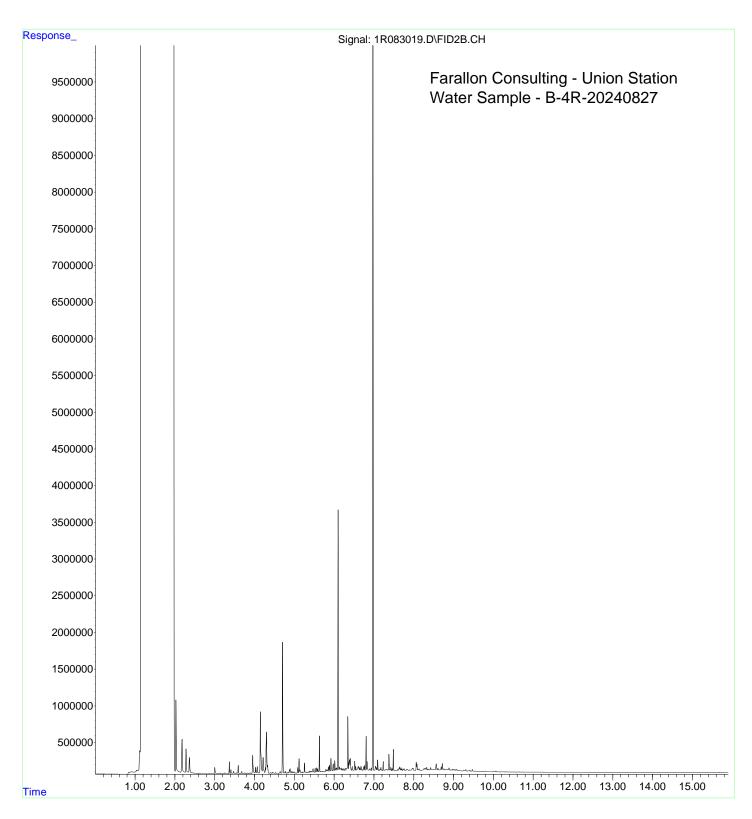


File : C: \msdchem\1\copied data\4HB0040\1R083017. D

Operator : BLL

Acquired: 31 Aug 2024 12:18 amusing AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: A4H 527-03

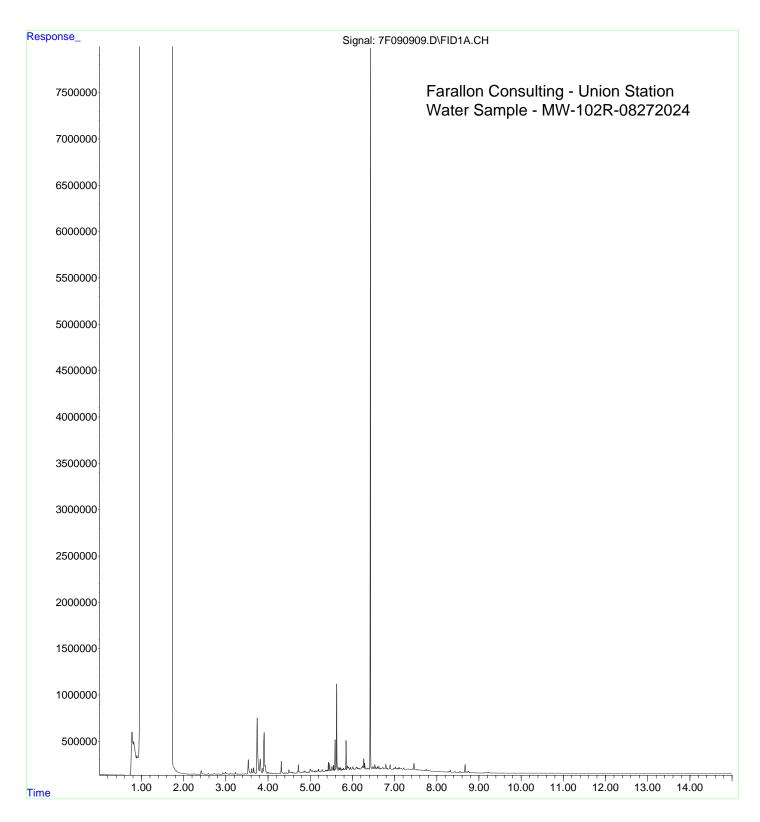


File : C: \msdchem\1\copied data\4HB0040\1R083019. D

Operator : BLL

Acquired: 31 Aug 2024 1:06 amusing AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: A4H 527-04

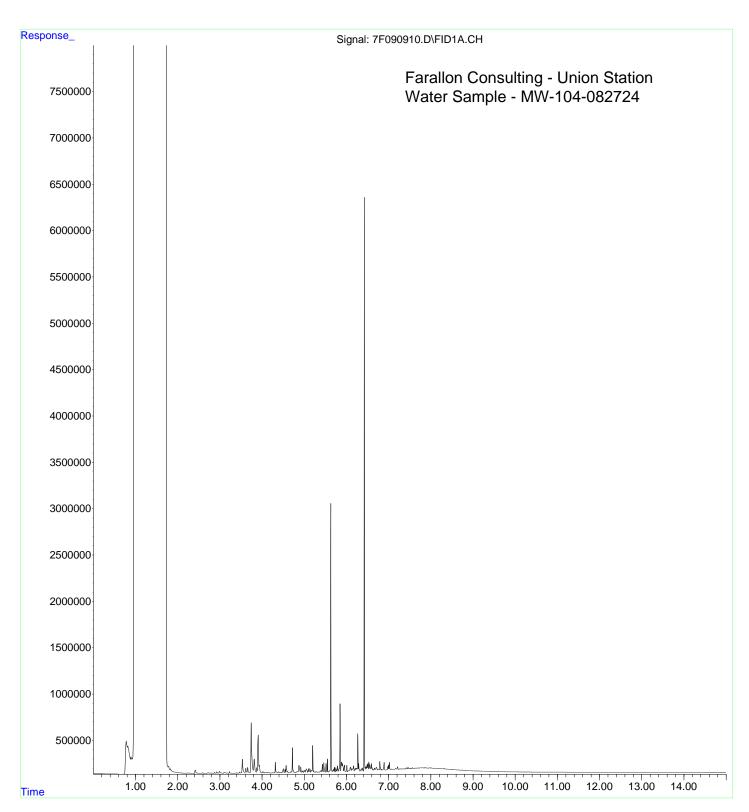


File : C: \msdchem\1\copied data\4I09075\7F090909. D

Operator : BLL/BJY

Acquired : 10 Sep 2024 3:48 am using AcqNethod FID7ACQ. M

Instrument: HP G1530A Sample Name: A4H 527-05

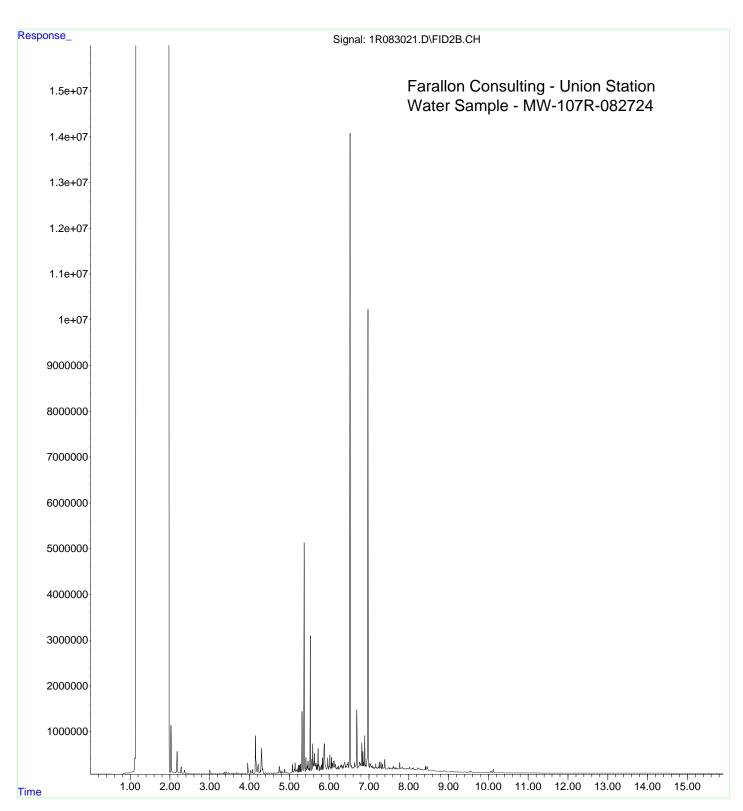


File : C: \msdchem1\copied data\4109075\7F090910. D

Operator : BLL/BJY

Acquired : 10 Sep 2024 4:09 amusing AcqMethod FID7ACQ. M

Instrument: HP G1530A Sample Name: A4H 527-06

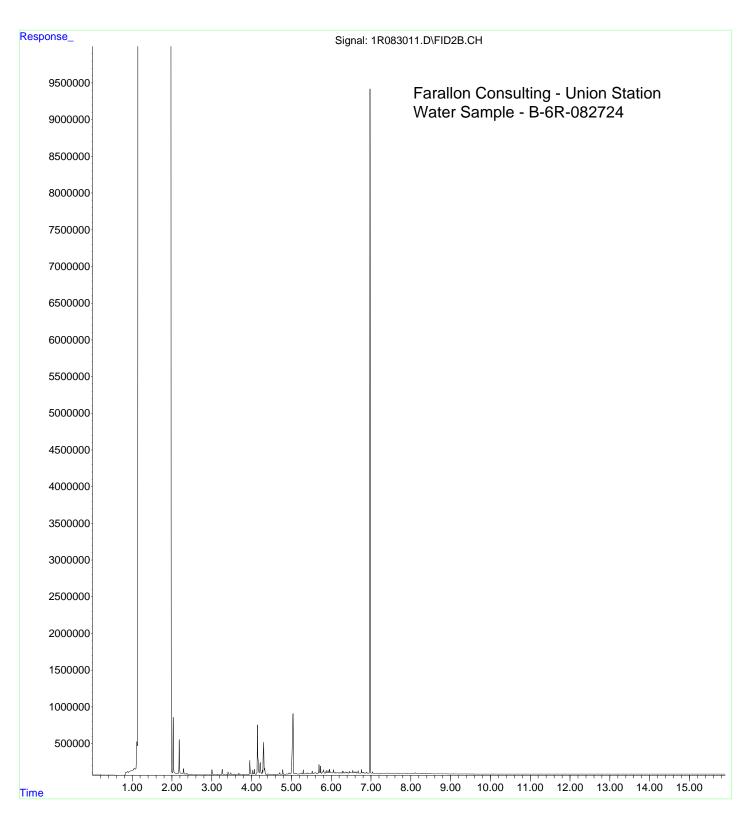


File : C: \msdchem\1\copied data\4HB0040\1R083021. D

Operator : BLL

Acquired: 31 Aug 2024 1:53 amusing AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: A4H 527-07

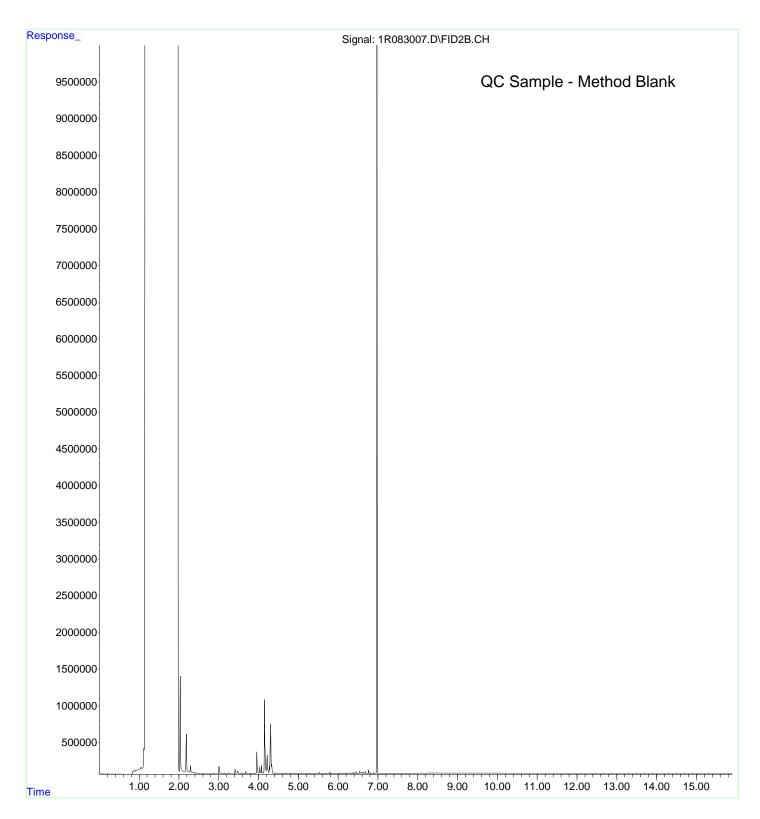


File : C: \msdchem\1\copied data\4HB0040\1R083011. D

Operator : BLL

Acquired: 30 Aug 2024 9: 57 pm using AcqWethod A1F40422. M

Instrument: HP G1530A Sample Name: A4H 527-08

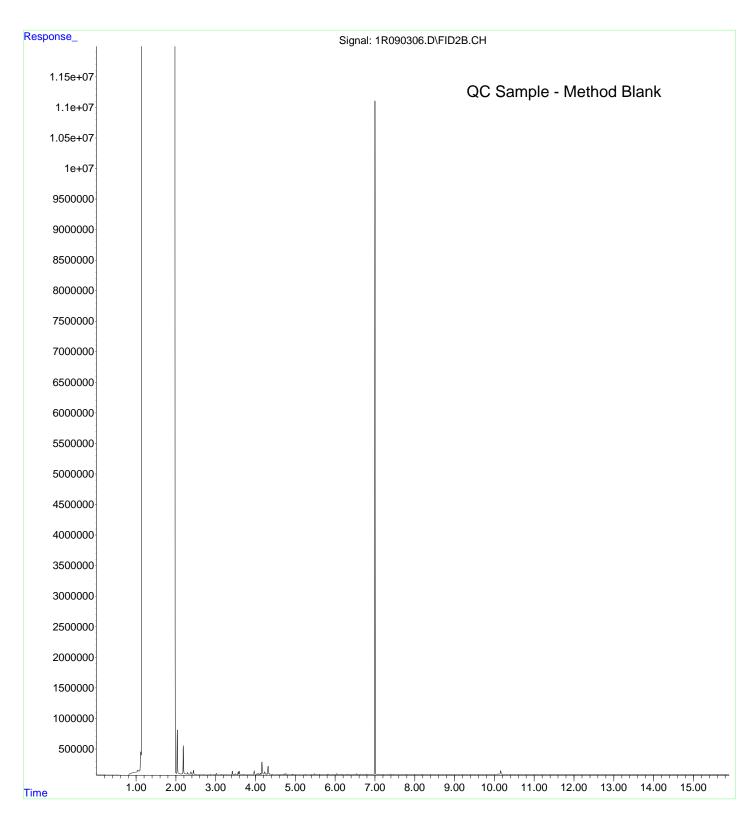


File : C: \msdchem\1\copied data\4H80040\1R083007. D

Operator : BLL

Acquired : 30 Aug 2024 8: 23 pm using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: 24H121-HLKI

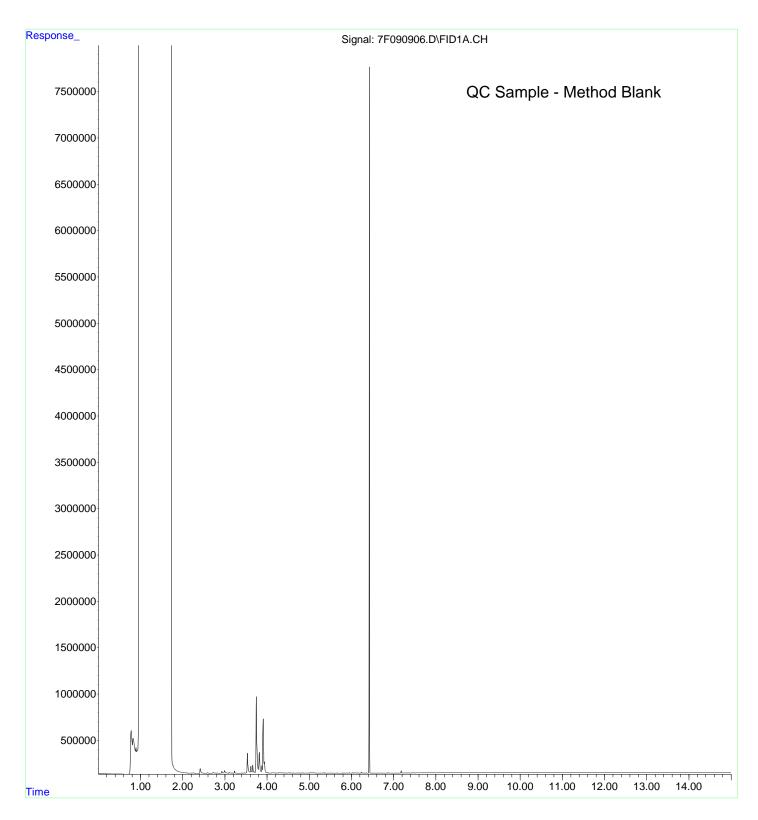


File : C: \msdchem\1\copied data\4I03060\1R090306. D

Operator : BLL

Acquired : 03 Sep 2024 8:13 pm using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: 2410016-HLK1

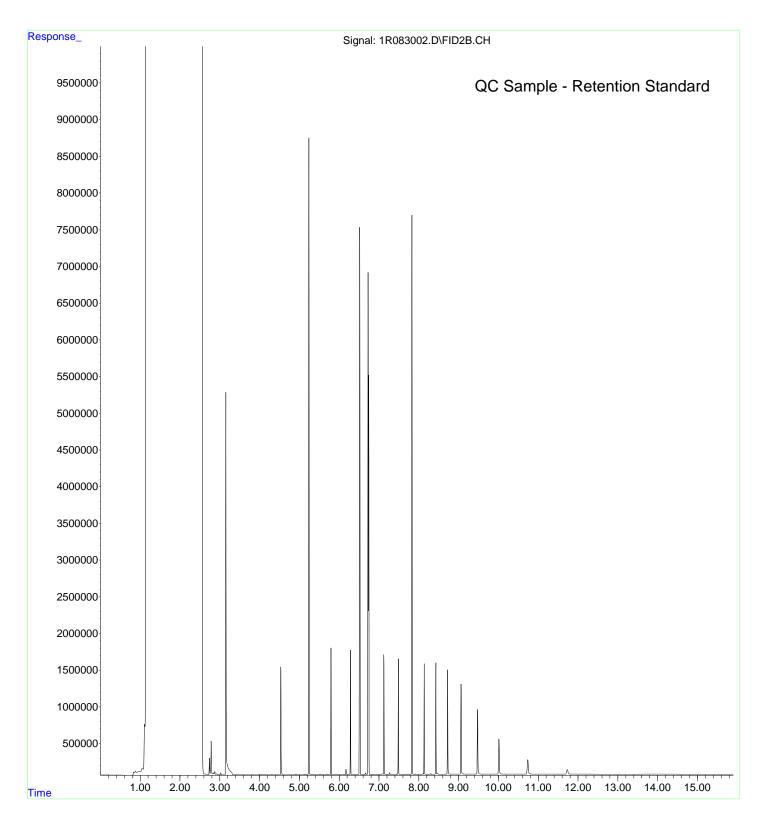


File : C: \msdchem\1\copied data\4I09075\7F090906. D

Operator : BLL/BJY

Acquired : 09 Sep 2024 8: 33 pm using AcqMethod FID7ACQ. M

Instrument: HP G1530A Sample Name: 2410225-HLKI

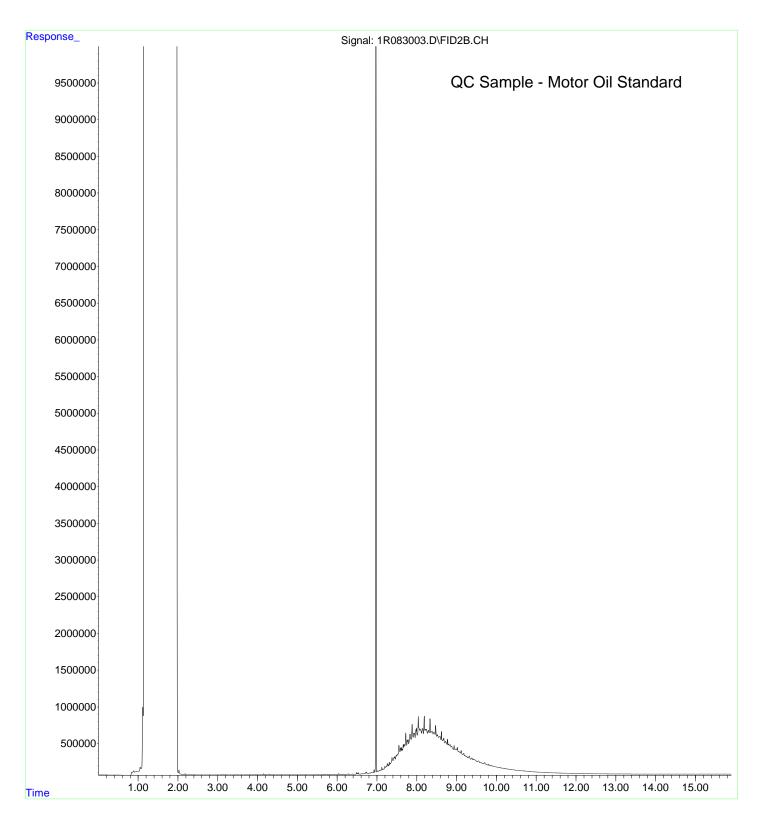


File : C: \msdchem\1\copied data\4HB0040\1R083002. D

Operator : BLL

Acquired : 30 Aug 2024 6: 02 pm using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: 4HB0040-RES1

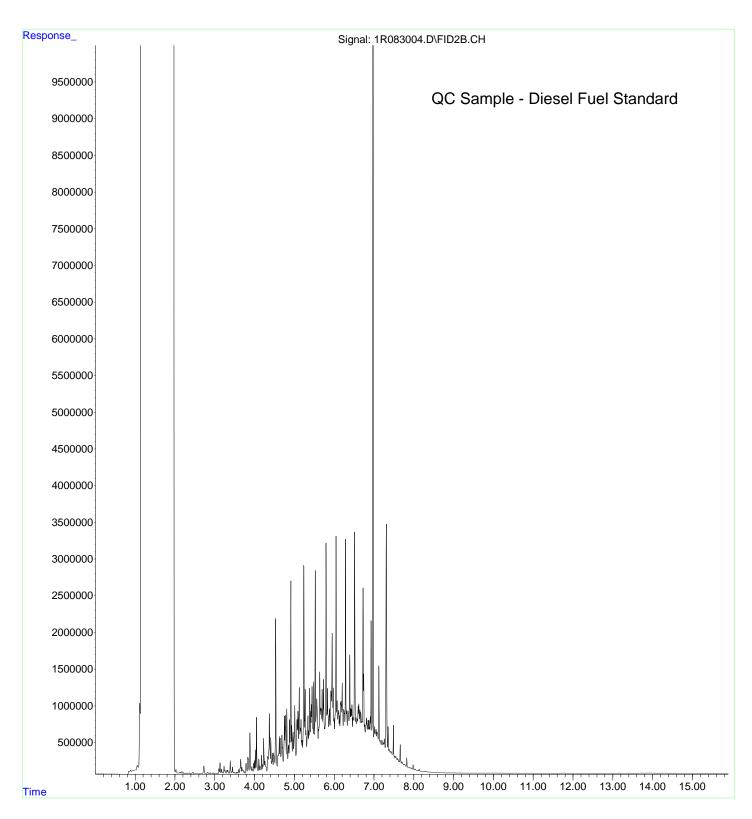


File : C: \msdchem\1\copied data\4H80040\1R083003. D

Operator : BLL

Acquired: 30 Aug 2024 6: 26 pm using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: 4HB0040-CCV1

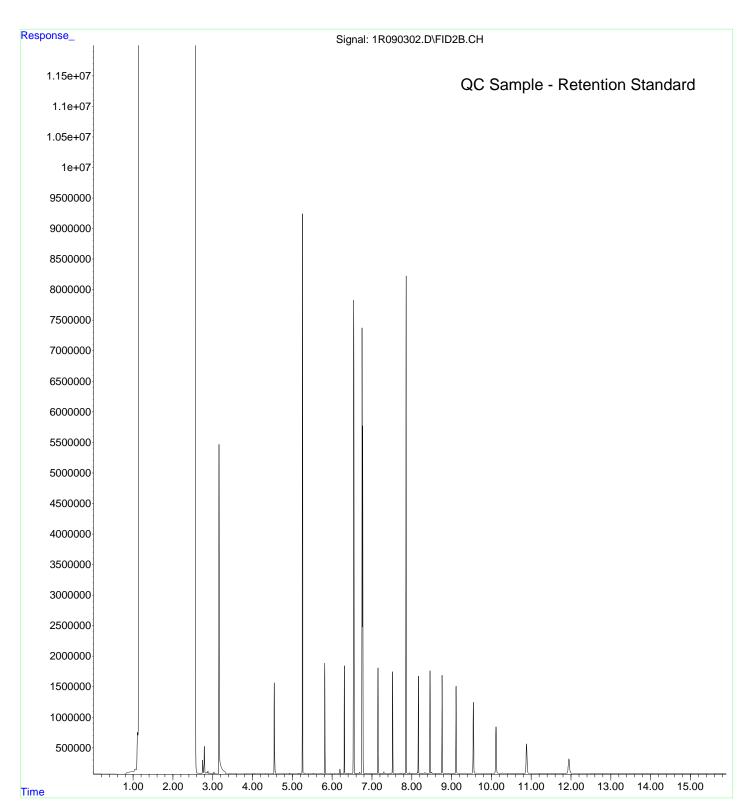


File : C: \msdchem\1\copied data\4H80040\1R083004. D

Operator : BLL

Acquired: 30 Aug 2024 6: 49 pm using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: 4HB0040-CCV2

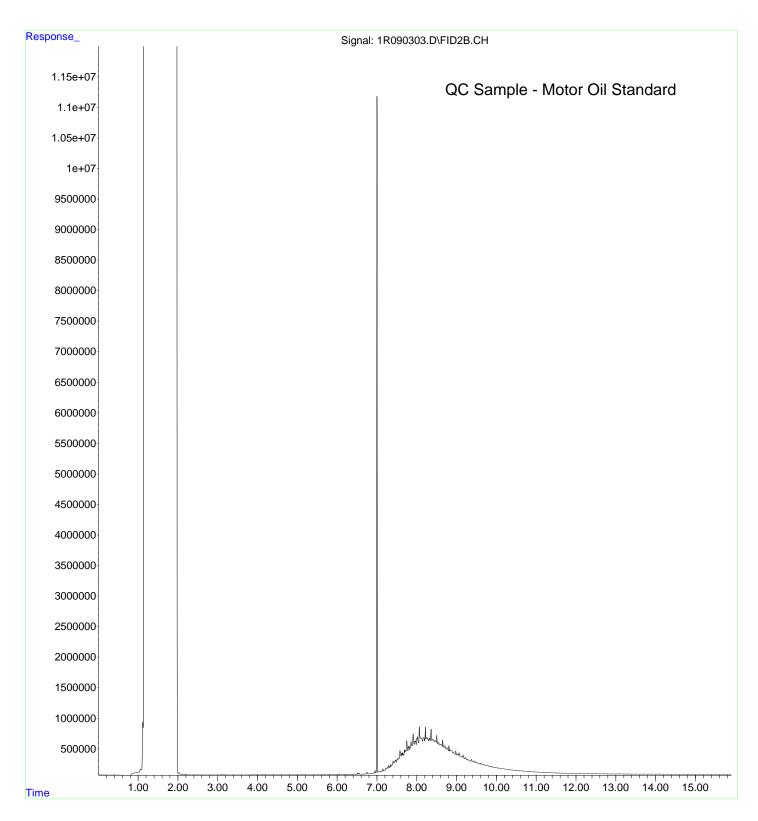


File : C: \msdchem\1\copied data\4I03060\1R090302. D

Operator : BLL

Acquired: 03 Sep 2024 3: 34 pm using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: 4103060-RES1

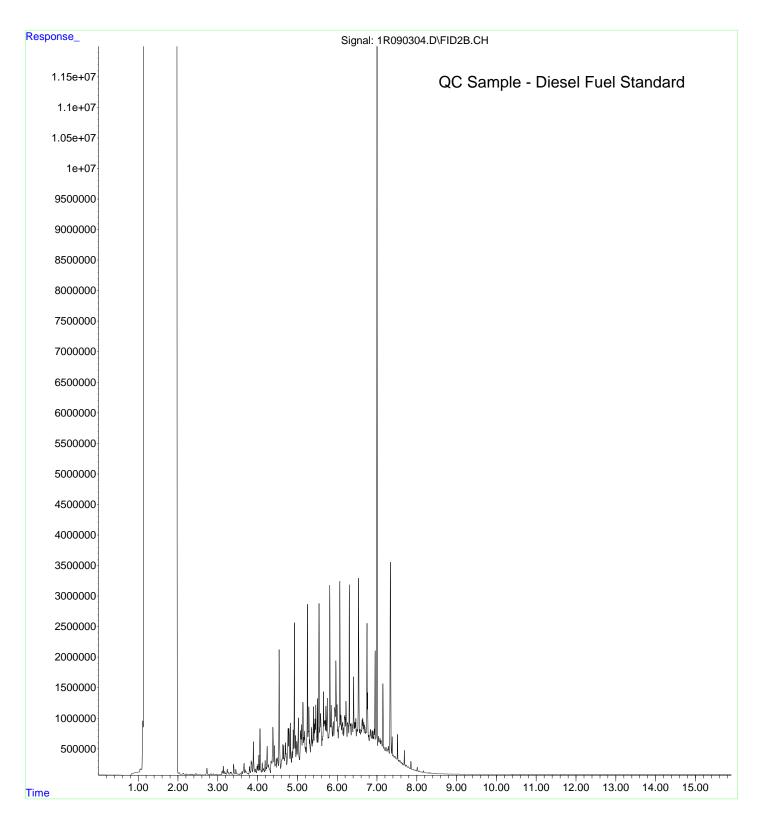


File : C: \msdchem\1\copied data\4I03060\1R090303. D

Operator : BLL

Acquired: 03 Sep 2024 3:58 pm using AcqWethod A1F40422. M

Instrument: HP G1530A Sample Name: 4103060-CCV1

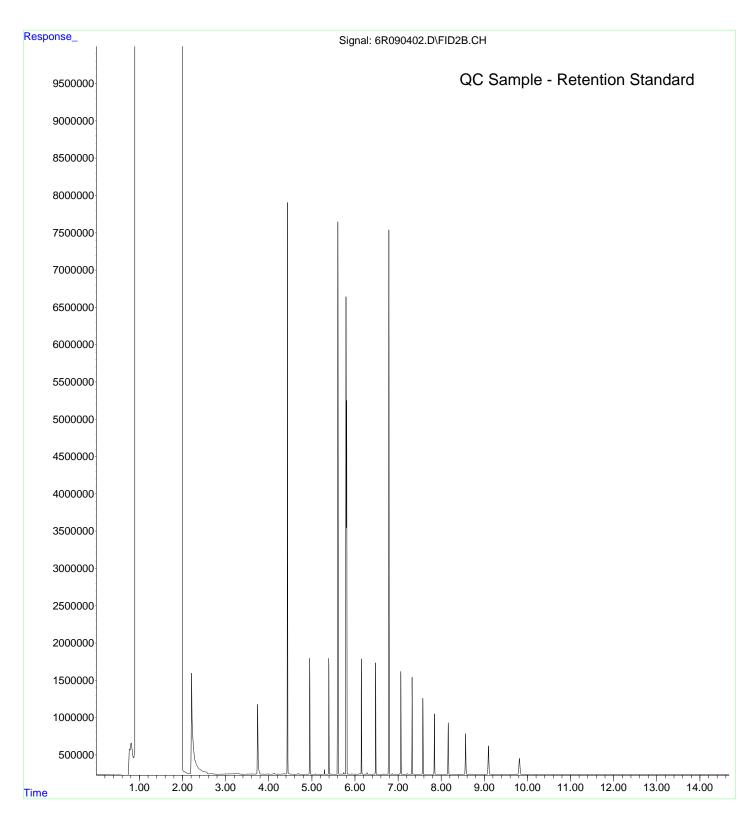


File : C: \msdchem\1\copied data\4I03060\1R090304. D

Operator : BLL

Acquired: 03 Sep 2024 4: 21 pm using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: 4I03060-CCV2

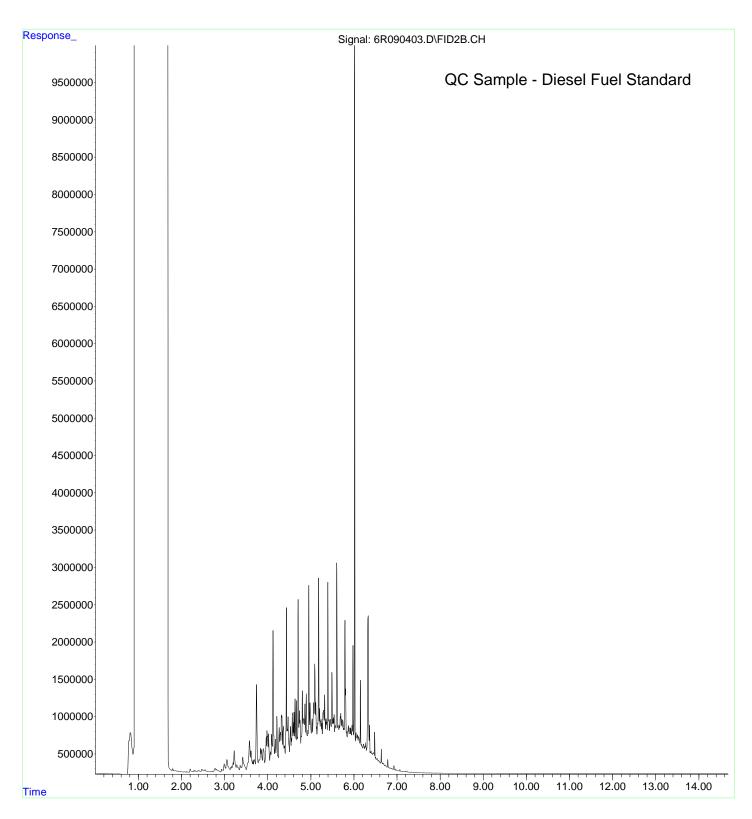


File : C: \msdchem\1\copied data\4I04035\6R090402. D

Operator : BLL

Acquired : 04 Sep 2024 7:08 amusing AcqMethod 6F71215A. M

Instrument: HP G1530A Sample Name: 4104035-RES1

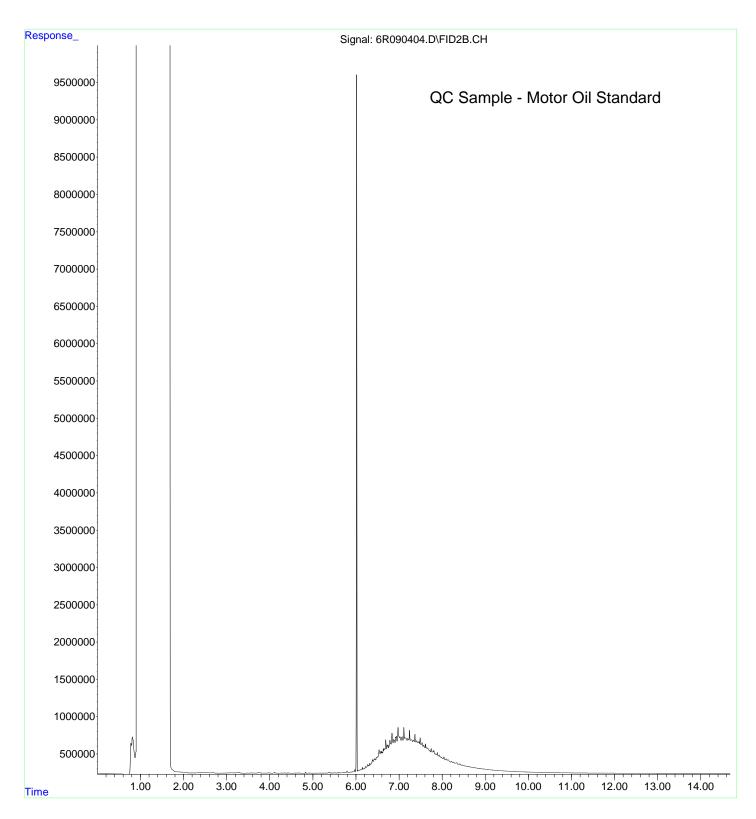


File : C: \msdchem\1\copied data\4I04035\6R090403. D

Operator : BLL

Acquired : 04 Sep 2024 7:29 amusing AcqMethod 6F71215A. M

Instrument: HP G1530A Sample Name: 4104035-CCV1

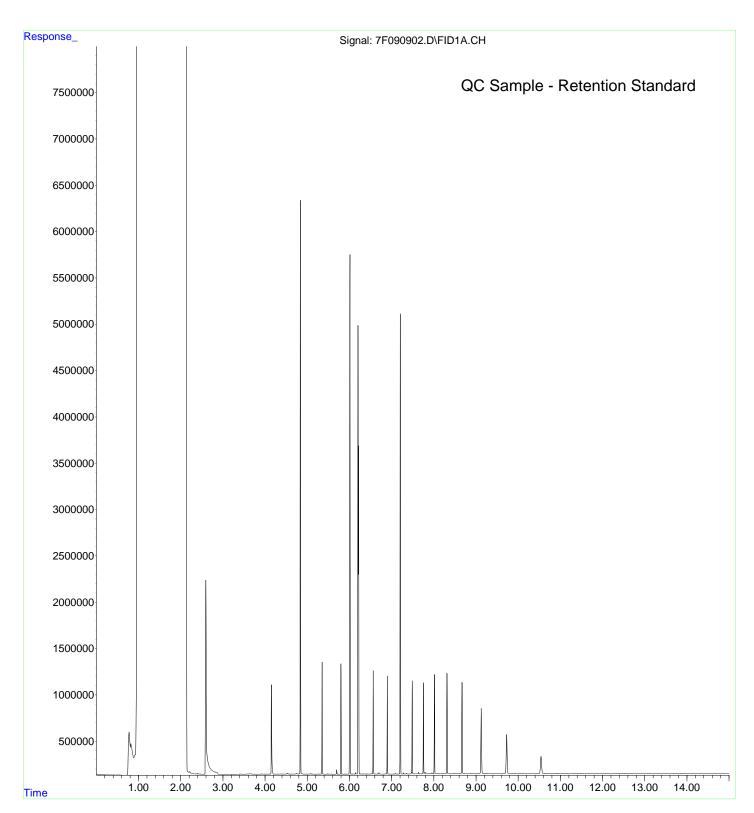


File : C: \msdchem\1\copied data\4I04035\6R090404. D

Operator : BLL

Acquired : 04 Sep 2024 7: 49 amusing AcqMethod 6F71215A. M

Instrument: HP G1530A Sample Name: 4I04035-CCV2

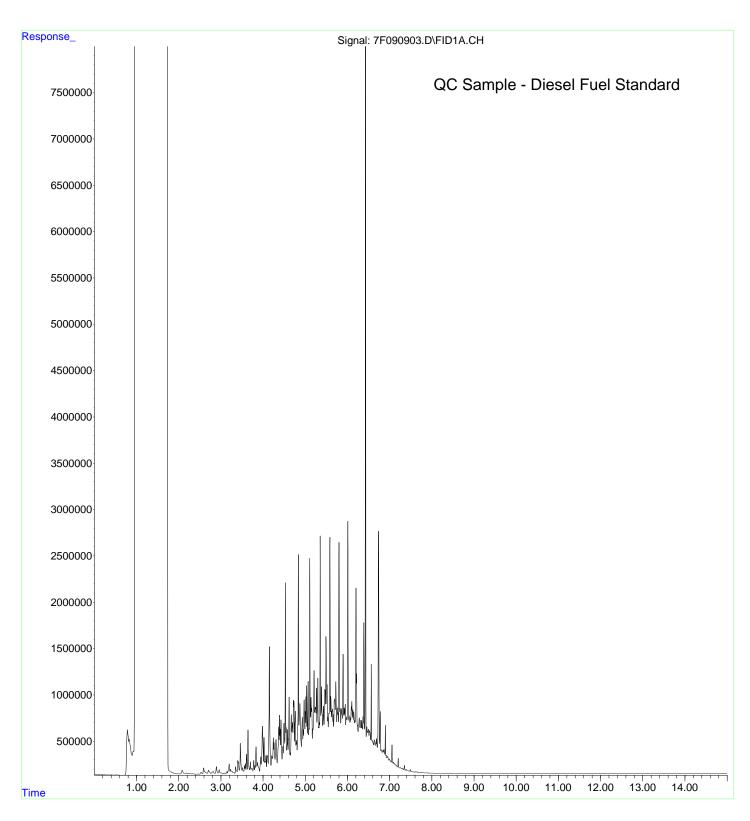


File : C: \msdchem\1\copied data\4I09075\7F090902. D

Operator : BLL/BJY

Acquired : 09 Sep 2024 3:22 pm using AcqMethod FID7ACQ. M

Instrument: HP G1530A Sample Name: 4109075-RES1

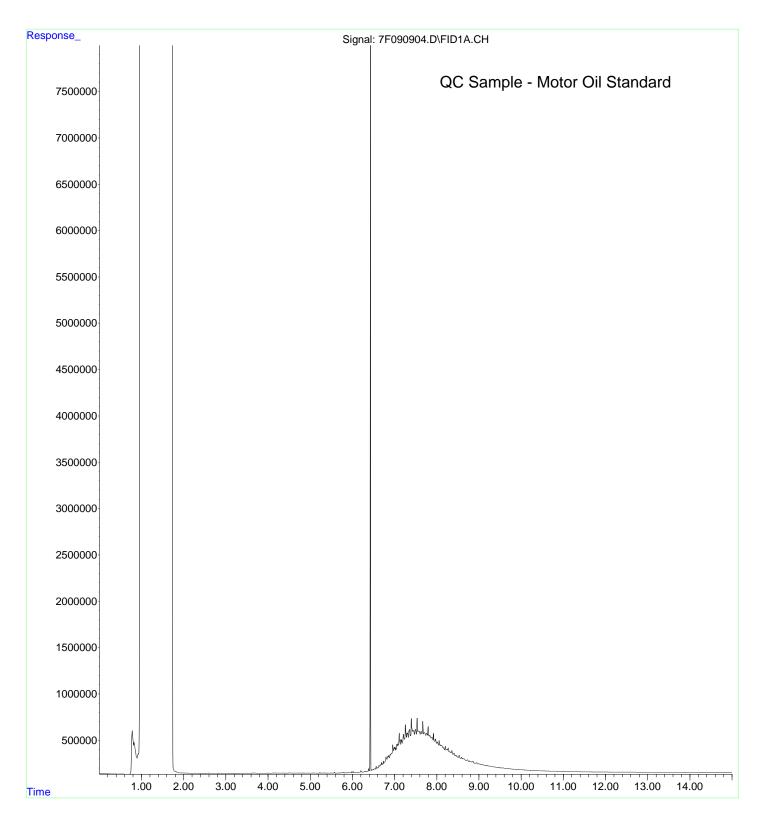


File : C: \msdchem\1\copied data\4I09075\7F090903. D

Operator : BLL/BJY

Acquired : 09 Sep 2024 3:43 pm using AcqNethod FID7ACQ. M

Instrument: HP G1530A Sample Name: 4109075-CCV1



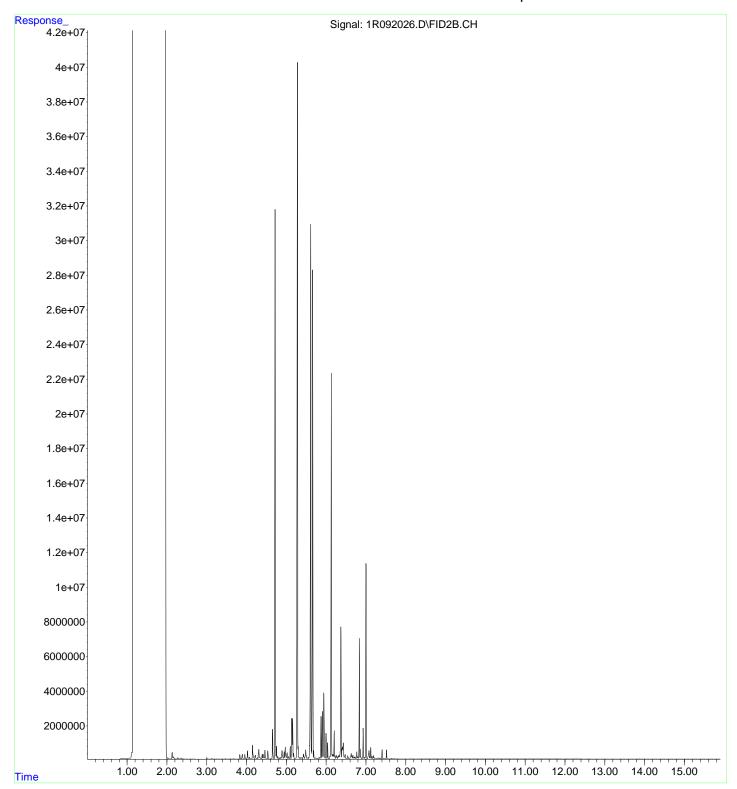
File : C: \msdchem\1\copied data\4I09075\7F090904. D

Operator : BLL/BJY

Acquired : 09 Sep 2024 4: 04 pm using AcqMethod FID7ACQ. M

Instrument: HP G1530A Sample Name: 4I09075-CCV2

File : C: \msdchem\1\copied data\4I20033\1R092026. D


Operator : BLL/BJY

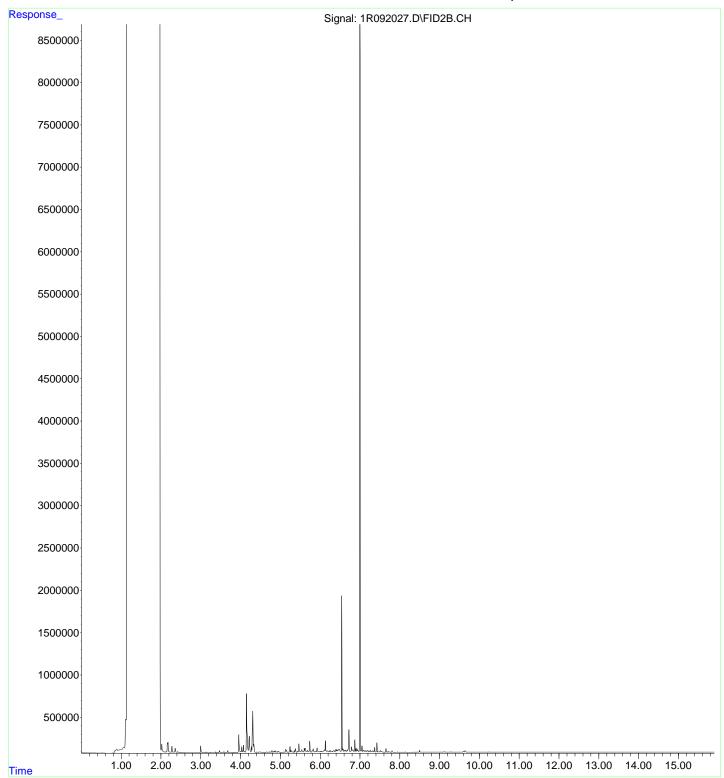
Acquired : 21 Sep 2024 3: 34 amusing AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: A4H 527-03

Msc Info : Vial Number: 66

Water Sample - MW-101R-20240827

File : C: \msdchem\1\copied data\4I20033\1R092027. D


Operator : BLL/BJY

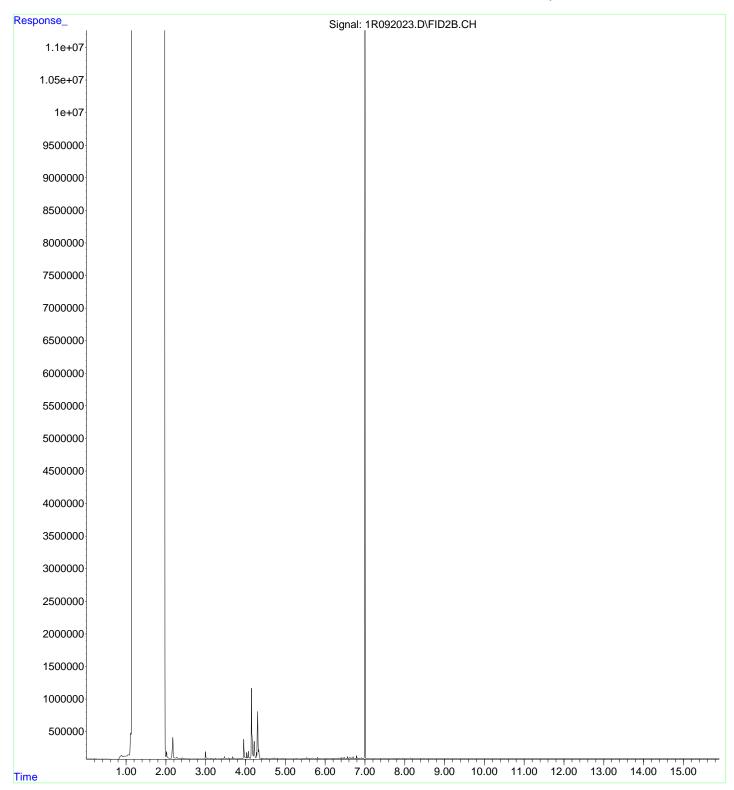
Acquired : 21 Sep 2024 3:58 amusing AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: A4H 527-07

Msc Info : Vial Number: 67

Water Sample - MW-107R-082724

File : C: \msdchem\1\copied data\4I20033\1R092023. D


Operator : BLL/BJY

Acquired : 21 Sep 2024 2: 24 amusing AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: 2410646-HLK1

Msc Info : Vial Number: 63

QC Sample - Method Blank

File : C: \msdchem\1\copied data\4I20033\1R092002. D

Operator : BLL/BJY

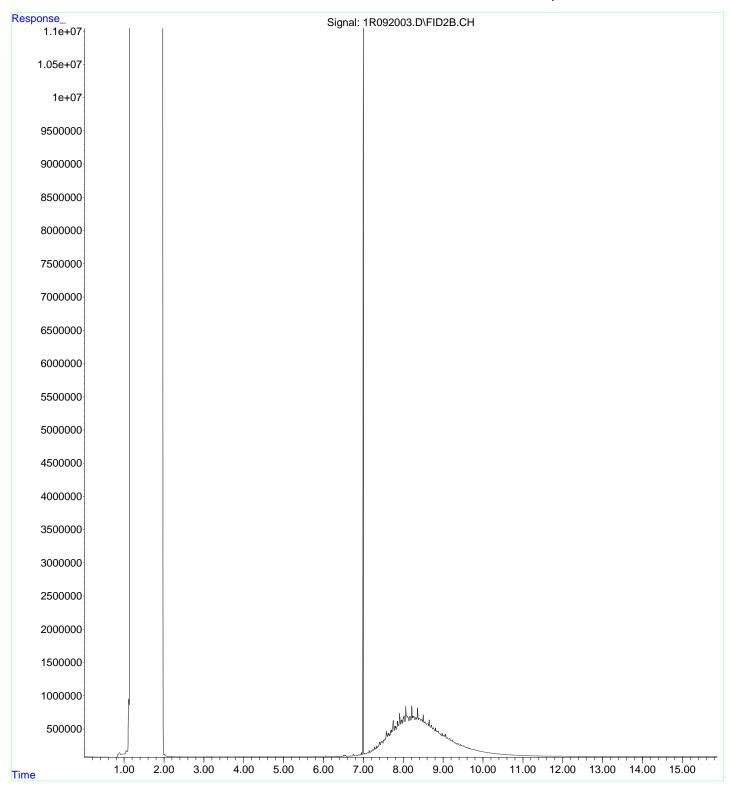
Acquired : 20 Sep 2024 5: 08 pm using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: 4I20033-RES1

Msc Info : Vial Number: 95

QC Sample - Retention Standard

File : C: \msdchem\1\copied data\4I20033\1R092003. D


Operator : BLL/BJY

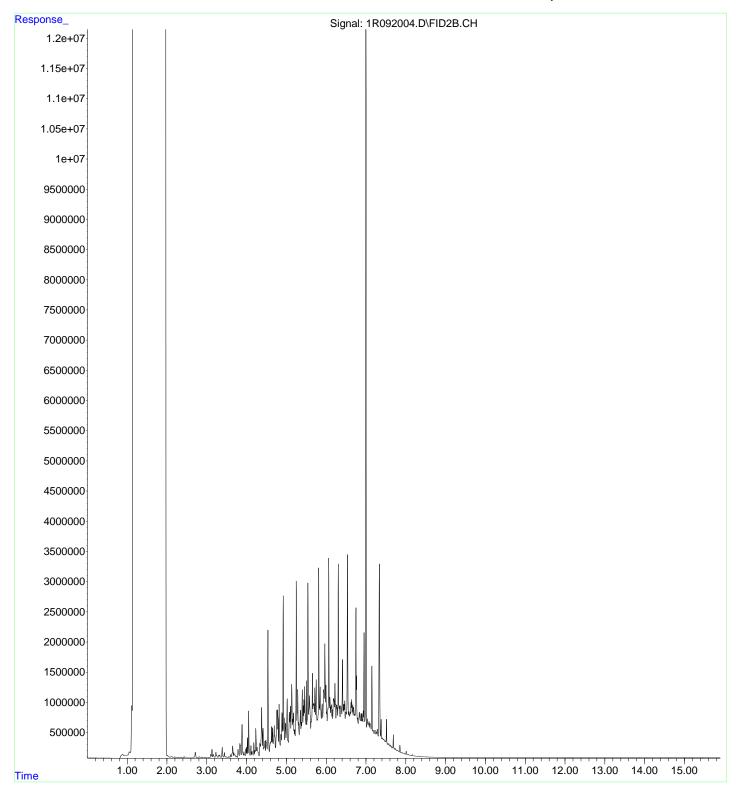
Acquired : 20 Sep 2024 5: 31 pm using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: 4I20033-CCV1

Msc Info : Vial Number: 2

QC Sample - Motor Oil Standard

File : C: \msdchem\1\copied data\4I20033\1R092004. D


Operator : BLL/BJY

Acquired : 20 Sep 2024 5:54 pm using AcqWethod A1F40422. M

Instrument: HP G1530A Sample Name: 4I20033-CCV2

Msc Info : Vial Number: 1

QC Sample - Diesel Standard

