1	I			Pierce County Cler	k
2					
3					
4					
5					
6		· · · · · · · · · · · · · · · · · · ·	VASHINGTON SUPERIOR COURT		
7					
8	STATE OF WASHINGTON, NO. 25-2-07149-4				
9		Plaintiff,	CONSENT DECREE		
10	v.				
11	TOWN OF EA	TONVILLE,			
12	WEYERHAEU	USER COMPANY,			
13	Defendants.				
14					
15		TABLE OF	FCONTENTS		
16				l	
17					
18					
19					
30			DDIA TODG	-	
20			DINATORS		
21					
22			L, AND AVAILABILITY	-	
		<i>'</i>	L, AND AVAILABILIT I		
23				_	
24			ROPERTY		
			(O1 E1(1 1		
25					
26					
	1				

CONSENT DECREE

1	XVII.	ENDANGERME	NT	. 21
2	XVIII.	COVENANT NO	OT TO SUE	. 22
	XIX.	CONTRIBUTIO	N PROTECTION	. 23
3	XX.	INDEMNIFICAT	ΓΙΟΝ	. 24
	XXI.	COMPLIANCE	WITH APPLICABLE LAWS	. 24
4	XXII.	REMEDIAL AC	TION COSTS	. 26
5	XXIII.	IMPLEMENTA?	ΓΙΟΝ OF REMEDIAL ACTION	. 27
	XXIV.	PERIODIC REV	IEW	. 27
6	XXV.	PUBLIC PARTIC	CIPATION	. 28
7	XXVI.	DURATION OF	DECREE	29
0	XXVII.	CLAIMS AGAIN	NST THE STATE	29
8	XXVIII.	EFFECTIVE DA	TE	29
9	XXIX.	WITHDRAWAL	OF CONSENT	29
10				
10		EXHIBIT A	Site Location Diagram Cleanup Action Plan	
11		EXHIBIT B EXHIBIT C	Schedule	
12				
13				
14				
1.5				
15				
16				
17				
1 /				
18				
19				
20				
21				
22				
23				
24				
25				
26				
20				

T. INTRODUCTION 1 1. 2.

2

3

4

5

6

7

8

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

- The mutual objective of the State of Washington, Department of Ecology (Ecology), and the Town of Eatonville (Eatonville) and Weyerhaeuser Company (Weyerhaeuser) (collectively, Defendants) under this Decree is to provide for remedial action at a facility (Exhibit A) where there has been a release or threatened release of hazardous substances. This Decree requires Defendants to implement the preferred remedy as determined by Ecology and as described in the Cleanup Action Plan (Exhibit B).
- Ecology has determined that these actions are necessary to protect human health and the environment.
- 3. The Complaint in this action is being filed simultaneously with this Decree. An Answer has not been filed, and there has not been a trial on any issue of fact or law in this case. However, the Parties wish to resolve the issues raised by Ecology's Complaint. In addition, the Parties agree that settlement of these matters without litigation is reasonable and in the public interest, and that entry of this Decree is the most appropriate means of resolving these matters.
- 4. By signing this Decree, the Parties agree to its entry and agree to be bound by its terms.
- 5. By entering into this Decree, the Parties do not intend to discharge non-settling parties from any liability they may have with respect to matters alleged in the Complaint. The Parties retain the right to seek reimbursement, in whole or in part, from any liable persons for sums expended under this Decree.
- 6. This Decree shall not be construed as proof of liability or responsibility for any releases of hazardous substances or cost for remedial action nor an admission of any facts; provided, however, that Defendants shall not challenge the authority of the Attorney General and Ecology to enforce this Decree.
- 7. The Court is fully advised of the reasons for entry of this Decree, and good cause having been shown:

1	Now, therefore, it is HEREBY ORDERED, ADJUDGED, AND DECREED as follows:
2	II. JURISDICTION
3	1. This Court has jurisdiction over the subject matter and over the Parties pursuant
4	to the Model Toxics Control Act (MTCA), RCW 70A.305.
5	2. Authority is conferred upon the Washington State Attorney General by
6	RCW 70A.305.040(4)(a) to agree to a settlement with any potentially liable person (PLP) if,
7	after public notice and any required public meeting, Ecology finds the proposed settlement
8	would lead to a more expeditious cleanup of hazardous substances. RCW 70A.305.040(4)(b)
9	requires that such a settlement be entered as a consent decree issued by a court of competent
10	jurisdiction.
11	3. Ecology has determined that a release or threatened release of hazardous
12	substances has occurred at the Site that is the subject of this Decree.
13	4. Ecology has given notice to Defendants of Ecology's determination that
14	Defendants are PLPs for the Site, as required by RCW 70A.305.020(26) and WAC 173-340-500.
15	5. The actions to be taken pursuant to this Decree are necessary to protect public
16	health and the environment.
17	6. This Decree has been subject to public notice and comment.
18	7. Ecology finds that this Decree will lead to a more expeditious cleanup of
19	hazardous substances at the Site in compliance with the cleanup standards established under
20	RCW 70A.305.030(2)(e) and WAC 173-340.
21	8. Defendants have agreed to undertake the actions specified in this Decree and
22	consent to the entry of this Decree under MTCA.
23	III. PARTIES BOUND
24	1. This Decree shall apply to and be binding upon the Parties to this Decree, their
25	successors and assigns. The undersigned representative of each party hereby certifies that they
26	are fully authorized to enter into this Decree and to execute and legally bind such party to comply

1	with this Decree. Defendants agree to undertake all actions required by the terms and conditions		
2	of this Decree. No change in ownership or corporate status shall alter Defendants' responsibility		
3	under this Decree. Defendants shall provide a copy of this Decree to all agents, contractors, and		
4	subcontractors retained to perform work required by this Decree, and shall ensure that all work		
5	undertaken by such agents, contractors, and subcontractors complies with this Decree.		
6	IV. DEFINITIONS		
7	1. Unless otherwise specified herein, all definitions in RCW 70A.305.020 and		
8	WAC 173-340 shall control the meanings of the terms in this Decree.		
9	A. <u>Site</u> : The Site is referred to as the Eatonville Landfill, Cleanup Site ID #		
10	15271. The Site constitutes a facility under RCW 70A.305.020(8). The Site is defined by		
11	where a hazardous substance, other than a consumer product in consumer use, has been		
12	deposited, stored, disposed of, or placed, or otherwise come to be located.		
13	B. <u>Consent Decree or Decree</u> : Refers to this Consent Decree and each of the		
14	exhibits to this Decree. All exhibits are integral and enforceable parts of this Consent		
15	Decree.		
16	C. <u>Defendants</u> : Refers to the Town of Eatonville and Weyerhaeuser		
17	Company.		
18	D. <u>Parties</u> : Refers to the State of Washington, Department of Ecology and		
19	Defendants.		
20	V. FINDINGS OF FACT		
21	1. Ecology makes the following findings of fact without any express or implied		
22	admissions of such facts by Defendants.		
23	A. The Eatonville Landfill, located in Township 16N, Range 4E, Section 20, is		
24			
25	approximately 3.5 miles west of the Town of Eatonville (Exhibit A). This Site is		
26	accessed by an unpaved road extending approximately 0.6 miles off State Highway 7. The		

landfill footprint covers an area of approximately 2.25 acres including a steep, 1.5H: IV or greater, slope. The parcel on which the landfill is located is owned by Weyerhaeuser and was leased by the Town of Eatonville.

- **B.** The Eatonville Landfill began operation around November 1, 1950 through a property lease agreement between the Town of Eatonville and Weyerhaeuser. To comply with the Pierce County Solid Waste Management Plan, the site was originally designated for closure in 1976. The landfill was allowed to remain open for four additional years under "sanitary landfill" operating conditions and was closed on March 1, 1980.
- C. During the 30 years of waste deposition, the site was operated and maintained by the Town of Eatonville. From 1950 to 1976 the landfill was operated as an uncontrolled dumpsite. The area surrounding the landfill is owned by Washington State Parks and is slated to be developed as part of the Nisqually State Park.
- D. Seeps and a wetland are present at the toe of the landfill and drain to the Mashel River. Springs have been observed along the northwestern corner of the landfill. In 1996, Parametrix collected samples of surface water, including seeps, springs and wetlands. Results indicated concentrations of iron, zinc, and pH exceeding Washington State surface water quality standards (WAC 173-201A).
- E. Tacoma-Pierce County Health Department (TPCHD) conducted a site visit and methane monitoring in the upper portion of the landfill in 2010. TPCHD's Inspection Report indicates methane below the lower explosive limit range, which is consistent with previous TPCHD monitoring results conducted during annual inspections from 1992 through 1998. Based upon its 2010 site visit, the TPCHD concluded that the landfill should be regraded and a soil cover should be applied over the landfill (TPCHD, 2010).
- F. Weyerhaeuser has conducted several investigations over the years, with the following contractors: Parametrix, 1996; EMCON, 1999, 2002; PES Environmental, 2013; and GSI Water Solutions, 2021. The Preliminary Alternative Landfill Cover Rehabilitation

Evaluation, Eatonville Landfill investigation (PES, 2013) consisted of excavating 27 test pits to provide additional data for development of landfill closure options.

- G. Analytical laboratory reports from the January 2021 sampling (GSI 2021) include data from a collection of surface water samples and a shallow groundwater sample from the landfill area, including spring water entering the site from upslope, seeps and wetland at the toe of the landfill, and the creek flowing from the landfill to the Mashel River. No volatile organic compounds (VOCs), including polybrominated diphenyl ether (PBDE) and semi-volatile organic compounds (SVOCs), were detected above method reporting levels in any samples. Metals analysis showed concentrations of lead and zinc.
- Η. In August 2021, the parties entered into Agreed Order DE20072 (Order). The Order required the Town of Eatonville and Weyerhaeuser to conduct a remedial investigation (RI) and feasibility study (FS) to determine the nature and extent of the contamination and to develop and study options for feasible remedial and closure alternatives.
- I. The RI field efforts included two site-wide sampling events (i.e., a dry-season event and a wet-season event) to evaluate concentrations of releases in multiple media (soil, groundwater, and surface water) in both the landfill and wetland areas. The dry-season event was conducted in September and November 2021, and the wet-season event was conducted in February 2022 to evaluate potential seasonal effects on water quality and groundwater/surface water interactions. A subsequent soil investigation was conducted at additional step-out locations in the wetland in August 2022 to further delineate metals concentrations.
- J. Other information gathered in 2021 and 2022 included landfill soil gas measurements, geotechnical parameters, geophysical survey, land/elevation survey, wetland

25

2	l	
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
26	١	

delineation, and an ecological evaluation based on Ecology guidance. The Public Review Draft of the RI Report and FS were submitted to Ecology on April 2, 2024.

- **K.** Released(s) and/or potential release(s) of hazardous substances occurred at the Site. The following hazardous substances at the Site have been detected at concentrations above MTCA cleanup levels in soil, groundwater, and/or surface water at the Site: Arsenic, cadmium, chromium, copper, iron, hexavalent chromium, lead, nickel, zinc, pentachlorophenol, carcinogenic polycyclic aromatic hydrocarbon, and total petroleum hydrocarbons.
- L. As documented in the Cleanup Action Plan (CAP) (Exhibit B), Ecology has chosen a final cleanup action to be implemented at the Site.

VI. WORK TO BE PERFORMED

- 1. This Decree contains a program designed to protect human health and the environment from the known release, or threatened release, of hazardous substances at, on, or from the Site. All remedial action(s) conducted by Defendants at the Site shall be done in accordance with WAC 173-340.
- 2. The Defendants shall implement the CAP (Exhibit B) in accordance with the Scope of Work and Schedule attached to this Decree (Exhibit C). Among other remedial actions, the CAP requires Defendants to perform full waste and impacted soil removal from the landfill and restoration of impacted wetlands beneath the waste prism and at the toe of the landfill area, and waste removal, monitored natural attenuation, and institutional controls, if directed by Ecology, for the wetland area.
- 3. All plans or other deliverables submitted by Defendants for Ecology's review and approval under the CAP (Exhibit B) or Scope of Work and Schedule (Exhibit C) shall, upon Ecology's approval, become integral and enforceable parts of this Decree.

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

26

- 4. If Defendants learn of a significant change in conditions at the Site, including but not limited to a statistically significant increase in contaminant and/or chemical concentrations in soil, groundwater, and/or surface water, Defendants, within seven (7) days of learning of the change in condition, shall notify Ecology in writing of said change and provide Ecology with any reports or records (including laboratory analyses, sampling results) relating to the change in conditions.
- 5. Pursuant to WAC 173-340-440(11), if engineered and/or institutional controls are necessary as detailed in the CAP, Defendants shall maintain sufficient and adequate financial assurance mechanisms to cover all costs associated with the operation and maintenance of the remedial action at the Site, including the institutional controls, compliance monitoring, and corrective measures.
- A. Within sixty (60) days of the effective date of this Decree, Defendants shall submit to Ecology for review and approval an estimate of the costs associated with the operation and maintenance of the remedial action at the Site that it will incur in carrying out the terms of this Decree. Within sixty (60) days after Ecology approves the aforementioned cost estimate, Defendants shall provide proof of financial assurances sufficient to cover those costs in a form acceptable to Ecology.
 - B. Defendants shall adjust the financial assurance coverage and provide Ecology's project coordinator with documentation of the updated financial assurance for:
 - i. Inflation, annually, within thirty (30) days of the anniversary date of the entry of this Decree; or if applicable, the modified anniversary date established in accordance with this section, or if applicable, ninety (90) days after the close of Defendant's fiscal year if the financial test or corporate guarantee is used.

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

1

- ii. Changes in cost estimates, within thirty (30) days of issuance of Ecology's approval of a modification or revision to the CAP that result in increases to the cost or expected duration of remedial actions. Any adjustments for inflation since the most recent preceding anniversary date shall be made concurrent with adjustments for changes in cost estimates. The issuance of Ecology's approval of a revised or modified CAP will revise the anniversary date established under this section to become the date of issuance of such revised or modified CAP.
- C. The Financial Assurance Officer for Ecology shall work with the project coordinators to review and approve financial assurance coverage pursuant to this Decree and make determinations on any adjustments necessary based on the annual reporting. As of the execution date of this Decree, Ecology's Financial Assurance Officer is Joanna Richards, 360-485-5992 or Joanna.Richards@ecy.wa.gov.
- 6. As detailed in the CAP, institutional controls may be necessary at the Site. Environmental (Restrictive) Covenants may be used to implement the institutional controls, if required.
 - A. In consultation with Defendants, Ecology will prepare the Environmental (Restrictive) Covenants consistent with WAC 173-340-440, RCW 64.70, and any policies or procedures specified by Ecology. The Environmental (Restrictive) Covenants shall restrict future activities and uses of the Site as agreed to by Ecology and Defendants.
 - B. After approval by Ecology, Defendants shall record the Environmental (Restrictive) Covenant for affected properties it owns with the office of the Pierce County Auditor as detailed in the Schedule (Exhibit C). Defendants shall provide Ecology with the original recorded Environmental (Restrictive) Covenants within thirty (30) days of the recording date.

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

- C. As detailed in the CAP, as part of the remedial action for the Site, institutional controls may be required on properties not owned by Defendants. Defendants will ensure that the owner of each affected property records an Ecology-approved Environmental (Restrictive) Covenant as detailed in the Schedule (Exhibit C). Upon a showing that Defendants have made a good faith effort to secure an Environmental (Restrictive) Covenant for an affected property and failed to do so, Ecology may provide assistance to Defendants.
- 7. Unless otherwise directed by Ecology, Defendants shall submit to Ecology written Progress Reports that describe the actions taken during the previous period to implement the requirements of this Decree. The Progress Reports are required to be submitted monthly during active construction of the cleanup action. Progress Reports will be due quarterly when the remedial action is in the compliance monitoring phase. All Progress Reports shall be submitted by the tenth (10th) day of the month in which they are due after the effective date of this Decree. Unless otherwise specified in writing by Ecology, Progress Reports and any other documents submitted pursuant to this Decree shall be sent by electronic mail to Ecology's project coordinator. The Progress Reports shall include the following:
 - A. A list of on-site activities that have taken place during the month.
 - B. Description of any sample results which deviate from the norm.
 - C. Detailed description of any deviations from required tasks not otherwise documented in project plans or amendment requests.
 - D. Description of all deviations from the Scope of Work and Schedule (Exhibit C) during the current month and any planned deviations in the upcoming month.
 - E. For any deviations in schedule, a plan for recovering lost time and maintaining compliance with the schedule.

CONSENT DECREE

1	F. All raw data (including laboratory analyses) received during the previous	ous
2	quarter (if not previously submitted to Ecology), together with a detailed description	ı of
3	the underlying samples collected.	
4	G. A list of planned activities for the upcoming month.	
5	8. Except in the case of an emergency, Defendants agree not to perform	any
6	remedial actions at the Site outside the scope of this Decree without prior written approva	l of
7	Ecology. In the case of an emergency, Defendants must notify Ecology of the event and reme	dial
8	action(s) as soon as practical, but no later than twenty-four (24) hours after discovery of	the
9	emergency.	
10	VII. DESIGNATED PROJECT COORDINATORS	
11	1. The project coordinator for Ecology is:	
12	Sam Meng	
13	300 Desmond Drive SE Lacey, WA 98503	
14	(360) 999-9587 Sam.meng@ecy.wa.gov	
15	2. The project coordinator for Defendants is:	
16	Luke Thies	
17	Weyerhaeuser Company 105 Mills Drive	
18	Columbia Falls, MT 599912 (406) 897-8010	
19	Luke.thies@weyerhaeuser.com	, •
20	3. Each project coordinator shall be responsible for overseeing the implementa	
21	of this Decree. Ecology's project coordinator will be Ecology's designated representative for	
22	Site. To the maximum extent possible, communications between Ecology and Defendants	
23	all documents, including reports, approvals, and other correspondence concerning the activity	
24	performed pursuant to the terms and conditions of this Decree shall be directed through	
25	project coordinators. The project coordinators may designate, in writing, working level s	tatt
26		
I		

1	contacts for all or portions of the implementation of the work to be performed required by this
2	Decree.
3	4. Any party may change its respective project coordinator. Written notification
4	shall be given to the other party at least ten (10) calendar days prior to the change.
5	VIII. PERFORMANCE
6	1. Except as otherwise provided for by RCW 18.43 and 18.220, all geologic and
7	hydrogeologic work performed pursuant to this Decree shall be under the supervision and
8	direction of a geologist or hydrogeologist licensed by the State of Washington or under the direct
9	supervision of an engineer registered by the State of Washington.
10	2. Except as otherwise provided for by RCW 18.43.130, all engineering work
11	performed pursuant to this Decree shall be under the direct supervision of a professional engineer
12	registered by the State of Washington.
13	3. Except as otherwise provided for by RCW 18.43.130, all construction work
14	performed pursuant to this Decree shall be under the direct supervision of a professional engineer
15	registered by the State of Washington or a qualified technician under the direct supervision of a
16	professional engineer registered by the State of Washington.
17	4. As required by RCW 18.43 and 18.220, any documents submitted containing
18	geologic, hydrogeologic, or engineering work shall be under the seal of an appropriately licensed
19	professional.
20	5. Defendants shall notify Ecology in writing of the identity of any engineer(s) and
21	geologist(s), contractor(s) and subcontractor(s), and other key personnel to be used in carrying
22	out the terms of this Decree, in advance of their involvement at the Site.
23	IX. ACCESS
24	1. Ecology or any Ecology authorized representative shall have access to enter and
25	freely move about all property at the Site that Defendants either own, control, or have access
26	rights to at all reasonable times for the purposes of, <i>inter alia</i> : inspecting records, operation logs,

and contracts related to the work being performed pursuant to this Decree; reviewing Defendants' progress in carrying out the terms of this Decree; conducting such tests or collecting such samples as Ecology may deem necessary; using a camera, sound recording, or other documentary type equipment to record work done pursuant to this Decree; and verifying the data submitted to Ecology by Defendants.

- 2. Nothing in this Decree is intended by the Defendants to waive any right it may have under applicable law to limit disclosure of documents protected by the attorney work-product privilege and/or the attorney-client privilege. If either Defendant withholds any requested records based on an assertion of privilege, it shall provide Ecology with a privilege log specifying the records withheld and the applicable privilege. No Site-related data collected pursuant to this Decree shall be considered privileged.
- 3. Defendants shall make all reasonable efforts to secure access rights for those properties within the Site not owned or controlled by Defendants where remedial activities or investigations will be performed pursuant to this Decree.
- 4. Ecology or any Ecology authorized representative shall give reasonable notice before entering any Site property owned or controlled by Defendants unless an emergency prevents such notice. All Parties who access the Site pursuant to this section shall comply with any applicable health and safety plan(s). Ecology employees and their representatives shall not be required to sign any liability release or waiver as a condition of Site property access.

X. SAMPLING, DATA SUBMITTAL, AND AVAILABILITY

1. With respect to the implementation of this Decree, Defendants shall make the results of all sampling, laboratory reports, and/or test results generated by it or on its behalf available to Ecology by submitting data as detailed in this section. Pursuant to WAC 173-340-840(5), all sampling data shall be submitted to Ecology in both printed and electronic formats in accordance with paragraph 8 of Section VI (Work to be Performed), Ecology's Toxics Cleanup

Program Policy 840 (Data Submittal Requirements), and/or any subsequent procedures specified by Ecology for data submittal.

- 2. If requested by Ecology, Defendants shall allow Ecology and/or its authorized representative to take split or duplicate samples of any samples collected by Defendants pursuant to the implementation of this Decree. Defendants shall notify Ecology seven (7) days in advance of any sample collection or work activity at the Site. Ecology shall, upon request, allow Defendants and/or their authorized representative to take split or duplicate samples of any samples collected by Ecology pursuant to the implementation of this Decree, provided that doing so does not interfere with Ecology's sampling. Without limitation on Ecology's rights under Section IX (Access), Ecology shall notify Defendants prior to any sample collection activity unless an emergency prevents such notice.
- 3. In accordance with WAC 173-340-830(2)(a), all hazardous substance analyses shall be conducted by a laboratory accredited under WAC 173-50 for the specific analyses to be conducted, unless otherwise approved by Ecology.

XI. ACCESS TO INFORMATION

1. Defendants shall provide to Ecology, upon request, copies of all records, reports, documents, and other information (including records, reports, documents, and other information in electronic form) (hereinafter referred to as "Records") within Defendants' possession or control or that of their contractors or agents relating to activities at the Site or to the implementation of this Decree, including, but not limited to, sampling, analysis, chain of custody records, manifests, trucking logs, receipts, reports, sample traffic routing, correspondence, or other documents or information regarding the work. Defendants shall also make available to Ecology, for purposes of investigation, information gathering, or testimony, their employees, agents, or representatives with knowledge of relevant facts concerning the performance of the work.

- 2. Nothing in this Decree is intended to waive any right Defendants may have under applicable law to limit disclosure of Records protected by the attorney work-product privilege and/or the attorney-client privilege. If either Defendant withholds any requested Records based on an assertion of privilege, Defendants shall provide Ecology with a privilege log specifying the Records withheld and the applicable privilege. No Site-related data collected pursuant to this Decree shall be considered privileged, including: (1) any data regarding the Site, including, but not limited to, all sampling, analytical, monitoring, hydrogeologic, scientific, chemical, radiological, biological, or engineering data, or the portion of any other record that evidences conditions at or around the Site; or (2) the portion of any Record that Defendants are required to create or generate pursuant to this Order.
- 3. Notwithstanding any provision of this Order, Ecology retains all of its information gathering and inspection authorities and rights, including enforcement actions related thereto, under any other applicable statutes or regulations.

XII. RETENTION OF RECORDS

1. During the pendency of this Decree, and for ten (10) years from the date this Decree is no longer in effect as provided in Section XXVI (Duration of Decree), Defendants shall preserve all records, reports, documents, and underlying data in its possession relevant to the implementation of this Decree and shall insert a similar record retention requirement into all contracts with project contractors and subcontractors. Upon request of Ecology, Defendants shall make all records available to Ecology and allow access for review within a reasonable time.

XIII. TRANSFER OF INTEREST IN PROPERTY

1. No voluntary conveyance or relinquishment of title, easement, leasehold, or other interest in any portion of the Site shall be consummated by Defendants without provision for continued operation and maintenance of any containment system, treatment system, and/or monitoring system installed or implemented pursuant to this Decree.

	1
	2
	3
	4
	5
	6
	7
	8
	9
l	0
l	1
l	2
l	3
L	4
l	5
l	6
l	7
l	8
l	9
2	0
2	1
2	2
2	3
2	4
2	5

1

2. Prior to Defendant's transfer of any interest in all or any portion of the Site, and during the effective period of this Decree, Defendants shall provide a copy of this Decree to any prospective purchaser, lessee, transferee, assignee, or other successor in said interest; and, at least thirty (30) days prior to any transfer, Defendants shall notify Ecology of said transfer. Upon its transfer of any interest, Defendants shall notify all transferees of the restrictions on the activities and uses of the property under this Decree and incorporate any such use restrictions into the transfer documents.

XIV. RESOLUTION OF DISPUTES

- 1. In the event that Defendants elect to invoke dispute resolution, Defendants must utilize the procedure set forth below.
 - A. Upon the triggering event (receipt of Ecology's project coordinator's written decision or an itemized billing statement), Defendants have fourteen (14) calendar days within which to notify Ecology's project coordinator in writing of its dispute (Informal Dispute Notice).
 - B. The Parties' project coordinators shall then confer in an effort to resolve the dispute informally. The parties shall informally confer for up to fourteen (14) calendar days from receipt of the Informal Dispute Notice. If the project coordinators cannot resolve the dispute within those 14 calendar days, then within seven (7) calendar days Ecology's project coordinator shall issue a written decision (Informal Dispute Decision) stating: the nature of the dispute; the Defendant's position with regards to the dispute; Ecology's position with regards to the dispute; and the extent of resolution reached by informal discussion.
 - C. Defendants may then request regional management review of the dispute.

 Defendants must submit this request (Formal Dispute Notice) in writing to the Southwest

 Region Toxics Cleanup Section Manager within seven (7) calendar days of receipt of

 Ecology's Informal Dispute Decision. The Formal Dispute Notice shall include a written

statement of dispute setting forth: the nature of the dispute; the disputing Party's position with respect to the dispute; and the information relied upon to support its position.

- D. The Section Manager shall conduct a review of the dispute and shall issue a written decision regarding the dispute (Decision on Dispute) within thirty (30) calendar days of receipt of the Formal Dispute Notice.
- E. If Defendants find Ecology's Regional Section Manager's decision of the disputed matter unacceptable, Defendants may then request final management review of that decision. Defendants must submit this request (Final Review Request) in writing to the Toxics Cleanup Program Manager within seven (7) calendar days of Defendants' receipt of the Decision on Dispute. The Final Review Request shall include a written statement of dispute setting forth: the nature of the dispute; the disputing Defendant's position with respect to the dispute; and the information relied upon to support its position.
- F. Ecology's Toxics Cleanup Program Manager shall conduct a review of the dispute and shall issue a written decision regarding the dispute (Final Decision on Dispute) within thirty (30) calendar days of receipt of the Final Review Request. The Toxics Cleanup Program Manager's decision shall be Ecology's final decision on the disputed matter.
- 2. If Ecology's Final Decision on Dispute is unacceptable to Defendants, Defendants have the right to submit the dispute to the Court for resolution. The Parties agree that one judge should retain jurisdiction over this case and shall, as necessary, resolve any dispute arising under this Decree. Under RCW 70A.305.070, Ecology's investigative and remedial decisions shall be upheld unless they are arbitrary and capricious.
- 3. The Parties agree to only utilize the dispute resolution process in good faith and agree to expedite, to the extent possible, the dispute resolution process whenever it is used.

Where either party utilizes the dispute resolution process in bad faith or for purposes of delay, the other party may seek sanctions.

- 4. Implementation of these dispute resolution procedures shall not provide a basis for delay of any activities required in this Decree, unless Ecology agrees in writing to a schedule extension or the Court so orders.
- 5. In case of a dispute, failure to either proceed with the work required by this Decree or timely invoke dispute resolution may result in Ecology's determination that insufficient progress is being made in preparation of a deliverable, and may result in Ecology undertaking the work under Section XXIII (Implementation of Remedial Action).

XV. AMENDMENT OF DECREE

- 1. The Parties may agree to minor changes to the work to be performed without formally amending this Decree. Minor changes will be documented in writing by Ecology.
- 2. Substantial changes to the work to be performed shall require formal amendment of this Decree. This Decree may only be formally amended by a written stipulation among the Parties that is entered by the Court, or by order of the Court. Ecology will provide its written consent to a formal amendment only after public notice and opportunity to comment on the formal amendment. Such amendment shall become effective upon entry by the Court. Agreement to amend the Decree shall not be unreasonably withheld by any party.
- 3. When requesting a change to the Decree, Defendants shall submit a written request to Ecology for approval. Ecology shall indicate its approval or disapproval in writing and in a timely manner after the written request is received. If Ecology determines that the change is substantial, then the Decree must be formally amended. Reasons for the disapproval of a proposed change to this Decree shall be stated in writing. If Ecology does not agree to the requested change, the disagreement may be addressed through the dispute resolution procedures described in Section XII (Resolution of Disputes).

1	XVI. EXTENSION OF SCHEDULE
2	1. Defendant's request for an extension of schedule shall be granted only when a
3	request for an extension is submitted in a timely fashion, generally at least thirty (30) days prior
4	to expiration of the deadline for which the extension is requested, and good cause exists for
5	granting the extension. All extensions shall be requested in writing. The request shall specify:
6	A. The deadline that is sought to be extended.
7	B. The length of the extension sought.
8	C. The reason(s) for the extension.
9	D. Any related deadline or schedule that would be affected if the extension
10	were granted.
11	2. The burden shall be on Defendants to demonstrate to the satisfaction of Ecology
12	that the request for such extension has been submitted in a timely fashion and that good cause
13	exists for granting the extension. Good cause may include, but may not be limited to:
14	A. Circumstances beyond the reasonable control and despite the due
15	diligence of Defendants including delays caused by unrelated third parties or Ecology,
16	such as (but not limited to) delays by Ecology in reviewing, approving, or modifying
17	documents submitted by Defendants.
18	B. A shelter in place or work stoppage mandated by state or local
19	government order due to public health and safety emergencies.
20	C. Acts of God, including fire, flood, blizzard, extreme temperatures, storm,
21	or other unavoidable casualty.
22	D. Endangerment as described in Section XVII (Endangerment).
23	3. However, neither increased costs of performance of the terms of this Decree nor
24	changed economic circumstances shall be considered circumstances beyond the reasonable
25	control of Defendants.
26	
	•

- 4. Ecology shall act upon any Defendant's written request for extension in a timely fashion. Ecology shall give Defendants written notification of any extensions granted pursuant to this Decree. A requested extension shall not be effective until approved by Ecology or, if required, by the Court. Unless the extension is a substantial change, it shall not be necessary to amend this Decree pursuant to Section XV (Amendment of Decree) when a schedule extension is granted.
- 5. At Defendant's request an extension shall only be granted for such period of time as Ecology determines is reasonable under the circumstances. Ecology may grant schedule extensions exceeding ninety (90) days only as a result of one of the following:
 - A. Delays in the issuance of a necessary permit which was applied for in a timely manner.
 - B. Other circumstances deemed exceptional or extraordinary by Ecology.
 - C. Endangerment as described in Section XVII (Endangerment).

XVII. ENDANGERMENT

- 1. In the event Ecology determines that any activity being performed at the Site under this Decree is creating or has the potential to create a danger to human health or the environment, Ecology may direct Defendants to cease such activities for such period of time as it deems necessary to abate the danger. Defendants shall immediately comply with such direction.
- 2. In the event Defendants determine that any activity being performed at the Site under this Decree is creating or has the potential to create a danger to human health or the environment, Defendants may cease such activities. Defendants shall notify Ecology's project coordinator as soon as possible, but no later than twenty-four (24) hours after making such determination or ceasing such activities. Upon Ecology's direction, Defendants shall provide Ecology with documentation of the basis for the determination or cessation of such activities. If

such activities.			

Ecology disagrees with Defendant's cessation of activities, it may direct Defendants to resume

- If Ecology concurs with or orders a work stoppage pursuant to this section, Defendant's obligations with respect to the ceased activities shall be suspended until Ecology determines the danger is abated, and the time for performance of such activities, as well as the time for any other work dependent upon such activities, shall be extended, in accordance with Section XVI (Extension of Schedule), for such period of time as Ecology determines is
- Nothing in this Decree shall limit the authority of Ecology, its employees, agents, or contractors to take or require appropriate action in the event of an emergency.

XVIII. COVENANT NOT TO SUE

Covenant Not to Sue: In consideration of Defendant's compliance with the terms and conditions of this Decree, Ecology covenants not to institute legal or administrative actions against Defendants regarding the release or threatened release of hazardous substances at the Site, as described in Section V (Findings of Fact). This Covenant Not to Sue does not cover any other hazardous substance(s) or area. Ecology retains all of its authority relative to any hazardous

This Covenant Not to Sue shall have no applicability whatsoever to:

- Liability for damages to natural resources.
- Any Ecology action, including cost recovery, against PLPs not a party to
- Pursuant to RCW 70A.305.040(4)(c), the Court shall amend this Covenant Not to Sue if factors not known at the time of entry of this Decree are discovered and present a previously unknown threat to human health or the environment.

Reopeners: Ecology specifically reserves the right to institute legal or

3.

XX. **INDEMNIFICATION**

1. Defendants agree to indemnify and save and hold the State of Washington, its employees, and agents harmless from any and all claims or causes of action (1) for death or injuries to persons, or (2) for loss or damage to property to the extent arising from or on account of acts or omissions of Defendants, their officers, employees, agents, or contractors in entering into and implementing this Decree. However, Defendants shall not indemnify the State of Washington nor save nor hold its employees and agents harmless from any claims or causes of action to the extent arising out of the negligent acts or omissions of the State of Washington, or the employees or agents of the State, in entering into or implementing this Decree.

XXI. COMPLIANCE WITH APPLICABLE LAWS

- 1. Applicable Law. All actions carried out by Defendants pursuant to this Decree shall be done in accordance with all applicable federal, state, and local requirements, including requirements to obtain necessary permits, except as provided in RCW 70A.305.090. The permits or specific federal, state, or local requirements that the agency has determined are applicable and that are known at the time of the execution of this Decree have been identified in the CAP, Exhibit B. Defendants have a continuing obligation to identify additional applicable federal, state, and local requirements which apply to actions carried out pursuant to this Decree, and to comply with those requirements. As additional federal, state, and local requirements are identified by Ecology or the Defendants, Ecology will document in writing if they are applicable to actions carried out pursuant to this Decree, and the Defendants must implement those requirements.
- 2. Relevant and Appropriate Requirements. All actions carried out by Defendants pursuant to this Decree shall be done in accordance with relevant and appropriate requirements identified by Ecology. The relevant and appropriate requirements that Ecology has determined apply have been identified in the CAP, Exhibit B. If additional relevant and appropriate requirements are identified by Ecology or the Defendants, Ecology will document in writing if

1

2

3

4

5

6

7

8

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

they are applicable to actions carried out pursuant to this Decree and the Defendants must implement those requirements.

- 3. Pursuant to RCW 70A.305.090(1), Defendants may be exempt from the procedural requirements of RCW 70A.15, 70A.205, 70A.300, 77.55, 90.48, and 90.58 and of any laws requiring or authorizing local government permits or approvals. However, Defendants shall comply with the substantive requirements of such permits or approvals. For permits and approvals covered under RCW 70A.305.090(1) that have been issued by local government, the Parties agree that Ecology has the non-exclusive ability under this Decree to enforce those local government permits and/or approvals. At this time, no state or local permits or approvals have been identified as being applicable but procedurally exempt under this section.
- 4. Defendants have a continuing obligation to determine whether additional permits or approvals addressed in RCW 70A.305.090(1) would otherwise be required for the remedial action under this Decree. In the event either Ecology or Defendants determine that additional permits or approvals addressed in RCW 70A.305.090(1) would otherwise be required for the remedial action under this Decree, it shall promptly notify the other party of its determination. Ecology shall determine whether Ecology or Defendants shall be responsible to contact the appropriate state and/or local agencies. If Ecology so requires, Defendants shall promptly consult with the appropriate state and/or local agencies and provide Ecology with written documentation from those agencies of the substantive requirements those agencies believe are applicable to the remedial action. Ecology shall make the final determination on the additional substantive requirements that must be met by Defendants and on how Defendants must meet those requirements. Ecology shall inform Defendants in writing of these requirements. Once established by Ecology, the additional requirements shall be enforceable requirements of this Decree. Defendants shall not begin or continue the remedial action potentially subject to the additional requirements until Ecology makes its final determination.

CONSENT DECREE

5. Pursuant to RCW 70A.305.090(2), in the event Ecology determines that the exemption from complying with the procedural requirements of the laws referenced in RCW 70A.305.090(1) would result in the loss of approval from a federal agency that is necessary for the state to administer any federal law, the exemption shall not apply and Defendants shall comply with both the procedural and substantive requirements of the laws referenced in RCW 70A.305.090(1), including any requirements to obtain permits or approvals.

XXII. REMEDIAL ACTION COSTS

- 1. Defendants shall pay to Ecology costs incurred by Ecology pursuant to this Decree and consistent with WAC 173-340-550(2). These costs shall include work performed by Ecology or its contractors for, or on, the Site under RCW 70A.305, including remedial actions and Decree preparation, negotiation, oversight, and administration. These costs shall include work performed both prior to and subsequent to the entry of this Decree. Ecology's costs shall include costs of direct activities and support costs of direct activities as defined in WAC 173-340-550(2). For all costs incurred, Defendants shall pay the required amount within thirty (30) days of receiving from Ecology an itemized statement of costs that includes a summary of costs incurred, an identification of involved staff, and the amount of time spent by involved staff members on the project. A general statement of work performed will be provided upon request. Itemized statements shall be prepared quarterly. Pursuant to WAC 173-340-550(4), failure to pay Ecology's costs within ninety (90) days of receipt of the itemized statement of costs will result in interest charges at the rate of twelve percent (12%) per annum, compounded monthly.
- 2. In addition to other available relief, pursuant to RCW 19.16.500, Ecology may utilize a collection agency and/or, pursuant to RCW 70A.305.060, file a lien against real property subject to the remedial actions to recover unreimbursed remedial action costs.

XXIII. IMPLEMENTATION OF REMEDIAL ACTION

- 1. If Ecology determines that the Defendants have failed to make sufficient progress or failed to implement the remedial action, in whole or in part, Ecology may, after notice to Defendants, perform any or all portions of the remedial action or at Ecology's discretion allow the Defendants opportunity to correct. In an emergency, Ecology is not required to provide notice to Defendants, or an opportunity for dispute resolution. The Defendants shall reimburse Ecology for the costs of doing such work in accordance with Section XXII (Remedial Action Costs).
- 2. Except where necessary to abate an emergency or where required by law, the Defendants shall not perform any remedial actions at the Site outside those remedial actions required by this Decree to address the contamination that is the subject of this Decree, unless Ecology concurs, in writing, with such additional remedial actions pursuant to Section XV (Amendment of Decree). In the event of an emergency, or where actions are taken as required by law, Defendants must notify Ecology in writing of the event and remedial action(s) planned or taken as soon as practical but no later than within twenty-four (24) hours of the discovery of the event.

XXIV. PERIODIC REVIEW

1. So long as remedial action continues at the Site, the Parties agree to review the progress of remedial action at the Site, and to review the data accumulated as a result of monitoring the Site as often as is necessary and appropriate under the circumstances. Unless otherwise agreed to by Ecology, at least every five (5) years after the initiation of cleanup action at the Site the Parties shall confer regarding the status of the Site and the need, if any, for further remedial action at the Site. Under Section XVIII (Covenant Not to Sue), Ecology reserves the right to require further remedial action at the Site under appropriate circumstances. This provision shall remain in effect for the duration of this Decree.

XXV. PUBLIC PARTICIPATION 1 2 1. Ecology shall maintain the responsibility for public participation at the Site. However, Defendants shall cooperate with Ecology, and shall: 3 If agreed to by Ecology, develop appropriate mailing lists, prepare drafts 4 A. of public notices and fact sheets at important stages of the remedial action, such as the 5 submission of work plans, remedial investigation/feasibility study reports, cleanup action 6 plans, and engineering design reports. As appropriate, Ecology will edit, finalize, and 7 distribute such fact sheets and prepare and distribute public notices of Ecology's 8 presentations and meetings. 9 B. Notify Ecology's project coordinator prior to the preparation of all press 10 releases and fact sheets, and before meetings related to remedial action work to be 11 performed at the Site with the interested public and/or local governments. Likewise, 12 13 Ecology shall notify Defendants prior to the issuance of all press releases and fact sheets related to remedial action work to be performed at the Site, and before meetings related 14 to remedial action work to be performed at the Site with the interested public and/or local 15 governments. For all press releases, fact sheets, meetings, and other outreach efforts by 16 17 Defendants that do not receive prior Ecology approval, Defendants shall clearly indicate to its audience that the press release, fact sheet, meeting, or other outreach effort was not 18 sponsored or endorsed by Ecology. 19 C. When requested by Ecology, participate in public presentations on the 20 progress of the remedial action at the Site. Participation may be through attendance at 21 22 public meetings to assist in answering questions, or as a presenter. When requested by Ecology, arrange and/or continue information E. 23 24 repositories at the following location:

i.

25

26

205 Center St. W. Eatonville, WA 98328.

Eatonville Pierce County Library.

At a minimum, copies of all public notices, fact sheets, and documents relating to public comment periods shall be promptly placed in this repository. A copy of all documents related to this Site shall be maintained at Ecology's Southwest Region Office in Olympia, Washington.

XXVI. DURATION OF DECREE

1. The remedial program required pursuant to this Decree shall be maintained and continued until Defendants have received written notification from Ecology that the requirements of this Decree have been satisfactorily completed. This Decree shall remain in effect until dismissed by the Court. When dismissed, Section XII (Retention of Records), Section XVIII (Covenant Not to Sue), Section XIX (Contribution Protection), Section XX (Indemnification), and Section XXVII (Claims against the State) shall survive.

XXVII. CLAIMS AGAINST THE STATE

1. Defendants hereby agree that they will not seek to recover any costs accrued in implementing the remedial action required by this Decree from the State of Washington or any of its agencies; and further, that Defendants will make no claim against the State Toxics Control Account, the Local Toxics Control Account, the Environmental Legacy Stewardship Account, or a MTCA Cleanup Settlement Account for any costs incurred in implementing this Decree. Except as provided above, however, Defendants expressly reserve their right to seek to recover any costs incurred in implementing this Decree from any other PLP. This section does not limit or address funding that may be provided under WAC 173-322A.

XXVIII. EFFECTIVE DATE

1. This Decree is effective upon the date it is entered by the Court.

XXIX. WITHDRAWAL OF CONSENT

1. If the Court withholds or withdraws its consent to this Decree, it shall be null and void at the option of any party and the accompanying Complaint shall be dismissed without costs

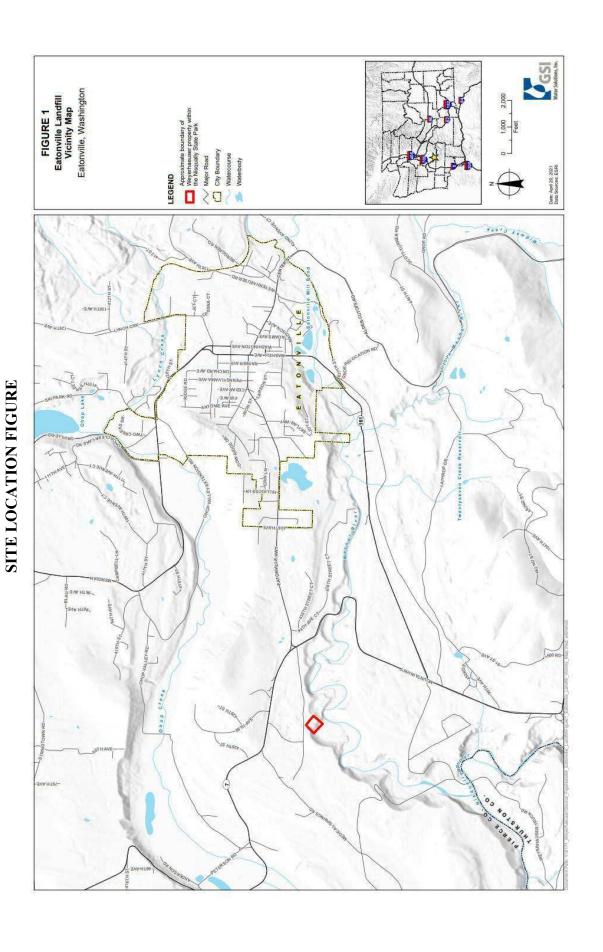
1	and without prejudice. In such an event, no party shall be bound by the requirements of this				
2	Decree.				
3	STATE OF WASHINGTON DEPARTMENT OF ECOLOGY	NICHOLAS W. BROWN Attorney General			
5 6 7 8	BARRY ROGOWSKI Program Manager Toxics Cleanup Program 360-407-7170	KATHRYN WYATT, WSBA #30916 Assistant Attorney General 360-586-3514			
9	Date: <u>3/12/2025</u>	Date: February 20, 2025			
10 11 12 13 14 15 16 17 18 19 20	TOWN OF EATONVILLE DAVID BAUBLITS Mayor 360-832-3361 Date: 2/25/25 WEYERHAEUSER COMPANY KRISTEN SAWIN Vice President, Corporate and Government 206-539-3000	at Affairs			
21	Date: 3/11/2025	_			
22 23 24	ENTERED this day of	2025.			
24		WIRGE			
25		JUDGE Pierce County Superior Court			
26					

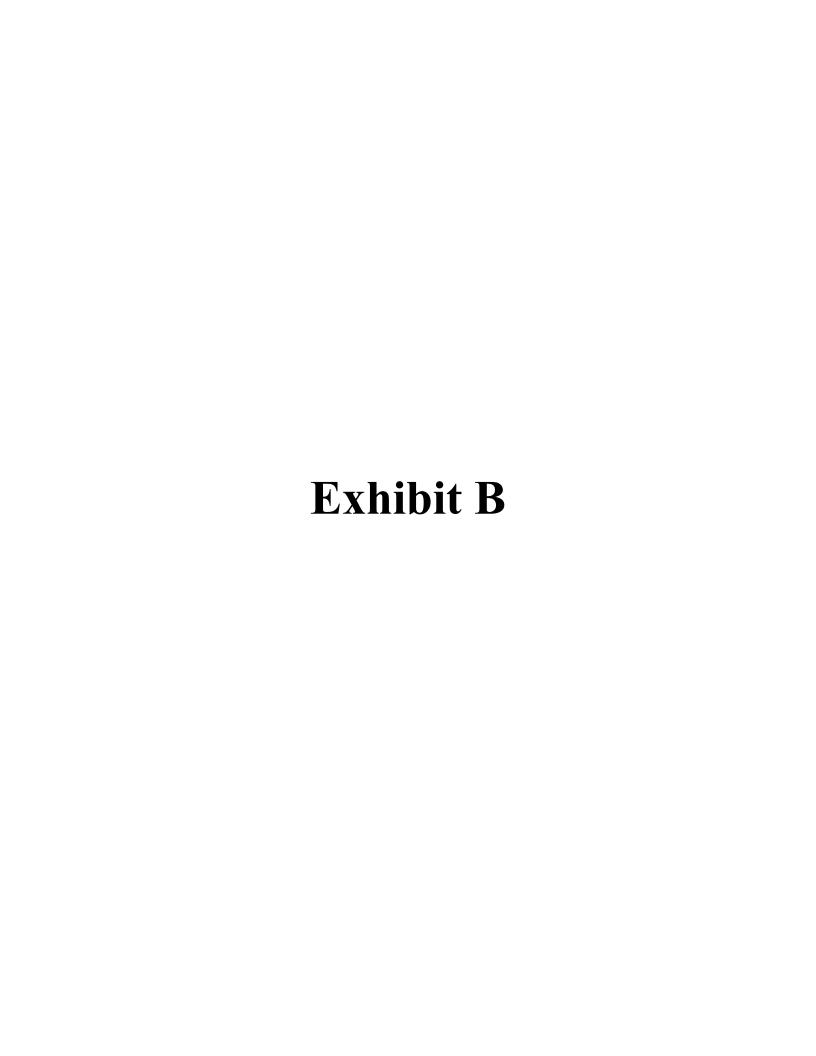
Case: DEPARTMENT OF ECOLOGY STATE OF WASHINGTON VS. TOWN OF EATONVILLE

Cause Number: 25-2-07149-4 **Filing ID:** 60439525

Signed: March 20 2025 08:33 AM

This order has been reviewed, approved, and electronically signed.




My Z

Alexandro Headley Kirigin, Pierce County Commissioners

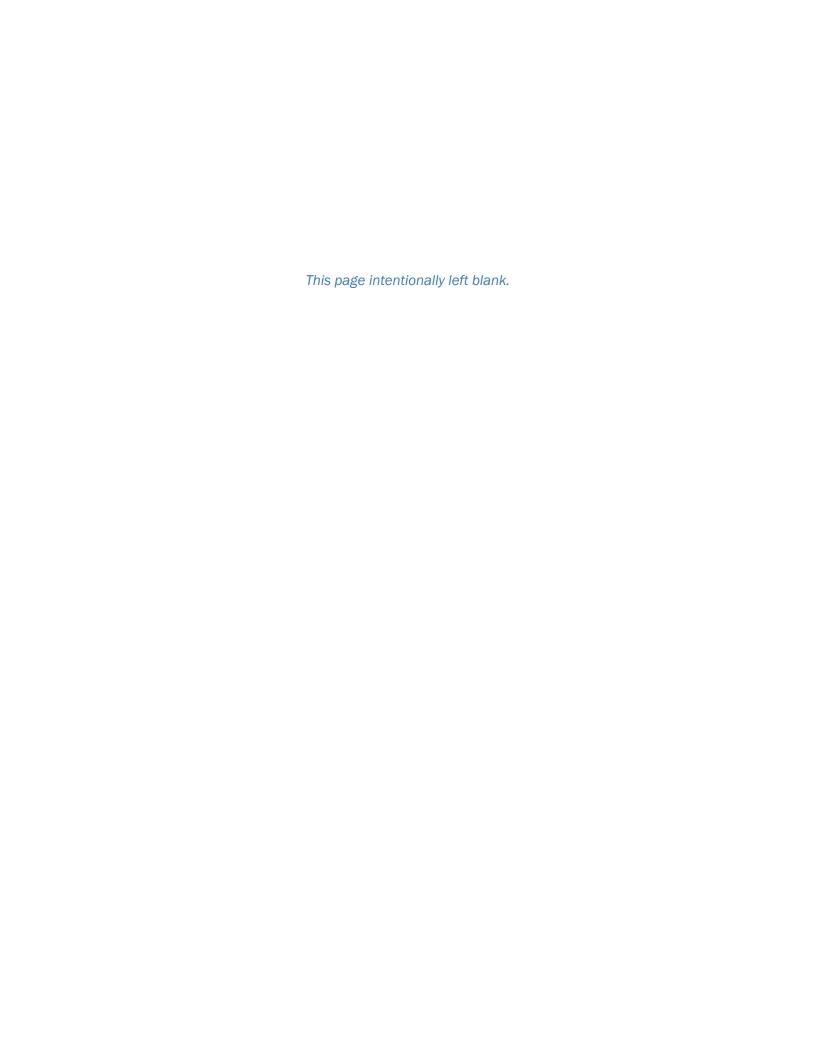
EXHIBIT A
Eatonville Landfill
Agreed Order 20072

Cleanup Action Plan

Eatonville Landfill Eatonville, Washington

Facility Site ID No. 85933/Cleanup Site ID No. 15271

January 2025


Prepared by:

Washington State Department of Ecology

Washington Department of Ecology Contact:

Sam Meng Southwest Region – Toxics Cleanup Program

P.O. Box 47775, Olympia, WA 98504-7775

Contents

E	xecutive Sun	mmary	1
	Background	d	1
	Cleanup Ac	tion	2
1	Introduct	tion	3
2		cription and Background	
_		Setting	
		corical Site Use	
	2.2.1	Cultural Use	
	2.2.2	Private and Public Use	
		nediation Areas	
	2.3.1	Landfill Area	
	2.3.2	Wetland Area	
		vious Studies	
	2.4.1	Pre-Remedial Investigation (1996–2021)	
	2.4.2	Remedial Investigation (2021–2023)	
	2.4.3	Post-Remedial Investigation (2023)	
		nan Health and Environmental Risks	
	2.5.1	Media	
	2.5.2	Exposure Pathways	
	2.5.3	Potentially Exposed Human Populations	
	2.5.4	Potentially Exposed Ecological Receptors	
	2.5.5	Potential Impacts of Climate Change	
		anup Standards	
	2.6.1	Contaminants of Concern	
	2.6.2	Cleanup Levels	
		nts of Compliance	
	2.7.1	Soil	
	2.7.2	Groundwater	
	2.7.3	Surface Water	
3	Consider	red Remedial Alternatives	15
J		relopment of Remedial Alternatives	
		luation of Remedial Alternatives	
		nedy Selection	
,		•	
4	=	on of the Cleanup Action	
		Description	
		ected Cleanup Action	
	4.2.1	Landfill Area	
	4.2.2	Wetland Area	
		npliance Monitoring	
	4.3.1	Protection Monitoring	21

	4.3.	2 Performance Monitoring	22
	4.3.		
	4.3.		
	4.4	Vegetation, Restoration, and Mitigation	
	4.5	Applicable Local, State, and Federal Laws	
	4.5.		
	4.5.		
	4.6	Cultural Resources	
	4.7	Public Participation	27
	4.8	Tribal Engagement	27
	4.9	Schedule for Implementation	
_	Refe	erences	
,	11010	51611063	∠೦

Tables

- Table 2-1. Contaminants of Concern for Soil, Groundwater, and Surface Water
- Table 2-2. Cleanup Levels for Soil, Groundwater, and Surface Water
- Table 3-1. Restoration Timeframes for Each Media
- Table 5-1. Applicable Federal, State, and Local Laws

Figures

- Figure 1-1. Vicinity Map
- Figure 1-2. Site Map
- Figure 2-1. Conceptual Site Model
- Figure 2-2. Remediation Areas and RI/FS Sample Locations
- Figure 2-3. Remediation Areas
- Figure 2-4. Selected Remedy Cross Section A-A'

Appendices

- Appendix A Former Eatonville Landfill Wetland Delineation Addendum, Updated
- Appendix B Former Eatonville Landfill Waste Characterization Results

This page intentionally left blank.

Abbreviations and Acronyms

ARAR applicable or relevant and appropriate requirement

Bgs below ground surface

CFR Code of Federal Regulations

CLARC Cleanup Levels and Risk Calculation

COC contaminant of concern
CSM Conceptual Site Model

CUL cleanup level CWA Clean Water Act

DAHP Department of Archaeology and Historic Preservation

dCAP draft Cleanup Action Plan

DRO diesel-range organics

DU decision unit

Ecology Washington State Department of Ecology

EPA U.S Environmental Protection Agency

FS feasibility study

ft feet or foot

GRO gasoline-range organics

IC institutional control

IDP Inadvertent Discovery Plan

Landfill Area the former municipal waste landfill on the Site

MNA monitored natural attenuation

MTCA Model Toxics Control Act

OMMP Operations, Maintenance, and Monitoring Plan

ORO oil-range organics

PBDE polybrominated diphenyl ether

PCB polychlorinated biphenyl

PCP Pentachlorophenol

PLP Potentially Liable Person

POC point of compliance

Property a 6.3-acre rectangular parcel of land owned by Weyerhaeuser Company

(Weyerhaeuser) (Tax Parcel No. 0416201007)

RCW Revised Code of Washington

RI remedial investigation

RI/FS remedial investigation/feasibility study

SEPA State Environmental Policy Act

Site the Former Eatonville Landfill near Eatonville, Washington

SL screening level

SVOC semivolatile organic compound
TEE Terrestrial Ecological Evaluation

total cPAHs total carcinogenic polycyclic aromatic hydrocarbons

Town of Eatonville

TPH total petroleum hydrocarbons
USACE U.S. Army Corps of Engineers
VOC volatile organic compound

WAC Washington Administrative Code

Wetland Area the area beyond the toe of the landfill on the Site

Weyerhaeuser Company

Executive Summary

This document presents the draft Cleanup Action Plan (dCAP) for the Former Eatonville Landfill (Site) located near Eatonville, Washington. This dCAP was prepared by the Washington State Department of Ecology (Ecology) in collaboration with Weyerhaeuser Company (Weyerhaeuser) and the Town of Eatonville (Town), who Ecology has determined to be Potentially Liable Persons (PLPs) for the Site. The dCAP has been prepared to meet the requirements of the Model Toxics Control Act (MTCA) administered by Ecology under Chapter 173-340 of the Washington Administrative Code (WAC). This dCAP describes Ecology's final remedy for the Site and the requirements that must be met during the cleanup action itself.

Background

The Site is composed of a former municipal waste landfill (referred to as the "Landfill Area") and the area beyond the toe of the landfill (referred to as the "Wetland Area"), which contains limited solid wastes that have migrated away from the Landfill Area, receives stormwater and spring runoff from the landfill and the surrounding bluff, and has natural springs that discharge to the Wetland Area at various points along the bluff. The source of contamination at the Site is municipal household and other wastes that were dumped during and after the active landfilling period. Over time, limited wastes (i.e., tires and large metal debris) have migrated beyond the landfill prism into the Wetland Area. Separately, after landfill closure, recreational firearm shooting/target practice was conducted at the Site.

A 2017 investigation conducted by the Washington Department of Fish and Wildlife of the surrounding watershed identified the landfill as a potential source of polybrominated diphenyl ethers (PBDEs or BDEs) adversely affecting steelhead trout (*Oncorhynchus mykiss*) in the Mashel and Nisqually Rivers (O'Neill et al., 2020). Following the September 2020 release of the Washington Department of Fish and Wildlife's investigation results, the Nisqually Indian Tribe notified Ecology about potential releases of PBDEs to the Nisqually River from various sources within the watershed, including the Site (Bellon and Gavin, 2020). Weyerhaeuser and the Town agreed to further investigate the Site for PBDEs and other possible contaminants (Weyerhaeuser, 2020). The remedial investigation (RI) took place between 2021 and 2022 and included surface water, groundwater, and soil sampling and analysis for a suite of potential contaminants, including PBDEs.

Contaminants of concern (COCs) identified in Site media (soil, groundwater, and surface water) during the RI include the following:

- Metals. Arsenic, cadmium, chromium, copper, hexavalent chromium, iron, lead, nickel, and zinc
- Semivolatile Organic Compounds (SVOCs). Pentachlorophenol (PCP) and total carcinogenic polycyclic aromatic hydrocarbons (cPAHs)
- Total Petroleum Hydrocarbons (TPH). Gasoline range organics (GRO) and diesel-range/residual-range organics (DRO/ORO)

Cleanup levels (CULs) were developed as part of the combined RI and feasibility study (RI/FS) (GSI, 2024a) for the above-listed COCs. These CULs take into consideration the active pathways between media and the different receptor scenarios (human health and ecological) that have been shown to be active at the Site.

Cleanup Action

The final cleanup action for the Site includes two distinct parts (by area) as a result of their specific impacts and ecological conditions:

- 1. Full waste (approximately 21,500 cubic yards) and impacted soil (approximately 1,800 cubic yards) removal from the Landfill Area and restoration/mitigation of impacted wetlands beneath the waste prism and at the toe of the Landfill Area.
- 2. Removal of wastes, containment, monitored natural attenuation (MNA), and institutional controls (ICs) for the Wetland Area.

This combined cleanup action meets the MTCA requirements for the Site and was determined to be permanent to the maximum extent practicable. Additionally, this cleanup action prevents harm to the existing healthy and high value wetland ecosystem.

Institutional controls will be part of the cleanup action for the protection of human health. Access to the Wetland Area will be restricted until soils impacted by TPH-GRO naturally attenuate below direct contact CULs. The use of Site groundwater for human consumption will be restricted until concentrations of upgradient hexavalent chromium are below CULs. In addition, zinc will attenuate below CULs over time after the sources are removed. The use of surface water for human consumption will be restricted in the Landfill Area until upgradient concentrations of hexavalent chromium attenuate or drop below the CUL. An Operations, Maintenance, and Monitoring Plan (OMMP) will be developed to maintain and evaluate ICs until concentrations are found to be below CULs for human use.

A standard point of compliance (POC) for Landfill Area and Wetland Area soils will be used at the Site. Following waste and soil removal (combined, 23,300 cubic yards), this soil POC will extend from the ground surface to a depth of 15 feet (ft) below ground surface (bgs) (based on human exposure through direct contact), 6 ft (for screening based on ecological exposure), and in the soils throughout the Site (for groundwater protection). Standard POCs will also be used for groundwater and surface water. The soil, groundwater, and surface water CULs at their respective POCs will be met throughout the Site within reasonable restoration timeframes after completion of the cleanup action.

The overall restoration timeframe for the Site is 10 years, with Landfill Area soil expected to be restored immediately after waste and impacted soil removal to the maximum extent practicable. COCs in Wetland Area soil, Site groundwater, and Site surface water are expected to be below CULs within 10 years as a result of MNA and the removal of source materials associated with the landfill and fugitive wastes in the Wetland Area. Compliance monitoring, including protection, performance, and confirmation monitoring, will be performed to ensure the remedy has been completed and continues to perform as designed. If COCs are still above CULs at the end of the expected restoration timeframe, additional cleanup actions will be considered under an adaptive management plan.

1 Introduction

This document is the draft Cleanup Action Plan (dCAP) for the Former Eatonville Landfill (Site) located near Eatonville, Washington. It was prepared by the Washington State Department of Ecology (Ecology) in collaboration with Weyerhaeuser Company (Weyerhaeuser) and the Town of Eatonville (Town), who Ecology has determined to be Potentially Liable Persons (PLPs) for the Site. The Site is identified by Ecology using Facility Site ID No. 85933 and Cleanup Site ID No. 15271. The Site is located within and centered around the extents of a 6.3-acre rectangular parcel of land owned by Weyerhaeuser Company (Weyerhaeuser) (Tax Parcel No. 0416201007) (Property) adjoining Nisqually State Park property managed by Washington State Parks and Recreation Commission (State Parks). Figures 1-1 and 1-2 show the location of the Site and its setting within Nisqually State Park. A dCAP is required as part of the site cleanup process under Washington Administrative Code (WAC) Chapter 173-340, Model Toxics Control Act (MTCA) Cleanup Regulations. The purpose of the dCAP is to identify the proposed cleanup action (also known as remedial action) for the Site and to provide an explanatory document for public review. More specifically, this dCAP:

- Describes the Site setting, historical use, and current conditions.
- Summarizes the cleanup action alternatives considered in the remedy selection process.
- Summarizes the selected final cleanup actions and the rationale behind their selection.
- Describes the selected final cleanup action for the Site and the rationale for its selection.
- Identifies Site-specific cleanup levels (CULs) and points of compliance (POCs) for each contaminant of concern (COC), media (soil, groundwater, and surface water), and Site area (Landfill Area and Wetland Area).
- Identifies state/federal laws that are applicable or relevant and appropriate requirements (ARARs) for the cleanup action.
- Identifies residual contamination remaining on the Site post implementation of the cleanup action and the restrictions on future use/activities that will be put into place to ensure the continued protection of human and ecological health.
- Discusses restoration timeframes and compliance monitoring requirements.
- Establishes an adaptive management plan for the final cleanup action if groundwater is not likely to attenuate below CULs at the POC within the anticipated restoration timeframes.
- Presents the schedule for implementing the dCAP.

Ecology has made a preliminary determination that a cleanup conducted in conformance with this dCAP will comply with the requirements for selection of a remedy under WAC 173-340-360. Ecology has selected this remedy because it will be protective of human health and the environment. Furthermore, the selected remedy is consistent with the State of Washington's preference for permanent solutions, as stated in Revised Code of Washington (RCW) 70.105D.030(1)(b). However, all Tribal and public input will be considered before finalizing this dCAP.

This page intentionally left blank.

2 Site Description and Background

The following sections provide a discussion of the Site's setting, history, areas, previous studies, human health and environmental risks, relevant COCs, and cleanup standards and POCs. Additional details concerning the Site description and background are presented in the draft RI/FS (GSI, 2024a)

2.1 Site Setting

The Site, defined as the area where the cleanup action will take place, is situated between the Puget Sound Lowland to the west and north and the Mount Rainier foothills to the east (Figures 1-1 and 1-2). The Site is contained within the 460,172-acre Nisqually River watershed (Figures 1-1 and 1-2). The Site is located upon a bluff north of the Mashel River. Natural slopes in the vicinity of the landfill are as steep as 1.5H:1V, and the slopes give way to vertical cliffs further from the Site. Anthropogenic landfill deposits of household and other wastes within the "Landfill Area" were placed on top of the natural slopes resulting in slopes as steep as 1H:1V. The steep bluff gives way to a flat region of land referred to as the "Wetland Area" that eventually transitions to the Mashel River floodplain and riverbanks.

The delineated wetlands south of the toe of the landfill receive stormwater runoff, along with spring and seep discharges at various points along the toe of the landfill, resulting in variably saturated soil conditions. Per the 2022 wetland delineation, the area is assumed to be a jurisdictional wetland covering 4.84 acres within the Site (Figure 1-2) (PHS, 2022). Additional delineation work in 2023 showed that areas immediately adjacent to the upgradient portions of the Weyerhaeuser property and the former borrow pit area did not contain any delineated wetlands (Confluence, 2024; Appendix A). The resource value of the wetland was also determined through the wetland rating process, using the Washington State Wetland Rating System for Western Washington (Hruby, 2014), which assesses wetland functions and values, sensitivity to disturbance, rarity, and irreplaceability (Confluence, 2024; Appendix A). The wetland was rated as Category I, and is, therefore, identified as a wetland of high conservation value (Confluence, 2024; Appendix A).

Surface waters from the Site have the potential to discharge to the Mashel River channel via an unnamed creek forming within the wetlands downgradient of the Site and flowing to the south-southwest when sufficient water is present. Surface water from the spring and seeps at the base of the landfill present largely as sheet flow discharge into the Wetland Area with discharge volumes varying significantly based on season. Stormwater either infiltrates in place or crosses the Wetland Area, mainly as sheet flow, and infiltrates within the Wetland Area or flows into the unnamed creek that that forms past the property line.

Groundwater at the Site is present within a shallow unconfined aquifer that may present as seeps or springs at the ground surface in some locations. Water supply wells located near the Site beneficially use water from the aquifer. However, these wells are not likely to be impacted by the Site as a result of the groundwater flow direction in the area. Groundwater at the Site is estimated to flow to the south-southwest toward the Mashel River and may present as surface water or remain in the unconfined shallow groundwater zone within the wetlands. A 3- to 5-foot (ft) thick lens of perched groundwater is present at shallow depths of approximately 22 to 25 ft below ground surface (bgs) overlying a fine-grained unit in the Vashon Formation upgradient of the landfill. Although the vertical and lateral extent of the perched groundwater was not delineated, it appears to emerge on the west side of the slope at the edge of the landfill as a spring. Figure 2-1 shows a conceptual site model (CSM) of the Site.

2.2 Historical Site Use

The following sections detail the cultural, private, and public use of the Site.

2.2.1 Cultural Use

The Site is centrally situated within the Nisqually River watershed, in the area where the Nisqually Indian Tribe—and its ancestors, the Squalli-absch—have resided for more than 10,000 years. The Nisqually Indian Tribe had established several villages in the basin, including a major village near the Mashel River (Nisqually Indian Tribe, 2021). The Nisqually Indian Tribe is a federally recognized sovereign nation and a successor-in-interest to the bands and Tribes who were signatories to the 1854 Treaty of Medicine Creek. See United States v. Washington, 384 F. Supp. 312, 367–68 (W.D. Wash. 1974), aff'd 520 F.2d 676 (9th Cir. 1975), cert. denied, 423 U.S. 1086, 96 S. Ct. 877 (1976); see also Treaty of Medicine Creek, 10 Stat. 1132 (1854). The Treaty of Medicine Creek recognizes the Nisqually Indian Tribe's sovereign right to self-governance and self-determination and guarantees the Nisqually Indian Tribe the reserved "right of taking fish, at all usual and accustomed grounds and stations [(U&A)], ... together with the privilege of hunting, gathering roots and berries, and pasturing their horses on open and unclaimed lands[.]" 10 Stat. 1132, Art. 3.

2.2.2 Private and Public Use

Weyerhaeuser Timber Company acquired the land encompassing what is now Nisqually State Park by 1915. Their holdings were intermittently harvested for timber from 1915 to 2010, when the land was sold to State Parks (Trost, 2021). Weyerhaeuser retained ownership of the Property, which currently falls outside of Nisqually State Park. The Town of Eatonville (Town) leased the Property from Weyerhaeuser between November 1950 and March 1, 1980, for use as a municipal landfill (Tacoma-Pierce County Health Department, 2010; Weyerhaeuser, 2014; Ecology, 2021). The landfill was unlined and received municipal household and other wastes during operations. Additionally, tires, appliances, and car bodies were placed at the Property either during operation of the landfill or through illegal dumping after the landfill closure. The landfill was burned and treated several times to reduce rodent infestation (Tacoma-Pierce County Health Department, 2010). The nature of landfilling and burn activities was not closely monitored and/or documented, and operational details are limited.

The Property has been vacant and undeveloped since the closure of the landfill in 1980 (Parametrix, 1996; Tacoma-Pierce County Health Department, 2010). During closure of the landfill, a barrier of tree stumps and snags was placed at the upslope landfill ridge to restrict vehicle access; however, illegal dumping may have occurred, and firearm use did occur, after closure (Parametrix, 1996; GSI, 2024a).

In 2010, 1,230 acres of the land surrounding the Property was officially designated as Nisqually State Park (Fields, 2010). Before and during development of the state park, firearm use at the former borrow pit and Landfill Area was likely ongoing, as evidenced by the large amount of firearm related materials found throughout these areas. Unsanctioned shooting activities are still suspected to occur on occasion, given the apparent age, condition, and quantity of shooting evidence at the Site (GSI, 2024a).

2.3 Remediation Areas

Two distinct remediation areas of the Site were established for the purpose of creating distinct units for the design, implementation, and evaluation of the cleanup action:

- 1. Landfill Area
- 2. Wetland Area

Figure 2-2 shows these two remediation areas. The following sections describe these remediation areas for the purpose of implementing the cleanup action at the Site. Remedies are presented for each area, as described in the Remedial Investigation and Feasibility Study (RI/FS) (GSI, 2024a) and in Section 3 of this dCAP, because of their unique impacts and risks.

2.3.1 Landfill Area

The Landfill Area refers to the portion of the Site containing the waste prism, along the slope and inclusive of the interface between the waste prism and the Wetland Area. Also included in the Landfill Area is a small lobe ("toe") of delineated wetland along the waste prism/Wetland Area interface that has zinc impacts.

2.3.2 Wetland Area

The Wetland Area refers to the portions of the Site between the toe of the landfill and downgradient/downhill end of the Site delineated as wetlands or on the flanks of the delineated wetland. To assist with developing and studying alternatives, the RI/FS assumed that the delineated and inferred wetlands at the Site are jurisdictional, per the U.S. Army Corps of Engineers (USACE) Wetland Delineation Manual (USACE, 1987) and the Regional Supplement to the USACE Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (USACE, 2010). Additionally, the remedial alternatives in the feasibility study (FS) were designed with this designation in mind and intended to comply with all applicable state and federal regulations at the time the cleanup action is implemented.

The Wetland Area has a well-established root mass and canopy, and the presence of healthy flora provides a natural protective cover over soils and minimizes erosional processes. This type of ecological structure stabilizes contaminants such as metals through natural biological processes (Yan et al., 2020; Bhat et al., 2022). Access to the Wetland Area by humans is also difficult as a result of the steepness of the Landfill Area slope and the softness of soils at the base of the landfill, which serve as natural barriers to frequent and prolonged human use.

2.4 Previous Studies

Previous studies at the Site were conducted over three distinct phases of investigation. These phases of investigation include:

- 1. Pre-remedial investigation from 1996 to 2021
- 2. Remedial investigation (RI) from 2021 to 2023 (GSI, 2024a)
- 3. Post-remedial investigation waste characterization in 2023 (GSI, 2024b; Appendix B)

The work done during these phases of investigation and their respective field events are described in the sections below. Figure 2-2 shows the locations of different activities from previous investigations.

2.4.1 Pre-Remedial Investigation (1996-2021)

Several investigations were conducted at the Site between 1996 and 2021, including:

- 1996. Surface water and seep sampling was performed for biological parameters (biological oxygen demand, N-ammonia, chloride, and sulfate) and metals (iron, manganese, and zinc) (Parametrix, 1996).
- 2013. Twenty-seven test pits were excavated on the upper portion of the landfill to determine the
 geologic conditions underlying the landfill and to assess the types and compositions of wastes present
 (PES, 2013).

- 2017. Eleven co-located water and biofilm samples were collected within the Mashel and Nisqually Rivers and analyzed for polybrominated diphenyl ethers (PBDEs) (O'Neill et al., 2020). The findings indicated that the Site is not likely to be a contributing source of PBDEs to the Mashel River.
- January 2021. Sampling of surface water at seepage points along the toe of the landfill was performed. Metals (lead and zinc) were detected above the applicable MTCA screening levels (SLs) for (Aquatic Life: Fresh Water/Chronic, 173-201A WAC) in four samples. Volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and PBDEs were not detected in any samples.

2.4.2 Remedial Investigation (2021–2023)

The RI was completed during several different field deployments between 2021 and 2023, including:

- Dry Season Event (September and November 2021). The dry season event was conducted to delineate the waste prism, collect geotechnical data, assess whether methane was present with the landfill, assess the chemical condition of the former borrow pit adjacent to the Site, and evaluate potential seasonal effects on water quality and groundwater/surface water interactions.
- Wet Season Event (January and February 2022). The wet season event was conducted to evaluate soil conditions in the Wetland Area and potential seasonal effects on water quality and groundwater/surface water interactions. This event also included a partial wetland delineation, land survey, and geophysical survey to characterize the extents of the waste prism.
- Step-out Investigation (August 2022). Soil samples collected at additional step-out locations in the Wetland Area were intended to further delineate metals concentrations.
- Terrestrial Ecological Evaluation (September 2022). Consistent with WAC 173-340-7493, a Site-specific Terrestrial Ecological Evaluation (TEE) Weight of Evidence approach was implemented to evaluate whether adverse impacts from COCs to Wetland Area soils have adverse effects on the ecological condition (plants, animals, and soil biota). No adverse effects were observed. The study also developed site-specific screening levels of metals protective of terrestrial ecological receptors in the Wetland Area.
- Site Feature Survey (May 2023). A Site feature survey was conducted to better understand the
 connection of the unnamed creek to the Mashel River, delineate the extent of fugitive wastes in the
 Wetland Area, and document evidence of shooting activities.

2.4.3 Post-Remedial Investigation (2023)

After the RI was completed, additional data collection was undertaken to characterize Site wastes for disposal in support of the development of a future remedial design. This waste characterization effort was conducted to inform the classification of wastes associated with the Site for disposal. These wastes included waste prism materials, native soils beneath the waste prism, and wetland soils from the zinc impacted lobe. In total, 17 test pits were completed and 5 wetland soil samples were collected. Findings indicate that the materials proposed for removal during the cleanup action do not qualify as federal hazardous wastes per 40 Code of Federal Regulations (CFR) § 261 based on the chemical and characteristic testing results (GSI, 2024b; Appendix B). No samples exhibited signs of leaching through the Toxicity Characteristic Leaching Procedure or exceeded the Toxic Substances Control Act 15 United States Code § 2605 threshold for polychlorinated biphenyl (PCB) concentrations (GSI, 2024b; Appendix B). Additionally, Landfill Area soils and waste materials do not qualify as Washington State Dangerous Wastes per WAC 173-303-100 as a result of their exemption in WAC 173-303-071(3)(c) (GSI, 2024b; Appendix B).

2.5 Human Health and Environmental Risks

The following sections describe the contamination found at the Site, exposure pathways of concern, potentially exposed human populations and ecological receptors, and the potential impacts of climate change on the environmental risks posed by the Site.

2.5.1 Media

The primary media at the Site that may pose human health and environmental risks are soil, groundwater (which may be expressed as seeps at the toe of the landfill and from the spring near the top of the landfill), and surface water. However, the RI also considered impacts to soil in the Wetland Area from landfill migration pathways, such as soil and waste erosion, wind-blown dust, ambient air from possible residual volatile compounds, and metals related to the recreational shooting of firearms. The following are generalized discussions of the contamination associated with different media at the Site.

Soil in the Landfill Area is contaminated with several COCs that pose risks to human health and/or the ecological condition. These COCs include metals, SVOCs (pentachlorophenol [PCP] and total carcinogenic polycyclic aromatic hydrocarbons [cPAHs]), and total petroleum hydrocarbons (TPH)—gasoline-range organics (GRO) and diesel-range/residual-range organics (DRO/ORO). In the Wetland Area, soil contamination risks to human health are limited to TPH-GRO, while ecological risks in Wetland Area soil are limited to TPH-DRO/ORO.

Site groundwater is contaminated with hexavalent chromium (upgradient source), iron, and zinc. Hexavalent chromium and zinc are risks to human health. Zinc also poses a chronic exposure risk to aquatic life due to the seepage occurring at the base of the landfill. Iron is above Potable Groundwater SL based on aesthetic concern.

Site surface water is contaminated with hexavalent chromium (upgradient source) and zinc. Hexavalent chromium is a risk to human health. Zinc poses a chronic exposure risk to aquatic life.

2.5.2 Exposure Pathways

Cleanup standards, TEE procedures, and a contaminant screening process guided by WAC 173-340-720, -730, -740, -747, and -7490 through -7494 were used to further evaluate migration pathways and media-specific exposure routes identified through the CSM (Figure 2-1).

The human exposure routes for Site COCs are through the following pathways:

- Direct Contact (soil). Future excavation and utility workers, park visitors, and occupational workers.
- Ingestion/Direct Contact (groundwater). Retained as a conservative measure (no beneficial use within 0.5 miles) in accordance with WAC 173-340-720, to protect the potential beneficial uses as a future source of drinking water or other designated uses and protection of surface water beneficial use.
- Ingestion/Direct Contact (surface water). Current and/or future park visitors or occupational workers.
 Other current surface water beneficial use is not known or suspected at or near the Site.

The most probable ecological exposure routes to contaminants originating at the Site are through direct soil contact, bioaccumulation, and groundwater or surface water ingestion and contact. However, the TEE conducted as part of the RI/FS concluded that metals and other contaminants in Wetland Area soils at the Site does not present a risk of significant adverse effects to terrestrial ecological receptors (GSI, 2024a). Surface water that has zinc concentrations exceeding the SL based on protection of aquatic life is limited within the Landfill Area.

The evaluation of the human health and environmental risks posed by the Site have also considered nearby Tribes, vulnerable populations, and overburdened communities and the potential for climate change to impact the cleanup action. The following sections discuss these aspects of the Site and its associated cleanup action.

2.5.3 Potentially Exposed Human Populations

The census tract in which the Site is located (073200) and the two surrounding tracts (073006 and 012510) were assessed per RCW 70A.02.010 and WAC 173-350(5) for vulnerable populations and overburdened communities using Ecology Implementation Memorandum No. 25 (Ecology, 2024). In addition, as the Nisqually Indian Tribe is known to use the Nisqually River, which connects to the Mashel River, the census tract containing the Nisqually Indian Tribe's main settlement (012320) was also similarly assessed.

Vulnerable populations include population groups that are more likely to be at higher risk for poor health outcomes in response to environmental harms, because of the following:

- Adverse Socioeconomic Factors. Unemployment, high housing and transportation costs relative to
 income, limited access to nutritious food and adequate health care, linguistic isolation, and other factors
 that negatively affect health outcomes and increase vulnerability to the effects of environmental harms
- Sensitivity Factors. Low birth weight and higher rates of hospitalization

Overburdened communities are defined as geographic areas where vulnerable populations face combined, multiple environmental harms and health impacts.

The Washington State Department of Health's Environmental Health Disparities Map (Washington State Department of Health, 2022) and EPA's EJScreen tool (EPA, 2023) were used to screen the Environmental Health Disparities Index, the Demographic Index, and the Supplemental Demographic Index. The following shows the result of the screening:

- Environmental Health Disparities Index. The Environmental Health Disparities Index is based on 19 indicators across four themes. The themes include environmental exposures, environmental effects, sensitive populations, and socioeconomic factors. The Site's census tract and the two surrounding tracts rank 2 out of 10, and the Nisqually Indian Tribe census tract ranks 4 out of 10. The criteria for a likely overburdened community or vulnerable population is a 9 or 10 out of 10.
- Demographic Index. The demographic index is based on the average of two socioeconomic indicators: low-income and people of color. The Site's census tract ranks in the 43rd percentile for Washington State. The two surrounding tracts rank in the 31st and 32nd percentiles, and the Nisqually Indian Tribe's census tract ranks in the 57th percentile. The criteria for a likely overburdened community or vulnerable population is at or above the 80th percentile.
- Supplemental Demographic Index. The supplemental demographic index is based on the average of five socioeconomic indicators: low-income, unemployment, limited English, less than high school education, and low life expectancy. The Site's census tract ranks in the 47th percentile for Washington State. The two surrounding tracts rank in the 38th and 55th percentiles, and the Nisqually Indian Tribe's census tract ranks in the 50th percentile. The criteria for a likely overburdened community or vulnerable population is at or above the 80th percentile.

Based on these results, the census tracts where the Site is located and in the surrounding vicinity are likely not home to overburdened communities or vulnerable populations. However, the Nisqually Indian Tribe's use of the Nisqually River watershed and its rights and interests in their Tribal lands presents a disproportionate risk for exposure to and contact with contaminants from the Site through contact with environmental media (soil, groundwater, and surface water) and in consumption of species that bioaccumulate contaminants. Therefore, the Nisqually Indian Tribe and members of other Tribes in the area that rely on the watershed may benefit from the implementation of a cleanup at the Site. The Site was historically used by native peoples and is of Tribal significance; these factors will also be considered during the cleanup actions through the Site-specific Inadvertent Discovery Plan (Town of Eatonville and Weyerhaeuser, 2020).

2.5.4 Potentially Exposed Ecological Receptors

Potential ecological receptors were identified based on current and potential future land use. The full suite of current and potential future ecological receptors is identified in the TEE (Appendix D to the RI/FS; GSI, 2024a) and includes the following:

- Terrestrial plants (such as Vine maple [Acer circinatum], red alder [Alnus rubra], and salmonberry [Rubus spectabilis])
- Soil biota (primarily pot worms and earthworms)
- Wildlife (such as American black bear, coyote [Canis latrans], blacktail deer, raccoons [Procyon lotor],
 Douglas squirrels [Tamiasciurus douglasii], Steller's jay [Cyanocitta stelleri], Cooper's hawk [Accipiter cooperii], and/or sharp-shinned hawk [Accipiter striatus])

The wetland ecosystem is not adequately inundated to support aquatic biota receptors. However, if groundwater impacts were identified and discharged to the surface water of the Mashel River, aquatic biota could be impacted and, therefore, aquatic biota are retained as potential receptors.

2.5.5 Potential Impacts of Climate Change

WAC 173-340-350(6)(f) notes that, based on best available science, the preferred cleanup action proposed for the Site in the RI/FS must consider current and projected local and regional climatological characteristics to determine factors that could affect the migration of hazardous substances or the resilience of cleanup action alternatives. The relevant climate change characteristics of the Site and their potential impacts are discussed below:

- Seasonal Patterns of Rainfall. Depending on the climate models referenced, changes in average annual precipitation in the vicinity of the Site in 2060 range from -2.2 to +6.7 percent (EPA, 2016). Increases in annual average precipitation could lead to erosion along the slope and increased flow along the ravine from the seep, which has the potential to expose hazardous materials in the landfill (if left in place) and mobilize impacted soil.
- Magnitude and Frequency of Extreme Storm Event. The Site ranks in the 83rd percentile for properties currently at flood risk and in the 82nd percentile of properties at flood risk in the next 30 years (EPA, 2023). However, the Site is not currently within a 100-year floodplain (EPA, 2023). In 2060, the change in 100-year storm intensity is projected to increase from between 5.7 and 16.8 percent (EPA, 2016). This increase in storm intensity has the potential to increase erosion at or near the Site and mobilize impacted soil.

Potential for Landslides. The risk of landslides increases with increasing slope angles and high precipitation volumes. The Site is located on a steep slope and along a natural bluff, which may be vulnerable to landslides in the event of high-flow storms. As noted previously, anthropogenic landfill deposits on top of the erosional slope are as steep as 1H:1V, with evidence of ongoing slope instability and debris runout near the toe of the slope.

Other climate indicators were considered, including wildfire potential and temperature extremes, but the impacts of these indicators were relatively low at the Site (U.S. Federal Government, 2023).

2.6 Cleanup Standards

The following sections detail COCs and cleanup standards for each Site media.

2.6.1 Contaminants of Concern

Results of the investigations described in Section 2.4 were screened against Human Health and/or Ecological SLs as part of the RI/FS (GSI, 2024a) to identify a set of COCs for each media evaluated. SLs were derived from the Ecology Cleanup Levels and Risk Calculation (CLARC) Master Table (Ecology, 2023) and the statutes referenced therein. SLs were set to natural background (i.e., Ecology, 1994 and 2022) or practical quantitation limits, where necessary.

Surface water SLs were also applied to groundwater because human health and ecological groundwater exposure scenarios are present where groundwater seeps and daylights at the toe of the landfill.

Table 2-1 shows the soil, groundwater, and surface water COCs identified for the Site. COCs for Site groundwater and surface water are limited to select metals. While the RI indicates the source of the hexavalent chromium is associated with an upgradient background condition, it has been retained as a Site groundwater and surface water COC to ensure restrictions will be in place to prevent human exposure. Iron was identified in the RI/FS as a COC in the groundwater because it was found above the most stringent SLs in the groundwater (300 μ g/L), which is a secondary drinking water standard based on factors other than health effects. The highest iron concentration in the groundwater samples is below the next most stringent standard, which is the MTCA Method B Cleanup Level calculated based on the risk to human health (11,000 μ g/L; CLARC). Therefore, iron is not considered a COC in the groundwater.

For soils, the Site has two distinct sets of COCs, one for the Landfill Area and one for the Wetland Area. For Landfill Area soil, metals, SVOCs, cPAHs, and TPH-GRO and DRO/ORO are identified as COCs. The Wetland Area soil COCs account for the finding of no adverse effects to the terrestrial ecological receptors from the Site-specific TEE, consistent with WAC 173-340-7493. For the Wetland Area soil, zinc and TPH-GRO and DRO/ORO are identified as COCs. Iron was identified in the RI/FS as a COC in the soil because it was found above the SL established for the protection of groundwater. Because iron was eliminated as a COC in the groundwater, it is also eliminated as a COC in the soil.

2.6.2 Cleanup Levels

In accordance with WAC 173-340, Site-specific CULs for soil, groundwater, and surface water COCs were developed based on applicable receptors and exposure pathways as part of the RI/FS (GSI, 2024a). The soil CULs were developed for both the Landfill Area and Wetland Area separately to account for the differences in their pathways based on the CSM and the findings of the TEE (Appendix B to the RI/FS [GSI, 2024a]) that was completed in the Wetland Area. The CULs for soil (by Site remediation area), groundwater, and surface water are summarized in the following sections and in Table 2-2. No air CULs are required for this Site.

2.6.2.1 Soil

Soil CULs for the Landfill Area and Wetland Area of the Site differ because different metals were found to be present above SLs, and the Site-specific TEE resulted in adjusted CULs for zinc in the Wetland Area. The derivation of soil CULs for these two areas are discussed separately in the sections below.

2.6.2.1.1 Landfill Area

Among the soil Human Health and Ecological SLs, the lower, more protective value for pathways shown to be active was selected as the CUL with consideration for natural background concentrations. The CULs were based on the following:

- Soil ecological indicator for plants (cadmium, lead, nickel, zinc) and soil biota (copper, TPH-DRO/ORO)
- Natural background (arsenic, chromium, nickel, and zinc)
- MTCA Method B Protective of Groundwater to Surface Water, Saturated (zinc)
- MTCA Method B Direct Contact, Cancer (PCP, total cPAHs)
- MTCA Method A Unrestricted Land Use (TPH-GRO)

The CULs for these Landfill Area soil COCs are protective of Human Health and Ecological receptors.

2.6.2.1.2 Wetland Area

The TEE Weight of Evidence evaluation work conducted in the Wetland Area provides a basis for developing revised Ecological CULs based on Site-specific conditions for zinc. For the Human Health scenario and all other constituents, the CUL is based on MTCA Human Health and Ecological SLs representative of active pathways. Among the Human Health and Ecological SLs, the lower, more protective value for pathways shown to be active was selected as the CUL with consideration for natural background concentrations. The CULs were based on the following:

- TEE CUL protective of terrestrial ecological receptors (zinc)
- MTCA Method A Unrestricted Land Use (TPH-GRO)
- Soil Ecological Indicator Soil Biota (TPH-DRO/ORO)

These CULs are protective of Human Health and Ecological receptors.

2.6.2.2 Groundwater

Hexavalent chromium and zinc were the only groundwater COCs identified at the Site. Site-wide groundwater CULs for these metals are based on the lowest applicable SLs, namely the following:

- MTCA Method B Cancer CUL (hexavalent chromium)
- WAC 173-201A-240 freshwater chronic aquatic life criteria (zinc)

The CULs for these groundwater COCs at the Site are protective of Human Health and Ecological receptors.

2.6.2.3 Surface Water

Hexavalent chromium and zinc are the only surface water COCs. The Site-wide surface water CULs for these metals are based on the lowest applicable SLs, namely the following:

MTCA Method B Cancer CUL (hexavalent chromium)

WAC 173-201A-240 freshwater chronic aquatic life criteria (zinc)

The CULs for these surface water COCs at the Site are protective of Human Health and Ecological receptors.

2.7 Points of Compliance

Points of compliance are the locations and media where the CULs identified in Section 2.6.2 must be attained. The POCs for the Site have been identified in accordance with the regulatory requirements contained within WAC 173-340-720 through 173-340-740. The POCs for soil, groundwater, and surface water at the Site are shown in Figure 2-3 and are discussed in the following sections.

2.7.1 Soil

A standard POC will be used for soil in both the Landfill Area and Wetland Area. This is where the soil CULs must be attained, consistent with WAC 173-340-740(6). The POC for soil is based on the human exposure via direct contact and ecological considerations based on the TEE. The CULs must be met in soils throughout the two areas of the Site (Figure 2-3) from the ground surface to 15 ft bgs for human exposure and 6 ft bgs for ecological exposure, and the entire saturated soil column for the protection of groundwater.

Following the excavation of wastes and impacted Landfill Area soils to the maximum extents practicable (removal of waste materials and recoverable particulates, visually impacted soils, and soils above CULs), soils will be evaluated across the entirety of the Landfill Area consistent with WAC 173-340-740(7). This ensures potential exposures by humans under future use scenarios (e.g., no development, construction, digging) are limited and provides a point of reference for evaluating the cleanup actions' performance in relation to the human health and ecological exposure scenarios under MTCA. Soil will also be evaluated across the extent of the Wetland Area thought to be impacted by TPH-GRO and TPH-DRO/ORO (Figure 2-3).

2.7.2 Groundwater

For groundwater, a standard POC will be used throughout the Site from the uppermost level of the saturated zone extending vertically to the lowest depth that could potentially be affected (Figure 2-4). The standard groundwater POC is established where the groundwater CULs must be attained, consistent with WAC 173-340-720(8). Groundwater standard POC monitoring locations will be four monitoring wells installed within the central portions of the former landfill waste prism and immediately downgradient of the toe of the landfill to depths thought to be saturated year-round (Figure 2-3). The number of monitoring wells and the locations will be adjusted based on the degree of soil contamination observed during the implementation of the cleanup action and leave surface conditions. These groundwater POC locations will represent the portions of the aquifer beneath the Site where impacts are most likely to be observed.

2.7.3 Surface Water

A standard surface water POC is established for the Site. This POC will be at the downgradient end of the Wetland Area, which integrates spring and seep flows from the Landfill Area and is representative of surface water conditions leaving the Site. The surface water POC is where the surface water CULs must be attained, consistent with WAC 173-340-730(6), in a location where surface water runoff may concentrate along the generalized flow path to the Mashel River (Figure 2-3). This POC serves as an integrator of Site-wide surface water impacts and is the best indicator of any potential migration of Site associated surface water impacts to the Mashel River. Given that a defined channel with consistent flow is not thought to be present in the downgradient portions of the Site in the Wetland Area, data collection for determining compliance with the surface water POC will be designed to allow flexibility in identifying where water is concentrating near the property boundary during different times of year and under different flow conditions.

3 Considered Remedial Alternatives

The following sections discuss the development and evaluation of remedial alternatives for the Site and the selection of the preferred remedial alternative (cleanup action) in the FS.

As part of the FS (GSI, 2024a) and in accordance with WAC 173-340-350(8)(b)(i) and (ii), an initial screening of remedial alternative technologies was completed. Multiple alternatives were evaluated, including consideration of the characteristics and complexity of the Site, current Site conditions, and physical constraints. In accordance with applicable MTCA criteria, the evaluation included at least one permanent alternative and one alternative with a standard POC.

3.1 Development of Remedial Alternatives

The following types of remedial alternatives and technologies were eliminated from further analysis in the initial screening:

- Alternatives or technologies that clearly do not meet the minimum selection requirements in WAC 173-340-360, including alternatives with disproportionate costs in relation to the benefits.
- Alternatives or technologies that are not technically possible to implement on the Site.
- "No action" alternatives that do not involve any cleanup action at the Site.

Two remedial alternatives were then developed for both the Landfill and Wetland Areas of the Site. These alternatives, by area, included the following:

- Landfill Area
 - Alternative 1A Waste and Impacted Soil Removal to the Maximum Practicable Extents
 - Alternative 1B Partial Waste and Soil Removal and Capping
- Wetland Area
 - Alternative 2A Full Impacted Soil Removal
 - Alternative 2B Waste removal, Monitored Natural Attenuation, and Institutional Controls

These area-specific alternatives are believed to address Site-wide surface water and groundwater impacts.

3.2 Evaluation of Remedial Alternatives

The alternatives and process options remaining were determined to be applicable to the Site and were identified for further evaluation. Remedial alternatives were evaluated using the following criteria:

- Protect Human Health and the Environment. Consider the degree to which an alternative meets MTCA
 cleanup standards, the degree to which the remedy is permanent, and the short-term risk associated
 with implementing the remedy.
- Comply with Cleanup Standards. For an alternative to be considered viable, the cleanup action must comply with cleanup standards, including the CULs (Section 2.6.2), ARARs (Section 5), and POCs (Section 2.7). These are discussed in detail in the RI/FS, Section 9.1 (CULs), Section 9.3 (POCs), and Section 10.2 (ARARs) (GSI, 2024a).
- Comply with Applicable State and Federal Laws. Cleanup actions under MTCA must comply with applicable state and federal laws deemed relevant as discussed in Section 10.2 of the RI/FS (GSI, 2024a).

Provide for Compliance Monitoring. Per WAC 173-340-410, compliance monitoring can include protection, performance, or confirmation monitoring. For remedies that propose on-site disposal, isolation, or containment as the selected cleanup action for all or a portion of a site, a long-term monitoring plan is required.

Per WAC 173-340-360(2)(b), cleanup actions that fulfill the threshold requirements must also meet other requirements, including the following:

- Use Permanent Solutions to the Maximum Extent Practicable. To determine whether a cleanup action uses permanent solutions to the maximum extent practicable, the Disproportionate Cost Analysis process shall be used (Section 13.2 of the RI/FS [GSI, 2024a]). The Disproportionate Cost Analysis is used to compare the costs and benefits of alternatives and select the alternative with incremental costs that are proportionate to the incremental benefits. This process defines the remedial action alternatives that are considered permanent to the maximum extent practicable. As outlined in WAC 173-340-360(3), MTCA provides a methodology that considers the following criteria:
 - Protectiveness
 - Permanence
 - Cost
 - Long-term effectiveness
 - Management of short-term risks
 - Implementability
 - Consideration of public concerns and Tribal rights and interests
- Provide for a Reasonable Restoration Timeframe. Per WAC 173-340-360(4), cleanup actions should provide for a reasonable restoration timeline, considering the following factors:
 - Potential risks posed by the Site to human health and the environment.
 - Practicability of achieving a shorter restoration timeframe.
 - Current use of the Site, surrounding areas, and associated resources that are, or may be, affected by releases from the Site.
 - Potential future use of the Site, surrounding areas, and associated resources that are, or may be, affected by releases from the Site.
 - Availability of alternative water supplies.
 - Likely effectiveness and reliability of ICs.
 - Ability to control and monitor migration of hazardous substances from the Site.
 - Toxicity of hazardous substances at the Site.
 - Natural processes that reduce concentrations of hazardous substances and have been documented to occur at the Site or under similar Site conditions.
- Consider Public Concerns and Tribal Rights and Interests. Public concerns shall be considered through the public notice and participation process described in WAC 173-340-600. Tribal rights and interests shall be identified under WAC 173-340-620.

Using all the above-listed criteria, a remedy was selected.

3.3 Remedy Selection

Based on the results of previous investigations and an analysis of remedial alternatives, as presented in the RI/FS (GSI, 2024a), the selected remedial alternatives (referred to as the cleanup action in this document) was developed from Alternatives 1A and 2B.

The Landfill Area remedy (Alternative 1A) represents the most comprehensive remedial alternative to address the contaminant source, impacted soil, and migration of COCs to downstream receptors, assuming removal or control of the source (landfill waste, uncontrolled leachate, and/or indiscriminate sport shooting). The removal of sources (including waste and impacted soil) in the Landfill Area and wastes in the Wetland Area to the maximum extent practicable, and avoidance of impacts to a critical wetland ecosystem, allows for shorter restoration timeframes. Table 3-1 shows the restoration timeframes for each Site area, COC, and media. Removal of contaminated media from the Landfill Area (both waste and soil) will immediately and permanently address soil contamination risks in the Landfill Area. Therefore, landfill soil will be restored immediately following the cleanup action in the Landfill Area.

TPH-GRO in Wetland Area soil presents a direct contact risk to human health. A restrictive convent that identifies the lateral limits and approximate depth of TPH-impacted soil will be placed on portions of the Wetland Area of the Site. TPH-GRO and TPH-DRO/ORO concentrations will be diminished to below the applicable direct contact (TPH-GRO) and ecological soil biota (TPH-DRO/ORO) risk levels via natural attenuation in approximately 10 years or less restoration timeframe after the source is removed from the Landfill Area. The natural attenuation will be monitored. Upon completion of the cleanup action, clean soil will be brought in to bring the wetland back to existing grade and all disturbed areas will be planted with native vegetation. A separate, detailed restoration plan will be prepared with the assistance of Ecology and the USACE. If necessary, additional mitigation measures will be taken to meet the regulatory requirements.

Site-related contaminants in groundwater and surface water at the Site will begin to attenuate after Landfill Area sources and Wetland Area wastes are removed, with a 10-year restoration timeframe. Institutional controls (ICs) will be used to restrict human consumption of groundwater and surface water if the hexavalent chromium is still above its CULs in groundwater and surface water.

This page intentionally left blank.

4 Description of the Cleanup Action

The following sections describe the Site and the cleanup action selected for it.

4.1 Site Description

The Site is identified by Ecology using Facility Site ID No. 85933 and Cleanup Site ID No. 15271. The Site is located within and centered around the extents of a 6.3-acre rectangular parcel of land owned by Weyerhaeuser (Tax Parcel No. 0416201007) adjoining Nisqually State Park. Figures 1-1 and 1-2 show the location of the Site and its setting within Nisqually State Park.

4.2 Selected Cleanup Action

The selected cleanup action technologies by Site area are detailed in the RI/FS (GSI, 2024a) and summarized in the following sections. The cleanup action technologies are shown in Figures 2-3 and 2-4. Figure 2-3 shows the plan view of the cleanup action, and Figure 2-4 shows a cross section of the cleanup action through the center of the former landfill waste prism. The cleanup action boundaries have been selected to encompass all areas of the Property for implementation of the remedy, ICs, POCs, and performance monitoring.

A conceptual design of the remedy for the individual remediation areas (Landfill Area and Wetland Area) is further described below.

4.2.1 Landfill Area

The selected cleanup action for the Landfill Area includes both waste and impacted soil removal and ICs. These two aspects are discussed in the following sections.

4.2.1.1 Waste and Impacted Soil Removal

All waste and the impacted soil beneath the waste prism exceeding CULs in the Landfill Area will be excavated to the maximum extent practicable and disposed of at an off-site facility permitted to receive such waste. It is estimated that approximately 23,300 cubic yards of combined soil and waste will need to be removed. This component of the cleanup action will eliminate the source of contamination and leachate to the Wetland Area. The remaining slope will be cut back, as needed, to a final angle of approximately 2H:1V (Figure 2-4), and benches will be installed (Figure 2-3) to create a stable slope resistant to mass wasting (i.e., downhill movement of soil and rock) and allow for restoration of the ground surface and installation and future removal of the groundwater POC monitoring wells. The final leave surface identified through the performance monitoring program (soil concentrations below Landfill Area CULs) will be covered with matting. topsoil, erosion control material, and/or restoration plantings to allow for the recovery and restoration of the remediated surface. The actual cleanup action in the Landfill Area will be limited to the waste prism, which is shown as a yellow dotted line on Figure 2-3, the area directly above the waste prism, and two small areas that extend off the waste prism to the northwest and southeast. The southeastern lobe at the toe of the waste prism (0.05 acre, or 2,178 square feet), which extends into the delineated wetlands past HA-01D, is impacted by lead and zinc at levels that exceed both Human Health and Ecological SLs and, therefore, present risks to both human and ecological health. The northwestern area (0.062 acre or 2,696 square feet), which extends to the other side of the ravine and up the slope to location HA-X, is an isolated area impacted by lead and zinc, both representing risks to human and ecological health. The eastern lobe that extends to transect H-01F (0.04 acre or 1,744 square feet) is impacted by lead and poses a risk to human health. A total footprint of 1.71 acres or 74,488 square feet is planned for removal. This removal will require

restoration of the delineated wetland footprint when feasible, and/or mitigation depending on the regulatory requirements identified.

4.2.1.2 Institutional Controls

Although the removal of waste and impacted soil will eliminate the site-related impact in the Landfill Area, ICs will be needed to prevent activities that may result in exposure to groundwater due to the presence of (1) hexavalent chromium detected above its CUL in the upgradient perched groundwater, and (2) hexavalent chromium detected above its CUL in surface water as a result of hexavalent chromium CUL exceedances discharging from the upgradient spring. These ICs will be put in place through environmental covenant immediately following the completion of the cleanup action. The environmental covenant will have the following elements:

- 1. Prohibit the use of groundwater and surface water for potable water (Site-wide IC).
- 2. Establish and maintain on-site features, such as signs and/or fencing, to prevent human access to the spring and its flow path.
- 3. Manage, treat, and discharge groundwater and surface water collected during construction or other non-potable purposes in conformance with an Ecology-approved soil and groundwater management plan. The soil and groundwater management plan will be prepared following entry of the consent decree for the final cleanup action.
- 4. Conduct intrusive activities that involve worker contact with contaminated groundwater and surface water (the spring) using individuals that have the appropriate training and certifications for working on hazardous waste sites and in conformance with a Site-specific health and safety plan.

Institutional controls will be required until concentrations of COCs in the surface water and groundwater at the monitoring points identified in the OMMP are found to be below CULs or trends indicate they will be The specific ICs that will be implemented as part of the cleanup action will be presented in the Engineering Design Report (EDR).

4.2.2 Wetland Area

The selected remedy in the Wetland Area includes waste removal, monitored natural attenuation (MNA), and ICs. These aspects are discussed in the following sections.

4.2.2.1 Waste Removal

Waste that has migrated to the Wetland Area beyond the extent of the landfill waste prism (Figure 2-3) will be removed and disposed of at an off-site facility. Large wastes that can be handled (e.g., tires, car bodies, appliances, etc.) will be removed from the Wetland Area. Waste particles from weathered materials and soils adjacent to wastes will not be removed unless they comprise a significant percentage (>50 percent of volume) of the total soil volume and can be removed via manual methods. Areas disturbed in the wetland will be restored by using clean topsoil to bring the elevation back to existing grade and planting the area with native vegetation.

4.2.2.2 Monitored Natural Attenuation

Soil with elevated metals and TPH concentrations in the Wetland Area, has been determined to have no adverse effect on terrestrial ecological receptors and poses a limited threat to human health. These soils will remain in place to preserve the existing and well-functioning wetland ecosystem. TPH-GRO/DRO concentrations in Wetland Area soil will naturally attenuate following the removal of Landfill Area waste and soil, and Wetland Area waste. The natural attenuation of gasoline and diesel compounds has been

demonstrated through research (Kao and Prosser, 2001; Kampbell et al., 2001; Boopathy, 2004; Eriksson et al., 1998; Ledezma-Villanueva et al., 2016). The rate of natural attenuation will be evaluated through monitoring in MNA. MNA has been accepted for use as a remedial technology at petroleum spill cleanup sites (i.e., Pacific Northwest National Laboratory, 2001; Wisconsin Department of Natural Resources, 2004; EPA, 1999; ITRC, 2018). Concentrations of TPH-DRO/ORO will be monitored until natural attenuation processes have reduced TPH-DRO/RRO concentrations below the CUL. Details of this monitoring are discussed in Section 4.3.

4.2.2.3 Institutional Controls

Based on the TEE (Appendix B to the RI/FS [GSI, 2024a]), contaminant levels in Wetland Area soil do not pose a risk to ecological receptors. However, human contact with Wetland Area soil needs to be controlled due to concentrations of TPH-GRO above direct contact CULs. A Wetland Area IC will be established to limit direct contact with Wetland Area soil in areas with elevated TPH-GRO concentrations (Figures 2-3 and 2-4). The Wetland Area is difficult to access because of steep slopes, dense vegetation, and soft ground, which also deters human access. The environmental covenant will have the following elements:

- 1. Prohibit the use of groundwater and surface water as potable water (Site-wide IC).
- 2. Establish and maintain on-site features, such as signs, to prevent human access to the Wetland Area, up to transect HA-04 and minimize contact with soil contaminated with TPH-GRO.
- 3. Intrusive activities that involve worker contact with TPH-contaminated soil will be conducted by individuals that have the appropriate training and certifications for working on hazardous waste sites and in conformance with a Site-specific health and safety plan.
- 4. TPH-contaminated soil excavated during intrusive activities will be managed, treated, and disposed of in conformance with an Ecology-approved soil and groundwater management plan.

These ICs can be put in place immediately following the completion of the cleanup action. Institutional controls will be required at the monitoring points identified in the OMMP until concentrations of COCs in Wetland Area soil are found to be below CULs or trends indicate they will be. The specific ICs that will be implemented as part of the cleanup action will be presented in the EDR.

4.3 Compliance Monitoring

A compliance monitoring program will be implemented at the Site during and after the cleanup action pursuant to WAC 173-340-410. This program will consist of protection, performance, and confirmation monitoring programs each with a unique set of objectives. Different levels of compliance monitoring will be required in the two Site remediation areas (Landfill Area and Wetland Area). Each of these monitoring programs, and their application to the different Site remediation areas, is described in the following sections. Specific requirements for each of these types of monitoring will be provided in an OMMP and in the Construction Plans and Specifications developed as part of the remedial design process.

4.3.1 Protection Monitoring

Protection monitoring protects human health and the environment during construction and maintenance of the remedy. This monitoring is applicable to both the Landfill Area and the Wetland Area. The specific details of the protection monitoring programs for each Site area will be addressed in the applicable safety, health, and design plans, including the following:

 Site Control Plan. This plan defines how potential conflicts between the cleanup action and the use of State Parks' land and surrounding roadways will be addressed. In addition, this plan will identify zones where cultural resources may be encountered and what level of archaeological monitoring is required in the different zones.

- Health and Safety Plan. This plan outlines necessary human health and safety protocols related to Site work.
- Stormwater Pollution Prevention Plan and Erosion Prevention Plan. This plan details how stormwater and erosion will be managed such that contaminants will not be transported off site. This is an attachment to the Construction Plans and Specifications.
- Contaminated Media Management Plan. This plan describes the protocols used to manage, handle, and dispose of impacted soil, groundwater, surface water, and wastes at the Site during and after the cleanup action. This plan is an attachment to the Construction Plans and Specifications.

Protection monitoring will include the implementation of the following protections:

- Landfill Area. Human health protection will be accomplished using best management practices, including limiting human contact with soils with COC concentrations above CULs, monitoring and enforcing the use of personal protection equipment, dust control, and monitoring down-gradient turbidity in surface water. Ecological protection will be accomplished by limiting soil erosion and migration (i.e., mass wasting) from the Landfill Area into the Wetland Area or surface waters. Erosion from the Landfill Area and turbidity in surface water downgradient of the Landfill Area will be limited, namely the flow path originating at the spring and migrating through the Landfill Area to the Wetland Area (Figure 2-2).
- Wetland Area. Human health protection will be accomplished by limiting human contact with soils with TPH-GRO concentrations above the direct contact CUL. Dust production is not a concern in the Wetland Area, where soil is generally damp or waterlogged and will not be removed. Ecological protection will be accomplished by minimizing soil disturbance when removing waste from the Wetland Area.

4.3.2 Performance Monitoring

Performance monitoring is conducted to assess whether the cleanup action has been successfully implemented and to measure when the CULs for the different media and Site remediation areas are met. Performance monitoring is required for Landfill Area soil and Site groundwater and surface water and the specific components of each performance monitoring program for each Site area/media are described in the following sections. A Performance Monitoring Plan will be developed as part of the Construction Plans and Specifications to detail the scope and schedule of performance monitoring at the Site that will be used to verify that the cleanup action meets its design objectives.

4.3.2.1 Soil Performance Monitoring

Soil performance monitoring will be conducted in the Landfill Area. Performance monitoring of soil in the Landfill Area will be composed of leave surface sampling for arsenic, cadmium, chromium, copper, lead, nickel, zinc, PCP, total polycyclic aromatic hydrocarbons, TPH-GRO, and TPH-DRO/ORO-post-removal of wastes and impacted soil. The top foot of soil post-removal will be sampled to determine if additional removal is necessary to achieve CULs. Sampling will be conducted using a methodology consistent with WAC 173-340-740(7) to characterize soil COC concentrations within the Landfill Area. To provide monitoring coverage across different portions of the Landfill Area, it will be broken into distinct decision units (DUs) during the design process. These DUs will cover the landfill waste prism footprint, the small lobe of land at the base of the landfill that extends into the Wetland Area, and the two radial areas extending to RI sampling locations HA-X and HA-01f (Figure 2-2). As a result of the mixed till material found at the Site, special consideration must be given to grain size distribution when designing monitoring programs because contaminants concentrate within the fine fraction of soil and not in coarse materials. As a result of this, COC

concentrations may need to be adjusted based on grain size composition of the leave surface. The leave surface may contain large boulders, cobbles, and gravels that are not readily analyzed and are not thought to adsorb significant concentrations of COCs.

Following completion of the Landfill Area removal efforts, sampling will be completed consistent with WAC 173-340-740(7) to determine whether additional removal is warranted. During the RI, reporting limits for several analytes were elevated above screening levels due to various laboratory issues with the soil matrix. These substances will be tested to confirm that the concentrations are below the screening levels. These analytes include hexavalent chromium (metal), 1,2,3-trichloropropane (VOC), dibromochloropropane (VOC), 2,6-dinitrotoluene (SVOC), N-nitrosodimethylamine (SVOC), and N-nitrosodi-n-propylamine (SVOC). Materials and soil planned for use as backfill will be evaluated to ensure that they are below Landfill Area soil CULs before placement. After a leave surface below Landfill Area soil CULs has been established, no additional performance monitoring will be needed in the Landfill Area.

4.3.2.2 Surface Water Performance Monitoring

Surface water performance monitoring will be undertaken at the Site surface water POC. Samples will be collected for dissolved zinc only since the presence of hexavalent chromium above human contact CULs is assumed. Zinc will be monitored to determine the effectiveness of zinc attenuation as a result of source removal. The locations for surface water monitoring will be evaluated and determined after the excavation evaluation and realignment of the springs flow path, as a re-routing of the spring might be needed during the implementation of the Landfill Area remedy.

4.3.2.3 Groundwater Performance Monitoring

Groundwater will be sampled for total hexavalent chromium and zinc after wells have been installed as part of the cleanup action. Hexavalent chromium will be monitored to determine if Site-wide human consumption ICs can be lifted. Zinc will be monitored to evaluate whether seeping groundwater poses a risk to aquatic life living in surface waters. This sampling will require monitoring wells to be installed as part of the cleanup action groundwater POC. Groundwater conditions at the Site are not expected to improve until waste and impacted soil is removed. Sampling will occur at the groundwater POCs, beneath the central portions of the landfill waste prism and immediately downgradient of the toe of the landfill near the boundary with the Wetland Area, from the uppermost level of the saturated zone, which is thought to represent the portions of the aquifer most likely to be impacted. The number of monitoring wells and the locations may be adjusted based on the degree of soil contamination before the implementation of the cleanup action and leave surface conditions. These groundwater POC locations will represent the portions of the aquifer beneath the Site where impacts are most likely to be observed. The selection of monitoring locations and well installation will be detailed in a Groundwater Monitoring Well Installation Work Plan.

The groundwater was not sampled for PCBs during the RI. PCBs will also be tested during groundwater performance monitoring. If the results indicate that PCB concentrations are below the relevant groundwater screening level (0.0943 μ g/L, the PQL from the RI and a surrogate for the surface water Human Health, Consumption of Water + Organism ARAR; GSI, 2024a), PCBs will be removed from the monitoring program.

4.3.3 Confirmation Monitoring

Confirmation monitoring ensures that the remedy continues to be effective after CULs are initially met. Confirmation monitoring and 5-year reviews are required to confirm the performance of the remedy Site wide, including the Landfill Area and Wetland Area. A Confirmation Monitoring Plan will be developed as part of the OMMP. Confirmation monitoring will consist of the following monitoring events for all media (Wetland Area soil, and Site groundwater and surface water):

- Quarterly monitoring for the first year following completion of the cleanup action.
- Semi-annual monitoring for the second and third years following the completion of the cleanup action.
- Annual monitoring for the fourth and fifth years following completion of the cleanup action and annually thereafter until concentrations for all COCs and all media are below CULs.

Five-year periodic reviews will be required pursuant to WAC 173-340-420. For each monitoring event, data for all sampled media and chemical concentration trends will be evaluated to determine if the remedy is functioning as intended. The specific confirmation monitoring tasks involved with evaluating each Site area and media are described in the following sections.

4.3.3.1 Soil Confirmation Monitoring

Soil confirmation monitoring will be conducted as follows in the Landfill Area and Wetland Area:

- Landfill Area. No soil confirmation monitoring in the Landfill Area is proposed because the cleanup action is intended to remove all waste and soil above CULs and only place backfill materials that also meet CULs. Visual monitoring will be conducted to ensure that restoration plantings are establishing on the slope. Routine observations will be made to inspect for erosion and the health of the vegetative cover providing erosion control.
- Wetland Area. Soil confirmation monitoring in the Wetland Area will include soil sampling for TPH-GRO and TPH-DRO/ORO to track the progress of natural attenuation. TPH-GRO and TPH-DRO/ORO concentrations in Wetland Area soil are expected to decline via natural processes following removal of landfill wastes and contaminated soils (Kao and Prosser, 2001; Kampbell et al., 2001; Boopathy, 2004; Eriksson et al., 1998; Ledezma-Villanueva et al., 2016). Sampling will be conducted in the top foot of soil using a methodology consistent with WAC 173-340-740(7) throughout the monitoring area (Figure 2-3). The monitoring area will be broken into two DUs. The first DU will be adjacent to the toe of the landfill (roughly represented by the area between transects HA-01 and HA-02) and the next DU will be further from the landfill (roughly represented by the area between transects HA-03 and HA-04). Sampling will be conducted to obtain average concentrations of TPH-GRO and TPH-DRO/ORO in each DU. The first confirmation monitoring event will set a baseline for the evaluation of natural attenuation processes in the Wetland Area over time. Future monitoring in the Wetland Area may be waived if TPH-GRO and TPH-DRO/ORO concentrations attenuate below CULs.

4.3.3.2 Surface Water Confirmation Monitoring

Surface water confirmation monitoring will be conducted to ensure that Wetland Area soil impacts and seepage from the former landfill are not migrating to surface waters and do not contain COC concentrations above CULs. Dissolved hexavalent chromium and zinc will be sampled at the Site surface water POC and the hexavalent chromium will only be monitored at the Landfill Area surface water POCs (Figure 2-3). Note that monitoring for hexavalent chromium may cease if concentration trends are stable or decreasing because hexavalent chromium impacts are likely from an upgradient source and are not thought to be related to the Site.

4.3.3.3 Groundwater Confirmation Monitoring

Groundwater confirmation monitoring will be conducted to ensure no residual impacts to the groundwater aquifer are occurring from the contamination that originated from the landfill wastes. To assess for residual impacts, Site groundwater will be sampled at the POC for total hexavalent chromium and total zinc. Note that monitoring for hexavalent chromium may cease if concentration trends are stable or decreasing because hexavalent chromium impacts are likely from an upgradient source and are not thought to be related to the Site.

Draft Cleanup Action Plan Former Eatonville Landfill

4.3.4 Adaptive Management

Part of the selected cleanup action includes leaving soil in the Wetland Area with iron, zinc, and TPH above the soil-to-groundwater and groundwater-to-surface water SLs because the data do not indicate that this soil will cause wetland area groundwater or surface water CUL exceedances for any of these COCs. TPH-GRO and TPH-DRO/ORO were also above soil human contact and ecological SLs but were not observed in Site groundwater at concentrations above SLs. After the cleanup action has been implemented, adaptive management techniques will be applied in the Wetland Area if it is determined that COCs in groundwater, surface water, and Wetland Area soil will not recover below CULs within the 10-year restoration timeframe. The Wetland Area soil restoration timeframe is based on the MNA of TPH-GRO and TPH-DRO/ORO. The Site groundwater and surface water impacts, except for hexavalent chromium, are thought to be the result of landfill wastes and will likely decline following their removal as part of the cleanup action. The progress of chemical concentration decline in the different Site media will be evaluated through trend analysis performed on data collected as part of the confirmation monitoring program. This confirmation monitoring program will be implemented for all media (groundwater, surface water, and Wetland Area soil). Site data will be reviewed quarterly for the first year, semi-annually for the second and third years, and annually for the fourth year following completion of the cleanup action, and annually thereafter until concentrations for all COCs and all media are below CULs. During 5-year reviews, evaluations of the cleanup actions condition will also be made consistent with WAC 173-340-420.

If recovery is not occurring, or if trends indicate that CULs for specific COCs and media may not be met within the 10-year restoration timeframe, media-specific contingency actions may be taken to address the identified exceedances and prevent remedy failure. If COCs in a specific media are found to not be recovering at rates that will allow for the attainment of CULs within the anticipated restoration timeframe, as assessed by the confirmation monitoring program, the following adaptive management process will be implemented by the PLPs:

- Identify the locations, medias, and COCs that are not projected to recover to concentrations below their respective CULs within the anticipated restoration timeframe based on results from the confirmation monitoring program. Review of the confirmation monitoring program results will commence after the first year of monitoring activities (four quarterly events) is completed to allow for trend analysis.
- Evaluate the CUL exceedances in the context of the Site's CSM and the completed cleanup action.
- Identify if contingency action alternatives are warranted based on the results of the confirmation monitoring program and through discussion with Ecology.
- Develop and evaluate contingency action alternatives.
- Determine if a contingency action is needed to support the cleanup action or if the restoration timeframe for MNA should be extended based on an alternatives analysis pursuant to MTCA.
- Implement the contingency action approved by Ecology and monitor its performance.

The types of contingency actions proposed may include capping, spot removal of soils, the addition of amendments, additional time for MNA, or other remedial technologies. Full documentation, reporting, and any other necessary steps, including communication of any adaptive management needs with Ecology, will be conducted pursuant to MTCA.

4.4 Vegetation, Restoration, and Mitigation

After the cleanup action is complete and the removal areas are graded to final elevations with clean soil, the disturbed areas will be planted with native vegetation per a Restoration Plan. A mix of native trees, shrubs, and herbaceous vegetation will be planted and maintained per a Vegetation and Monitoring Plan, which will

be developed in coordination with Ecology. A separate detailed restoration plan will be prepared in coordination with the USACE pursuant to permit requirements. The need for mitigation of wetland impacts is uncertain at this time. These needs will be identified in consultation with the USACE after a design for the cleanup action has been developed. Typically, mitigation is only needed for permanent impacts to wetlands or their associated buffer. The cleanup action is expected to only temporarily disturb the delineated wetlands during removal of wastes and impacted soil then restore them to their previous condition or better.

4.5 Applicable Local, State, and Federal Laws

Identifying applicable local, state, and federal laws is a requirement of cleanup actions conducted under MTCA per WAC 173-340-710. State and federal laws that are applicable are discussed in the WAC 173-340-710(1) through (8). The exemptions to local and state laws that can be provided under MTCA are detailed in WAC 173-340-710(9). Table 5-1 details the applicable federal, state, and local laws, and the potential for their exemption under MTCA.

4.5.1 Applicable or Relevant and Appropriate Requirements

Applicable requirements are defined in WAC 173-340-710(3). These requirements are legally applicable to the cleanup action and must be considered during the cleanup action (Table 5-1).

Relevant and appropriate requirements for a given cleanup action are evaluated by Ecology using the criteria established in WAC 173-340-710(4). The objective of this evaluation is to identify requirements that, while not legally applicable to the cleanup action, may address similar problems or issues that are relevant and appropriate to use.

During the design and implementation of the cleanup action, additional ARARs may be identified. When identified, these ARARs will be reviewed against the current cleanup action to determine compliance. If the newly identified requirements indicate that the cleanup action is no longer protective of human health and the environment, the need for modification will be evaluated by Ecology.

4.5.2 Permits and Exemptions

Certain permits and procedural requirements may be exempted for cleanup actions performed under a Consent Decree, Order, or Agreed Order per RCW 70A.305.090. Despite their exemption, the substantive requirements of these permits and procedures still need to be met by the cleanup action. This exemption shall not apply if Ecology determines that the exemption would result in the loss of a federal agency's approval necessary for the state to administer any federal law.

The PLPs, directed by Ecology, will consult with the state agencies and local governments to identify potential permits and to obtain written documentation from the consulted agencies regarding the substantive requirements for permits exempted under RCW 70.105D.090. The identification of the permits and procedural requirements subject to exemption, and their substantive requirements as they relate to the planned cleanup action, will be identified by Ecology when implementing the cleanup action for the Site. Ecology will issue a public notice of any permit exemption, proposed to be applied to the cleanup action.

4.6 Cultural Resources

As the cleanup action is being partially funded by an Ecology grant, it must comply with Executive Order 21-02, which mandates that Ecology must consult with the Washington Department of Archaeology and Historic Preservation (DAHP) and avoid or mitigate adverse effects to archaeological sites (State of Washington, 2021). Thus, a preliminary cultural resources assessment was completed in June 2021. The assessment

determined that there was a high probability for pre-contact archaeological resources on the top of the terrace and from the toe of the terrace to the river, but there was a low probability of encountering pre-contact resources on the face of the bluff (AINW, 2021). Previous cultural resource studies at the Site have revealed 30 archaeological resources within the area, including lithic artifacts, 10 historical homesteads, a historical cistern, a historical school/mission house, and historical logging roads (AINW, 2021). One archaeological resource was mapped within the area of potential effects of the Site (AINW, 2021).

During the removal action, groundbreaking will occur in the Landfill Area (the slope) and waste will be removed from the Wetland Area. As documented in the cultural resources assessment, there is a low probability of encountering cultural resources on the slope, where removal will take place; however, there is a higher chance of encountering resources in the Wetland Area, where waste will be removed, but soil will not be removed. Planned work in both remediation areas of the Site indicates a potential to encounter cultural resources during soil and waste removal.

Therefore, prior to construction, the current Inadvertent Discovery Plan (IDP) will be updated to account for construction activities, consistent with WAC 173-340-815 (Ecology, 2020). A cultural resource firm will develop updates to the IDP in consultation with local Tribes and other stakeholders. GSI staff overseeing construction will be familiar with the IDP and will be trained in identification of cultural resources and in the necessary actions required upon discovery of cultural resources. If cultural resources are discovered, work will be stopped until an appropriate discovery boundary can be determined. In addition, a trained archaeologist will be on site for the duration of the removal action to identify any cultural artifacts that may be found.

4.7 Public Participation

Ecology considers public concerns during the cleanup process. Ecology has developed a Site-specific Public Participation Plan (Ecology, 2021), which was reviewed during a public comment period in 2021. The plan describes the process Ecology uses to inform the community about cleanup at the site and to provide notice and opportunity for public review during comment periods.

In accordance with the plan, the Consent Decree implementing the dCAP, the draft RI/FS (GSI, 2024a), and a State Environmental Policy Act (SEPA) checklist will be made available to the public for review and comment for 30 days, and public input will be considered before the dCAP is finalized. This opportunity for public review is intended to elicit the participation of community groups, local governments, Tribes, federal and state agencies, and any other persons or organizations with an interest in the Site. In addition, a public meeting, if requested by 10 or more people, will be held to discuss the selection of the cleanup remedy. After review and consideration of comments received during the public comment period, Ecology will issue a final CAP in accordance with WAC 173-340-380(3). If extensive comments were received, it may be more appropriate to provide a summary of the key issues raised in the dCAP, and a more detailed responsiveness summary prepared and published concurrent with the final dCAP.

4.8 Tribal Engagement

In accordance with the requirement of WAC173-340-620, Ecology will develop a site-specific Tribal Engagement Plan, with the objective of maintaining meaningful engagement with potentially affected Indian Tribes throughout the cleanup process. Ecology worked closely with the Nisqually Indian Tribe, continues to identify and address Tribal interests in advance of finalizing this dCAP, and will continue to do so during its implementation.

4.9 Schedule for Implementation

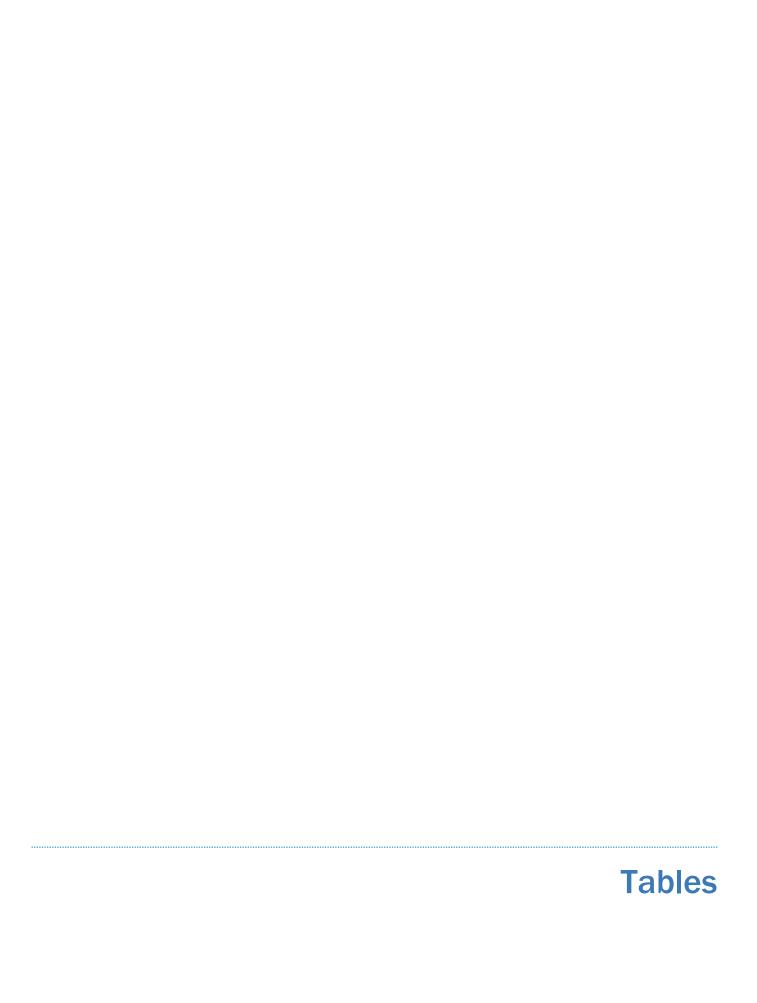
Public review of the dCAP and the RI/FS may extend until October 2024. Following public comment, the RI/FS and dCAP will be finalized, and remedial engineering design will begin. The draft Engineering Design Report plan is expected to be submitted to Ecology on or before January 2025. The first construction season may begin in May 2025 and end in October 2025. If construction is finished in one season, then the construction completion report and post-cleanup monitoring and reporting will begin and will be finalized in January 2025 and March of 2026, respectively. If a second construction season is required, it will take place between June and October 2026. The construction completion report and baseline long-term monitoring and reporting will occur after the second construction season, if it is required.

Vegetation restoration in the Landfill Area soil will begin immediately following the cleanup action and be monitored until the plants are established. TPH-GRO in Wetland Area soil, which presents the only direct contact risk to human health, will be contained using ICs. TPH-GRO and TPH-DRO/ORO concentrations are expected to diminish to below the applicable direct contact (TPH-GRO) and ecological soil biota (TPH-DRO/ORO) risk levels via natural attenuation within a restoration timeframe of 10 years or less. Site-related contaminants in groundwater and surface water will begin to attenuate after Landfill Area and Wetland Area sources are removed and are expected to recover with a restoration timeframe of 10 years.

5 References

- AINW. 2021. Former Eatonville Landfill, Pierce County, Washington, Preliminary Cultural Resources Assessment. Memorandum from Teresa Trost to Josh Bale. June 14, 2021.
- Bellon, M., and M. Gavin. 2020. Sources of PBDEs and Other Contaminants Affecting Nisqually Steelhead. Cascadia Law Group on Behalf of Nisqually Tribe. July 6, 2020.
- Bhat, S.A., O. Bashir, S.A. U.I. Haq, T. Amin, A. Rafiq, M. Ali, J.H.P. Americo-Pinheiro, and F. Sher. 2022. "Phytoremediation of Heavy Metals in Soil and Water: An Eco-Friendly, Sustainable and Multidisciplinary Approach." *Chemosphere*, Volume 303, Part 1, September, 134788. Available at https://doi.org/10.1016/j.chemosphere.2022.134788.
- Boopathy, R. 2004. "Anaerobic Biodegradation of No. 2 Diesel Fuel in Soil: a Soil Column Study." Bioresource Technology, 94(2), pp. 143-151.
- Confluence. 2024. Former Eatonville Landfill Wetland Delineation Addendum, Updated. Prepared by Confluence Environmental Company. January 9, 2024.
- Ecology. 1994. *Natural Background Soil Metals Concentrations in Washington State*. Washington State Department of Ecology. October 1994.
- Ecology. 2020. Inadvertent Discovery Plan Plan and Resources for the Discovery of Cultural Resources and Human Skeletal Remains. Former Eatonville Landfill, Parcel #0416201007. December 2020.
- Ecology. 2021. Agreed Order No. DE 20072 between Weyerhaeuser Company, the Town of Eatonville, and State of Washington, Department of Ecology. Prepared by the Washington State Department of Ecology. Signed August 23, 2021.
- Ecology. 2022. Natural Background Groundwater Arsenic Concentrations in Washington State. Study Results. Ecology Publication No. 14-09-044. January 2022.
- Ecology. 2023. Cleanup Levels and Risk Calculation (CLARC). Prepared by the Washington State Department of Ecology. Updated January 2023.
- Ecology. 2024. Implementation Memorandum No. 25: Identifying Likely Vulnerable Populations and Overburdened Communities under the Cleanup Regulations. Prepared by Kristopher Grinnell of the Washington State Department of Ecology. Publication number 24-09-044. Available at https://apps.ecology.wa.gov/publications/SummaryPages/2409044.html. January 2024.
- EPA. 1999. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites. OSWER Directive 9200.4-17P. April.
- EPA. 2016. Climate Resilience Evaluation and Awareness Tool (CREAT) Climate Scenarios Projection Map. Latest Update: Current version: 3.0; July 2016. Available at https://epa.maps.arcgis.com/apps/MapSeries/index.html?appid=3805293158d54846a29f750d63c6890e&platform#map.
- EPA. 2023. EJScreen: Environmental Justice Screening and Mapping Tool. Last updated on November 14, 2023. Available at https://www.epa.gov/ejscreen.
- Eriksson, M., A. Swartling, G. Dalhammar, J. Fäldt, and A.K. Borg-Karlson. 1998. "Biological Degradation of Diesel Fuel in Water and Soil Monitored with Solid-Phase Micro-Extraction and GC-MS." *Applied Microbiology and Biotechnology* 50, pp. 129-134.

Fields, N. 2010. *Nisqually State Park Management Plan*. Available at https://parks.state.wa.us/DocumentCenter/View/1521/Nisqually-Management-Plan-PDF.


- GSI. 2024a. Remedial Investigation/Feasibility Study, Former Eatonville Landfill. Prepared by GSI Water Solutions, Inc. February 2024.
- GSI. 2024b. Former Eatonville Landfill Waste Characterization Results Technical Memorandum. Sent to Washington State Department of Ecology and Tacoma-Pierce County Health Department. Prepared by GSI Water Solutions, Inc. January 11, 2024.
- Hruby, T. 2014. Washington State Wetland Rating System for Western Washington, 2014 Update. Washington State Department of Ecology, Olympia. Publication # 14-06-029.
- ITRC. 2018. TPH Risk Evaluation at Petroleum-Contaminated Sites. TPHRisk-1. Washington, D.C.: Interstate Technology & Regulatory Council, TPH Risk Evaluation Team. Available online at https://tphrisk-1.itrcweb.org.
- Kampbell, D., J. Hansen, B. Henry, J. Hicks. 2001. Natural Attenuation of Fuel Hydrocarbons at Multiple Air Force Base Demonstration Sites. Presentation at First International Congress on Petroleum Contaminated Soils, Sediments, & Water, London, UK. August 2001.
- Kao, C. and J. Prosser. 2001. "Evaluation of Natural Attenuation Rate at a Gasoline Spill Site." *Journal of Hazardous Materials* 82(3):275-90. May 2001.
- Ledezma-Villanueva, A., J.M. Adame-Rodríguez, I.A. O'Connor-Sánchez, J.F. Villarreal-Chiu, and E.T. Aréchiga-Carvajal. 2016. "Biodegradation Kinetic Rates of Diesel-Contaminated Sandy Soil Samples by Two Different Microbial Consortia." *Annals of Microbiology* 66, pp. 197-206.
- Nisqually Indian Tribe. 2021. Heritage, Culture, Land, and History. Available at http://www.nisqually-nsn.gov/index.php/heritage/.
- O'Neill, S., A. Carey, and W. Hobbs. 2020. *Persistent Organic Pollutant Sources and Pathways to Juvenile Steelhead Trout in the Nisqually River.* Washington Department of Fish and Wildlife. April 2020.
- Pacific Northwest National Laboratory. 2001. Subsurface Contaminant Focus Area: Monitored Natural Attenuation (MNA) Programmatic, Technical, and Regulatory Issues. Prepared for the U.S. Department of Energy by K.M Krupka and W.J. Martin. July.
- Parametrix. 1996. Site Investigation and Preliminary Economic Analysis for Corrective Action Alternatives.

 November 1996.
- PES. 2013. Preliminary Alternative Landfill Cover Rehabilitation Evaluation, Eatonville Landfill. Prepared by PES Environmental, Inc. April 23, 2013.
- PHS. 2022. Wetland Delineation for the Eatonville Landfill Property, Pierce County, Washington. Pacific Habitat Services. March 9, 2022.
- State of Washington. 2021. Executive Order 21-02, Archaeological and Cultural Resources. April 7, 2021.
- Tacoma-Pierce County Health Department. 2010. Closed Landfill Report. December 2010.
- Town of Eatonville and Weyerhaeuser. 2020. *Inadvertent Discovery Plan: Plan and Procedures for the Discovery of Cultural Resources and Human Skeletal Remains*. Former Eatonville Landfill, ECY 070-560. December 2020.

Trost, T. 2021. Former Eatonville Landfill, Pierce County, Washington: Preliminary Cultural Resources Assessment. Archaeological Investigations Northwest, Inc. Prepared for GSI Water Solutions, Inc. June 14, 2021.

- U.S. Federal Government. 2023. U.S. Climate Resilience Toolkit Climate Explorer. Available at https://crt-climate-explorer.nemac.org.
- USACE. 1987. Corps of Engineers, Wetlands Delineation Manual. Final Report. Wetlands Research Program Technical Report Y-87-1. U.S. Army Corps of Engineers, Waterways Experiment Station. January 1987.
- USACE. 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (Version 2.0). ERDC/EL TR-10-3. Wetlands Regulatory Assistance Program. U.S. Army Corps of Engineers, Engineer Research and Development Center, May 2010.
- Washington State Department of Health. 2022. Washington Environmental Health Disparities Map. Available at https://doh.wa.gov/data-and-statistical-reports/washington-tracking-network-wtn/washington-environmental-health-disparities-map.
- Weyerhaeuser. 2014. Letter from Sara Kendall, Vice-President, Corporate Affairs & Sustainability at Weyerhaeuser Company, to Mike Schaub, Mayor of the Town of Eatonville. RE: Town of Eatonville Dump; SE1/4 of NE1/4 of Section 20, Township 16 North, Range 4 East of W.M. in Pierce County, Washington. March 25, 2014.
- Weyerhaeuser. 2020. Letter RE: Former Eatonville Landfill Response to Ecology. Prepared by Carol Wiseman, Remediation Manager, Weyerhaeuser Company. October 13, 2020.
- Wisconsin Department of Natural Resources. 2004. Naturally Occurring Biodegradation as a Remedial Action Option for Soil Contamination. Wisconsin Department of Natural Resources Bureau for Remediation and Redevelopment. Interim Guidance (Revised) PUBL-SW-515-95, September.
- Yan, A., Y. Wang, S. Tan, M. Yusof, S. Ghosh, and Z. Chen. 2020. "Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land." *Frontiers in Plant Science*. April 2020.

This page intentionally left blank.

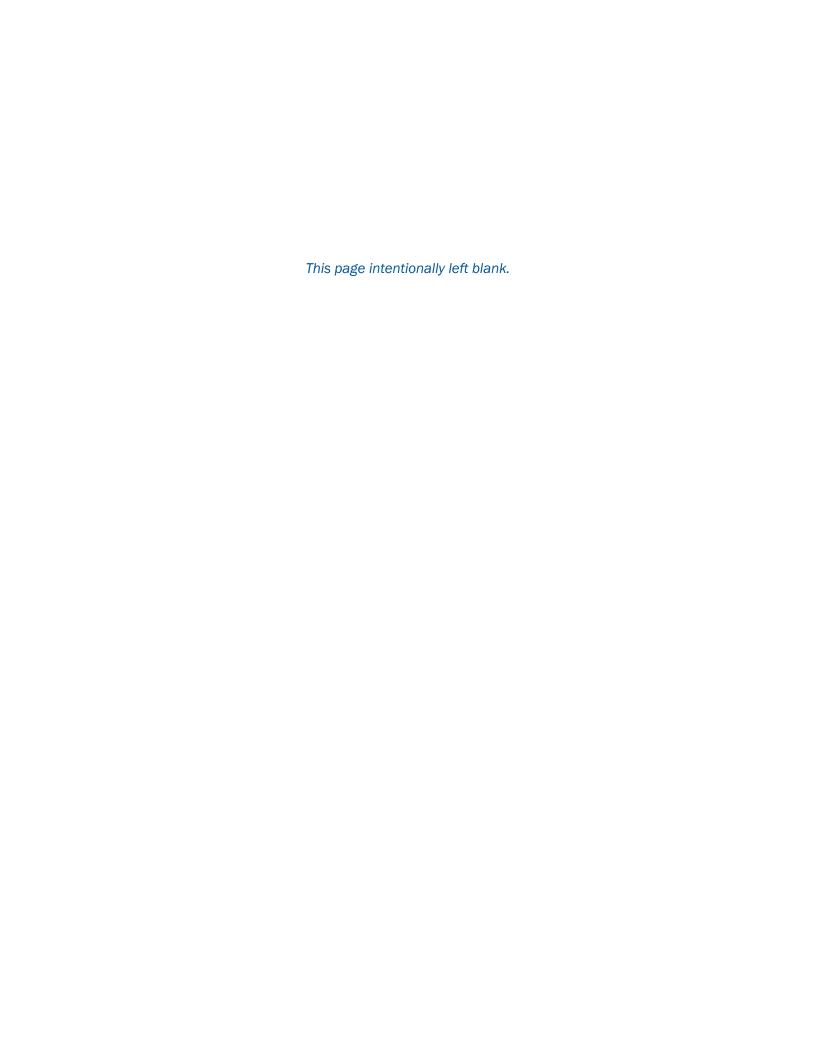


Table 2-1. Contaminants of Concern for Soil, Groundwater, and Surface Water

2000	ontominate of Consons	Soil	oil		Surface Mater
COLIGIE		Landfill Area	Wetland Area	giodiidwatei	Sulface Water
	Arsenic	×	1	Ι	Ι
	Cadmium	×	_	_	-
	Chromium	×	-	_	Ι
	Copper	X	_	_	_
Metais	Hexavalent Chromium	I	Ι	X^1	X^1
	Lead	X	-	_	Ι
	Nickel	×	-	_	Ι
	Zinc	X	X_2	X	X
2000	ЬСР	×	ı	I	Ι
31003	Total cPAHs	X	_	_	_
Пат	GRO	×	×	I	Ι
	DRO/ORO	×	X	_	-

Notes

 $^{^{\}mathrm{1}}$ Hexavalent chromium is not thought to be the result of Site impacts and restoration may take longer.

 $^{^2}$ Zinc will only be evaluated in Wetland Area soil if surface water and groundwater zinc concentrations are not recovering.

^{— =} not applicable

cPAH = carcinogenic polycyclic aromatic hydrocarbon

DRO/ORO = Diesel-Range and Residual-Range Organics

GRO = gasoline-range organics

PCP = pentachlorophenol

SVOC = semivolatile organic compound

TPH = total petroleum hydrocarbon

Table 2-2. Cleanup Levels for Soil, Groundwater, and Surface Water

200	date 2. Second Process of Conference, and Conference	ži policija	col) and canaco mater							
			Landfill Area Soil		Wetland Area Soil		Groundwater		Surface Water	_
	Contaminant	CUL (mg/kg)	Basis	CUL (mg/kg)	Basis	CUL (µg/L)	Basis	CUL (µg/L)	Basis	
	Arsenic	7	MTCA Method B Direct Contact, Cancer, and Statewide 90th Percentile Natural Background	I	Not a COC	I	Not a COC	1	Nota coc	
_	Cadmium	4	Soil Ecological Indicator - Plants	-	Not a COC	-	Not a COC	-	Not a COC	_
	Chromium	42	Soil Ecological Indicator - Plants and Soil Biota, and Statewide 90th Percentile Natural Background	I	Not a COC	I	Not a COC	I	Nota co C	
	Copper	20	Soil Ecological Indicator - Soil Biota	_	Not a COC	-	Not a COC	-	Not a COC	_
alstel	$Hexavalent\ Chromium^1$	I	-	-	_	0.046	MTCA Method B Cancer	0.13	MTCA Method B Cancer	_
N	Lead	20	Soil Ecological Indicator, Plants	I	Not a COC	I	Nota COC	I	Not a COC	
	Nickel	88	Soil Ecological Indicator - Plants, and Statewide 90th Percentile Natural Background	I	Not a COC	I	Nota COC	ı	Not a COC	
	Zinc ²	88	MTCA Method B Protective of Groundwater to Surface Water, Saturated; Soil Ecological Indicator- Plants, and Statewide 90th Percentile Natural Background	5,480	TEE pCUL	100	WAC Criteria for Aquatic Life - Freshwater Chronic	100	WAC Criteria for Aquatic Life - Freshwater Chronic	
soc	Pentachlorophenol (PCP)	2.5	MTCA Method B Direct Contact, Cancer	I	Not a COC	1	Not a COC	1	Not a COC	
OAS	Total cPAHs	0.19	MTCA Method B Direct Contact, Cancer	ı	Not a COC	I	Not a COC	I	Not a COC	
	Gasoline Range Organics (TPH- GRO)	30	MTCA Method A Unrestricted Land Use	30	MTCA Method A Unrestricted Land Use	ı	Not a COC	1	Not a COC	_
HdT	Diesel/Oil Range Organics (TPH- DRO/ORO)	200	Soil Ecological Indicator - Soil Biota	200	Soil Ecological Indicator - Soil Biota	I	Not a COC	I	Nota coc	
Notes										1

The Landfill Area surface water points of compliance are specific to hexavalent chromium and their associated institutional controls. ² Zinc will only be evaluated in Wetland Area soil if surface water and groundwater zinc concentrations are not recovering.

MTCA = Model Toxics Control Act — = not available or not applicable

NA = screening level is not applicable PCB = Polychlorinated biphenyl µg/L = micrograms per liter

SVOC = semivolatile organic compound

TEE = Terrestrial Ecological Evaluation TPH = total petroleum hydrocarbon

DRO/ORO = diesel and oil range organics

CWA = Clean Water Act CUL = cleanup level

COC = contaminant of concern

GRO = gasoline range organics mg/kg = milligrams per kilogram

VOC = volatile organic compound WAC = Washington Administrative Code

Table 3-1. Restoration Timeframes for Each Media

M	latrix	Contaminant of Concern	Remedial Action	Restoration Timeframe
Soil	Landfill Area	Arsenic Cadmium Chromium Copper Lead Nickel Zinc PCP PAHs PCBs TPH	Landfill soil/waste removal	Immediately after waste and impacted soil removal
	Wetland Area	TPH-GRO and TPH- DRO/ORO	Wetland area waste removal, landfill soil/waste removal, and natural attenuation	10 years
		Zinc ¹	Wetland area waste removal, landfill soil/waste removal, and natural attenuation	10 years
Grou	ndwater	Hexavalent Chromium ² Zinc	Wetland area waste removal and landfill soil/waste removal	10 years
Surfa	ce Water	Hexavalent Chromium ² Zinc	Wetland area waste removal and landfill soil/waste removal	10 years

Notes

PAH = polycyclic aromatic hydrocarbon

PCB = polychlorinated biphenyl

PCP - pentachlorophenol

TPH-GRO = total petroleum hydrocarbons gasoline range organics

TPH-DRO/ORO = total petroleum hydrocarbons diesel range organics and oil range organics

¹ Zinc will only be evaluated in Wetland Area soil if surface water and groundwater zinc concentrations are not recovering.

 $^{^{2}}$ Hexavalent chromium is not thought to be the result of Site impacts and restoration may take longer.

Laws
Local
and
State,
Federal,
plicable
Ą
Table 5-1.

	Requirement	Citation	Comments
	Federal Water Pollution Control Act (Clean Water Act)	33 USC 1251 et seq.	Regulates the discharge of contaminants into waters of the United States, including wetlands.
	NPDES Program	40 CFR 122	Limits the discharge of contaminants into surface waters of the United States.
	Water Quality Standards	40 CFR 131	Provides guidance for states to establish criteria for discharge of contaminants into state waters.
	Clean Water Act Section 404	33 USC 1344	Regulates the discharge of dredged and fill material into waters of the United States, including wetlands.
	Safe Drinking Water Act	42 USC 300f et seq.	Defines MCLs for drinking water.
	National Primary and Secondary Drinking Water Regulations	40 CFR 141, 143	Establishes contaminant levels in drinking water (primary MCLs are enforceable, secondary MCLs are recommended).
	National Historic Preservation Act Section 106	16 USC 470 et seq.	Federal legislation for the preservation of historic and archaeological sites.
	NEPA	42 USC 4321 et seq.	Requires all branches of government to give consideration to the environment prior to undertaking any federal action that affects the environment.
	Wetland Protection Policy/The NEPA Rule	EPA Executive Order 11990	Requires federal agencies to take action to avoid adversely impacted wetlands wherever possible.
	Clean Water Act Section 404	33 USC 1344	Regulates permitting requirements for construction projects in wetlands that result in changes in the area's bottom elevation.
	Resource Conservation and Recovery Act	42 USC 6901 et seq.	Framework for proper management of hazardous and non-hazardous solid waste.
	Identification and Listing of Hazardous Waste; Standards Applicable to Generators of		
	Hazardous Waste; Standards for Owners and Operators of Hazardous Waste Treatment,	40 CFR 261, 262, 264, 268	Solid waste designations and disposal facilities standards.
	Storage, and Disposal Facilities; Land Disposal Restrictions		
	Standards Applicable to Transporters of Hazardous Waste	40 CFR 263	Solid waste transportation requirements.
ısı:	Transportation: Hazardous Materials Regulations	49 CFR Subchapter C	Solid waste transportation requirements.
әре	General Information, Regulations, and Definitions; Hazardous Materials Table, Special		
H	Provisions, Hazardous Materials Communications, Emergency Response Information, Training	74 CED 171 170 173 177	General Information, Regulations, and Definitions; Hazardous Materials Table, Special Provisions, Hazardous Materials Communications, Emergency
	Requirements, and Security Plans; Shippers - General Requirements for Shipments and	49 CI C T, T, T, C, T, O, T, C	Response Information, Training Requirements, and Security Plans; Shippers
	Packaging		
	Federal Endangered Species Act	16 USC 1531 et seq.	List of threatened and endangered species and requirements for preparing and implementing plans for their recovery.
	Interagency Cooperation - Endangered Species Act of 1973, as Amended	50 CFR 402	Interagency cooperation to avoid take of listed species and for issuing permits for otherwise prohibited activities; provides for cooperation with states.
	Federal Water Pollution Control Act (Clean Water Act)	33 USC 1251 et seq.	Establishes the basic structure for regulating discharges of pollutants into the waters of the United States and regulating quality standards for surface waters.
	NPDES	40 CFR 122	Permit program that addresses water pollution by regulating point source pollution discharging to waters of the United States.
	Water Quality Standards	40 CFR 131	Provisions of state, territorial, authorized tribal or federal law approved by EPA that describe the desired condition of a water body and the means by which that condition will be protected or achieved.
	Section 404(b)(1) Guidelines for Specification of Disposal Sites for Dredged or Fill Material	40 CFR 230	Restore and maintain the chemical, physical, and biological integrity of waters of the United States through the control of discharges of dredged or fill material.
	Federal Clean Air Act	42 USC 7401 et seq.	Defines EPA's responsibilities for protecting and improving the nation's air quality and the stratospheric ozone layer.
	National Primary and Secondary Ambient Air Quality Standards; Standards of Performance for		
	New Stationary Sources; National Emission Standards for Hazardous Air Pollutants; National	40 CFR 50, 60, 61, 63	Air pollutant standards.
	ETHISSION STANDARDS FOR MAZARDOUS AN PONUCIALIS FOR SOURCE SALEBONIES		

aws	ent
ocal L	ıuirem
and L	Rec
State, and Local L	
fable 5-1. Applicable Federal, St	
Fed	
icable	
. Appl	
le 5-1	
Tab	

anie o-	able 5-1. Applicable Federal, State, and Local Laws		
	Requirement	Citation	Comments
	Washington Hazardous Waste Cleanup - MTCA	RCW 70A.305, WAC 173-340	Outlines methodology for establishing and implementing cleanup levels for surface water, groundwater, soil, and sediments.
	Washington State Water Pollution Control Act	RCW 90.48	Aims to reduce discharge of pollutants to surface waters of the state.
	Water Quality Standards for Surface Waters of the State of Washington	WAC 173-201A	Establishes water quality standards for contaminants of concern in surface waters of the state.
	Water Quality Standards for Groundwaters of the State of Washington	WAC 173-200	Establishes water quality standards for contaminants of concern in groundwaters of the state.
	Washington State Department of Health - Group A Public Water Supplies	WAC 246-290	Defines basic regulatory requirements and protects the health of consumers using public drinking water supplies.
	Maximum contaminant levels (MCLs) and Secondary MCLs (SMCLs)	WAC 246-290-310	Defines contaminant levels in drinking water (primary MCLs are enforceable, secondary MCLs are recommended).
	Washington NPDES Permit Program	WAC 173-220	Limits the discharge of contaminants into surface waters of the United States.
	Washington Sediment Management Standards	WAC 173-204	Aims to reduce and ultimately eliminate adverse effects on biological resources and significant threats to human health from surface sediment contamination.
	Washington MTCA	RCW 70.105D, RCW 70A.305, WAC 173-340	MTCA funds and directs the investigation, cleanup, and prevention of sites that are contaminated by hazardous substances.
	Washington Department of Ecology 401 Water Quality Certification	RCW 90.48	For federally regulated wetlands, a Section 401 Water Quality certification under the federal Clean Water Act may be required for the Project for filling of or discharge to wetlands.
	Washington Solid Waste Handling Standards	WAC 173-350	County governments and local health departments develop solid waste regulations and management plans, while the State's Solid Waste Management program supports local governments with technical assistance and guidance.
	Washington Oriteria for Municipal Solid Waste Landfills	WAC 173-351	Establishes minimum statewide standards for all municipal solid waste landfills.
	Washington Hazardous Waste Management	RCW 70.105, RCW 70A.300	Establishes statewide framework for the planning, regulation, control, and management of hazardous waste which will prevent land, air, and water pollution and conserve the natural, economic, and energy resources of the state.
	Land Disposal Restrictions	WAC 173-303-140	Encourages the best management practices for dangerous wastes.
	Treatment, Storage, or Disposal of Dangerous Waste	WAC 173-303-141	Encourages the best management practices for dangerous wastes.
	State Patrol - Transportation of Hazardous Materials	WAC 446-50	Regulates the safe transportation of hazardous materials, hazardous waste, and radioactive waste materials upon the public highways
əte	Washington State Environmental Policy Act (SEPA)	RCW 43.21C, Chapter 197-11 WAC	Requires evaluation of environmental impacts, alternatives, and mitigation measures (i.e. Environmental Impact Statement as outlined in ROW 43-210.031).
ns	Watershed Restoration Project Regulations	RCW 89.08.450-510	Required permitting for projects involving watershed restoration.
	State Water Pollution Control Act, NPDES Regulations	RCW 90.48, Chapter 173-220 WAC	Criteria for discharge of pollutants and other wastes into state surface waters.
	Washington Department of Fish and Wildlife Hydraulic Project Approval	RCW 77.55	Applies to projects near state waters that will use, divert, obstruct, or change the natural flow or bed.
	State Water Code and Water Rights	RCW 90.03, 90.04	Promotes the use of the public waters in a fashion which provides for obtaining maximum net benefits arising from both diversionary uses of the state's public waters and the retention of waters within streams and lakes in sufficient quantity and quality to protect instream and natural values and rights.
	Protection of Withdrawal Facilities Associated with Groundwater Rights; Water Rights; Protection of Upper Aquifer Zones	WAC 173-150, 152, 154	Establishes and sets forth the policies, framework, and procedures of the Department of Ecology in regard to the protection of the availability of groundwater as it pertains to the water withdrawal facilities of holders of groundwater rights.
	Solid Waste Standards - Reduction and Recycling	RCW 70.95.215	Provides framework for separation, recycling, and reduction of waste delivered to a solid waste facility.
	Deputies of Department - State Solid Waste Management Plan - Assistance - Coordination - Tire Recycling	RCW 70.95.260	Requirements for tire recycling.
	Landfilling Standards	WAC 173-304-460	Landfill performance standards including prevention of groundwater contaminations and requirements for allowable landfill gas concentrations.
	Washington State Forest Practices Rules	Title 222 WAC	Requirements for timber harvesting, pre-commercial thinning, road construction, fertilization, forest chemical application and other forest practices applications under the Forest Practices Act (chapter 76.09 RCW) and Stewardship of Non-industrial Forests and Woodlands (chapter 76.13 RCW).
	Forest Practices Act	RCW 76.09	The Forest Practices Act rules are designed to protect public resources such as water quality and fish habitat while maintaining a viable timber industry.
	Washington State Parks and Recreation Commission Real Property Agreement	1	The Real Property Agreement serves to provide access rights to Washington State Parks and Recreation Commission owned lands.
	Minimum Standards for Construction and Maintenance of Wells	WAC 173-160	Any monitoring wells installed, modified, or removed during the remedial action will comply with these standards.
	Regulation and Licensing of Well Contractors and Operators	WAC 173-162	Drilling subcontractors will be licensed in accordance with these regulations.
	Washington State Executive Order 05-05	GEO 05-05	Requires archeological and cultural resource review by Department of Archaeology and Historic Preservation for capital construction projects not undergoing Federal Section 106 review.

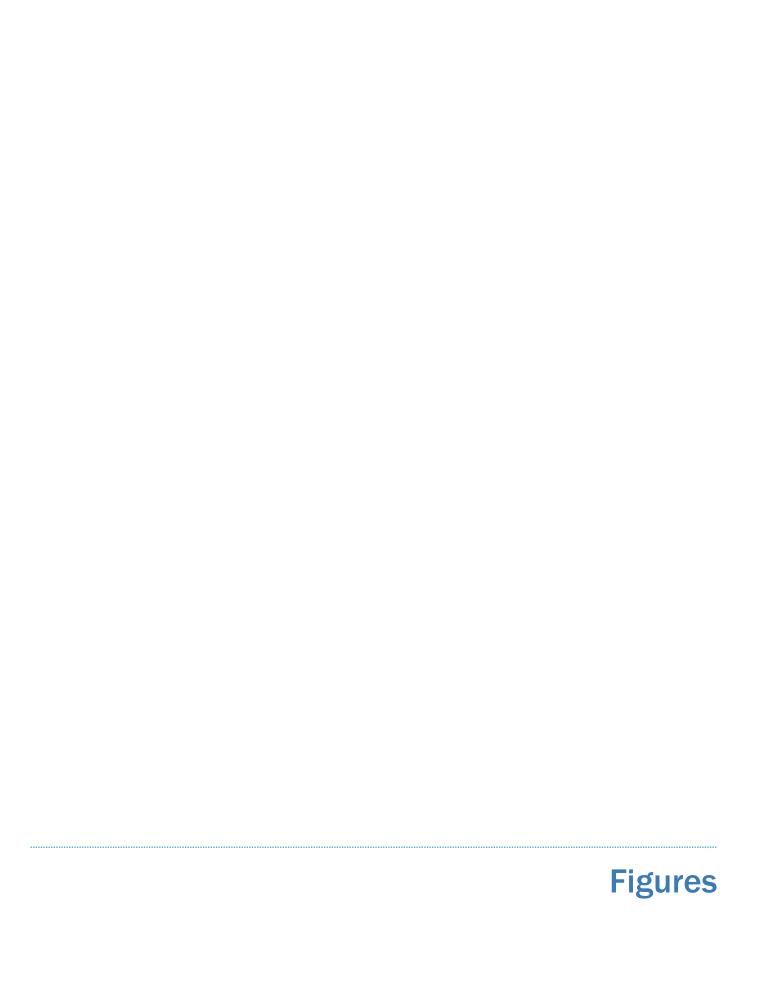
Title 18E.30		Requirement	Citation	Comments
Title 18E.40 Title 17A.30 Section 010, 020, 030 Title 18H Section 10, 040 Title 18E Section 10, 070 Title 18S Section 10, 065		Pierce County Code: Wetlands	Title 18E.30	County code designed to avoid impacts to wetlands due to development.
Title 17A.30		Pierce County Code: Regulated Fish and Wildlife Species and Habitat Conservation Areas	Tite 18E.40	Identifies regulated fish and wildlife species, habitat, and mitigation measures.
15; Soil Engineering – Stability Section 010, 020, 030 Permit Title 18H Permit Section 10, 040 Elish and Wildlife Reviews Title 18E Fish and Wildlife Reviews Section 10, 070 Fement Title 18S		Pierce County Code: Grading	Title 17A.30	Outlines slope grading, excavation, and fill requirements.
Title 18H		Excavation Standards; Fill Standards; Soil Engineering – Stability	Section 010, 020, 030	Grading and filling completed at the site will be regulated through the County standards.
Section 10, 040 Title 18E Section 10, 070 Title 18S Section 10, 085	lsoc	Pierce County Code: Forest Practices	Title 18H	Establishes the minimum standards and requirements associated with local government review and jurisdiction over Forest Practices in accordance with Chapter 76.09 RCW.
Title 18E Section 10, 070 Title 18S Section 10, 065	די	Class IV - General Forest Practices Permit	Section 10, 040	This Title is directly related to specific subsections in Chapter 76.09 RCW and its rules.
Id Wildlife Reviews Section 10, 070 Title 18S (SEN)		Pierce County Code: Development Regulations – Critical Areas	Title 18E	Protects critical areas of Pierce County from the impacts of development.
Title 18S (SD) Santion 10 065		Land Use Permit with Wetland and Fish and Wildlife Reviews	Section 10, 070	Required when there are critical areas on the property.
Section 10 O65		Pierce County Code: Shoreline Management	Title 18S	Provides a comprehensive review of development on shorelines to ensure compliance with the Shoreline Management Act and Pierce County Code 188.
300 to 100000		Shoreline Substantial Development Permit (SD)	Section 10, 065	Required for shoreline development.

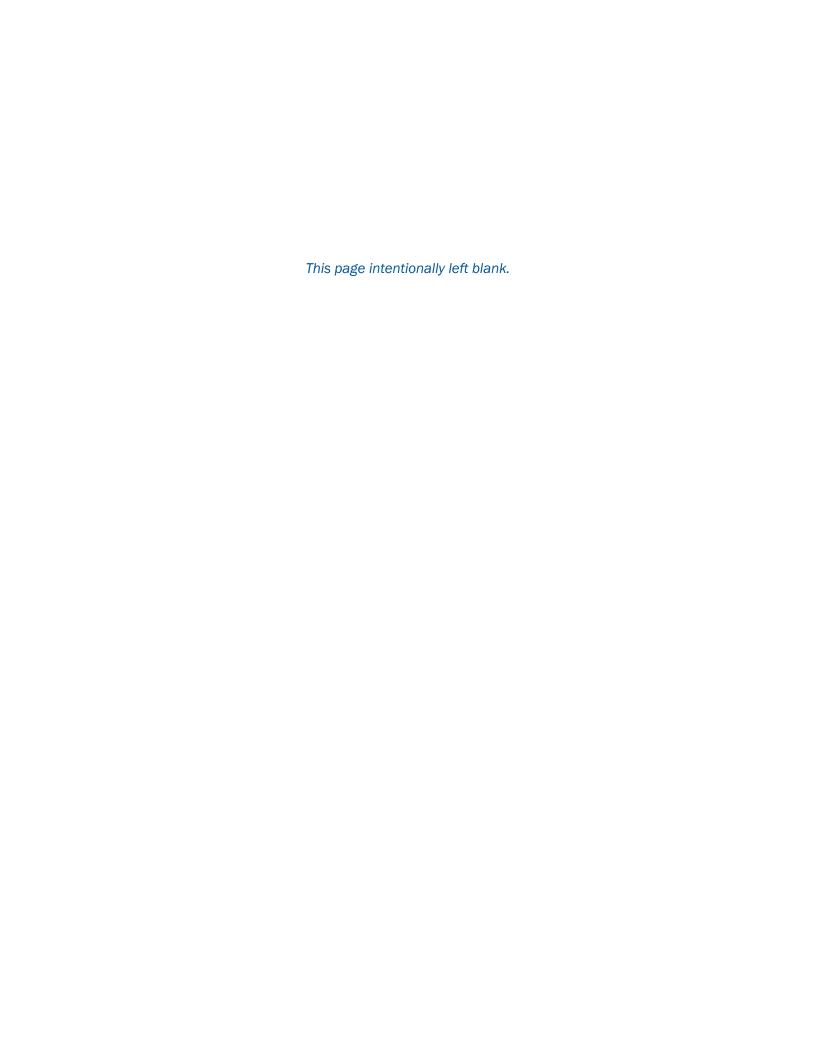
CFR = Code of Federal Regulations

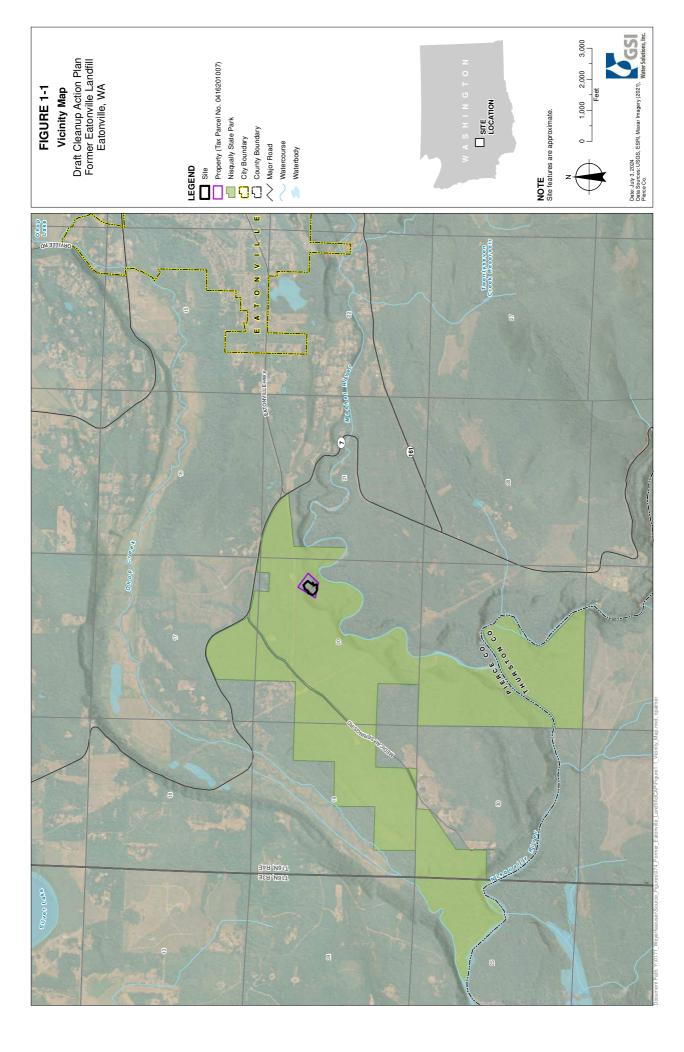
EPA = U.S. Environmental Protection Agency

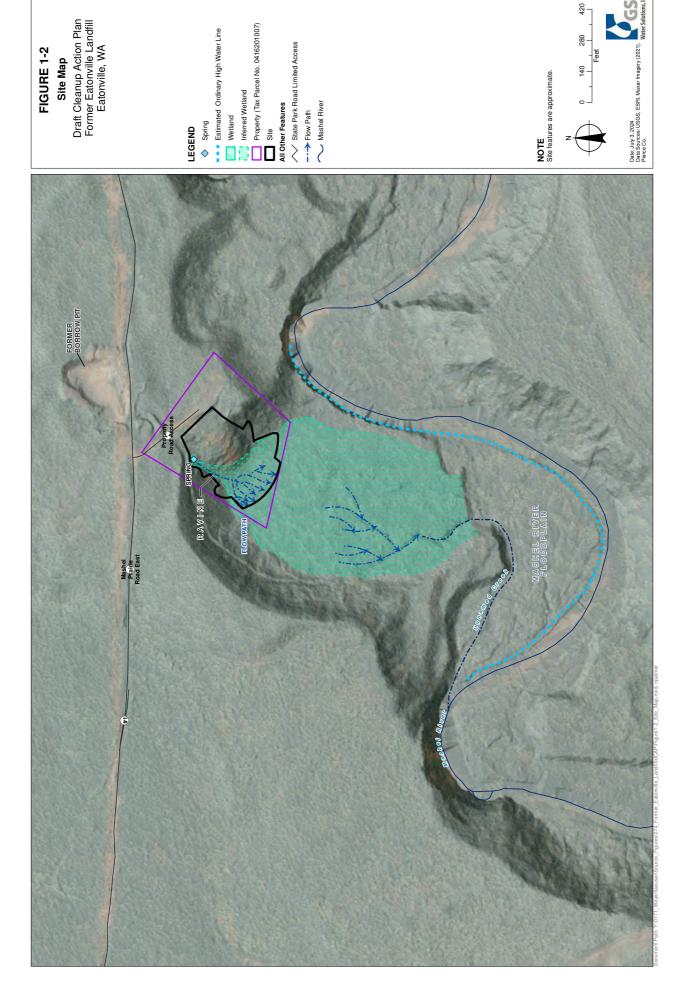
MCL = maximum contaminant level

MTCA = Model Toxics Control Act


NEPA = National Environmental Policy Act


NPDES = National Pollutant Discharge Elimination System


NTC = Nisqually Tribal Code


RCW = Revised Code of Washington USC = United States Code

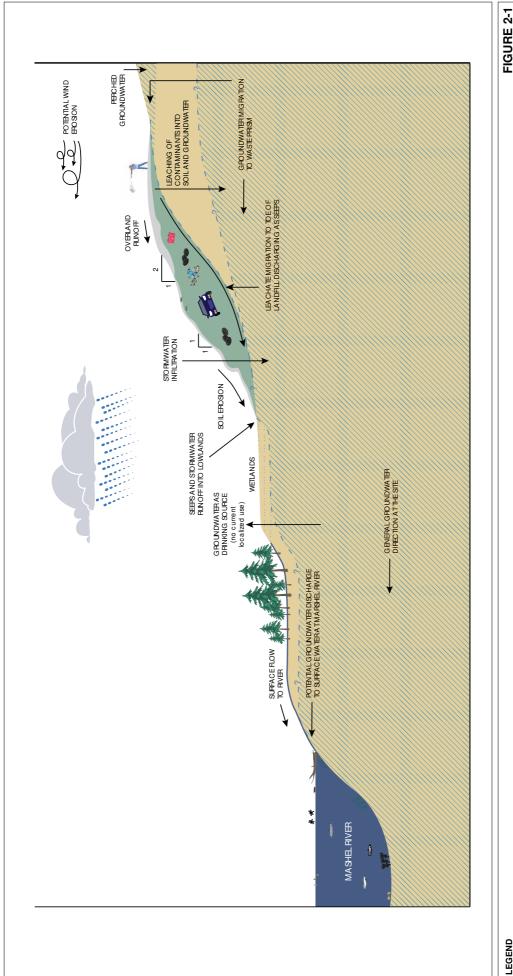
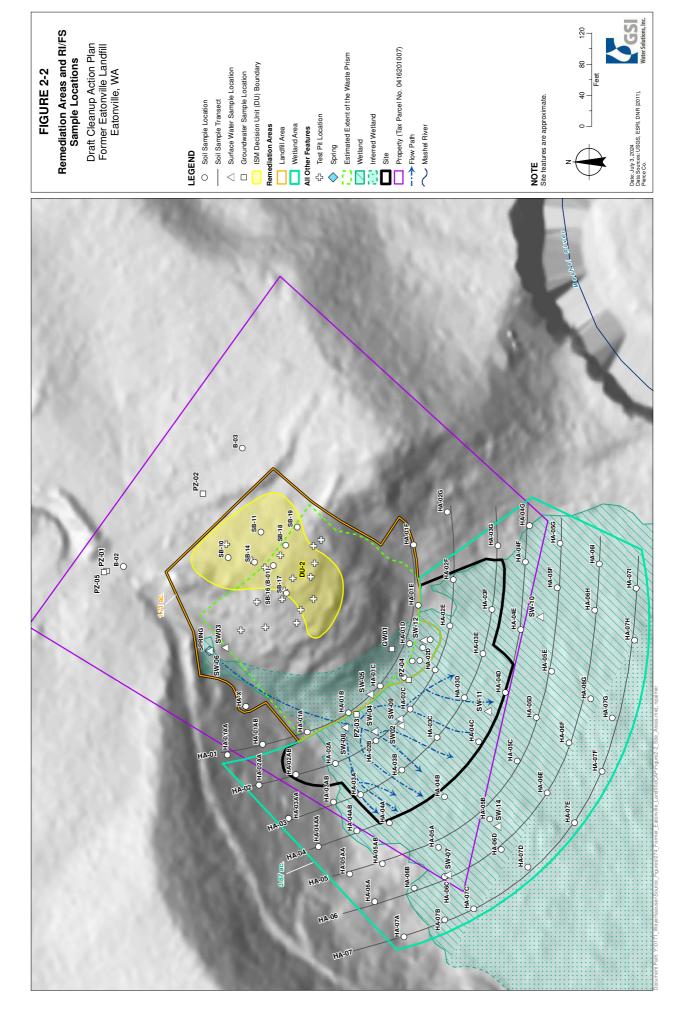
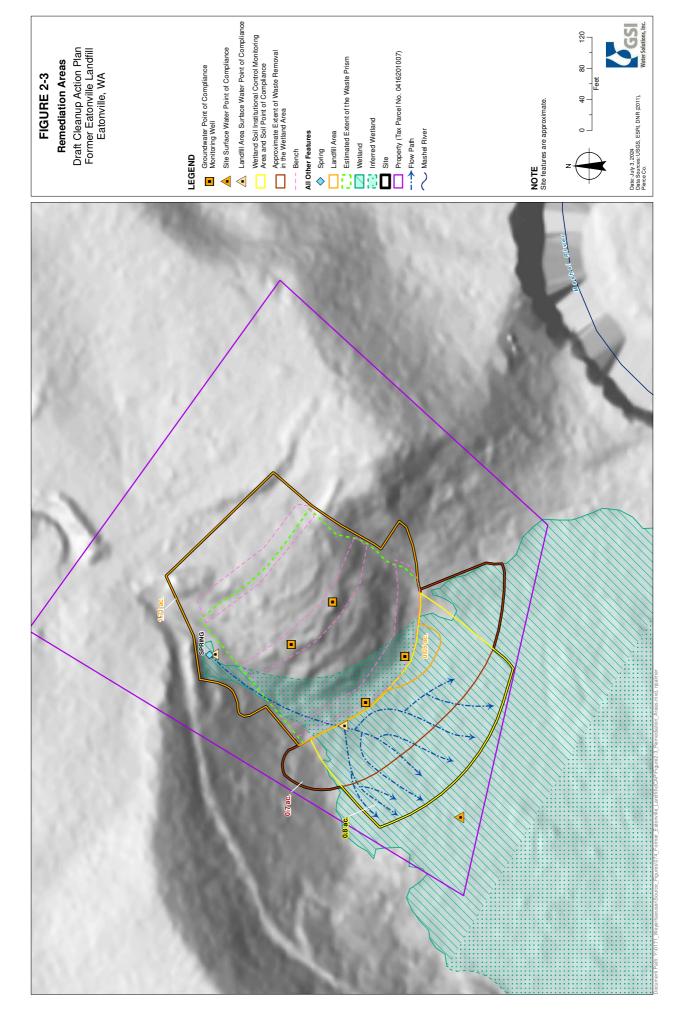

WAC = Washington Administrative Code

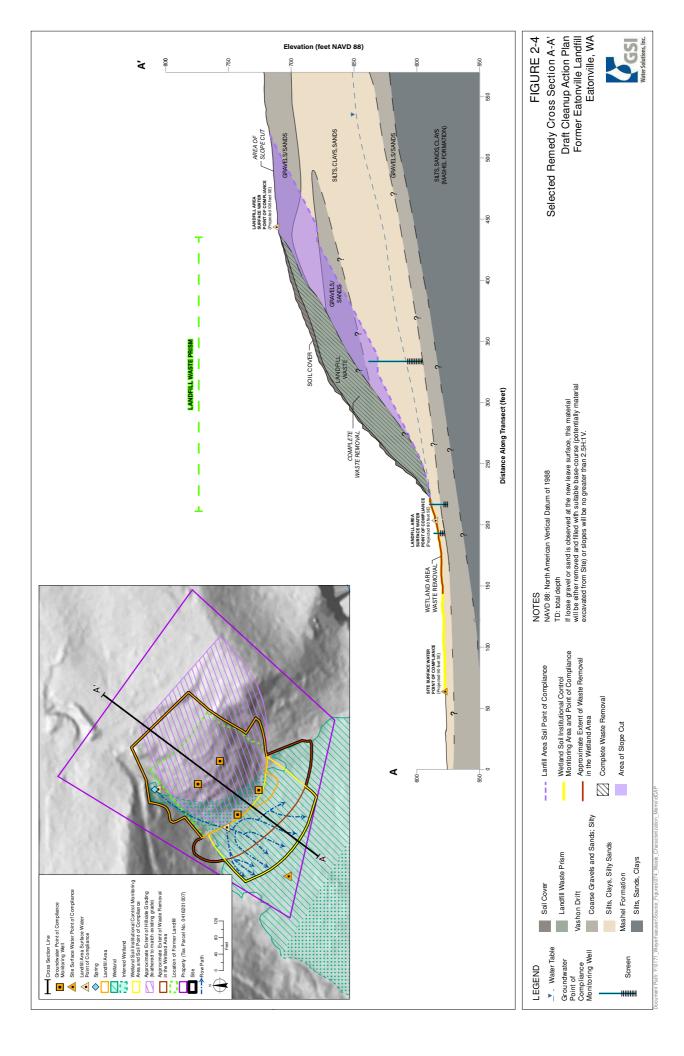
FIGURE 2-1

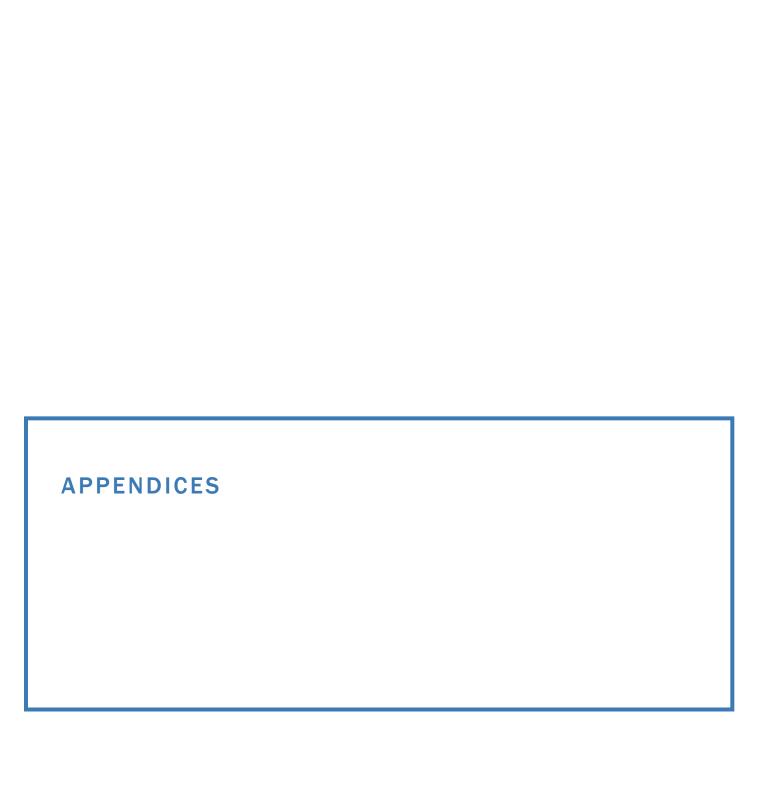
Draft Cleanup Action Plan Former Eatonville Landfill Conceptual Site Model

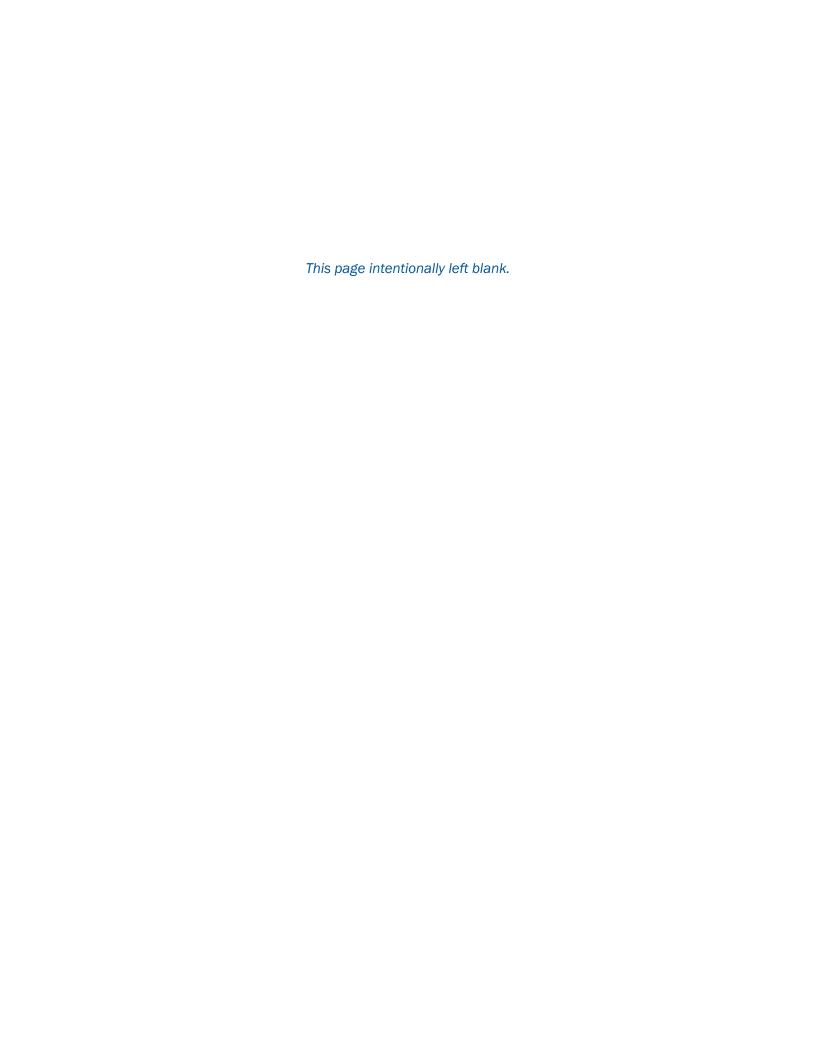
Eatonville, WA

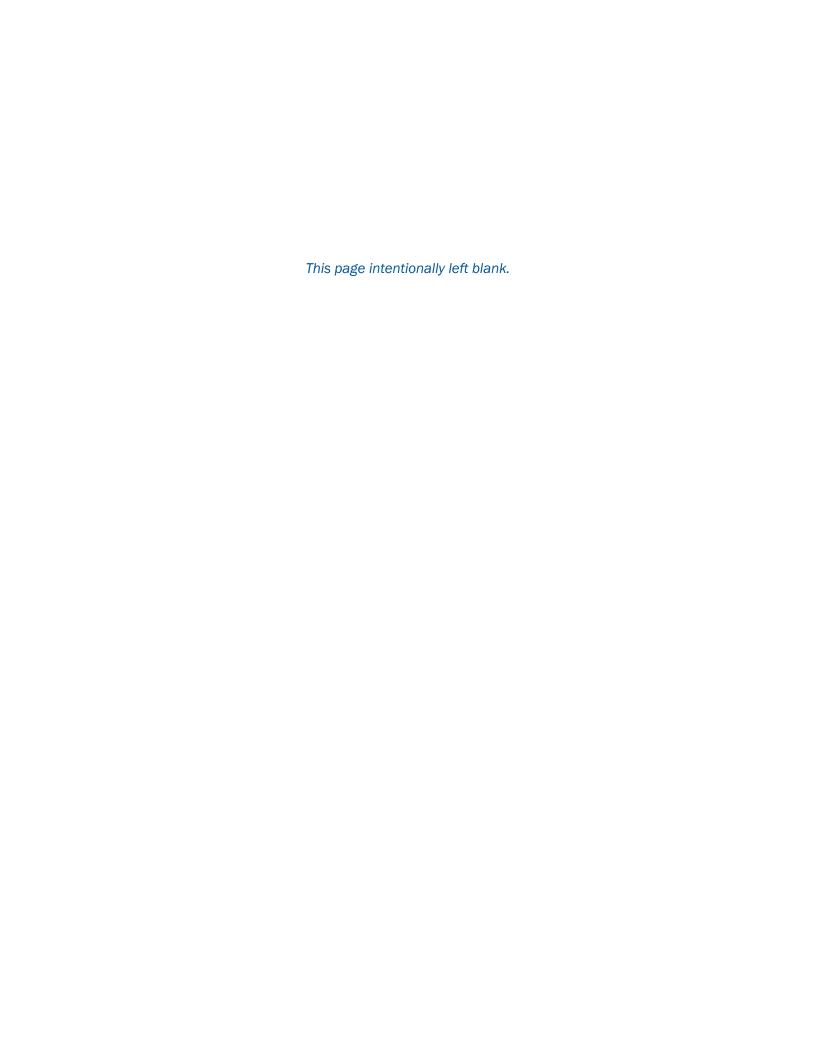

Vashon Driff (coarse gravels and sands) overlying Mashel Formation (unconsolidated layers of clays, sands, and lignite) $^{\!2}$


Existing Landfill Waste


Landfill Cover Groundwater


¹Schasse, 1987 ² Walter and Kimmel, 1968


NOTE
Figure is not to scale.
Data sources: Vecteezy (2023)



-APPENDIX A-Former Eatonville Landfill Wetland Delineation Addendum, Updated

To: Benjamin Johnson, GSI Water Solutions, Inc.

From: Kerrie McArthur, PWS, CERP

Date: January 9, 2024

Re: Former Eatonville Landfill Wetland Delineation Addendum, Updated

Attachments: Figures

Wetland Rating Form Wetland Data Forms

In 2022, Pacific Habitat Services, Inc. (PHS) conducted a wetland delineation at the Former Eatonville Landfill property. The findings of their delineation are detailed in their wetland delineation report (PHS 2022). The former landfill is on property owned by the Weyerhaeuser Company which is surrounded by Nisqually State Park property. The study area defined in the wetland delineation report included the Weyerhaeuser property and parts of Nisqually State Park. PHS delineated 1 wetland, identified as Wetland A. This technical memorandum has been prepared to document the rating of Wetland A and to determine the presence and extent of wetlands within the current study area, which has been expanded to include additional land on Nisqually State Park property around the former landfill on Weyerhaeuser property.

WETLAND RATING

On October 10, 2023, Confluence Environmental Company (Confluence) conducted a site visit to assess the resource value of Wetland A by determining the wetland rating using the Washington State Wetland Rating System for Western Washington (Hruby 2014). This rating system is based on the wetland functions and values, sensitivity to disturbance, rarity, and irreplaceability.

The completed wetland rating form is attached, and findings are summarized in Table 1.

Table 1. Summary of wetland characteristics

	Approx.				Wet	and Ratin	g	
Wetland ID	Size (acres)	Hydrogeomorphic Classification	Cowardin Classification	Water Quality	Hydrology	Habitat	Total	Category
Wetland A	13	Depressional and Slope	Palustrine forested	8	5	9	22	l*

^{*} Wetland A is a Category I wetland based on special characteristics. Wetland A has been identified as a Wetland of high conservation value (see wetland rating form)

PHS (2022) describes the portion of Wetland A within their defined study area as a 4.84-acre slope wetland. Wetland A, in its entirety, is much larger; it extends down the slope beyond the study area and into the valley associated with an unnamed tributary of the Mashel River and the Mashel River (GSI Water Solutions, Inc., 2023; Figure 1). As shown on Figure 1, PHS delineated the boundary of Wetland A within their study area with the exception of a segment that was covered by landfill debris. This segment of the wetland boundary was inferred based on survey topography, LiDAR topography, and comparison of the wetland boundary on each side of the debris pile. The inferred boundary of Wetland A outside of the PHS (2022) study area is documented in the remedial investigation/feasibility study for the Former Eatonville Landfill site (GSI Water Solutions, Inc., 2023). The total area of Wetland A, including the delineated and inferred portions, is approximately 13 acres. The non-delineated portion of the wetland is a combination of slope and depressional hydrogeomorphic classification.

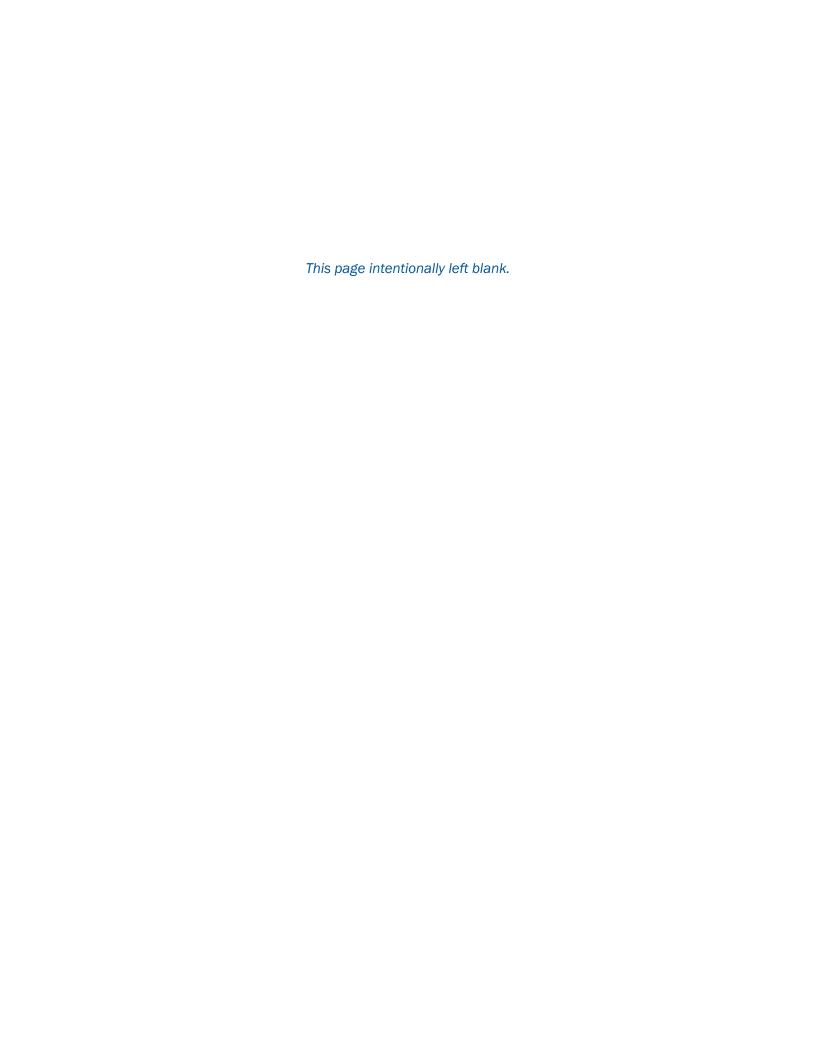
WETLAND INVESTIGATION

On December 20, 2023, Confluence conducted a site investigation to determine the presence and extent of critical areas within the expanded study area on Nisqually State Park property (Figure 2).

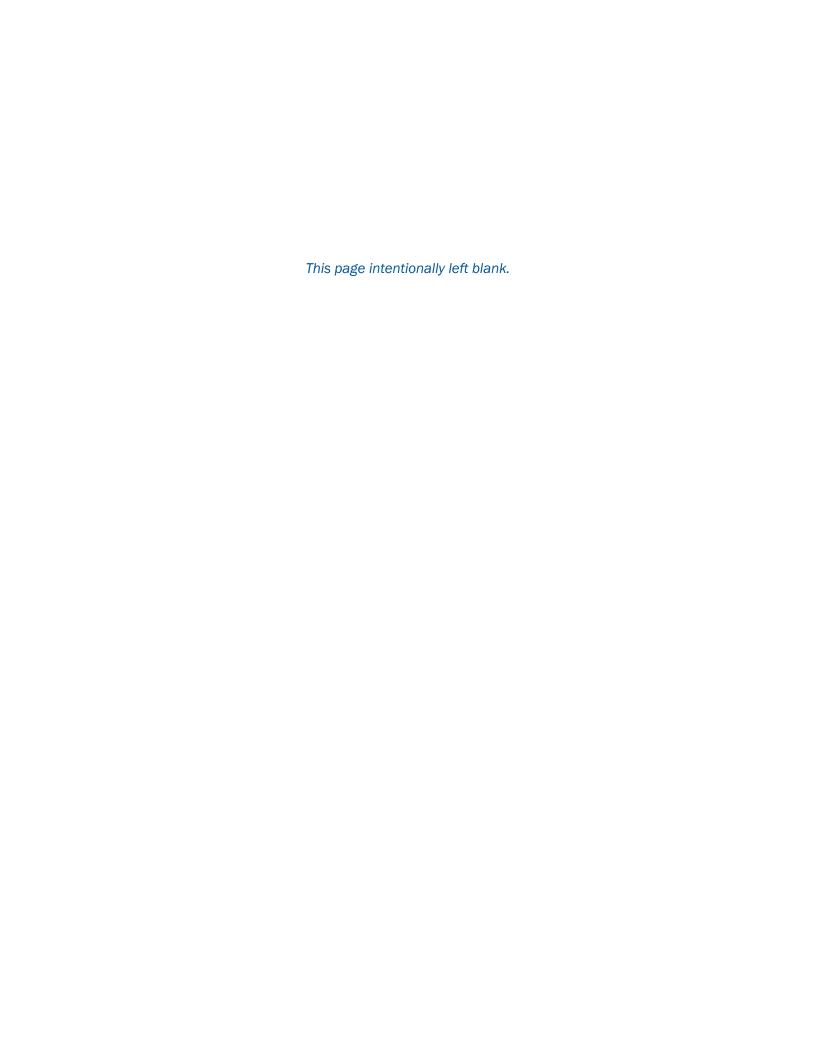
Confluence identified wetlands and delineated their boundaries using the methods described by the U.S. Army Corps of Engineers (Corps) in the Corps of Engineers Wetlands Delineation Manual (Corps 1987) and the Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Western Mountains, Valleys, and Coast Region (Corps 2010). Figure 2 shows the locations of test plots and soil probes. Wetland data forms are attached.

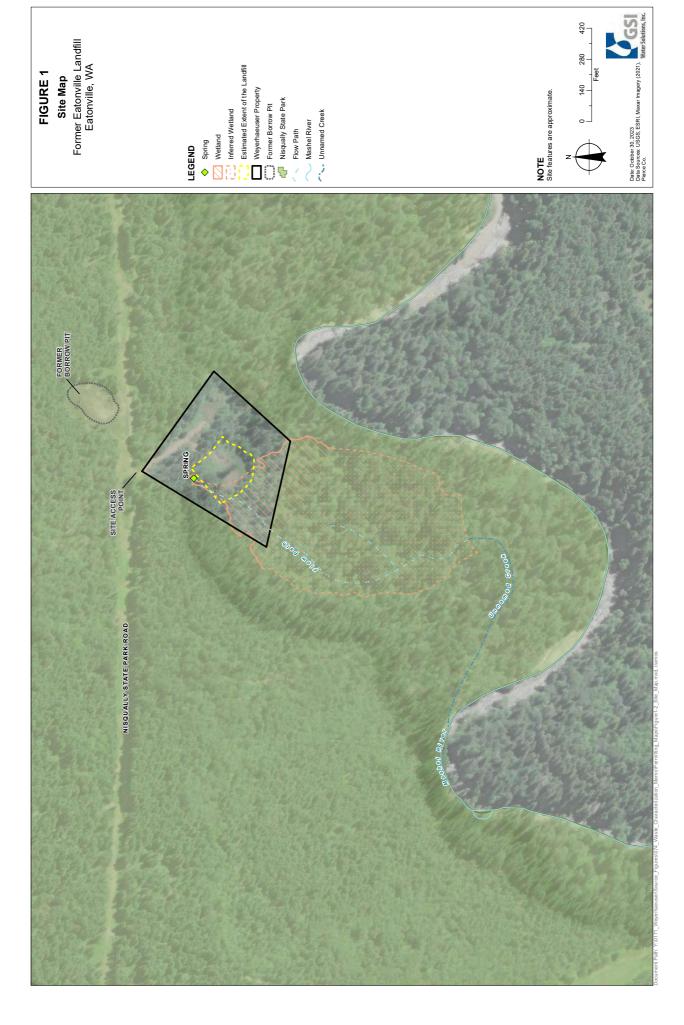
No wetlands were identified within the expanded study area on Nisqually State Park property. However, there is a potential seep wetland outside of the study area approximately 50 feet to the east. Figure 2 shows a point where this potential wetland is closest to the study area. This wetland was not delineated.

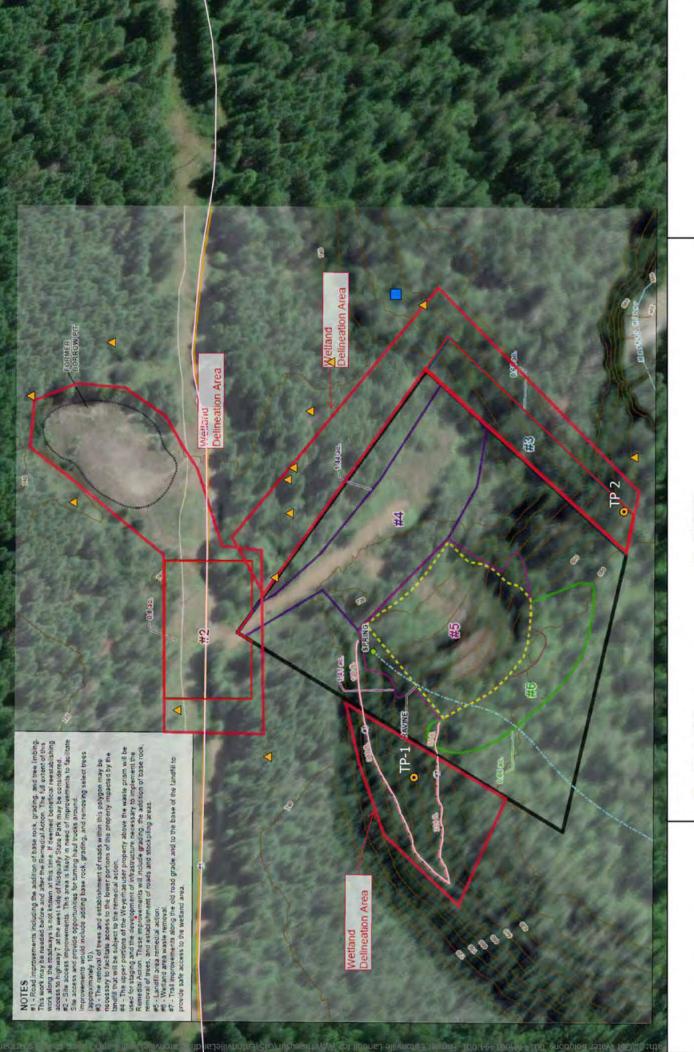
www.confenv.com page 2 of 3



REFERENCES


- Corps (U.S. Army Corps of Engineers). 1987. Corps of Engineers wetlands delineation manual. Corps Environmental Laboratory, Waterways Experiment Station, Vicksburg, Mississippi. Technical Report Y-87-1.
- Corps. 2010. Regional supplement to the Corps of Engineers wetland delineation manual: western mountains, valleys, and coast region. U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi. ERDC/EL TR-08-13.
- Corps. 2020. National wetland plant list, version 3.5 [online document]. Corps Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire. Available at: https://wetland-plants.sec.usace.army.mil/nwpl static/v34/home/home.html.
- GSI Water Solutions, Inc. 2023. Final remedial investigation/feasibility study: Former Eatonville Landfill. Prepared for Weyerhaeuser Company and the Town of Eatonville by GSI Water Solutions, Inc., Portland, Oregon.
- Hruby, T. 2014. Washington State wetland rating system for western Washington, 2014 update. Washington State Department of Ecology, Olympia. Publication # 14-06-029.
- PHS (Pacific Habitat Services, Inc.). 2022. Wetland delineation for the Eatonville landfill property, Pierce County, Washington. Prepared for GSI Water Solutions, Inc., Portland, Oregon, by Pacific Habitat Services, Inc., Wilsonville, Oregon.

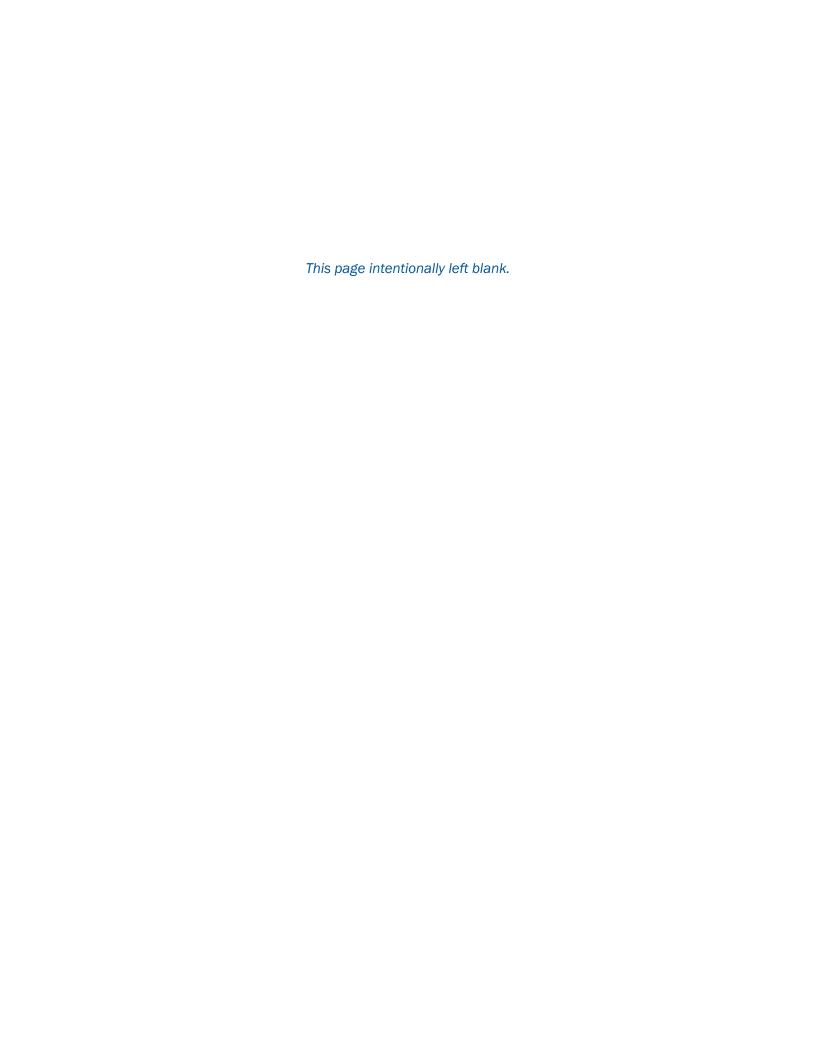

GSI Water Solutions_001444\001444.001_Former Eatonville Landfill for Weyerhaeuser\Reports\Wetland Addendum


www.confenv.com page 3 of 3

Figures

Test Plots

Potential Wetland Seep


SP UP

Expanded Study Area

Figure 2. Location of Test Plot and Soil Probes

Wetland Rating Form

RATING SUMMARY – Western Washington

Name of wetland (or ID #): Wetland A	Date of sit	e visit: <u>10/10/</u> 23
Rated by Kerrie McArthur	_Trained by Ecology?_X YesNo	Date of training 6/2014
HGM Class used for rating Depressional	Wetland has multiple HGM c	lasses? <u>X</u> YN
NOTE: Form is not complete witho Source of base aerial photo/map	ut the required figures (figures can ESRI	be combined).
OVERALL WETLAND CATEGORY	(based on functions or speci	al characteristics <u>X</u>)
1. Category of wetland based on FU	INCTIONS	
Category I – Total score	= 23 - 27	Score for each
XCategory II — Total score	2 = 20 - 22	function based

FUNCTION	V	provii Vater (uality		Hy	/drolog	gic	Н	abita	t	
					Circle the	e app	roprio	ite rati	ings	
Site Potential	(H)	М	L	Н	(M)	L	\oplus	М	L	
Landscape Potential	Н	M	L	Н	<u>М</u> ((H)	М	L	
Value	H	М	L	Н	M	L	(H)	М	L	TOTAL
Score Based on Ratings		8			5			9		22

Category III – Total score = 16 - 19

Category IV – Total score = 9 - 15

Score for each function based on three ratings (order of ratings is not important) 9 = H, H, H 8 = H, H, M 7 = H, H, L 7 = H, M, M 6 = H, M, L 6 = M, M, M 5 = H, L, L 5 = M, M, L 4 = M, L, L 3 = L, L, L

2. Category based on SPECIAL CHARACTERISTICS of wetland

CHARACTERISTIC	CATI	GORY
Estuarine	I	II
Wetland of High Conservation Value		I
Bog		I
Mature Forest		I
Old Growth Forest		I
Coastal Lagoon	I	II
Interdunal	I II	III IV
None of the above		

Maps and figures required to answer questions correctly for Western Washington

Depressional Wetlands

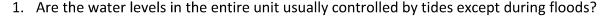
Map of:	To answer questions:	Figure #
Cowardin plant classes	D 1.3, H 1.1, H 1.4	1
Hydroperiods	D 1.4, H 1.2	2
Location of outlet (can be added to map of hydroperiods)	D 1.1, D 4.1	2
Boundary of area within 150 ft of the wetland (can be added to another figure)	D 2.2, D 5.2	2
Map of the contributing basin	D 4.3, D 5.3	3
1 km Polygon: Area that extends 1 km from entire wetland edge - including polygons for accessible habitat and total habitat	H 2.1, H 2.2, H 2.3	4
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	D 3.1, D 3.2	5
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	D 3.3	6

Riverine Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	
Hydroperiods	H 1.2	
Ponded depressions	R 1.1	
Boundary of area within 150 ft of the wetland (can be added to another figure)	R 2.4	
Plant cover of trees, shrubs, and herbaceous plants	R 1.2, R 4.2	
Width of unit vs. width of stream (can be added to another figure)	R 4.1	
Map of the contributing basin	R 2.2, R 2.3, R 5.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and total habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	R 3.1	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	R 3.2, R 3.3	

Lake Fringe Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	L 1.1, L 4.1, H 1.1, H 1.4	
Plant cover of trees, shrubs, and herbaceous plants	L 1.2	
Boundary of area within 150 ft of the wetland (can be added to another figure)	L 2.2	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and total habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	L 3.1, L 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	L3.3	


Slope Wetlands

Map of:	To answer questions:	Figure #
Cowardin plant classes	H 1.1, H 1.4	
Hydroperiods	H 1.2	
Plant cover of dense trees, shrubs, and herbaceous plants	S 1.3	
Plant cover of dense, rigid trees, shrubs, and herbaceous plants	S 4.1	
(can be added to figure above)		
Boundary of 150 ft buffer (can be added to another figure)	S 2.1, S 5.1	
1 km Polygon: Area that extends 1 km from entire wetland edge - including	H 2.1, H 2.2, H 2.3	
polygons for accessible habitat and total habitat		
Screen capture of map of 303(d) listed waters in basin (from Ecology website)	S 3.1, S 3.2	
Screen capture of list of TMDLs for WRIA in which unit is found (from web)	S 3.3	

HGM Classification of Wetlands in Western Washington

For questions 1-7, the criteria described must apply to the entire unit being rated.

If the hydrologic criteria listed in each question do not apply to the entire unit being rated, you probably have a unit with multiple HGM classes. In this case, identify which hydrologic criteria in questions 1-7 apply, and go to Question 8.

NO – go to 2

YES – the wetland class is Tidal Fringe – go to 1.1

1.1 Is the salinity of the water during periods of annual low flow below 0.5 ppt (parts per thousand)?

NO – Saltwater Tidal Fringe (Estuarine)

YES – Freshwater Tidal Fringe

If your wetland can be classified as a Freshwater Tidal Fringe use the forms for **Riverine** wetlands. If it is Saltwater Tidal Fringe, it is an **Estuarine** wetland and is not scored. This method **cannot** be used to score functions for estuarine wetlands.

2. The entire wetland unit is flat, and precipitation is the only source (>90%) of water to it. Groundwater and surface water runoff are NOT sources of water to the unit.

NO - go to 3

YES - The wetland class is Flats

If your wetland can be classified as a Flats wetland, use the form for **Depressional** wetlands.

- 3. Does the entire wetland unit **meet all** of the following criteria?
 - ____The vegetated part of the wetland is on the shores of a body of permanent open water (without any plants on the surface at any time of the year) at least 20 ac (8 ha) in size,
 - At least 30% of the open water area is deeper than 6.6 ft (2 m).

NO – go to 4

YES – The wetland class is **Lake Fringe** (Lacustrine Fringe)

- 4. Does the entire wetland unit **meet all** of the following criteria?
 - The wetland is on a slope (slope can be very gradual),
 - ____The water flows through the wetland in one direction (unidirectional) and usually comes from seeps.

It may flow subsurface, as sheet flow, or in a swale without distinct banks,

____The water leaves the wetland without being impounded.

NO - go to 5

YES – The wetland class is Slope

NOTE: Surface water does not pond in these type of wetlands except occasionally in very small and shallow depressions or behind hummocks (depressions are usually <3 ft diameter and less than 1 ft deep).

VV	etland name or number
5.	Does the entire wetland unit meet all of the following criteria? The unit is in a valley, or stream channel, where it gets inundated by overbank flooding from that stream or river, The overbank flooding occurs at least once every 2 years.
	NO – go to 6 YES – The wetland class is Riverine NOTE : The Riverine unit can contain depressions that are filled with water when the river is not flooding
6.	Is the entire wetland unit in a topographic depression in which water ponds, or is saturated to the surface, at some time during the year? This means that any outlet, if present, is higher than the interior of the wetland.
	NO – go to 7 YES – The wetland class is Depressional
7.	Is the entire wetland unit located in a very flat area with no obvious depression and no overbank flooding? The unit does not pond surface water more than a few inches. The unit seems to be maintained by high

groundwater in the area. The wetland may be ditched but has no obvious natural outlet.

NO – go to 8)

YES – The wetland class is Depressional

8. Your wetland unit seems to be difficult to classify and probably contains several different HGM classes. For example, seeps at the base of a slope may grade into a riverine floodplain, or a small stream within a Depressional wetland has a zone of flooding along its sides. GO BACK AND IDENTIFY WHICH OF THE HYDROLOGIC REGIMES DESCRIBED IN QUESTIONS 1-7 APPLY TO DIFFERENT AREAS IN THE UNIT (make a rough sketch to help you decide). Use the following table to identify the appropriate class to use for the rating system if you have several HGM classes present within the wetland unit being scored.

NOTE: Use this table only if the class that is recommended in the second column represents 10% or more of the total area of the wetland unit being rated. If the area of the HGM class listed in column 2 is less than 10% of the unit; classify the wetland using the class that represents more than 90% of the total area.

HGM classes within the wetland unit being rated	HGM class to use in rating
Slope + Riverine	Riverine
Slope + Depressional	Depressional
Slope + Lake Fringe	Lake Fringe
Depressional + Riverine along stream within boundary of depression	Depressional
Depressional + Lake Fringe	Depressional
Riverine + Lake Fringe	Riverine
Salt Water Tidal Fringe and any other class of freshwater wetland	Treat as ESTUARINE

If you are still unable to determine which of the above criteria apply to your wetland, or if you have **more than 2 HGM classes** within a wetland boundary, classify the wetland as Depressional for the rating.

DEPRESSIONAL AND FLATS WETLANDS	
Water Quality Functions - Indicators that the site functions to improve water quality	
D 1.0. Does the site have the potential to improve water quality?	
D 1.1. Characteristics of surface water outflows from the wetland:	
Wetland is a depression or flat depression (QUESTION 7 on key) with no surface water leaving it (no outlet).	
points = 3 Wetland has an intermittently flowing stream or ditch, OR highly constricted permanently flowing outlet.	2
points = 2	2
Wetland has an unconstricted, or slightly constricted, surface outlet that is permanently flowing points = 1	
Wetland is a flat depression (QUESTION 7 on key), whose outlet is a permanently flowing ditch. points = 1	
D 1.2. The soil 2 in. below the surface (or duff layer) is true clay or true organic (use NRCS definitions). Yes = 4 No = 0	4
D 1.3. Characteristics and distribution of persistent plants (Emergent, Scrub-shrub, and/or Forested Cowardin classes):	
Wetland has persistent, ungrazed plants > 95% of area points = 5	
Wetland has persistent, ungrazed plants > ½ of area points = 3	5
Wetland has persistent, ungrazed plants $\geq \frac{1}{10}$ of area points = 1	
Wetland has persistent, ungrazed plants $<1/_{10}$ of area points = 0	
D 1.4. <u>Characteristics of seasonal ponding or inundation</u> :	
This is the area that is ponded for at least 2 months. See description in manual.	2
Area seasonally ponded is > ½ total area of wetland Area seasonally pended is > ½ total area of wetland	_
Area seasonally ponded is $\geq \frac{1}{4}$ total area of wetland points = 2 Area seasonally ponded is $< \frac{1}{4}$ total area of wetland points = 0	
	40
·	13
Rating of Site Potential If score is: X12-16 = H6-11 = M0-5 = L Record the rating on the	Jirst page
D 2.0. Does the landscape have the potential to support the water quality function of the site?	
D 2.1. Does the wetland unit receive stormwater discharges? Yes = 1 No = 0	0
D 2.2. Is > 10% of the area within 150 ft of the wetland in land uses that generate pollutants? Yes = 1 No = 0	0
D 2.3. Are there septic systems within 250 ft of the wetland? Yes = 1 No = 0	0
D 2.4. Are there other sources of pollutants coming into the wetland that are not listed in questions D 2.1-D 2.3?	
Source landfill debris Yes = 1 No = 0	1
Total for D 2 Add the points in the boxes above	1
Rating of Landscape Potential If score is:3 or 4 = H _X_1 or 2 = M0 = L Record the rating on the	first page
D 3.0. Is the water quality improvement provided by the site valuable to society?	
D 3.1. Does the wetland discharge directly (i.e., within 1 mi) to a stream, river, lake, or marine water that is on the 303(d) list? Yes = 1 No = 0	1
D 3.2. Is the wetland in a basin or sub-basin where an aquatic resource is on the 303(d) list? Yes = 1 No = 0	1
D 3.3. Has the site been identified in a watershed or local plan as important for maintaining water quality? (Answer YES	I
if there is a TMDL in development or in effect for the basin in which the unit is found.) Yes = 2 No = 0	0
Total for D 3 Add the points in the boxes above	2
Rating of Value If score is: $X_2-4 = H$ 1 = M0 = L Record the rating on the	first page

DEPRESSIONAL AND FLATS WETLANDS	
Hydrologic Functions - Indicators that the site functions to reduce flooding and stream degradat	ion
D 4.0. Does the site have the potential to reduce flooding and erosion?	
D 4.1. Characteristics of surface water outflows from the wetland: Wetland is a depression or flat depression with no surface water leaving it (no outlet) Wetland has an intermittently flowing stream/ditch, OR highly constricted permanently flowing outlet points = 2 Wetland is a flat depression (question 7 on key), whose outlet is a permanently flowing ditch Wetland has an unconstricted, or slightly constricted, surface outlet that is permanently flowing points = 0	2
D 4.2. Depth of storage during wet periods: Estimate the height of ponding above the bottom of the outlet. For wetlands with no outlet, measure from the surface of permanent water or if dry, the deepest part. Marks of ponding are 3 ft or more above the surface or bottom of outlet points = 7 Marks of ponding between 2 ft to < 3 ft from surface or bottom of outlet points = 5 Marks are at least 0.5 ft to < 2 ft from surface or bottom of outlet points = 3 The wetland is a "headwater" wetland points = 3 Wetland is flat but has small depressions on the surface that trap water points = 1 Marks of ponding less than 0.5 ft (6 in)	5
D 4.3. Contribution of the wetland to storage in the watershed: Estimate the ratio of the area of upstream basin contributing surface water to the area of the wetland unit itself. The area of the basin is less than 10 times the area of the unit The area of the basin is 10 to 100 times the area of the unit The area of the basin is more than 100 times the area of the unit Entire wetland is in the Flats class D 4.3. Contribution of the wetland to storage in the watershed: Estimate the ratio of the area of upstream basin Basin = 61 acres Wetland A = 4.84 acres points = 5 points = 0 points = 5	3
Total for D 4 Add the points in the boxes above	10
Rating of Site Potential If score is: $_12-16 = H$ $_X6-11 = M$ $_0-5 = L$ Record the rating on the	first page
D 5.0. Does the landscape have the potential to support hydrologic functions of the site?	
D 5.1. Does the wetland receive stormwater discharges? Yes = 1 No = 0	
b s.i. boes the wetalia receive stollimater disolateges.	0
D 5.2. Is >10% of the area within 150 ft of the wetland in land uses that generate excess runoff? Yes = 1 No = 0	0
D 5.2. Is >10% of the area within 150 ft of the wetland in land uses that generate excess runoff? Yes = 1 No = 0 D 5.3. Is more than 25% of the contributing basin of the wetland covered with intensive human land uses (residential at	0
D 5.2. Is >10% of the area within 150 ft of the wetland in land uses that generate excess runoff? Yes = 1 No = 0 D 5.3. Is more than 25% of the contributing basin of the wetland covered with intensive human land uses (residential at >1 residence/ac, urban, commercial, agriculture, etc.)? Yes = 1 No = 0	0 0
D 5.2. Is >10% of the area within 150 ft of the wetland in land uses that generate excess runoff? D 5.3. Is more than 25% of the contributing basin of the wetland covered with intensive human land uses (residential at >1 residence/ac, urban, commercial, agriculture, etc.)? Yes = 1 No = 0 Total for D 5 Add the points in the boxes above	0 0
D 5.2. Is >10% of the area within 150 ft of the wetland in land uses that generate excess runoff? D 5.3. Is more than 25% of the contributing basin of the wetland covered with intensive human land uses (residential at >1 residence/ac, urban, commercial, agriculture, etc.)? Yes = 1 No = 0 Total for D 5 Add the points in the boxes above Rating of Landscape Potential If score is:3 = H1 or 2 = MX_0 = L Record the rating on the	0 0
D 5.2. Is >10% of the area within 150 ft of the wetland in land uses that generate excess runoff? D 5.3. Is more than 25% of the contributing basin of the wetland covered with intensive human land uses (residential at >1 residence/ac, urban, commercial, agriculture, etc.)? Total for D 5 Add the points in the boxes above Rating of Landscape Potential If score is:3 = H1 or 2 = MX_0 = L Becord the rating on the	0 0 0 first page

Rating of Value If score is: $\underline{}$ 2-4 = H $\underline{}$ 1 = M $\underline{}$ 0 = L

Record the rating on the first page

These questions apply to wetlands of all HGM classes. HABITAT FUNCTIONS - Indicators that site functions to provide important habitat H 1.0. Does the site have the potential to provide habitat? H 1.1. Structure of plant community: Indicators are Cowardin classes and strata within the Forested class. Check the Cowardin plant classes in the wetland. Up to 10 patches may be combined for each class to meet the threshold of ¼ ac if the unit is at least 2.5 ac, or more than 10% of the unit if it is smaller than 2.5 ac. Aquatic bed 4 structures or more: points = 4 Emergent 3 structures: points = 2 2 X Scrub-shrub (areas where shrubs have > 30% cover) 2 structures: points = 1 X Forested (areas where trees have > 30% cover) 1 structure: points = 0 If the unit has a Forested class, check if: \overline{X} The Forested class has 3 out of 5 strata (canopy, sub-canopy, shrubs, herbaceous, moss/groundcover) that each cover 20% within the Forested polygon H 1.2. Hydroperiods Check the types of water regimes (hydroperiods) present within the wetland. The water regime has to cover more than 10% of the wetland if the unit is < 2.5 ac, or ¼ ac if the unit is at least 2.5 ac to count (see text for descriptions of hydroperiods). Permanently flooded or inundated 4 or more types present: points = 3 3 X Seasonally flooded or inundated 3 types present: points = 2 Occasionally flooded or inundated 2 types present: points = 1 X Saturated only 1 type present: points = 0 X Permanently flowing stream or river in, or adjacent to, the wetland Xntermittently or seasonally flowing stream in, or adjacent to, the wetland Lake Fringe wetland 2 points Freshwater tidal wetland 2 points H 1.3. Richness of plant species Count the number of plant species in the wetland that cover at least 10 ft². Different patches of the same species can be combined to meet the size threshold and you do not have to 2 name the species. Do not include Eurasian milfoil, reed canarygrass, purple loosestrife, Canada thistle If you counted: > 19 species points = 25 - 19 species points = 1< 5 species points = 0H 1.4. Interspersion of habitats Decide from the diagrams below whether interspersion among Cowardin plants classes (described in H 1.1), or the classes and unvegetated areas (can include open water or mudflats) is high, moderate, low, or none. If you have four or more plant classes or three classes and open water, the rating is always high. 3 Moderate = 2 points None = 0 points Low = 1 point All three diagrams in this row are High = 3 points

H 1.5. Special habitat features:	
Check the habitat features that are present in the wetland. The number of checks is the number of points.	
XLarge, downed, woody debris within the wetland (> 4 in. diameter and 6 ft long).	
XStanding snags (dbh > 4 in.) within the wetland	
Undercut banks are present for at least 6.6 ft (2 m) and/or overhanging plants extend at least 3.3 ft (1 m) over open water or a stream (or ditch) in, or contiguous with the wetland, for at least 33 ft (10 m)	
X Stable steep banks of fine material that might be used by beaver or muskrat for denning (> 30 degree slope) OR signs of recent beaver activity are present (cut shrubs or trees that have not yet weathered where wood is exposed)	5
XAt least ¼ ac of thin-stemmed persistent plants or woody branches are present in areas that are permanently or seasonally inundated (structures for egg-laying by amphibians)	
X Invasive plants cover less than 25% of the wetland area in every stratum of plants (see H 1.1 above for the list of strata and H 1.5 in the manual for the list of aggressive plant species)	
Total for H 1 Add the points in the boxes above	15
The fact that the Victor is Victor in the fact that the fa	

Rating of Site Potential If score is: <u>X</u>15-18 = H ____7-14 = M ____0-6 = L Record the rating on the first page

H 2.0. Does the landscape have the	potential to support the habitat fu	nctions of the site?	
H 2.1. Accessible habitat (include only habitate: % relatively undisturbed Total accessible habitatis: > 1/3 (33.3%) of 1 km Polygon 20-33% of 1 km Polygon 10-19% of 1 km Polygon < 10% of 1 km Polygon	abitat polygons accessible from the w d habitat <u>88</u> + [(% moderate and low 1 km polygon = 832 acres Low/Moderate = 91 acres Undisturbed = 733 acres	wintensity land uses)/2] $5 = 93$ %	3
H 2.2. Total habitat in 1 km Polygon aro Calculate: % relatively undisturbe Total habitat > 50% of Polygon Total habitat 10-50% and in 1-3 p Total habitat 10-50% and > 3 pate Total habitat < 10% of 1 km Polyg	d habitat <u>88</u> + [(% moderate and low atches hes	v intensity land uses)/2] $\frac{5}{5} = \frac{93}{9}$ % points = 3 points = 2 points = 1 points = 0	3
H 2.3. Land use intensity in 1 km Polygo > 50% of 1 km Polygon is high int ≤ 50% of 1 km Polygon is high int	ensity land use	points = (- 2) points = 0	0
Total for H 2		Add the points in the boxes above	6

Rating of Landscape Potential If score is: $\underline{X}4-6 = H$ $\underline{1}-3 = M$ $\underline{4}-6 = H$ Record the rating on the first page

Choose only the highest score	
1.001 2-000	
points = 2	
-	
l on the state or federal lists)	2
of Natural Resources data	
prehensive plan, in a	
points = 1	
points = 0	
	points = 2 If on the state or federal lists) of Natural Resources data sprehensive plan, in a points = 1

Rating of Value If score is: <u>X</u>2 = H ___1 = M ___0 = L

Record the rating on the first page

WDFW Priority Habitats

See complete descriptions of Priority Habitats listed by WDFW, and the counties in which they can be found, in: Washington Department of Fish and Wildlife. 2008 (current year, as revised). Priority Habitat and Species List. 133 This list was updated for consistency with guidance from WDFW.

This question is independent of the land use between the wetland unit and the Priority Habitat. All vegetated wetlands are by definition a Priority Habitat but are not included in this list because they are addressed by this rating system.

Count how many of the following Priority Habitats are within 330 ft (100 m) of the wetland unit:

— Aspen Stands: Pure or mixed stands of aspen greater than 1 ac (0.4 ha).
→ Biodiversity Areas and Corridors: Areas of habitat that are relatively important to various species of
native fish and wildlife. This habitat automatically counts if mapped on the PHS online map within 100n

— **Caves:** A naturally occurring cavity, recess, void, or system of interconnected passages under the earth in soils, rock, ice, or other geological formations and is large enough to contain a human.

— Cliffs: Greater than 25 ft (7.6 m) high and occurring below 5000 ft elevatio	- Cliffs: Greater than	25 ft (7.6 m) high	and occurring below	5000 ft elevation
--	------------------------	--------------------	---------------------	-------------------

of the wetland. If not mapped, a determination can be made in the field.

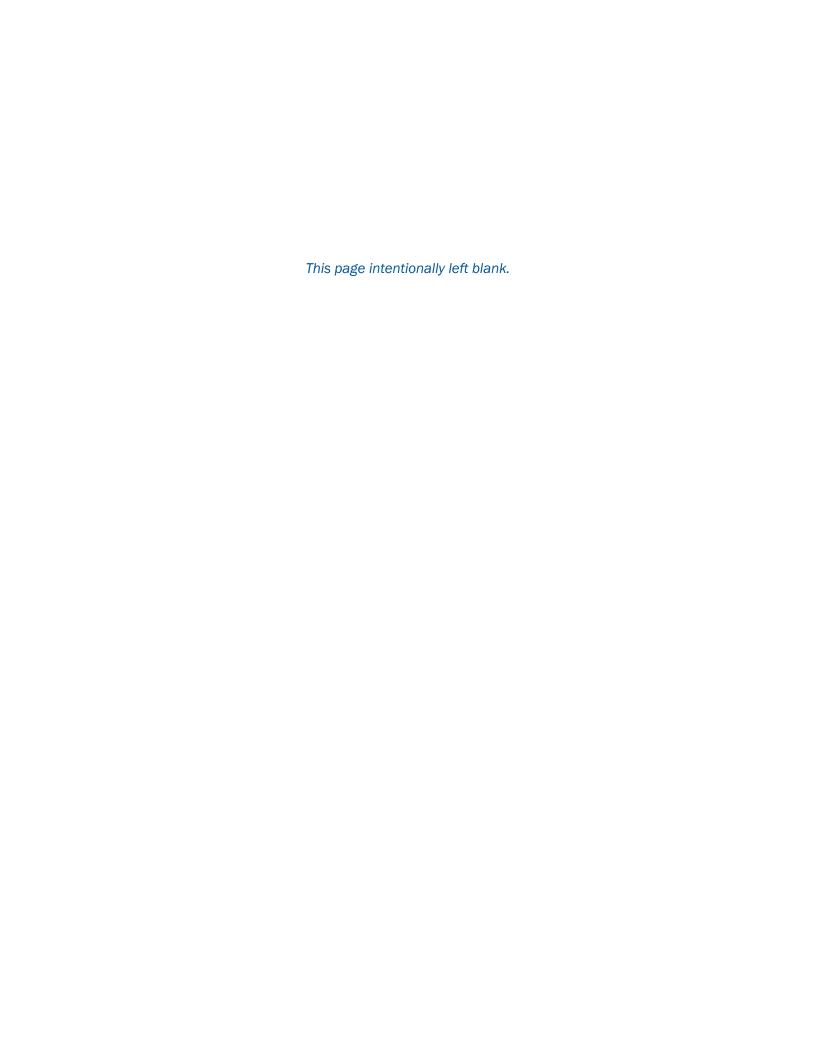
- Fresh Deepwater: Lands permanently flooded with freshwater, including environments where surface water is permanent and often deep, so that water, rather than air, is the principal medium within which the dominant organisms live. Substrate does not support emergent vegetation. Do not select if Instream habitat is also present, or if the entire Deepwater feature is included in the wetland unit being rated (such as a pond with a vegetated fringe).
- Herbaceous Balds: Variable size patches of grass and forbs on shallow soils over bedrock.
- Instream: The combination of physical, biological, and chemical processes and conditions that interact to provide functional life history requirements for instream fish and wildlife resources. Do not select if Fresh Deepwater habitat is also present.
- **Nearshore:** Relatively undisturbed nearshore habitats. These include Coastal Nearshore, Open Coast Nearshore, and Puget Sound Nearshore.
- Old-growth/Mature forests: Old-growth west of Cascade crest Stands of at least 2 tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac (20 trees/ha) > 32 in. (81 cm) diameter at breast height (dbh) or > 200 years of age. Mature forests Stands with average diameters exceeding 21 in. (53 cm) dbh; crown cover may be less than 100%; decay, decadence, numbers of snags, and quantity of large downed material is generally less than that found in old-growth; 80-200 years old west of the Cascade crest.

¹³³ http://wdfw.wa.gov/publications/00165/wdfw00165.pdf Wetland Rating System for Western WA: 2014 Update Rating Form – Version 2, July 2023

Wetland name or number __A___

- Oregon White Oak: Woodland stands of pure oak or oak/conifer associations where canopy coverage of the oak component is important. For single oaks or oak stands <0.4 ha in urban areas, <u>WDFW's</u> <u>Management Recommendations for Oregon White Oak</u>¹³⁴ provides more detail for determining if they are Priority Habitats
- Riparian: The area adjacent to freshwater aquatic systems with flowing or standing water that contains elements of both aquatic and terrestrial ecosystems which mutually influence each other.
- X Snags and Logs: Trees are considered snags if they are dead or dying and exhibit sufficient decay characteristics to enable cavity excavation/use by wildlife. Priority snags have a diameter at breast height of > 20 in. (51 cm) in western Washington and are > 6.5 ft (2 m) in height. Priority logs are > 12 in. (30 cm) in diameter at the largest end, and > 20 ft (6 m) long.
- Talus: Homogenous areas of rock rubble ranging in average size 0.5 6.5 ft (0.15 2.0 m), composed of basalt, andesite, and/or sedimentary rock, including riprap slides and mine tailings. May be associated with cliffs.
- **Westside Prairies:** Herbaceous, non-forested plant communities that can either take the form of a dry prairie or a wet prairie.

CATEGORIZATION BASED ON SPECIAL CHARACTERISTICS


CATEGORIZATION BASED ON SPECIAL CHARACTERISTICS	
Wetland Type	Category
Check off any criteria that apply to the wetland. Circle the category when the appropriate criteria are met.	
SC 1.0. Estuarine wetlands	
Does the wetland meet the following criteria for Estuarine wetlands?	
— The dominant water regime is tidal,	
— Vegetated, and	
— With a salinity greater than 0.5 ppt Yes – Go to SC 1.1 No= Not an estuarine wetland	>
SC 1.1. Is the wetland within a National Wildlife Refuge, National Park, National Estuary Reserve, Natural Area	
Preserve, State Park or Educational, Environmental, or Scientific Reserve designated under WAC 332-30-151?	C-4 1
Yes = Category I No – Go to SC 1.2	Cat. I
SC 1.2. Is the wetland unit at least 1 ac in size and meets at least two of the following three conditions?	
— The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing), and has less	
than 10% cover of non-native plant species. If non-native species are <i>Spartina</i> , see chapter 4.8 in the	Cat. I
manual.	
— At least ¾ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or un-	
mowed grassland.	Cat. II
— The wetland has at least two of the following features: tidal channels, depressions with open water, or	
contiguous freshwater wetlands. Yes = Category I No = Category II	
SC 2.0. Wetlands of High Conservation Value (WHCV)	
SC 2.1. Does the wetland overlap with any known or historical rare plant or rare & high-quality ecosystem polygons	Cat. I
on the WNHP Data Explorer? ¹³⁵ Yes = Category I No – Go to SC 2.2	Cutif
SC 2.2. Does the wetland have a rare plant species, rare ecosystem (e.g., plant community), or high-quality common	
ecosystem that may qualify the site as a WHCV? Contact WNHP for resources to help determine the presence of these elements.	
Yes – <u>Submit data to WA Natural Heritage Program for determination</u> , ¹³⁶ Go to SC 2.3 No = Not a WHCV	
SC 2.3. Did WNHP review the site within 30 days and determine that it has a rare plant or ecosystem that meets their	
criteria?	
Yes = Category I No = Not a WHCV	
res eutegery. He her a times	
SC 3.0. Bogs	
Does the wetland (or any part of the unit) meet both the criteria for soils and vegetation in bogs? Use the key	
below. If you answer YES, you will still need to rate the wetland based on its functions.	
SC 3.1. Does an area within the wetland unit have organic soil horizons, either peats or mucks, that compose 16 in	
or more of the first 32 in. of the soil profile? Yes – Go to SC 3.3 (No – Go to SC 3.2)	
SC 3.2. Does an area within the wetland unit have organic soils, either peats or mucks, that are less than 16 in. deep	
over bedrock, or an impermeable hardpan such as clay or volcanic ash, or that are floating on top of a lake or	
pond? Yes – Go to SC 3.3 No = Not a bog	\
SC 3.3. Does an area with peats or mucks have more than 70% cover of mosses at ground level, AND at least a 30%	∤
cover of plant species listed in Table 4? Yes = Category I bog No – Go to SC 3.4	
NOTE: If you are uncertain about the extent of mosses in the understory, you may substitute that criterion by	
measuring the pH of the water that seeps into a hole dug at least 16 in. deep. If the pH is less than 5.0 and	
the plant species in Table 4 are present, the wetland is a bog.	Cat. I
SC 3.4. Is an area with peats or mucks forested (> 30% cover) with Sitka spruce, subalpine fir, western red cedar,	
western hemlock, lodgepole pine, quaking aspen, Engelmann spruce, or western white pine, AND any of the	
species (or combination of species) listed in Table 4 provide more than 30% of the cover under the canopy?	
Yes = Category I bog No = Not a bog	

¹³⁵ https://www.dnr.wa.gov/NHPdata

¹³⁶ https://www.dnr.wa.gov/Publications/amp_nh_sighting_form.pdf Wetland Rating System for Western WA: 2014 Update Rating Form – Version 2, July 2023

CC 4.0. Farranted Western de	
 SC 4.0. Forested Wetlands Does the wetland have at least 1 contiguous acre of forest that meets one of these criteria for the WA Department of Fish and Wildlife's forests as Priority Habitats? If you answer YES, you will still need to rate the wetland based on its functions. — Old-growth forests (west of Cascade crest): Stands of at least two tree species, forming a multi-layered canopy with occasional small openings; with at least 8 trees/ac (20 trees/ha) that are at least 200 years of age OR have a diameter at breast height (dbh) of 32 in. (81 cm) or more. — Mature forests (west of the Cascade Crest): Stands where the largest trees are 80- 200 years old OR the species that make up the canopy have an average diameter (dbh) exceeding 21 in. (53 cm). 	
Yes = Category I No = Not a forested wetland for this section	Cat. I
SC 5.0. Wetlands in Coastal Lagoons	
Does the wetland meet all of the following criteria of a wetland in a coastal lagoon?	
 The wetland lies in a depression adjacent to marine waters that is wholly or partially separated from marine waters by sandbanks, gravel banks, shingle, or, less frequently, rocks 	
 The lagoon in which the wetland is located contains ponded water that is saline or brackish (> 0.5 ppt) during most of the year in at least a portion of the lagoon (needs to be measured near the bottom) 	
 The lagoon retains some of its surface water at low tide during spring tides 	
Yes – Go to SC 5.1 No = Not a wetland in a coastal lagoon	Cat. I
SC 5.1. Does the wetland meet all of the following three conditions?	
— The wetland is relatively undisturbed (has no diking, ditching, filling, cultivation, grazing), and has less than 20% cover of aggressive, opportunistic plant species (see list of species in H 1.5 in the manual).	
— At least ¾ of the landward edge of the wetland has a 100 ft buffer of shrub, forest, or un-grazed or un-mowed grassland.	Cat. II
— The wetland is larger than $^1/_{10}$ ac (4350 ft 2)	
Yes = Category I No = Category II	
SC 6.0. Interdunal Wetlands Is the wetland west of the 1889 line (also called the Western Boundary of Upland Ownership or WBUO)? If you answer YES, you will still need to rate the wetland based on its habitat functions. In practical terms that means the following geographic areas:	
 Long Beach Peninsula: Lands west of SR 103 Grayland-Westport: Lands west of SR 105 Ocean Shores-Copalis: Lands west of SR 115 and SR 109 and Ocean Shores Blvd SW, including lands west 	Cat I
of E. Oceans Shores Blvd SW. Yes – Go to SC 6.1 No = Not an interdunal wetland for rating)
SC 6.1. Is the wetland 1 ac or larger and scores an 8 or 9 for the habitat functions on the form (rates H,H,H or H,H,M	Cat. II
for the three aspects of function)? SC 6.2. Is the wetland 1 ac or larger, or is it in a mosaic of wetlands that is 1 ac or larger? Yes = Category II No – Go to SC 6.2 Yes = Category II No – Go to SC 6.3	Cat. III
SC 6.3. Is the unit between 0.1 and 1 ac, or is it in a mosaic of wetlands that is between 0.1 and 1 ac? Yes = Category III No = Category IV Yes = Category III No = Category IV	Cat. IV
Category of wetland based on Special Characteristics If you answered No for all types, enter "Not Applicable" on Summary Form	I

Wetland Data Forms

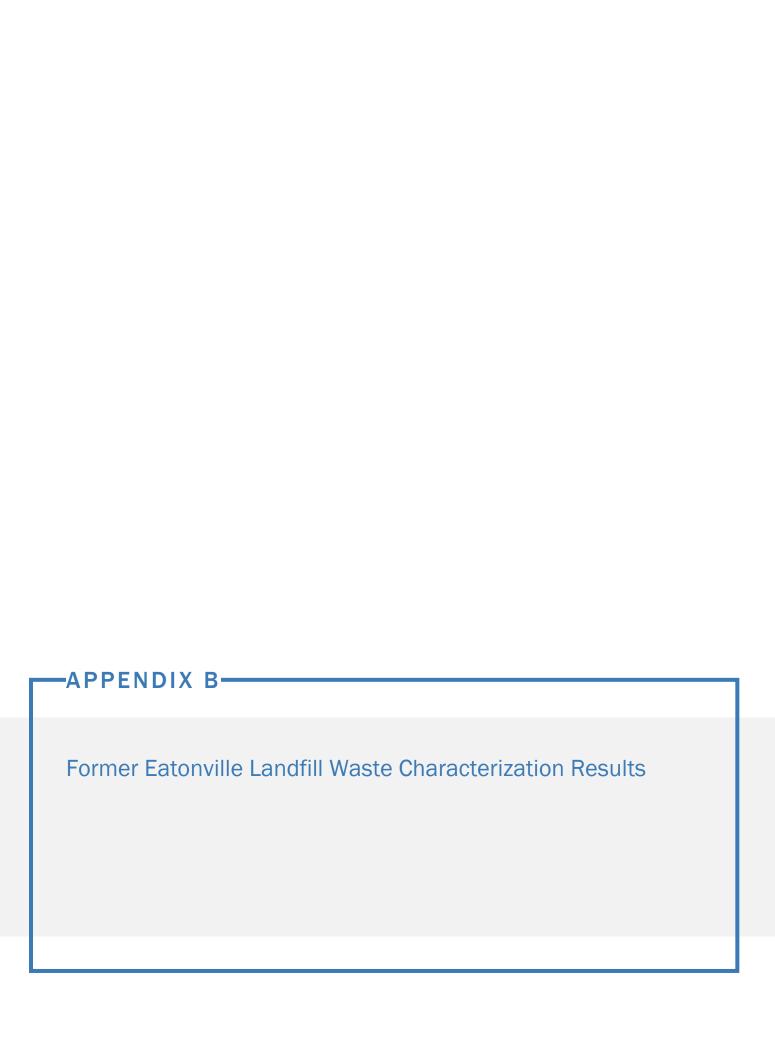
WETLAND DETERMINATION DATA FORM - Western Mountains, Valleys, and Coast Region Project/Site: Eatonville Land (1) City/County: Entonville Pierce County Sampling Date: 17/10/13 Applicant/Owner: GSI Watersaldions / Town of Entonville State: WA Sampling Point: TP-2 Investigator(s): 125 AHM Section, Township, Range: S20TI6NR04E hillslope Landform (hillslope, terrace, etc.): ___ Local relief (concave, convex, none): Nove Slope (%): 46. 85881 Long: 122.32174 Subregion (LRR): A Lat: Datum: WGS-84 Soil Map Unit Name: Barneston gravelly asher coarse savidy loam NWI classification: none Are climatic / hydrologic conditions on the site typical for this time of year? Yes No _____ (If no, explain in Remarks.) Are Vegetation _____, Soil _____, or Hydrology _____ significantly disturbed? Are "Normal Circumstances" present? Yes ______ No___ Are Vegetation _____, Soil _____, or Hydrology _____ naturally problematic? (If needed, explain any answers in Remarks.) SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc. Hydrophytic Vegetation Present? Yes No √ Is the Sampled Area Hydric Soil Present? Yes _____ No __/ within a Wetland? Wetland Hydrology Present? Yes_____No__/ Remarks: VEGETATION - Use scientific names of plants. Absolute Dominant Indicator Dominance Test worksheet: Tree Stratum (Plot size: % Cover Species? Status Number of Dominant Species 1. Douglas fix FALU That Are OBL, FACW, or FAC: 2. Alder FAL Total Number of Dominant Species Across All Strata: (B) Percent of Dominant Species 85 = Total Cover That Are OBL, FACW, or FAC: (A/B) Sapling/Shrub Stratum (Plot size: Prevalence Index worksheet: FALL 1 Swold Forn Total % Cover of: Multiply by: 2. salmonberry FAC **OBL** species ____ x 1 = ___ 3. elderherry FALL FACW species ____ x 2 = ___ FAC species _____ x 3 = ____ FACU species _____ x 4 = ____ 101 = Total Cover Herb Stratum (Plot size: __ x 5 = ____ Column Totals: _____ (A) ____ (B) Prevalence Index = B/A = Hydrophytic Vegetation Indicators: ___ 1 - Rapid Test for Hydrophytic Vegetation ___ 2 - Dominance Test is >50% __ 3 - Prevalence Index is ≤3.01 ___ 4 - Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet) ___ 5 - Wetland Non-Vascular Plants¹ Problematic Hydrophytic Vegetation¹ (Explain) Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. 0 = Total Cover Woody Vine Stratum (Plot size: Hydrophytic Vegetation Present? = Total Cover % Bare Ground in Herb Stratum Remarks: TP-2 dug on slope representire of

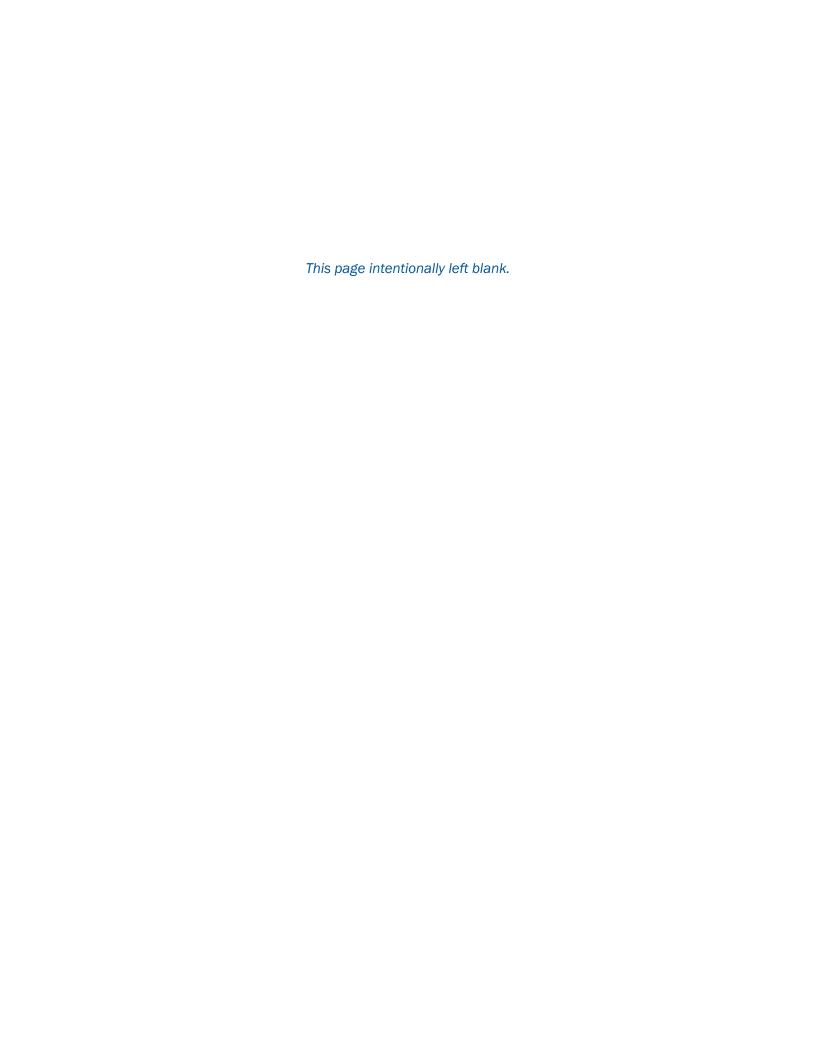
Depth	Matrix		Red	ox Feature	S			
inches)	Color (moist)	%	Color (moist)	%	Type1	_Loc2	Texture	Remarks
0-3								Duff
7-17	10 XX 411	100	_	-	_	-	gravelly	10 4 M
1_12	17 17 17 1						J	
					-	_		*
								+
							x	
		NACOTE DE LA CONTRACTOR						
	-	-						
						-		
				_		-		
	oncentration, D=Dep					ed Sand (cation: PL=Pore Lining, M=Matrix. ors for Problematic Hydric Soils ³ :
lydric Soil	Indicators: (Applic	able to all l			(ed.)			
Histosol	, ,		Sandy Redox					m Muck (A10)
	pipedon (A2)		Stripped Matri		4) /			d Parent Material (TF2) ry Shallow Dark Surface (TF12)
_	istic (A3)		Loamy Mucky			t MLRA		•
	en Sulfide (A4)	. (844)	Loamy Gleyed		2)		00	ner (Explain in Remarks)
	d Below Dark Surface	e (A11)	Depleted Matr		`		3Indicat	ors of hydrophytic vegetation and
_	ark Surface (A12)		Redox Dark S Depleted Dark	,				and hydrology must be present,
	Mucky Mineral (S1) Gleyed Matrix (S4)		Redox Depres					ess disturbed or problematic
	Layer (if present):		Redox Depres	3310113 (1 0)			- I	as distance of problemate
	Layer (ii present).							
Type:							Hydric So	il Present? Yes No
	cnes);						1119011000	
Remarks:	ches):							
YDROLC								
	DGY odrology Indicators:		d, check all that ap	ply)				ondary Indicators (2 or more required)
YDROLO Wetland Hy Primary Indi	OGY vdrology Indicators: icators (minimum of c				ves (B9) (except	Sec	
YDROLC Wetland Hy Primary Indi Surface	OGY ordrology Indicators: icators (minimum of c water (A1)		Water-St	tained Lea		except	Sec	ondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2
YDROLC Wetland Hy Primary Indi Surface High W	OGY rdrology Indicators: icators (minimum of c water (A1) later Table (A2)		Water-St	tained Lea A 1, 2, 4A,		except	Sec	ondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B)
YDROLC Wetland Hy Primary Indi Surface High W Saturat	OGY rdrology Indicators: icators (minimum of compared to the c		Water-Si MLR/ Salt Crus	tained Lea A 1, 2, 4A, st (B11)	and 4B)	except	Sec	ondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10)
YDROLC Wetland Hy Primary Indi Surface High W Saturat Water M	OGY rdrology Indicators: icators (minimum of c water (A1) later Table (A2) ion (A3) Marks (B1)		Water-Si MLR/ Salt Crus Aquatic	tained Lear A 1, 2, 4A, st (B11) Invertebrat	and 4B) es (B13)	except	Sec.	ondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2)
YDROLO Wetland Hy Primary Indi Surface High W Saturat Water M Sedime	ordrology Indicators: icators (minimum of control of the Water (A1) later Table (A2) ion (A3) Marks (B1) ent Deposits (B2)		Water-Si MLR/ Salt Crus Aquatic Hydroge	tained Lear A 1, 2, 4A, st (B11) Invertebrat en Sulfide C	and 4B) es (B13) Odor (C1)		Sec.	ondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C
YDROLO Wetland Hy Primary Indi Surface High W Saturat Water M Sedime Drift De	ordrology Indicators: icators (minimum of control of co		Water-Si MLR/ Salt Crus Aquatic Hydroge Oxidized	tained Lear A 1, 2, 4A, st (B11) Invertebrat in Sulfide C	es (B13) Odor (C1) eres along	ı Living R	Secondary Second	ondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Geomorphic Position (D2)
YDROLO Wetland Hy Primary Indi Surface High W Saturat Water M Sedime Drift De	ordrology Indicators: icators (minimum of context) water (A1) later Table (A2) ion (A3) warks (B1) ent Deposits (B2) eposits (B3) lat or Crust (B4)		Water-Si MLR/ Salt Crus Aquatic Hydroge Oxidized Presence	tained Lear A 1, 2, 4A, st (B11) Invertebrat on Sulfide Co H Rhizosph e of Reduc	es (B13) Odor (C1) eres along ced Iron (C	g Living R (4)	Secondary Second	ondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Geomorphic Position (D2) Shallow Aquitard (D3)
YDROLC Wetland Hy Primary Indi Surface High W Saturat Water N Sedime Drift De Algal M Iron De	order variable (A2) ion (A3) Marks (B1) ent Deposits (B2) eposits (B3) lat or Crust (B4) eposits (B5)		Water-Si MLR/ Salt Crus Aquatic Hydroge Oxidized Presenc Recent I	tained Lear A 1, 2, 4A, st (B11) Invertebrat in Sulfide C if Rhizosph e of Reduc ron Reduc	es (B13) Odor (C1) eres along ced Iron (C	g Living R C4) ed Soils (Sec.	ondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5)
YDROLC Wetland Hy Primary Indi Surface High W Saturat Water M Sedime Drift De Algal M Iron De	order of the control	one required	Water-Si MLR/ Salt Crus Aquatic Hydroge Oxidized Presenc Recent I Stunted	tained Lear A 1, 2, 4A, st (B11) Invertebrat on Sulfide C I Rhizosph e of Reduc ron Reduc or Stresse	es (B13) Odor (C1) eres along ced Iron (C tion in Tille d Plants (I	g Living R C4) ed Soils (Secots (C3)	ondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
YDROLC Wetland Hy Primary Indi Surface High W Saturat Water M Sedime Drift De Algal M Iron De Surface Inundal	order order of the control of the co	one required	Water-Si MLR/ Salt Crus Aquatic Hydroge Oxidized Presenc Recent I Stunted Other (E	tained Lear A 1, 2, 4A, st (B11) Invertebrat on Sulfide C I Rhizosph e of Reduc ron Reduc or Stresse	es (B13) Odor (C1) eres along ced Iron (C tion in Tille d Plants (I	g Living R C4) ed Soils (Secots (C3)	ondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5)
YDROLO Wetland Hy Primary Indi Surface High W Saturat Water M Sedime Drift De Algal M Iron De Surface Inundal Sparse	order of the control	one required	Water-Si MLR/ Salt Crus Aquatic Hydroge Oxidized Presenc Recent I Stunted Other (E	tained Lear A 1, 2, 4A, st (B11) Invertebrat on Sulfide C I Rhizosph e of Reduc ron Reduc or Stresse	es (B13) Odor (C1) eres along ced Iron (C tion in Tille d Plants (I	g Living R C4) ed Soils (Secots (C3)	ondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
YDROLC Wetland Hy Primary Indi Surface High W Saturat Water M Sedime Drift De Algal M Iron De Surface Inundal	order of the control	Imagery (B'	Water-Si MLR/ Salt Crus Aquatic Hydroge Oxidized Presenc Recent I Stunted Other (E	tained Lear A 1, 2, 4A, st (B11) Invertebrat in Sulfide C if Rhizosph e of Reduct fron Reduct or Stresse explain in R	es (B13) Odor (C1) eres along ed Iron (C tion in Tille d Plants (I	y Living R (4) ed Soils (D1) (LRR	Secots (C3)	ondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
YDROLC Wetland Hy Primary Indi Surface High W Saturat Water N Sedime Drift De Algal M Iron De Surface Inundat Sparse	ordrology Indicators: icators (minimum of content of co	Imagery (B e Surface (I	Water-S' MLR/ Salt Crus Aquatic Hydroge Oxidized Presenc Recent I Stunted Other (E	tained Lear A 1, 2, 4A, st (B11) Invertebrat in Sulfide C I Rhizosph e of Reduc ron Reduc or Stresse explain in R	es (B13) Odor (C1) eres along ced Iron (C tion in Tille d Plants (I	y Living R (4) ed Soils (D1) (LRR	Secots (C3)	ondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
YDROLC Wetland Hy Primary Indi Surface High W Saturat Water N Sedime Drift De Algal M Iron De Surface Inundat Sparse	order of the control	Imagery (B e Surface (I	Water-S' MLR/ Salt Crus Aquatic Hydroge Oxidized Presenc Recent I Stunted Other (E	tained Lear A 1, 2, 4A, st (B11) Invertebrat in Sulfide C if Rhizosph e of Reduc ron Reduc or Stresse explain in R	es (B13) Odor (C1) eres along ced Iron (C tion in Tille d Plants (I	y Living R C4) ed Soils (D1) (LRR	Secots (C3)	ondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
YDROLC Wetland Hy Primary Indi Surface High W Saturat Water N Sedime Drift De Algal M Iron De Surface Inundal Sparse Field Obse Surface Wa Water Table Saturation I	order order of the control of the co	Imagery (B e Surface (I	Water-S' MLR/ Salt Crus Aquatic Hydroge Oxidized Presenc Recent I Stunted Other (E	tained Lear A 1, 2, 4A, st (B11) Invertebrat in Sulfide C if Rhizosph e of Reduc ron Reduc or Stresse explain in R	es (B13) Odor (C1) eres along ced Iron (C tion in Tille d Plants (I	y Living R C4) ed Soils (D1) (LRR	Secots (C3)	ondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
YDROLC Wetland Hy Primary Indi Surface High W Saturat Water N Sedime Drift De Algal M Iron De Surface Inundal Sparse Field Obse Surface Wa Water Table Saturation I	order order of control	Imagery (B e Surface (I res res	Water-S' MLR/ Salt Crus Aquatic Hydroge Oxidized Presenc Recent I Stunted Other (E	tained Lear A 1, 2, 4A, st (B11) Invertebrat in Sulfide (I Rhizosph e of Reduct ron Reduct or Stresse explain in R (inches):	es (B13) Odor (C1) eres along ced Iron (C tion in Tille d Plants (I	y Living R C4) ed Soils (D1) (LRR	Second Se	ondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
YDROLC Wetland Hy Primary Indi Surface High W Saturat Water N Sedime Drift De Algal M Iron De Surface Inundal Sparse Field Obse Surface Wa Water Table Saturation I	order order of the control of the co	Imagery (B e Surface (I res res	Water-S' MLR/ Salt Crus Aquatic Hydroge Oxidized Presenc Recent I Stunted Other (E	tained Lear A 1, 2, 4A, st (B11) Invertebrat in Sulfide (I Rhizosph e of Reduct ron Reduct or Stresse explain in R (inches):	es (B13) Odor (C1) eres along ced Iron (C tion in Tille d Plants (I	y Living R C4) ed Soils (D1) (LRR	Second Se	ondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
YDROLO Wetland Hy Primary Indi Surface High W Saturat Water N Sedime Drift De Algal M Iron De Surface Inundal Sparse Field Obse Surface Wa Water Table Saturation I	order order of control	Imagery (B e Surface (I res res	Water-S' MLR/ Salt Crus Aquatic Hydroge Oxidized Presenc Recent I Stunted Other (E	tained Lear A 1, 2, 4A, st (B11) Invertebrat in Sulfide (I Rhizosph e of Reduct ron Reduct or Stresse explain in R (inches):	es (B13) Odor (C1) eres along ced Iron (C tion in Tille d Plants (I	y Living R C4) ed Soils (D1) (LRR	Second Se	ondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
YDROLC Wetland Hy Primary Indi Surface High W Saturat Water N Sedime Drift De Algal M Iron De Surface Inundal Sparse Field Obse Surface Wa Water Table Saturation I	order order of control	Imagery (B e Surface (I res res	Water-S' MLR/ Salt Crus Aquatic Hydroge Oxidized Presenc Recent I Stunted Other (E	tained Lear A 1, 2, 4A, st (B11) Invertebrat in Sulfide (I Rhizosph e of Reduct ron Reduct or Stresse explain in R (inches):	es (B13) Odor (C1) eres along ced Iron (C tion in Tille d Plants (I	y Living R C4) ed Soils (D1) (LRR	Second Se	ondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
YDROLO Wetland Hy Primary Indi Surface High W Saturat Water N Sedime Drift De Algal M Iron De Surface Inundal Sparse Field Obse Surface Wa Water Table Saturation I	order order of control	Imagery (B e Surface (I res res	Water-S' MLR/ Salt Crus Aquatic Hydroge Oxidized Presenc Recent I Stunted Other (E	tained Lear A 1, 2, 4A, st (B11) Invertebrat in Sulfide (I Rhizosph e of Reduct ron Reduct or Stresse explain in R (inches):	es (B13) Odor (C1) eres along ced Iron (C tion in Tille d Plants (I	y Living R C4) ed Soils (D1) (LRR	Second Se	ondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)

WETLAND DETERMINATION DATA FORM - Western Mountains, Valleys, and Coast Region Project/Site: Eatonville landfill City/County: Entonville Pierce Landfill Date: 12/70/25 Applicant/Owner: C-51 WATER Solutions 1 Town of Estenville State: WA Sampling Point: TP-1 Section, Township, Range: S20TI6R04E Landform (hillslope, terrace, etc.): Villslope Local relief (concave, convex, none): None Slope (%): __ Datum: WGS-84 Lat: 416.85946 Long: 122.32314 Subregion (LRR): A Soil Map Unit Name: Kapowsin aravelly 09 m Are climatic / hydrologic conditions on the site typical for this time of year? Yes No _____ (If no, explain in Remarks.) Are Vegetation _____, Soil _____, or Hydrology _____ significantly disturbed? Are "Normal Circumstances" present? Yes _ No ✓ Are Vegetation _____, Soil _____, or Hydrology naturally problematic? (If needed, explain any answers in Remarks.) SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc. Hydrophytic Vegetation Present? Yes____No__ Hydric Soil Present? Is the Sampled Area Yes____No \ within a Wetland? Wetland Hydrology Present? Yes____No__ Remarks: TP-1 adjacent to landfill VEGETATION - Use scientific names of plants. Absolute Dominant Indicator Dominance Test worksheet: Tree Stratum (Plot size: 50 % Cover Species? Status Number of Dominant Species 1. 1 tdol 30 FAL That Are OBL, FACW, or FAC: 2. Per leaf Marie FACU Total Number of Dominant FALU 3. Done fir Species Across All Strata: (B) Percent of Dominant Species 105 = Total Cover That Are OBL, FACW, or FAC: Sapling/Shrub Stratum (Plot size: Prevalence Index worksheet: 1. Soudord ferry Total % Cover of: Multiply by: OBL species _____ x 1 = ____ FACW species _____ x 2 = ___ FAC species _____ x 3 = ____ FACU species _____ x 4 = ____ O _ = Total Cover Herb Stratum (Plot size: 3) UPL species ___ x 5 = Column Totals: _____ (A) ____ (B) Prevalence Index = B/A = Hydrophytic Vegetation Indicators: ___ 1 - Rapid Test for Hydrophytic Vegetation 2 - Dominance Test is >50% ___3 - Prevalence Index is ≤3.01 ___ 4 - Morphological Adaptations¹ (Provide supporting data in Remarks or on a separate sheet) ___ 5 - Wetland Non-Vascular Plants¹ Problematic Hydrophytic Vegetation¹ (Explain) 10._____ ¹Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic. = Total Cover Woody Vine Stratum (Plot size:

= Total Cover

Remarks:


% Bare Ground in Herb Stratum


TP lug on slope representative of arch

Hydrophytic Vegetation Present?

Sampling Point: ____TP-|

Depth Matr	×	Redo	x Feature	S		
inches) Color (moist		Color (moist)	%	Type ¹	Loc2	Texture Remarks
)-						Duff Mulch 12 AVK
1-12 JOYR 21	2 100			-		sardygravel w/ granel 1-2
-12 1011211			-	_		
			-	=		
Type: C=Concentration, D=					ed Sand G	
lydric Soil Indicators: (Ap	plicable to all			ted.)		Indicators for Problematic Hydric Soils ³ :
Histosol (A1)		Sandy Redox (2 cm Muck (A10)
Histic Epipedon (A2)		Stripped Matrix				Red Parent Material (TF2)
Black Histic (A3)		Loamy Mucky			t MLRA 1	
Hydrogen Sulfide (A4)		Loamy Gleyed		2)		Other (Explain in Remarks)
Depleted Below Dark Su		Depleted Matri				3 Indicators of hude-abilities /
Thick Dark Surface (A12		Redox Dark St				³ Indicators of hydrophytic vegetation and
_ Sandy Mucky Mineral (S		Depleted Dark	,	,		wetland hydrology must be present,
_ Sandy Gleyed Matrix (Se		Redox Depres	sions (F8)			unless disturbed or problematic.
Restrictive Layer (if presen	t):					
Туре:						
Depth (inches):						Hydric Soil Present? Yes No
Remarks:						
Remarks: YDROLOGY Vetland Hydrology Indicat	ors:					
Remarks: YDROLOGY	ors:	ed; check all that app	oly)			Secondary Indicators (2 or more required)
Remarks: YDROLOGY Vetland Hydrology Indicat	ors:	Water-St	ained Leav		except	Secondary Indicators (2 or more required)
Remarks: YDROLOGY Vetland Hydrology Indicat Primary Indicators (minimum	ors:	Water-St			except	Secondary Indicators (2 or more required)
YDROLOGY Vetland Hydrology Indicate Primary Indicators (minimum Surface Water (A1)	ors:	Water-St	ained Leav		except	Secondary Indicators (2 or more required) — Water-Stained Leaves (B9) (MLRA 1, 2,
YDROLOGY Vetland Hydrology Indicat Primary Indicators (minimum Surface Water (A1) High Water Table (A2)	ors:	Water-St MLRA Salt Crus	ained Leav	and 4B)	except	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B)
YDROLOGY Vetland Hydrology Indicate Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1)	ors:	Water-St MLRA Salt Crus	ained Leav A 1, 2, 4A, It (B11) Invertebrate	and 4B) es (B13)	except	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2)
YDROLOGY Vetland Hydrology Indicate Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3)	ors:	Water-St. MLRA Salt Crus Aquatic II Hydroger	ained Leav A 1, 2, 4A, It (B11) Invertebration In Sulfide C	and 4B) es (B13) Odor (C1)		Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2)
YDROLOGY Vetland Hydrology Indicate Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2)	ors:	Water-St. MLRA Salt Crus Aquatic II Hydroger Oxidized	ained Leav A 1, 2, 4A, It (B11) Invertebration In Sulfide C	es (B13) Odor (C1) eres along	Living Ro	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9
YDROLOGY Vetland Hydrology Indicate Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4)	ors:	Water-St. MLRA Salt Crus Aquatic li Hydroger Oxidized Presence	ained Leavent A. 1, 2, 4A, of (B11) envertebrate Sulfide Control Rhizosphi	es (B13) Odor (C1) eres along ed Iron (C	Living Ro	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9 oots (C3) Geomorphic Position (D2) Shallow Aquitard (D3)
YDROLOGY Vetland Hydrology Indicate Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5)	ors: of one require	Water-St. MLRA Salt Crus Aquatic II Hydroger Oxidized Presence	ained Lear A 1, 2, 4A, at (B11) nvertebrate n Sulfide C Rhizosphi e of Reducton Reducton	es (B13) Odor (C1) eres along ted Iron (C	Living Ro 4) ed Soils (C	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9 oots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5)
YDROLOGY Vetland Hydrology Indicate Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4)	ors: of one require	Water-St. MLRA Salt Crus Aquatic li Hydroger Oxidized Presence Recent Ir	ained Leavanne Leavan	es (B13) Odor (C1) eres along ed Iron (C tion in Tille d Plants (E	Living Ro 4) ed Soils (C	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9 cots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5)
YDROLOGY Vetland Hydrology Indicate Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6 Inundation Visible on A6	ors: of one require	Water-St. MLRA Salt Crus Aquatic li Hydroger Oxidized Presence Recent Ir Stunted (637) Other (Es	ained Leavanne Leavan	es (B13) Odor (C1) eres along ed Iron (C tion in Tille d Plants (E	Living Ro 4) ed Soils (C	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9 oots (C3) — Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
YDROLOGY Vetland Hydrology Indicate Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on A6 Sparsely Vegetated Cor	ors: of one require	Water-St. MLRA Salt Crus Aquatic li Hydroger Oxidized Presence Recent Ir Stunted (637) Other (Es	ained Leavanne Leavan	es (B13) Odor (C1) eres along ed Iron (C tion in Tille d Plants (E	Living Ro 4) ed Soils (C	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9 oots (C3) — Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
YDROLOGY Vetland Hydrology Indicate Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6 Inundation Visible on Ae Sparsely Vegetated Cor	ors: of one require) rial Imagery (I ncave Surface	Water-St. MLRA Salt Crus Aquatic li Hydroger Oxidized Presence Recent lr Stunted of Other (Ex	ained Leav A 1, 2, 4A, It (B11) Invertebrate In Sulfide C Rhizosphi Ie of Reduction Reduction For Stressed Explain in R	es (B13) Ddor (C1) eres along ed Iron (C tion in Tille d Plants (E emarks)	Living Ro 4) ed Soils (C 01) (LRR	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9 oots (C3) — Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6 Inundation Visible on A6 Sparsely Vegetated Cor	ors: of one require rial Imagery (Incave Surface	Water-St. MLRA Salt Crus Aquatic li Hydroger Oxidized Presence Recent ir Stunted (37) Other (Ex	ained Leas A 1, 2, 4A, at (B11) nvertebrate in Sulfide C Rhizosphi e of Reduc- ron Reduc- or Stressed xplain in R	es (B13) Dodor (C1) eres along led Iron (C tion in Tille d Plants (E lemarks)	Living Ro 4) ed Soils (C 01) (LRR A	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9 oots (C3) — Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
YDROLOGY Vetland Hydrology Indicate Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6 Inundation Visible on A6 Sparsely Vegetated Corfield Observations: Surface Water Present? Vater Table Present?	ors: of one require in a limagery (I acave Surface Yes Yes	Water-St. MLRA Salt Crus Aquatic li Hydroger Oxidized Presence Recent lr Stunted of Other (Ex	ained Leas A 1, 2, 4A, It (B11) Invertebrate In Sulfide Con Reduct It of Reduct It	es (B13) Ddor (C1) eres along ded Iron (C tion in Tille d Plants (E	Living Rd 4) ed Soils (C 01) (LRR A	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9 oots (C3) — Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) Raised Ant Mounds (D6) (LRR A)
Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6 Inundation Visible on Ae Sparsely Vegetated Cor Field Observations: Surface Water Present?	ors: of one require rial Imagery (I ncave Surface Yes Yes Yes	Water-St.	ained Leas A 1, 2, 4A, It (B11) Invertebrate In Sulfide Con Reduct It of Reduct It	es (B13) Ddor (C1) eres along led Iron (C tion in Tille d Plants (E lemarks)	Living Ro 4) ed Soils (C 01) (LRR A	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9 oots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) A) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on A6 Sparsely Vegetated Corfield Observations: Surface Water Present? Water Table Present? Saturation Present?	ors: of one require rial Imagery (I ncave Surface Yes Yes Yes	Water-St.	ained Leas A 1, 2, 4A, It (B11) Invertebrate In Sulfide Con Reduct It of Reduct It	es (B13) Ddor (C1) eres along led Iron (C tion in Tille d Plants (E lemarks)	Living Ro 4) ed Soils (C 01) (LRR A	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9 oots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) A) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6) Inundation Visible on A6 Sparsely Vegetated Corfield Observations: Surface Water Present? Water Table Present? Saturation Present?	ors: of one require rial Imagery (I ncave Surface Yes Yes Yes	Water-St.	ained Leas A 1, 2, 4A, It (B11) Invertebrate In Sulfide Con Reduct It of Reduct It	es (B13) Ddor (C1) eres along led Iron (C tion in Tille d Plants (E lemarks)	Living Ro 4) ed Soils (C 01) (LRR A	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9 oots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) A) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)
Primary Indicators (minimum Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6 Inundation Visible on A6 Sparsely Vegetated Core Field Observations: Surface Water Present? Water Table Present? Saturation Present? Continuous Control (Staturation Present) Control (S	ors: of one require rial Imagery (I ncave Surface Yes Yes Yes	Water-St.	ained Leas A 1, 2, 4A, It (B11) Invertebrate In Sulfide Con Reduct It of Reduct It	es (B13) Ddor (C1) eres along led Iron (C tion in Tille d Plants (E lemarks)	Living Ro 4) ed Soils (C 01) (LRR A	Secondary Indicators (2 or more required) Water-Stained Leaves (B9) (MLRA 1, 2, 4A, and 4B) Drainage Patterns (B10) Dry-Season Water Table (C2) Saturation Visible on Aerial Imagery (C9 oots (C3) Geomorphic Position (D2) Shallow Aquitard (D3) FAC-Neutral Test (D5) A) Raised Ant Mounds (D6) (LRR A) Frost-Heave Hummocks (D7)

TECHNICAL MEMORANDUM

Former Eatonville Landfill Waste Characterization Results

To: Sam Meng, State of Washington Department of Ecology

Keith Johnston, Tacoma-Pierce County Health Department

From: Benjamin Johnson, GSI Water Solutions, Inc.

Braedon Warner, GSI Water Solutions, Inc.

Luke Thies, Weyerhaeuser Company Seth Boettcher, Town of Eatonville

Attachments: Table 1 — Test Pit and Wetland Sample Locations

Table 2 — Metals and pH Results

Table 3 — TCLP Metal Results

Table 4 - PCB Results
Table 5 - SVOC Results
Table 6 - TPH Results

Table 7 — VOC Metal Results

Figure 1 — Test Pit and Sampling Locations

Attachment A — Test Pit Photo Logs Attachment B — Test Pit Soil Logs Attachment C — Laboratory Reports

Date: January 11, 2024

1. Executive Summary

This Waste Characterization Results technical memorandum (TM) concerns the Former Eatonville Landfill (Site), owned by Weyerhaeuser Company (Weyerhaeuser) near State Route 7 in unincorporated Pierce County, Washington, and adjacent to Nisqually State Park. The Site is composed of a former municipal waste landfill and the area beyond the toe of the landfill (referred to as the "Wetland Area") where wastes and select contaminants have migrated over time.

In October 2023, test pitting and wetland soil sampling were completed at the Site to evaluate the composition of the waste prism and the quality of soils and interbedded materials present for disposal. The wastes identified were primarily municipal household solid wastes and were largely comingled with cover soils from the surface to the native soils at the base of the waste prism. Large wastes (i.e., car bodies, tires, and appliances) were most predominant near the surface of the Site and were largely absent in the waste prism. At depth, large concrete blocks were found at several locations. Surface soils, interbedded materials, native soils, and wetland soils chemically and characteristically evaluated do not qualify as federal

hazardous wastes per 40 Code of Federal Regulations (CFR) § 261.4(b)(3) based on the chemical and characteristic testing results or exceeded the Toxic Substances Control Act (TSCA) 15 United States Code (USC) § 2605 threshold for polychlorinated biphenyl (PCB) concentrations. Additionally, the soils and interbedded materials do not qualify as Washington State Dangerous Wastes per Washington Administrative Code (WAC) 173-303-100 due to their exemption in WAC 173-303-071(3)(c). Based on these findings, all wastes, soils, and interbedded materials at the Site may be accepted as "Special Waste" if submitted under a Waste Disposal Authorization (WDA) without any additional designations.

2. Objective

The objective of this technical memorandum (TM) is to present the results of waste characterization efforts completed in October 2023 at the Site. A series of 17 test pits (TPs) in the upper waste prism were excavated to further categorize and evaluate:

- 1. The types of waste and interbedded fill/cover soil and fine waste materials (interbedded materials).
- 2. The quality of soil at the contact between the waste prism and native surface (native soil).
- 3. The quality of wetland soil proposed for removal at the base of the former landfill.

This TM details the results of the test pitting, waste material classification, and waste characterization sampling and a preliminary effort to classify the wastes for possible disposal at landfills as part of future remedial action (RA) at the Site. The waste classification is based on chemical results and the types of waste streams present within the waste prism and the nature of native soil at the base of the former landfill waste prism and in the Wetland Area.

3. Regulated Landfill Outreach

Selection of a final disposal facility (or facilities) is a complex process that must weigh a variety of factors, including, but not limited to, county requirements, state and federal regulations, capacity of waste facilities, anticipated waste streams and waste characteristics, transport distances and carbon footprint, pricing, and flow controls (EPA, 1995). There are currently several Subtitle D landfills that may be viable options for the disposal of waste streams and soils anticipated to be generated during a future RA at the Site. However, the Pierce County Recycling, Composting and Disposal (LRI) landfill, operated by Waste Connections, Inc., is the closest landfill (19.25 miles) to the Site. The LRI landfill and Tacoma-Pierce County Health Department use the WDA process to determine whether wastes may be disposed of in county-permitted disposal facilities as "special waste." ¹

Further consultation will be needed during development of the Cleanup Action Plan and the Engineering Design Report to select the final disposal facility. This TM outlines test pitting observations and analytical results to support these discussions. However, this characterization effort may need to be supplemented to meet the different needs of the facilities being considered for the disposal of waste streams generated through the removal of the waste prism and impacted soils during the RA.

4. Test Pitting and Wetland Soil Sampling

Seventeen test pits were excavated into the accessible portions of the upper waste prism (delineated on Figure 1 as the anticipated test pitting area) to the deepest extent possible or to native soil material. Two test pits (TP-16 and TP-17) were not sampled because no waste was present beneath the surface, indicating that the waste prism does not extend that far upslope. At the other 15 test pits, the 0 to 1 foot below ground

¹ The Tacoma-Pierce County Health Department WDA process and WDA application for contractors and consultants are explained here: https://www.tpchd.org/healthy-places/waste-management/waste-disposal-authorization.

surface (bgs) surface soil interval, interbedded material intervals within the waste prism, and native soil beneath the waste prism were sampled, if encountered.

Surface soils were not collected in locations other than the test pits, as their composition was nearly indistinguishable from interbedded materials below 1 foot bgs. Additionally, interbedded materials were more homogenous and comingled than anticipated; therefore, interbedded material samples were routinely taken at approximately 5 feet intervals except where impacts or significant wastes were encountered. In addition to the samples collected at test pit locations, five wetland soil samples were collected at the base of the landfill in an area proposed for removal in the Feasibility Study (FS) remedial alternatives for the Site.

Native soil was only encountered at six test pit locations (TP-04, TP-05, TP-06, TP-09, TP-10, and TP-15) in the anticipated test pitting area (Figure 1). However, due to the steep slope and limited reach of the excavator, the completion of test pits was not possible at the most downslope extent of the anticipated test pitting area or in the lower portions of the waste prism itself. Soil erosion best management practices (BMPs), including straw wattles and matting, were used over disturbed surfaces upon test pitting completion. The following sections describe waste and soil classification.

4.1 Waste Composition

The types of anthropogenic waste observed in the test pits were generally composed of household wastes, including plastics, metals, glass, textiles, concrete, and tires. The approximate extents of these wastes are shown as a yellow dashed line in Figure 1. Soil, cobbles, and boulders were a significant component of the waste prisms composition, and generally made up between 30 to 70 percent of the waste prisms composition, with some test pits having up to 90 percent soil. Cover soil was anticipated to occur in discrete identifiable beds (interbedded material) during the planning process, but these distinct beds were not encountered during test pitting.

The wastes encountered during the test pitting are described below:

- Metals. Metal wastes included automobile bodies and parts, appliances, and small unidentified metal
 fragments. Orange and black oxidized metallic slag material was encountered in test pits below 10 to 15
 feet. Large metal objects occurring primarily near the surface may be readily sorted and recycled during
 the RA.
- Tires. Tires were scattered throughout the landfill, including at the toe of the landfill and at the upslope end of the Wetland Area. During test pitting, tires were primarily encountered at the surface, but were also present to depths of approximately 10 to 15 feet bgs in some test pits. Tires were often present in stacked layers, but, in general, tires did not make up more than 10 percent of all wastes encountered in a test pit. Tires may be readily sorted and recycled during the RA.
- Plastic. Plastic wastes were abundant in the upper 10 to 15 feet bgs of the prism and were predominantly disintegrated household wastes. The household wastes include general house wares, such as kitchen supplies, toys, product containers, garbage bags, and unidentified wrappings. Up to approximately 70 percent of wastes encountered in the pits were household plastic materials, and they were mainly concentrated near the surface of each test pit between 0 to 10 feet bgs.
- Glass. Glass containers, likely also from household waste, were a minor component of the waste prism (less than 20 percent of encountered waste materials) but were present at all test pit locations and depths.
- Textiles. Household wastes such as clothes, carpet, woven fabrics, clothes, and rope were encountered in test pits throughout the prism. While textiles accounted for generally less than 15 percent of encountered waste materials, these textiles covered large surface areas and provided a structural fabric that stabilized other disintegrated materials present in the waste prism.

Concrete. Large, 3 to 4 feet concrete slabs and rebar were encountered below 10 to 15 feet bgs in most test pits. Concrete was generally more prevalent in the central and north side of the waste prism, where concrete slabs were stacked atop one another and caused early refusal at TP-09. Rusted, oxidized, and melted slag material was comingled with concrete material.

No drums, wood waste, or hazardous/regulated wastes (i.e., batteries, containers with liquid contents, or freon-containing devices) were encountered in the sampled test pits. Waste was not encountered within wetland soil samples themselves, although they were near surficial debris such as tires.

4.2 Soil Classification

Test pits and wetland soil samples were systematically logged using the United Soil Classification System (USCS) (codes provided below), photographed, and sampled. Attachment A includes photograph logs for wetland samples and all test pits. Attachment B includes soil field forms for test pits and wetland samples.

4.2.1 Test Pit Soils

The following are generalized descriptions of surface soil, interbedded materials, and native soils encountered in the test pits:

- Surface Soil. Surface soil was typically rooty, brown, moist, loose, sandy gravels (GW) with 10 to 30 percent waste. Aside from the moisture content and presence of plant roots, there were no discernable soil development horizons or changes in waste concentrations between surface sediments and the interbedded materials described below.
- Interbedded Materials. Interbedded soils were brown, dry, loose sandy gravel and gravelly sands (GW, SW) with 10 to 70 percent comingled wastes, as previously described. Rounded boulders up to 3 feet in diameter were encountered, but the gravels encountered were typically less than 6 inches in diameter. No distinct soil beds were found within the test pits.
- Native Soils. Native soils were distinct from waste prism soils and did not contain wastes. Test pits and depths where native soil was encountered are shown on Figure 1. Three distinct forms of native soil were encountered:
 - Light gray, indurated, dry, coarse sandy gravel (GW) with silt; bedded with a friable and chippy matrix of fines. This soil type was encountered at TP-05 (4 feet bgs), 06 (7 feet bgs), 15 (8 feet bgs), 16 (surface), and 17 (surface).
 - Light gray-brown, moist, indurated but friable, well-sorted medium-coarse and angular granitic sand (SP) comprising native saprolite. This soil type was encountered in TP-04 (9 feet bgs) and TP-10 (12 feet bgs).
 - Purple, moist, indurated and clast-supported sandy and firmly cemented conglomerate (GW) with
 0.5-inch rounded clasts. This soil type was encountered in TP-08 (8 feet bgs).

4.2.2 Wetland Soils

All wetland soils were organic-rich, wet, soft, dark purple, silty sand and silt. WS-04 was collected through the center of a tire. These characteristics are similar to samples previously collected in this area.

5. Chemical Data Evaluation

Aside from the adjustment in sampling intervals as described Section 4, surface soil, interbedded materials, native soils, and wetland soils were analyzed following the approach described in the Waste Characterization Approach Technical Memorandum (Approach Memo) (GSI, 2023a). Surface soil interbedded material, native soil, and wetland soil samples were prescreened for semivolatile organic compounds (SVOCs)/total petroleum hydrocarbons (TPH) and volatile organic compound (VOC) impacts. SVOCs and TPH impacts were prescreened using sheen tests and visual/olfactory indicators. Several samples (TP-08 from 4-5 and 12 to

13 feet bgs, TP-07 from 14 to 15 feet bgs, and TP-01 from 10 to 11 feet bgs) yielded a thin, grey sheen (see Attachment B). VOCs were prescreened using a photoionization detector (PID) (see Attachment B). No samples exceeded the 10.0 parts per million (ppm) threshold for VOC sampling. The highest PID detection was 3.0 ppm at TP-09 from the 11 to 12 feet bgs sample. However, some surface soil, interbedded material, and wetland soil samples were collected opportunistically for SVOC and VOC analysis to verify the screening assumptions.

All native soil samples were run for SVOCs (U.S. Environmental Protection Agency [EPA] Method 8270E), VOCs (EPA Method 8260D), and diesel/gas range TPH (NWTPH-Dx/Gx) regardless of their prescreening results. Wetland samples WS-1 and WS-5 were electively run for gas-range TPH despite negative prescreening results to confirm whether TPH-Gx exceedances identified during the Remedial Investigation (RI) were still present. Per the Approach Memo, VOCs were only run in waste prism samples if a positive PID screening occurred; however, the 4.0 to 15.0 feet bgs interval from Test Pit 7 was analyzed for VOCs electively to confirm their absence. All samples were run for PCBs (EPA Method 8082A), total metals (EPA Method 6020B), and the toxicity characteristic leaching protocol (TCLP) (EPA Method 1311/6020B) for the eight Resource Conservation and Recovery Act (RCRA)-regulated metals. All surface soil, interbedded materials, and native soil samples were tested for pH (EPA Method 9045D). Samples were not collected from the opportunistic TP-16 and TP-17 above the waste prism. No sampleable free liquids were encountered. Attachment C contains the laboratory reports associated with this work.

Of the 59 samples collected, the following 36 were analyzed (Table 1):

- Landfill:
 - 4 samples of surface soil
 - 21 samples of interbedded material
 - 6 samples of native soil
- Wetland: 5 samples of wetland soil

Soil analytical results were evaluated against the following regulatory levels and thresholds:

- Metals. 40 CFR § 261.24 and its associated regulatory levels for the TCLP method.
- PCBs. TSCA threshold value of (15 USC § 2605)

The TSCA PCB screening levels set by 15 USC § 2605, hazardous characteristic regulatory levels set by 40 CFR § 261, and the TCLP criteria set by 40 CFR § 261 used for the purposes of characterizing interbedded materials and soil are described in the Approach Memo (GSI, 2023a). The TCLP 20-times rule was used to screen metals, SVOC, and VOC results against toxicity characteristic criteria. This rule is commonly used when profiling landfill wastes for compounds that are unlikely to leach and are unaffected by changes in pH.

Additional archived sample material is available for both run and unrun samples. These may be analyzed to satisfy sampling requirements given the volume of comingled soil and wastes in the prism.

5.1 Waste Prism Sample Results

Metals, PCBs, SVOCs, and TPH were detected in the waste prism, which is composed of surface soil and interbedded material samples. The following are summaries of the results for waste prism samples by analytical group:

Hazardous Characteristics:

 No waste prism samples were analyzed for ignitability as they did not appear to be composed of combustible materials.

- No waste prism samples were analyzed using the paint filter test as they did not appear to be wet or saturated.
- The corrosivity characteristic was evaluated in all waste prism samples and none of the pH values measured were out of range (2 to 13 Standard Units).

Metals:

- All samples from the waste prism (surface soil and interbedded material samples) had detections of arsenic (As), barium (Ba), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), silver (Ag), zinc (Zn), and mercury (Hg). Selenium (Se) was only detected in TP-01 from 10.0 to 11.0 feet bgs (Table 2).
- Pb, Cd, and Hg results exceeded the 20-times TCLP screening value in some samples (Table 2).

No samples exceeded the 40 CFR § 261 TCLP criteria for any metals including those (Pb, Cd, and Hg) that exceeded the 20-times TCLP screening performed in Table 2 (Table 3). This indicates that despite the prescreening results the surface soil and interbedded material samples are not leaching significant concentrations of Pb, Cd, and Hg and are not demonstrating a hazardous characteristic.

PCBs:

- PCBs were detected in every sample, and Aroclors 1254 and 1260 were the primary contributors to the Total PCBs concentrations (Table 4).
- No samples exceeded the Total PCB TSCA screening value of 50,000 micrograms per kilogram (µg/kg).
- SVOCs: Both samples (TP-01 10 to 11 feet bgs and TP-07 14 to 15 feet bgs) tested for SVOCs had detections for PAHs. However, no values exceeded screening criteria, including Total cPAH (Table 5).
- TPH: Heavy oil-range hydrocarbons were detected in all samples analyzed, with values ranging from 1,000 to 1,780 milligrams per kilogram (mg/kg) (Table 6).
- VOCs: No VOCs (EPA Method 8260D) were detected in the TP-07 sample (14.0 to 15.0 feet bgs) (Table 7).

5.2 Native Soil Sample Results

Metals, PCBs, SVOCs, and TPH were detected in native soils beneath the waste prism. The following are summaries of the results of for native soil samples by analytical group:

Hazardous Characteristics:

- No native soil samples were analyzed for ignitability as they did not appear to be composed of combustible materials.
- No native soil samples were analyzed using the paint filter test as they did not appear to be wet or saturated.
- The corrosivity characteristic was evaluated in all native soil samples and none of the pH values measured were out of range (2 to 13 Standard Units).

Metals:

- All native soil samples had detections of As, Ba, Cr, Cu, Pb, Ni, and Zn.
- Cd was detected in all samples except TP-04 (9.0 to 10.0 feet bgs) and TP-05 (4.0 to 5.0 feet bgs) (Table 2).
- Se was not detected in any sample.
- Ag was only detected in TP-06 (9.0 to 10.0 feet bgs) and TP-15 (9.0 to 10.0 feet bgs).
- Hg was only detected in TP-06 (9.0 to 10.0 feet bgs), TP-08 (12.0 to 13.0 feet bgs), and TP-15 (9.0 to 10.0 feet bgs).

- Pb was the only metal to exceed the 20-times screening value (TP-06, 9.0 to 10.0 feet bgs) in native soil.
- No native soil samples exceeded the 40 CFR § 261 TCLP criteria for any metals (Table 3).

PCBs:

- PCBs were detected in 3 out 6 samples: TP-06 (9.0 to 10.0 feet bgs), TP-08 (12.0 to 13.0 feet bgs), and TP-15 (9.0 to 10.0 feet bgs) (Table 4). Aroclors 1254 and 1260 were the primary contributors to the Total PCB concentrations.
- No samples exceeded the Total PCB screening value of 50,000 µg/kg.

SVOCs:

- TP-04 (9.0 to 10.0 feet bgs) was the only sample that did not have SVOC detections. All other samples tested had detections of various SVOCs.
- No samples exceeded screening criteria (Table 5).
- TPH: Heavy oil range hydrocarbons were detected in 3 out of 6 samples: TP-06 (9.0 to 10.0 feet bgs), TP-08 (12.0 to 13.0 feet bgs), and TP-15 (9.0 to 10.0 feet bgs) (Table 6), with values ranging from 120 to 2,550 mg/kg.
- VOCs: VOCs (EPA Method 8260D) were not detected in any samples (Table 7).

5.3 Wetland Soil Sample Results

Metals and PCBs were detected in wetland soil samples. The following are summaries of the results for wetland soil samples by analytical group:

Hazardous Characteristics:

- No wetland soil samples were analyzed for ignitability as they did not appear to be composed primarily of combustible materials.
- No wetland soil samples were analyzed using the paint filter test as they did not appear to be fully saturated.
- The corrosivity characteristic was not evaluated in the wetland soil samples but the pH of these soils are not anticipated to significantly differ from the pH values seen in waste prism surface soil/interbedded material and native soils.

Metals:

- All native soils samples had detections of As, Ba, Cd, Cr, Cu, Pb, Ni, and Zn (Table 2).
- Se was only detected in WS-05 (0.0 to 2.0 feet bgs).
- Ag and Hg were not detected in any wetland soil samples.
- No samples exceeded the 40 CFR § 261 TCLP criteria or 20-times screening level for any metals (Tables 2 and 3).
- PCBs: Aroclor 1260 was detected in 1 out 5 samples (WS-04, from 0.0 to 2.0 feet bgs), but it did not exceed the Total PCB screening value of 50,000 μg/kg (Table 4).
- SVOCs: SVOCs were not analyzed in wetland soil samples.
- TPH: TPH was not detected in either sample (WS-01 and WS-05) (Table 6).
- VOCs: VOCs were not analyzed in wetland soil samples.

6. Disposal Classification and Approach

Using data collected from the test pits and the results of the material/soil characterization efforts, wastes were classified with respect to the different disposal processes and facilities being considered for this project.

6.1 Physical Considerations for Waste Handling and Disposal

Wastes must be evaluated to determine future handling with respect to size, composition, and the potential for comingling with other waste types. The considerations for waste handling include (but are not limited to) the following:

- Size. Known large wastes include car bodies, which currently appear limited to the base of the landfill, large concrete slabs and boulders at depth. Larger, heavier equipment may be required for the removal of large wastes such as concrete slabs during the RA process. These large wastes may be sorted and disposed, recycled, or repurposed separately to support the use of sustainable and environmentally friendly remediation practices.
- Composition. If wastes of similar composition have settled together, these wastes are more easily separated and compacted during removal and transportation to a disposal facility. The waste encountered was largely disintegrated and diluted with cover soils. It is unlikely that a significant degree of sorting will be possible during disposal.
- Comingling. Large, recyclable materials such as car bodies and tires are present, but these recyclable
 materials are largely comingled with other types of waste and soil. Smaller intact recyclable materials,
 such as glass and metal fragments, are likely too difficult to sort from disintegrated plastics and soil.

For these reasons, most of the waste and soils will likely be disposed of en masse and will not undergo complete sorting. Waste that can be reliably sorted (i.e., concrete slabs, car bodies, tires, and boulders) may be sorted and managed in a unique manner during the RA to support the use of green and environmentally friendly remediation practices. Specialized equipment may be required to remove large debris deeper within the waste prism. Grizzly bars and other means of separating large materials for finer unsortable materials may be used to aide in the separation of large wastes for interbedded materials. Approaches to waste handling, sorting, and disposal will be further evaluated after a waste designation is completed through the remedial design process.

6.2 Characterization for Disposal

The WDA process for disposal requires a minimum of 10 analytical samples for each 2,000 cubic yards (CY) of waste to be disposed of in Tacoma-Pierce County disposal facilities. For each additional 500 CY of waste above 2,000 CY, another sample will be required. Section 12.2.1 of the draft RI/FS states that up to 1,800 CY of impacted soil (interbedded material) may be removed from the landfill and sent offsite for disposal (GSI, 2023b). However, based on the observations made during the test pitting, the volume of interbedded materials and soil in the waste prism is higher than previously envisioned and may require confirmation sampling as more representative disposal volumes are established. It is estimated that, at most, 3,000 CY of surface soil and 3,250 CY of native material at the base of the landfill will need to be removed and disposed of to meet cleanup levels and ensure geotechnical stability of the RA.

By combining the surface and interbedded materials during disposal, this test pit sample suite supports 9,500 CY for disposal. Since the composition of the waste prism was homogenous during the test pitting, additional sampling may not be necessary to increase this disposal allotment. However, native soil was not encountered frequently enough to meet sampling requirements for the anticipated removal volume during the RA and may require confirmation sampling in the future. In addition, due to the sampling constraints posed by the steep slope, it is anticipated that confirmation sampling of downslope wastes and native materials will be required concurrent with removal action. The five samples collected from impacted wetland soil provide sufficient characterization for removal of an estimated 235 CY of soil to a depth of 2 feet bgs in that area.

6.2.1 Disposal Designations

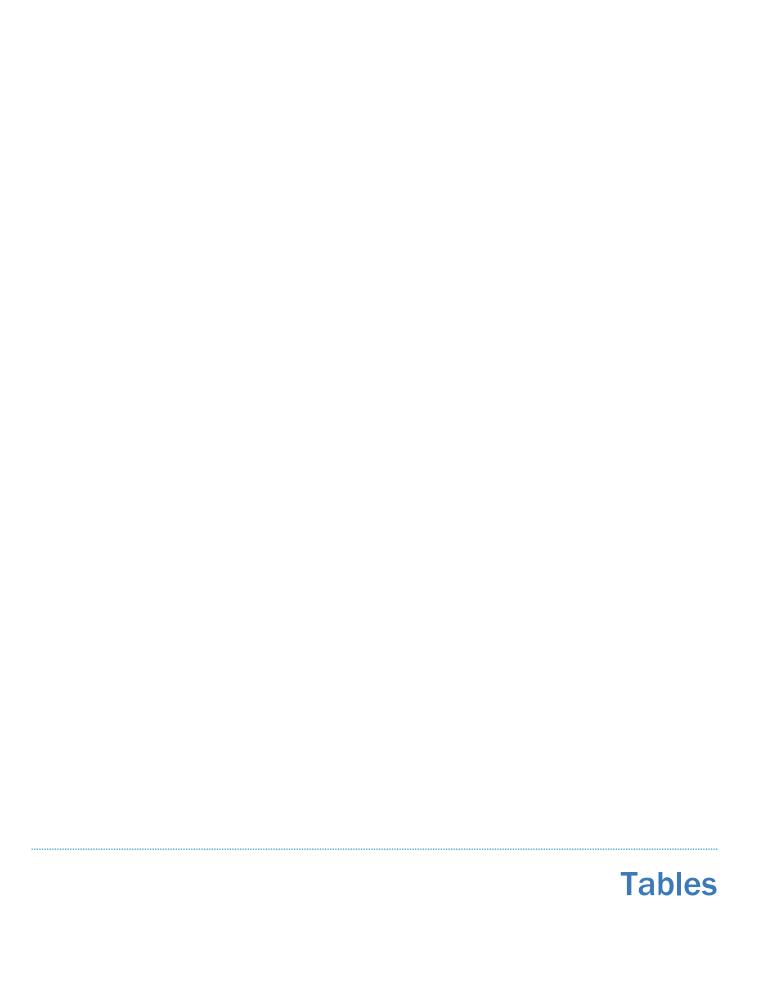
The following sections provide the waste designations proposed for sortable solid wastes and soils and interbedded materials.

6.2.1.1 Sortable Solid Wastes

Sortable solid wastes include large metal objects (car bodies, appliances, etc.), tires, and large boulders. As previously stated in Section 4.1, any recyclable materials (scrap metals and tires) may be recycled at an acceptable facility, as feasible. Massive and natural solid materials such as boulders may be sorted and disposed of or repurposed at the Site or within Nisqually State Park. None of these materials would be considered hazardous or subject to chemical characterization to allow for their disposal or reuse. However, because of the massive size of some of these materials, special considerations to their handling and disposal may need to be made during the remedial design process and in consultation with the receiving disposal facility. These actions may help to avoid rejection of oversized materials, disposal cost markups associated with handling large debris at disposal facilities and provide beneficial reuse or recycling opportunities.

6.2.1.2 Soils and Interbedded Materials

The soils (surface, native, and wetland) and interbedded materials planned for removal are anticipated to be classified as "special waste" based on their submission through the WDA process. There is no indication that any soils or interbedded materials are characteristic hazardous wastes per 40 CFR § 261.4(b)(3) based on the hazardous characteristic and chemical testing results presented in Tables 2 to 6. No samples exceeded the TSCA 15 USC § 2605 total PCB threshold concentration of 50,000 μ g/kg with most samples being an order of magnitude or more below this threshold concentration.


Additionally, the need for a dangerous waste determination, per WAC 173-303-100 was evaluated. However, the principal component of the landfill waste prism is municipal solid waste (household wastes). The soil and interbedded materials proposed for disposal as part of this project are excluded from this dangerous waste determination procedure along with the wastes per WAC 173-303-071(3)(c) which states:

Household wastes, including household waste that has been collected, transported, stored, or disposed. Wastes that are residues from or are generated by the management of household wastes (e.g., leachate, ash from burning of refuse-derived fuel) are not excluded by this provision. "Household wastes" means any waste material (including, but not limited to, garbage, trash, and sanitary wastes in septic tanks) derived from households (including single and multiple residences, hotels and motels, bunkhouses, ranger stations, crew quarters, campgrounds, picnic grounds, and day-use recreation areas). A resource recovery facility managing municipal solid waste will not be deemed to be treating, storing, disposing of, or otherwise managing dangerous wastes for the purposes of regulation under this chapter...

If designation is required, a determination will be made using the chemical results presented in this TM through consultation with the Washington State Department of Ecology. Additional confirmation sampling may be needed during the removal of wastes and soil from the lower portions of the landfill where test pitting could not be performed due to access constraints and safety concern.

7. References

- EPA. 1995. Flow Controls and Municipal Solid Waste. Prepared by the U.S. Environmental Protection Agency (EPA) Office of Solid Waste Municipal and Industrial Solid Waste Division. March 1995.
- GSI. 2023a. Former Eatonville Landfill Waste Characterization Approach Technical Memorandum. Prepared by GSI Water Solutions, Inc. October 6, 2023.
- GSI. 2023b. DRAFT Remedial Investigation/Feasibility Study, Former Eatonville Landfill. State of Washington Department of Ecology Facility Site ID No. 85933/Cleanup Site ID No. 15271. Prepared for Weyerhaeuser Company and the Town of Eatonville. Prepared by GSI Water Solutions, Inc. December 2023 (work in progress).

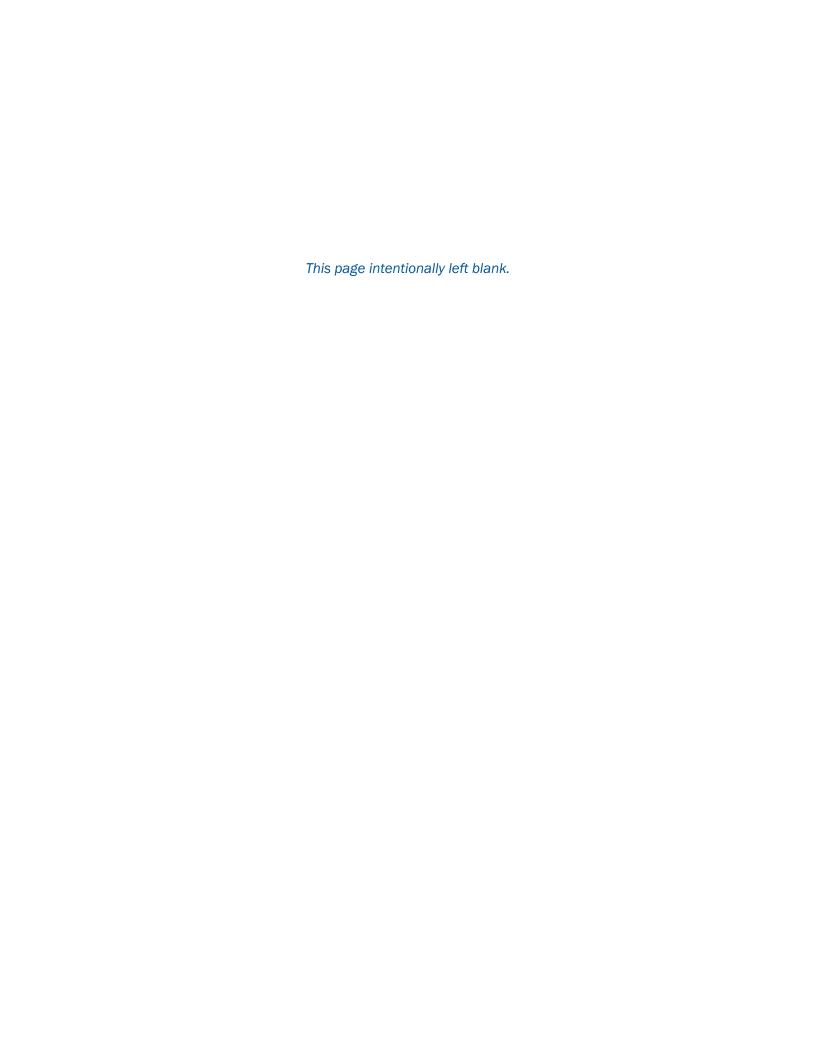


Table 1. Test Pit and Wetland Sample Locations

Table 1. Test Pit and Wetland Sar			Coordi	nates	
Location/Sample ID ¹	Analyzed?	Easting	Northing	Latitude	Longitude
Surface Soil					
SS-01-0.0-1.0-20231010	N	1184525.45	561919.5636	46.859797	-122.322557
SS-02-0.0-1.0-20231010	N	1184608.482	561853.8551	46.859623	-122.322219
SS-03-0.0-1.0-20231010	N	1184591.674	561860.7058	46.85964	-122.322287
SS-04-0.0-1.0-20231010	N	1184630.335	561857.3111	46.859633	-122.322132
SS-05-0.0-1.0-20231011	Υ	1184638.971	561847.2829	46.859606	-122.322096
SS-06-0.0-1.0-20231011	Y	1184522.358	561948.6699	46.859877	-122.322572
SS-07-0.0-1.0-20231011	N	1184532.275	561876.7304	46.85968	-122.322526
SS-08-0.0-1.0-20231011	N	1184562.231	561895.832	46.859735	-122.322408
SS-09-0.0-1.0-20231011	Y	1184559.093 1184618.99	561929.8946 561898.3678	46.859828 46.859745	-122.322423 -122.322181
SS-10-0.0-1.0-20231011 SS-11-0.0-1.0-20231012	N	1184562.357	561855.7252	46.859625	-122.322403
SS-12-0.0-1.0-20231012 SS-12-0.0-1.0-20231012	N	1184548.577	561870.3386	46.859664	-122.322403
SS-13-0.0-1.0-20231012 SS-13-0.0-1.0-20231012	N	1184572.255	561895.0145	46.859733	-122.322367
SS-14-0.0-1.0-20231012	Y	1184588.966	561882.3203	46.859699	-122.322299
SS-15-0.0-1.0-20231012	N	1184603.136	561920.0226	46.859804	-122.322246
Test Pit Interbedded Material					
TP-01-IM-5.0-6.0-20231010	Y	1184525.45	561919.5636	46.859797	-122.322557
TP-01-IM-8.0-9.0-20231010	N	1184525.45	561919.5636	46.859797	-122.322557
TP-01-IM-10.0-11.0-20231010	Y	1184525.45	561919.5636	46.859797	-122.322557
TP-02-IM-4.0-5.0-20231010	Y	1184608.482	561853.8551	46.859623	-122.322219
TP-02-IM-9.0-10.0-20231010	N	1184608.482	561853.8551	46.859623	-122.322219
TP-02-IM-14.0-15.0-20231010	Y	1184608.482	561853.8551	46.859623	-122.322219
TP-03-IM-4.0-5.0-20231010	N	1184591.674	561860.7058	46.85964	-122.322287
TP-03-IM-9.0-10.0-20231010	Y	1184591.674	561860.7058	46.85964	-122.322287
TP-03-IM-14.0-15.0-20231010	Y	1184591.674	561860.7058	46.85964	-122.322287
TP-04-IM-4.0-5.0-20231010	Y	1184630.335	561857.3111	46.859633	-122.322132
TP-06-IM-4.0-5.0-20231011	N	1184522.358	561948.6699	46.859877	-122.322572
TP-07-IM-4.0-5.0-20231011 TP-07-IM-9.0-10.0-20231011	N Y	1184532.275 1184532.275	561876.7304 561876.7304	46.85968 46.85968	-122.322526 -122.322526
TP-07-IM-9.0-10.0-20231011 TP-07-IM-14.0-15.0-20231011	Y	1184532.275	561876.7304	46.85968	-122.322526
TP-08-IM-4.0-5.0-20231011	Y	1184562.231	561895.832	46.859735	-122.322408
TP-09-IM-4.0-5.0-20231011	N	1184559.093	561929.8946	46.859828	-122.322423
TP-09-IM-9.0-10.0-20231011	N	1184559.093	561929.8946	46.859828	-122.322423
TP-09-IM-11.0-12.0-20231011	Y	1184559.093	561929.8946	46.859828	-122.322423
TP-10-IM-4.0-5.0-20231011	N	1184618.99	561898.3678	46.859745	-122.322181
TP-10-IM-9.0-10.0-20231011	Υ	1184618.99	561898.3678	46.859745	-122.322181
TP-11-IM-4.0-5.0-20231012	Υ	1184562.357	561855.7252	46.859625	-122.322403
TP-11-IM-9.0-10.0-20231012	N	1184562.357	561855.7252	46.859625	-122.322403
TP-11-IM-14.0-15.0-20231012	Υ	1184562.357	561855.7252	46.859625	-122.322403
TP-12-IM-4.0-5.0-20231012	N	1184548.577	561870.3386	46.859664	-122.32246
TP-12-IM-9.0-10.0-20231012	Y	1184548.577	561870.3386	46.859664	-122.32246
TP-12-IM-13.0-14.0-20231012	Y	1184548.577	561870.3386	46.859664	-122.32246
TP-13-IM-4.0-5.0-20231012	N	1184572.255	561895.0145	46.859733	-122.322367
TP-13-IM-9.0-10.0-20231012 TP-13-IM-14.0-15.0-20231012	Y	1184572.255 1184572.255	561895.0145 561895.0145	46.859733 46.859733	-122.322367 -122.322367
TP-14-IM-4.0-5.0-20231012	N	1184588.966	561882.3203	46.859699	-122.322307
TP-14-IM-4.0-5.0-20231012 TP-14-IM-9.0-10.0-20231012	Y	1184588.966	561882.3203	46.859699	-122.322299
TP-14-IM-14.0-15.0-20231012	Y	1184588.966	561882.3203	46.859699	-122.322299
TP-15-IM-4.0-5.0-20231012	Y	1184603.136	561920.0226	46.859804	-122.322246
TP-16 ³	_	1184611.956	561935.4983	46.859847	-122.322213
TP-17 ³	_	1184632.736	561968.2243	46.859938	-122.322133
Native Soil					
TP-04-NS-9.0-10.0-20231010	Y	1184630.335	561857.3111	46.859633	-122.322132
TP-05-NS-4.0-5.0-20231011	Y	1184638.971	561847.2829	46.859606	-122.322096
TP-06-NS-9.0-10.0-20231011	Y	1184522.358	561948.6699	46.859877	-122.322572
TP-08-NS-12.0-13.0-20231011	Y	1184562.231	561895.832	46.859735	-122.322408
TP-10-NS-12.0-13.0-20231011	Y	1184618.99	561898.3678	46.859745	-122.322181
TP-15-NS-9.0-10.0-20231012	Y	1184603.136	561920.0226	46.859804	-122.322246
We 01 0 0 2 0 10102022	Y	1184461.796	561739.439	46.9502	-122.322795
WS-01-0.0-2.0-10102023 WS-02-0.0-2.0-10102023	Y	1184482.904	561739.439	46.8593 46.859272	-122.322795
WS-03-0.0-2.0-10102023	Y	1184483.605	561719.2622	46.859272	-122.322709
WS-04-0.0-2.0-10102023	Y	1184500.087	561715.5079	46.859236	-122.322703
WS-05-0.0-2.0-10102023	Y	1184510.44	561705.8193	46.859211	-122.322597
					1

Notes

Samples representative of the spread of physical properties observed were chosen for analysis. Samples that were not analyzed remain in frozen archive.

FIPS = Federal Information Processing Standards

N = no

NAD 83 = North American Datum of 1983

Y = yes

^{1 &}quot;SS" Soil, "TP" Test Pit / "IM" Interbedded Material, and "NS" Native soil samples of the same numeral were taken from the same location.

² Coordinates are projected in NAD 83 (2011) State Plane Washington South FIPS 4602 (US feet). Latitude and longitude values are presented in decimal degrees. Easting and Northing values are presented using US feet.

 $^{^{\}rm 3}\, {\rm These}$ exploratory test pits were not sampled at any interval.

^{- =} not applicable

ft = feet

œ	
듑	
and	
ŝ	
욣	
Š	
ri	
흦	
ᇛ	

															91	Æ	Н
		Screening Criteria	o.			Arsenic	muhsa	muimbeO	Сһготіит	Copper	Lead	Nickel	muinələS	Silver	uiZ	потеМ	Įd
						mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ા
				Soil Sc	Soil Screening Levels											ı	ı
				40 CFR and 261 Regulatory Level	gulatory Level	,		-	-	-	-	-	-	-	,	-	2.0 to 13.0
				TCLP 20x Prest	TCLP 20x Prescreening Value	100	2,000	20	100		100	ı	20	100	ı	4	ı
Location	Area	Date	QC Sample Type	Grab/Composite	Depth												
face Soil / Interbedded Material Sample	mple														ı		
SS-05	Surface Soil	10/11/2023	Primary	Composite	0.0-1.0	3.95	97.6	1.29	21.8	47.5	97.5	54.3	0.584 U	0.254	428	0.278	6.60
	Surface Soil	10/11/2023	Primary	Composite	0.0-1.0	5.38	135	1.12	23.5	116	188	H	0.560 U	0.349	323	0.741	7.60
SS-09	Surface Soil	10/11/2023	Primary	Composite	0.0-1.0	5.23	152	3.20	21.5	107	171	25.2	0.659 U	0.556	535	0.740	7.30
	Surface Soil	10/12/2023	Primary	Composite	0.0-1.0	3.29	101	4.77	25.4	69.5	187	1	0.604 U	0.350	628	0.454	6.80
Interbedde	Interbedded Material Sample	10/10/2023	Primary	Composite	5.0-6.0	6.56	128	2.16	33.8	102	229	34.1	0.661 U	0.747	282	0.765	7.70
	nterbedded Material Sample	10/10/2023	Primary	Composite	10.0-11.0	4.01	113	4.18	16.8	179	153	17.3	0.819 J	0.162 J	330	0.252	7.80
	Interbedded Material Sample	10/10/2023	Primary	Composite	4.0-5.0	20.4	194	3.16	929	286	862		0.639 U	26.0	815	16.3	7.30
IP-02 Interbedde	Interbedded Material Sample	10/10/2023	Primary	Composite	14.0-15.0	8.10	166	5.51	39.1	341	646	9.09	0.634 U	1.41	1,610	0.856	7.20
Interbedde	Interbedded Material Sample	10/10/2023	Primary	Composite	9.0-10.0	11.9	009	2.60	31.0	238	2,240		0.606 U	0.588	1,680	0.667	7.20
	Interbedded Material Sample	10/10/2023	Primary	Composite	14.0-15.0	7.20	352	6.49	45.2	899	1,030	76.0	0.641 U	5.69	2,010	0.569	7.40
TP-04 Interbedde	Interbedded Material Sample	10/10/2023	Primary	Composite	4.0-5.0	5.24	122	0.911	31.9	85.7	88.1	43.9	0.558 U	0.585	436	0.588	7.30
TB 0.7 Interbedde	Interbedded Material Sample	10/11/2023	Primary	Composite	9.0-10.0	5.76	135	1.83	27.8	98.5	172	37.3	0.562 U	0.290	929	0.817	7.50
	Interbedded Material Sample	10/11/2023	Primary	Composite	14.0-15.0	10.7	619	1.71	47.0	208	278		0.605 U	0.712	453	0.405	7.50
	Interbedded Material Sample	10/11/2023	Primary	Composite	4.0-5.0	10.1	200	20.9	79.8	208	310		0.588 U	0.657	1,100	1.57	7.50
	Interbedded Material Sample	10/11/2023	Primary	Composite	11.0-12.0	8.07	180	15.1	31.5	373	269	51.5	0.632 U	0.975	1,040	0.853	7.30
TP-10 Interbedde	Interbedded Material Sample	10/11/2023	Primary	Composite	9.0-10.0	6.01	146	6:59	54.8	208	573	98.0	0.670 U	0.404	1,740	2.57	ı
TP-11	Interbedded Material Sample	10/12/2023	Primary	Composite	4.0-5.0	5.71	105	1.80	28.7	98.7	98.7	31.7	0.585 U	0.133 J	387	0.266	7.80
	Interbedded Material Sample	10/12/2023	Primary	Composite	14.0-15.0	4.54	107	2.21	30.1	175	247	28.4	0.602 U	0.418	585	0.569	7.40
	Interbedded Material Sample	10/12/2023	Primary	Composite	9.0-10.0	8.59	142	2.74	38.5	295	272		0.622 U	0.411	805	1.22	7.50
IP-12 Interbedde	Interbedded Material Sample	10/12/2023	Primary	Composite	13.0-14.0	5.41	106	3.22	26.2	196	270		0.619 U	0.420	296	0.514	7.60
TB 13	Interbedded Material Sample	10/12/2023	Primary	Composite	9.0-10.0	3.26	6'96	1.08	14.2	41.4	62.9	14.9	0.614 U	0.301	177	0.263	7.80
	Interbedded Material Sample	10/12/2023	Primary	Composite	14.0-15.0	19.3	149	6.04	37.6	724	339		0.620 U	1.19	4,950	0.554	7.50
TP-14 Interbedde	Interbedded Material Sample	10/12/2023	Primary	Composite	9.0-10.0	14.4	145	8.49	58.2	341	350		0.582 U	0.715	1,310	0.596	7.40
	Interbedded Material Sample	10/12/2023	Primary	Composite	14.0-15.0	6.55	210	8.88	81.6	401	408	253	0.676 U	1.06	1,730	0.893	7.70
4	ed Material Sample	10/12/2023	Primary	Composite	4.0-5.0	3.80	22	2.74	31.1	113	181	1	0.573 U	0.339	284	1.39	7.40
eldi							ŀ										
	Native Soil Sample	10/10/2023	Primary	Composite	9.0-10.0	1.16)	32.5	0.121 U		14.0	4.06	1	+	0.1210	29.7	0.0485 U	7.70
	Native Soil Sample	10/11/2023	Primary	Composite	4.0-5.0	2.17		0.116 U		22.1	5.57			0.116 U	30.6	0.0464 U	7.30
	Native Soil Sample	10/11/2023	Primary	Composite	9.0-10.0	689	1	5.32	28.2	2,210	833	1	_	1.05	2,230	0.207	7.60
	Native Soil Sample	10/11/2023	Primary	Composite	12.0-13.0	2.02	1	0.247	10.7	23.8	25.4	1	+	0.1140	195	0.0501	7.80
TP-10 Natiw	Native Soil Sample	10/11/2023	Primary	Composite	12.0-13.0	2.95	44.6	0.156 J	3.47	17.3	6.45	3.69	0.579 U	0.116 U	34.9	0.0463 U	7.50
	e Soil Sample	10/12/2023	Primary	Composite	9.0-10.0	3.08		0.469	14.2	32.1	34.5		\dashv	0.466	179	0.261	7.90
stland Soil Sample																	
	Wetland Soil Sample	10/10/2023	Primary	Grab	0.0-2.0	4.26	77.3	1.68	8.88	33.8	41.6	19.7		0.208 U	2,460	0.0834 U	1
WS-02 Wetlan	Wetland Soil Sample	10/10/2023	Primary	Grab	0.0-2.0	3.85	58.5	1.42	11.3	23.1	41.8			0.184 U	2,070	0.0737 U	_
WS-03 Wetlan	Wetland Soil Sample	10/10/2023	Primary	Grab	0.0-2.0	2.61		0.651	8.75	15.7	38.4		n	0.186 U	1,380	0.0744 U	1
	Wetland Soil Sample	10/10/2023	Primary	Grab	0.0-2.0	2.77.J	49.8	0.444 J	90.6	38.5	12.6	11.6	H	0.372 U	989	0.149 U	1
WS-05 Wetlan	Wetland Soil Sample	10/10/2023	Primary	Grab	0.0-2.0	5.23		0.602 J	10.7	84.7	24.0	12.7	1.66 J	0.312 U	1,300	0.125 U	ı

CFR = Code of Federal Regulations

Page 1 of 1

ft = foot or feet
J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
mg/kg = miligrams per kilogram

QC = quality control

Season = Season =

Screening Criteria Screening Levels Soil Screeni	Selenium	
Mg/L		Silver
Soil Screening Levels Scre	చ	
Accidentary	. mg/L	mg/L
Location Area Date QC Sample Type Grab/ Composite Depth (ft) Surface Soil / Interbedded Material Sample Ss-05 Surface Soil 10/11/2023 Primary Composite 0.0-1.0 0.0500 U 2.50 U 0.0500 U 0.0329 J 0.003 Ss-09 Surface Soil 10/11/2023 Primary Composite 0.0-1.0 0.0500 U 2.50 U 0.0500 U	1	5
Surface Soil Interbedded Material Sample		
SS-06 Surface Soil 10/11/2023 Primary Composite 0.0-1.0 0.0500 U 2.50 U 0.0500 U 0.0500 U 0.0329 J 0.003 SS-09 Surface Soil 10/11/2023 Primary Composite 0.0-1.0 0.0500 U 2.50 U 0.0500 U 0.050		
SS-09 Surface Soil 10/11/2023 Primary Composite 0.0-1.0 0.0500 U 2.50 U 0.0500 U 0.0500 U 0.0250 U 0.025	5 U 0.0500 U	0.0500 U
	5 U 0.0500 U	0.0500 U
SS-14 Surface Soil 10/12/2023 Primary Composite 0.0-1.0 0.0500 U 2.50 U 0.0500 U 0.0500 U 0.0798 0.003	5 U 0.0500 U	0.0500 U
	5 U 0.0500 U	0.0500 U
Interbedded Material Sample 10/10/2023 Primary Composite 5.0-6.0 0.0500 U 2.50 U 0.0500 U 0.0500 U 0.0742 0.003	5 U 0.0500 U	0.0500 U
TP-01 Interbedded Material Sample 10/10/2023 Primary Composite 10.0-11.0 0.0500 U 2.50 U 0.0500 U 0.0500 U 0.0250 U 0.025 U 0.003	5 U 0.0500 U	0.0500 U
Interbedded Material Sample 10/10/2023 Primary Composite 4.0-5.0 0.0500 U 2.50 U 0.0500 U 0.0500 U 0.205 0.003	5 U 0.0500 U	0.0500 U
TP-02 Interbedded Material Sample 10/10/2023 Primary Composite 14.0-15.0 0.0500 U 2.50 U 0.0500 U 0.0500 U 0.183 0.003	5 U 0.0500 U	0.0500 U
Interbedded Material Sample 10/10/2023 Primary Composite 9.0-10.0 0.0500 U 2.50 U 0.0500 U 0.0500 U 0.795 0.003	5 U 0.0500 U	0.0500 U
TP-03 Interbedded Material Sample 10/10/2023 Primary Composite 14.0-15.0 0.0500 U 2.50 U 0.0500 U 0.0500 U 3.25 0.003	5 U 0.0500 U	0.0500 U
TP-04 Interbedded Material Sample 10/10/2023 Primary Composite 4.0-5.0 0.0500 U 2.50 U 0.0500 U 0.0500 U 0.0250 U 0.0030 U	5 U 0.0500 U	0.0500 U
Interbedded Material Sample 10/11/2023 Primary Composite 9.0-10.0 0.0500 U 2.50 U 0.0500 U 0.0500 U 0.0250 U 0.003	5 U 0.0500 U	0.0500 U
TP-07 Interbedded Material Sample 10/11/2023 Primary Composite 14.0-15.0 0.0500 U 2.50 U 0.0500 U 0.0500 U 0.0622 0.003	5 U 0.0500 U	0.0500 U
TP-08 Interbedded Material Sample 10/11/2023 Primary Composite 4.0-5.0 0.0500 U 2.50 U 0.0836 J 0.0500 U 0.0663 0.003	5 U 0.0500 U	0.0500 U
TP-09 Interbedded Material Sample 10/11/2023 Primary Composite 11.0-12.0 0.0500 U 2.50 U 0.0822 J 0.0500 U 0.254 0.003	5 U 0.0500 U	0.0500 U
TP-10 Interbedded Material Sample 10/11/2023 Primary Composite 9.0-10.0 0.0500 U 2.50 U 0.0500 U 0.0500 U 0.272 0.003	5 U 0.0500 U	0.0500 U
Interbedded Material Sample 10/12/2023 Primary Composite 4.0-5.0 0.0500 U 2.50 U 0.0500 U 0.0500 U 0.0250 U 0.025 U 0.003	5 U 0.0500 U	0.0500 U
Interbedded Material Sample 10/12/2023 Primary Composite 14.0-15.0 0.0500 U 2.50 U 0.0500 U 0.0500 U 0.0394 J 0.003	5 U 0.0500 U	0.0500 U
TP-12 Interbedded Material Sample 10/12/2023 Primary Composite 9.0-10.0 0.0500 U 2.50 U 0.0500 U 0.0500 U 0.111 0.003	5 U 0.0500 U	0.0500 U
Interbedded Material Sample 10/12/2023 Primary Composite 13.0-14.0 0.0500 U 2.50 U 0.0500 U 0.0500 U 0.0372 J 0.003	5 U 0.0500 U	0.0500 U
Interbedded Material Sample 10/12/2023 Primary Composite 9.0-10.0 0.0500 U 2.50 U 0.0500 U 0.0500 U 0.0250 U 0	5 U 0.0500 U	0.0500 U
Interbedded Material Sample 10/12/2023 Primary Composite 14.0-15.0 0.0500 U 2.50 U 0.0500 U 0.0500 U 0.348 0.003	5 U 0.0500 U	0.0500 U
Interbedded Material Sample 10/12/2023 Primary Composite 9.0-10.0 0.0500 U 2.50 U 0.0500 U 0.0500 U 0.251 0.003	5 U 0.0500 U	0.0500 U
Interbedded Material Sample 10/12/2023 Primary Composite 14.0-15.0 0.0500 U 2.50 U 0.0500 U 0.0500 U 0.0793 0.003	5 U 0.0500 U	0.0500 U
TP-15 Interbedded Material Sample 10/12/2023 Primary Composite 4.0-5.0 0.0500 U 2.50 U 0.0500 U 0.0500 U 0.511 0.003	5 U 0.0500 U	0.0500 U
Native Soil Sample		1
TP-04 Native Soil Sample 10/10/2023 Primary Composite 9.0-10.0 0.0500 U 2.50 U 0.0500 U 0.0500 U 0.0250 U 0.0250 U 0.003	5 U 0.0500 U	0.0500 U
TP-05 Native Soil Sample 10/11/2023 Primary Composite 4.0-5.0 0.0500 U 2.50 U 0.0500 U 0.0500 U 0.0250 U 0.0250 U 0.003	5 U 0.0500 U	0.0500 U
TP-06 Native Soil Sample 10/11/2023 Primary Composite 9.0-10.0 0.0500 U 2.50 U 0.0500 U 0.0500 U 3.49 0.003	5 U 0.0500 U	0.0500 U
TP-08 Native Soil Sample 10/11/2023 Primary Composite 12.0-13.0 0.0500 U 2.50 U 0.0500 U 0.0500 U 0.0250 U 0.003	5 U 0.0500 U	0.0500 U
TP-10 Native Soil Sample 10/11/2023 Primary Composite 12.0-13.0 0.0500 U 2.50 U 0.0500 U 0.0500 U 0.0515 0.003	5 U 0.0500 U	0.0500 U
TP-15 Native Soil Sample 10/12/2023 Primary Composite 9.0-10.0 0.0500 U 2.50 U 0.0500 U 0.0500 U 0.0250 U 0.003	5 U 0.0500 U	0.0500 U
Westand Soil Sample Westand Soil Sample 10/10/2023 Primary Grab 0.0-2.0 0.0500 U 2.50 U 0.0500 U 0.0500 U 0.0250 U 0.0025 U 0.0025 U 0.0030 U 0.003	5 U 0.0500 U	0.0500 U
WS-02 Wetland Soil Sample 10/10/2023 Primary Grab 0.0-2.0 0.0500 U 2.50 U 0.0500 U 0.0500 U 0.0250 U 0.003		0.0500 U
WS-03 Wetland Soil Sample 10/10/2023 Primary Grab 0.0-2.0 0.0500 U 2.50 U 0.0500 U 0.0500 U 0.0250 U 0.003		0.0500 U
WS-04 Wetland Soil Sample 10/10/2023 Primary Grab 0.0-2.0 0.0500 U 2.50 U 0.0500 U 0.0500 U 0.0250 U 0.0030		0.0500 U
WS-05 Wetland Soil Sample 10/10/2023 Primary Grab 0.0-2.0 0.0500 U 2.50 U 0.0500 U 0.0500 U 0.0250 U 0.0030		0.0500 U

Wedard Soil Sample 20/20/2023 Primary Grad 0.0-2.0 Primary Grad 0.0-2.0

According Criteria Constraint Criteria Companie Control						3				2000			
Date Composite Double		Screening	Criteria			Aroclors (U=1/2)	Afocior 1016	LSSL 10loo1A	SEST 10loo1A	S4S£ 10loo1A	84S.t 10loo1A	AGSL 10loo1A	OSCI 10loo1A
Composite Comp						µg/kg	µg/kg	µg∕kg	µg∕kg	µg/kg	µg∕kg	µg/kg	µg/kg
10 10 10 10 10 10 10 10				Soll Sc	reening Levels								
10 10 10 11 12 12 12 13 17 12 13 15 15 15 10 10 10 10 13 17 12 12 12 12 12 12 12				TSCA 1	L5 USC § 2605	50,000	_	1	1	I	1	1	ı
10/11/2023 Primary Composite 0.0.1.0 138 17.2 U 5.81 U 1.0 1		Date		Grab/Composite	Depth (ft)								
Surface Soil 10,11,12023 Primary Composite 0.0.10 188 172 U 5.8 U Surface Soil 10,11,12023 Primary Composite 0.0.10 122 U 152 U 152 U Interbedded Material Sample 10,11,12023 Primary Composite 0.0.10 123 6.0 U 10.0 Interbedded Material Sample 10,11,12023 Primary Composite 6.0.40 133 6.5 U 6.0 U Interbedded Material Sample 10,10,12023 Primary Composite 4.0.50 1.134 30.4 U 5.78 U Interbedded Material Sample 10,10,12023 Primary Composite 4.0.50 1.134 30.4 U 3.0.4 U Interbedded Material Sample 10,10,10,2023 Primary Composite 4.0.50 1.134 30.4 U 3.0.4 U Interbedded Material Sample 10,10,10,2023 Primary Composite 4.0.50 2.2.1 1.10 U Interbedded Material Sample 10,11,10,2023 Primary Composite 4.0.50 2.0.1	Surface Soil / Interbedded Material Sample												
Surface Soil 10/11/2023 Primary Composite 0.0.10 1434 8.38 U 5.38 U Surface Soil 10/11/2023 Primary Composite 0.0.10 133 6.07 U 6.57 U Interbedded Maerial Sample 10/12/2023 Primary Composite 5.0.60 5.39 6.45 U 6.45 U Interbedded Maerial Sample 10/10/2023 Primary Composite 10.0.110 133 6.70 U 6.45 U Interbedded Maerial Sample 10/10/2023 Primary Composite 10.0.10 1473 29 U 29 U 29 U Interbedded Maerial Sample 10/10/2023 Primary Composite 14.0.15 O 29 U 29 U 29 U 29 U Interbedded Maerial Sample 10/10/2023 Primary Composite 4.0.55 O 29 U 29 U 25 U Interbedded Maerial Sample 10/11/2023 Primary Composite 4.0.55 O 20 U 25 U 25 U Interbedded Maerial Sample 10/11/2023 Primary Composite		10/11/2023	Primary	Composite	0.0-1.0	138	17.2 U	5.810	26.6 U	22.1 U	5.810	74.3	25.2
Surface Soil 10/11/2023 Primary Composite 0.0.4.0 1329 1021 1220 Interbedied Material Sample 10/12/2023 Primary Composite 5.0.40 6.07U 6.07U Interbedied Material Sample 10/10/2023 Primary Composite 10.0.50 1.123 6.07U 6.07U Interbedied Material Sample 10/10/2023 Primary Composite 1.0.0.50 1.123 6.07U 6.07U Interbedied Material Sample 10/10/2023 Primary Composite 1.0.0.50 1.129 0.0.10 1.0.0.0 Interbedied Material Sample 10/10/2023 Primary Composite 1.0.0.50 1.10 1.10 1.10 1.10 1.0.0		10/11/2023	Primary	Composite	0.0-1.0	181	5.35 U	128	39.6				
Interhododed Material Sample 10,10,2023 Primary Composite 10,0,0,0		10/11/2023	Primary	Composite	0.0-1.0	108	12.2 U	12.2 U	27.7 U	12.2 U	12.20	36.1	33.8
Intercloted Material Sample 10/10/2023 Primary Composite 4,0.5.0 1,173 280.4 U 2		+	Primary	Composite	5.0-6.0	533	6.45 U	6.45 U	6.45 U	6.45 U	6.45	450	67.0
Interceded Material Sample 10/10/2023 Primary Composite 140.550 14,686 29.0 U 29.0 U 1.0.0		╁	Primary	Composite	10.0-11.0	133	5.78 U	5.78 U	5.78 U	85.0	5.780	5.78 U	33.9
Interbedded Material Sample 10/10/2023 Primary Composite 40-15.0 1,668 29.0 29.0 29.0 29.0 29.0 29.0 20.0 2		H	Primary	Composite	4.0-5.0	1,124	30.4 U	30.4 U	30.4 U	730	30.4 U	269	64.1
Interhedded Material Sample 10/10/2023 Primary Composite 140-150 1669 29.2 U 29.2 U 11.0 U		H	Primary	Composite	14.0-15.0	1,173 J	29.0 U	29.0 U	29.0 U	797	29.0 U	301	47.3 J
Interhedded Material Sample 10/11/2023 Primary Composite 14,0-15.0 824,1 5.63.0 15.83.0 15.83.0 Interhedded Material Sample 10/11/2023 Primary Composite 14,0-15.0 219.2 110.0 110.0 Interhedded Material Sample 10/11/2023 Primary Composite 14,0-15.0 220 247.0 10.8.0 Interhedded Material Sample 10/11/2023 Primary Composite 14,0-15.0 220 237.0 5.83.0 Interhedded Material Sample 10/11/2023 Primary Composite 14,0-15.0 220 237.0 231.0 Interhedded Material Sample 10/11/2023 Primary Composite 14,0-15.0 220 258.0 5.89.0 Interhedded Material Sample 10/11/2023 Primary Composite 14,0-15.0 220 258.0 5.89.0 Interhedded Material Sample 10/11/2023 Primary Composite 14,0-15.0 220 258.0 5.89.0 Interhedded Material Sample 10/11/2023 Primary Composite 14,0-15.0 220 258.0 5.89.0 Interhedded Material Sample 10/11/2023 Primary Composite 14,0-15.0 220 259.0 259.0 Interhedded Material Sample 10/11/2023 Primary Composite 14,0-15.0 220 259.0 259.0 Interhedded Material Sample 10/11/2023 Primary Composite 14,0-15.0 220 259.0 259.0 Interhedded Material Sample 10/11/2023 Primary Composite 14,0-15.0 220 259.0 259.0 Interhedded Material Sample 10/11/2023 Primary Composite 14,0-15.0 220 259.0 259.0 Interhedded Material Sample 10/11/2023 Primary Composite 12,0-15.0 250.0 259.0 259.0 Interhedded Material Sample 10/11/2023 Primary Composite 12,0-15.0 250.0 259.0 259.0 Native Soil Sample 10/11/2023 Primary Composite 12,0-15.0 260.0 25.0 25.0 25.0 25.0 Native Soil Sample 10/11/2023 Primary Composite 12,0-13.0 26.0 25.0 25.0 25.0 25.0 Native Soil Sample 10/11/2023 Primary Grab Composite 12,0-13.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.0 26.		-	Primary	Composite	9.0-10.0	1,658	29.2 U	1,570	29.2 U				
Interhedded Material Sample 10/14/2023 Primary Composite 4,0.50 219 292.0 10.0 Interhedded Material Sample 10/14/2023 Primary Composite 4,0.50 236 242.0 10.0 Interhedded Material Sample 10/14/2023 Primary Composite 4,0.50 236 242.0 10.0 Interhedded Material Sample 10/14/2023 Primary Composite 4,0.50 237 34.0 2.31.0 Interhedded Material Sample 10/14/2023 Primary Composite 4,0.50 2289 24.7 2.42.0 Interhedded Material Sample 10/14/2023 Primary Composite 4,0.50 2289 26.9 5.80 1.11.0 Interhedded Material Sample 10/14/2023 Primary Composite 4,0.50 2289 5.80 5.80 1.11.0 Interhedded Material Sample 10/14/2023 Primary Composite 4,0.50 289 5.80 5.80 1.11.0 Interhedded Material Sample 10/14/2023 Primary Composite 13.0.40 265 5.80 5.80 1.11.0 Interhedded Material Sample 10/14/2023 Primary Composite 14.0.15 2.80 5.80 5.80 1.11.0 Interhedded Material Sample 10/14/2023 Primary Composite 14.0.15 2.80 5.80 5.80 1.11.0 Interhedded Material Sample 10/14/2023 Primary Composite 14.0.15 2.80 5.80 5.80 1.10.8 1.10		+	Primary	Composite	14.0-15.0	82.4)	5.63 U	5.63 U	5.63 U	10.7 J	5.630	46.7	13.7
Interhedded Material Sample 10/14/2023 Primary Composite 140-15.0 1044 5/3.0 5/3.0 10/3.0 Interhedded Material Sample 10/14/2023 Primary Composite 140-15.0 1048 10/3.0 11.1		+	Primary	Composite	9.0-10.0	90.4	29.211	10811	35.20	40.3.11	23.311	740.1	12.9 53.6
Interhedided Meterial Sample 10/11/2023 Primary Composite 40.550 386 94.7 U 24.2 U Interhedided Meterial Sample 10/11/2023 Primary Composite 10.0100 237 34.0 U 23.1 U 11.1 U		+	Primary	Composite	14 0-15 0	104	573	5 73	11.511	5.73	25.50	528	27.9
Interbedded Material Sample 10/11/2023 Primary Composite 10.012 237 237 23.1 U Interbedded Material Sample 10/12/2023 Primary Composite 40.05		╁	Primary	Composite	4.0-5.0	368	94.7 U	24.2 U	155 U	126U	79.3 U	90.3 U	82.9
Interhedded Material Sample 10/11/2023 Primary Composite 40.50 237 34.0 u 23.1 u 1.0 mitch bedded Material Sample 10/12/2023 Primary Composite 40.50 289 5.89 u 11.1 u		Н	Primary	Composite	11.0-12.0	210	20.8 U	5.86 U	52.4 U	27.4 U	46.3 U	70.0 U	98.8
Interhedded Material Sample 10/12/2023 Primary Composite 4,0.15.0 82.8 11.1 U		_	Primary	Composite	9.0-10.0	237	34.0 U	23.1 U	91.5 U	46.8 U	31.40	82.3	40.9
Interbedded Material Sample 10/12/2023 Primary Composite 14,0,15.0 289 589 U 589 U Interbedded Material Sample 10/12/2023 Primary Composite 13,0,14.0 663 569 U 564 U 564 U Interbedded Material Sample 10/12/2023 Primary Composite 13,0,14.0 663 564 U 564 U 564 U Interbedded Material Sample 10/12/2023 Primary Composite 14,0,15.0 135 562 U 564 U 564 U Interbedded Material Sample 10/12/2023 Primary Composite 14,0,15.0 135 562 U 562 U 562 U Interbedded Material Sample 10/12/2023 Primary Composite 14,0,15.0 126 U 562 U 562 U Interbedded Material Sample 10/12/2023 Primary Composite 14,0,15.0 18,0 U 5,30 U 5,30 U Interbedded Material Sample 10/12/2023 Primary Composite 4,0,5.0 18,0 U 5,75 U 5,75 U Mative Soil Sample 10/12/2023 Primary Composite 12,0,13.0 30,8 S.2 U 5,75 U 5,75 U Mative Soil Sample 10/12/2023 Primary Composite 12,0,13.0 30,8 S.2 U 5,75 U 5,75 U Mative Soil Sample 10/12/2023 Primary Composite 12,0,13.0 30,8 S.2 U 5,75 U 5,75 U Mative Soil Sample 10/12/2023 Primary Composite 12,0,13.0 30,8 S.2 U 5,75 U 5,75 U Mative Soil Sample 10/12/2023 Primary Composite 12,0,13.0 30,8 S.2 U 5,75 U 5,75 U Mative Soil Sample 10/12/2023 Primary Composite 12,0,13.0 30,8 S.2 U 5,75 U 5,75 U Mative Soil Sample 10/12/2023 Primary Composite 12,0,13.0 30,8 S.2 U 5,75 U 5,75 U 5,75 U Mative Soil Sample 10/12/2023 Primary Grab 0,0,2.0 34,2 U 8,8 U 8,9 U 8,9 U Mative Soil Sample 10/12/2023 Primary Grab 0,0,2.0 34,2 U 8,8 U 8,9 U 8,9 U 4,4 U		-	Primary	Composite	4.0-5.0	82.8	11.1 U	11.10	28.5 U	14.6 U	11.10	24.3	20.3
Interbedded Material Sample 10/12/2023 Primary Composite 9.0-1.00 665 665 U 665 U Interbedded Material Sample 10/12/2023 Primary Composite 9.0-1.00 117 10.9 U 5.47 U Interbedded Material Sample 10/12/2023 Primary Composite 14.0-1.50 135 5.92 U 5.47 U Interbedded Material Sample 10/12/2023 Primary Composite 14.0-1.50 135 5.92 U 5.92 U Interbedded Material Sample 10/12/2023 Primary Composite 14.0-1.50 135 5.92 U 5.92 U Interbedded Material Sample 10/12/2023 Primary Composite 14.0-1.50 12.0 12.0 12.0 Interbedded Material Sample 10/12/2023 Primary Composite 14.0-1.50 12.0 12.0 12.0 Interbedded Material Sample 10/12/2023 Primary Composite 9.0-1.00 18.9 U 5.30 U Interbedded Material Sample 10/14/2023 Primary Composite 12.0-1.30 13.0 13.0 13.0 Native Soil Sample 10/14/2023 Primary Composite 12.0-1.30 13.0 13.0 13.0 13.0 Native Soil Sample 10/14/2023 Primary Composite 12.0-1.30 13.0 13.0 13.0 13.0 Native Soil Sample 10/14/2023 Primary Composite 12.0-1.30 13.0 13.0 13.0 13.0 Native Soil Sample 10/14/2023 Primary Composite 12.0-1.30 13.0 13.0 13.0 Native Soil Sample 10/14/2023 Primary Composite 12.0-1.30 13.0 13.0 13.0 Native Soil Sample 10/14/2023 Primary Composite 12.0-1.30 13.0 13.0 13.0 Native Soil Sample 10/14/2023 Primary Grab 0.0-2.0 34.2 U 13.1 U 16.3 U Wetland Soil Sample 10/14/2023 Primary Grab 0.0-2.0 34.2 U 13.3 U 16.3 U Wetland Soil Sample 10/14/2023 Primary Grab 0.0-2.0 13.2 U 13.3 U 16.3 U 16.3 U Wetland Soil Sample 10/14/2023 Primary Grab 0.0-2.0 13.2 U 13.3 U 16.3 U 16		+	Primary	Composite	14.0.15.0	289	5.89 U	5.89 U	5.89 U	112	5.89 U	129	36.4
Interbedded Material Sample 10/12/2023 Primary Composite 13.0.40 605 554 U 554 U 554 U Interbedded Material Sample 10/12/2023 Primary Composite 13.0.40 605 554 U 547 U Interbedded Material Sample 10/12/2023 Primary Composite 14.0.15 O 136 592 U 592 U Interbedded Material Sample 10/12/2023 Primary Composite 14.0.15 O 136 592 U 592 U Interbedded Material Sample 10/12/2023 Primary Composite 14.0.15 O 136 592 U 5.88 U Interbedded Material Sample 10/12/2023 Primary Composite 4.0.5 O 994 10.8 U 5.38 U Interbedded Material Sample 10/14/2023 Primary Composite 4.0.5 O 20.1 U 5.75 U 5.75 U Native Soil Sample 10/14/2023 Primary Composite 12.0.13 O 36.3 5.88 U 5.89 U Native Soil Sample 10/14/2023 Primary Composite 12.0.13 O 36.3 5.80 U 5.30 U Native Soil Sample 10/14/2023 Primary Composite 12.0.13 O 36.3 5.80 U 5.30 U Native Soil Sample 10/14/2023 Primary Composite 12.0.13 O 36.3 5.80 U 5.53 U Native Soil Sample 10/14/2023 Primary Composite 12.0.13 O 36.3 5.80 U 5.53 U Native Soil Sample 10/14/2023 Primary Composite 12.0.13 O 36.3 5.80 U 5.30 U Wetland Soil Sample 10/14/2023 Primary Composite 12.0.13 O 34.2 U 5.30 U 5.30 U Wetland Soil Sample 10/14/2023 Primary Grab 0.0.2 O 34.2 U 8.90 U 8.90 U Wetland Soil Sample 10/14/2023 Primary Grab 0.0.2 O 34.2 U 8.91 U 8.91 U Wetland Soil Sample 10/14/2023 Primary Grab 0.0.2 O 34.2 U 35.3 U 35.3 U Wetland Soil Sample 10/14/2023 Primary Grab 0.0.2 O 34.2 U 34.1 U 34.3 U 34		+	Primary	Composite	9.0-10.0	653	56.9 U	56.9 U	56.9 U	26.9 U	56.9 U	298	426 U
Interpedded Material Sample 10/12/2023 Primary Composite 140.150 135 5.47 U 5.47 U 1.01		+	Primary	Composite	13.0-14.0	902	5.64 U	422	169				
Interpredicted Material Sample 10/12/2023 Primary Composite 14,0-15.0 280 25.4 U 5.68 U 1.02		+	Primary	Composite	9.0-10.0	11/	10.9 U	5.47 U	22.40	TT./ U	14.00	962.7	47.0
Interhedded Material Sample 10/12/2023 Primary Composite 140-15.0 172 6.24 U		+	Primary	Composite	90-100	260	25.4	5.68 []	45.7 U	3050	26.711	57.9	135
Interbedded Material Sample 10/12/2023 Primary Composite 4.0.5.0 99.4 10.8 U 5.38 U Native Soil Sample 10/14/2023 Primary Composite 90.10.0 18.8 U 5.40 U 5.75 U Native Soil Sample 10/14/2023 Primary Composite 4.0.50 20.1 U 5.75 U 5.75 U Native Soil Sample 10/14/2023 Primary Composite 12.0.130 36.3 5.38 U 5.38 U Native Soil Sample 10/14/2023 Primary Composite 12.0.130 36.3 5.38 U 5.38 U Native Soil Sample 10/14/2023 Primary Composite 12.0.130 18.6 U 5.30 U 5.30 U Native Soil Sample 10/14/2023 Primary Composite 12.0.130 36.7 5.30 U 5.30 U Wetland Soil Sample 10/14/2023 Primary Grab 0.0.20 34.2 U 9.77 U 9.77 U Wetland Soil Sample 10/14/2023 Primary Grab 0.0.20 34.2 U 8.80 U </td <td></td> <td>╁</td> <td>Primary</td> <td>Composite</td> <td>14.0-15.0</td> <td>172</td> <td>6.24 ∪</td> <td>6.24 U</td> <td>6.24 U</td> <td>54.8</td> <td>6.24 U</td> <td>78.4</td> <td>26.6</td>		╁	Primary	Composite	14.0-15.0	172	6.24 ∪	6.24 U	6.24 U	54.8	6.24 U	78.4	26.6
Netive Soil Sample 10/14/2023 Primary Composite 9.0.40.0 18.8 u 5.45 u 5.75 u Native Soil Sample 10/14/2023 Primary Composite 40.50 20.1 u 5.75 u 5.75 u Native Soil Sample 10/14/2023 Primary Composite 90.10.0 30.8 5.84 u 5.75 u Native Soil Sample 10/14/2023 Primary Composite 12.0.13.0 18.6 u 5.30 u 5.28 u Native Soil Sample 10/14/2023 Primary Composite 12.0.13.0 18.6 u 5.30 u 5.30 u Wetland Soil Sample 10/14/2023 Primary Composite 9.0.10.0 36.7 l 5.53 u 5.53 u Wetland Soil Sample 10/12/2023 Primary Composite 0.0.2.0 34.2 u 9.77 u 9.77 u Wetland Soil Sample 10/14/2023 Primary Grab 0.0.2.0 34.2 u 8.80 u 8.80 u Wetland Soil Sample 10/14/2023 Primary Grab 0.0.2.0 34.2 u 8.81 u	Н	Н	Primary	Composite	4.0-5.0	99.4	10.8 U	5.39 U	20.2 U	14.0 U	32.10	32.4	25.8
Native Soil Sample 10/10/2023 Primary Composite 9.0-10.0 18.8 U 5.40 U 5.40 U Native Soil Sample 10/11/2023 Primary Composite 4.0-5.0 30.8 5.94 U 5.75 U Native Soil Sample 10/11/2023 Primary Composite 12.0-13.0 30.8 5.28 U 5.94 U Native Soil Sample 10/11/2023 Primary Composite 12.0-13.0 36.3 5.28 U 5.30 U Native Soil Sample 10/11/2023 Primary Composite 12.0-13.0 36.7 5.30 U 5.30 U Wetland Soil Sample 10/12/2023 Primary Composite 9.0-10.0 36.7 5.53 U 5.50 U Wetland Soil Sample 10/10/2023 Primary Grab 0.0-10.0 36.7 5.53 U 9.77 U Wetland Soil Sample 10/10/2023 Primary Grab 0.0-2.0 31.2 U 88.0 U 9.77 U Wetland Soil Sample 10/10/2023 Primary Grab 0.0-2.0 31.2 U 88.0 U	-												
Native Soil Sample 10/11/2023 Primary Composite 4,050 20,1 5,75 U 5,75 U Native Soil Sample 10/11/2023 Primary Composite 90,010 30,4 5,75 U 5,75 U Native Soil Sample 10/11/2023 Primary Composite 12,0,130 36,3 5,28 U 5,38 U Native Soil Sample 10/11/2023 Primary Composite 12,0,130 36,3 5,38 U 5,38 U Native Soil Sample 10/12/2023 Primary Composite 12,0,130 36,7 5,53 U 5,30 U Wetland Soil Sample 10/10/2023 Primary Grab 0,0,20 34,2 U 9,77 U 9,77 U Wetland Soil Sample 10/10/2023 Primary Grab 0,0,20 34,2 U 8,91 U 8,91 U Wetland Soil Sample 10/10/2023 Primary Grab 0,0,20 33,2 U 88,1 U 9,77 U Wetland Soil Sample 10/10/2023 Primary Grab 0,0,20 33,2 U 88,0 U 88,0 U </td <td></td> <td>10/10/2023</td> <td>Primary</td> <td>Composite</td> <td>9.0-10.0</td> <td>18.90</td> <td>5.40 U</td>		10/10/2023	Primary	Composite	9.0-10.0	18.90	5.40 U	5.40 U	5.40 U				
Native Soil Sample 10/14/2023 Primary Composite 9/0-10.0 30.8 5.94 U 5.94 U Native Soil Sample 10/14/2023 Primary Composite 12.0-13.0 36.3 5.28 U 5.28 U 5.28 U Native Soil Sample 10/14/2023 Primary Composite 12.0-13.0 18.6 U 5.30 U 5.30 U Wetland Soil Sample 10/12/2023 Primary Composite 9.0-10.0 36.7 J 5.53 U 5.53 U Wetland Soil Sample 10/10/2023 Primary Grab 0.0-2.0 34.2 U 9.77 U 9.77 U Wetland Soil Sample 10/10/2023 Primary Grab 0.0-2.0 34.2 U 9.77 U 9.77 U Wetland Soil Sample 10/10/2023 Primary Grab 0.0-2.0 34.2 U 8.91 U 9.77 U Wetland Soil Sample 10/10/2023 Primary Grab 0.0-2.0 34.2 U 8.80 U 8.80 U Wetland Soil Sample 10/10/2023 Primary Grab 0.0-2.0 34.2 U		10/11/2023	Primary	Composite	4.0-5.0	20.1 U	5.75 U	5.75 U	5.75 U	5.75 U	5.75 U	5.75 U	5.75 U
Native Soil Sample 10/11/2023 Primary Composite 12.0-13.0 36.3 5.28 U 5.28 U Native Soil Sample 10/11/2023 Primary Composite 12.0-13.0 16.6 U 5.30 U 5.30 U Native Soil Sample 10/12/2023 Primary Composite 9.0-10.0 36.7 I 5.53 U 5.53 U Wetland Soil Sample 10/12/2023 Primary Grab 0.0-2.0 34.2 U 9.77 U 9.77 U Wetland Soil Sample 10/140/2023 Primary Grab 0.0-2.0 31.2 U 8.91 U 8.91 U Wetland Soil Sample 10/140/2023 Primary Grab 0.0-2.0 31.2 U 8.80 U 8.80 U Wetland Soil Sample 10/140/2023 Primary Grab 0.0-2.0 31.2 U 8.80 U 8.80 U		10/11/2023	Primary	Composite	9.0-10.0	30.8	5.94 U	5.94 U	13.0				
Native Soil Sample 10/11/2023 Primary Composite 12.0-13.0 18.6 U 5.30 U 5.30 U Nethve Soil Sample 10/12/2023 Primary Composite 90-010.0 36.7 J 5.53 U 5.53 U Wetland Soil Sample 10/10/2023 Primary Grab 0.0-2.0 34.2 U 9.77 U 9.77 U Wetland Soil Sample 10/10/2023 Primary Grab 0.0-2.0 31.2 U 88.0 U 8.89 U Wetland Soil Sample 10/10/2023 Primary Grab 0.0-2.0 31.2 U 8.80 U 8.80 U Wetland Soil Sample 10/10/2023 Primary Grab 0.0-2.0 31.2 U 8.80 U 8.80 U		10/11/2023	Primary	Composite	12.0-13.0	36.3	5.28 U	10.9	12.2				
Native Soil Sample 10/12/2023 Primary Composite 9.0.10.0 36.71 5.53 U 5.53 U Wetland Soil Sample 10/10/2023 Primary Grab 0.0.20 34.2 U 9.77 U 9.77 U Wetland Soil Sample 10/10/2023 Primary Grab 0.0.20 33.2 U 8.81 U 8.91 U Wetland Soil Sample 10/10/2023 Primary Grab 0.0.20 33.8 U 8.89 U 8.91 U Wetland Soil Sample 10/10/2023 Primary Grab 0.0.20 33.8 U 8.89 U 16.3 U Wetland Soil Sample 10/10/2023 Primary Grab 0.0.20 33.8 U 8.80 U 16.3 U		10/11/2023	Primary	Composite	12.0-13.0	18.60	5.30 U	5.30 U	5.30 U				
Wetland Soil Sample 10/10/2023 Primary Grab 0.0.20 34.2 U 9.77 U 9.77 U Wetland Soil Sample 10/10/2023 Primary Grab 0.0.20 31.2 U 8.91 U 8.91 U Wetland Soil Sample 10/10/2023 Primary Grab 0.0.20 30.8 U 8.80 U 8.80 U Wetland Soil Sample 10/10/2023 Primary Grab 0.0.20 74.1 I 16.3 U 16.3 U	_	10/12/2023	Primary	Composite	9.0-10.0	35.7 J	5.53 U	5.53 U	5.53 U	8.63 J	5.53 U	13.2	5.53 U
Wetland Soil Sample 10/10/2023 Primary Grab 0.0.20 34,2 U 8,17 U 9,17 U Wetland Soil Sample 1.0/10/2023 Primary Grab 0.0.20 31,2 U 8,91 U 8,91 U Wetland Soil Sample 1.0/10/2023 Primary Grab 0.0.20 30.8 U 8,80 U Wetland Soil Sample 1.0/10/2023 Primary Grab 0.0.20 74,1 16.3 U 16.3 U	_									-			
Wetland Soll Sample 10/10/2023 Primary Grab 0.0-2.0 3.1.2 U 8.93.U 8.93.U Wetland Soll Sample 10/10/2023 Primary Grab 0.0-2.0 3.0.8 U 8.80 U 8.80 U Wetland Soll Sample 10/10/2023 Primary Grab 0.0-2.0 74.1 J 16.3 U 16.3 U		10/10/2023	Primary	Grab	0.0-2.0	34.20	9.770	0.77.6	9.770	9.77 U	9.77.0	9.77 U	9.77 U
Wetland Soil Sample 10/10/2023 Primary Grab 0.0-2.0 74.1 16.3 U 1.6.3 U		10/10/2023	Primary	Grab	0.0-2.0	31.20	8.910	8.910	8.91 U	8.91 0	8.910	8.910	8.91 U
		10/10/2023	Primary	Grab	0.0-2.0	30.80	8.80 U	16.311	16.311	16311	8.800	16.3.11	35.21
10/10/2023 Primary Grab 0.0-2.0 50.111 14.3.11		10/10/2023	Primary	Grab	00.20	50.1	143.	143	1431	14.3.11	14.3	14.3.0	14311

Notes

The read including an activities are kingen

CR = code of Federal Regulations

(FR = code of Federal Regulations

It = foot or feet

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

PCB = code of Federal Regulations

QC = quality control

TSCA.15 ISCS 2 2005 = Tools Sustain or Control Act.15 United States Code § 2005

U = Result not detected above the referenced laboratory detection limit.

Table 5. SVOC Results				Location Area	Surface Soll / Interbedded Material Sample	Interbedded TP-01 Material Sample	TP-07 Interbedded Material Sample	Native Soil Sample	TP-04 Native Soil	TP-05 Native Soil	TP.06 Native Soi	TP.08 Native Soil	TP.10 Native Soil	TP-15 Native Soil
	Screening Officeria			Date	taterial Sample	ed 10/10/2023	ed 10/11/2023		10/10/2023	10/11/2023	10/11/2023	10/11/2023	10/11/2023	10/12/2023
	g Oritoria		ğ	QC Sample Type		3 Primary	3 Primary		3 Primary	3 Primary	3 Primary	3 Primary	3 Primary	3 Primary
		and Hed	Soll Screening Levels TCLP 20x Prescreening Value	Grab/ Composite		Composite	Composite		Composite	Composite	Composite	Composite	Composite	Composite
			Soll Screening Levels Ox Prescreening Value	Depth (ft)		10.0-11.0	14.0-15.0		9.0-10.0	4.0-5.0	9.0-10.0	12.0-13.0	12.0-13.0	9.0-10.0
	OSOS (S\rhoPH) HAPO INJOT ISƏ	μg/kg	-			68.9 0	1691		1.57 U	5.78	6.77.1	408	0 1.55 U	72.1
		µg/kg	ı			154 U	185 U		3.710	3.67 U	15.9 U	366 U	3.67 U	14.3 U
	aneznedorolchold-2,£	µg∕kg	-			154 U	185 U		3.71 U	3.67 U	15.9 U	366 U	3.67 U	14.3 U
	eneznedorolriold-E,L	µg/kg	-			154 U	185 U		3.71 U	3.67 U	15.9 U	N 99E	3.67 U	14.3 U
	T-4-Dichlorobenzene	Hg/kg	150.000			154 U	185 U		3.710	3.67 U	15.9 U	366 U	3.67 U	14.3 U
	eneibziudoroliczewi	µg/kg	10.000			154 U	185 U		3.71 U	3.67 U	15.9 U	N 99E	3.67 U	14.3 U
	enelaritriqaN	µg/kg	ı			124 U	1480		2.97 U	2.95 U	24.5 J	293 U	2.94 U	11.5 U
	enelsrtifqsnlyrtieM-L	µg∕kg	-			124 U	148 U		2.97 U	2.95 U	12.7 U	293 U	2.94 U	11.5 U
	loneriqorolifohT-3,4,요	Hg/kg	8.000.000			309 U	3710		7.43 U	7.360	31.9 U	733 U	7.35 U	28.7 U
	lonentorophenol	µg/kg	40.000			n 60E	371.0		7.43 U	7.36 U	31.90	U 887	U.35.7	28.7 U
	lone/dorol/d-4-2	Hg/kg	Ī			0 60E	3710		7.43 U	7.36 U	31.9 U	733 U	7.35 U	28.7 U
		HØ/kg	-			309 U 1	3710 1		7.43 U	7.36 U	31.9 U	733 U	7.35 U	28.7 U
		µg/kg ⊔	-			1,540 U	1,850 U		37.10	36.7 U	159 U 6	3,660 U 1,	36.7 U	143 U 5
		HE/Kg H	2.600			617 U 6	739 U 62		14.8 U 14	14.7 U 14	63.5 U 63.	1,460 U 1,4	14.7 U 12	57.2 U 57.
		pig/kg	Ė	_		617 U 61	739 U 73		14.8 U 1.4	14.7 U 1.47 L	5 U	1,460 U 14	14.7 U 1.471	.2 U
		µg/kg µg/kg	Ľ			61.7 U 309	73.9 U 371		1.48 U 7.43	17.0 7.36	6.35 U 31.9 U	146U 733	7.35	5.72 U 28.7
		Kg µg/kg	-			. U 124	.u 148		U 2.97	3.95	U 12.7 U	.U 293	5 U 2.94 U	.U 11.5 U
		g µg/kg	4.000.000			U 154 U	U 185 U		U 3.71U	U 3.67 U	U 15.9 U	n 366 u	U 3.67 U	U 14.3 U
	enilineo''-\2	µg∕kg				1,240 L	1,480 L		29.7 U	29.5 U	127 U	2,930 L	29.4 U	115 U
		Hg/kg	ŀ	_		617 U	739 U		14.80	14.7 U	63.5 U	1,460 U	14.7 U	57.2 U
	3&4-Methylphenol Coelution	pg/kg	4.000.000			154 U	185 U		3.71 U	3.67 U	15.9 U	366 U	4.18 J	14.3 U
	9,3'-Dichlorobenzidine	µg/kg	ı	_		1,240 U	1,480 U		29.7 U	29.5 U	127 U	2,930 U	29.4 U	115 U
	enilineoƊiVi-6	HEV/KE				1,240 U	1,480 U		29.7 U	29.5 U	127 U	2,930 U	29.4 U	115 U
	4,6-Dinitro-O-cresol	Hg/kg	-	-		1,540 U	1,850 U		37.1 U	36.7 U	159 U	3,660 U	36.7 U	143 U
		ng/kg	Ι,	-		154 U	185 U		3.71.0	3.67 U	15.9 U	366 U 1	3.67 U	14.3 U
		μg/kg μ	-	-		617 U 1	739 U		14.8 U	14.7 U 3	63.5 U 1	1,460 U 3	14.7 U 3	57.2 U 1
	-Chloroaniline	HE/KE	١,			154 U	185 U		3.710	3.67 U	15.9 U	366 U	3.67 U	14.3 U

	enerthrisouFI eneronIFI EnerodoroloszeH	HE/KE HE/KE HE/KE		1			7.0 61.7.0	73.9 U 73.9 U		80 1.480 1.480	4.20 1.47 U 1.47	8J 6.35 U 6.35 I	6U 146U 146L	7.0 1.47.0 1.47	E 7011 E 7011
	Di-n-octyl phthalate	µg/kg µg/		-			617 0 61.	739 U 73.		14.8 U 1.481	14.7 U 4.5	63.5 U 6.68	1,460 U 1461	14.7 U 1.471	57.011 E.7
	Dimethyl phthalate	µg/kg		ı			617 U	739 U		14.8 U	14.7 U	63.5 U	1,460 U	14.7 U	11 0 23
	Diethyl phthalate	g µg/kg		1			0 417 U	739 U		14.8 U	J 14.7 U	J 63.5 U	U 1,460 U	J 14.7 U	11 673 11
	Dibutyl phthalate	g µg/kg		1			U 617 U	u 739 U		U 14.8 U	U 14.7 U	U 63.5 U	0 1,460	U 14.7 U	110 22 011
	nennYoznedIQ	g μg/kg		1			U 61.7 U	U 73.91		U 1.48	U 1.47	U 6.35	U 146	U 1.47	E 7011
	eneoenthne(A,e)znedld	kg µg/kg		-			0.0 61.7.0	0.0 148		1.48	7.0 1.47	U 6.35	0.0 146	7.0 1.47	
	DI(2-Ethylhexyl)Adipate	kg µg/kg		-			7.0 1,540.0	9 U 1,850 U		U 37.	36.	5J 159	3,6601	U 36.	143
	Butyl benzyl phthalate	µg/kg µg/kg		-			7.0 61.7.0	0 0 73.9 U		8.0 1.48	7 U 3.54	5 U 8.65	0 U 146	7 U 1.47	110
	Bis(2-Ethylhoxyl) Phthalate	µg/kg µg/					7 U 617 I	1,110 U 739		22.3 U 14.8	22.1U 14.7	95.5 U 63.5 U	00 U 1,460	63.6 14.7	10000
	bls(2-Chloroethyl) ether	µg/kg µg					1540 927	185 U 1,1		3.71 U 22	_	15.9 U 95	366 U 2,200	3.67 U 6 8	11 0 11
	bis(2-Chloroethoxy)methane	µg/kg µg		-		ı	154 U 19	185 U 11		3.71 U 3.	3.67 U 3.67	15.9 U 1.8	366 U 34	3.67 U 3.	14011
E8270E	Benzyl sicohol	µg/kg µ		1			309 U	3710 1		7.43 U	7.36 U 3	31.9 U	733 U 3	7.35 U 3	
	Benzolc acid	µg/kg		1			7,740 U	9,280 U		186 U	184 U	U 262	18,300 U	184 U	11011
	enertinstoufl(k)ozned	µg/kg		ı			92.7 U	111 U		2.23 U	2.21 U	9.55 U	220 U	2.20 U	000
	euej/úed(j'ų'jj)ozueg	pg/kg		ı			100.01	148 U		1.48 U	2.49 J	6.91.)	146 U	1.47 U	101
	enerthristouh(d)ozned	µg/kg		ı			92.7 U	118.1		2.23 ∪	4.56	0.55 U	262 J	2.20 U	602
	Benzo(a)pyrene	µg/kg		ı			92.7 U	133		2.23 ∪	4.55	9.55 U	348 J	2.20 U	-
	Benz(a)anthracene	µg/kg		ı			61.7 U	73.9 U		1.48 U	3.11	6.35 U	146 U	1.47 U	5
	euezueqozy	µg/kg		1			154 U	185 U		3.710	3.67 U	15.9 U	366 U	3.67 U	
	өпеселийлА	HE/KG		ı			61.7 U	73.9 U		1.48 U	1.47 U	6.35 U	146 U	1.47 U	
	enilinA	BA/kg		1			0 60E	3710		7.43 U	14.7 U	31.9 U	733 U	14.7 U	
	Acenaphthylene	g µg/kg		1			U 61.7 U	U 73.9 U		3.0 1.48.0	U 1.47 U	U 6.35 U	J 146 U	U 1.47 U	
	Acenaphthene	g µg/kg		1			U 61.7 U	U 73.9 U		U 1.48 U	U 1.47 U	U 6.35 U	U 146U	U 1.47 U	
	lonentgotili- 1	kg µg/kg		1			0 0 617 U	0 0 739 U		U 14.8 U	14.7 U	U 63.5 U	0 U 1,460 U	14.7 U	
	4-Chlorophenyl phenyl ether	pg/kg µg/kg		1			154U 1,240U	185 U 1,480 U		3.710 29.70	3.67 U 29.5 U	15.9 U 127 U	366U 2,930U	3.67 U 29.4 U	
			Soll Screening Levels		Depth (ft)		10.0-11.0	14.0-15.0 18		9.0-10.0	4.0-5.0 3.6	9.0-10.0	12.0-13.0 36	12.0-13.0 3.6	00100
					Grab/ Dept Composite		Composite 10.0-	Composite 14.0-		Composite 9.0-:	Composite 4.0-	Composite 9.0-:	Composite 12.0-	Composite 12.0-	o di consessioni
			Sc	TCLP 20x Prescreening Value											H
						۱	Primary	Primary		Primary	Primary	Primary	Primary	Primary	-
	ing Orberta				QC Sample Type		123	123		123	123	123	123	123	5
	Screening Otteria				Date QC Sal Typ	terial Sample	10/10/2023	10/11/2023		10/10/2023	10/11/2023	10/11/2023	10/11/2023	10/11/2023	40.000
Table 5. SVOC Results	Screening Offeria					Surface Soll / Interbedded Material Sample	Interbedded 10/10/2023 Material Sample	Interbedded 10/11/2023 Material Sample	vative Soll Sample	Native Soil 10/10/2023 Sample	Native Soil 10/11/2023 Sample	_	Native Soil 10/11/2023 Sample	_	Native Soil

		9		_			P.	э		0.	n.	0.5	п	ņ	0.0
	elozed16-2	g µg/kg		1			J 92.7 U	J 111 U		U 2.23 U	U 2.21U	U 9.55 U	J 220 U	U 2.20 U	U 8.60 U
	Bis(2-chloro-1-methylethyl) ether	µg/kg		ı			1541	1851		3.71	3.67	15.9 U	1998	3.67	14.3 U
	loneriqorolitostreT-8,2,5,5,	µg/kg		ı			309 U	371 U		7.43 U	7.36 U	31.9 U	733 U	7.35 U	28.7 U
	lonertqorolitostaeT-8,4,5,2	Ja√kg		ı			309 U	371 U		7.43 U	7.36 U	31.9 U	733 U	7.35 U	28.7 U
	eneznedorliniG-4,1	µg/kg		ı			1,540 U	1,850 U		37.1 U	36.7 U	159 U	3,660 U	36.7 U	143 U
	aneznedovliniG-£,£	µg/kg		ı			1,540 U	1,850 U		37.1 U	36.7 U	159 U	N 099'E	36.7 U	143 U
	eneznedoʊlinid-S ₊ t	µg/kg		ı			1,540 U	1,850 U		37.1 U	36.7 U	159 U	3,660 U	36.7 U	143 U
	enibînçî	µg∕kg		100,000			309 U	3710		7.43 U	7.36 U	31.9 U	733 U	7.35 U	28.7 U
	enen/4	µg∕kg		ı			71.3 J	73.9 U		1.48 U	4.17	7.49 J	146 U	1.47 U	5.72 U
ш	loneAq	µg/kg		ı			124 U	148 U		2.97 U	2.95 U	12.7 U	293 U	2.94 U	11.5 U
E8270E	Phenanthrene Phenanthrene	µg/kg		ı			61.7 U	73.9 U		1.48 U	2.03 J	13.8	146 U	1.47 U	13.6
	Pentachlorophenol	µg/kg		2,000,000			617 U	739 U		14.8 U	14.7 U	63.5 U	1,460 U	14.7 U	57.2 U
	enimstynenqibosoviiV-V	µg/kg		ı			154 U	185 U		3.71 U	3.67 U	15.9 U	366 U	3.67 U	14.3 U
	enimelyqorq-n-lbosortiN-N	µg/kg		ı			154 U	185 U		3.710	3.67 U	15.9 U	366 U	3.67 U	14.3 U
	enimaly/themibosotil/-//	µg/kg		ı			1540	185 U		3.71 U	3.67 U	15.9 U	366 U	3.67 U	14.3 U
	eneznedovilV	µg/kg		40,000			617 U	739 U		14.8 U	14.7 U	63.5 U	1,460 U	14.7 U	57.2 U
	enoroniquel	µg/kg		ı			154 U	185 U		3.71 U	3.67 U	15.9 U	366 U	3.67 U	14.3 U
	enervq(bo-6,2,2)onebnl	µg∕kg		ı			68.1)	148 U		1.48 U	2.42.)	6.35 U	146 U	1.47 U	33.2
	ensrtieoriolitasseH	µg/kg		90,000			154 U	185 U		3.71 U	3.67 U	15.9 U	366 U	3.67 U	14.3 U
	Hexachlorocyclopentadlene	µg∕kg		ı			309 U	3710		7.43 U	7.36 U	31.9 U	733 U	7.35 U	28.7 U
				creening Value	Depth (ft)		10.0-11.0	14.0-15.0		9.0-10.0	4.0-5.0	9.0-10.0	12.0-13.0	12.0-13.0	9.0-10.0
				TCLP 20x Prescreei	Grab/ Composite		Composite	Composite		Composite	Composite	Composite	Composite	Composite	Composite
	riteria			뒫	QC Sample Type		Primary	Primary		Primary	Primary	Primary	Primary	Primary	Primary
	Screening Orteste				Date	al Sample	10/10/2023	10/11/2023		10/10/2023	10/11/2023	10/11/2023	10/11/2023	10/11/2023	10/12/2023
le 5. SVOC Results					Area	ace Soll / Interbedded Material Sample	Interbedded Material Sample	Interbedded Material Sample	npie	Native Soil Sample					
e 5. SV					cation	oe Soll /	TP-01	TP-07	re Soll Sample	TP-04	TP.05	TP.06	TP.08	TP-10	TP-15

Page 3 of 4

Table 5. SVOC Results

ug/kg = micrograms per kilogram

CFR = Code of Federal Regulations

ft = foot or feet

cPAH = carcinogenic polycyclic aromatic hydrocarbon

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample. QC = quality control

SVOC = semivolatile organic compound

TCLP = Toxic Characteristic Leaching Procedure

U = Result not detected above the referenced laboratory detection limit

ž	1
=	2
ď	3
Ω	
I	
Δ	
۲	
C)
a	ر
3	
σ	3

						NWTP	NWTPH_Dx	NWTPH_Gx
		Screening Criteria	riteria			Heavy Oil Range Hydrocarbons	Diesel	ənilozsə
						mg/kg	mg/kg	mg/kg
Location	Area	Date	QC Sample Type	Grab/Composite	Depth (ft)			
Surface Soil / In	Surface Soil / Interbedded Material Sample							
TP-01	Interbedded Material Sample	10/10/2023	Primary	Composite	10.0-11.0	1,000	107 U	3.40 U
TP-07	Interbedded Material Sample	10/11/2023	Primary	Composite	14.0-15.0	1,780	1110	2.54 U
Native Soil Sample	ejdu							
TP-04	Native Soil Sample	10/10/2023	Primary	Composite	9.0-10.0	22.4 U	11.2 U	2.90 U
TP-05	Native Soil Sample	10/11/2023	Primary	Composite	4.0-5.0	21.6 U	10.8 U	2.53 U
TP-06	Native Soil Sample	10/11/2023	Primary	Composite	9.0-10.0	120	11.1 U	2.57 U
TP-08	Native Soil Sample	10/11/2023	Primary	Composite	12.0-13.0	2,550	541 U	2.30 U
TP-10	Native Soil Sample	10/11/2023	Primary	Composite	12.0-13.0	22.4 U	11.2 U	2.94 U
TP-15	Native Soil Sample	10/12/2023	Primary	Composite	9.0-10.0	209	10.6 U	3.29 U
Wetland Soil Sample	ample							
WS-01	Wetland Soil Sample	10/10/2023	Primary	Grab	0.0-2.0	I	I	7.30 U
WS-05	Wetland Soil Sample	10/10/2023	Primary	Grab	0.0-2.0	1	ı	12.3 U
Notes								

Notes

ft = foot or feet

mg/kg = milligrams per kilogram

QC = quality control

TCLP = Toxic Characteristic Leaching Procedure

TPH = total petroleum hydrocarbons

U = Result not detected above the referenced laboratory detection limit

Table 7	Table 7. VOC Metal Results	<u>8</u>				CALC														E8260D													
		Screening Criteria	g Criteria			OSOS (S\L=U) senelyX latoT ISD	enartieoroliosrieT-S,1,1,1,1	ensriteorold:hT-L,L,L	enartieoroldaetieT-S,S,L,L	ansriteorold: 1,2,2,1	1,1-Dichloroethane	£,1-Dichloroethene	T,1-Dichloropropene	eneznedoroldohT-&,S,L	enegorgorolfohT-6,2,1	eneznedorolnohT-4,2,£	enaznadkyńamhT-4,2,1	eneznedoroihold-S,£	1,2-Dichloroethane	1,2-Dichloropropane	eneznedlyrthemhT-3,8,£	£,3-Dichlorobenzene	4.3-Dichloropene	eneznedo≀old-h,t	2,2-Dichloropropane	eneulototold-S	eneuloforold 3-4	enotecA	elihinolya4	Benzane	Bromobenzene	Bromotolichiomora	Bromoform
						JA/Kg	µg/kg	BN/8tt	Mg/kg	BN/8tt	BN/8H	µg/kg	JA/JBH	µg/kg	BA/8⊓	BN/8d	HE/KE	BN/8⊓	µg/kg	µg/kg	Mg/kg	BN/BH	Mg/kg	JIE/KE	µg/kg	µg∕kg	µg/kg	HE/KE I	pg/kg	µg/kg	µg/kg	HE/KE	JIE/Kg
				Soll Ser	Soll Screening Levek	90																											
				TCLP 20x Prescreening Value	reening Value	1	ı	-	ı	-	1	14,000	ı	ı	ı	1	ı	-	10,000	1	1	ı	1	150,000	1	1	-	ı	1	10,000	ı	ı	ı
Locatio	lo Area	Date	QC Sample Type	Grab/ Composite	Depth (ft)																												
Surface	Surface Soll / Interbedded Material Sample	terial Sample																															
TP-07	, Interbedded Material Sample	10/11/2023	Primary	Composite	14.0-15.0	U 0.01	12.7 U	12.7 U	25.4 U	12.7 U	12.7 U	12.7 U	25.4 U	U 72T	25.4 U	127 U	25.4 U	12.7 U	12.7 U	12.7 U	25.4 U	12.7 U	25.4 U	12.7 U	25.4 U	25.4 U	25.4 U 1	1,020 U	0 6'09	5.09 U	12.7 U	25.4 U	0 6:09
Native S.	ative Soil Sample																																
TP-04	Native Soil Sample	10/10/2023	Primary	Composite	9.0-10.0	21.8 U	14.5 U	14.5 U	29.0 U	14.5 U	14.5 U	14.5 U	29.0 U	145 U	29.0 U	145 U	29.0 U	14.5 U	14.5 U	14.5 U	29.0 U	14.5 U	29.0 U	14.5 U	29.0 U	29.0 U	29.0 U	1,160 U	58.0 U	5.80 U	14.5 U	29.0 U	58.0 U
TP-05	Native Soil Sample	10/11/2023	Primary	Composite	4.0-5.0	18.9 U	12.6 U	12.6 U	25.3 U	12.6U	12.6 U	12.6U	25.3 U	126 U	25.3 U	126 U	25.3 U	12.6 U	12.6 U	12.6 U	25.3 U	12.6 U	25.3 U	12.6 U	25.3 U	25.3 U	25.3 U 1	1,010 U	50.6 U	5.06 U	12.6 U	25.3 U	50.6 U
TP-06	Native Soil Sample	10/11/2023	Primary	Composite	9.0-10.0	19.3 U	12.9 U	12.9 U	25.7 U	12.9 U	12.9 U	12.9 U	25.7 U	U 62T	25.7 U	129 U	25.7 U	12.9 U	12.9 U	12.9 U	25.7 U	12.9 U	25.7 U	12.9 U	25.7 U	25.7 U	25.7 U 1	1,030 U	51.5 U	5.15 U	12.9 U	25.7 U	51.5 U
TP-08	Native Soil Sample	10/11/2023	Primary	Composite	12.0-13.0	17.3 U	11.5 U	11.5 U	23.0 U	11.5 U	11.5 U	11.5 U	23.0 U	115 U	23.0 U	115 U	23.0 U	11.5 U	11.5 U	11.5 U	23.0 U	11.5 U	23.0 U	11.5 U	23.0 U	23.0 U	23.0 U	922 U	46.1 U	4.61 U	11.5 U	23.0 U	46.1 U
TP-10	Native Soil Sample	10/11/2023	Primary	Composite	12.0-13.0	22.0 U	14.7 U	14.7 U	29.4 U	14.7 U	14.7 U	14.7 U	29.4 U	147 U	29.4 U	147 U	29.4 U	14.7 U	14.7 U	14.7 U	29.4 U	14.7 U	29.4 U	14.7 U	29.4 U	29.4 U	29.4 U 1	1,180 U	58.9 U	5.89 U	14.7 U	29.4 U	58.9 U
TP-15	Native Soil Sample	10/12/2023	Primary	Composite	9.0-10.0	24.7 U	16.5 U	16.5 U	32.9 U	16.5 U	16.5 U	16.5 U	32.9 U	165 U	32.9 U	165 U	32.9 U	16.5 U	16.5 U	16.5 U	32.9 U	16.5 U	32.9 U	16.5 U	32.9 U	32.9 U	32.9 U	1,320 U (06:39	6.59 U	16.5 U	32.9 U	0 6:39

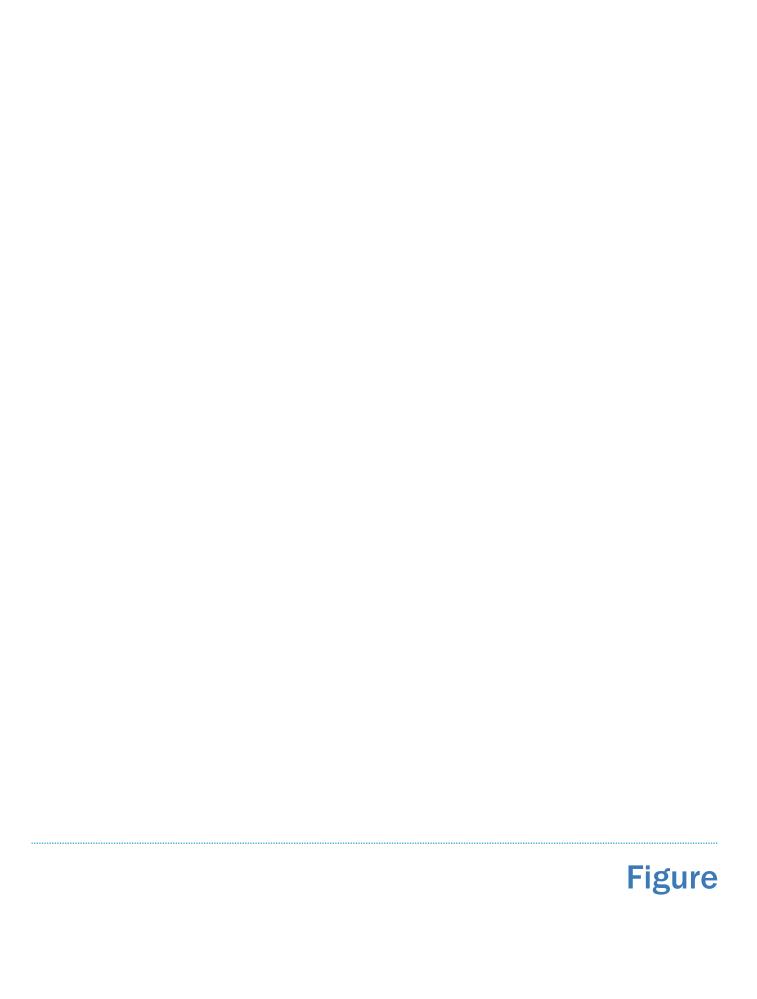
	- 200-		Г			_		_	_	_	_	_	_
sec-But/lpeuzene			1						_	_			32.9 U
p-leopropylicoluene	Mg/kg		ı			25.4 U		29.0 U	25.3 U	25.7 U	23.0 U	29.4 U	32.9 U
n-Propylbenzene	BN/Bri		ı			12.7 U		14.5 U	12.6 U	12.9 U	11.5 U	14.7 U	16.5 U
eneznedl/Ju8-n	Mg/kg		ı			25.4 U		29.0 U	25.3 U	25.7 U	23.0 U	29.4 U	32.9 U
enelarthdeM	BN/BH		ı			102 U		116 U	101 U	103 U	92.2 U	118 U	132 U
Метлујепе спіонде	BN/BH		١			254 U		290 U	253 U	257 U	230 U	294 U	329 U
Methyl tert-butyl ether	BN/BH		ı			25.4 U		29.0 U	25.3 U	25.7 U	23.0 U	29.4 U	32.9 U
Methyl isobutyl Ketone	BN/BH		١			254 U		290 U	253 U	257 U	230 U	294 U	329 U
Methyl ethyl ketone	By/Bri		4,000,000			254 U		290 U	253 U	257 U	230 U	294 U	329 U
euezueqi/doidosi	µg/kg	l	ı			25.4 U		29.0 U	25.3 U	25.7 U	23.0 U	29.4 U	32.9 U
enelbstrudotoldssxeH	Mg/kg		10,000			0.03 U		58.0 U	50.6 U	51.5 U	46.1 U	58.9 U	0 6:39
Ethylene dibromide	pg/kg		1			25.4 U		10.62	25.3 U	25.7 U	23.00	29.4 U	32.9 U
Eţţyklpenzene	pg/kg		ı			12.7 U		14.5 U	12.6 U	12.9 U	11.5 U	14.7 U	16.5 U
Dichlorodifluoromethane	BA/∕Bri		ı			16.03		58.0 U	19.09	51.5 U	46.10	16.85	06'99
Dibromomethane	BN/BH		ı			25.4 U		29.0 U	25.3 U	25.7 U	23.0 U	29.4 U	32.9 U
Dibromochloropropane	pg/kg		ı			127 U		145 U	126 U	129 U	115 U	147 U	165 U
Dibromochloromethane	Ву/Вп		ı			0 6'09		98.0 U	9.0g	51.5 U	46.1 U	58.9 U	0 6'99
ele-1,3-Dichloropropene	BN/BH		1			25.4 U		29.0 U	25.3 U	25.7 U	23.00	29.4 U	32.9 U
enertheoroldold-2,1-alo	JA//Bit		ı			12.7 U		14.5 U	12.6 U	12.9 U	11.5 U	14.7 U	16.5 U
Chloromethane	BN/BH		ı			127 U		145 U	126 U	129 U	115 U	147 U	165 U
Chloroform	34/8rl		120,000			25.4 U		29.0 U	25.3 U	25.7 U	23.0 U	29.4 U	32.9 U
Chloroethane	pg/kg		1			254 U		290 U	253 U	257 U	230 U	294 U	329 U
eneznedorolfO	BN∕8¤		2,000,000			U 7.21		14.5 U	12.6 U	12.9 U	11.5 U	14.7 U	16.5 U
Carbon tetrachioride	BN/BH		10,000			25.4 U		29.0 U	25.3 U	25.7 U	23.0 U	29.4 U	32.9 U
Carbon disuifide	µg/kg		ı			254 U		290 U	253 U	257 U	230 U	294 U	329 U
Bromomethane	pg/kg		ı					089 n	20e U	515 U	461 U	0 689 n	0 699 n
		ning Levels	aning Value	Depth (ft)		14.0-15.0		9.0-10.0	4.0-5.0	9.0-10.0	12.0-13.0	12.0-13.0	9.0-10.0
		Soll Scree	LP 20x Prescret	Grab/ Composite		Composite		Composite	Composite	Composite	Composite	Composite	Composite
Criteria			Į,	QC Sample Type		Primary		Primary	Primary	Primary	Primary	Primary	Primary
Screening				Date	tal Sample	10/11/2023		10/10/2023	10/11/2023	10/11/2023	10/11/2023	10/11/2023	10/12/2023
				Area	vil / Interbedded Materia	Interbedded Material Sample	Semple	Native Soil Sample	Native Soil Sample	Native Soil Sample	Native Soil Sample	Native Soil Sample	Native Soil Sample
				Locatio	Surface Sc	TP-07	Vative Sol.	TP-04	TP-05	1P-06	TP-08	TP-10	TP-15
	entribenorition Chlorobarter Chlorobarter Chlorobarter Chlorobarter Chlorobarter Chlorobarter Chlorobarter Chloropropene Chloroprope	anarhamomorid abritorioristrano carbonolicomorida chicomoridano chicomoridano	Solution in the control of the contr	2000 1 1 2000000 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Soil Someoning Criteria Carbon distuiffide Carbon	Screening Criteria Criteria Indiverse Individual Criteria Screening Criteria Criteria Indiverse Individual Criteria Medatry Indoord Individual Criteria Medatry Indiverse Individual Criteria Medatry Ind	March Marc	### Still Streaming Wilds Modern Mo	State Controlled Controll	### Compose	The Companie The	Calibration Calibration	### Commontal State 1974 1

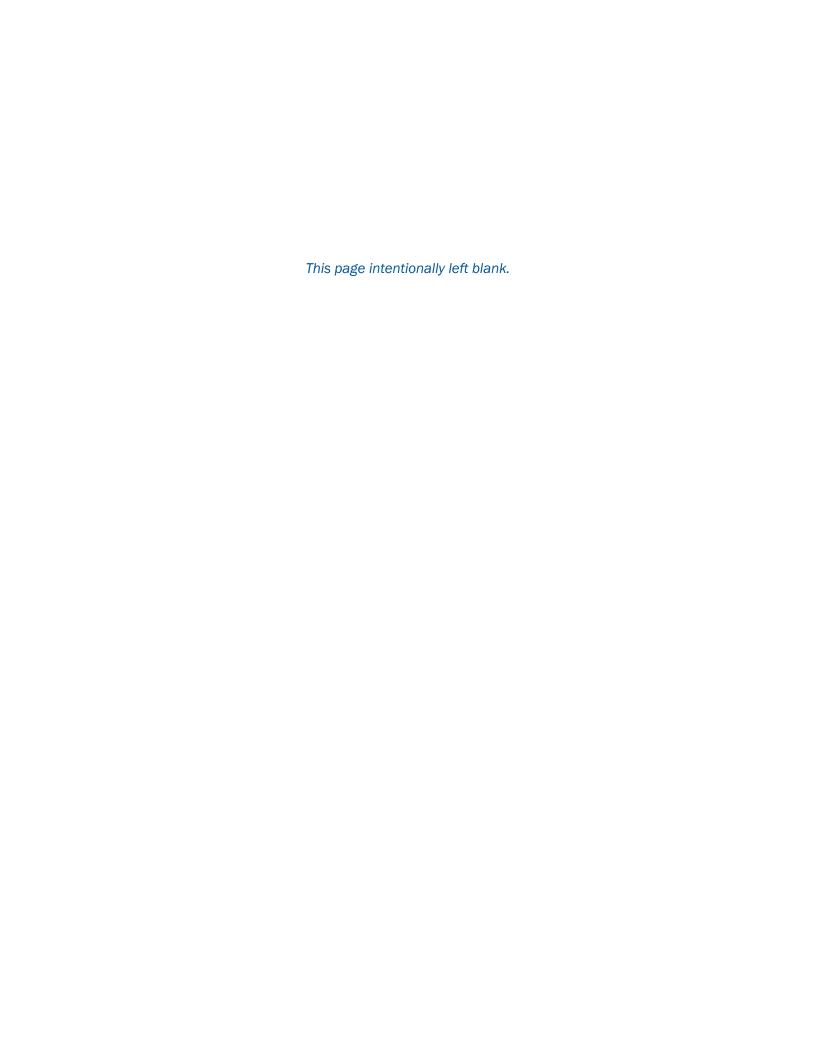
Table 7.	Table 7. VOC Metal Results																	
		Screening Offerin	Criteria			Styrene	eneznedlýjuð-freð	enertheorolf:setteT	eneuloT	anartheoroldold-S,t-enert	enegorgorolical-6,1-enert	enertreorolifohT	ensrtemotouflotolitchT	Vinyl chloride	S-Hexanone	enelvX-q,M	enelyX-O	BromoroldoomorB
						BN/BH	pg/kg	BN/BH	Mg/kg	β//βd	pg/kg	BN/BH	BN/BH	BN/BH	8x/8ti	βλ/βμ	BN/Bit	βλ/βπ
				Soll Scree	Soll Screening Levels													
			υ 1	TCLP 20x Prescreening Valu	ening Value	ı		14,000	ı	1	-	10,000	1	4,000	-	-	ı	ı
Locatio	Area	Date	QC Sample Type	Grab/ Composite	Depth (ft)													
Surface S	Surface Soll / Interbedded Material Sample	rial Sample																
TP-07	Interbedded Material Sample	10/11/2023	Primary	Composite	14.0-15.0	25.4 U	25.4 U	12.7 U	25.4 U	12.7 U	25.4 U	12.7 U	0 6:09	12.7 U	0 609	25.4 U	12.7 U	25.4 U
Native So	lative Soll Sample																	
TP-04	Native Soil Sample	10/10/2023	Primary	Composite	9.0-10.0	29.0 U	29.0 U	14.5 U	29.0 U	14.5 U	29.0 U	14.5 U	58.0 U	14.5 U	0 089	29.0 U	14.5 U	29.0 U
TP-05	Native Soil Sample	10/11/2023	Primary	Composite	4.0-5.0	25.3 U	25.3 U	12.6 U	25.3 U	12.6 U	25.3 U	12.6 U	50.6 U	12.6 U	N 909	25.3 U	12.6 U	25.3 U
TP-06	Native Soil Sample	10/11/2023	Primary	Composite	9.0-10.0	25.7 U	25.7 U	12.9 U	25.7 U	12.9 U	25.7 U	12.9 U	51.5 U	12.9 U	0 STS	25.7 U	12.9 U	25.7 U
TP-08	Native Soil Sample	10/11/2023	Primary	Composite	12.0-13.0	23.0 U	23.0 U	11.5 U	23.0 U	11.5 U	23.0 U	11.5 U	46.1 U	11.5 U	461 U	23.0 U	11.5 U	23.0 U
TP-10	Native Soil Sample	10/11/2023	Primary	Composite	12.0-13.0	29.4 U	29.4 U	14.7 U	29.4 U	14.7 U	29.4 U	14.7 U	58.9 U	14.7 U	N 689	29.4 U	14.7 U	29.4 U
TP-15	Native Soil Sample	10/12/2023	Primary	Composite	9.0-10.0	32.9 U	32.9 U	16.5 U	32.9 U	16.5 U	32.9 U	16.5 U	0 6°59	16.5 U	N 699	32.9 U	16.5 U	32.9 U

Table 7. VOC Metal Results

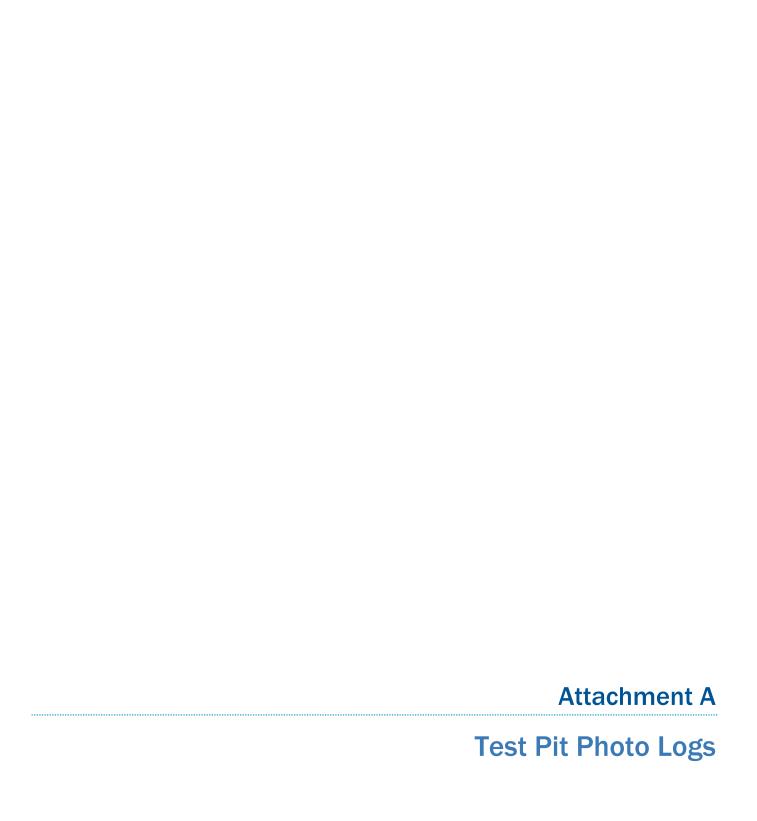
Votes

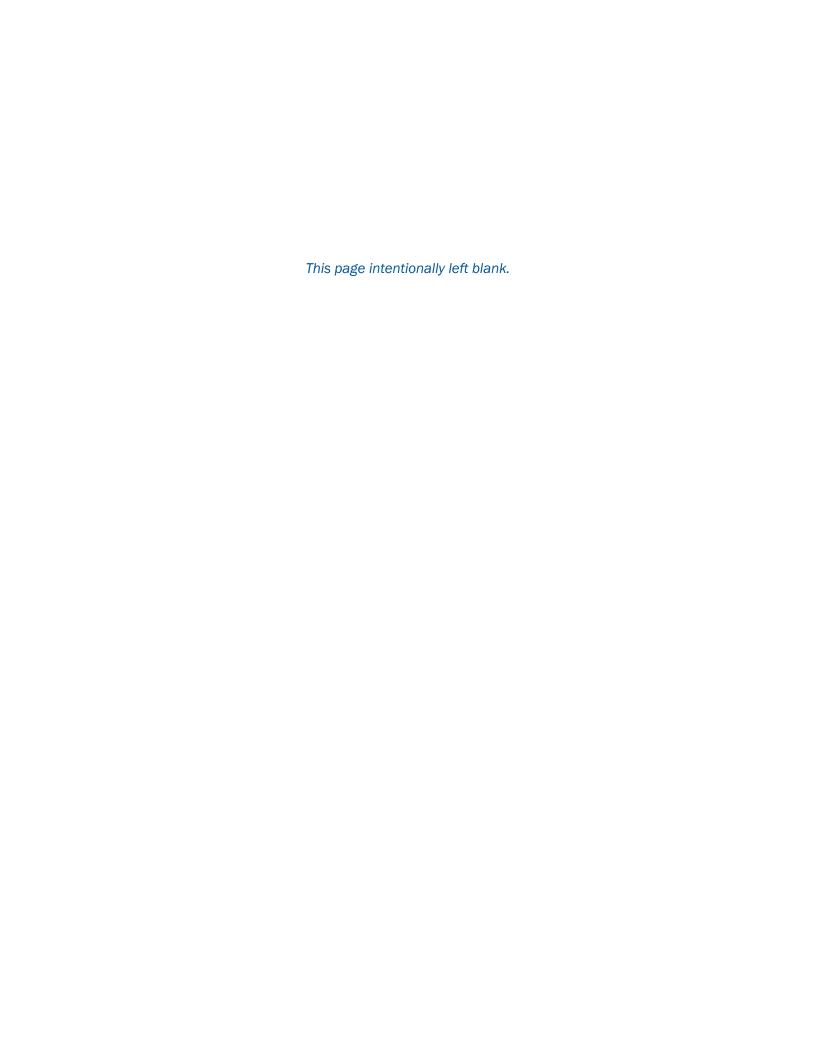
ug/kg = micrograms per kilogram


ft = foot or feet


QC = quality control

TCLP = Toxic Characteristic Leaching Procedure


U = Result not detected above the referenced laboratory detection limit


VOC = volatile organic compound

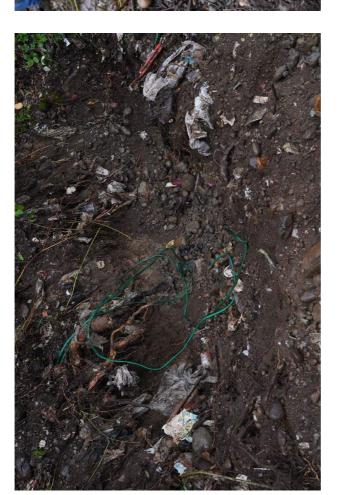
Former Eatonville Landfill Waste Characterization Results Technical Memorandum Former Eatonville Landfill, Eatonville, WA Test Pit and Sampling Locations Estimated Extent of the Landfill FIGURE 1 **NOTE**1. Site features are approximate. Anticipated Test Pit Area Weyerhaeuser Property Date: November 28, 2023 Data Sources: USGS, ESRI, DNR (2011), Pierce Co. Wetland SampleTest PitNative Soil Depth, feet Surface Sample Sampling Locations Wetland Area Landfill Area All Other Features - Flow Path 9 9 12 TP/SS-15

Test Pit 1
Former Eatonville Landfill Waste Characterization Results
Technical Memorandum
Former Eatonville Landfill, Eatonville, WA

Test Pit 2
Former Eatonville Landfill Waste Characterization Results
Technical Memorandum
Former Eatonville Landfill, Eatonville, WA

Test Pit 3
Former Eatonville Landfill Waste Characterization Results
Technical Memorandum
Former Eatonville Landfill, Eatonville, WA

Weyerhaeuser/Source_Figures/074_Waste_Characterization_Memo!Appro.



Test Pit 4
Former Eatonville Landfill Waste Characterization Results
Technical Memorandum
Former Eatonville Landfill, Eatonville, WA

Test Pit 5
Former Eatonville Landfill Waste Characterization Results
Technical Memorandum
Former Eatonville Landfill, Eatonville, WA

Test Pit 6
Former Eatonville Landfill Waste Characterization Results
Technical Memorandum
Former Eatonville Landfill, Eatonville, WA

Test Pit 7
Former Eatonville Landfill Waste Characterization Results
Technical Memorandum
Former Eatonville Landfill, Eatonville, WA

verhaeuser/Source_Figures/074_Waste_Characterization_Memoi/App

Test Pit 8
Former Eatonville Landfill Waste Characterization Results
Technical Memorandum
Former Eatonville Landfill, Eatonville, WA

Test Pit 9
Former Eatonville Landfill Waste Characterization Results
Technical Memorandum
Former Eatonville Landfill, Eatonville, WA

ATTACHEMENT A

Test Pit 10
Former Eatonville Landfill Waste Characterization Results
Technical Memorandum
Former Eatonville Landfill, Eatonville, WA

Test Pit 11
Former Eatonville Landfill Waste Characterization Results
Technical Memorandum
Former Eatonville Landfill, Eatonville, WA



ATTACHEMENT A Test Pit 12

Former Eatonville Landfill Waste Characterization Results
Technical Memorandum
Former Eatonville Landfill, Eatonville, WA

ser/Source_Figures/074_Waste_Characterization_Memo/Approach

Test Pit 13

Former Eatonville Landfill Waste Characterization Results
Technical Memorandum
Former Eatonville Landfill, Eatonville, WA

nhaeusen/Source_Figures/074_Waste_Characterization_Memol/Appro

Test Pit 14
Former Eatonville Landfill Waste Characterization Results
Technical Memorandum
Former Eatonville Landfill, Eatonville, WA

gures/074_Waste_Characterization_Memo!Approach

ATTACHEMENT A
Test Pit 15
Former Eatonville Landfill Waste Characterization Results
Technical Memorandum
Former Eatonville Landfill, Eatonville, WA

ATTACHEMENT A

Wetland Sample 1
Former Eatonville Landfill Waste Characterization Results
Technical Memorandum
Former Eatonville Landfill, Eatonville, WA

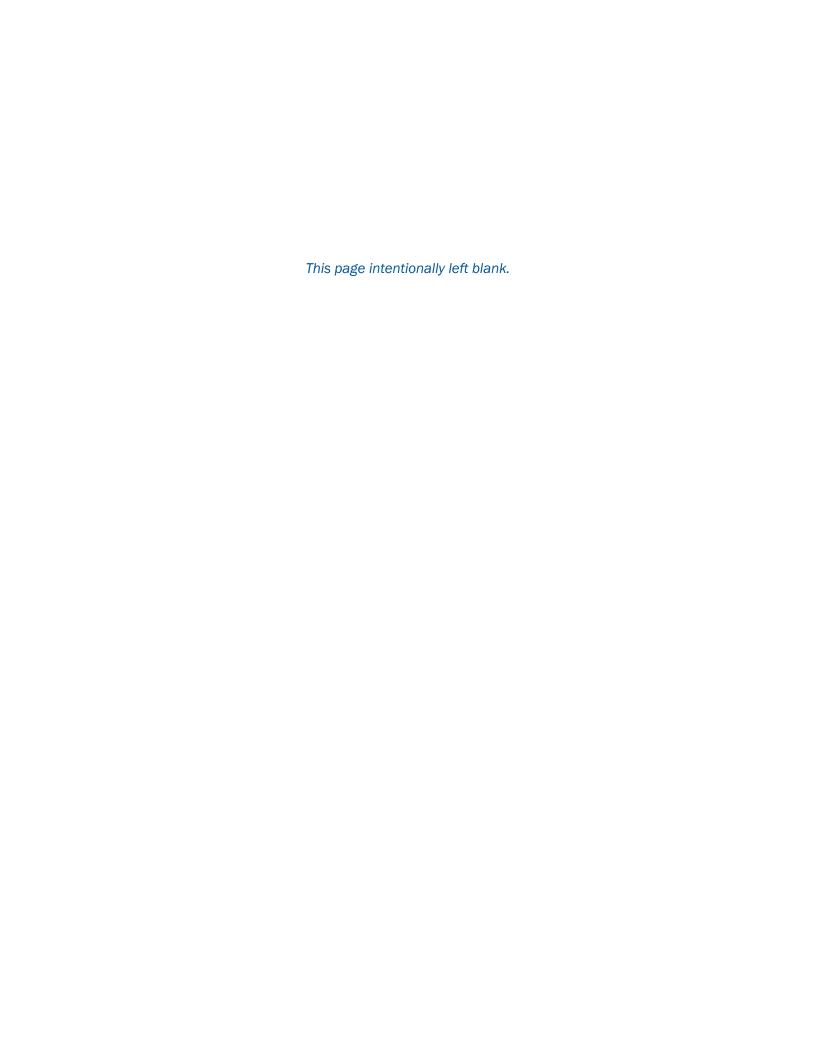
Former Eatonville Landfill Waste Characterization Results
Technical Memorandum
Former Eatonville Landfill, Eatonville, WA Wetland Sample 2

Wetland Sample 3

Former Eatonville Landfill Waste Characterization Results
Technical Memorandum
Former Eatonville Landfill, Eatonville, WA

ATTACHEMENT A

Wetland Sample 4
Former Eatonville Landfill Waste Characterization Results
Technical Memorandum
Former Eatonville Landfill, Eatonville, WA



ATTACHEMENT A

Wetland Sample 5
Former Eatonville Landfill Waste Characterization Results
Technical Memorandum
Former Eatonville Landfill, Eatonville, WA

Attachment B Test Pit Soil Logs

KIN			SU	RFACE S	OIL SAMPLIN	IG DA	TA SH	EET		2 224
Project I Former 6	Vame: Eatonville	Landfill	Project Number: 171.07	74	Location: Eatonville La	ndfill	Investig	ation Uni	t (IU):	Date: /0//0127
Weather	Condition	ns:	6	Tell 1		Sar	npling Pe	rsonnel:	IS WATER IS	TOKKNSON
Depth So	ounding M	lethod:		NA"	9	Sam	pling Equ	ipment:	POST HOLES	
Tannas C	11	(NIST DOL	Easting:		1 100 1		Gauge	Source:	NA	
i arget C	oorginate:	s (NAD 83):	Northing:			Gauge	Height (f	t)/Time:	NA	
				281183	SUMMAR	Y	400	TATE OF		
Station ID	Time	Coord Latitude	inates Longitude	Water Depth (ft)	Recovered Thickness (in)	< OLW?	< Accepted?	< Photo?	Notes	Sample Interval
WS-02	12		FIXELO MAN		24		8/		Hotes	0-244
WS-01	850		FIECO MAPS	NA	24	- 3 7	1	1	exemple tel	0-246
1300	, A.	the state of			1. 44	-		*	71 ×	
Definition	s: in = inche	es, ft = feet, OLW = o	verlying water		1.2					
WS #:	07	STEEL SERVICE THE				Attemp		5500 - 50	THE PART OF STREET	THE PROPERTY OF
Grain Siz	e Distribu	tion (%G/S/F): ()	110 190		Odor/Sheen/W	oodwas	te/Visual	Impacts:	LIGHT GREY, IT	15. 15.
mmen	its:	1 700	Sample Time:					~	10 mg	
WS#:	CO.	J. HATCHEL TO CO.	Sample Time: 8	40	Si			MS 0-0	-20-70602023	
The second second	e Distribut	tion (%G/S/F): O	1 40 18-8)		Odor/Sheen/W	Attempt		Image and a	NA COOM	
Mg Mg	on: DA NOUM			er blus					TS, THEN CADUTE	rey sary
Commen	(1)					, ,				
Sampled	(Y/N):		Sample Time:	850	Sa	mple ID	: 125	-01-0	020-10/0202	3
WS #:	NO PERSON	1 (2) (2)				Attemp	CONT. CO.			and the state of t
Descripti		tion (%G/S/F):			Odor/Sheen/W	oodwas	te/Visual	Impacts:		
Commen	ts:	18			93	9.3			W. L. S. S.	
Sampled	(Y/N):	C STREET, STRE	Sample Time:	Table 2		mple ID				
S VE LON			ozerieses biline in		MPLE INFORM			3001.8	A CONTRACTOR OF THE STATE OF TH	STEET STEET
	Samp	ele ID	Time	Ty	ype (Primary, Dupl	icate, M	s/MsD)		# of Cont	ainers
W22-	02-0	10-70-10/02	5 840		\underline{P}	1	Ž.	= 290	5	4
Mrs-C	1-00	12.0-WW26	23 850				1	e 1	97	4
	1	- B	21 = =			1	-		Y sir h	
			₩			v.	1			

DHO.	700, 14-57	185 15 25	SI	JRFACE S	OIL SAMPLIN	IG DA	TA SH	EET	ATT SEW SELLIN	A Tracki
Project N Former Ea		andfill	Project Number: 171.0		Location: Eatonville La	ndfill	Investig	ation Unit	(IU):	Date: 10/10/23
Weather	Condition	5:			0/1 ·	San	npling Pe	rsonnel:	B. W. HOVER, J.	a KINSON .
Depth So	unding Mo	ethod:		NA	200	Sam	pling Equ	ipment:	POST-HOLETE	x*
Target Co	ordinates	(NAD 83):	Easting:					Source:	NA NA	×
200	5,12, 3,5	The pitch was	Northing:		7		Helght (1	t)/Time:	NA NA	
					SUMMAR	N 2020	SI SIE	COLUMN TO		
Station ID	Time	Coord Latitude	nates Longitude	Water Depth (ft)	Recovered Thickness (in)	< OTW?	< Accepted?	< Photo?	Notes	Sample Interval
1	140				24		1./			0-21
11905		SAME	TAILLET	0.7			V	1 12	- 90 V	
WSC4	605	SAR		15	Dit-		V			0-2'
(15-53	8,20	241	L	48	1	3	U.	31		0-2
THE RESERVE AND ADDRESS OF THE PERSON NAMED IN	in = inche	f, ft = feet, OLW = or	erlying water	Bunesia		Attempt	. #.			
Grain Size	Distribut	ion (%G/S/F): /1	1:0100	- SILLIO	Odor/Sheen/W	ondwast	e/Visual	Impacts:	NO OJEPH	207
Sampled	(Y/N):	1-(3(Zavs))		750	i c	ample ID	: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	o5-c	N/O 0.000	
Description		SNA!	grantit h	RWORK 9	100					
Comment	74-			_	E	0		17		A
Sampled() WS#: \		7	Sample Time:	6305	S			4-0.0-	20-10102023	
Grain Size	Distribut	ion (%G/S/F): 🗼	140 190 c	-13	Odor/Sheen/W	Attempt		Impacts:	NO ON PPM	PPD
Description	in: OM	che Pappie count & Great	SET COLL	CUTE S	da choren	NIC.	(0-1)	:), AN	D LICHT GREY	LEP, SAND,
Comment	s:	18.7					190			
Sampled	Y/N):	2	Sample Time:	820	S	ample ID	125-	0.3	610	
Z.KGS			COLUMN TOWN		MPLE INFORM	MATION	av Ju		请	dunkan ekony
0 1 070	Samp	le ID	Time	T	ype (Primary, Dup	licate, M	s/MSD)		# of Conta	iners
W5-0	5-181	ور ١٥١٥/ ميدي	750		Y		1 15	e.	28 N	7
i Gra	1 - 600	an pictols	205	= 191	P		1	10 1	* 5	14 7.34
WS-07	5-0,0	2.0 tours	820	3	8				5	11 2 1 C
- ·	4	-100202		18.274				1 p.	1 10	1 -

1

Sept.

		13			TE	ST PI	Test Pit ID: <u>7P-15</u> PROJ. NO. 171.074
	L'and			T'est	SHOW		
ECT;	Former	Eatonville Lan	dfill			D	DATE: 10/17/73 Logged By: 15, WARNER
TION:	Eatonvi	le, WA				S	TART TIME (CIL)
RACTOR	R: Enviro	con			COL	EI	ND TIME: ACCOUNTS
UDE:					25 EX	LC	ONGUENDE:
	6,	V.E.J., U	100	100	8 66		Total Depth:
Test Pit Depth (ft)	Sample Interval	Sheen Test Result	PID Reading (ppm)	Lithology	Visual (Distribut	tion	WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES
7=	04	No	1.3	GW	60 30 30 10	5 6	SUPPORTED TO THE PARK PROWN, MONEY, CUST-
			- Ot	150 ===	30 10	5	MODS, CUST-
- 12			20	2.5			SHEPORTED SANDY GRAVEL 1-5" AND CHASTES)
				70	. 0	211.3	(Clande) AND CONTRES)
-					N L	1	
110		* 1			- 1	76+ OCC.	- OELOW 1' 4050 Great a
_	4-5	417	2.1		1 44	12	- BELOW I', UPTO GOYO PLASTER WRAP,
	4 7	_Aro_	0,7		- 8		CARPET, LARGE METAL APPLDANCE, BUTTLES
	0			-	- C	10	LANCE METAL APPLDANCE KNITTER
			- 33	2	100		MOSING REMINIS
-							1 5 LED TO 151
-	60		8	3		1	(C. 1)
_							0-0-10.00)-6W-17845 CON SUL
						`	(8-U-10.01) - 6W-LEGAT GREY, INDURAT
-	9+0	40	012		55 40	5	BUT COLARIS CALL
	-				72 10		BUT PRIDOSCE COMSE SAWDY GRATEC WITH
				- 1			CHIPPY MATTHE SOTT
	- 1			0	T		SOUDO, NO WASTE MATERIAL: DRY AND
\dashv		101	NO	' I'	21		CHIPPY WATER SOLL CONTRICTOR, OR, AND
		1			- 1	. 3	
)	
		12			1		
_					/ /	- :	
\neg							
	- 1		3 8	/	/	24	
_		1		1	/	-	
-			/	1		1	
		1	/	X	4		
			/	/			
_				/	- 2		
\dashv		\ /	1				
		\/	/	- 1			
		X			5 1		
\dashv			5.5		3	1.	
-	2 2	/		- [2	. 36	
	160					100	
		Mr.			ř.	5 5	
		2 1		× ,	8. E	2.5	
-			7 1				
							A 14

55-15-0.0-1.0-2015/012e 900 TP-15-IM-40-50-2023/012e 1430 TP-15-NS-90-100-2023/012e 14451-couseren voas(2)

-					1,000	TEST	PIT LOG	Test Pit ID: TP14
	A 351 L		T Di				S. T.	PROJ. NO. 171.074
PROJECT:	Former	Eatonville Lan	dfill			10.00	DATE: 10/12/23	T Analys -
LOCATION:		ille, WA		_	_		START TIME: 305	Logged By: B, WATENETC Sampling Scheme: EVCANATOR
CONTRACTO				31		- 1	END TIME: 1530	Sampling Scheme: EVCAVATO C
LATITUDE:					- 3	125	LONGITUDE:	Total Depth: 15
Test Pit Depth (ft)	Sample Interval	Sheen Test Result	PID Reading (ppm)	Lithology		isual GS stribution		L (Based on Unified Soll Classification System) DESCRIPTION AND NOTES
		NAME OF TAXABLE PARTY.	- 0	0 1			The state of the s	
2.5	1-10 1-10	NO	0,3	3	\$	2	-5' up 70 FROM SE -12' CONCRETE -19' - All	HOW DARCH BROWN, MUDER, LOVE, WIDER GRANEL WATH COARSE SAND, DICTED WATH WASTES: ISOTHES, METAL S, C.5% TORES, HOSES, PLATEC WRAPS, 30% PLASTIC WITCAPS WATH ASA, AC, ITRACK MATERDAYS (?) SLATS WASTE IS SLAG, GLASS, ASA, ISUTUDENT. GMENTS
7.5		15' 80	,s °	FP1	N /			

SS-14-0.0-10-2000-101208150 TP-14-IM-4.0-500-20231012@1305 TP-14-IM-9.0-1000-20231012@1315

TP-14-IM-14-0-15-0-70271012 @ 1525

	- 1	1000		-	10	TES	TF	T LOG Test Pit ID:	TP-13
			0.0				•	PROJ. NO.	171.074
-		in a said of						PROJ. NO.	171,074
	F	Fatan dila kan	(EII	-	C		I and	1041117 W 1040 C	11/21/601
PROJECT:		Eatonville Land	31(1)			_	-		WAWER
LOCATION:	Eatonvil						-		EXCAVATOR
CONTRACTOR	R: Enviro	on		_	_	-	_	IND TIME: Page Number: ONGITUDE: Total Depth:	
MITUDE;		IN SECTION		LI PASS				ONGITUDE: Total Depth:	THE RESERVE OF THE PARTY OF THE
Test Pit Depth (It)	Sample Interval	Sheen Test Result	PID Reading (ppm)	Lithology		isual G stribut)		WASTE AND SOIL (Based on Unified Soil Classification	
_	0-1	NO	00,	(H)	10	10	w	(0.0-15) - DARWINGWW, M	LODE, LOUSE, CLAST-SUPPRIOR
2.5	45	No	01		50			(0.0-18) - MARLITHOUN, M 1-5" GRAVER WITH COMES SANT 30%: TIKES (CEDX), TOTHES, ACOUPLE CONCRETE SLATSS,	PLASTE METAL GRANALING
7.5						e e e		- 15' BROOK, ASH, SLAG, B GLASS, MOTIL FRAGMENTS	
110.0 —	9-10	CM	03	1	701.			, report replaced)	
12.5			-			2	115		
			(i)	J 19 "					
15.0	H15	15' 81	2000	A	2		124		
17.5			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		/)			
20.0				1 1 1 1					
22.5 — — — — — — — — — — — — — — — — — — —	98 a								

95-13-0.0-10-20231012 (845 TP-13-IM-14.0-150-2023101261255 TP-13-IM-4.0-50-20231012 (1205 TP-13-IM-90000-20231012@ 1220

St. st.	Y.	577				TEST	PIT LOG	Test Pit ID: TP-PROJ. NO.	171,074
of the last				84,1		11. (14 0	ME VIII MEGUE MELINIE
DJECT:	Former	Eatonville Land	fill "				DATE: 10112/23	Logged By: 15, WAS	74-60
ATION:	Eatonvil	le, WA				-	START TIME: 1055		
NTRACTOR:	Enviro	con					END TIME:	The state of the s	MATORZ
TUDE:	3	9				-	LONGITUDE:	Page Number:	- 4n
7 N Sa	25 F	of Montage	HTV-77				THE RESIDENCE OF THE PARTY OF T	Total Depth: 14	
Test Pit Depth (ft)	Sample Interval	Sheen Test Result	PID Reading (ppm)	Lithology	Dist	sual GS tribution	WASTE AND SO	L (Based on Unlified Soil Classification System	a) DESCRIPTION AND NOTES
~	0-1	NO	0.3	GW					
-		140	0.0	5-00	00	50 ((0.0-)-G	W- DARK TO MEDI	UM BROWN, MRY
						Î	1 5500 5000 5	MOUAS SEMAN CANA	
	.		46	1.0			(SOOK) OKOWNY	C AND COMESS SAMDY	OLAVEL WITHUP IT
-							•		
H 5.5							JUY WASTES	OCKS FRAMENTS,	pasize, me
-10	13	NO	0.2	100					
		NU	Old	1			The area of the		
-	- 1					P.	1 - TSELOW 1, A	SHY, SCAG, MECTED C	APPRAGE SAPITE LA
	٠ ا					S	100	The process of	Michaele colores of
					2		TO 20	Ya	
-	- 1		1 . 1		C 1				3
_	- 1						1 2		
				-			81 00000	A CONTRACTOR OF THE PARTY OF TH	120100000000000000000000000000000000000
	-10	NO	0.1		- 1		O - Sproce a	TAL AND LAKES OF LA	
	PIO	700	2.00			=	MOSTY	TAC AND WHSTE SLAG	PLLUTE WASIES.
-	~ 1	9	- 6				me sico me	TAC AND WHITE SI 46	- 1 lost The Land
-	- 1			*				JUNE 30NG	, CIONO, TO CLEAFOR
	- 1						1.17		
							19 - REFUSAL	ON STACKED CONCE	N. S.
- C	- 1				- 1			ON STITULED CONG	LETE SINCE
				-		-1			70107
_13	-14	NO		, 1		- 1			
							- 9		50 1
-			- 1		-	11.8	4	3	
		14"	-72-			000 105 2		N. 100	
	-0	400 of	757					***	
-		אוואא.						# E	*.
-	1						0.0		
				1			X		
	- [1		-)		
	- 1						<i>y</i>		
-	- 1	1/	- 1			1		2	
_	- 1	X		- 1	::		a = = = = = = = = = = = = = = = = = = =	XI.	
7				-					- 4
			-				-	500	
-	1	::		2			**		8
2	1		. 1		-				
N	4							*	

TP-12-IM-40-50-20231012@1055 TP-12-IM-40-50-20231012@1120 TP-12-IM-90-100-20231012@1135

1P-12-IM-130-14-0-202310120150

	100					TEST	PIT LOG	3.4	Test Pit ID: TP-	1
-				1	(1			6 19	PROJ. NO.	171.074
			1611	105		LOVE.		111111111111111111111111111111111111111	DECEMBER OF THE OWN OF THE OWN	Data Black the sale Life
PROJECT:		Eatonville Land					DATE:	1112125	Logged By: S. WATCA	
LOCATION:	Eatony			-	-		START TIME			MATOR
CONTRACTO	PK: ENVIRG	con		_	-	-	END TIME:	1050	Page Number:	A P N S
LATITUDE:	100				100	MINITED A	DONGITUDE	Color of the	Total Depth:	1-29
Test Pit Depth (ft)	Sample Interval	Sheen Teat Result	PID Reading (ppm)	Lithology	Dis	sual GS stribution		WASTE-AND	SOIL (Based on Unified Soil Classification System	n) DESCRIPTION AND NOTES
					%G	SEE H	Kewy .			
9-	0-1	No .	0.1			60 5	- 62 a	-12)	-5W - DARCH PURPOR	16 MODES GERMELI
Ş 		- P		GW	40	70 f	- T		A STATE OF THE STA	
3.5	1 -	: %		1		4 1 9	CA	DARSE SAI	UP, poorcy some, w	TIH UP TO 20V.
2.5 —	25	5,180		7	1	-		and the second second		
N 1		1/8	10	2.1	22				GLASS SHARDS, PLASTEC U	
			00					surn or	BIGS ; LUSE , IMMED,	MTE CUNKE YOU
5,0 —	4-5	NO	03		62		1 30	STETE		
-	. 30	3	***	37%	-		965	631316		the the second
		x "2	F-6,		Ìγ	1	6		The second second	
p	k) :			15A			160	- (no) -	- GW - LIGHT TO DA	RKPROWN, MUSTO
7.5	38	- 0				2		1		S
-	15				a.	X DI	I.	MCY, 120 cm	LLY SORGEOL 5" GRAM	WUTH CHARGE
) -	0.5							SAND AN	D SOMEWHAT BEDOED	a pit Cornese
0.0	9-10	NO.	03	4			4 4		SOMEWHAT BEDOED	WASTES! PLASTER LOCAL
E A		2,55	Test	1			4 5 5	CARPET, C	TEGO SKIDIZED T	7.913 5642
	1			× .		2		GRAVEL 1	TOTAL OFFICE T	SCHO-CEMENT
<u> </u>		4.5	K	0.00			· - h	- Hours	30 MES, up h 20 PERE	ENT.
2.5		2			60	35 0		9	Mary Land of the Control of the Cont	
-	. T.		70		.	"	G	doi che	NO 1 103/ 1 10000 1	1000
		Magazina				(A)	1936	SEM	me, LISY, WASTES, L	LASI SUPPORTED
5.0	14-15	No	0.3			1		7 23	17 7 2 3 4 4 16° 52°	Walter St.
2 -	165		et.	-			-	3	GRAVEC	100 A 100 A
	4.1			11				14		Total Control of the
_		3 15 1	15	a		Par	- 1		1 E 2 X X X X X	OE .
7.5			1	0	10		- (4)	15 SA	MINE IS 90% GAIVE	VELV DALL
	777		S	ひ		-	, Q			
3.	14	~			1			Machine	& SCHO & GLISS WAS	EC .
0.0	8.		1.5			X	57	200		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
_	- 100	1	20,00	1	(+		277			
-	- 28	1	\ ·				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	表 字		STATE OF SALT.
	1	Sec.	1/				200			The same and the
.5 —	19		X		1		8 6	- N		
en He	2.		- /		A	-	dec.	della di	H	
- 800	10 10	/		\smile	12	- 1		W	W	3
.0	- 300	. / .	F.14	-10	-		. 3	The second		the state of the s
OTES:	2.11			_	_				39	

55-11-0.0-1.0-20151012 @ 925 TP-11-IM-9.0-10.0-20251012 @ 1020.

TP-11-IM-14.0-15.0-20251012 @ 945

SS-11-IM TP-11-IM-9.0-20251012 @ 945

190		, Xu	I R	ж.	4/3	TES		Test Pit ID: 171.074 PROJ. NO. 171.074
ALEMEN		Established	EU.			LA		DATE: 10/11/33 Logged By: DE WARRETC
ROJECT:		Eatonville Land	TIII	(3)	61 0	_		DATE: COLLEGE By: D. WARRENCE START TIME: 15(0) Sampling Scheme: EXCAVATOR
OCATION:	Eatonvil		_	_	-	-	11	
ONTRACTOR	t: Ellylloc	.011	_			-		END TIME: Page Number: LONGITUDE: Total Depth: VS
Test Pit Depth (ft)	Sample Interval	een Test Result	PlĎ Reading (ppm)	Lithology		sual G tribut		WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES
Ţ	A T	あ		1-1-1	%G			
	01	NO	0,2	(HV	60	30	10	(OU-120) - GW - GRANEL, BROWN, MOIST, LOUSE,
2.5,			A.		30	10	(0	MODERATELY STORED AND CLAST-SUPPORTED 1-3" PROLLIDED GRAVEL WITH COLARSE SAND AND TRACE WASTES- BOTTLES, GLASS FRADMENTS
5.0	巫	OU	0.0			2		BELOW & WASTE INCREASES, PLASTIC WRAPPINGS,
.5—				7.	9	2		COMMENTS.
.0	9-10	DO	0.3	*	- J			-9! - BURN LATER W/CHRENTL, PLASTIC, ASH, SLAG, JAKS
.5		1			-			(12.0 - 13.0) -SP-LIGHT GREY-BROWN, MUIST, INDUNCTION
	12-13	NO	0.5	SP	11	1 P	0	SAPPROLITE, WATER MATERIAL NO WASTE
	-			1	/	1	1	1301 END OF LIL MAINE
5-	40					20	11 11	
0 =				×	, s	ю		
5—=						100	300	
OTES:		1.				0		

SS-10-0.0-1.0-2023/01/ @1510 TP-10-4.0-5.0-2023/01/ @1520 TP-10-IM-9W-10W-20251011@1530 TP-10-NS-12-13-20251011@1545

	1,3		1115			TES	T F	PIT LOG Test Pit ID: TP-09
7	- 201	1318 3		-	21.15	ed.	7 -	PROJ. NO. 171.074
AFFICE	WAY VE) at my	TOU .	91/19	841	ř.	11	
PROJECT:		Eatonville Land	dtill	- 1	÷	· ×.	T i	DATE: 10/11/25 Logged By: S.W.MCNER START TIME: 1385 415 Sampling Scheme: Exchiator
LOCATION:	Eatonvi			-	1 10	- 10		
LATITUDE:	K: ENVIRU	con	-	-	-	-		END TIME: Page Number: LONGITUDE: Total Depth: 12.01
E INVINE		No.	i ilia	A. SI			013	TOTAL DEPOSIT OF THE PROPERTY
Test Pit Depth (ft)	Sample Interval	Sheen Test Result	PLD Reading (ppm)	Lithology	Dis	eval G tributio	on	WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES
16 ,418	0-1	NO	0.0		200	%S	7gF	
T	-	100	U.S	2	40	50		(0=0-40)-GW-GRAVED- BROWN, MODER, SANDY GRAVEL WITH WASTES, MOSTER GLASS FRAGMENTS
. <u> </u>	3 Y	6 THE 0		ليدن	10			GRAVEL WITH WASTES, MOSTE / GLASS FROGREGIT
2.5 —	1.08			6.00				OLICE INCAPOLITE COME MOTOR
N	112	4, 1	1	- 51	27		8.	PLASTER WIZEPPENTS, SOME METALLIC OFFERS
	12.00	100	-	15		5		~ 11
- 1	4-5	No	0,1	WHA	2	(u	-	
5.0	-	0.1		Was	1	85	- 1	3'-3' CONCRETE SLATES, CHOLES, 40% WASTE
7		74				E .		o constant school, choices, 40% was re
-		115					-0	
7.5		4	2			- 7	-	(4.0-) - WASTE - 760% CONCRETE, PLASTIC,
-			F .				20. 1	
		100	× .		27	- 14	7	BRICK FRATMENT, GLASS EN ON MATRIX.
) =	Odes	NO	0,0				34	MULTIPLE STACKED 3° CONCERETE SLATSS
10.0	940	140	200	33	12		- 04	
					- 4		2.1	
1 F-10	17-12	NO	3,0			_		
12.5								9 - STEEL - LINED FORE-BRICHS AND CHARCOAL ISOIL
		12	EN	20 0		FT		IS DATCHER CONCRETE SLATS ON ALMOST EVERY BUCKET
-		10	ا <i>س</i> ا	77. 41	ы		.8	The Musicale of source sources of the sources
	1.5		- >			\		
15.0 ———			S (4	- /		1.1		in all mides assumed to a start of the
	7.3	1	-	/	c	0	- %	10-12' - STACKED CONGRETE AND METAL SLAG,
5. -	255	- 2	1	/		Н	¥1	CHAMPED WOOD.
17.5 —				1	18			
		371	1/	1	4.		F	
		- VIII	Y	10			F	121 perusition surss
=			Λ	1			9.	18 both
20.0	- 2		/ \	1 8	* /	NC .	2	
	. X	301	1	1				
	3	- /	1 12	1		-		
22,5—				1			PX.	
	1 1/2	/	100	~~	7.	2		
. =	s. A	1	8	180		. 1	01	
			1.4					
25.0 NOTES:			-		ш			

55-09-00-10-20231011 @1335 - TP-09-IM-11.0-120-20231011 @1450 TP-09-IM-40-50-20231011 @146 TP-09-IM-90-100-20231011 @1430

i ii		-0.7	1.5		TE	ST I	IT LOG	Test Pit ID:	S.
			1 12			70		PROJ. NO.	171.074
TO DAY	1111		Principal	No. III	William	No.		100	
DJECT:	Former	Eatonville Land	fill	7		m - 85	DATE: (0/4/23	Logged By: To WARRY	
	Eatonvill	e, WA					START TIME: 12510	Sampling Scheme: EKCAV	MOIC
VTRACTOR	: Enviro	on					END TIME:	Page Number:	
TTUDE:	1.5				TSC.		LONGITUDE:	Total Depth: 15	
Test Pit Depth (ft)	Sample Interval	Sheen Test Result	PID Reading (ppm)	Lithology	Visua Distrib		WASTE AND SOIL (Base	ed on Unified Soil Classification System) Di	ESCRIPTION AND NOTES
1				(1)	%G %	_		Christ Per	AND LOSS AND THE
-	0-1	NO ·	020	GW	70 10	100	(0.0-)-6W-	Granes - Brown	O, MODSV , COOSE,
			3-0			3	COARSE SLUDY 67	LAVEL ; CLAST - SUPP	OFFED WATH WAS
_ =	dist		2	,	. Pri		BOTILES, TORES, MET	TRAHMENTS, PLAST	is michiarymos, up t
; <u>=</u>	4-5	YESA	0.0				2040, Scatter	en large debris 7	
-		of 32		1	-57		3- 17860W 3', CAT	Bies, more Borles	AND METAL BEI
			25				UPTO YOY		1 m ag 4 m
		1 1	15				La sala di A		
	×						5 - 4 Concres	ESLATS, BAG OF	FENTILITER,
	9-10	NOT	KM	(A)	-	1	>/HarGuV	SHELL, ITRE.	
13-1		× = 14			263	4	7' - CONCRETE	SCAB, 4', BOULDE	as
				i e		ļ.			
	1243	YES2	0.0			H	(8-131)-SAA	- I ISUT WITH MA	STATE OF THE
		12,	-0	1	- 10		ELASTS. (No.)	RATED PURPLE CONC	corrective with the
		راتري (کتري	36-A.	1			COSIS. CIV.		
=	_		9				Mar Agreem	*	
i —						1/			- 2
-									
<u> </u>		/			/				762
_			.	_	/ .				
	-	/		12				- m - L	
		/	100	: -					
		***			1 12	- 1		100	

35-08-0.0-100-20231011 @ 12:00 108-IM-40-500-20231011 @ 12:50 28-NS-12.0-13.0-20231011 @ 1310 E MAT TRE QUESTIONABLE AS "NATEUR"

Contract of the con-	- 1	and the second second	Studie -										
PROJECT:	(2) Si (/)	Eatonville Land	dfill	8.3	_		_	DATE: 10/11/23 Logged By: 15 WATENER					
LOCATION:	Eatonvil	1 1400		0.70	-	£ (4		START TIME: Sampling Scheme: EXCANATOR					
CONTRACTO	R: Enviro	on	- 10	100	1	-	÷	END TIME: Page Number: LONGITUDE: Total Depth: (5. 2)					
LATITUDE:	THE REAL		1	The state of		100	10	LONGITUDE: Total Depth: (5.0)					
fest Pit Depth (ft)	Sample Interval	Sheen Test Result	PID Reading (ppm)	Lithology	11170	sual GS stributio	2000	WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES					
۳	S)			9	%G		%F						
	01	No	04	SW	iS	90	5	(O.J-10)-SW-DARK BROWN MODST, SPLTY					
e l e		2 0 15	ter	GW	60	70 9	5	AND GRAVELLY SOFT SAND WOTH WASTES, UP TO					
2.5	1		1		8	%: :22		30% OTENER C3", WASTES INCLIDE PLUSTED					
9.5	45	NO	70 5				100	CURRIES, GLASS BOTTLES, PLASTIC WTLAPPINGS					
5.0	43	140	Ůij										
	Ni.						00	(10-15) - 6W - DARCE BROWN, MOIST-DRY COOSE,					
7.5		- 17	Lig II	3				CLAST-SUPPORTED, SANDY 1-3" GRAVEL WATH WASKE					
(. E	ĥ	100	21	1				BETTLES, WRATEDINGS, AND SDEWLETCHUT PROPORTION					
) — .0.0 —	વૈનછ	No	01	- T	27	40	-	OF ANOWAR, ORANGE-PRUST ONDODGED CLASS LIM					
	20 2	1	Figures Garage		3			UP TO 30% OF "GRAVEL" MATITEDX					
12.5		\$.	8	tii s	3								
T =								10.0' - LESS THAN LOY WASTE					
	14.15	Y85+	0.3	i or i				13' - converte SLAB, 3'; VERY DICHTEWISTE, MOSTRY					
.5.0			01					15 - VETCY DILLIE WHOTE. CARPET. VEC					
		15° EN	N L		/		4.5	15 - Veger issence whole company.					
7.5		1	181	-/									
Ξ	1.0	_ \	n.	/	Her								
0.0	Sec.			20 80			١						
#: =		- 1		31			1						
2.5	0.00	/											
785F.A. (/			7 1		- 1	그리는 병자들이 많아 보는 사람들이 되었다면 그 사람들이 없다는 회사를 받아 되었다면 되었다.					

55-07-0.0-1-0-20251011 @ 11/10 TP-07-IM-14.0-15.0-26231011 @ 115.
TP-07-IM-405.0-20251011 @ 11:20.
TP-07-IM-9.0-10.0-20251011 @ 11:30

PROJECT: LOCATION: CONTRACT		Eatonville Land						PROJ: NO. 171.074
LOCATION: CONTRACT		' Eatonville Land	1 7	- 0		100	1114	
CONTRACT	: Eatony	illa 1810	dfill	-			DATE: 10/11/23	Logged By: PS. LEV SEVERS
_	OR: Enviro			-	-	-	START TIME: END TIME:	Sampling Scheme: Exchistion
LATITUDE:		COII	-	116			LONGITUDE:	Page Number: Total Depth:
ALC: N	te Jacon	Facilité I	1		12	-0,16		Total Depth:
Test Pit Depth (ft)	Sample Interval	Sheen Test Result	PID Reading (ppm)	Lithology	Visual Distribu	ution	WASTE AND SOIL (Baset	d on Unified Soil Classification System) DESCRIPTION AND NOTES
-	0-1	NO	0.0	CW	50 20	10	6. 15 5 6.	(a Ave) - The way
7 =				_ v.	,		(00 - 100) - GW -	- GRAVEL - BROWN, LOSE PRI,
	ric.	- u			-		1-17 2000	
2.5	-		1.		-		CLAN XI4	PROTOTED GRAVER WITH COARSE SANT,
-		1 25				-		
4 - E	1 144	****	- 2				The Last	5 THAN 15% WASTES BORTES, PHATE
5.0	4.6	NO	0.0	Į.	1	ы	WRAPDINGS, MET	AL FIRAGMENTS 211, SAUGE 4'
-	(*ci)	-	. 9	U.L	300	1		Stuge 7
	1	glan to	10		12		severete s	66, Boursers up To 4' DRIVE
-		×	10	8		-	SHAFF, OR A	N/E
7.5		31. 1		- 1	10 2	le		
	-	Partie B				-		
) =		199	95	14		1.00		
10.0 ——	970	VI 2	0.2		-	-	- Below Zo, W	HOVE BEARED, COURSELY GRAVELICEAS
						14	Surrorute, mon	
_			-		W C			
12.5	- CN	DOE	17	1		5	2.7	TO COMPANY TO THE PARTY OF THE
	7		9.	ol -	-6			
-		1 -	2-					
15.0 —				2	n	10.		
, s				1	1.	w.		
-	- 1			/	R R L			EA properties
_	-				0 1			
17.5 ——	15.,		-/		727 E.	1		
	- 1	N						
	1 1	-1 /	r					
20.0		111		153		: 1		No.
W -	5	7 , 18						
1		1 .	ź		-	33		
		J 1 1	/			H		We have the second
2.3			, w	40	· 73	20		
2 I			er i			10		
IOTES:				- (0.0	Ш	- 2 .	

55-06-0.0-10-20231011 e 935 TP-06-IN-9-0-50-20231011 e 10200 TP-06-NS-901000-20351011 e 1035-7 MARCO CISCOMIDATE GLASS

TEST PIT LOG TEST PIT LOG PROJECT: Former Catonwille Landful DATE: 1071172 Logged By: S. WATLATTIME: SYS Sampling Scheme: EY (A TATUTE STARTTIME: SYS) Page Number: DATE DOWN DESCRIPTION AND NOTES CONTRACTOR. Endowed Landful System DESCRIPTION AND NOTES CONTRACTOR. Endowed Landful System DESCRIPTION AND NOTES CONTRACTOR. Endowed Landful System DESCRIPTION AND NOTES WASTE AND SOL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOL	-01	15.	- 2	- 8 .	120	1		TEST	DIT	TIOS TORRESTOR						
PROJECT: Former Eatonwille Landfill LOCATION: Estorwille, WA STARTTIME: \$5.5 Sampling Scheme: Fy (A 1Appril CONTRACTOR: Environce) LATTUDE: LONGITUDE: LONGITUDE: LONGITUDE: LONGITUDE: Visual CS Distribution WASTE AND SOIL (Bained on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Bained on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Bained on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Bained on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Bained on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Bained on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Bained on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Bained on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Bained on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Bained on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Bained on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Bained on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Bained on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Bained on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Bained on Unified Soil Classification System) DESCRIPTION AND NOTES LOUGH AND SOIL (Bained on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Bained on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Bained on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Bained on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Bained on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Bained on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Bained on Unified Soil Cla	L	10				9		1631	PI							
CONTRACTOR: ENFORCED END TIME: START TIME: \$\frac{1}{5}\frac{1}{		E AVE		· EXPENSE		20.1				PROJ. NO. 171.074						
CONTRACTOR: ENFORCED END TIME: START TIME: \$\frac{1}{5}\frac{1}{	Topo	NECT	Former	Fatonville Lanc	1611	MIN N		100	lo a	ATE: 1/21177						
CONTRACTOR: Environce END TIME: \$\frac{1}{2}\$ \ Page Number: Total Depth: Total Depth: WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based o						erres in			_							
LATITUDE: LONGITUDE: Total Depth: WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND		\rightarrow	41 45		ल हुन		-3	-	_							
AND CODE COMES OF PET OF NEW SOLD COMES OF PET OF NEW SOLD COMES OF PET OF NEW SOLD CONTROL							5		_							
AND CODE COMES OF PET OF NEW SOLD COMES OF PET OF NEW SOLD COMES OF PET OF NEW SOLD CONTROL	73		9 129		_	120	Sil.		8	Salar and the second se						
ALONG STUTY AND COMER SHADY GRAND , UPTO AS, LOTH WASTES (C 30%), BOTHES, FEW TORIES, TWENTED METAL, PLANTE WATERLY 2-50 SO HIS DO OD FW TO TO IC. LOUSE, REWATER COMMEN, MUSTER 2-50 SI CARD FORT W'- NO WASTE, NATIONE WATERLAND, CORRECT, CLART- SUSPENDED TOLL, FROM DRY, DESTANCTLY ISLOWD BELLEW LANGES. S'END OF PET		Test Plt Depth (ft)	Sample Interval	Sheen Test Resul	PID Reading (ppm	Lithology	Dis	tribution		WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES						
AND THE MASTES (C 30%), BOTHES, FEW TORKS, TWINTED METAL, PLASTE WEAPPOWES, CLAST-SUSPENTED METAL, PLASTE WEAPPOWES, CLAST-SUSPENTED LOUSE, REMOTED COADED, MUSTER 12-9" 4'- NO WASTE, NATURE WATERLARL, COFFICE, CLAST-SUSPENTED TOLL , BROWN, DRY, DESTINATING TERRORD FROM LINGUES. 5' END OF PET	3 7	1	@~(NE	0.1	(نند)	So	火 -	(6.0-)- (-W TERNEC) - BROWN, DRUM						
TWENTED METAL PLANTE WATERY OF SUPERING LOSSE, REWINDER OF THE WATER WATER LOSSE, RELIGION OF THE SUPERING CONTENT OF SUPERING WATER AND DRY DESTINATING TEACHED BELLEN LANGERS							2.7			MUDET STUTY AND I NEW SHIPLY COME! OF						
LOUSE, RELIED FORTH LANGER, MUSTER OF FORTH OF THE WASTER OF THE CORRECT OF THE C	2.5			.2		ų.				65' 13574 1 18558 (1732) (2 7488 P. 15000						
LOUSE, RELIED FORTH LANGER, MUSTER OF FORTH OF THE WASTER OF THE CORRECT OF THE C	d.	i d		10.00	8 -	41	2			The STEET CONTROL (C SCYC), ISO MESS, FEED IDIOES,						
15 - NE WHISTE, NATIONE WATERLAND, CORRECT CONTENTS SUSPENDED THE TREWN, DRY, DETENDING BEDERD BELLEW LANGETS. SEND OF PET	30		17	DU	0.0	620	w	70 11	in L	THETAL PLATTE WESTERWOOD LLAST-SWIPGUTE						
4'- NE WHITE, NATIONE WATERLATE, CORRECT CURT- SUSPENDED TELL, TERROW, DRY, DESTANORY TERRORD SELOW LANGITE SEND OF PET	5.0)—	10	8		~	-	*****	190	LOUSE RELIAMON COMERS ALLOW						
4'- NE WHITE, NATIONE WATERLATE, CORRECT CURT- SUSPENDED TELL, TERROW, DRY, DESTANORY TERRORD SELOW LANGITE SEND OF PET		A . S		21 %	000	Paris.				Convert present 1-311						
SUPPORTED TOWN, DRY, DESTANCTLY TEXPORTS SEND OF PET		- [2 6 W.	Vr	die à	× s		25 5							
SUPPORTED TOWN, DRY, DESTANCTLY TEXPORTS SEND OF PET	7.5		4.7			15		g 8	uf	- AN LANGTE NATING WATERLAND TO STELL OF AST						
10.0 - SEND OF PET			Johns		1 0	-2°			Ι,	The same of the sa						
10.0 - SEND OF PET		_		SOUND TO A THE	3 =	1.0	1	1		SUSCINIED THE BELL BELLING DRY DESTINONY GEORED						
	10.0	-				4	/			Geren Langite						
	1		. 6	10 10 3						5 END OF PET						
15.0	5	1, 4	1.	- 1		1	1	. 1	• :							
	12,5				- 5	12	1									
				123	1/2	-	1		1							
15.0				7 7 7	1		1		1							
	15.0				/	1800	*	la La								
		_		/	311				2							
				Wes .	0.7	1 - 4			1							
17.5	17.5	-2.	7 TO	1		10/		A								
	17.5	18-	9	11.8		7	2									
		- =	7	2	1	1	20									
		13	3	0	y v	1	_	A								
20.0	20.0	٠,		1.	1	-			1							
		-	. 20	- 1012	×	12 m	2	10	1							
			6	tons o			1	1								
22.5	22.5		E.E.			2.	1.7	- 1	8							
	-	, =	:		196.61	x ¹	CIM!	es l	1_							
	11		(e			1	100	- 1		속하는 이 얼굴하다. [사람이 [사람들이 글리아 그 그 사고 시험점						
25.0 NOTES:	25.0 NOTE	S:				- 14	-	-1	1							

55-35-00-12-22731011 6.855 TP-05-NS-40-50-202310116 845

			(3)	1 8 V.	9	TEST	PIT LOG	PROJ, NO. 171.074
PROJECT: OCATION: ONTRACTO ATITUDE:	Eatonvi R: Enviro		(40 P	MM	25		DATE: 10/10/13 START TIME: 1515 END TIME: 1600 LONGITUDE:	Logged By: Sampling Scheme: Exchange Page Number: Total Depth:
Test Pit Depth (ft)	Sample Interval	Sheen Test Result	PID Reading (ppm)	Lifhology	v	sual GS stribution	WASTE AND SOIL (Bas	sed on Unified Soil Classification System) DESCRIPTION AND NOTES
G and	0-1.	NU	0.1	Sis		500	THE DESIGNATION OF THE PERSON	The Brown, MOBST, GRAVERY WOSE
2.5			\$7 \$7 \$7		55:		SAND WOTH WA	ISTES. GRAVEL IS 1"-12", noword.
.0.	4-5	No	0.0		ı.ê.		CARLE JOYU	, PLASTIC SHEETENG, EDECTTOR
	4		- 0				CAISCE, CARGE	TWOSTED METAL, BOTHES, SOME THES
5——		2.	-	# 2			The state of the s	The state of the s
. =	9-10	NO	0.1	SP	9	30 2	y'slab of	S 6 TITLES, LARGE METALLE APPLOANE conerete, FERTILIZER,
Ξ	cos:	1		50	1	1	(90' -101) - CECHT	TBROWN, WELL SCRUED SCOOTING CEMO
5 —	2.11				/		STLLY SAND IN	MATTER SAPROLITE, ROTTEN GRAN
0 -	8 4			/	1		TILL MATERIAL	IL CONTRIES.
5—	2 A.		/					
		1	/.		200			
		1/	V V	/\				
5	•	2	V	06	1			
OTES:		2	e S			- 1 y		

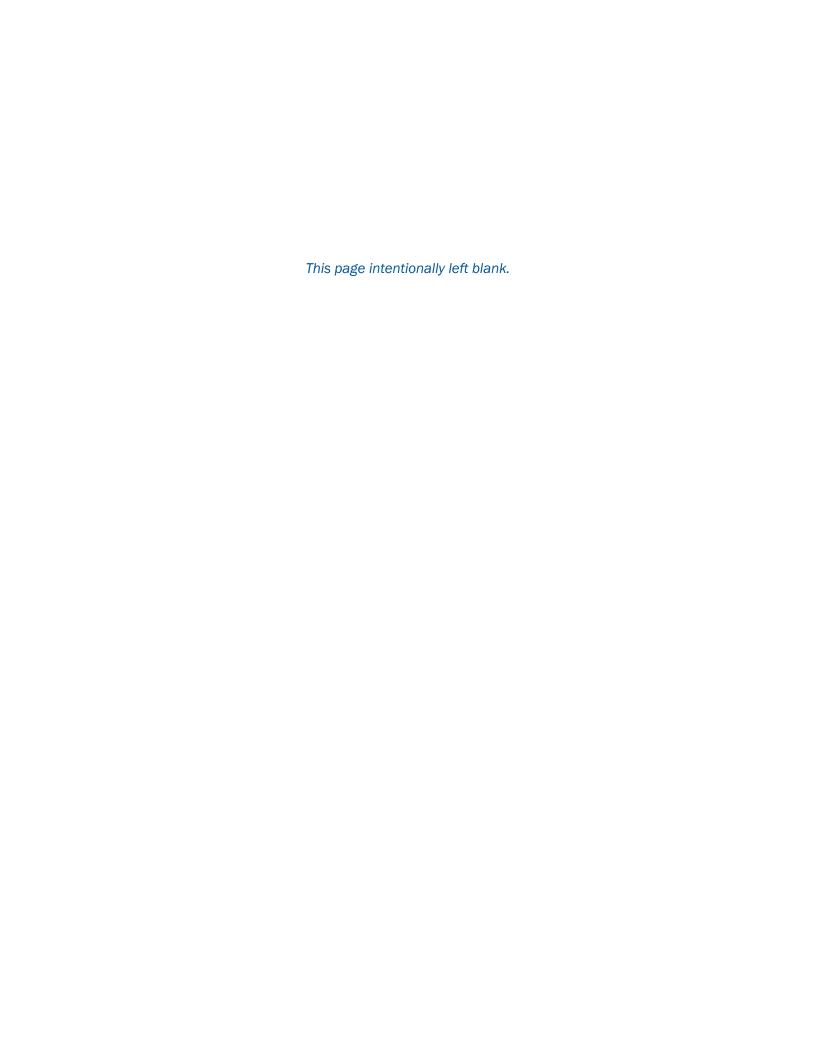
SS-04-00-10-20231010@1515 TP-05-NS-9:0-10.0-20231010 @1549 TP-04-IM-9:0-10-0-20231010@1525 TP-04-IM-9:0-10-0-20231010@1545

187		E.		1	TE	ST	PIT LOG Test Pit ID: 1P-05
		7	S. Contract	1	W	0000	PROJ. NO. 171:074
	Parameter 1	Farange (and	(C))	N.E.	The same		THE LEVEL OF THE PARTY OF THE P
ROJECT: DCATION:	Eatonvil	Eatonville Land	ma	-			DATE: 10/10/23 Logged By: S-WHCNERC START.TIME: 17 55 Sampling Scheme: EXCANATORC
ONTRACTO	-y = 114		Family	- 0	V		
ATITUDE:	K: Enviro	.un		_	4 - 101		
ATTOOL.		Photography and	V	1000			LONGITUDE: Total Depth:
Test Pit Depth (ft)	Sample Interval	Sheen Test Result	PID Reading (ppm)	Lithology	Visual Distribi	ution	WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES
	o4	NO	0.0	C1.3	%G %S	3 50 0	Care a Care Care Care Care Care Care Car
D = 6		2	00	GP.		- 2	(0.0-5.0) GW - GRAVED - WOHT BROWN, SOFT/LO
-		C = C8		6		3	DRY, SELTY GRAVEL WOTH WHITE AND BOULDERS UP T
2.5	. "		Ye."	U 1	. "	1.3	The sound of
8- T	100				- 1	0,0	3. COBBLES CLAST SUPPERIED 2-8" WASTE JS
						11.	7 JE S WISTE DS
	+-5	NO	02	S.,	SS -	614	TWISTED METAL, CIST, PUSTIC, BUTTLES. TIMES 25
.0-	7	· · · · · · · · · · · · · · · · · · ·		-	3 6		long tree 15
102	× 1	2.00	- 21	1	30 60	او	VERLY LOOSE, LOTS OF SLOWEHINE
P = 1	- H	5 10	160	SW		1.3	
5—	- T-	7 C. T.	0.0	۵۳			
7.4	3		- 0	100	6		(50- K) C - OAPL DOMNI MATERIA
	E-24 75	7	P.E.				(S.e. Bio) SW-DARCH PROWN, MODER, LOOSE,
	_	5 T59	-	(A)	1 5	5 4	GRAVELLY GOARSE SAND POORLY SORFED WETH
.0	9-10	No	0,0	- 1			
-	7	1 3 - 0	-="1	3	- T	0.0	< 20% WASTE MATERIAL, PLASTOC, METAL, ASH. PLYSTOC
_ =	8 m	1	-	3.0		37	TO A DOUBLE SALLED TO LOUR LAST PORTUDE
	-9	× (*)			**	1	las proposed to the Title to the
5		* * *	1.00			-	WRAPPINGS UP TO 3' LONG, 130TILES, 25% TIRES.
/ 5E	WG S	1 7	, m2	1927	20 60	-	
(0) 13		14					
0	11-15	NO				1 Sec.	- TELOW 13 , VERY GLEAN GRAVELLY SAND, WITH OVEY
	65	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.00	. 31	100	3 3	
	Sent 1	1	2.10	.98	1	1	23" GLASS FRAGMENTS, AND BREEK FRAGMENTS,
7-,5	- 10	35	397 (2	4	1	/ .	
5 - 3	LE .	100	1100	e e	/		WELDED, ITEUN OFFICEED FROGMENTS, 20 YO WASTE
-			or hard.	1	- /		
	1	\ \	S 107	1	/		
	W.	200	/				
,		(E.	V		100	F.5	보이다고 그 얼굴면 꼭 다 없었다고 하다니 이 하는데 그 그 사람들이 하네요.
- 7		and m		h. 11		2	
1	- 1	/	1	25.5 10.00en	1		2012년 전 1일
5		/	= 1	1000	1 1	E.	[19] [17] [18] [24] [25] [25] [19] [19] [26] [27] [27] [27] [27] [27] [27] [27] [27
	5 9		3/	\	100	7	주는 :
12	× - 1			Y	1	- "	
- /-		/	2 81	1-	. 6		
90		5 8 1	- 1				

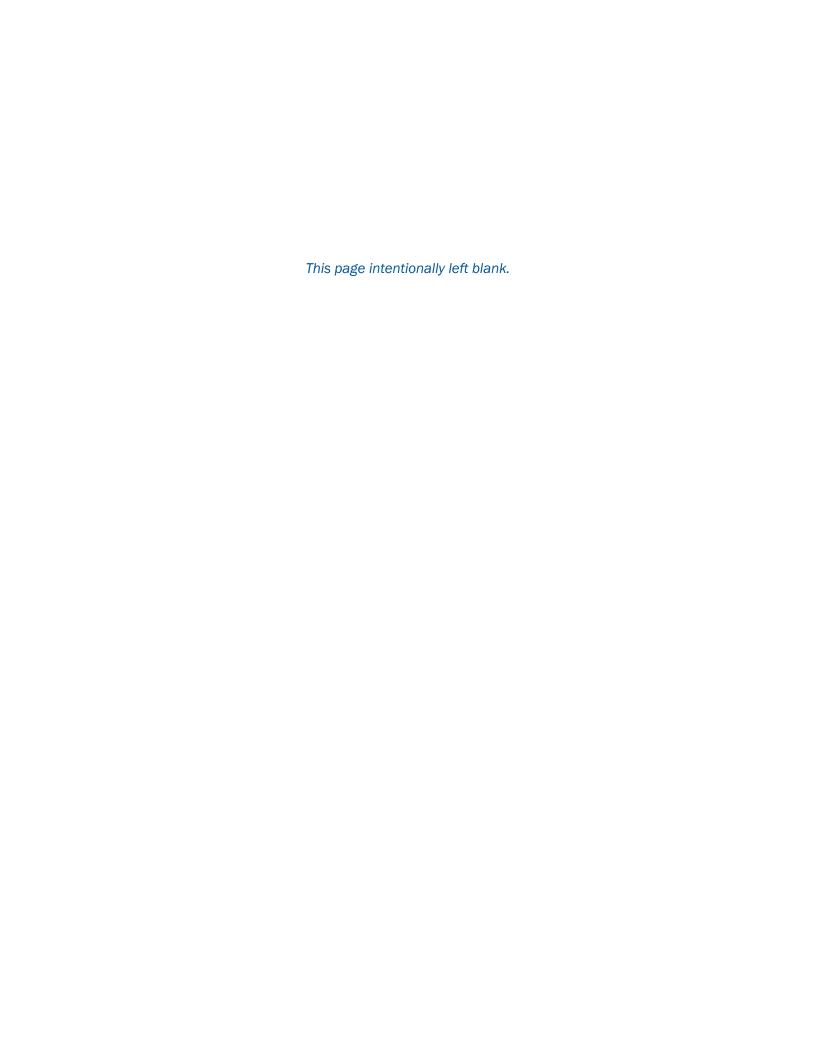
55-03-000-10-20231010 E 1355 TP-03-IM-14-15-2023 610 E 1430 TP-03-IM-40-50-20231010 E 1410 TP-03-IM-900-10-0-20231010 E 1420

	H	1.5	1	V.	TE	ST	PIT LOG Test Plt ID: 77-0 2 171.074
		i i i	DINE.	946	and a		
ROJECT:	Former	Eatonville Land	ifill -		100		DATE: 10/10 125 Logged By: 13, WATENET
CATION:	Eatonvil	le, WA	4	į.	-3	10	START TIME: 1245 Sampling Scheme: EXCAUATOR
NTRACTO	R: Enviro	on on		-97	Sea.		END TIME: 1340 Page Number:
ATITUDE:						- 1	LONGITUDE: Total Depth:
Test Pit Depth (R)	Sample Interval	, Sheen Test Result	PID Reading (ppm)	Lithology	Visual Olstribe	ition	WASTE AND SOIL (Based on Unified Soil Classification System) DESCRIPTION AND NOTES
BT. 3	0-1	NO	ひば	SRI		16	(CO-101) DAKK BIROWN MUTST, SOFT, ORGAND
-	angles and	X.7370	9 o	-	5	3	
5- <u>I</u>	H 81	1 8		SRIW	30 19	5	PLICH POORLY SORTED MEDLUM-COARSE SAND
5 —		a jestik	25	37.5			
2	1133	500	4		1	1	WETH 15" ROWNED GRAVEL, ROOTS, METAL FRAGE
	4-5	NO	0.0	*			GLASS (SW)
.0 ——	13	100	 	4		50	
ev. 🗖	1	1 7 7 2	1 4 4	2.5		- 0	
0.6	· ,*		90.				7p-02-am-4.0-5.0-2-231010
5	2.5		1.4	(in)			(1) 7.1
		*	-	8	55 10		(1.0'-7.0) WASTE > REPORTE DARK BROWN, DRY-MY
=	N S		Repair	BS		5	SLOWER AND GREAVELLY WASTE, INCUDENCE PLISTIE, MET
// 	9510	NO	0.0				May May Charlet Course Traces Sino ACUSTIS, WEL
.00			10	-	30	4.	RUSTY DEBTUS, ISTOICH FROMENTS GLASS ALMOST ENTIN
			1.0	-		Į.	DEBTES 21' DEATHETER ZING tires . Kitchen Sinte
of the	100		35		To 10	-5	12 10 tires kitchen Sinte
.5	with a	- 2	32	×			
1. 2	118 (43)		ж 1			K	To the Court of the
- *** <u>-</u>		1110		-	CA V	-	(700 - 1500) GRAVEC (GR) - DARL MROWN, DRY-DAM
0	1475	No	Ora	-	80 15	-	
4 =		N - 1	25	70			POORLY & SORGED GRAVEL, 1-6% PLOUDED, WATH
-			•	173	/	-	BOTTLES, BLASTOC, METAL PRITOMENTS, AND DISCULORED
5	- 2	13	9		1	7	
. —		1	e 8	-7	1 10	1000	OHDDDIED STLTY SOLL SPARSE TOKES, WHITE IS UP TO
		14.0		10			
_	× 1		51 m				50% BONCES.
0	25	1	/		A	1/2	
		2 6	X	- (レ		- BED OF HOGHER FREYER DEUSDRY (40%) PLABIDE
.5 —	e =		60	()	± 10 ± 10 ± 10 ± 10 ± 10 ± 10 ± 10 ± 10	8	SHEEDING THE M 11-13!
=		1/6	74		J		- The total in the assessment of
							- BELOW 14, VERY GRAVERY, CLAST-SUPPORTED 2-8"
O TES:							WITH the SINGLE PRECE OF GARBAGE IN STICING

35-02-00-10-76231010 C124 TPan-40-50 20131010 @ 1255


TP-07-90-100-20231010 @ 1315 TP-07-IM-14.075.0-20231010 Q.

		2 2 1				F21	PIT LOG	Test Pit ID: 1P-/	19 19 19
			-	4.5			1 1 8 Y 1 mm	PROJ. NO.	171.074
Dally of	33/4		al Hite	I SAY	to etc.	- Tra			the bearing of the later of
JECT:	Former E	atonville Land	fill		1111	met "	DATE: 10/10/75	Logged By: TS, WATCH	SE/Z
ATION:	Eatonvill	e, WA			10		START TIME: 10230	Sampling Scheme: Exc.A	
TRACTOR	: Enviroc	on			10.00	18	END TIME: 11 430	Page Number:	
ITUDE:	582	Freu	DM	185			LONGITUDE;	Total Depth:	
Test Pit Depth (ft)	Sample Interval	Sheen Test Result	PID, Reading (ppm)	Lithology		al GS bution	WASTE AND SOIL (Based	on Unified Soil Classification System	DESCRIPTION AND NOTES
<u>P</u>	to.					%S %F			
	01	NO	1	Mika	15	6 25	(0.0-5.0) Soil	Will Wis	to mis boulder
-			-	P	Ψ,		brain den	Fires to 5	and, large boul
			1.0	1 2	-				
10	13		200	DK					10 \$, 91-46, for
=		- 100	4	74.1		. 9	Concrete	Carpot, Con	code palenession
_			0.000			g el			
	CA C	No	de	-6	A.		Q L	1.0	and the same
met III	100		4			= 4		1.01 concrete	51.00
100	d	-	1.	5 2/4	9	X	77-10-1	W5-0-60-6	10331010 O 1085
		3		45	57		20 1 THE 2	TANKS INDIA	
	-	2,5		Li.	25 6	0 25	5.0-10.0	1 - 1	
	89	NO	0	(197)	2)0	16	6.0-10.0, 50	mg 1 - 1 40	~ p.oc
10.10	ner.		B	1, 7	X 1	1	(2) (sheet in	15. 1 -1 1	to the second
	14	10	1	2.5	- 0	1	Care o late	5 1 3	1111
A series	104	yo5 .				55%	and lates	Concode &	1-6 Dess
10 mg	1	1	-	=70=	2000		L.D. Site	malinules 1	~ midrex
	-		and the same	-	-	-		The state of the s	A STATE OF THE STA
Mary Albert		in any		W.			TO-1-Th	1-90-10.0-6	6231610 CIIIO
	4	2 1				8	1013		
	Sin.			700	1 5		@10.0 cm	vetc 51-6	rede pt-17.22
	1 1			12		8	10 0 10 0		
1	V		8	V	1	VV		me under	5 1.55 -1-510
() ()	^	. X	^	^	1	~	Tet sica @	~120 0c	lirge builder
O. W. Sec.	8.	18		200		œ	2 1		
		3 -	-	e)			مرح لاره		The State of the second
T -	4			- 1	= 1		TOPOLITIE	2-10,0-11.00	2.231010 C1125
		Palesta	25	9			051 ght m.	mocalor Sheen	
	1.8		-	A				A Particular of the Control of the C	
-	c i	1 1 20	Æ.				Nulle Sal	Not die	boarty
		1	, i	10		7.0		75 8 44	4 4 4 4 4 4 4
*	10	4 3						· · · · · · · · · · · · · · · · · · ·	2 2
1,-	18			. I					630
14,12						I.C.		5 E	31 A 286 1
9 0									
5-	5"	4.0	. 2	C.					
								- X - X	


SS-01-0.0-1.0-20251010 @ 1035 1921-7, W.-6.0-6.0-20231010 @ 1055 TP-01-2m. 8.0-10-20231010 @ 1110 TP-01-5M-100-11.0-2023610 C175

	19				٦	EST	PIT LOG	Test Pit ID: 1P-1	
								PROJ. NO.	171.074
<i>J</i>	40		11					L - CLAROUS	
ROJECT:		atonville Landi	fill				DATE: 10110123	Logged By: 13 WATUE	
	Eatonvill						START TIME: 1450 END TIME: 1455	Sampling Scheme: EXAM Page Number:	a)ol(
ONTRACTOR	: Enviroc	on					LONGITUDE:	Total Depth: U	
(III ODE)				JOLX.	iv.	1 7 2 1			SECTION AND ALL STREET
Test Pit Depth (ft)	Sample Interval	Sheen Test Result	PID Reading (ppm)	Lithology	Dist	ual GS ribution %S %F		L (Based on Unified Soil Classification System) DESCRIPTION AND NOTES
2.5	NX	NA	M	Cro	П	ж I С	(0.0-40°)-0	SW-GRAVED-L	AVEC ESTEDANTILE
.5				/			PSACKJ SUED , A	HOLE.	
5					9		<i>\$</i> ^		

	_				-	TEST	PIT LOG	Test Pit ID:	TD-17
								PROJ. NO.	171.074
100	95	THE YOR	n Ya-	1	- Fig				
PROJECT:	Former	Eatonville Land	Ifill				DATE: 10/12/23	Logged By:	WANUEZ.
	Eatonvil						START TIME: 1445	Sampling Scheme:	
CONTRACTOR	: Enviro	con					END TIME: /450	Page Number:	f 1.7
LATITUDE:		الأسريان	1	914	100		LONGITUDE:	Total Depth:	91
Test Pit Depth (ft)	Sample Interval	Sheen Test Result	PID Reading (ppm)	Lithology	Dist	eual GS tribution		on Unified Soil Classif	ication System) DESCRIPTION AND NOTES
Times this	AL E			Kell III	%€	%\$ %F			
2.5	NA	NA	ΝÅ	EW	70	% (0	(O_0 - 4.0") - 6-W	OUAR CAN	Y GRANEL (GLACIAL TOLE).
7.5————————————————————————————————————							PACINFILLED, NO 4' ENVO OF	143LE	
20.0 ———————————————————————————————————									

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Friday, November 10, 2023 Ben Johnson GSI Water Solutions 55 SW Yamhill St, Ste 300 Portland, OR 97209

RE: A3J1366 - Eatonville Landfill Characterization - 00171.074.008

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A3J1366, which was received by the laboratory on 10/13/2023 at 1:00:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Acceptable Receipt Temp	erature is less than,	r equal to, 6 degC (not frozen), or received on ice the same day as samplin
	(Sec	Cooler Receipt Form for details)
Cooler #1	2.9 degC	Cooler #2 3.3 degC
Cooler #3	4.1 degC	

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 1 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL REPORT FOR SAMPLES

	SAMPLE INFO	ORMATION		
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
WS-01-0.0-2.0-10102023	A3J1366-01	Soil	10/10/23 08:50	10/13/23 13:00
WS-02-0.0-2.0-1010-2023	A3J1366-02	Soil	10/10/23 08:40	10/13/23 13:00
WS-03-0.0-2.0-10102023	A3J1366-03	Soil	10/10/23 08:20	10/13/23 13:00
WS-04-0.0-2.0-10102023	A3J1366-04	Soil	10/10/23 08:05	10/13/23 13:00
WS-05-0.0-2.0-10102023	A3J1366-05	Soil	10/10/23 07:50	10/13/23 13:00
TP-01-IM-10.0-11.0-20231010	A3J1366-06	Soil	10/10/23 11:25	10/13/23 13:00
TP-04-NS-9.0-10.0-20231010	A3J1366-07	Soil	10/10/23 15:45	10/13/23 13:00
TP-05-NS-4.0-5.0-20231011	A3J1366-08	Soil	10/11/23 08:45	10/13/23 13:00
TP-06-NS-9.0-10.0-20231011	A3J1366-09	Soil	10/11/23 10:15	10/13/23 13:00
TP-08-NS-12.0-13.0-20231011	A3J1366-10	Soil	10/11/23 13:10	10/13/23 13:00
TP-10-NS-12.0-13.0-20231011	A3J1366-11	Soil	10/11/23 15:45	10/13/23 13:00
TP-15-NS-9.0-10.0-20231012	A3J1366-12	Soil	10/12/23 14:45	10/13/23 13:00
TP-15-IM-4.0-5.0-20231012	A3J1366-13	Soil	10/12/23 14:30	10/13/23 13:00
TP-07-IM-14.0-15.0-20231011	A3J1366-14	Soil	10/11/23 11:55	10/13/23 13:00
TP-08-IM-4.0-5.0-20231011	A3J1366-15	Soil	10/11/23 12:50	10/13/23 13:00
TP-07-IM-9.0-10.0-20231011	A3J1366-16	Soil	10/11/23 11:30	10/13/23 13:00
TP-14-IM-14.0-15.0-20231012	A3J1366-17	Soil	10/12/23 13:25	10/13/23 13:00
TP-13-IM-14.0-15.0-20231012	A3J1366-18	Soil	10/12/23 12:35	10/13/23 13:00
TP-12-IM-9.0-10.0-20231012	A3J1366-19	Soil	10/12/23 11:30	10/13/23 13:00
TP-11-IM-4.0-5.0-20231012	A3J1366-20	Soil	10/12/23 09:45	10/13/23 13:00
TP-10-IM-9.0-10.0-20231011	A3J1366-21	Soil	10/11/23 15:30	10/13/23 13:00
TP-09-IM-11.0-12.0-20231011	A3J1366-22	Soil	10/11/23 14:50	10/13/23 13:00
SS-06-0.0-1.0-20231011	A3J1366-23	Soil	10/11/23 09:35	10/13/23 13:00
SS-05-0.0-1.0-20231011	A3J1366-24	Soil	10/11/23 08:35	10/13/23 13:00
TP-04-IM-4.0-5.0-20231010	A3J1366-25	Soil	10/10/23 15:25	10/13/23 13:00
TP-03-IM-14.0-15.0-20231010	A3J1366-26	Soil	10/10/23 14:30	10/13/23 13:00
TP-02-IM-4.0-5.0-20231010	A3J1366-27	Soil	10/10/23 12:55	10/13/23 13:00
TP-01-IM-5.0-6.0-20231010	A3J1366-28	Soil	10/10/23 10:55	10/13/23 13:00

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Die	sel and/or O	il Hydrocar	bons by NWTP	H-Dx			
	Sample	Detection	Reporting	***	Dit d	Date	W 4 1D 3	N
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
TP-01-IM-10.0-11.0-20231010 (A3J1	366-06RE1)			Matrix: Soil		Batch:	23J0850	
Diesel	ND	107	215	mg/kg dry	10	10/24/23 14:49	NWTPH-Dx	
Oil	1000	215	429	mg/kg dry	10	10/24/23 14:49	NWTPH-Dx	Q-42
Surrogate: o-Terphenyl (Surr)		Reco	very: 80 %	Limits: 50-150 %	6 10	10/24/23 14:49	NWTPH-Dx	S-05
TP-04-NS-9.0-10.0-20231010 (A3J13	366-07)			Matrix: Soil		Batch:	23J0850	
Diesel	ND	11.2	22.4	mg/kg dry	1	10/23/23 23:28	NWTPH-Dx	
Oil	ND	22.4	44.8	mg/kg dry	1	10/23/23 23:28	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 72 %	Limits: 50-150 %	6 I	10/23/23 23:28	NWTPH-Dx	
TP-05-NS-4.0-5.0-20231011 (A3J136	66-08)			Matrix: Soil		Batch:	23J0954	
Diesel	ND	10.8	21.6	mg/kg dry	1	10/25/23 20:59	NWTPH-Dx	
Oil	ND	21.6	43.2	mg/kg dry	1	10/25/23 20:59	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 80 %	Limits: 50-150 %	6 1	10/25/23 20:59	NWTPH-Dx	
TP-06-NS-9.0-10.0-20231011 (A3J13	366-09RE1)			Matrix: Soil		Batch:	23J0954	
Diesel	ND	11.1	22.2	mg/kg dry	1	10/26/23 08:49	NWTPH-Dx	
Oil	120	22.2	44.5	mg/kg dry	1	10/26/23 08:49	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 90 %	Limits: 50-150 %	6 I	10/26/23 08:49	NWTPH-Dx	
TP-08-NS-12.0-13.0-20231011 (A3J1	1366-10)			Matrix: Soil		Batch:	23J0954	
Diesel	ND	541	1080	mg/kg dry	50	10/25/23 22:10	NWTPH-Dx	
Oil	2550	1080	2160	mg/kg dry	50	10/25/23 22:10	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Re	covery: %	Limits: 50-150 %	6 50	10/25/23 22:10	NWTPH-Dx	S-01
TP-10-NS-12.0-13.0-20231011 (A3J1	1366-11)			Matrix: Soil		Batch:	23J0954	
Diesel	ND	11.2	22.4	mg/kg dry	1	10/25/23 22:57	NWTPH-Dx	
Oil	ND	22.4	44.9	mg/kg dry	1	10/25/23 22:57	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 75 %	Limits: 50-150 %	6 1	10/25/23 22:57	NWTPH-Dx	
TP-15-NS-9.0-10.0-20231012 (A3J13	366-12RE1)			Matrix: Soil		Batch:	23J0954	
Diesel	ND	10.6	21.3	mg/kg dry	1	10/26/23 09:30	NWTPH-Dx	
Oil	209	21.3	42.5	mg/kg dry	1	10/26/23 09:30	NWTPH-Dx	
Surrogate: o-Terphenyl (Surr)		Reco	very: 86 %	Limits: 50-150 %	6 I	10/26/23 09:30	NWTPH-Dx	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Meenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Diesel and/or Oil Hydrocarbons by NWTPH-Dx											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
TP-07-IM-14.0-15.0-20231011 (A3J13	TP-07-IM-14.0-15.0-20231011 (A3J1366-14RE1)					Batch:	23J0954					
Diesel	ND	111	222	mg/kg dry	10	10/26/23 10:12	NWTPH-Dx					
Oil	1780	222	445	mg/kg dry	10	10/26/23 10:12	NWTPH-Dx					
Surrogate: o-Terphenyl (Surr)		Reco	very: 75 %	Limits: 50-150 %	10	10/26/23 10:12	NWTPH-Dx	S-05				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Mounterg

Page 4 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: **Eatonville Landfill Characterization**

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Amalista	Sample	Detection	Reporting	T I:4-	Dibre!	Date	Moths 1D-f	NT-4
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
WS-01-0.0-2.0-10102023 (A3J1366-01)				Matrix: Soil		Batch:	: 23J0806	
Gasoline Range Organics	ND	7.30	14.6	mg/kg dry	50	10/20/23 16:02	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 110 %	Limits: 50-150 %	6 I	10/20/23 16:02	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			98 %	50-150 %	6 I	10/20/23 16:02	NWTPH-Gx (MS)	
WS-05-0.0-2.0-10102023 (A3J1366-05)				Matrix: Soil		Batch:	: 23J0806	
Gasoline Range Organics	ND	12.3	24.7	mg/kg dry	50	10/20/23 16:28	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 108 %	Limits: 50-150 %	6 I	10/20/23 16:28	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			99 %	50-150 %	6 I	10/20/23 16:28	NWTPH-Gx (MS)	
TP-01-IM-10.0-11.0-20231010 (A3J1366-	06)			Matrix: Soil		Batch	: 23J0806	
Gasoline Range Organics	ND	3.40	6.80	mg/kg dry	50	10/20/23 16:54	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 106 %	Limits: 50-150 %	6 I	10/20/23 16:54	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			99 %	50-150 %	6 I	10/20/23 16:54	NWTPH-Gx (MS)	
TP-04-NS-9.0-10.0-20231010 (A3J1366-	07)			Matrix: Soil		Batch	: 23J0806	
Gasoline Range Organics	ND	2.90	5.80	mg/kg dry	50	10/20/23 17:19	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 104 %	Limits: 50-150 %	6 I	10/20/23 17:19	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			99 %	50-150 %	6 I	10/20/23 17:19	NWTPH-Gx (MS)	
TP-05-NS-4.0-5.0-20231011 (A3J1366-08	3)			Matrix: Soil		Batch	: 23J0806	
Gasoline Range Organics	ND	2.53	5.06	mg/kg dry	50	10/20/23 17:45	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 102 %	Limits: 50-150 %	6 <i>1</i>	10/20/23 17:45	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			98 %	50-150 %	6 1	10/20/23 17:45	NWTPH-Gx (MS)	
TP-06-NS-9.0-10.0-20231011 (A3J1366-0	09)			Matrix: Soil		Batch	: 23J0806	
Gasoline Range Organics	ND	2.57	5.15	mg/kg dry	50	10/20/23 18:11	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 105 %	Limits: 50-150 %	6 I	10/20/23 18:11	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			99 %	50-150 %	6 1	10/20/23 18:11	NWTPH-Gx (MS)	
TP-08-NS-12.0-13.0-20231011 (A3J1366	-10)			Matrix: Soil		Batch	: 23J0806	
Gasoline Range Organics	ND	2.30	4.61	mg/kg dry	50	10/20/23 18:36	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recovery	: 102 %	Limits: 50-150 %	6 I	10/20/23 18:36	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			100 %	50-150 %	6 <i>1</i>	10/20/23 18:36	NWTPH-Gx (MS)	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Gasol	ine Range Hy	drocarbons	(Benzene th	rough Naphtha	alene) by	NWTPH-Gx		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-10-NS-12.0-13.0-20231011 (A3J136	6-11)			Matrix: Soil		Batch:	23J0806	
Gasoline Range Organics	ND	2.94	5.89	mg/kg dry	50	10/20/23 19:02	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ry: 100 %	Limits: 50-150 %	1	10/20/23 19:02	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			99 %	50-150 %	1	10/20/23 19:02	NWTPH-Gx (MS)	
TP-15-NS-9.0-10.0-20231012 (A3J1366	-12)			Matrix: Soil		Batch:	23J0806	
Gasoline Range Organics	ND	3.29	6.59	mg/kg dry	50	10/20/23 19:28	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ry: 101 %	Limits: 50-150 %	1	10/20/23 19:28	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			98 %	50-150 %	1	10/20/23 19:28	NWTPH-Gx (MS)	
TP-07-IM-14.0-15.0-20231011 (A3J1366	6-14)			Matrix: Soil		Batch:	23J0806	
Gasoline Range Organics	ND	2.54	5.09	mg/kg dry	50	10/20/23 19:54	NWTPH-Gx (MS)	
Surrogate: 4-Bromofluorobenzene (Sur)		Recove	ry: 101 %	Limits: 50-150 %	1	10/20/23 19:54	NWTPH-Gx (MS)	
1,4-Difluorobenzene (Sur)			100 %	50-150 %	1	10/20/23 19:54	NWTPH-Gx (MS)	

Apex Laboratories

Philip Mounterg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-04-NS-9.0-10.0-20231010 (A3J1366-07	<u>') </u>			Matrix: Soil	1	Batch:	23J0806	
Acetone	ND	1160	1160	ug/kg dry	50	10/20/23 17:19	5035A/8260D	ICV-02
Acrylonitrile	ND	58.0	116	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Benzene	ND	5.80	11.6	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Bromobenzene	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Bromochloromethane	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Bromodichloromethane	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Bromoform	ND	58.0	116	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Bromomethane	ND	580	580	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
2-Butanone (MEK)	ND	290	580	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
n-Butylbenzene	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
sec-Butylbenzene	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
tert-Butylbenzene	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Carbon disulfide	ND	290	580	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Carbon tetrachloride	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Chlorobenzene	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Chloroethane	ND	290	580	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Chloroform	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Chloromethane	ND	145	290	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
2-Chlorotoluene	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
4-Chlorotoluene	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Dibromochloromethane	ND	58.0	116	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND	145	290	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
1,2-Dibromoethane (EDB)	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Dibromomethane	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
1,2-Dichlorobenzene	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
1,3-Dichlorobenzene	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
1,4-Dichlorobenzene	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Dichlorodifluoromethane	ND	58.0	116	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
1,1-Dichloroethane	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
1,2-Dichloroethane (EDC)	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
1,1-Dichloroethene	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
cis-1,2-Dichloroethene	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
trans-1,2-Dichloroethene	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 7 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compoun	ds by EPA 82	60D			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-04-NS-9.0-10.0-20231010 (A3J1366-07)	resuit	Limit	Limit	Matrix: Soil			23J0806	Trotes
			600					
1,2-Dichloropropane	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
1,3-Dichloropropane	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
2,2-Dichloropropane	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
1,1-Dichloropropene	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
cis-1,3-Dichloropropene	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
trans-1,3-Dichloropropene	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Ethylbenzene	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Hexachlorobutadiene	ND	58.0	116	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
2-Hexanone	ND	580	580	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Isopropylbenzene	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
4-Isopropyltoluene	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Methylene chloride	ND	290	580	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND	290	580	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Naphthalene	ND	116	232	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
n-Propylbenzene	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Styrene	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Tetrachloroethene (PCE)	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Toluene	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
1,2,3-Trichlorobenzene	ND	145	290	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
1,2,4-Trichlorobenzene	ND	145	290	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
1,1,1-Trichloroethane	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
1,1,2-Trichloroethane	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Trichloroethene (TCE)	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Trichlorofluoromethane	ND	58.0	116	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
1,2,3-Trichloropropane	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
1,2,4-Trimethylbenzene	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
1,3,5-Trimethylbenzene	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
Vinyl chloride	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
m,p-Xylene	ND	29.0	58.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	
o-Xylene	ND	14.5	29.0	ug/kg dry	50	10/20/23 17:19	5035A/8260D	

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compou	nds by EPA 826	טט			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-04-NS-9.0-10.0-20231010 (A3J1366-07	<u>')</u>			Matrix: Soil		Batch:	23J0806	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 103 %	Limits: 80-120 %	I	10/20/23 17:19	5035A/8260D	
Toluene-d8 (Surr)			96 %	80-120 %	1	10/20/23 17:19	5035A/8260D	
4-Bromofluorobenzene (Surr)			105 %	79-120 %	1	10/20/23 17:19	5035A/8260D	
TP-05-NS-4.0-5.0-20231011 (A3J1366-08)				Matrix: Soil		Batch:	23J0806	
Acetone	ND	1010	1010	ug/kg dry	50	10/20/23 17:45	5035A/8260D	ICV-02
Acrylonitrile	ND	50.6	101	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Benzene	ND	5.06	10.1	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Bromobenzene	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Bromochloromethane	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Bromodichloromethane	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Bromoform	ND	50.6	101	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Bromomethane	ND	506	506	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
2-Butanone (MEK)	ND	253	506	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
n-Butylbenzene	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
sec-Butylbenzene	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
tert-Butylbenzene	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Carbon disulfide	ND	253	506	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Carbon tetrachloride	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Chlorobenzene	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Chloroethane	ND	253	506	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Chloroform	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Chloromethane	ND	126	253	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
2-Chlorotoluene	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
4-Chlorotoluene	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Dibromochloromethane	ND	50.6	101	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND	126	253	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,2-Dibromoethane (EDB)	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Dibromomethane	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,2-Dichlorobenzene	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,3-Dichlorobenzene	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,4-Dichlorobenzene	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Dichlorodifluoromethane	ND	50.6	101	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,1-Dichloroethane	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	V	olatile Organ	ic Compound	us by EPA 82	עוופ			
	Sample	Detection	Reporting	**	Dit of	Date	M 4 12 0	37.
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
TP-05-NS-4.0-5.0-20231011 (A3J1366-08)				Matrix: Soil	<u> </u>	Batch:	23J0806	
1,2-Dichloroethane (EDC)	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,1-Dichloroethene	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
cis-1,2-Dichloroethene	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
trans-1,2-Dichloroethene	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,2-Dichloropropane	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,3-Dichloropropane	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
2,2-Dichloropropane	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,1-Dichloropropene	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
cis-1,3-Dichloropropene	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
trans-1,3-Dichloropropene	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Ethylbenzene	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Hexachlorobutadiene	ND	50.6	101	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
2-Hexanone	ND	506	506	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Isopropylbenzene	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
4-Isopropyltoluene	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Methylene chloride	ND	253	506	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND	253	506	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Naphthalene	ND	101	202	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
n-Propylbenzene	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Styrene	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Tetrachloroethene (PCE)	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Toluene	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,2,3-Trichlorobenzene	ND	126	253	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,2,4-Trichlorobenzene	ND	126	253	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,1,1-Trichloroethane	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,1,2-Trichloroethane	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Trichloroethene (TCE)	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Trichlorofluoromethane	ND	50.6	101	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,2,3-Trichloropropane	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
1,2,4-Trimethylbenzene	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 10 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	V	olatile Organi	c Compou	nds by EPA 826	UD			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
•		Lillit	Lillift		ווווטווטוו	•		notes
TP-05-NS-4.0-5.0-20231011 (A3J1366-08)			Matrix: Soil		Batch:	23J0806	
1,3,5-Trimethylbenzene	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Vinyl chloride	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
m,p-Xylene	ND	25.3	50.6	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
o-Xylene	ND	12.6	25.3	ug/kg dry	50	10/20/23 17:45	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ry: 103 %	Limits: 80-120 %	1	10/20/23 17:45	5035A/8260D	
Toluene-d8 (Surr)			97 %	80-120 %	1	10/20/23 17:45	5035A/8260D	
4-Bromofluorobenzene (Surr)			104 %	79-120 %	1	10/20/23 17:45	5035A/8260D	
TP-06-NS-9.0-10.0-20231011 (A3J1366-0	9)			Matrix: Soil		Batch:	23J0806	
Acetone	ND	1030	1030	ug/kg dry	50	10/20/23 18:11	5035A/8260D	ICV-02
Acrylonitrile	ND	51.5	103	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Benzene	ND	5.15	10.3	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Bromobenzene	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Bromochloromethane	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Bromodichloromethane	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Bromoform	ND	51.5	103	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Bromomethane	ND	515	515	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
2-Butanone (MEK)	ND	257	515	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
n-Butylbenzene	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
sec-Butylbenzene	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
tert-Butylbenzene	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Carbon disulfide	ND	257	515	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Carbon tetrachloride	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Chlorobenzene	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Chloroethane	ND	257	515	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Chloroform	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Chloromethane	ND	129	257	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
2-Chlorotoluene	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
4-Chlorotoluene	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Dibromochloromethane	ND	51.5	103	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
1,2-Dibromo-3-chloropropane	ND	129	257	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
1,2-Dibromoethane (EDB)	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Dibromomethane	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 11 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
TP-06-NS-9.0-10.0-20231011 (A3J1366-09)				Matrix: Soi	il	Batch: 23J0806		
,2-Dichlorobenzene	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
,3-Dichlorobenzene	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
,4-Dichlorobenzene	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Dichlorodifluoromethane	ND	51.5	103	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
,1-Dichloroethane	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
,2-Dichloroethane (EDC)	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
,1-Dichloroethene	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
sis-1,2-Dichloroethene	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
rans-1,2-Dichloroethene	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
,2-Dichloropropane	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
,3-Dichloropropane	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
2,2-Dichloropropane	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
,1-Dichloropropene	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
sis-1,3-Dichloropropene	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
rans-1,3-Dichloropropene	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Ethylbenzene	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Hexachlorobutadiene	ND	51.5	103	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
2-Hexanone	ND	515	515	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
sopropylbenzene	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
-Isopropyltoluene	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Methylene chloride	ND	257	515	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
-Methyl-2-pentanone (MiBK)	ND	257	515	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Naphthalene	ND	103	206	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
-Propylbenzene	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Styrene	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
,1,1,2-Tetrachloroethane	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
,1,2,2-Tetrachloroethane	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
etrachloroethene (PCE)	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
oluene	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
,2,3-Trichlorobenzene	ND	129	257	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
,2,4-Trichlorobenzene	ND	129	257	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
1,1-Trichloroethane	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 12 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

A 1.	Sample	Detection	Reporting	** **	D'1 -:	Date	Math	**
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
TP-06-NS-9.0-10.0-20231011 (A3J1366-	09)			Matrix: Soil		Batch:	23J0806	
1,1,2-Trichloroethane	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Trichloroethene (TCE)	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Trichlorofluoromethane	ND	51.5	103	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
1,2,3-Trichloropropane	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
1,2,4-Trimethylbenzene	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
1,3,5-Trimethylbenzene	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Vinyl chloride	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
m,p-Xylene	ND	25.7	51.5	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
o-Xylene	ND	12.9	25.7	ug/kg dry	50	10/20/23 18:11	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 103 %	Limits: 80-120 %	I	10/20/23 18:11	5035A/8260D	
Toluene-d8 (Surr)			96 %	80-120 %	1	10/20/23 18:11	5035A/8260D	
4-Bromofluorobenzene (Surr)			105 %	79-120 %	I	10/20/23 18:11	5035A/8260D	
TP-08-NS-12.0-13.0-20231011 (A3J1366	9-08-NS-12.0-13.0-20231011 (A3J1366-10)			Matrix: Soil Batch: 23J0806			23J0806	
Acetone	ND	922	922	ug/kg dry	50	10/20/23 18:36	5035A/8260D	ICV-0
Acrylonitrile	ND	46.1	92.2	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Benzene	ND	4.61	9.22	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Bromobenzene	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Bromochloromethane	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Bromodichloromethane	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Bromoform	ND	46.1	92.2	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Bromomethane	ND	461	461	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
2-Butanone (MEK)	ND	230	461	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
n-Butylbenzene	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
sec-Butylbenzene	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
tert-Butylbenzene	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Carbon disulfide	ND	230	461	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Carbon tetrachloride	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Chlorobenzene	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Chloroethane	ND	230	461	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Chloroform	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Chloromethane	ND	115	230	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
2-Chlorotoluene	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Meenberg

Page 13 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
FP-08-NS-12.0-13.0-20231011 (A3J1366-10	0)			Matrix: Soi	ı	Batch: 23J0806		
-Chlorotoluene	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Dibromochloromethane	ND	46.1	92.2	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
,2-Dibromo-3-chloropropane	ND	115	230	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
,2-Dibromoethane (EDB)	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Dibromomethane	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
,2-Dichlorobenzene	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
,3-Dichlorobenzene	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
,4-Dichlorobenzene	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Dichlorodifluoromethane	ND	46.1	92.2	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
,1-Dichloroethane	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
,2-Dichloroethane (EDC)	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
,1-Dichloroethene	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
sis-1,2-Dichloroethene	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
rans-1,2-Dichloroethene	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
,2-Dichloropropane	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
,3-Dichloropropane	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
2,2-Dichloropropane	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
,1-Dichloropropene	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
sis-1,3-Dichloropropene	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
rans-1,3-Dichloropropene	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Ethylbenzene	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Hexachlorobutadiene	ND	46.1	92.2	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
2-Hexanone	ND	461	461	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
sopropylbenzene	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
-Isopropyltoluene	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Methylene chloride	ND	230	461	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
-Methyl-2-pentanone (MiBK)	ND	230	461	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Vaphthalene	ND	92.2	184	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
-Propylbenzene	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
tyrene	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
,1,1,2-Tetrachloroethane	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
,1,2,2-Tetrachloroethane	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 14 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	v	olatile Organ	ic Compoui	nds by EPA 826	מט			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-08-NS-12.0-13.0-20231011 (A3J136	6-10)			Matrix: Soil		Batch:	23J0806	
Tetrachloroethene (PCE)	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Toluene	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
1,2,3-Trichlorobenzene	ND	115	230	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
1,2,4-Trichlorobenzene	ND	115	230	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
1,1,1-Trichloroethane	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
1,1,2-Trichloroethane	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Trichloroethene (TCE)	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Trichlorofluoromethane	ND	46.1	92.2	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
1,2,3-Trichloropropane	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
1,2,4-Trimethylbenzene	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
1,3,5-Trimethylbenzene	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Vinyl chloride	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
m,p-Xylene	ND	23.0	46.1	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
o-Xylene	ND	11.5	23.0	ug/kg dry	50	10/20/23 18:36	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 103 %	Limits: 80-120 %	1	10/20/23 18:36	5035A/8260D	
Toluene-d8 (Surr)			96 %	80-120 %	1	10/20/23 18:36	5035A/8260D	
4-Bromofluorobenzene (Surr)			104 %	79-120 %	1	10/20/23 18:36	5035A/8260D	
TP-10-NS-12.0-13.0-20231011 (A3J136	6-11)			Matrix: Soil		Batch: 23J0806		
Acetone	ND	1180	1180	ug/kg dry	50	10/20/23 19:02	5035A/8260D	ICV-02
Acrylonitrile	ND	58.9	118	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Benzene	ND	5.89	11.8	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Bromobenzene	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Bromochloromethane	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Bromodichloromethane	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Bromoform	ND	58.9	118	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Bromomethane	ND	589	589	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
2-Butanone (MEK)	ND	294	589	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
n-Butylbenzene	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
sec-Butylbenzene	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
tert-Butylbenzene	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Carbon disulfide	ND	294	589	ug/kg dry	50	10/20/23 19:02	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 15 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
TP-10-NS-12.0-13.0-20231011 (A3J1366-11)			Matrix: Soil	<u> </u>	Batch: 23J0806		
Chlorobenzene	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Chloroethane	ND	294	589	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Chloroform	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Chloromethane	ND	147	294	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
2-Chlorotoluene	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
l-Chlorotoluene	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Dibromochloromethane	ND	58.9	118	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
,2-Dibromo-3-chloropropane	ND	147	294	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
,2-Dibromoethane (EDB)	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Dibromomethane	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
,2-Dichlorobenzene	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
,3-Dichlorobenzene	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
,4-Dichlorobenzene	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Dichlorodifluoromethane	ND	58.9	118	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
,1-Dichloroethane	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
,2-Dichloroethane (EDC)	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
,1-Dichloroethene	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
eis-1,2-Dichloroethene	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
rans-1,2-Dichloroethene	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
,2-Dichloropropane	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
,3-Dichloropropane	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
2,2-Dichloropropane	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
,1-Dichloropropene	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
cis-1,3-Dichloropropene	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
rans-1,3-Dichloropropene	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Ethylbenzene	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
lexachlorobutadiene	ND	58.9	118	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
-Hexanone	ND	589	589	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
opropylbenzene	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
-Isopropyltoluene	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
lethylene chloride	ND	294	589	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
-Methyl-2-pentanone (MiBK)	ND	294	589	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
ethyl tert-butyl ether (MTBE)	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 16 of 156 $\,$

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting		D.1. :	Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
TP-10-NS-12.0-13.0-20231011 (A3J1366	S-11)			Matrix: Soil		Batch:	23J0806	
Naphthalene	ND	118	235	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
n-Propylbenzene	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Styrene	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Tetrachloroethene (PCE)	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Toluene	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
1,2,3-Trichlorobenzene	ND	147	294	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
1,2,4-Trichlorobenzene	ND	147	294	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
1,1,1-Trichloroethane	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
1,1,2-Trichloroethane	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Trichloroethene (TCE)	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Trichlorofluoromethane	ND	58.9	118	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
1,2,3-Trichloropropane	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
1,2,4-Trimethylbenzene	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
1,3,5-Trimethylbenzene	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Vinyl chloride	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
m,p-Xylene	ND	29.4	58.9	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
o-Xylene	ND	14.7	29.4	ug/kg dry	50	10/20/23 19:02	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 103 %	Limits: 80-120 %	1	10/20/23 19:02	5035A/8260D	
Toluene-d8 (Surr)			96 %	80-120 %	1	10/20/23 19:02	5035A/8260D	
4-Bromofluorobenzene (Surr)			103 %	79-120 %	1	10/20/23 19:02	5035A/8260D	
TP-15-NS-9.0-10.0-20231012 (A3J1366-	-12)			Matrix: Soil		Batch:	23J0806	
Acetone	ND	1320	1320	ug/kg dry	50	10/20/23 19:28	5035A/8260D	ICV-0
Acrylonitrile	ND	65.9	132	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
Benzene	ND	6.59	13.2	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
Bromobenzene	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
Bromochloromethane	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
Bromodichloromethane	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
Bromoform	ND	65.9	132	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
Bromomethane	ND	659	659	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
2-Butanone (MEK)	ND	329	659	ug/kg dry	50	10/20/23 19:28	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Newsberg

Page 17 of 156 $\,$

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
TP-15-NS-9.0-10.0-20231012 (A3J1366-12)				Matrix: Soi		Batch:	23J0806	
n-Butylbenzene	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
ec-Butylbenzene	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
ert-Butylbenzene	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
Carbon disulfide	ND	329	659	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
Carbon tetrachloride	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
Chlorobenzene	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
Chloroethane	ND	329	659	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
Chloroform	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
Chloromethane	ND	165	329	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
2-Chlorotoluene	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
-Chlorotoluene	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
Dibromochloromethane	ND	65.9	132	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
,2-Dibromo-3-chloropropane	ND	165	329	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
,2-Dibromoethane (EDB)	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
Dibromomethane	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
,2-Dichlorobenzene	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
,3-Dichlorobenzene	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
,4-Dichlorobenzene	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
Dichlorodifluoromethane	ND	65.9	132	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
,1-Dichloroethane	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
,2-Dichloroethane (EDC)	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
,1-Dichloroethene	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
sis-1,2-Dichloroethene	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
rans-1,2-Dichloroethene	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
,2-Dichloropropane	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
,3-Dichloropropane	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
,2-Dichloropropane	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
,1-Dichloropropene	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
is-1,3-Dichloropropene	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
rans-1,3-Dichloropropene	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
Ethylbenzene	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
Jexachlorobutadiene	ND	65.9	132	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
-Hexanone	ND	659	659	ug/kg dry	50	10/20/23 19:28	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 18 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	<u>v</u>	olatile Organ	ic compou	nds by EPA 826	טט			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-15-NS-9.0-10.0-20231012 (A3J1366-	12)			Matrix: Soil		Batch:	23J0806	
Isopropylbenzene	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
4-Isopropyltoluene	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
Methylene chloride	ND	329	659	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND	329	659	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
Naphthalene	ND	132	264	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
n-Propylbenzene	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
Styrene	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
Tetrachloroethene (PCE)	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
Toluene	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
1,2,3-Trichlorobenzene	ND	165	329	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
1,2,4-Trichlorobenzene	ND	165	329	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
1,1,1-Trichloroethane	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
1,1,2-Trichloroethane	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
Trichloroethene (TCE)	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
Trichlorofluoromethane	ND	65.9	132	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
1,2,3-Trichloropropane	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
1,2,4-Trimethylbenzene	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
1,3,5-Trimethylbenzene	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
Vinyl chloride	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
m,p-Xylene	ND	32.9	65.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
o-Xylene	ND	16.5	32.9	ug/kg dry	50	10/20/23 19:28	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)		Recove	ery: 102 %	Limits: 80-120 %	1	10/20/23 19:28	5035A/8260D	
Toluene-d8 (Surr)			96 %	80-120 %	I	10/20/23 19:28	5035A/8260D	
4-Bromofluorobenzene (Surr)			104 %	79-120 %	1	10/20/23 19:28	5035A/8260D	
TP-07-IM-14.0-15.0-20231011 (A3J1366	-14)			Matrix: Soil		Batch:	23J0806	
Acetone	ND	1020	1020	ug/kg dry	50	10/20/23 19:54	5035A/8260D	ICV-0
Acrylonitrile	ND	50.9	102	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Benzene	ND	5.09	10.2	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Bromobenzene	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
FP-07-IM-14.0-15.0-20231011 (A3J1366-1	4)			Matrix: Soil	ı	Batch:	23J0806	
Bromochloromethane	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Bromodichloromethane	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Bromoform	ND	50.9	102	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Bromomethane	ND	509	509	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
2-Butanone (MEK)	ND	254	509	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
n-Butylbenzene	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
ec-Butylbenzene	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
ert-Butylbenzene	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Carbon disulfide	ND	254	509	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Carbon tetrachloride	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Chlorobenzene	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Chloroethane	ND	254	509	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Chloroform	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Chloromethane	ND	127	254	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
2-Chlorotoluene	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
-Chlorotoluene	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Dibromochloromethane	ND	50.9	102	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
,2-Dibromo-3-chloropropane	ND	127	254	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
,2-Dibromoethane (EDB)	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Dibromomethane	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
,2-Dichlorobenzene	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
,3-Dichlorobenzene	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
,4-Dichlorobenzene	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Dichlorodifluoromethane	ND	50.9	102	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
,1-Dichloroethane	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
,2-Dichloroethane (EDC)	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
,1-Dichloroethene	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
is-1,2-Dichloroethene	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
ans-1,2-Dichloroethene	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
,2-Dichloropropane	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
,3-Dichloropropane	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
,2-Dichloropropane	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
1-Dichloropropene	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	

Apex Laboratories

Philip Menberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 20 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Analyte	Sample	Detection Limit	Reporting Limit	I Inita	Dibution	Date Analyzed	Mothod Def	NTa4-
Analyte	Result	Lillit			Dilution	Analyzed	Method Ref.	Notes
TP-07-IM-14.0-15.0-20231011 (A3J1366-1	4)			Matrix: Soil		Batch:	23J0806	
cis-1,3-Dichloropropene	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
trans-1,3-Dichloropropene	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Ethylbenzene	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Hexachlorobutadiene	ND	50.9	102	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
2-Hexanone	ND	509	509	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Isopropylbenzene	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
4-Isopropyltoluene	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Methylene chloride	ND	254	509	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
4-Methyl-2-pentanone (MiBK)	ND	254	509	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Methyl tert-butyl ether (MTBE)	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Naphthalene	ND	102	204	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
n-Propylbenzene	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Styrene	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
1,1,1,2-Tetrachloroethane	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
1,1,2,2-Tetrachloroethane	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Tetrachloroethene (PCE)	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Toluene	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
1,2,3-Trichlorobenzene	ND	127	254	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
1,2,4-Trichlorobenzene	ND	127	254	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
1,1,1-Trichloroethane	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
1,1,2-Trichloroethane	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Trichloroethene (TCE)	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Trichlorofluoromethane	ND	50.9	102	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
1,2,3-Trichloropropane	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
1,2,4-Trimethylbenzene	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
1,3,5-Trimethylbenzene	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Vinyl chloride	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
n,p-Xylene	ND	25.4	50.9	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
o-Xylene	ND	12.7	25.4	ug/kg dry	50	10/20/23 19:54	5035A/8260D	
Surrogate: 1,4-Difluorobenzene (Surr)			ery: 102 %	Limits: 80-120 %		10/20/23 19:54	5035A/8260D	
Toluene-d8 (Surr)			97%	80-120 %		10/20/23 19:54	5035A/8260D	
4-Bromofluorobenzene (Surr)			103 %	79-120 %		10/20/23 19:54	5035A/8260D	

Apex Laboratories

Philip Newsberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		Polychlorina	ted Biphen	yls by EPA 8082	2A			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
WS-01-0.0-2.0-10102023 (A3J1366-01)				Matrix: Soil		Batch:	23J0900	C-07
Aroclor 1016	ND	9.77	19.5	ug/kg dry	1	10/24/23 18:14	EPA 8082A	
Aroclor 1221	ND	9.77	19.5	ug/kg dry	1	10/24/23 18:14	EPA 8082A	
Aroclor 1232	ND	9.77	19.5	ug/kg dry	1	10/24/23 18:14	EPA 8082A	
Aroclor 1242	ND	9.77	19.5	ug/kg dry	1	10/24/23 18:14	EPA 8082A	
Aroclor 1248	ND	9.77	19.5	ug/kg dry	1	10/24/23 18:14	EPA 8082A	
Aroclor 1254	ND	9.77	19.5	ug/kg dry	1	10/24/23 18:14	EPA 8082A	
Aroclor 1260	ND	9.77	19.5	ug/kg dry	1	10/24/23 18:14	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 65 %	Limits: 60-125 %	5 1	10/24/23 18:14	EPA 8082A	
WS-02-0.0-2.0-1010-2023 (A3J1366-02)				Matrix: Soil		Batch:	23J0900	C-07
Aroclor 1016	ND	8.91	17.8	ug/kg dry	1	10/24/23 19:25	EPA 8082A	
Aroclor 1221	ND	8.91	17.8	ug/kg dry	1	10/24/23 19:25	EPA 8082A	
Aroclor 1232	ND	8.91	17.8	ug/kg dry	1	10/24/23 19:25	EPA 8082A	
Aroclor 1242	ND	8.91	17.8	ug/kg dry	1	10/24/23 19:25	EPA 8082A	
Aroclor 1248	ND	8.91	17.8	ug/kg dry	1	10/24/23 19:25	EPA 8082A	
Aroclor 1254	ND	8.91	17.8	ug/kg dry	1	10/24/23 19:25	EPA 8082A	
Aroclor 1260	ND	8.91	17.8	ug/kg dry	1	10/24/23 19:25	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 75 %	Limits: 60-125 %	5 1	10/24/23 19:25	EPA 8082A	
WS-03-0.0-2.0-10102023 (A3J1366-03)				Matrix: Soil		Batch:	23J0900	C-07
Aroclor 1016	ND	8.80	17.6	ug/kg dry	1	10/24/23 20:00	EPA 8082A	
Aroclor 1221	ND	8.80	17.6	ug/kg dry	1	10/24/23 20:00	EPA 8082A	
Aroclor 1232	ND	8.80	17.6	ug/kg dry	1	10/24/23 20:00	EPA 8082A	
Aroclor 1242	ND	8.80	17.6	ug/kg dry	1	10/24/23 20:00	EPA 8082A	
Aroclor 1248	ND	8.80	17.6	ug/kg dry	1	10/24/23 20:00	EPA 8082A	
Aroclor 1254	ND	8.80	17.6	ug/kg dry	1	10/24/23 20:00	EPA 8082A	
Aroclor 1260	ND	8.80	17.6	ug/kg dry	1	10/24/23 20:00	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 70 %	Limits: 60-125 %	5 I	10/24/23 20:00	EPA 8082A	
WS-04-0.0-2.0-10102023 (A3J1366-04)				Matrix: Soil		Batch:	23J0900	C-07
Aroclor 1016	ND	16.3	32.7	ug/kg dry	1	10/24/23 21:11	EPA 8082A	
Aroclor 1221	ND	16.3	32.7	ug/kg dry	1	10/24/23 21:11	EPA 8082A	
Aroclor 1232	ND	16.3	32.7	ug/kg dry	1	10/24/23 21:11	EPA 8082A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		Polychlorina	ted Bipheny	ls by EPA 8082	2A			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
WS-04-0.0-2.0-10102023 (A3J1366-04)				Matrix: Soil	Soil Ba		23J0900	C-07
Aroclor 1242	ND	16.3	32.7	ug/kg dry	1	10/24/23 21:11	EPA 8082A	
Aroclor 1248	ND	16.3	32.7	ug/kg dry	1	10/24/23 21:11	EPA 8082A	
Aroclor 1254	ND	16.3	32.7	ug/kg dry	1	10/24/23 21:11	EPA 8082A	
Aroclor 1260	25.2	16.3	32.7	ug/kg dry	1	10/24/23 21:11	EPA 8082A	J
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 40 %	Limits: 60-125 %	5 I	10/24/23 21:11	EPA 8082A	S-03
WS-05-0.0-2.0-10102023 (A3J1366-05RE	NS-05-0.0-2.0-10102023 (A3J1366-05RE1)			Matrix: Soil		Batch:	23J1014	C-07
Aroclor 1016	ND	14.3	28.7	ug/kg dry	1	10/26/23 18:41	EPA 8082A	
Aroclor 1221	ND	14.3	28.7	ug/kg dry	1	10/26/23 18:41	EPA 8082A	
Aroclor 1232	ND	14.3	28.7	ug/kg dry	1	10/26/23 18:41	EPA 8082A	
Aroclor 1242	ND	14.3	28.7	ug/kg dry	1	10/26/23 18:41	EPA 8082A	
Aroclor 1248	ND	14.3	28.7	ug/kg dry	1	10/26/23 18:41	EPA 8082A	
Aroclor 1254	ND	14.3	28.7	ug/kg dry	1	10/26/23 18:41	EPA 8082A	
Aroclor 1260	ND	14.3	28.7	ug/kg dry	1	10/26/23 18:41	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 73 %	Limits: 60-125 %	5 I	10/26/23 18:41	EPA 8082A	
TP-01-IM-10.0-11.0-20231010 (A3J1366-0	6)			Matrix: Soil		Batch:	23J1014	C-07
Aroclor 1016	ND	5.78	11.6	ug/kg dry	1	10/26/23 19:16	EPA 8082A	
Aroclor 1221	ND	5.78	11.6	ug/kg dry	1	10/26/23 19:16	EPA 8082A	
Aroclor 1232	ND	5.78	11.6	ug/kg dry	1	10/26/23 19:16	EPA 8082A	
Aroclor 1242	85.0	5.78	11.6	ug/kg dry	1	10/26/23 19:16	EPA 8082A	P-09
Aroclor 1248	ND	5.78	11.6	ug/kg dry	1	10/26/23 19:16	EPA 8082A	
Aroclor 1254	ND	5.78	11.6	ug/kg dry	1	10/26/23 19:16	EPA 8082A	
Aroclor 1260	33.9	5.78	11.6	ug/kg dry	1	10/26/23 19:16	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 90 %	Limits: 60-125 %	5 1	10/26/23 19:16	EPA 8082A	
TP-04-NS-9.0-10.0-20231010 (A3J1366-07	7)			Matrix: Soil		Batch:	23J1014	C-07
Aroclor 1016	ND	5.40	10.8	ug/kg dry	1	10/26/23 19:52	EPA 8082A	
Aroclor 1221	ND	5.40	10.8	ug/kg dry	1	10/26/23 19:52	EPA 8082A	
Aroclor 1232	ND	5.40	10.8	ug/kg dry	1	10/26/23 19:52	EPA 8082A	
Aroclor 1242	ND	5.40	10.8	ug/kg dry	1	10/26/23 19:52	EPA 8082A	
Aroclor 1248	ND	5.40	10.8	ug/kg dry	1	10/26/23 19:52	EPA 8082A	
Aroclor 1254	ND	5.40	10.8	ug/kg dry	1	10/26/23 19:52	EPA 8082A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Analyta	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note:
Analyte		Lillit	Lillit		Dilution			C-07
TP-04-NS-9.0-10.0-20231010 (A3J1366-	-07)			Matrix: Soil		Batch: 2	23J1014	C-07
Aroclor 1260	ND	5.40	10.8	ug/kg dry	1	10/26/23 19:52	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 89 %	Limits: 60-125 %	1	10/26/23 19:52	EPA 8082A	
ГР-05-NS-4.0-5.0-20231011 (A3J1366-0	8)			Matrix: Soil		Batch: 2	23J1014	C-07
Aroclor 1016	ND	5.75	11.5	ug/kg dry	1	10/26/23 20:27	EPA 8082A	
Aroclor 1221	ND	5.75	11.5	ug/kg dry	1	10/26/23 20:27	EPA 8082A	
Aroclor 1232	ND	5.75	11.5	ug/kg dry	1	10/26/23 20:27	EPA 8082A	
Aroclor 1242	ND	5.75	11.5	ug/kg dry	1	10/26/23 20:27	EPA 8082A	
Aroclor 1248	ND	5.75	11.5	ug/kg dry	1	10/26/23 20:27	EPA 8082A	
Aroclor 1254	ND	5.75	11.5	ug/kg dry	1	10/26/23 20:27	EPA 8082A	
Aroclor 1260	ND	5.75	11.5	ug/kg dry	1	10/26/23 20:27	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 84 %	Limits: 60-125 %	1	10/26/23 20:27	EPA 8082A	
ΓP-06-NS-9.0-10.0-20231011 (A3J1366-	09)			Matrix: Soil		Batch: 2	23J1014	C-07
Aroclor 1016	ND	5.94	11.9	ug/kg dry	1	10/26/23 21:03	EPA 8082A	
Aroclor 1221	ND	5.94	11.9	ug/kg dry	1	10/26/23 21:03	EPA 8082A	
Aroclor 1232	ND	5.94	11.9	ug/kg dry	1	10/26/23 21:03	EPA 8082A	
Aroclor 1242	ND	5.94	11.9	ug/kg dry	1	10/26/23 21:03	EPA 8082A	
Aroclor 1248	ND	5.94	11.9	ug/kg dry	1	10/26/23 21:03	EPA 8082A	
Aroclor 1254	ND	5.94	11.9	ug/kg dry	1	10/26/23 21:03	EPA 8082A	
Aroclor 1260	13.0	5.94	11.9	ug/kg dry	1	10/26/23 21:03	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 88 %	Limits: 60-125 %	1	10/26/23 21:03	EPA 8082A	
TP-08-NS-12.0-13.0-20231011 (A3J1366	S-10)			Matrix: Soil		Batch: 2	23J1014	C-07
Aroclor 1016	ND	5.28	10.6	ug/kg dry	1	10/26/23 21:38	EPA 8082A	
Aroclor 1221	ND	5.28	10.6	ug/kg dry	1	10/26/23 21:38	EPA 8082A	
Aroclor 1232	ND	5.28	10.6	ug/kg dry	1	10/26/23 21:38	EPA 8082A	
Aroclor 1242	ND	5.28	10.6	ug/kg dry	1	10/26/23 21:38	EPA 8082A	
Aroclor 1248	ND	5.28	10.6	ug/kg dry	1	10/26/23 21:38	EPA 8082A	
Aroclor 1254	10.9	5.28	10.6	ug/kg dry	1	10/26/23 21:38	EPA 8082A	P-12
Aroclor 1260	12.2	5.28	10.6	ug/kg dry	1	10/26/23 21:38	EPA 8082A	P-12
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 91 %	Limits: 60-125 %	1	10/26/23 21:38	EPA 8082A	
P-10-NS-12.0-13.0-20231011 (A3J1366	2.44\			Matrix: Soil		Databa (23J1014	C-07

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 24 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		Polychlorina	ted Bipheny	ls by EPA 8082	A			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-10-NS-12.0-13.0-20231011 (A3J136	66-11)			Matrix: Soil		Batch: 2	23J1014	C-07
Aroclor 1016	ND	5.30	10.6	ug/kg dry	1	10/26/23 22:49	EPA 8082A	
Aroclor 1221	ND	5.30	10.6	ug/kg dry	1	10/26/23 22:49	EPA 8082A	
Aroclor 1232	ND	5.30	10.6	ug/kg dry	1	10/26/23 22:49	EPA 8082A	
Aroclor 1242	ND	5.30	10.6	ug/kg dry	1	10/26/23 22:49	EPA 8082A	
Aroclor 1248	ND	5.30	10.6	ug/kg dry	1	10/26/23 22:49	EPA 8082A	
Aroclor 1254	ND	5.30	10.6	ug/kg dry	1	10/26/23 22:49	EPA 8082A	
Aroclor 1260	ND	5.30	10.6	ug/kg dry	1	10/26/23 22:49	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 81 %	Limits: 60-125 %	1	10/26/23 22:49	EPA 8082A	
TP-15-NS-9.0-10.0-20231012 (A3J1366	P-15-NS-9.0-10.0-20231012 (A3J1366-12)			Matrix: Soil		Batch: 2	23J1014	C-07
Aroclor 1016	ND	5.53	11.1	ug/kg dry	1	10/26/23 23:24	EPA 8082A	
Aroclor 1221	ND	5.53	11.1	ug/kg dry	1	10/26/23 23:24	EPA 8082A	
Aroclor 1232	ND	5.53	11.1	ug/kg dry	1	10/26/23 23:24	EPA 8082A	
Aroclor 1242	8.63	5.53	11.1	ug/kg dry	1	10/26/23 23:24	EPA 8082A	J
Aroclor 1248	ND	5.53	11.1	ug/kg dry	1	10/26/23 23:24	EPA 8082A	
Aroclor 1254	13.2	5.53	11.1	ug/kg dry	1	10/26/23 23:24	EPA 8082A	P-12
Aroclor 1260	ND	5.53	11.1	ug/kg dry	1	10/26/23 23:24	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 75 %	Limits: 60-125 %	1	10/26/23 23:24	EPA 8082A	
TP-15-IM-4.0-5.0-20231012 (A3J1366-	13)			Matrix: Soil		Batch: 2	23J1014	C-07
Aroclor 1016	ND	10.8	10.8	ug/kg dry	1	10/27/23 00:00	EPA 8082A	
Aroclor 1221	ND	5.39	10.8	ug/kg dry	1	10/27/23 00:00	EPA 8082A	
Aroclor 1232	ND	20.2	20.2	ug/kg dry	1	10/27/23 00:00	EPA 8082A	R-02
Aroclor 1242	ND	14.0	14.0	ug/kg dry	1	10/27/23 00:00	EPA 8082A	R-02
Aroclor 1248	ND	32.1	32.1	ug/kg dry	1	10/27/23 00:00	EPA 8082A	R-02
Aroclor 1254	32.4	5.39	10.8	ug/kg dry	1	10/27/23 00:00	EPA 8082A	P-12
Aroclor 1260	25.8	5.39	10.8	ug/kg dry	1	10/27/23 00:00	EPA 8082A	P-12
Surrogate: Decachlorobiphenyl (Surr)		Recove	ery: 106 %	Limits: 60-125 %	1	10/27/23 00:00	EPA 8082A	
TP-07-IM-14.0-15.0-20231011 (A3J1366-14)				Matrix: Soil		Batch: 2	23J1014	C-07
Aroclor 1016	ND	5.73	11.5	ug/kg dry	1	10/27/23 00:35	EPA 8082A	
Aroclor 1221	ND	5.73	11.5	ug/kg dry	1	10/27/23 00:35	EPA 8082A	
Aroclor 1232	ND	11.5	11.5	ug/kg dry	1	10/27/23 00:35	EPA 8082A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 25 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		Polychlorina	ted Bipheny	ls by EPA 8082	2A			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-07-IM-14.0-15.0-20231011 (A3J136	6-14)			Matrix: Soil		Batch:	23J1014	C-07
Aroclor 1242	ND	5.73	11.5	ug/kg dry	1	10/27/23 00:35	EPA 8082A	
Aroclor 1248	ND	18.5	18.5	ug/kg dry	1	10/27/23 00:35	EPA 8082A	R-02
Aroclor 1254	52.8	5.73	11.5	ug/kg dry	1	10/27/23 00:35	EPA 8082A	P-12
Aroclor 1260	27.9	5.73	11.5	ug/kg dry	1	10/27/23 00:35	EPA 8082A	P-12
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 96 %	Limits: 60-125 %	5 1	10/27/23 00:35	EPA 8082A	
TP-08-IM-4.0-5.0-20231011 (A3J1366-	15RE1)			Matrix: Soil		Batch:	23J1014	C-07
Aroclor 1016	ND	94.7	94.7	ug/kg dry	1	10/27/23 11:05	EPA 8082A	R-02
Aroclor 1221	ND	24.2	24.2	ug/kg dry	1	10/27/23 11:05	EPA 8082A	R-02
Aroclor 1232	ND	155	155	ug/kg dry	1	10/27/23 11:05	EPA 8082A	R-02
Aroclor 1242	ND	126	126	ug/kg dry	1	10/27/23 11:05	EPA 8082A	R-02
Aroclor 1248	ND	79.3	79.3	ug/kg dry	1	10/27/23 11:05	EPA 8082A	R-02
Aroclor 1254	ND	90.3	90.3	ug/kg dry	1	10/27/23 11:05	EPA 8082A	R-02, Q-4
Aroclor 1260	82.9	5.51	11.0	ug/kg dry	1	10/27/23 11:05	EPA 8082A	Q-42
Surrogate: Decachlorobiphenyl (Surr)		Recov	ery: 103 %	Limits: 60-125 %	5 1	10/27/23 11:05	EPA 8082A	
TP-07-IM-9.0-10.0-20231011 (A3J1366	-16)			Matrix: Soil		Batch:	23J1015	C-07
Aroclor 1016	ND	29.2	29.2	ug/kg dry	1	10/26/23 19:35	EPA 8082A	R-02
Aroclor 1221	ND	10.8	10.8	ug/kg dry	1	10/26/23 19:35	EPA 8082A	
Aroclor 1232	ND	78.7	78.7	ug/kg dry	1	10/26/23 19:35	EPA 8082A	R-02
Aroclor 1242	ND	40.3	40.3	ug/kg dry	1	10/26/23 19:35	EPA 8082A	R-02
Aroclor 1248	ND	23.3	23.3	ug/kg dry	1	10/26/23 19:35	EPA 8082A	R-02
Aroclor 1254	74.2	5.38	10.8	ug/kg dry	1	10/26/23 19:35	EPA 8082A	P-12
Aroclor 1260	53.6	5.38	10.8	ug/kg dry	1	10/26/23 19:35	EPA 8082A	P-12, Q-42
Surrogate: Decachlorobiphenyl (Surr)		Recov	ery: 114%	Limits: 60-125 %	5 1	10/26/23 19:35	EPA 8082A	
TP-14-IM-14.0-15.0-20231012 (A3J136	6-17)			Matrix: Soil		Batch:	23J1015	C-07
Aroclor 1016	ND	6.24	12.5	ug/kg dry	1	10/26/23 20:45	EPA 8082A	
Aroclor 1221	ND	6.24	12.5	ug/kg dry	1	10/26/23 20:45	EPA 8082A	
Aroclor 1232	ND	6.24	12.5	ug/kg dry	1	10/26/23 20:45	EPA 8082A	
Aroclor 1242	54.8	6.24	12.5	ug/kg dry	1	10/26/23 20:45	EPA 8082A	P-12
Aroclor 1248	ND	6.24	12.5	ug/kg dry	1	10/26/23 20:45	EPA 8082A	
Aroclor 1254	78.4	6.24	12.5	ug/kg dry	1	10/26/23 20:45	EPA 8082A	P-12

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
TP-14-IM-14.0-15.0-20231012 (A3J1366	5-17)			Matrix: Soil		Batch: 2	23J1015	C-07
Aroclor 1260	26.6	6.24	12.5	ug/kg dry	1	10/26/23 20:45	EPA 8082A	P-12
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 95 %	Limits: 60-125 %	1	10/26/23 20:45	EPA 8082A	
ГР-13-IM-14.0-15.0-20231012 (A3J1366	i-18)			Matrix: Soil		Batch: 2	23J1015	C-07
Aroclor 1016	ND	5.92	11.8	ug/kg dry	1	10/26/23 21:20	EPA 8082A	
Aroclor 1221	ND	5.92	11.8	ug/kg dry	1	10/26/23 21:20	EPA 8082A	
Aroclor 1232	ND	5.92	11.8	ug/kg dry	1	10/26/23 21:20	EPA 8082A	
Aroclor 1242	67.3	5.92	11.8	ug/kg dry	1	10/26/23 21:20	EPA 8082A	P-12
Aroclor 1248	ND	5.92	11.8	ug/kg dry	1	10/26/23 21:20	EPA 8082A	
Aroclor 1254	38.1	5.92	11.8	ug/kg dry	1	10/26/23 21:20	EPA 8082A	P-12
Aroclor 1260	17.8	5.92	11.8	ug/kg dry	1	10/26/23 21:20	EPA 8082A	P-12
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 97 %	Limits: 60-125 %	1	10/26/23 21:20	EPA 8082A	
ГР-12-IM-9.0-10.0-20231012 (A3J1366-	12-IM-9.0-10.0-20231012 (A3J1366-19RE1)			Matrix: Soil		Batch: 2	23J1015	C-07
Aroclor 1016	ND	56.9	114	ug/kg dry	10	10/27/23 11:05	EPA 8082A	
Aroclor 1221	ND	56.9	114	ug/kg dry	10	10/27/23 11:05	EPA 8082A	
Aroclor 1232	ND	56.9	114	ug/kg dry	10	10/27/23 11:05	EPA 8082A	
Aroclor 1242	ND	56.9	114	ug/kg dry	10	10/27/23 11:05	EPA 8082A	
Aroclor 1248	ND	56.9	114	ug/kg dry	10	10/27/23 11:05	EPA 8082A	
Aroclor 1254	298	56.9	114	ug/kg dry	10	10/27/23 11:05	EPA 8082A	P-12
Aroclor 1260	ND	426	426	ug/kg dry	10	10/27/23 11:05	EPA 8082A	R-02
Surrogate: Decachlorobiphenyl (Surr)		Recove	ery: 106 %	Limits: 60-125 %	10	10/27/23 11:05	EPA 8082A	S-05
ГР-11-IM-4.0-5.0-20231012 (A3J1366-20	0)			Matrix: Soil		Batch: 2	23J1015	C-07
Aroclor 1016	ND	11.1	11.1	ug/kg dry	1	10/26/23 22:31	EPA 8082A	
Aroclor 1221	ND	11.1	11.1	ug/kg dry	1	10/26/23 22:31	EPA 8082A	
Aroclor 1232	ND	28.5	28.5	ug/kg dry	1	10/26/23 22:31	EPA 8082A	R-02
Aroclor 1242	ND	14.6	14.6	ug/kg dry	1	10/26/23 22:31	EPA 8082A	R-02
Aroclor 1248	ND	11.1	11.1	ug/kg dry	1	10/26/23 22:31	EPA 8082A	
Aroclor 1254	24.3	5.57	11.1	ug/kg dry	1	10/26/23 22:31	EPA 8082A	P-12
Aroclor 1260	20.3	5.57	11.1	ug/kg dry	1	10/26/23 22:31	EPA 8082A	P-12
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 99 %	Limits: 60-125 %	1	10/26/23 22:31	EPA 8082A	
	21)			Matrix: Soil		Ratch:	23J1015	C-07

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 27 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		Polychlorinat	ted Bipheny	rls by EPA 8082	2A			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Note
TP-10-IM-9.0-10.0-20231011 (A3J1366-	21)			Matrix: Soil		Batch: 23J1015		C-07
Aroclor 1016	ND	34.0	34.0	ug/kg dry	1	10/26/23 23:06	EPA 8082A	R-02
Aroclor 1221	ND	23.1	23.1	ug/kg dry	1	10/26/23 23:06	EPA 8082A	R-02
Aroclor 1232	ND	91.5	91.5	ug/kg dry	1	10/26/23 23:06	EPA 8082A	R-02
Aroclor 1242	ND	46.8	46.8	ug/kg dry	1	10/26/23 23:06	EPA 8082A	R-02
Aroclor 1248	ND	31.4	31.4	ug/kg dry	1	10/26/23 23:06	EPA 8082A	R-02
Aroclor 1254	82.3	6.34	12.7	ug/kg dry	1	10/26/23 23:06	EPA 8082A	P-12
Aroclor 1260	40.9	6.34	12.7	ug/kg dry	1	10/26/23 23:06	EPA 8082A	P-12
Surrogate: Decachlorobiphenyl (Surr)		Recove	ery: 111 %	Limits: 60-125 %	5 1	10/26/23 23:06	EPA 8082A	
P-09-IM-11.0-12.0-20231011 (A3J1366-22)				Matrix: Soil		Batch: 2	23J1015	C-07
Aroclor 1016	ND	20.8	20.8	ug/kg dry	1	10/26/23 19:00	EPA 8082A	R-02
Aroclor 1221	ND	5.86	11.7	ug/kg dry	1	10/26/23 19:00	EPA 8082A	
Aroclor 1232	ND	52.4	52.4	ug/kg dry	1	10/26/23 19:00	EPA 8082A	R-02
Aroclor 1242	ND	27.4	27.4	ug/kg dry	1	10/26/23 19:00	EPA 8082A	R-02
Aroclor 1248	ND	46.3	46.3	ug/kg dry	1	10/26/23 19:00	EPA 8082A	R-02
Aroclor 1254	ND	70.0	70.0	ug/kg dry	1	10/26/23 19:00	EPA 8082A	R-02
Aroclor 1260	98.8	5.86	11.7	ug/kg dry	1	10/26/23 19:00	EPA 8082A	P-09
Surrogate: Decachlorobiphenyl (Surr)		Recove	ery: 101 %	Limits: 60-125 %	5 1	10/26/23 19:00	EPA 8082A	
SS-06-0.0-1.0-20231011 (A3J1366-23)				Matrix: Soil		Batch: 2	23J1015	C-07
Aroclor 1016	ND	5.35	10.7	ug/kg dry	1	10/26/23 19:35	EPA 8082A	
Aroclor 1221	ND	5.35	10.7	ug/kg dry	1	10/26/23 19:35	EPA 8082A	
Aroclor 1232	ND	5.35	10.7	ug/kg dry	1	10/26/23 19:35	EPA 8082A	
Aroclor 1242	ND	5.35	10.7	ug/kg dry	1	10/26/23 19:35	EPA 8082A	
Aroclor 1248	ND	5.35	10.7	ug/kg dry	1	10/26/23 19:35	EPA 8082A	
Aroclor 1254	128	5.35	10.7	ug/kg dry	1	10/26/23 19:35	EPA 8082A	P-10
Aroclor 1260	39.6	5.35	10.7	ug/kg dry	1	10/26/23 19:35	EPA 8082A	P-10
Surrogate: Decachlorobiphenyl (Surr)		Recov	very: 99 %	Limits: 60-125 %	1	10/26/23 19:35	EPA 8082A	
SS-05-0.0-1.0-20231011 (A3J1366-24)	S-05-0.0-1.0-20231011 (A3J1366-24)			Matrix: Soil		Batch:	23J1015	C-07
Aroclor 1016	ND	17.2	17.2	ug/kg dry	1	10/26/23 20:10	EPA 8082A	R-02
Aroclor 1221	ND	5.81	11.6	ug/kg dry	1	10/26/23 20:10	EPA 8082A	
Aroclor 1232	ND	26.6	26.6	ug/kg dry	1	10/26/23 20:10	EPA 8082A	R-02

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 28 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		Polychlorina	ted Bipheny	ls by EPA 8082	2A			
	Sample	Detection	Reporting	** .	5 11 1	Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
SS-05-0.0-1.0-20231011 (A3J1366-24)				Matrix: Soil		Batch:	23J1015	C-07
Aroclor 1242	ND	22.1	22.1	ug/kg dry	1	10/26/23 20:10	EPA 8082A	R-02
Aroclor 1248	ND	5.81	11.6	ug/kg dry	1	10/26/23 20:10	EPA 8082A	
Aroclor 1254	74.3	5.81	11.6	ug/kg dry	1	10/26/23 20:10	EPA 8082A	P-12
Aroclor 1260	25.2	5.81	11.6	ug/kg dry	1	10/26/23 20:10	EPA 8082A	P-12
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 92 %	Limits: 60-125 %	1	10/26/23 20:10	EPA 8082A	
TP-04-IM-4.0-5.0-20231010 (A3J1366-25I	RE1)			Matrix: Soil		Batch:	23J1015	C-07
Aroclor 1016	ND	11.0	11.0	ug/kg dry	1	10/27/23 09:54	EPA 8082A	
Aroclor 1221	ND	11.0	11.0	ug/kg dry	1	10/27/23 09:54	EPA 8082A	
Aroclor 1232	ND	35.2	35.2	ug/kg dry	1	10/27/23 09:54	EPA 8082A	R-02
Aroclor 1242	ND	15.0	15.0	ug/kg dry	1	10/27/23 09:54	EPA 8082A	R-02
Aroclor 1248	ND	12.6	12.6	ug/kg dry	1	10/27/23 09:54	EPA 8082A	R-02
Aroclor 1254	40.1	5.52	11.0	ug/kg dry	1	10/27/23 09:54	EPA 8082A	P-12
Aroclor 1260	12.9	5.52	11.0	ug/kg dry	1	10/27/23 09:54	EPA 8082A	P-12
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 99 %	Limits: 60-125 %	1	10/27/23 09:54	EPA 8082A	
TP-03-IM-14.0-15.0-20231010 (A3J1366-2	26)			Matrix: Soil		Batch:	23J1015	C-07
Aroclor 1016	ND	5.63	11.3	ug/kg dry	1	10/26/23 21:20	EPA 8082A	
Aroclor 1221	ND	5.63	11.3	ug/kg dry	1	10/26/23 21:20	EPA 8082A	
Aroclor 1232	ND	5.63	11.3	ug/kg dry	1	10/26/23 21:20	EPA 8082A	
Aroclor 1242	10.7	5.63	11.3	ug/kg dry	1	10/26/23 21:20	EPA 8082A	J
Aroclor 1248	ND	5.63	11.3	ug/kg dry	1	10/26/23 21:20	EPA 8082A	
Aroclor 1254	46.7	5.63	11.3	ug/kg dry	1	10/26/23 21:20	EPA 8082A	P-12
Aroclor 1260	13.7	5.63	11.3	ug/kg dry	1	10/26/23 21:20	EPA 8082A	P-12
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 89 %	Limits: 60-125 %	1	10/26/23 21:20	EPA 8082A	
TP-02-IM-4.0-5.0-20231010 (A3J1366-27F	RE1)			Matrix: Soil		Batch:	23J1015	C-07
Aroclor 1016	ND	30.4	60.8	ug/kg dry	5	10/27/23 10:30	EPA 8082A	
Aroclor 1221	ND	30.4	60.8	ug/kg dry	5	10/27/23 10:30	EPA 8082A	
Aroclor 1232	ND	30.4	60.8	ug/kg dry	5	10/27/23 10:30	EPA 8082A	
Aroclor 1242	730	30.4	60.8	ug/kg dry	5	10/27/23 10:30	EPA 8082A	P-12
Aroclor 1248	ND	30.4	60.8	ug/kg dry	5	10/27/23 10:30	EPA 8082A	
Aroclor 1254	269	30.4	60.8	ug/kg dry	5	10/27/23 10:30	EPA 8082A	P-12

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 29 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		Polychlorina	ted Bipheny	ls by EPA 8082	2A			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-02-IM-4.0-5.0-20231010 (A3J1366-2	P-02-IM-4.0-5.0-20231010 (A3J1366-27RE1)			Matrix: Soil		Batch:	23J1015	C-07
Aroclor 1260	64.1	30.4	60.8	ug/kg dry	5	10/27/23 10:30	EPA 8082A	P-12
Surrogate: Decachlorobiphenyl (Surr)		Recove	ery: 103 %	Limits: 60-125 %	5 5	10/27/23 10:30	EPA 8082A	
TP-01-IM-5.0-6.0-20231010 (A3J1366-2	28)			Matrix: Soil		Batch:	23J1015	C-07
Aroclor 1016	ND	6.45	12.9	ug/kg dry	1	10/26/23 22:31	EPA 8082A	
Aroclor 1221	ND	6.45	12.9	ug/kg dry	1	10/26/23 22:31	EPA 8082A	
Aroclor 1232	ND	6.45	12.9	ug/kg dry	1	10/26/23 22:31	EPA 8082A	
Aroclor 1242	ND	6.45	12.9	ug/kg dry	1	10/26/23 22:31	EPA 8082A	
Aroclor 1248	ND	6.45	12.9	ug/kg dry	1	10/26/23 22:31	EPA 8082A	
Aroclor 1254	450	6.45	12.9	ug/kg dry	1	10/26/23 22:31	EPA 8082A	P-12
Aroclor 1260	67.0	6.45	12.9	ug/kg dry	1	10/26/23 22:31	EPA 8082A	P-12
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 91 %	Limits: 60-125 %	5 I	10/26/23 22:31	EPA 8082A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Mounterg

Page 30 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
TP-01-IM-10.0-11.0-20231010 (A3J	J1366-06RE1)			Matrix: Soi	l	Batch:	23J0793	R-04
Acenaphthene	ND	61.7	124	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Acenaphthylene	ND	61.7	124	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Anthracene	ND	61.7	124	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Benz(a)anthracene	ND	61.7	124	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Benzo(a)pyrene	ND	92.7	185	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Benzo(b)fluoranthene	ND	92.7	185	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Benzo(k)fluoranthene	ND	92.7	185	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Benzo(g,h,i)perylene	100	61.7	124	ug/kg dry	40	10/23/23 13:41	EPA 8270E	J, Q-42
Chrysene	ND	61.7	124	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Dibenz(a,h)anthracene	ND	61.7	124	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Fluoranthene	ND	61.7	124	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Fluorene	ND	61.7	124	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Indeno(1,2,3-cd)pyrene	68.1	61.7	124	ug/kg dry	40	10/23/23 13:41	EPA 8270E	J, Q-42
1-Methylnaphthalene	ND	124	247	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
2-Methylnaphthalene	ND	124	247	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Naphthalene	ND	124	247	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Phenanthrene	ND	61.7	124	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Pyrene	71.3	61.7	124	ug/kg dry	40	10/23/23 13:41	EPA 8270E	J, Q-42
Carbazole	ND	92.7	185	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Dibenzofuran	ND	61.7	124	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
2-Chlorophenol	ND	309	617	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
4-Chloro-3-methylphenol	ND	617	1240	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
2,4-Dichlorophenol	ND	309	617	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
2,4-Dimethylphenol	ND	309	617	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
2,4-Dinitrophenol	ND	1540	3090	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND	1540	3090	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
2-Methylphenol	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
3+4-Methylphenol(s)	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
2-Nitrophenol	ND	617	1240	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
4-Nitrophenol	ND	617	1240	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Pentachlorophenol (PCP)	ND	617	1240	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Phenol	ND	124	247	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
2,3,4,6-Tetrachlorophenol	ND	309	617	ug/kg dry	40	10/23/23 13:41	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 31 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

			•	unds by EPA				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-01-IM-10.0-11.0-20231010 (A3J1				Matrix: Soil		•	23J0793	R-04
2,3,5,6-Tetrachlorophenol	ND	309	617	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
2,4,5-Trichlorophenol	ND	309	617	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
2,4,6-Trichlorophenol	ND	309	617	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND	927	1850	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Butyl benzyl phthalate	ND	617	1240	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Diethylphthalate	ND	617	1240	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Dimethylphthalate	ND	617	1240	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Di-n-butylphthalate	ND	617	1240	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Di-n-octyl phthalate	ND	617	1240	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
N-Nitrosodimethylamine	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
N-Nitrosodiphenylamine	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Bis(2-Chloroethoxy) methane	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Bis(2-Chloroethyl) ether	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Hexachlorobenzene	ND	61.7	124	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Hexachlorobutadiene	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Hexachlorocyclopentadiene	ND	309	617	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Hexachloroethane	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
2-Chloronaphthalene	ND	61.7	124	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
1,2,4-Trichlorobenzene	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
4-Bromophenyl phenyl ether	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
4-Chlorophenyl phenyl ether	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Aniline	ND	309	617	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
4-Chloroaniline	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
2-Nitroaniline	ND	1240	2470	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
-Nitroaniline	ND	1240	2470	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
-Nitroaniline	ND	1240	2470	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Nitrobenzene	ND	617	1240	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
,4-Dinitrotoluene	ND	617	1240	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
,6-Dinitrotoluene	ND	617	1240	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Benzoic acid	ND	7740	15400	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Benzyl alcohol	ND	309	617	ug/kg dry	40	10/23/23 13:41	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Amalyita	Sample Result	Detection Limit	Reporting Limit	Huita	Dilution	Date	Mothe d Dof	Mat-
Analyte		Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
TP-01-IM-10.0-11.0-20231010 (A3J136	6-06RE1)			Matrix: Soil		Batch:	23J0793	R-04
Isophorone	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Azobenzene (1,2-DPH)	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND	1540	3090	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
3,3'-Dichlorobenzidine	ND	1240	2470	ug/kg dry	40	10/23/23 13:41	EPA 8270E	Q-52
1,2-Dinitrobenzene	ND	1540	3090	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
1,3-Dinitrobenzene	ND	1540	3090	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
1,4-Dinitrobenzene	ND	1540	3090	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Pyridine	ND	309	617	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
1,2-Dichlorobenzene	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
1,3-Dichlorobenzene	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
1,4-Dichlorobenzene	ND	154	309	ug/kg dry	40	10/23/23 13:41	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Reco	very: 90 %	Limits: 37-122 %	40	10/23/23 13:41	EPA 8270E	S-05
2-Fluorobiphenyl (Surr)			102 %	44-120 %	40	10/23/23 13:41	EPA 8270E	S-05
Phenol-d6 (Surr)			85 %	33-122 %	40	10/23/23 13:41	EPA 8270E	S-05
p-Terphenyl-d14 (Surr)			103 %	54-127 %	40	10/23/23 13:41	EPA 8270E	S-05
2-Fluorophenol (Surr)			74 %	35-120 %	40	10/23/23 13:41	EPA 8270E	S-05
2,4,6-Tribromophenol (Surr)			106 %	39-132 %	40	10/23/23 13:41	EPA 8270E	S-05
TP-04-NS-9.0-10.0-20231010 (A3J1366	6-07RE2)			Matrix: Soil		Batch:	23J0793	
Acenaphthene	ND	1.48	2.97	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Acenaphthylene	ND	1.48	2.97	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Anthracene	ND	1.48	2.97	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Benz(a)anthracene	ND	1.48	2.97	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Benzo(a)pyrene	ND	2.23	4.45	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Benzo(b)fluoranthene	ND	2.23	4.45	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Benzo(k)fluoranthene	ND	2.23	4.45	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Benzo(g,h,i)perylene	ND	1.48	2.97	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Chrysene	ND	1.48	2.97	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Dibenz(a,h)anthracene	ND	1.48	2.97	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Fluoranthene	ND	1.48	2.97	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Fluorene	ND	1.48	2.97	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Indeno(1,2,3-cd)pyrene	ND	1.48	2.97	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
1-Methylnaphthalene	ND	2.97	5.93	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
2-Methylnaphthalene	ND	2.97	5.93	ug/kg dry	1	10/24/23 18:23	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 33 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
P-04-NS-9.0-10.0-20231010 (A3J1	366-07RE2)			Matrix: Soi	ı	Batch:	23J0793	
Naphthalene	ND	2.97	5.93	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Phenanthrene	ND	1.48	2.97	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Pyrene	ND	1.48	2.97	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Carbazole	ND	2.23	4.45	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Dibenzofuran	ND	1.48	2.97	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
2-Chlorophenol	ND	7.43	14.8	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
-Chloro-3-methylphenol	ND	14.8	29.7	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
.,4-Dichlorophenol	ND	7.43	14.8	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
2,4-Dimethylphenol	ND	7.43	14.8	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
2,4-Dinitrophenol	ND	37.1	74.3	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
,6-Dinitro-2-methylphenol	ND	37.1	74.3	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
2-Methylphenol	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
s+4-Methylphenol(s)	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
2-Nitrophenol	ND	14.8	29.7	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
l-Nitrophenol	ND	14.8	29.7	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Pentachlorophenol (PCP)	ND	14.8	29.7	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Phenol	ND	2.97	5.93	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
2,3,4,6-Tetrachlorophenol	ND	7.43	14.8	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
2,3,5,6-Tetrachlorophenol	ND	7.43	14.8	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
2,4,5-Trichlorophenol	ND	7.43	14.8	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
2,4,6-Trichlorophenol	ND	7.43	14.8	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND	22.3	44.5	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Butyl benzyl phthalate	ND	14.8	29.7	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Diethylphthalate	ND	14.8	29.7	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Dimethylphthalate	ND	14.8	29.7	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Di-n-butylphthalate	ND	14.8	29.7	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
ri-n-octyl phthalate	ND	14.8	29.7	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
-Nitrosodimethylamine	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
-Nitroso-di-n-propylamine	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
-Nitrosodiphenylamine	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
is(2-Chloroethoxy) methane	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
is(2-Chloroethyl) ether	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
2'-Oxybis(1-Chloropropane)	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 34 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Analyta	Sample	Detection Limit	Reporting Limit	Huita	Dibutian	Date Analyzed	Mothod D-f	N T 4
Analyte	Result	Limit	Limit	Units	Dilution	*	Method Ref.	Note
TP-04-NS-9.0-10.0-20231010 (A3J136	66-07RE2)			Matrix: Soil		Batch:	23J0793	
Hexachlorobenzene	ND	1.48	2.97	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Hexachlorobutadiene	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Hexachlorocyclopentadiene	ND	7.43	14.8	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Hexachloroethane	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
2-Chloronaphthalene	ND	1.48	2.97	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
1,2,4-Trichlorobenzene	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
4-Bromophenyl phenyl ether	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
4-Chlorophenyl phenyl ether	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Aniline	ND	7.43	14.8	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
4-Chloroaniline	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
2-Nitroaniline	ND	29.7	59.3	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
3-Nitroaniline	ND	29.7	59.3	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
4-Nitroaniline	ND	29.7	59.3	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Nitrobenzene	ND	14.8	29.7	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
2,4-Dinitrotoluene	ND	14.8	29.7	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
2,6-Dinitrotoluene	ND	14.8	29.7	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Benzoic acid	ND	186	371	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Benzyl alcohol	ND	7.43	14.8	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Isophorone	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Azobenzene (1,2-DPH)	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND	37.1	74.3	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
3,3'-Dichlorobenzidine	ND	29.7	59.3	ug/kg dry	1	10/24/23 18:23	EPA 8270E	Q-52
1,2-Dinitrobenzene	ND	37.1	74.3	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
1,3-Dinitrobenzene	ND	37.1	74.3	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
1,4-Dinitrobenzene	ND	37.1	74.3	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Pyridine	ND	7.43	14.8	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
1,2-Dichlorobenzene	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
,3-Dichlorobenzene	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
1,4-Dichlorobenzene	ND	3.71	7.43	ug/kg dry	1	10/24/23 18:23	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Recove	ery: 112 %	Limits: 37-122 %	1	10/24/23 18:23	EPA 8270E	
2-Fluorobiphenyl (Surr)			101 %	44-120 %	1	10/24/23 18:23	EPA 8270E	
Phenol-d6 (Surr)			115 %	33-122 %	1	10/24/23 18:23	EPA 8270E	
p-Terphenyl-d14 (Surr)			95 %	54-127 %	1	10/24/23 18:23	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Newsberg

Page 35 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
TP-04-NS-9.0-10.0-20231010 (A3J1366	-07RE2)			Matrix: Soil		Batch:	23J0793	
Surrogate: 2-Fluorophenol (Surr)		Reco	very: 93 %	Limits: 35-120 %	1	10/24/23 18:23	EPA 8270E	
2,4,6-Tribromophenol (Surr)			118 %	39-132 %	1	10/24/23 18:23	EPA 8270E	
P-05-NS-4.0-5.0-20231011 (A3J1366-0)8RE2)			Matrix: Soil		Batch:	23J0901	
Acenaphthene	ND	1.47	2.95	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Acenaphthylene	ND	1.47	2.95	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Anthracene	ND	1.47	2.95	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Benz(a)anthracene	3.11	1.47	2.95	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Benzo(a)pyrene	4.55	2.21	4.41	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Benzo(b)fluoranthene	4.56	2.21	4.41	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Benzo(k)fluoranthene	ND	2.21	4.41	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Benzo(g,h,i)perylene	2.49	1.47	2.95	ug/kg dry	1	10/26/23 15:25	EPA 8270E	J
Chrysene	3.54	1.47	2.95	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Dibenz(a,h)anthracene	ND	1.47	2.95	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Fluoranthene	4.20	1.47	2.95	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Fluorene	ND	1.47	2.95	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
ndeno(1,2,3-cd)pyrene	2.42	1.47	2.95	ug/kg dry	1	10/26/23 15:25	EPA 8270E	J
-Methylnaphthalene	ND	2.95	5.88	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
2-Methylnaphthalene	ND	2.95	5.88	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Naphthalene	ND	2.95	5.88	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Phenanthrene	2.03	1.47	2.95	ug/kg dry	1	10/26/23 15:25	EPA 8270E	J
Pyrene	4.17	1.47	2.95	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Carbazole	ND	2.21	4.41	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Dibenzofuran	ND	1.47	2.95	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
-Chlorophenol	ND	7.36	14.7	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
-Chloro-3-methylphenol	ND	14.7	29.5	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
,4-Dichlorophenol	ND	7.36	14.7	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
,4-Dimethylphenol	ND	7.36	14.7	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
,4-Dinitrophenol	ND	36.7	73.6	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
,6-Dinitro-2-methylphenol	ND	36.7	73.6	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
-Methylphenol	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
+4-Methylphenol(s)	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
-Nitrophenol	ND	14.7	29.5	ug/kg dry	1	10/26/23 15:25	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 36 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

			•	unds by EPA		D :		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-05-NS-4.0-5.0-20231011 (A3J136				Matrix: Soil		Batch: 23J0901		
4-Nitrophenol	ND	14.7	29.5	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Pentachlorophenol (PCP)	ND	14.7	29.5	ug/kg dry ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Phenol	ND	2.95	5.88	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
2,3,4,6-Tetrachlorophenol	ND	7.36	14.7	ug/kg dry ug/kg dry	1	10/26/23 15:25	EPA 8270E	
2,3,5,6-Tetrachlorophenol	ND	7.36	14.7	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
2,4,5-Trichlorophenol	ND	7.36	14.7	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
2,4,6-Trichlorophenol	ND	7.36	14.7	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND	22.1	44.1	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Butyl benzyl phthalate	ND	14.7	29.5	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Diethylphthalate	ND	14.7	29.5	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Dimethylphthalate	ND	14.7	29.5	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Di-n-butylphthalate	ND	14.7	29.5	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Di-n-octyl phthalate	ND	14.7	29.5	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
N-Nitrosodimethylamine	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
N-Nitrosodiphenylamine	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Bis(2-Chloroethoxy) methane	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Bis(2-Chloroethyl) ether	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Hexachlorobenzene	ND	1.47	2.95	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Hexachlorobutadiene	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Hexachlorocyclopentadiene	ND	7.36	14.7	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Hexachloroethane	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
2-Chloronaphthalene	ND	1.47	2.95	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
1,2,4-Trichlorobenzene	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
4-Bromophenyl phenyl ether	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
l-Chlorophenyl phenyl ether	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Aniline	ND	14.7	14.7	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
-Chloroaniline	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
-Nitroaniline	ND	29.5	58.8	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
-Nitroaniline	ND	29.5	58.8	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
-Nitroaniline	ND	29.5	58.8	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Vitrobenzene	ND	14.7	29.5	ug/kg dry	1	10/26/23 15:25	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sen	nivolatile Org	anic Comp	ounds by EPA 8	270E			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-05-NS-4.0-5.0-20231011 (A3J1366-	08RE2)			Matrix: Soil		Batch:	23J0901	
2,4-Dinitrotoluene	ND	14.7	29.5	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
2,6-Dinitrotoluene	ND	14.7	29.5	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Benzoic acid	ND	184	367	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Benzyl alcohol	ND	7.36	14.7	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Isophorone	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Azobenzene (1,2-DPH)	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND	36.7	73.6	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
3,3'-Dichlorobenzidine	ND	29.5	58.8	ug/kg dry	1	10/26/23 15:25	EPA 8270E	Q-52
1,2-Dinitrobenzene	ND	36.7	73.6	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
1,3-Dinitrobenzene	ND	36.7	73.6	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
1,4-Dinitrobenzene	ND	36.7	73.6	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Pyridine	ND	7.36	14.7	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
1,2-Dichlorobenzene	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
1,3-Dichlorobenzene	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
1,4-Dichlorobenzene	ND	3.67	7.36	ug/kg dry	1	10/26/23 15:25	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Reco	very: 94 %	Limits: 37-122 %	1	10/26/23 15:25	EPA 8270E	
2-Fluorobiphenyl (Surr)			91 %	44-120 %	1	10/26/23 15:25	EPA 8270E	
Phenol-d6 (Surr)			95 %	33-122 %	1	10/26/23 15:25	EPA 8270E	
p-Terphenyl-d14 (Surr)			88 %	54-127 %	1	10/26/23 15:25	EPA 8270E	
2-Fluorophenol (Surr)			77 %	35-120 %	1	10/26/23 15:25	EPA 8270E	
2,4,6-Tribromophenol (Surr)			109 %	39-132 %	1	10/26/23 15:25	EPA 8270E	
TP-06-NS-9.0-10.0-20231011 (A3J1366	6-09RE1)			Matrix: Soil		Batch:	23J0901	
Acenaphthene	ND	6.35	12.7	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Acenaphthylene	ND	6.35	12.7	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Anthracene	ND	6.35	12.7	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Benz(a)anthracene	ND	6.35	12.7	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Benzo(a)pyrene	ND	9.55	19.1	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Benzo(b)fluoranthene	ND	9.55	19.1	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Benzo(k)fluoranthene	ND	9.55	19.1	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Benzo(g,h,i)perylene	6.91	6.35	12.7	ug/kg dry	4	10/25/23 18:23	EPA 8270E	J
Chrysene	8.65	6.35	12.7	ug/kg dry	4	10/25/23 18:23	EPA 8270E	J
Dibenz(a,h)anthracene	ND	6.35	12.7	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Fluoranthene	6.68	6.35	12.7	ug/kg dry	4	10/25/23 18:23	EPA 8270E	J

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		nivolatile Orga	•	., =		D :		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
 TP-06-NS-9.0-10.0-20231011 (A3J1	366-09RE1)			Matrix: Soil	1	Batch:	23J0901	
Fluorene	ND	6.35	12.7	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Indeno(1,2,3-cd)pyrene	ND	6.35	12.7	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
1-Methylnaphthalene	ND	12.7	25.5	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
2-Methylnaphthalene	ND	12.7	25.5	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Naphthalene	24.5	12.7	25.5	ug/kg dry	4	10/25/23 18:23	EPA 8270E	J
Phenanthrene	13.8	6.35	12.7	ug/kg dry	4	10/25/23 18:23	EPA 8270E	-
Pyrene	7.49	6.35	12.7	ug/kg dry	4	10/25/23 18:23	EPA 8270E	J
Carbazole	ND	9.55	19.1	ug/kg dry	4	10/25/23 18:23	EPA 8270E	-
Dibenzofuran	ND	6.35	12.7	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
2-Chlorophenol	ND	31.9	63.5	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
4-Chloro-3-methylphenol	ND	63.5	127	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
2,4-Dichlorophenol	ND	31.9	63.5	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
2,4-Dimethylphenol	ND	31.9	63.5	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
2,4-Dinitrophenol	ND	159	319	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND	159	319	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
2-Methylphenol	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
3+4-Methylphenol(s)	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
2-Nitrophenol	ND	63.5	127	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
4-Nitrophenol	ND	63.5	127	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Pentachlorophenol (PCP)	ND	63.5	127	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Phenol	ND	12.7	25.5	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
2,3,4,6-Tetrachlorophenol	ND	31.9	63.5	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
2,3,5,6-Tetrachlorophenol	ND	31.9	63.5	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
2,4,5-Trichlorophenol	ND	31.9	63.5	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
2,4,6-Trichlorophenol	ND	31.9	63.5	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND	95.5	191	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Butyl benzyl phthalate	ND	63.5	127	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Diethylphthalate	ND	63.5	127	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Dimethylphthalate	ND	63.5	127	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Di-n-butylphthalate	ND	63.5	127	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Di-n-octyl phthalate	ND	63.5	127	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
N-Nitrosodimethylamine	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 39 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
TP-06-NS-9.0-10.0-20231011 (A3J13	366-09RE1)			Matrix: Soil	ı	Batch:	23J0901	
N-Nitrosodiphenylamine	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Bis(2-Chloroethoxy) methane	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Bis(2-Chloroethyl) ether	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Hexachlorobenzene	ND	6.35	12.7	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Hexachlorobutadiene	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Hexachlorocyclopentadiene	ND	31.9	63.5	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Hexachloroethane	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
2-Chloronaphthalene	ND	6.35	12.7	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
1,2,4-Trichlorobenzene	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
4-Bromophenyl phenyl ether	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
4-Chlorophenyl phenyl ether	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Aniline	ND	31.9	63.5	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
4-Chloroaniline	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
2-Nitroaniline	ND	127	255	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
3-Nitroaniline	ND	127	255	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
4-Nitroaniline	ND	127	255	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Nitrobenzene	ND	63.5	127	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
2,4-Dinitrotoluene	ND	63.5	127	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
2,6-Dinitrotoluene	ND	63.5	127	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Benzoic acid	ND	797	1590	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Benzyl alcohol	ND	31.9	63.5	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Isophorone	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Azobenzene (1,2-DPH)	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND	159	319	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
3,3'-Dichlorobenzidine	ND	127	255	ug/kg dry	4	10/25/23 18:23	EPA 8270E	Q-52
,2-Dinitrobenzene	ND	159	319	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
,3-Dinitrobenzene	ND	159	319	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
,4-Dinitrobenzene	ND	159	319	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
yridine	ND	31.9	63.5	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
,2-Dichlorobenzene	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
,3-Dichlorobenzene	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	
,4-Dichlorobenzene	ND	15.9	31.9	ug/kg dry	4	10/25/23 18:23	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 40 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sem	nivolatile Org	anic Comp	ounds by EPA 8	270E			
	Sample	Detection	Reporting	<u> </u>	· · ·	Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
TP-06-NS-9.0-10.0-20231011 (A3J1366	-09RE1)			Matrix: Soil		Batch:	23J0901	
Surrogate: Nitrobenzene-d5 (Surr)		Recove	ery: 101 %	Limits: 37-122 %	4	10/25/23 18:23	EPA 8270E	
2-Fluorobiphenyl (Surr)			90 %	44-120 %	4	10/25/23 18:23	EPA 8270E	
Phenol-d6 (Surr)			97 %	33-122 %	4	10/25/23 18:23	EPA 8270E	
p-Terphenyl-d14 (Surr)			98 %	54-127 %	4	10/25/23 18:23	EPA 8270E	
2-Fluorophenol (Surr)			81 %	35-120 %	4	10/25/23 18:23	EPA 8270E	
2,4,6-Tribromophenol (Surr)			110 %	39-132 %	4	10/25/23 18:23	EPA 8270E	
TP-08-NS-12.0-13.0-20231011 (A3J136	6-10RE1)			Matrix: Soil		Batch:	23J0901	R-04
Acenaphthene	ND	146	293	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Acenaphthylene	ND	146	293	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Anthracene	ND	146	293	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Benz(a)anthracene	ND	146	293	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Benzo(a)pyrene	348	220	439	ug/kg dry	40	10/26/23 03:21	EPA 8270E	J
Benzo(b)fluoranthene	262	220	439	ug/kg dry	40	10/26/23 03:21	EPA 8270E	J
Benzo(k)fluoranthene	ND	220	439	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Benzo(g,h,i)perylene	ND	146	293	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Chrysene	ND	146	293	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Dibenz(a,h)anthracene	ND	146	293	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Fluoranthene	ND	146	293	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Fluorene	ND	146	293	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Indeno(1,2,3-cd)pyrene	ND	146	293	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
1-Methylnaphthalene	ND	293	586	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
2-Methylnaphthalene	ND	293	586	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Naphthalene	ND	293	586	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Phenanthrene	ND	146	293	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Pyrene	ND	146	293	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Carbazole	ND	220	439	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Dibenzofuran	ND	146	293	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
2-Chlorophenol	ND	733	1460	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
4-Chloro-3-methylphenol	ND	1460	2930	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
2,4-Dichlorophenol	ND	733	1460	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
2,4-Dimethylphenol	ND	733	1460	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
2,4-Dinitrophenol	ND	3660	7330	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND	3660	7330	ug/kg dry	40	10/26/23 03:21	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Newsberg

Page 41 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting	** .	F:: :	Date	3	4 -
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
P-08-NS-12.0-13.0-20231011 (A3J	1366-10RE1)			Matrix: Soi	I	Batch:	23J0901	R-04
-Methylphenol	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
+4-Methylphenol(s)	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
-Nitrophenol	ND	1460	2930	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
-Nitrophenol	ND	1460	2930	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Pentachlorophenol (PCP)	ND	1460	2930	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Phenol	ND	293	586	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
,3,4,6-Tetrachlorophenol	ND	733	1460	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
2,3,5,6-Tetrachlorophenol	ND	733	1460	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
,4,5-Trichlorophenol	ND	733	1460	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
,4,6-Trichlorophenol	ND	733	1460	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND	2200	4390	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Butyl benzyl phthalate	ND	1460	2930	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Diethylphthalate	ND	1460	2930	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Dimethylphthalate	ND	1460	2930	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Di-n-butylphthalate	ND	1460	2930	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Di-n-octyl phthalate	ND	1460	2930	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
N-Nitrosodimethylamine	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
N-Nitrosodiphenylamine	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Bis(2-Chloroethoxy) methane	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Bis(2-Chloroethyl) ether	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Hexachlorobenzene	ND	146	293	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Iexachlorobutadiene	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Hexachlorocyclopentadiene	ND	733	1460	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Iexachloroethane	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
-Chloronaphthalene	ND	146	293	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
,2,4-Trichlorobenzene	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
-Bromophenyl phenyl ether	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
-Chlorophenyl phenyl ether	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Aniline	ND	733	1460	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
-Chloroaniline	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
-Nitroaniline	ND	2930	5860	ug/kg dry	40	10/26/23 03:21	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 42 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
TP-08-NS-12.0-13.0-20231011 (A3J136	6-10RE1)			Matrix: Soil		Batch:	23J0901	R-04
3-Nitroaniline	ND	2930	5860	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
4-Nitroaniline	ND	2930	5860	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Nitrobenzene	ND	1460	2930	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
2,4-Dinitrotoluene	ND	1460	2930	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
2,6-Dinitrotoluene	ND	1460	2930	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Benzoic acid	ND	18300	36600	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Benzyl alcohol	ND	733	1460	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Isophorone	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Azobenzene (1,2-DPH)	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND	3660	7330	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
3,3'-Dichlorobenzidine	ND	2930	5860	ug/kg dry	40	10/26/23 03:21	EPA 8270E	Q-52
1,2-Dinitrobenzene	ND	3660	7330	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
1,3-Dinitrobenzene	ND	3660	7330	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
1,4-Dinitrobenzene	ND	3660	7330	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Pyridine	ND	733	1460	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
1,2-Dichlorobenzene	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
1,3-Dichlorobenzene	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
1,4-Dichlorobenzene	ND	366	733	ug/kg dry	40	10/26/23 03:21	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Reco	very: 80 %	Limits: 37-122 %	40	10/26/23 03:21	EPA 8270E	S-05
2-Fluorobiphenyl (Surr)			101 %	44-120 %	40	10/26/23 03:21	EPA 8270E	S-05
Phenol-d6 (Surr)			84 %	33-122 %	40	10/26/23 03:21	EPA 8270E	S-05
p-Terphenyl-d14 (Surr)			101 %	54-127 %	40	10/26/23 03:21	EPA 8270E	S-03
2-Fluorophenol (Surr)			84 %	35-120 %	40	10/26/23 03:21	EPA 8270E	S-05
2,4,6-Tribromophenol (Surr)			219 %	39-132 %	40	10/26/23 03:21	EPA 8270E	S-05
TP-10-NS-12.0-13.0-20231011 (A3J136	6-11RE2)			Matrix: Soil		Batch:	23J0901	
Acenaphthene	ND	1.47	2.94	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Acenaphthylene	ND	1.47	2.94	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Anthracene	ND	1.47	2.94	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Benz(a)anthracene	ND	1.47	2.94	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Benzo(a)pyrene	ND	2.20	4.41	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Benzo(b)fluoranthene	ND	2.20	4.41	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Benzo(k)fluoranthene	ND	2.20	4.41	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Benzo(g,h,i)perylene	ND	1.47	2.94	ug/kg dry	1	10/26/23 15:59	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 43 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		Detection	•			Dete		
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-10-NS-12.0-13.0-20231011 (A3.	J1366-11RE2)			Matrix: Soil	1	Batch:	23J0901	
Chrysene	ND	1.47	2.94	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Dibenz(a,h)anthracene	ND	1.47	2.94	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Fluoranthene	ND	1.47	2.94	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Fluorene	ND	1.47	2.94	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Indeno(1,2,3-cd)pyrene	ND	1.47	2.94	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
1-Methylnaphthalene	ND	2.94	5.87	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
2-Methylnaphthalene	ND	2.94	5.87	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Naphthalene	ND	2.94	5.87	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Phenanthrene	ND	1.47	2.94	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Pyrene	ND	1.47	2.94	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Carbazole	ND	2.20	4.41	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Dibenzofuran	ND	1.47	2.94	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
2-Chlorophenol	ND	7.35	14.7	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
4-Chloro-3-methylphenol	ND	14.7	29.4	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
2,4-Dichlorophenol	ND	7.35	14.7	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
2,4-Dimethylphenol	ND	7.35	14.7	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
2,4-Dinitrophenol	ND	36.7	73.5	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND	36.7	73.5	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
2-Methylphenol	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
3+4-Methylphenol(s)	4.18	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	J
2-Nitrophenol	ND	14.7	29.4	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
4-Nitrophenol	ND	14.7	29.4	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Pentachlorophenol (PCP)	ND	14.7	29.4	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Phenol	ND	2.94	5.87	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
2,3,4,6-Tetrachlorophenol	ND	7.35	14.7	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
2,3,5,6-Tetrachlorophenol	ND	7.35	14.7	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
2,4,5-Trichlorophenol	ND	7.35	14.7	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
2,4,6-Trichlorophenol	ND	7.35	14.7	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Bis(2-ethylhexyl)phthalate	63.6	22.0	44.1	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Butyl benzyl phthalate	ND	14.7	29.4	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Diethylphthalate	ND	14.7	29.4	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Dimethylphthalate	ND	14.7	29.4	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Di-n-butylphthalate	ND	14.7	29.4	ug/kg dry	1	10/26/23 15:59	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 44 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
P-10-NS-12.0-13.0-20231011 (A3J1	366-11RE2)			Matrix: Soil	1	Batch:	23J0901	
Di-n-octyl phthalate	ND	14.7	29.4	ug/kg dry	1	10/26/23 15:59	EPA 8270E	_
N-Nitrosodimethylamine	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
N-Nitrosodiphenylamine	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Bis(2-Chloroethoxy) methane	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Bis(2-Chloroethyl) ether	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Hexachlorobenzene	ND	1.47	2.94	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Hexachlorobutadiene	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Hexachlorocyclopentadiene	ND	7.35	14.7	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Hexachloroethane	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
2-Chloronaphthalene	ND	1.47	2.94	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
,2,4-Trichlorobenzene	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
I-Bromophenyl phenyl ether	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
1-Chlorophenyl phenyl ether	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Aniline	ND	14.7	14.7	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
1-Chloroaniline	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
2-Nitroaniline	ND	29.4	58.7	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
3-Nitroaniline	ND	29.4	58.7	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
1-Nitroaniline	ND	29.4	58.7	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Nitrobenzene	ND	14.7	29.4	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
2,4-Dinitrotoluene	ND	14.7	29.4	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
2,6-Dinitrotoluene	ND	14.7	29.4	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Benzoic acid	ND	184	367	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Benzyl alcohol	ND	7.35	14.7	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
sophorone	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
zobenzene (1,2-DPH)	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
is(2-Ethylhexyl) adipate	ND	36.7	73.5	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
3'-Dichlorobenzidine	ND	29.4	58.7	ug/kg dry	1	10/26/23 15:59	EPA 8270E	Q-52
,2-Dinitrobenzene	ND	36.7	73.5	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
3-Dinitrobenzene	ND	36.7	73.5	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
4-Dinitrobenzene	ND	36.7	73.5	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
yridine	ND	7.35	14.7	ug/kg dry	1	10/26/23 15:59	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 45 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sem	ivolatile Org	anic Compo	ounds by EPA 8	3270E			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
TP-10-NS-12.0-13.0-20231011 (A3J1366	5-11RE2)			Matrix: Soil		Batch:	23J0901	
1,2-Dichlorobenzene	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
1,3-Dichlorobenzene	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
1,4-Dichlorobenzene	ND	3.67	7.35	ug/kg dry	1	10/26/23 15:59	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Reco	very: 96 %	Limits: 37-122 %	<i>I</i>	10/26/23 15:59	EPA 8270E	
2-Fluorobiphenyl (Surr)			88 %	44-120 %	1	10/26/23 15:59	EPA 8270E	
Phenol-d6 (Surr)			99 %	33-122 %	1	10/26/23 15:59	EPA 8270E	
p-Terphenyl-d14 (Surr)			90 %	54-127 %	I	10/26/23 15:59	EPA 8270E	
2-Fluorophenol (Surr)			79 %	35-120 %	<i>I</i>	10/26/23 15:59	EPA 8270E	
2,4,6-Tribromophenol (Surr)			111 %	39-132 %	1	10/26/23 15:59	EPA 8270E	
TP-15-NS-9.0-10.0-20231012 (A3J1366-	12RE1)			Matrix: Soil		Batch:	23J0901	
Acenaphthene	ND	5.72	11.5	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Acenaphthylene	10.6	5.72	11.5	ug/kg dry	4	10/25/23 21:22	EPA 8270E	J
Anthracene	ND	5.72	11.5	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Benz(a)anthracene	27.2	5.72	11.5	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Benzo(a)pyrene	56.5	8.60	17.2	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Benzo(b)fluoranthene	58.3	8.60	17.2	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Benzo(k)fluoranthene	26.8	8.60	17.2	ug/kg dry	4	10/25/23 21:22	EPA 8270E	M-05
Benzo(g,h,i)perylene	40.5	5.72	11.5	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Chrysene	37.3	5.72	11.5	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Dibenz(a,h)anthracene	7.12	5.72	11.5	ug/kg dry	4	10/25/23 21:22	EPA 8270E	J
Fluoranthene	ND	5.72	11.5	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Fluorene	ND	5.72	11.5	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Indeno(1,2,3-cd)pyrene	33.2	5.72	11.5	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
1-Methylnaphthalene	ND	11.5	22.9	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
2-Methylnaphthalene	ND	11.5	22.9	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Naphthalene	ND	11.5	22.9	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Phenanthrene	13.6	5.72	11.5	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Pyrene	ND	5.72	11.5	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Carbazole	ND	8.60	17.2	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Dibenzofuran	ND	5.72	11.5	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
2-Chlorophenol	ND	28.7	57.2	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
4-Chloro-3-methylphenol	ND ND	57.2	115	ug/kg dry ug/kg dry	4	10/25/23 21:22	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 46 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
ГР-15-NS-9.0-10.0-20231012 (A3J13	366-12RE1)			Matrix: Soil	I	Batch:	23J0901	
2,4-Dichlorophenol	ND	28.7	57.2	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
2,4-Dimethylphenol	ND	28.7	57.2	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
2,4-Dinitrophenol	ND	143	287	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND	143	287	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
2-Methylphenol	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
8+4-Methylphenol(s)	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
2-Nitrophenol	ND	57.2	115	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
4-Nitrophenol	ND	57.2	115	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Pentachlorophenol (PCP)	ND	57.2	115	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Phenol	ND	11.5	22.9	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
2,3,4,6-Tetrachlorophenol	ND	28.7	57.2	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
2,3,5,6-Tetrachlorophenol	ND	28.7	57.2	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
2,4,5-Trichlorophenol	ND	28.7	57.2	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
2,4,6-Trichlorophenol	ND	28.7	57.2	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Bis(2-ethylhexyl)phthalate	ND	86.0	172	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Butyl benzyl phthalate	ND	57.2	115	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Diethylphthalate	ND	57.2	115	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Dimethylphthalate	ND	57.2	115	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Di-n-butylphthalate	ND	57.2	115	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Di-n-octyl phthalate	ND	57.2	115	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
N-Nitrosodimethylamine	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
N-Nitrosodiphenylamine	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Bis(2-Chloroethoxy) methane	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Bis(2-Chloroethyl) ether	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Iexachlorobenzene	ND	5.72	11.5	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Iexachlorobutadiene	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
[exachlorocyclopentadiene	ND	28.7	57.2	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Iexachloroethane	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
-Chloronaphthalene	ND	5.72	11.5	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
,2,4-Trichlorobenzene	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Bromophenyl phenyl ether	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 47 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: **Eatonville Landfill Characterization**

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting	-		Date		
Analyte	Result	Limit	Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-15-NS-9.0-10.0-20231012 (A3J1366	-12RE1)			Matrix: Soil		Batch:	23J0901	
4-Chlorophenyl phenyl ether	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Aniline	ND	28.7	57.2	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
4-Chloroaniline	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
2-Nitroaniline	ND	115	229	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
3-Nitroaniline	ND	115	229	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
4-Nitroaniline	ND	115	229	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Nitrobenzene	ND	57.2	115	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
2,4-Dinitrotoluene	ND	57.2	115	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
2,6-Dinitrotoluene	ND	57.2	115	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Benzoic acid	ND	718	1430	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Benzyl alcohol	ND	28.7	57.2	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Isophorone	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Azobenzene (1,2-DPH)	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Bis(2-Ethylhexyl) adipate	ND	143	287	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
3,3'-Dichlorobenzidine	ND	115	229	ug/kg dry	4	10/25/23 21:22	EPA 8270E	Q-52
1,2-Dinitrobenzene	ND	143	287	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
1,3-Dinitrobenzene	ND	143	287	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
1,4-Dinitrobenzene	ND	143	287	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Pyridine	ND	28.7	57.2	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
1,2-Dichlorobenzene	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
1,3-Dichlorobenzene	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
1,4-Dichlorobenzene	ND	14.3	28.7	ug/kg dry	4	10/25/23 21:22	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Reco	very: 74 %	Limits: 37-122 %	4	10/25/23 21:22	EPA 8270E	
2-Fluorobiphenyl (Surr)			79 %	44-120 %	4	10/25/23 21:22	EPA 8270E	
Phenol-d6 (Surr)			80 %	33-122 %	4	10/25/23 21:22	EPA 8270E	
p-Terphenyl-d14 (Surr)			98 %	54-127 %	4	10/25/23 21:22	EPA 8270E	
2-Fluorophenol (Surr)			75 %	35-120 %	4	10/25/23 21:22	EPA 8270E	
2,4,6-Tribromophenol (Surr)			86 %	39-132 %	4	10/25/23 21:22	EPA 8270E	
TP-07-IM-14.0-15.0-20231011 (A3J1366	6-14)			Matrix: Soil		Batch:	23J0901	R-04
Benzo(g,h,i)perylene	ND	148	297	ug/kg dry	40	10/24/23 21:43	EPA 8270E	
Dibenz(a,h)anthracene	ND	148	297	ug/kg dry	40	10/24/23 21:43	EPA 8270E	
Indeno(1,2,3-cd)pyrene	ND	148	297	ug/kg dry	40	10/24/23 21:43	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Memberg

Page 48 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
TP-07-IM-14.0-15.0-20231011 (A3J	1366-14RE1)			Matrix: Soi	I	Batch:	23J0901	R-04
Acenaphthene	ND	73.9	148	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Acenaphthylene	ND	73.9	148	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Anthracene	ND	73.9	148	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Benz(a)anthracene	ND	73.9	148	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Benzo(a)pyrene	133	111	222	ug/kg dry	20	10/26/23 03:54	EPA 8270E	J
Benzo(b)fluoranthene	118	111	222	ug/kg dry	20	10/26/23 03:54	EPA 8270E	J
Benzo(k)fluoranthene	ND	111	222	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Chrysene	ND	73.9	148	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Fluoranthene	ND	73.9	148	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Fluorene	ND	73.9	148	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
-Methylnaphthalene	ND	148	296	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
2-Methylnaphthalene	ND	148	296	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Naphthalene	ND	148	296	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Phenanthrene	ND	73.9	148	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Pyrene	ND	73.9	148	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Carbazole	ND	111	222	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Dibenzofuran	ND	73.9	148	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
2-Chlorophenol	ND	371	739	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
1-Chloro-3-methylphenol	ND	739	1480	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
2,4-Dichlorophenol	ND	371	739	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
2,4-Dimethylphenol	ND	371	739	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
2,4-Dinitrophenol	ND	1850	3710	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
4,6-Dinitro-2-methylphenol	ND	1850	3710	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
2-Methylphenol	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
3+4-Methylphenol(s)	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
-Nitrophenol	ND	739	1480	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
-Nitrophenol	ND	739	1480	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
entachlorophenol (PCP)	ND	739	1480	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
henol	ND	148	296	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
,3,4,6-Tetrachlorophenol	ND	371	739	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
,3,5,6-Tetrachlorophenol	ND	371	739	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
,4,5-Trichlorophenol	ND	371	739	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
4,6-Trichlorophenol	ND	371	739	ug/kg dry	20	10/26/23 03:54	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 49 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Note
P-07-IM-14.0-15.0-20231011 (A3J1	366-14RE1)			Matrix: Soi	<u> </u>	Batch:	23J0901	R-04
Bis(2-ethylhexyl)phthalate	ND	1110	2220	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Butyl benzyl phthalate	ND	739	1480	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Diethylphthalate	ND	739	1480	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Dimethylphthalate	ND	739	1480	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Di-n-butylphthalate	ND	739	1480	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Di-n-octyl phthalate	ND	739	1480	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
N-Nitrosodimethylamine	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
N-Nitroso-di-n-propylamine	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
N-Nitrosodiphenylamine	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Bis(2-Chloroethoxy) methane	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Bis(2-Chloroethyl) ether	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
2,2'-Oxybis(1-Chloropropane)	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Hexachlorobenzene	ND	73.9	148	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Hexachlorobutadiene	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Iexachlorocyclopentadiene	ND	371	739	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Hexachloroethane	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
-Chloronaphthalene	ND	73.9	148	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
,2,4-Trichlorobenzene	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
-Bromophenyl phenyl ether	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
-Chlorophenyl phenyl ether	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Aniline	ND	371	739	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
-Chloroaniline	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
-Nitroaniline	ND	1480	2960	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
-Nitroaniline	ND	1480	2960	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
-Nitroaniline	ND	1480	2960	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Vitrobenzene	ND	739	1480	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
,4-Dinitrotoluene	ND	739	1480	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
,6-Dinitrotoluene	ND	739	1480	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
enzoic acid	ND	9280	18500	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
senzyl alcohol	ND	371	739	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
sophorone	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
zobenzene (1,2-DPH)	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
is(2-Ethylhexyl) adipate	ND	1850	3710	ug/kg dry	20	10/26/23 03:54	EPA 8270E	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 50 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Sem	nivolatile Org	anic Compo	ounds by EPA	8270E			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-07-IM-14.0-15.0-20231011 (A3J136	6-14RE1)			Matrix: Soil		Batch:	23J0901	R-04
3,3'-Dichlorobenzidine	ND	1480	2960	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
1,2-Dinitrobenzene	ND	1850	3710	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
1,3-Dinitrobenzene	ND	1850	3710	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
1,4-Dinitrobenzene	ND	1850	3710	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Pyridine	ND	371	739	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
1,2-Dichlorobenzene	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
1,3-Dichlorobenzene	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
1,4-Dichlorobenzene	ND	185	371	ug/kg dry	20	10/26/23 03:54	EPA 8270E	
Surrogate: Nitrobenzene-d5 (Surr)		Reco	very: 80 %	Limits: 37-122 %	6 20	10/26/23 03:54	EPA 8270E	
2-Fluorobiphenyl (Surr)			94 %	44-120 %	6 20	10/26/23 03:54	EPA 8270E	
Phenol-d6 (Surr)			79 %	33-122 %	6 20	10/26/23 03:54	EPA 8270E	
p-Terphenyl-d14 (Surr)			89 %	54-127 %	6 20	10/26/23 03:54	EPA 8270E	
2-Fluorophenol (Surr)			81 %	35-120 %	6 20	10/26/23 03:54	EPA 8270E	
2,4,6-Tribromophenol (Surr)			152 %	39-132 %	6 20	10/26/23 03:54	EPA 8270E	S-06

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 51 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		Total Meta	ls by EPA 60	20B (ICPMS)				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
WS-01-0.0-2.0-10102023 (A3J1366-01)				Matrix: Soi	<u> </u>			
Batch: 23J1022								
Arsenic	4.26	1.04	2.08	mg/kg dry	10	10/27/23 10:52	EPA 6020B	
Barium	77.3	1.04	2.08	mg/kg dry	10	10/27/23 10:52	EPA 6020B	
Cadmium	1.68	0.208	0.417	mg/kg dry	10	10/27/23 10:52	EPA 6020B	
Chromium	8.88	1.04	2.08	mg/kg dry	10	10/27/23 10:52	EPA 6020B	
Copper	33.8	2.08	4.17	mg/kg dry	10	10/27/23 10:52	EPA 6020B	
Lead	41.6	0.208	0.417	mg/kg dry	10	10/27/23 10:52	EPA 6020B	
Mercury	ND	0.0834	0.167	mg/kg dry	10	10/27/23 10:52	EPA 6020B	
Nickel	19.7	2.08	4.17	mg/kg dry	10	10/27/23 10:52	EPA 6020B	
Selenium	ND	1.04	2.08	mg/kg dry	10	10/27/23 10:52	EPA 6020B	
Silver	ND	0.208	0.417	mg/kg dry	10	10/27/23 10:52	EPA 6020B	
Zinc	2460	4.17	8.34	mg/kg dry	10	10/27/23 10:52	EPA 6020B	Q-42
WS-02-0.0-2.0-1010-2023 (A3J1366-02)				Matrix: Soi	I			
Batch: 23J1022								
Arsenic	3.85	0.922	1.84	mg/kg dry	10	10/27/23 11:18	EPA 6020B	
Barium	58.5	0.922	1.84	mg/kg dry	10	10/27/23 11:18	EPA 6020B	
Cadmium	1.42	0.184	0.369	mg/kg dry	10	10/27/23 11:18	EPA 6020B	
Chromium	11.3	0.922	1.84	mg/kg dry	10	10/27/23 11:18	EPA 6020B	
Copper	23.1	1.84	3.69	mg/kg dry	10	10/27/23 11:18	EPA 6020B	
Lead	41.8	0.184	0.369	mg/kg dry	10	10/27/23 11:18	EPA 6020B	
Mercury	ND	0.0737	0.147	mg/kg dry	10	10/27/23 11:18	EPA 6020B	
Nickel	11.0	1.84	3.69	mg/kg dry	10	10/27/23 11:18	EPA 6020B	
Selenium	ND	0.922	1.84	mg/kg dry	10	10/27/23 11:18	EPA 6020B	
Silver	ND	0.184	0.369	mg/kg dry	10	10/27/23 11:18	EPA 6020B	
Zinc	2070	3.69	7.37	mg/kg dry	10	10/27/23 11:18	EPA 6020B	
WS-03-0.0-2.0-10102023 (A3J1366-03)				Matrix: Soi	1			
Batch: 23J1022								
Arsenic	2.61	0.930	1.86	mg/kg dry	10	10/27/23 11:23	EPA 6020B	
Barium	52.9	0.930	1.86	mg/kg dry	10	10/27/23 11:23	EPA 6020B	
Cadmium	0.651	0.186	0.372	mg/kg dry	10	10/27/23 11:23	EPA 6020B	
Chromium	8.75	0.930	1.86	mg/kg dry	10	10/27/23 11:23	EPA 6020B	
Copper	15.7	1.86	3.72	mg/kg dry	10	10/27/23 11:23	EPA 6020B	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Memberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		Total Meta	als by EPA 60	20B (ICPMS)							
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
WS-03-0.0-2.0-10102023 (A3J1366-03)				Matrix: Soi	I						
Lead	38.4	0.186	0.372	mg/kg dry	10	10/27/23 11:23	EPA 6020B				
Mercury	ND	0.0744	0.149	mg/kg dry	10	10/27/23 11:23	EPA 6020B				
Nickel	10.3	1.86	3.72	mg/kg dry	10	10/27/23 11:23	EPA 6020B				
Selenium	ND	0.930	1.86	mg/kg dry	10	10/27/23 11:23	EPA 6020B				
Silver	ND	0.186	0.372	mg/kg dry	10	10/27/23 11:23	EPA 6020B				
Zinc	1380	3.72	7.44	mg/kg dry	10	10/27/23 11:23	EPA 6020B				
WS-04-0.0-2.0-10102023 (A3J1366-04)		Matrix: Soil									
Batch: 23J1022											
Arsenic	2.77	1.86	3.72	mg/kg dry	10	10/27/23 11:28	EPA 6020B	J			
Barium	49.8	1.86	3.72	mg/kg dry	10	10/27/23 11:28	EPA 6020B				
Cadmium	0.444	0.372	0.743	mg/kg dry	10	10/27/23 11:28	EPA 6020B	J			
Chromium	9.08	1.86	3.72	mg/kg dry	10	10/27/23 11:28	EPA 6020B				
Copper	38.5	3.72	7.43	mg/kg dry	10	10/27/23 11:28	EPA 6020B				
Lead	12.6	0.372	0.743	mg/kg dry	10	10/27/23 11:28	EPA 6020B				
Mercury	ND	0.149	0.297	mg/kg dry	10	10/27/23 11:28	EPA 6020B				
Nickel	11.6	3.72	7.43	mg/kg dry	10	10/27/23 11:28	EPA 6020B				
Selenium	ND	1.86	3.72	mg/kg dry	10	10/27/23 11:28	EPA 6020B				
Silver	ND	0.372	0.743	mg/kg dry	10	10/27/23 11:28	EPA 6020B				
Zinc	685	7.43	14.9	mg/kg dry	10	10/27/23 11:28	EPA 6020B				
WS-05-0.0-2.0-10102023 (A3J1366-05)				Matrix: Soi	I						
Batch: 23J1022											
Arsenic	5.23	1.56	3.12	mg/kg dry	10	10/27/23 11:34	EPA 6020B				
Barium	105	1.56	3.12	mg/kg dry	10	10/27/23 11:34	EPA 6020B				
Cadmium	0.602	0.312	0.625	mg/kg dry	10	10/27/23 11:34	EPA 6020B	J			
Chromium	10.7	1.56	3.12	mg/kg dry	10	10/27/23 11:34	EPA 6020B				
Copper	84.7	3.12	6.25	mg/kg dry	10	10/27/23 11:34	EPA 6020B				
Lead	24.0	0.312	0.625	mg/kg dry	10	10/27/23 11:34	EPA 6020B				
Mercury	ND	0.125	0.250	mg/kg dry	10	10/27/23 11:34	EPA 6020B				
Nickel	12.7	3.12	6.25	mg/kg dry	10	10/27/23 11:34	EPA 6020B				
Selenium	1.66	1.56	3.12	mg/kg dry	10	10/27/23 11:34	EPA 6020B	J			
Silver	ND	0.312	0.625	mg/kg dry	10	10/27/23 11:34	EPA 6020B				
Zinc	1300	6.25	12.5	mg/kg dry	10	10/27/23 11:34	EPA 6020B				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 53 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		Total Meta	Is by EPA 60	20B (ICPMS)				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-01-IM-10.0-11.0-20231010 (A3J136	66-06)			Matrix: Soi				
Batch: 23J1022								
Arsenic	4.01	0.631	1.26	mg/kg dry	10	10/27/23 11:39	EPA 6020B	
Barium	113	0.631	1.26	mg/kg dry	10	10/27/23 11:39	EPA 6020B	
Cadmium	4.18	0.126	0.252	mg/kg dry	10	10/27/23 11:39	EPA 6020B	
Chromium	16.8	0.631	1.26	mg/kg dry	10	10/27/23 11:39	EPA 6020B	
Copper	179	1.26	2.52	mg/kg dry	10	10/27/23 11:39	EPA 6020B	
Lead	153	0.126	0.252	mg/kg dry	10	10/27/23 11:39	EPA 6020B	
Mercury	0.252	0.0505	0.101	mg/kg dry	10	10/27/23 11:39	EPA 6020B	
Nickel	17.3	1.26	2.52	mg/kg dry	10	10/27/23 11:39	EPA 6020B	
Selenium	0.819	0.631	1.26	mg/kg dry	10	10/27/23 11:39	EPA 6020B	J
Silver	0.162	0.126	0.252	mg/kg dry	10	10/27/23 11:39	EPA 6020B	J
Zinc	330	2.52	5.05	mg/kg dry	10	10/27/23 11:39	EPA 6020B	
ГР-04-NS-9.0-10.0-20231010 (A3J136	66-07)			Matrix: Soi				
Batch: 23J1022								
Arsenic	1.16	0.606	1.21	mg/kg dry	10	10/27/23 11:44	EPA 6020B	J
Barium	32.5	0.606	1.21	mg/kg dry	10	10/27/23 11:44	EPA 6020B	
Cadmium	ND	0.121	0.243	mg/kg dry	10	10/27/23 11:44	EPA 6020B	
Chromium	4.76	0.606	1.21	mg/kg dry	10	10/27/23 11:44	EPA 6020B	
Copper	14.0	1.21	2.43	mg/kg dry	10	10/27/23 11:44	EPA 6020B	
Lead	4.06	0.121	0.243	mg/kg dry	10	10/27/23 11:44	EPA 6020B	
Mercury	ND	0.0485	0.0970	mg/kg dry	10	10/27/23 11:44	EPA 6020B	
Nickel	2.36	1.21	2.43	mg/kg dry	10	10/27/23 11:44	EPA 6020B	J
Selenium	ND	0.606	1.21	mg/kg dry	10	10/27/23 11:44	EPA 6020B	
Silver	ND	0.121	0.243	mg/kg dry	10	10/27/23 11:44	EPA 6020B	
Zinc	29.7	2.43	4.85	mg/kg dry	10	10/27/23 11:44	EPA 6020B	
TP-05-NS-4.0-5.0-20231011 (A3J1366	i-08)			Matrix: Soi	l			
Batch: 23J1022								
Arsenic	2.17	0.579	1.16	mg/kg dry	10	10/27/23 11:49	EPA 6020B	
Barium	52.3	0.579	1.16	mg/kg dry	10	10/27/23 11:49	EPA 6020B	
Cadmium	ND	0.116	0.232	mg/kg dry	10	10/27/23 11:49	EPA 6020B	
Chromium	12.6	0.579	1.16	mg/kg dry	10	10/27/23 11:49	EPA 6020B	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Memberg

Page 54 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)											
	Sample	Detection	Reporting			Date					
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes			
TP-05-NS-4.0-5.0-20231011 (A3J1366-08)				Matrix: Soi	l						
Copper	22.1	1.16	2.32	mg/kg dry	10	10/27/23 11:49	EPA 6020B				
Lead	5.57	0.116	0.232	mg/kg dry	10	10/27/23 11:49	EPA 6020B				
Mercury	ND	0.0464	0.0927	mg/kg dry	10	10/27/23 11:49	EPA 6020B				
Nickel	17.4	1.16	2.32	mg/kg dry	10	10/27/23 11:49	EPA 6020B				
Selenium	ND	0.579	1.16	mg/kg dry	10	10/27/23 11:49	EPA 6020B				
Silver	ND	0.116	0.232	mg/kg dry	10	10/27/23 11:49	EPA 6020B				
Zinc	30.6	2.32	4.64	mg/kg dry	10	10/27/23 11:49	EPA 6020B				
P-06-NS-9.0-10.0-20231011 (A3J1366-09))			Matrix: Soi	I						
Batch: 23J1022						_					
Arsenic	6.89	0.661	1.32	mg/kg dry	10	10/27/23 11:54	EPA 6020B				
Barium	476	0.661	1.32	mg/kg dry	10	10/27/23 11:54	EPA 6020B				
Cadmium	5.32	0.132	0.264	mg/kg dry	10	10/27/23 11:54	EPA 6020B				
Chromium	28.2	0.661	1.32	mg/kg dry	10	10/27/23 11:54	EPA 6020B				
Copper	2210	1.32	2.64	mg/kg dry	10	10/27/23 11:54	EPA 6020B				
Mercury	0.207	0.0528	0.106	mg/kg dry	10	10/27/23 11:54	EPA 6020B				
Nickel	30.9	1.32	2.64	mg/kg dry	10	10/27/23 11:54	EPA 6020B				
Selenium	ND	0.661	1.32	mg/kg dry	10	10/27/23 11:54	EPA 6020B				
Silver	1.05	0.132	0.264	mg/kg dry	10	10/27/23 11:54	EPA 6020B				
Line	2230	2.64	5.28	mg/kg dry	10	10/27/23 11:54	EPA 6020B				
P-06-NS-9.0-10.0-20231011 (A3J1366-09	RE1)			Matrix: Soi	I						
Batch: 23J1022											
Lead	833	1.32	2.64	mg/kg dry	100	10/31/23 23:37	EPA 6020B				
FP-08-NS-12.0-13.0-20231011 (A3J1366-1	0)			Matrix: Soi	I						
Batch: 23J1022											
Arsenic	2.02	0.569	1.14	mg/kg dry	10	10/27/23 11:59	EPA 6020B				
Barium	51.9	0.569	1.14	mg/kg dry	10	10/27/23 11:59	EPA 6020B				
Cadmium	0.247	0.114	0.228	mg/kg dry	10	10/27/23 11:59	EPA 6020B				
Chromium	10.7	0.569	1.14	mg/kg dry	10	10/27/23 11:59	EPA 6020B				
Copper	23.8	1.14	2.28	mg/kg dry	10	10/27/23 11:59	EPA 6020B				
∟ead	25.4	0.114	0.228	mg/kg dry	10	10/27/23 11:59	EPA 6020B				
Mercury	0.0501	0.0455	0.0911	mg/kg dry	10	10/27/23 11:59	EPA 6020B	J			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 55 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)											
	Sample	Detection	Reporting			Date					
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes			
TP-08-NS-12.0-13.0-20231011 (A3J1366-1	10)			Matrix: Soi	I						
Nickel	11.5	1.14	2.28	mg/kg dry	10	10/27/23 11:59	EPA 6020B				
Selenium	ND	0.569	1.14	mg/kg dry	10	10/27/23 11:59	EPA 6020B				
Silver	ND	0.114	0.228	mg/kg dry	10	10/27/23 11:59	EPA 6020B				
Zinc	195	2.28	4.55	mg/kg dry	10	10/27/23 11:59	EPA 6020B				
TP-10-NS-12.0-13.0-20231011 (A3J1366-1	11)			Matrix: Soi	I						
Batch: 23J1022											
Arsenic	2.95	0.579	1.16	mg/kg dry	10	10/27/23 12:15	EPA 6020B				
Barium	44.6	0.579	1.16	mg/kg dry	10	10/27/23 12:15	EPA 6020B				
Cadmium	0.156	0.116	0.232	mg/kg dry	10	10/27/23 12:15	EPA 6020B	J			
Chromium	3.47	0.579	1.16	mg/kg dry	10	10/27/23 12:15	EPA 6020B				
Copper	17.3	1.16	2.32	mg/kg dry	10	10/27/23 12:15	EPA 6020B				
Lead	6.45	0.116	0.232	mg/kg dry	10	10/27/23 12:15	EPA 6020B				
Mercury	ND	0.0463	0.0927	mg/kg dry	10	10/27/23 12:15	EPA 6020B				
Nickel	3.69	1.16	2.32	mg/kg dry	10	10/27/23 12:15	EPA 6020B				
Selenium	ND	0.579	1.16	mg/kg dry	10	10/27/23 12:15	EPA 6020B				
Silver	ND	0.116	0.232	mg/kg dry	10	10/27/23 12:15	EPA 6020B				
Zinc	34.9	2.32	4.63	mg/kg dry	10	10/27/23 12:15	EPA 6020B				
TP-15-NS-9.0-10.0-20231012 (A3J1366-12	2)			Matrix: Soi	I						
Batch: 23J1022											
Arsenic	3.08	0.579	1.16	mg/kg dry	10	10/27/23 12:20	EPA 6020B				
Barium	95.8	0.579	1.16	mg/kg dry	10	10/27/23 12:20	EPA 6020B				
Cadmium	0.469	0.116	0.232	mg/kg dry	10	10/27/23 12:20	EPA 6020B				
Chromium	14.2	0.579	1.16	mg/kg dry	10	10/27/23 12:20	EPA 6020B				
Copper	32.1	1.16	2.32	mg/kg dry	10	10/27/23 12:20	EPA 6020B				
Lead	34.5	0.116	0.232	mg/kg dry	10	10/27/23 12:20	EPA 6020B				
Mercury	0.261	0.0463	0.0927	mg/kg dry	10	10/27/23 12:20	EPA 6020B				
Nickel	26.3	1.16	2.32	mg/kg dry	10	10/27/23 12:20	EPA 6020B				
Selenium	ND	0.579	1.16	mg/kg dry	10	10/27/23 12:20	EPA 6020B				
Silver	0.466	0.116	0.232	mg/kg dry	10	10/27/23 12:20	EPA 6020B				
Zinc	179	2.32	4.63	mg/kg dry	10	10/27/23 12:20	EPA 6020B				
TP-15-IM-4.0-5.0-20231012 (A3J1366-13)				Matrix: Soi	I						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 56 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)											
	Sample	Detection	Reporting			Date					
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes			
TP-15-IM-4.0-5.0-20231012 (A3J1366-13)				Matrix: Soi	I						
Batch: 23J1022											
Arsenic	3.80	0.573	1.15	mg/kg dry	10	10/27/23 12:25	EPA 6020B				
Barium	124	0.573	1.15	mg/kg dry	10	10/27/23 12:25	EPA 6020B				
Cadmium	2.74	0.115	0.229	mg/kg dry	10	10/27/23 12:25	EPA 6020B				
Chromium	31.1	0.573	1.15	mg/kg dry	10	10/27/23 12:25	EPA 6020B				
Copper	113	1.15	2.29	mg/kg dry	10	10/27/23 12:25	EPA 6020B				
Lead	181	0.115	0.229	mg/kg dry	10	10/27/23 12:25	EPA 6020B				
Mercury	1.39	0.0458	0.0916	mg/kg dry	10	10/27/23 12:25	EPA 6020B				
Nickel	26.2	1.15	2.29	mg/kg dry	10	10/27/23 12:25	EPA 6020B				
Selenium	ND	0.573	1.15	mg/kg dry	10	10/27/23 12:25	EPA 6020B				
Silver	0.339	0.115	0.229	mg/kg dry	10	10/27/23 12:25	EPA 6020B				
Zinc	584	2.29	4.58	mg/kg dry	10	10/27/23 12:25	EPA 6020B				
TP-07-IM-14.0-15.0-20231011 (A3J1366-14	!)			Matrix: Soi	I						
Batch: 23J0999											
Arsenic	10.7	0.605	1.21	mg/kg dry	10	10/26/23 08:41	EPA 6020B	Q-42			
Barium	619	0.605	1.21	mg/kg dry	10	10/26/23 08:41	EPA 6020B	Q-42			
Cadmium	1.71	0.121	0.242	mg/kg dry	10	10/26/23 08:41	EPA 6020B				
Chromium	47.0	0.605	1.21	mg/kg dry	10	10/26/23 08:41	EPA 6020B	Q-42			
Copper	208	1.21	2.42	mg/kg dry	10	10/26/23 08:41	EPA 6020B	Q-42			
Lead	278	0.121	0.242	mg/kg dry	10	10/26/23 08:41	EPA 6020B				
Mercury	0.405	0.0484	0.0969	mg/kg dry	10	10/26/23 08:41	EPA 6020B				
Nickel	73.0	1.21	2.42	mg/kg dry	10	10/26/23 08:41	EPA 6020B	Q-42			
Selenium	ND	0.605	1.21	mg/kg dry	10	10/26/23 08:41	EPA 6020B				
Silver	0.712	0.121	0.242	mg/kg dry	10	10/26/23 08:41	EPA 6020B				
Zinc	453	2.42	4.84	mg/kg dry	10	10/26/23 08:41	EPA 6020B	Q-42			
TP-08-IM-4.0-5.0-20231011 (A3J1366-15)				Matrix: Soi	I						
Batch: 23J0999											
Arsenic	10.1	0.588	1.18	mg/kg dry	10	10/26/23 08:57	EPA 6020B				
Barium	200	0.588	1.18	mg/kg dry	10	10/26/23 08:57	EPA 6020B				
Cadmium	20.9	0.118	0.235	mg/kg dry	10	10/26/23 08:57	EPA 6020B				
Chromium	79.8	0.588	1.18	mg/kg dry	10	10/26/23 08:57	EPA 6020B				
Copper	208	1.18	2.35	mg/kg dry	10	10/26/23 08:57	EPA 6020B				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 57 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)											
	Sample	Detection	Reporting			Date					
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes			
TP-08-IM-4.0-5.0-20231011 (A3J1366-15)				Matrix: Soi	l						
Lead	310	0.118	0.235	mg/kg dry	10	10/26/23 08:57	EPA 6020B				
Mercury	1.57	0.0470	0.0940	mg/kg dry	10	10/26/23 08:57	EPA 6020B				
Nickel	74.6	1.18	2.35	mg/kg dry	10	10/26/23 08:57	EPA 6020B				
Selenium	ND	0.588	1.18	mg/kg dry	10	10/26/23 08:57	EPA 6020B				
Silver	0.657	0.118	0.235	mg/kg dry	10	10/26/23 08:57	EPA 6020B				
Zinc	1100	2.35	4.70	mg/kg dry	10	10/26/23 08:57	EPA 6020B				
TP-07-IM-9.0-10.0-20231011 (A3J1366-16)				Matrix: Soi	l						
Batch: 23J0999											
Arsenic	5.76	0.562	1.12	mg/kg dry	10	10/26/23 09:02	EPA 6020B				
Barium	135	0.562	1.12	mg/kg dry	10	10/26/23 09:02	EPA 6020B				
Cadmium	1.83	0.112	0.225	mg/kg dry	10	10/26/23 09:02	EPA 6020B				
Chromium	27.8	0.562	1.12	mg/kg dry	10	10/26/23 09:02	EPA 6020B				
Copper	98.5	1.12	2.25	mg/kg dry	10	10/26/23 09:02	EPA 6020B				
Lead	172	0.112	0.225	mg/kg dry	10	10/26/23 09:02	EPA 6020B				
Mercury	0.817	0.0450	0.0900	mg/kg dry	10	10/26/23 09:02	EPA 6020B				
Nickel	37.3	1.12	2.25	mg/kg dry	10	10/26/23 09:02	EPA 6020B				
Selenium	ND	0.562	1.12	mg/kg dry	10	10/26/23 09:02	EPA 6020B				
Silver	0.290	0.112	0.225	mg/kg dry	10	10/26/23 09:02	EPA 6020B				
Zinc	656	2.25	4.50	mg/kg dry	10	10/26/23 09:02	EPA 6020B				
TP-14-IM-14.0-15.0-20231012 (A3J1366-17	·)			Matrix: Soi	I						
Batch: 23J0999											
Arsenic	6.55	0.676	1.35	mg/kg dry	10	10/26/23 09:17	EPA 6020B				
Barium	210	0.676	1.35	mg/kg dry	10	10/26/23 09:17	EPA 6020B				
Cadmium	8.88	0.135	0.270	mg/kg dry	10	10/26/23 09:17	EPA 6020B				
Chromium	81.6	0.676	1.35	mg/kg dry	10	10/26/23 09:17	EPA 6020B				
Copper	401	1.35	2.70	mg/kg dry	10	10/26/23 09:17	EPA 6020B				
Lead	408	0.135	0.270	mg/kg dry	10	10/26/23 09:17	EPA 6020B				
Mercury	0.893	0.0541	0.108	mg/kg dry	10	10/26/23 09:17	EPA 6020B				
Nickel	253	1.35	2.70	mg/kg dry	10	10/26/23 09:17	EPA 6020B				
Selenium	ND	0.676	1.35	mg/kg dry	10	10/26/23 09:17	EPA 6020B				
Silver	1.06	0.135	0.270	mg/kg dry	10	10/26/23 09:17	EPA 6020B				
Zinc	1730	2.70	5.41	mg/kg dry	10	10/26/23 09:17	EPA 6020B				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 58 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
ГР-13-IM-14.0-15.0-20231012 (АЗЈ1	366-18)			Matrix: Soi	I						
Batch: 23J0999											
Arsenic	19.3	0.620	1.24	mg/kg dry	10	10/26/23 09:22	EPA 6020B				
Barium	149	0.620	1.24	mg/kg dry	10	10/26/23 09:22	EPA 6020B				
Cadmium	6.04	0.124	0.248	mg/kg dry	10	10/26/23 09:22	EPA 6020B				
Chromium	37.6	0.620	1.24	mg/kg dry	10	10/26/23 09:22	EPA 6020B				
Copper	724	1.24	2.48	mg/kg dry	10	10/26/23 09:22	EPA 6020B				
Lead	339	0.124	0.248	mg/kg dry	10	10/26/23 09:22	EPA 6020B				
Mercury	0.554	0.0496	0.0992	mg/kg dry	10	10/26/23 09:22	EPA 6020B				
Nickel	52.6	1.24	2.48	mg/kg dry	10	10/26/23 09:22	EPA 6020B				
Selenium	ND	0.620	1.24	mg/kg dry	10	10/26/23 09:22	EPA 6020B				
Silver	1.19	0.124	0.248	mg/kg dry	10	10/26/23 09:22	EPA 6020B				
ΓΡ-13-IM-14.0-15.0-20231012 (A3J1	366-18RE1)			Matrix: Soi	I						
Batch: 23J0999											
Zinc	4950	24.8	49.6	mg/kg dry	100	11/09/23 14:29	EPA 6020B				
ГР-12-IM-9.0-10.0-20231012 (A3J13	66-19)			Matrix: Soi	I						
Batch: 23J0999											
Arsenic	8.59	0.622	1.24	mg/kg dry	10	10/26/23 09:27	EPA 6020B				
Barium	142	0.622	1.24	mg/kg dry	10	10/26/23 09:27	EPA 6020B				
Cadmium	2.74	0.124	0.249	mg/kg dry	10	10/26/23 09:27	EPA 6020B				
Chromium	38.5	0.622	1.24	mg/kg dry	10	10/26/23 09:27	EPA 6020B				
Copper	295	1.24	2.49	mg/kg dry	10	10/26/23 09:27	EPA 6020B				
Lead	272	0.124	0.249	mg/kg dry	10	10/26/23 09:27	EPA 6020B				
Mercury	1.22	0.0497	0.0995	mg/kg dry	10	10/26/23 09:27	EPA 6020B				
Nickel	37.0	1.24	2.49	mg/kg dry	10	10/26/23 09:27	EPA 6020B				
Selenium	ND	0.622	1.24	mg/kg dry	10	10/26/23 09:27	EPA 6020B				
Silver	0.411	0.124	0.249	mg/kg dry	10	10/26/23 09:27	EPA 6020B				
Zinc	805	2.49	4.97	mg/kg dry	10	10/26/23 09:27	EPA 6020B				
ΓΡ-11-IM-4.0-5.0-20231012 (A3J136	6-20)			Matrix: Soi	I						
Batch: 23J0999											
Arsenic	5.71	0.585	1.17	mg/kg dry	10	10/26/23 09:33	EPA 6020B				
Barium	105	0.585	1.17	mg/kg dry	10	10/26/23 09:33	EPA 6020B				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
TP-11-IM-4.0-5.0-20231012 (A3J1366-20)				Matrix: Soi	I					
Cadmium	1.80	0.117	0.234	mg/kg dry	10	10/26/23 09:33	EPA 6020B			
Chromium	28.7	0.585	1.17	mg/kg dry	10	10/26/23 09:33	EPA 6020B			
Copper	98.7	1.17	2.34	mg/kg dry	10	10/26/23 09:33	EPA 6020B			
Lead	98.7	0.117	0.234	mg/kg dry	10	10/26/23 09:33	EPA 6020B			
Mercury	0.266	0.0468	0.0936	mg/kg dry	10	10/26/23 09:33	EPA 6020B			
Nickel	31.7	1.17	2.34	mg/kg dry	10	10/26/23 09:33	EPA 6020B			
Selenium	ND	0.585	1.17	mg/kg dry	10	10/26/23 09:33	EPA 6020B			
Silver	0.133	0.117	0.234	mg/kg dry	10	10/26/23 09:33	EPA 6020B	J		
Zinc	387	2.34	4.68	mg/kg dry	10	10/26/23 09:33	EPA 6020B			
TP-10-IM-9.0-10.0-20231011 (A3J1366-21)				Matrix: Soi	I					
Batch: 23J0999										
Arsenic	6.01	0.670	1.34	mg/kg dry	10	10/26/23 09:38	EPA 6020B			
Barium	146	0.670	1.34	mg/kg dry	10	10/26/23 09:38	EPA 6020B			
Cadmium	6.59	0.134	0.268	mg/kg dry	10	10/26/23 09:38	EPA 6020B			
Chromium	54.8	0.670	1.34	mg/kg dry	10	10/26/23 09:38	EPA 6020B			
Copper	208	1.34	2.68	mg/kg dry	10	10/26/23 09:38	EPA 6020B			
Lead	573	0.134	0.268	mg/kg dry	10	10/26/23 09:38	EPA 6020B			
Mercury	2.57	0.0536	0.107	mg/kg dry	10	10/26/23 09:38	EPA 6020B			
Nickel	98.0	1.34	2.68	mg/kg dry	10	10/26/23 09:38	EPA 6020B			
Selenium	ND	0.670	1.34	mg/kg dry	10	10/26/23 09:38	EPA 6020B			
Silver	0.404	0.134	0.268	mg/kg dry	10	10/26/23 09:38	EPA 6020B			
Zinc	1740	2.68	5.36	mg/kg dry	10	10/26/23 09:38	EPA 6020B			
TP-09-IM-11.0-12.0-20231011 (A3J1366-22)			Matrix: Soi	I					
Batch: 23J0999										
Arsenic	8.07	0.632	1.26	mg/kg dry	10	10/26/23 09:44	EPA 6020B			
Barium	180	0.632	1.26	mg/kg dry	10	10/26/23 09:44	EPA 6020B			
Cadmium	15.1	0.126	0.253	mg/kg dry	10	10/26/23 09:44	EPA 6020B			
Chromium	31.5	0.632	1.26	mg/kg dry	10	10/26/23 09:44	EPA 6020B			
Copper	373	1.26	2.53	mg/kg dry	10	10/26/23 09:44	EPA 6020B			
Lead	269	0.126	0.253	mg/kg dry	10	10/26/23 09:44	EPA 6020B			
Mercury	0.853	0.0505	0.101	mg/kg dry	10	10/26/23 09:44	EPA 6020B			
Nickel	51.5	1.26	2.53	mg/kg dry	10	10/26/23 09:44	EPA 6020B			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Mounterg

Page 60 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		Total Meta	ls by EPA 60	20B (ICPMS)				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-09-IM-11.0-12.0-20231011 (A3J1366-2	2)			Matrix: Soi	I			
Selenium	ND	0.632	1.26	mg/kg dry	10	10/26/23 09:44	EPA 6020B	
Silver	0.975	0.126	0.253	mg/kg dry	10	10/26/23 09:44	EPA 6020B	
Zine	1040	2.53	5.05	mg/kg dry	10	10/26/23 09:44	EPA 6020B	
SS-06-0.0-1.0-20231011 (A3J1366-23)				Matrix: Soi	I			
Batch: 23J0999								
Arsenic	5.38	0.560	1.12	mg/kg dry	10	10/26/23 10:20	EPA 6020B	
Barium	135	0.560	1.12	mg/kg dry	10	10/26/23 10:20	EPA 6020B	
Cadmium	1.12	0.112	0.224	mg/kg dry	10	10/26/23 10:20	EPA 6020B	
Chromium	23.5	0.560	1.12	mg/kg dry	10	10/26/23 10:20	EPA 6020B	
Copper	116	1.12	2.24	mg/kg dry	10	10/26/23 10:20	EPA 6020B	
Lead	188	0.112	0.224	mg/kg dry	10	10/26/23 10:20	EPA 6020B	
Mercury	0.741	0.0448	0.0897	mg/kg dry	10	10/26/23 10:20	EPA 6020B	
Nickel	26.7	1.12	2.24	mg/kg dry	10	10/26/23 10:20	EPA 6020B	
Selenium	ND	0.560	1.12	mg/kg dry	10	10/26/23 10:20	EPA 6020B	
Silver	0.349	0.112	0.224	mg/kg dry	10	10/26/23 10:20	EPA 6020B	
Zinc	323	2.24	4.48	mg/kg dry	10	10/26/23 10:20	EPA 6020B	
SS-05-0.0-1.0-20231011 (A3J1366-24)				Matrix: Soi	I			
Batch: 23J0999								
Arsenic	3.95	0.584	1.17	mg/kg dry	10	10/26/23 10:26	EPA 6020B	
Barium	97.6	0.584	1.17	mg/kg dry	10	10/26/23 10:26	EPA 6020B	
Cadmium	1.29	0.117	0.234	mg/kg dry	10	10/26/23 10:26	EPA 6020B	
Chromium	21.8	0.584	1.17	mg/kg dry	10	10/26/23 10:26	EPA 6020B	
Copper	47.5	1.17	2.34	mg/kg dry	10	10/26/23 10:26	EPA 6020B	
Lead	97.5	0.117	0.234	mg/kg dry	10	10/26/23 10:26	EPA 6020B	
Mercury	0.278	0.0467	0.0935	mg/kg dry	10	10/26/23 10:26	EPA 6020B	
Nickel	54.3	1.17	2.34	mg/kg dry	10	10/26/23 10:26	EPA 6020B	
Selenium	ND	0.584	1.17	mg/kg dry	10	10/26/23 10:26	EPA 6020B	
Silver	0.254	0.117	0.234	mg/kg dry	10	10/26/23 10:26	EPA 6020B	
Zinc	428	2.34	4.67	mg/kg dry	10	10/26/23 10:26	EPA 6020B	
TP-04-IM-4.0-5.0-20231010 (A3J1366-25)				Matrix: Soi	ı			

Batch: 23J0999

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menterg

Page 61 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)											
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes			
TP-04-IM-4.0-5.0-20231010 (A3J1366-25)				Matrix: Soi	I						
Arsenic	5.24	0.558	1.12	mg/kg dry	10	10/26/23 10:31	EPA 6020B				
Barium	122	0.558	1.12	mg/kg dry	10	10/26/23 10:31	EPA 6020B				
Cadmium	0.911	0.112	0.223	mg/kg dry	10	10/26/23 10:31	EPA 6020B				
Chromium	31.9	0.558	1.12	mg/kg dry	10	10/26/23 10:31	EPA 6020B				
Copper	85.7	1.12	2.23	mg/kg dry	10	10/26/23 10:31	EPA 6020B				
Lead	88.1	0.112	0.223	mg/kg dry	10	10/26/23 10:31	EPA 6020B				
Mercury	0.588	0.0446	0.0893	mg/kg dry	10	10/26/23 10:31	EPA 6020B				
Nickel	43.9	1.12	2.23	mg/kg dry	10	10/26/23 10:31	EPA 6020B				
Selenium	ND	0.558	1.12	mg/kg dry	10	10/26/23 10:31	EPA 6020B				
Silver	0.585	0.112	0.223	mg/kg dry	10	10/26/23 10:31	EPA 6020B				
Zinc	436	2.23	4.46	mg/kg dry	10	10/26/23 10:31	EPA 6020B				
TP-03-IM-14.0-15.0-20231010 (A3J1366-26	6)			Matrix: Soi	I						
Batch: 23J0999											
Arsenic	7.20	0.641	1.28	mg/kg dry	10	10/26/23 10:36	EPA 6020B				
Barium	352	0.641	1.28	mg/kg dry	10	10/26/23 10:36	EPA 6020B				
Cadmium	6.49	0.128	0.256	mg/kg dry	10	10/26/23 10:36	EPA 6020B				
Chromium	45.2	0.641	1.28	mg/kg dry	10	10/26/23 10:36	EPA 6020B				
Copper	668	1.28	2.56	mg/kg dry	10	10/26/23 10:36	EPA 6020B				
Mercury	0.569	0.0513	0.103	mg/kg dry	10	10/26/23 10:36	EPA 6020B				
Nickel	76.0	1.28	2.56	mg/kg dry	10	10/26/23 10:36	EPA 6020B				
Selenium	ND	0.641	1.28	mg/kg dry	10	10/26/23 10:36	EPA 6020B				
Silver	2.69	0.128	0.256	mg/kg dry	10	10/26/23 10:36	EPA 6020B				
Zinc	2010	2.56	5.13	mg/kg dry	10	10/26/23 10:36	EPA 6020B				
ГР-03-IM-14.0-15.0-20231010 (A3J1366-26	SRE1)			Matrix: Soi	l						
Batch: 23J0999											
Lead	1030	1.28	2.56	mg/kg dry	100	10/26/23 11:33	EPA 6020B				
TP-02-IM-4.0-5.0-20231010 (A3J1366-27)				Matrix: Soi	I						
Batch: 23J0999		0.620	1.20			10/06/00 10 11	ED4 (020D				
Arsenic	20.4	0.639	1.28	mg/kg dry	10	10/26/23 10:41	EPA 6020B				
Barium	194	0.639	1.28	mg/kg dry	10	10/26/23 10:41	EPA 6020B				
Cadmium	3.16	0.128	0.255	mg/kg dry	10	10/26/23 10:41	EPA 6020B				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)											
	Sample	Detection	Reporting	***	D.1:	Date	M 4 1D 3	N			
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes			
TP-02-IM-4.0-5.0-20231010 (A3J1366-27)				Matrix: Soi	l						
Chromium	65.6	0.639	1.28	mg/kg dry	10	10/26/23 10:41	EPA 6020B				
Copper	286	1.28	2.55	mg/kg dry	10	10/26/23 10:41	EPA 6020B				
Nickel	85.8	1.28	2.55	mg/kg dry	10	10/26/23 10:41	EPA 6020B				
Selenium	ND	0.639	1.28	mg/kg dry	10	10/26/23 10:41	EPA 6020B				
Silver	26.0	0.128	0.255	mg/kg dry	10	10/26/23 10:41	EPA 6020B				
Zinc	815	2.55	5.11	mg/kg dry	10	10/26/23 10:41	EPA 6020B				
TP-02-IM-4.0-5.0-20231010 (A3J1366-27R	E1)			Matrix: Soi	I						
Batch: 23J0999											
Lead	862	1.28	2.55	mg/kg dry	100	10/26/23 11:38	EPA 6020B				
Mercury	16.3	0.511	1.02	mg/kg dry	100	10/26/23 11:38	EPA 6020B				
TP-01-IM-5.0-6.0-20231010 (A3J1366-28)				Matrix: Soi	I						
Batch: 23J0999											
Arsenic	6.56	0.661	1.32	mg/kg dry	10	10/26/23 10:46	EPA 6020B				
Barium	158	0.661	1.32	mg/kg dry	10	10/26/23 10:46	EPA 6020B				
Cadmium	2.16	0.132	0.264	mg/kg dry	10	10/26/23 10:46	EPA 6020B				
Chromium	33.8	0.661	1.32	mg/kg dry	10	10/26/23 10:46	EPA 6020B				
Copper	102	1.32	2.64	mg/kg dry	10	10/26/23 10:46	EPA 6020B				
Nickel	34.1	1.32	2.64	mg/kg dry	10	10/26/23 10:46	EPA 6020B				
Selenium	ND	0.661	1.32	mg/kg dry	10	10/26/23 10:46	EPA 6020B				
Silver	0.747	0.132	0.264	mg/kg dry	10	10/26/23 10:46	EPA 6020B				
Zinc	565	2.64	5.29	mg/kg dry	10	10/26/23 10:46	EPA 6020B				
TP-01-IM-5.0-6.0-20231010 (A3J1366-28R	E1)			Matrix: Soi	ı						
Batch: 23J0999											
Lead	229	0.132	0.264	mg/kg dry	10	10/26/23 10:57	EPA 6020B				
Mercury	0.765	0.0529	0.106	mg/kg dry	10	10/26/23 10:57	EPA 6020B				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Mounterg

Page 63 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		TCLP Meta	als by EPA 60	20B (ICPMS	3)			
	Sample	Detection	Reporting	***	D.1	Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
WS-01-0.0-2.0-10102023 (A3J1366-01)				Matrix: So	oil			
Batch: 23J0933								
Arsenic	ND	0.0500	0.100	mg/L	10	10/24/23 16:44	1311/6020B	
Barium	ND	2.50	5.00	mg/L	10	10/24/23 16:44	1311/6020B	
Cadmium	ND	0.0500	0.100	mg/L	10	10/24/23 16:44	1311/6020B	
Chromium	ND	0.0500	0.100	mg/L	10	10/24/23 16:44	1311/6020B	
Lead	ND	0.0250	0.0500	mg/L	10	10/24/23 16:44	1311/6020B	
Mercury	ND	0.00375	0.00700	mg/L	10	10/24/23 16:44	1311/6020B	
Selenium	ND	0.0500	0.100	mg/L	10	10/24/23 16:44	1311/6020B	
Silver	ND	0.0500	0.100	mg/L	10	10/24/23 16:44	1311/6020B	
WS-02-0.0-2.0-1010-2023 (A3J1366-02)				Matrix: So	oil			
Batch: 23J0933								
Arsenic	ND	0.0500	0.100	mg/L	10	10/24/23 16:49	1311/6020B	
Barium	ND	2.50	5.00	mg/L	10	10/24/23 16:49	1311/6020B	
Cadmium	ND	0.0500	0.100	mg/L	10	10/24/23 16:49	1311/6020B	
Chromium	ND	0.0500	0.100	mg/L	10	10/24/23 16:49	1311/6020B	
Lead	ND	0.0250	0.0500	mg/L	10	10/24/23 16:49	1311/6020B	
Mercury	ND	0.00375	0.00700	mg/L	10	10/24/23 16:49	1311/6020B	
Selenium	ND	0.0500	0.100	mg/L	10	10/24/23 16:49	1311/6020B	
Silver	ND	0.0500	0.100	mg/L	10	10/24/23 16:49	1311/6020B	
WS-03-0.0-2.0-10102023 (A3J1366-03)				Matrix: So	oil			
Batch: 23J0933								
Arsenic	ND	0.0500	0.100	mg/L	10	10/24/23 16:54	1311/6020B	
Barium	ND	2.50	5.00	mg/L	10	10/24/23 16:54	1311/6020B	
Cadmium	ND	0.0500	0.100	mg/L	10	10/24/23 16:54	1311/6020B	
Chromium	ND	0.0500	0.100	mg/L	10	10/24/23 16:54	1311/6020B	
Lead	ND	0.0250	0.0500	mg/L	10	10/24/23 16:54	1311/6020B	
Mercury	ND	0.00375	0.00700	mg/L	10	10/24/23 16:54	1311/6020B	
Selenium	ND	0.0500	0.100	mg/L	10	10/24/23 16:54	1311/6020B	
Silver	ND	0.0500	0.100	mg/L	10	10/24/23 16:54	1311/6020B	
WS-04-0.0-2.0-10102023 (A3J1366-04)				Matrix: So	nil .			

Batch: 23J0933

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menterg

Page 64 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

			als by EPA 60	-05 (IOLING	•1			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
•	Kesuit	Lillill	PHIIIt			Anaryzeu	wiemod Kei.	inotes
WS-04-0.0-2.0-10102023 (A3J1366-04)				Matrix: So)II			
Arsenic	ND	0.0500	0.100	mg/L	10	10/24/23 16:59	1311/6020B	
Barium	ND	2.50	5.00	mg/L	10	10/24/23 16:59	1311/6020B	
Cadmium	ND	0.0500	0.100	mg/L	10	10/24/23 16:59	1311/6020B	
Chromium	ND	0.0500	0.100	mg/L	10	10/24/23 16:59	1311/6020B	
Lead	ND	0.0250	0.0500	mg/L	10	10/24/23 16:59	1311/6020B	
Mercury	ND	0.00375	0.00700	mg/L	10	10/24/23 16:59	1311/6020B	
Selenium	ND	0.0500	0.100	mg/L	10	10/24/23 16:59	1311/6020B	
Silver	ND	0.0500	0.100	mg/L	10	10/24/23 16:59	1311/6020B	
WS-05-0.0-2.0-10102023 (A3J1366-05)				Matrix: So	oil			
Batch: 23J0987								
Arsenic	ND	0.0500	0.100	mg/L	10	10/25/23 16:16	1311/6020B	
Barium	ND	2.50	5.00	mg/L	10	10/25/23 16:16	1311/6020B	
Cadmium	ND	0.0500	0.100	mg/L	10	10/25/23 16:16	1311/6020B	
Chromium	ND	0.0500	0.100	mg/L	10	10/25/23 16:16	1311/6020B	
Lead	ND	0.0250	0.0500	mg/L	10	10/25/23 16:16	1311/6020B	
Mercury	ND	0.00375	0.00700	mg/L	10	10/25/23 16:16	1311/6020B	
Selenium	ND	0.0500	0.100	mg/L	10	10/25/23 16:16	1311/6020B	
Silver	ND	0.0500	0.100	mg/L	10	10/25/23 16:16	1311/6020B	
ГР-01-IM-10.0-11.0-20231010 (АЗЈ1366-06	6)			Matrix: So	oil			
Batch: 23J0987								
Arsenic	ND	0.0500	0.100	mg/L	10	10/25/23 16:42	1311/6020B	
Barium	ND	2.50	5.00	mg/L	10	10/25/23 16:42	1311/6020B	
Cadmium	ND	0.0500	0.100	mg/L	10	10/25/23 16:42	1311/6020B	
Chromium	ND	0.0500	0.100	mg/L	10	10/25/23 16:42	1311/6020B	
Lead	ND	0.0250	0.0500	mg/L	10	10/25/23 16:42	1311/6020B	
Mercury	ND	0.00375	0.00700	mg/L	10	10/25/23 16:42	1311/6020B	
Selenium	ND	0.0500	0.100	mg/L	10	10/25/23 16:42	1311/6020B	
Silver	ND	0.0500	0.100	mg/L	10	10/25/23 16:42	1311/6020B	
TP-04-NS-9.0-10.0-20231010 (A3J1366-07)			Matrix: So	oil			
Batch: 23J0987								
Arsenic	ND	0.0500	0.100	mg/L	10	10/25/23 16:47	1311/6020B	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

			als by EPA 60	·= (·•· ····	,			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
•		Dillit	Diffit			1 11101 y 2.00	wichiou Kei.	11016
TP-04-NS-9.0-10.0-20231010 (A3J1366-0	•			Matrix: So				
Barium	ND	2.50	5.00	mg/L	10	10/25/23 16:47	1311/6020B	
Cadmium	ND	0.0500	0.100	mg/L	10	10/25/23 16:47	1311/6020B	
Chromium	ND	0.0500	0.100	mg/L	10	10/25/23 16:47	1311/6020B	
Lead	ND	0.0250	0.0500	mg/L	10	10/25/23 16:47	1311/6020B	
Mercury	ND	0.00375	0.00700	mg/L	10	10/25/23 16:47	1311/6020B	
Selenium	ND	0.0500	0.100	mg/L	10	10/25/23 16:47	1311/6020B	
Silver	ND	0.0500	0.100	mg/L	10	10/25/23 16:47	1311/6020B	
TP-05-NS-4.0-5.0-20231011 (A3J1366-08	3)			Matrix: So	oil			
Batch: 23J0987								
Arsenic	ND	0.0500	0.100	mg/L	10	10/25/23 16:52	1311/6020B	
Barium	ND	2.50	5.00	mg/L	10	10/25/23 16:52	1311/6020B	
Cadmium	ND	0.0500	0.100	mg/L	10	10/25/23 16:52	1311/6020B	
Chromium	ND	0.0500	0.100	mg/L	10	10/25/23 16:52	1311/6020B	
Lead	ND	0.0250	0.0500	mg/L	10	10/25/23 16:52	1311/6020B	
Mercury	ND	0.00375	0.00700	mg/L	10	10/25/23 16:52	1311/6020B	
Selenium	ND	0.0500	0.100	mg/L	10	10/25/23 16:52	1311/6020B	
Silver	ND	0.0500	0.100	mg/L	10	10/25/23 16:52	1311/6020B	
TP-06-NS-9.0-10.0-20231011 (A3J1366-0	19)			Matrix: So	oil			
Batch: 23J0987								
Arsenic	ND	0.0500	0.100	mg/L	10	10/25/23 16:57	1311/6020B	
Barium	ND	2.50	5.00	mg/L	10	10/25/23 16:57	1311/6020B	
Cadmium	ND	0.0500	0.100	mg/L	10	10/25/23 16:57	1311/6020B	
Chromium	ND	0.0500	0.100	mg/L	10	10/25/23 16:57	1311/6020B	
Lead	3.49	0.0250	0.0500	mg/L	10	10/25/23 16:57	1311/6020B	
Mercury	ND	0.00375	0.00700	mg/L	10	10/25/23 16:57	1311/6020B	
Selenium	ND	0.0500	0.100	mg/L	10	10/25/23 16:57	1311/6020B	
Silver	ND	0.0500	0.100	mg/L	10	10/25/23 16:57	1311/6020B	
TP-08-NS-12.0-13.0-20231011 (A3J1366	-10)			Matrix: So	oil			
Batch: 23J0987								
Arsenic	ND	0.0500	0.100	mg/L	10	10/25/23 17:02	1311/6020B	
Barium	ND	2.50	5.00	mg/L	10	10/25/23 17:02	1311/6020B	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

TCLP Metals by EPA 6020B (ICPMS)										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
TP-08-NS-12.0-13.0-20231011 ((A3J1366-10)			Matrix: So						
Cadmium	ND	0.0500	0.100	mg/L	10	10/25/23 17:02	1311/6020B			
Chromium	ND	0.0500	0.100	mg/L	10	10/25/23 17:02	1311/6020B			
Lead	ND	0.0250	0.0500	mg/L	10	10/25/23 17:02	1311/6020B			
Mercury	ND	0.00375	0.00700	mg/L	10	10/25/23 17:02	1311/6020B			
Selenium	ND	0.0500	0.100	mg/L	10	10/25/23 17:02	1311/6020B			
Silver	ND	0.0500	0.100	mg/L	10	10/25/23 17:02	1311/6020B			
TP-10-NS-12.0-13.0-20231011 ((A3J1366-11)			Matrix: So	oil					
Batch: 23J0987										
Arsenic	ND	0.0500	0.100	mg/L	10	10/25/23 17:07	1311/6020B			
Barium	ND	2.50	5.00	mg/L	10	10/25/23 17:07	1311/6020B			
Cadmium	ND	0.0500	0.100	mg/L	10	10/25/23 17:07	1311/6020B			
Chromium	ND	0.0500	0.100	mg/L	10	10/25/23 17:07	1311/6020B			
Lead	0.0515	0.0250	0.0500	mg/L	10	10/25/23 17:07	1311/6020B			
Mercury	ND	0.00375	0.00700	mg/L	10	10/25/23 17:07	1311/6020B			
Selenium	ND	0.0500	0.100	mg/L	10	10/25/23 17:07	1311/6020B			
Silver	ND	0.0500	0.100	mg/L	10	10/25/23 17:07	1311/6020B			
TP-15-NS-9.0-10.0-20231012 (A	A3J1366-12)			Matrix: So	oil					
Batch: 23J0987										
Arsenic	ND	0.0500	0.100	mg/L	10	10/25/23 17:13	1311/6020B			
Barium	ND	2.50	5.00	mg/L	10	10/25/23 17:13	1311/6020B			
Cadmium	ND	0.0500	0.100	mg/L	10	10/25/23 17:13	1311/6020B			
Chromium	ND	0.0500	0.100	mg/L	10	10/25/23 17:13	1311/6020B			
Lead	ND	0.0250	0.0500	mg/L	10	10/25/23 17:13	1311/6020B			
Mercury	ND	0.00375	0.00700	mg/L	10	10/25/23 17:13	1311/6020B			
Selenium	ND	0.0500	0.100	mg/L	10	10/25/23 17:13	1311/6020B			
Silver	ND	0.0500	0.100	mg/L	10	10/25/23 17:13	1311/6020B			
TP-15-IM-4.0-5.0-20231012 (A3	J1366-13)			Matrix: So	oil					
Batch: 23J0987								<u> </u>		
Arsenic	ND	0.0500	0.100	mg/L	10	10/25/23 17:18	1311/6020B			
Barium	ND	2.50	5.00	mg/L	10	10/25/23 17:18	1311/6020B			
Cadmium	ND	0.0500	0.100	mg/L	10	10/25/23 17:18	1311/6020B			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

TCLP Metals by EPA 6020B (ICPMS)										
	Sample	Detection	Reporting			Date				
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes		
TP-15-IM-4.0-5.0-20231012 (A3J1366-13)				Matrix: So	o <u>il</u>					
Chromium	ND	0.0500	0.100	mg/L	10	10/25/23 17:18	1311/6020B			
Lead	0.511	0.0250	0.0500	mg/L	10	10/25/23 17:18	1311/6020B			
Mercury	ND	0.00375	0.00700	mg/L	10	10/25/23 17:18	1311/6020B			
Selenium	ND	0.0500	0.100	mg/L	10	10/25/23 17:18	1311/6020B			
Silver	ND	0.0500	0.100	mg/L	10	10/25/23 17:18	1311/6020B			
TP-07-IM-14.0-15.0-20231011 (A3J1366-1	4)			Matrix: So	vil					
Batch: 23J1044										
Arsenic	ND	0.0500	0.100	mg/L	10	10/26/23 16:51	1311/6020B			
Barium	ND	2.50	5.00	mg/L	10	10/26/23 16:51	1311/6020B			
Cadmium	ND	0.0500	0.100	mg/L	10	10/26/23 16:51	1311/6020B			
Chromium	ND	0.0500	0.100	mg/L	10	10/26/23 16:51	1311/6020B			
Mercury	ND	0.00375	0.00700	mg/L	10	10/26/23 16:51	1311/6020B			
Selenium	ND	0.0500	0.100	mg/L	10	10/26/23 16:51	1311/6020B			
Silver	ND	0.0500	0.100	mg/L	10	10/26/23 16:51	1311/6020B			
TP-07-IM-14.0-15.0-20231011 (A3J1366-1	4RE1)			Matrix: So	vil					
Batch: 23J1044										
Lead	0.0622	0.0250	0.0500	mg/L	10	10/27/23 08:11	1311/6020B	Q-41		
TP-08-IM-4.0-5.0-20231011 (A3J1366-15)				Matrix: So	<u> </u>					
Batch: 23J1044			_ 							
Arsenic	ND	0.0500	0.100	mg/L	10	10/26/23 16:56	1311/6020B			
Barium	ND	2.50	5.00	mg/L	10	10/26/23 16:56	1311/6020B			
Cadmium	0.0836	0.0500	0.100	mg/L	10	10/26/23 16:56	1311/6020B	J		
Chromium	ND	0.0500	0.100	mg/L	10	10/26/23 16:56	1311/6020B			
Mercury	ND	0.00375	0.00700	mg/L	10	10/26/23 16:56	1311/6020B			
Selenium	ND	0.0500	0.100	mg/L	10	10/26/23 16:56	1311/6020B			
Silver	ND	0.0500	0.100	mg/L	10	10/26/23 16:56	1311/6020B			
TP-08-IM-4.0-5.0-20231011 (A3J1366-15R	RE1)			Matrix: So	·il					
Batch: 23J1044						<u></u>				
Lead	0.0663	0.0250	0.0500	mg/L	10	10/27/23 08:16	1311/6020B	Q-41		
TP-07-IM-9.0-10.0-20231011 (A3J1366-16)			Matrix: So						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 68 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		TCLP Meta	als by EPA 60	20B (ICPMS	5)			
	Sample	Detection	Reporting			Date	<u> </u>	
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
TP-07-IM-9.0-10.0-20231011 (A3J1366-16	i)			Matrix: So	oil			
Batch: 23J1044								
Arsenic	ND	0.0500	0.100	mg/L	10	10/26/23 17:01	1311/6020B	
Barium	ND	2.50	5.00	mg/L	10	10/26/23 17:01	1311/6020B	
Cadmium	ND	0.0500	0.100	mg/L	10	10/26/23 17:01	1311/6020B	
Chromium	ND	0.0500	0.100	mg/L	10	10/26/23 17:01	1311/6020B	
Lead	ND	0.0250	0.0500	mg/L	10	10/26/23 17:01	1311/6020B	
Mercury	ND	0.00375	0.00700	mg/L	10	10/26/23 17:01	1311/6020B	
Selenium	ND	0.0500	0.100	mg/L	10	10/26/23 17:01	1311/6020B	
Silver	ND	0.0500	0.100	mg/L	10	10/26/23 17:01	1311/6020B	
TP-14-IM-14.0-15.0-20231012 (A3J1366-1	3J1366-17) Matrix: Soil							
Batch: 23J1044								
Arsenic	ND	0.0500	0.100	mg/L	10	10/26/23 17:11	1311/6020B	
Barium	ND	2.50	5.00	mg/L	10	10/26/23 17:11	1311/6020B	
Cadmium	ND	0.0500	0.100	mg/L	10	10/26/23 17:11	1311/6020B	
Chromium	ND	0.0500	0.100	mg/L	10	10/26/23 17:11	1311/6020B	
Mercury	ND	0.00375	0.00700	mg/L	10	10/26/23 17:11	1311/6020B	
Selenium	ND	0.0500	0.100	mg/L	10	10/26/23 17:11	1311/6020B	
Silver	ND	0.0500	0.100	mg/L	10	10/26/23 17:11	1311/6020B	
ГР-14-IM-14.0-15.0-20231012 (A3J1366-1	7RE1)			Matrix: So	oil			
Batch: 23J1044								
Lead	0.0793	0.0250	0.0500	mg/L	10	10/27/23 08:21	1311/6020B	Q-41
ГР-13-IM-14.0-15.0-20231012 (A3J1366-1	8)			Matrix: So	oil			
Batch: 23J1044								
Arsenic	ND	0.0500	0.100	mg/L	10	10/26/23 17:16	1311/6020B	
Barium	ND	2.50	5.00	mg/L	10	10/26/23 17:16	1311/6020B	
Cadmium	ND	0.0500	0.100	mg/L	10	10/26/23 17:16	1311/6020B	
Chromium	ND	0.0500	0.100	mg/L	10	10/26/23 17:16	1311/6020B	
Mercury	ND	0.00375	0.00700	mg/L	10	10/26/23 17:16	1311/6020B	
Selenium	ND	0.0500	0.100	mg/L	10	10/26/23 17:16	1311/6020B	
Silver	ND	0.0500	0.100	mg/L	10	10/26/23 17:16	1311/6020B	
ГР-13-IM-14.0-15.0-20231012 (АЗЈ1366-1	8RF1)			Matrix: So	sil .			
	J. V /			matrix. Ot	•••			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 69 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: **Eatonville Landfill Characterization**

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		TCLP Meta	als by EPA 60	20B (ICPMS	5)			
A 1.	Sample	Detection	Reporting	TT :	Dil 4	Date	M 4 1D 6	N
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
TP-13-IM-14.0-15.0-20231012	(A3J1366-18RE1)			Matrix: So	oil			
Batch: 23J1044								
Lead	0.348	0.0250	0.0500	mg/L	10	10/27/23 08:27	1311/6020B	Q-41
TP-12-IM-9.0-10.0-20231012 (A3J1366-19RE1)			Matrix: So	oil			
Batch: 23J1044								
Arsenic	ND	0.0500	0.100	mg/L	10	10/27/23 08:32	1311/6020B	
Barium	ND	2.50	5.00	mg/L	10	10/27/23 08:32	1311/6020B	
Cadmium	ND	0.0500	0.100	mg/L	10	10/27/23 08:32	1311/6020B	
Chromium	ND	0.0500	0.100	mg/L	10	10/27/23 08:32	1311/6020B	
Lead	0.111	0.0250	0.0500	mg/L	10	10/27/23 08:32	1311/6020B	Q-41
Mercury	ND	0.00375	0.00700	mg/L	10	10/27/23 08:32	1311/6020B	
Selenium	ND	0.0500	0.100	mg/L	10	10/27/23 08:32	1311/6020B	
Silver	ND	0.0500	0.100	mg/L	10	10/27/23 08:32	1311/6020B	
TP-11-IM-4.0-5.0-20231012 (A	3J1366-20RE1)			Matrix: So	oil			
Batch: 23J1044								
Arsenic	ND	0.0500	0.100	mg/L	10	10/27/23 08:37	1311/6020B	
Barium	ND	2.50	5.00	mg/L	10	10/27/23 08:37	1311/6020B	
Cadmium	ND	0.0500	0.100	mg/L	10	10/27/23 08:37	1311/6020B	
Chromium	ND	0.0500	0.100	mg/L	10	10/27/23 08:37	1311/6020B	
Lead	ND	0.0250	0.0500	mg/L	10	10/27/23 08:37	1311/6020B	Q-41
Mercury	ND	0.00375	0.00700	mg/L	10	10/27/23 08:37	1311/6020B	
Selenium	ND	0.0500	0.100	mg/L	10	10/27/23 08:37	1311/6020B	
Silver	ND	0.0500	0.100	mg/L	10	10/27/23 08:37	1311/6020B	
TP-10-IM-9.0-10.0-20231011 (A	A3J1366-21RE1)			Matrix: So	oil			
Batch: 23J1044								
Arsenic	ND	0.0500	0.100	mg/L	10	10/27/23 08:42	1311/6020B	
Barium	ND	2.50	5.00	mg/L	10	10/27/23 08:42	1311/6020B	
Cadmium	ND	0.0500	0.100	mg/L	10	10/27/23 08:42	1311/6020B	
Chromium	ND	0.0500	0.100	mg/L	10	10/27/23 08:42	1311/6020B	
Lead	0.272	0.0250	0.0500	mg/L	10	10/27/23 08:42	1311/6020B	Q-41
Mercury	ND	0.00375	0.00700	mg/L	10	10/27/23 08:42	1311/6020B	-
Selenium	ND	0.0500	0.100	mg/L	10	10/27/23 08:42	1311/6020B	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 70 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		TCLP Meta	als by EPA 60	20B (ICPMS	5)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-10-IM-9.0-10.0-20231011 (A3J1366-2	21RE1)			Matrix: So	oil			
Silver	ND	0.0500	0.100	mg/L	10	10/27/23 08:42	1311/6020B	
TP-09-IM-11.0-12.0-20231011 (A3J1366	-22)			Matrix: So	oil			
Batch: 23J1044								
Arsenic	ND	0.0500	0.100	mg/L	10	10/27/23 08:47	1311/6020B	
Barium	ND	2.50	5.00	mg/L	10	10/27/23 08:47	1311/6020B	
Cadmium	0.0822	0.0500	0.100	mg/L	10	10/27/23 08:47	1311/6020B	J
Chromium	ND	0.0500	0.100	mg/L	10	10/27/23 08:47	1311/6020B	
Lead	0.254	0.0250	0.0500	mg/L	10	10/27/23 08:47	1311/6020B	Q-41
Mercury	ND	0.00375	0.00700	mg/L	10	10/27/23 08:47	1311/6020B	
Selenium	ND	0.0500	0.100	mg/L	10	10/27/23 08:47	1311/6020B	
Silver	ND	0.0500	0.100	mg/L	10	10/27/23 08:47	1311/6020B	
SS-06-0.0-1.0-20231011 (A3J1366-23)				Matrix: So	oil			
Batch: 23J1044								
Arsenic	ND	0.0500	0.100	mg/L	10	10/27/23 08:53	1311/6020B	
Barium	ND	2.50	5.00	mg/L	10	10/27/23 08:53	1311/6020B	
Cadmium	ND	0.0500	0.100	mg/L	10	10/27/23 08:53	1311/6020B	
Chromium	ND	0.0500	0.100	mg/L	10	10/27/23 08:53	1311/6020B	
Lead	0.0329	0.0250	0.0500	mg/L	10	10/27/23 08:53	1311/6020B	J, Q-41
Mercury	ND	0.00375	0.00700	mg/L	10	10/27/23 08:53	1311/6020B	
Selenium	ND	0.0500	0.100	mg/L	10	10/27/23 08:53	1311/6020B	
Silver	ND	0.0500	0.100	mg/L	10	10/27/23 08:53	1311/6020B	
SS-05-0.0-1.0-20231011 (A3J1366-24)				Matrix: So	oil			
Batch: 23J1044								
Arsenic	ND	0.0500	0.100	mg/L	10	10/27/23 09:08	1311/6020B	
Barium	ND	2.50	5.00	mg/L	10	10/27/23 09:08	1311/6020B	
Cadmium	ND	0.0500	0.100	mg/L	10	10/27/23 09:08	1311/6020B	
Chromium	ND	0.0500	0.100	mg/L	10	10/27/23 09:08	1311/6020B	
Lead	0.126	0.0250	0.0500	mg/L	10	10/27/23 09:08	1311/6020B	
Mercury	ND	0.00375	0.00700	mg/L	10	10/27/23 09:08	1311/6020B	
Selenium	ND	0.0500	0.100	mg/L	10	10/27/23 09:08	1311/6020B	
Silver	ND	0.0500	0.100	mg/L	10	10/27/23 09:08	1311/6020B	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		TCLP Meta	als by EPA 602	OB (ICPMS	5)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-04-IM-4.0-5.0-20231010 (A3J1366-25)				Matrix: So	oil			
Batch: 23J1044								
Arsenic	ND	0.0500	0.100	mg/L	10	10/27/23 09:13	1311/6020B	
Barium	ND	2.50	5.00	mg/L	10	10/27/23 09:13	1311/6020B	
Cadmium	ND	0.0500	0.100	mg/L	10	10/27/23 09:13	1311/6020B	
Chromium	ND	0.0500	0.100	mg/L	10	10/27/23 09:13	1311/6020B	
Lead	ND	0.0250	0.0500	mg/L	10	10/27/23 09:13	1311/6020B	
Mercury	ND	0.00375	0.00700	mg/L	10	10/27/23 09:13	1311/6020B	
Selenium	ND	0.0500	0.100	mg/L	10	10/27/23 09:13	1311/6020B	
Silver	ND	0.0500	0.100	mg/L	10	10/27/23 09:13	1311/6020B	
TP-03-IM-14.0-15.0-20231010 (A3J1366-2	6)			Matrix: So	oil			
Batch: 23J1044								
Arsenic	ND	0.0500	0.100	mg/L	10	10/27/23 09:19	1311/6020B	
Barium	ND	2.50	5.00	mg/L	10	10/27/23 09:19	1311/6020B	
Cadmium	ND	0.0500	0.100	mg/L	10	10/27/23 09:19	1311/6020B	
Chromium	ND	0.0500	0.100	mg/L	10	10/27/23 09:19	1311/6020B	
Lead	3.25	0.0250	0.0500	mg/L	10	10/27/23 09:19	1311/6020B	
Mercury	ND	0.00375	0.00700	mg/L	10	10/27/23 09:19	1311/6020B	
Selenium	ND	0.0500	0.100	mg/L	10	10/27/23 09:19	1311/6020B	
Silver	ND	0.0500	0.100	mg/L	10	10/27/23 09:19	1311/6020B	
TP-02-IM-4.0-5.0-20231010 (A3J1366-27)				Matrix: So	oil			
Batch: 23J1044								
Arsenic	ND	0.0500	0.100	mg/L	10	10/27/23 09:24	1311/6020B	
Barium	ND	2.50	5.00	mg/L	10	10/27/23 09:24	1311/6020B	
Cadmium	ND	0.0500	0.100	mg/L	10	10/27/23 09:24	1311/6020B	
Chromium	ND	0.0500	0.100	mg/L	10	10/27/23 09:24	1311/6020B	
Lead	0.205	0.0250	0.0500	mg/L	10	10/27/23 09:24	1311/6020B	
Mercury	ND	0.00375	0.00700	mg/L	10	10/27/23 09:24	1311/6020B	
Selenium	ND	0.0500	0.100	mg/L	10	10/27/23 09:24	1311/6020B	

Batch: 23J1044

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menterg

Page 72 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

TCLP Metals by EPA 6020B (ICPMS)										
	Sample	Detection	Reporting	**	5 1	Date		.		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes		
TP-01-IM-5.0-6.0-20231010 (A3J1366-28)	Matrix: Soil									
Arsenic	ND	0.0500	0.100	mg/L	10	10/27/23 09:29	1311/6020B			
Barium	ND	2.50	5.00	mg/L	10	10/27/23 09:29	1311/6020B			
Cadmium	ND	0.0500	0.100	mg/L	10	10/27/23 09:29	1311/6020B			
Chromium	ND	0.0500	0.100	mg/L	10	10/27/23 09:29	1311/6020B			
Lead	0.0742	0.0250	0.0500	mg/L	10	10/27/23 09:29	1311/6020B			
Mercury	ND	0.00375	0.00700	mg/L	10	10/27/23 09:29	1311/6020B			
Selenium	ND	0.0500	0.100	mg/L	10	10/27/23 09:29	1311/6020B			
Silver	ND	0.0500	0.100	mg/L	10	10/27/23 09:29	1311/6020B			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Mounterg

Page 73 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: **Eatonville Landfill Characterization**

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		Conventio	nal Chemistr	y Parameters	<u> </u>			
A 1.	Sample	Detection	Reporting	TT :	D''L 4'	Date	Malanc	NI.
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
TP-01-IM-10.0-11.0-20231010 (A3J136	66-06)			Matrix: Soi	ı			
Batch: 23J0780								
Soil/Solid pH (measured in H2O)	7.8			pH Units	1	10/19/23 17:19	EPA 9045D	pH_S
pH Temperature (deg C)	22.2			pH Units	1	10/19/23 17:19	EPA 9045D	pH_S
TP-04-NS-9.0-10.0-20231010 (A3J136	6-07)			Matrix: Soi	I			
Batch: 23J0780								
Soil/Solid pH (measured in H2O)	7.7			pH Units	1	10/19/23 17:21	EPA 9045D	pH_S
pH Temperature (deg C)	22.0			pH Units	1	10/19/23 17:21	EPA 9045D	pH_S
TP-05-NS-4.0-5.0-20231011 (A3J1366-	-08)			Matrix: Soi	I			
Batch: 23J0780								
Soil/Solid pH (measured in H2O)	7.3			pH Units	1	10/19/23 17:24	EPA 9045D	pH_S
pH Temperature (deg C)	21.9			pH Units	1	10/19/23 17:24	EPA 9045D	pH_S
TP-06-NS-9.0-10.0-20231011 (A3J1366	6-09)			Matrix: Soi	I			
Batch: 23J0780								
Soil/Solid pH (measured in H2O)	7.6			pH Units	1	10/19/23 17:26	EPA 9045D	pH_S
pH Temperature (deg C)	21.8			pH Units	1	10/19/23 17:26	EPA 9045D	pH_S
TP-08-NS-12.0-13.0-20231011 (A3J136	66-10)			Matrix: Soi	ı			
Batch: 23J0780								
Soil/Solid pH (measured in H2O)	7.8			pH Units	1	10/19/23 17:27	EPA 9045D	pH_S
pH Temperature (deg C)	21.4			pH Units	1	10/19/23 17:27	EPA 9045D	pH_S
TP-10-NS-12.0-13.0-20231011 (A3J136	66-11)			Matrix: Soi	I			
Batch: 23J0780								
Soil/Solid pH (measured in H2O)	7.5			pH Units	1	10/19/23 17:29	EPA 9045D	pH_S
pH Temperature (deg C)	21.4			pH Units	1	10/19/23 17:29	EPA 9045D	pH_S
TP-15-NS-9.0-10.0-20231012 (A3J136	6-12)			Matrix: Soi	I			
Batch: 23J0780								
Soil/Solid pH (measured in H2O)	7.9			pH Units	1	10/19/23 17:30	EPA 9045D	pH_S
pH Temperature (deg C)	22.1			pH Units	1	10/19/23 17:30	EPA 9045D	pH_S
ГР-15-IM-4.0-5.0-20231012 (A3J1366-	13)			Matrix: Soi	I			· ·
D-4-b- 02 10700								

Batch: 23J0780

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

PH Units 1 10/19/23 17:31 EPA 9045D PH_S PH_S P	Conventional Chemistry Parameters										
Matrix Soil	A 17				TT	Dile		M.d. ID.C	N		
Soil/Soild pH (measured in H2O) 7.4 pH Units 1 10/19/23 17.31 EPA 9045D pH S pH Temperature (deg C) 22.0 pH Units 1 10/19/23 17.31 EPA 9045D pH S PH S PH TEMPERATURE (deg C) 22.0 pH Units 3 10/19/23 17.31 EPA 9045D pH S			Limit	Limit			Analyzed	Method Ref.	Notes		
PH Comperature (deg C) 22.0 PH Units 1 10/19/23 17:31 EPA 9045D PH S	TP-15-IM-4.0-5.0-20231012 (A3J1366-	13)			Matrix: Soi	l					
Batch: 23,0780 Soil/Soild pH (measured in H2O) 7.5 pH Units 1 10/19/23 17:36 EPA 9045D pH_S pH Units 1 10/19/23 17:37 EPA 9045D pH_S pH Units 1 10/19/23 17:39 EPA 9045D pH_S pH Units 1 10/19/23 17:39 EPA 9045D pH_S pH Units 1 10/19/23 17:39 EPA 9045D pH_S pH_S pH_S pH_S pH_S pH_S pH_S pH_S	Soil/Solid pH (measured in H2O)				•						
Batch: 23J0780 Soil/Solid pH (measured in H2O) 7.5 pH Units 1 10/19/23 17.36 EPA 9045D pH_S pH Temperature (deg C) 21.1 pH Units 1 10/19/23 17.36 EPA 9045D pH_S pH_S pH Temperature (deg C) 21.1 pH Units 1 10/19/23 17.36 EPA 9045D pH_S pH_S pH_S pH_S pH_S pH_S pH_S pH_S	pH Temperature (deg C)	22.0			pH Units	1	10/19/23 17:31	EPA 9045D	pH_S		
Soli/Solid pH (measured in H2O) 7.5 pH Units 1 10/19/23 17.36 EPA 9045D pH_S pH Temperature (deg C) 21.1 pH Units 1 10/19/23 17.36 EPA 9045D pH_S pH Temperature (deg C) 21.1 pH Units 1 10/19/23 17.36 EPA 9045D pH_S pH Temperature (deg C) 20.9 pH Units 1 10/19/23 17.37 EPA 9045D pH_S pH Units 1 10/19/23 17.39 EPA 9045D pH_S pH_S pH_S pH_S pH_S pH_S pH_S pH_S	TP-07-IM-14.0-15.0-20231011 (A3J136	66-14)			Matrix: Soi	I					
PH Temperature (deg C) 21.1 PH Units 1 10/19/23 17:36 EPA 9045D PH Seph Hunits PH Units PH Uni	Batch: 23J0780										
TP-08-IM-4.0-5.0-20231011 (A3J1366-15) Matrix: Soil Batch: 23J0780 Soil/Solid pH (measured in H2O) 7.5 pH Units 1 10/19/23 17:37 EPA 9045D pH_S PH-Soil/House in H2O) 7.5 pH Units 3 1 10/19/23 17:37 EPA 9045D pH_S TP-07-IM-9.0-10.0-20231011 (A3J1366-16) Matrix: Soil Batch: 23J0780 Soil/Solid pH (measured in H2O) 7.5 pH Units 1 10/19/23 17:39 EPA 9045D pH_S TP-14-IM-14.0-15.0-20231012 (A3J1366-17) Matrix: Soil Batch: 23J0780 Soil/Solid pH (measured in H2O) 7.7 pH Units 1 10/19/23 17:41 EPA 9045D pH_S TP-13-IM-14.0-15.0-20231012 (A3J1366-17) Matrix: Soil Batch: 23J0780 Soil/Solid pH (measured in H2O) 7.7 pH Units 1 10/19/23 17:41 EPA 9045D pH_S TP-13-IM-14.0-15.0-20231012 (A3J1366-18) Matrix: Soil Batch: 23J0780 Soil/Solid pH (measured in H2O) 7.5 pH Units 1 10/19/23 17:43 EPA 9045D pH_S TP-13-IM-14.0-15.0-20231012 (A3J1366-19) Matrix: Soil Batch: 23J0780 Soil/Solid pH (measured in H2O) 7.5 pH Units 1 10/19/23 17:43 EPA 9045D pH_S TP-12-IM-9.0-10.0-20231012 (A3J1366-19) Matrix: Soil Batch: 23J0780 Soil/Solid pH (measured in H2O) 7.5 pH Units 1 10/19/23 17:44 EPA 9045D pH_S TP-12-IM-9.0-10.0-20231012 (A3J1366-19) Matrix: Soil Batch: 23J0780 Soil/Solid pH (measured in H2O) 7.5 pH Units 1 10/19/23 17:44 EPA 9045D pH_S TP-12-IM-9.0-10.0-20231012 (A3J1366-19) Batch: 23J0780 Soil/Solid pH (measured in H2O) 7.5 pH Units 2 1 10/19/23 17:44 EPA 9045D pH_S TP-11-IM-4.0-5.0-20231012 (A3J1366-20) Matrix: Soil	Soil/Solid pH (measured in H2O)	7.5			pH Units	1	10/19/23 17:36	EPA 9045D	pH_S		
Batch: 23J0780 Soil/Solid pH (measured in H2O) 7.5 pH Units 1 10/19/23 17:37 EPA 9045D pH_S pH Temperature (deg C) 20.9 pH Units 1 10/19/23 17:37 EPA 9045D pH_S pH Temperature (deg C) 20.9 pH Units 1 10/19/23 17:37 EPA 9045D pH_S pH Units 1 10/19/23 17:39 EPA 9045D pH_S pH Units 1 10/19/23 17:41 EPA 9045D pH_S pH_S pH Units 1 10/19/23 17:41 EPA 9045D pH_S pH_S pH Units 1 10/19/23 17:41 EPA 9045D pH_S pH_S pH Units 1 10/19/23 17:41 EPA 9045D pH_S pH_S pH_S pH_S pH_S pH_S pH_S pH_S	pH Temperature (deg C)	21.1			pH Units	1	10/19/23 17:36	EPA 9045D	pH_S		
Soil/Solid pH (measured in H2O) 7.5 pH Units 1 10/19/23 17:37 EPA 9045D pH_S PH Temperature (deg C) 20.9 pH Units 1 10/19/23 17:37 EPA 9045D pH_S PH Temperature (deg C) 20.9 pH Units 1 10/19/23 17:37 EPA 9045D pH_S PH Temperature (deg C) 22.0 pH Units 1 10/19/23 17:39 EPA 9045D pH_S PH Temperature (deg C) 22.0 pH Units 1 10/19/23 17:39 EPA 9045D pH_S PH Temperature (deg C) 22.0 pH Units 1 10/19/23 17:39 EPA 9045D pH_S PH Temperature (deg C) 22.1 pH Units 1 10/19/23 17:41 EPA 9045D pH_S PH Temperature (deg C) 22.1 pH Units 1 10/19/23 17:41 EPA 9045D pH_S PH Temperature (deg C) 22.1 pH Units 1 10/19/23 17:41 EPA 9045D pH_S PH Temperature (deg C) 22.1 pH Units 1 10/19/23 17:41 EPA 9045D pH_S PH Temperature (deg C) 22.0 pH Units 1 10/19/23 17:43 EPA 9045D pH_S PH Temperature (deg C) 22.0 pH Units 1 10/19/23 17:43 EPA 9045D pH_S PH Temperature (deg C) 22.0 pH Units 1 10/19/23 17:43 EPA 9045D pH_S PH Temperature (deg C) 22.0 pH Units 1 10/19/23 17:43 EPA 9045D pH_S PH Temperature (deg C) 22.0 pH Units 1 10/19/23 17:44 EPA 9045D pH_S PH Temperature (deg C) 22.0 pH Units 1 10/19/23 17:44 EPA 9045D pH_S PH Temperature (deg C) 21.9 pH Units 1 10/19/23 17:44 EPA 9045D pH_S PH Temperature (deg C) 21.9 pH Units 1 10/19/23 17:44 EPA 9045D pH_S PH Temperature (deg C) 21.9 pH Units 1 10/19/23 17:44 EPA 9045D pH_S PH Temperature (deg C) 21.9 pH Units 1 10/19/23 17:44 EPA 9045D pH_S PH Temperature (deg C) 21.9 pH Units 1 10/19/23 17:44 EPA 9045D pH_S PH Temperature (deg C) 21.9 pH Units 1 10/19/23 17:44 EPA 9045D pH_S PH Temperature (deg C) 21.9 pH Units 1 10/19/23 17:44 EPA 9045D pH_S PH Temperature (deg C) 21.9 pH Units 1 10/19/23 17:44 EPA 9045D pH_S PH Temperature (deg C) 21.9 PH_S PH_S PH_S PH_S PH_S PH_S PH_S PH_S	TP-08-IM-4.0-5.0-20231011 (A3J1366-	15)			Matrix: Soi	I					
pH Temperature (deg C) 20.9 pH Units 1 10/19/23 17:37 EPA 9045D pH_S TP-07-IM-9.0-10.0-20231011 (A3J1366-16)	Batch: 23J0780										
TP-07-IM-9.0-10.0-20231011 (A3J1366-16) Batch: 23J0780 Soil/Soild pH (measured in H2O) 7.5 pH Units 1 10/19/23 17:39 EPA 9045D pH_S pH Temperature (deg C) 22.0 pH Units 1 10/19/23 17:39 EPA 9045D pH_S TP-14-IM-14.0-15.0-20231012 (A3J1366-17) Batch: 23J0780 Soil/Soild pH (measured in H2O) 7.7 pH Units 1 10/19/23 17:41 EPA 9045D pH_S TP-13-IM-14.0-15.0-20231012 (A3J1366-18) Batch: 23J0780 Soil/Soild pH (measured in H2O) 7.5 pH Units 1 10/19/23 17:41 EPA 9045D pH_S TP-13-IM-14.0-15.0-20231012 (A3J1366-18) Batch: 23J0780 Soil/Soild pH (measured in H2O) 7.5 pH Units 1 10/19/23 17:43 EPA 9045D pH_S TP-12-IM-9.0-10.0-20231012 (A3J1366-19) Batch: 23J0780 Soil/Soild pH (measured in H2O) 7.5 pH Units 1 10/19/23 17:43 EPA 9045D pH_S TP-12-IM-9.0-10.0-20231012 (A3J1366-19) Batch: 23J0780 Soil/Soild pH (measured in H2O) 7.5 pH Units 1 10/19/23 17:44 EPA 9045D pH_S TP-11-IM-4.0-5.0-20231012 (A3J1366-20) Batch: 23J0780 Soil/Soild pH (measured in H2O) 7.5 pH Units 1 10/19/23 17:44 EPA 9045D pH_S TP-11-IM-4.0-5.0-20231012 (A3J1366-20) Matrix: Soil	Soil/Solid pH (measured in H2O)	7.5			pH Units	1	10/19/23 17:37	EPA 9045D	pH_S		
Batch: 23J0780 PH Units 1 10/19/23 17:39 EPA 9045D PH_S PH Temperature (deg C) 22.0 PH Units 1 10/19/23 17:39 EPA 9045D PH_S PH_S PH Temperature (deg C) 22.0 PH Units 1 10/19/23 17:39 EPA 9045D PH_S PH_S PH_S PH_S PH_S PH_S PH_S PH_S	pH Temperature (deg C)	20.9			pH Units	1	10/19/23 17:37	EPA 9045D	pH_S		
Soil/Solid pH (measured in H2O) 7.5 pH Units 1 10/19/23 17:39 EPA 9045D pH_S pH Temperature (deg C) 22.0 pH Units 1 10/19/23 17:39 EPA 9045D pH_S pH_S pH Temperature (deg C) 22.0 pH Units 1 10/19/23 17:39 EPA 9045D pH_S pH_S pH_S pH_S pH_S pH_S pH_S pH_S	TP-07-IM-9.0-10.0-20231011 (A3J1366	6-16)			Matrix: Soi	I					
pH Temperature (deg C) 22.0 pH Units 1 10/19/23 17:39 EPA 9045D pH_S TP-14-IM-14.0-15.0-20231012 (A3J1366-17) Matrix: Soil Batch: 23J0780 Soil/Solid pH (measured in H2O) 7.7 pH Units 1 10/19/23 17:41 EPA 9045D pH_S TP-13-IM-14.0-15.0-20231012 (A3J1366-18) Matrix: Soil Batch: 23J0780 Soil/Solid pH (measured in H2O) 7.5 pH Units 1 10/19/23 17:43 EPA 9045D pH_S pH Temperature (deg C) 22.0 pH Units 1 10/19/23 17:43 EPA 9045D pH_S TP-12-IM-9.0-10.0-20231012 (A3J1366-19) Matrix: Soil Batch: 23J0780 Soil/Solid pH (measured in H2O) 7.5 pH Units 1 10/19/23 17:43 EPA 9045D pH_S TP-12-IM-9.0-10.0-20231012 (A3J1366-19) Matrix: Soil Batch: 23J0780 Soil/Solid pH (measured in H2O) 7.5 pH Units 1 10/19/23 17:44 EPA 9045D pH_S TP-11-IM-4.0-5.0-20231012 (A3J1366-20) Matrix: Soil Batch: 23J0780 Batch: 23J0780	Batch: 23J0780										
TP-14-IM-14.0-15.0-20231012 (A3J1366-17) Batch: 23J0780 Soil/Solid pH (measured in H2O) 7.7 pH Units 1 10/19/23 17:41 EPA 9045D pH_S pH Temperature (deg C) 22.1 pH Units 1 10/19/23 17:41 EPA 9045D pH_S TP-13-IM-14.0-15.0-20231012 (A3J1366-18) Batch: 23J0780 Soil/Solid pH (measured in H2O) 7.5 pH Units 1 10/19/23 17:43 EPA 9045D pH_S pH Temperature (deg C) 22.0 pH Units 1 10/19/23 17:43 EPA 9045D pH_S pH Temperature (deg C) 22.0 pH Units 1 10/19/23 17:43 EPA 9045D pH_S pH_S pH Temperature (deg C) 21.9 pH Units 1 10/19/23 17:44 EPA 9045D pH_S pH_S pH Temperature (deg C) 21.9 pH Units 1 10/19/23 17:44 EPA 9045D pH_S pH_S pH Temperature (deg C) 21.9 pH Units 1 10/19/23 17:44 EPA 9045D pH_S pH_S pH_S pH_S pH_S pH_S pH_S pH_S	Soil/Solid pH (measured in H2O)	7.5			pH Units	1	10/19/23 17:39	EPA 9045D	pH_S		
Batch: 23J0780 Soil/Solid pH (measured in H2O) 7.7 pH Units 1 10/19/23 17:41 EPA 9045D pH_S	pH Temperature (deg C)	22.0			pH Units	1	10/19/23 17:39	EPA 9045D	pH_S		
Soil/Solid pH (measured in H2O) 7.7 pH Units 1 10/19/23 17:41 EPA 9045D pH_S	TP-14-IM-14.0-15.0-20231012 (A3J136	66-17)			Matrix: Soi	I					
pH Temperature (deg C) 22.1 pH Units 1 10/19/23 17:41 EPA 9045D pH_S TP-13-IM-14.0-15.0-20231012 (A3J1366-18) Matrix: Soil Batch: 23J0780 Soil/Solid pH (measured in H2O) 7.5 pH Units 1 10/19/23 17:43 EPA 9045D pH_S pH Temperature (deg C) 22.0 pH Units 1 10/19/23 17:43 EPA 9045D pH_S TP-12-IM-9.0-10.0-20231012 (A3J1366-19) Matrix: Soil Batch: 23J0780 Soil/Solid pH (measured in H2O) 7.5 pH Units 1 10/19/23 17:44 EPA 9045D pH_S pH Temperature (deg C) 21.9 pH Units 1 10/19/23 17:44 EPA 9045D pH_S TP-11-IM-4.0-5.0-20231012 (A3J1366-20) Matrix: Soil	Batch: 23J0780										
TP-13-IM-14.0-15.0-20231012 (A3J1366-18) Batch: 23J0780 Soil/Solid pH (measured in H2O) 7.5 pH Units 1 10/19/23 17:43 EPA 9045D pH_S pH Temperature (deg C) 22.0 pH Units 1 10/19/23 17:43 EPA 9045D pH_S TP-12-IM-9.0-10.0-20231012 (A3J1366-19) Matrix: Soil Batch: 23J0780 Soil/Solid pH (measured in H2O) 7.5 pH Units 1 10/19/23 17:44 EPA 9045D pH_S pH Temperature (deg C) 21.9 pH Units 1 10/19/23 17:44 EPA 9045D pH_S TP-11-IM-4.0-5.0-20231012 (A3J1366-20) Matrix: Soil Batch: 23J0780	Soil/Solid pH (measured in H2O)	7.7			pH Units	1	10/19/23 17:41	EPA 9045D	pH_S		
Batch: 23J0780 Soil/Solid pH (measured in H2O) 7.5 pH Units 1 10/19/23 17:43 EPA 9045D pH_S pH Temperature (deg C) 22.0 pH Units 1 10/19/23 17:43 EPA 9045D pH_S TP-12-IM-9.0-10.0-20231012 (A3J1366-19) Matrix: Soil Batch: 23J0780 Soil/Solid pH (measured in H2O) 7.5 pH Units 1 10/19/23 17:44 EPA 9045D pH_S pH Temperature (deg C) 21.9 pH Units 1 10/19/23 17:44 EPA 9045D pH_S TP-11-IM-4.0-5.0-20231012 (A3J1366-20) Matrix: Soil Batch: 23J0780	pH Temperature (deg C)	22.1			pH Units	1	10/19/23 17:41	EPA 9045D	pH_S		
Soil/Solid pH (measured in H2O) 7.5 pH Units 1 10/19/23 17:43 EPA 9045D pH_S FP Temperature (deg C) 22.0 pH Units 1 10/19/23 17:43 EPA 9045D pH_S TP-12-IM-9.0-10.0-20231012 (A3J1366-19) Matrix: Soil Batch: 23J0780 Soil/Solid pH (measured in H2O) 7.5 pH Units 1 10/19/23 17:44 EPA 9045D pH_S pH Temperature (deg C) 21.9 pH Units 1 10/19/23 17:44 EPA 9045D pH_S TP-11-IM-4.0-5.0-20231012 (A3J1366-20) Matrix: Soil	TP-13-IM-14.0-15.0-20231012 (A3J136	66-18)			Matrix: Soi	I					
pH Temperature (deg C) pH Units pH Units 1 10/19/23 17:43 EPA 9045D pH_S TP-12-IM-9.0-10.0-20231012 (A3J1366-19) Batch: 23J0780 Soil/Solid pH (measured in H2O) pH Units pH Units pH Units 1 10/19/23 17:44 EPA 9045D pH_S pH Temperature (deg C) pH Units 1 10/19/23 17:44 EPA 9045D pH_S pH Temperature (deg C) pH Units 1 10/19/23 17:44 EPA 9045D pH_S TP-11-IM-4.0-5.0-20231012 (A3J1366-20) Matrix: Soil	Batch: 23J0780										
TP-12-IM-9.0-10.0-20231012 (A3J1366-19) Batch: 23J0780 Soil/Solid pH (measured in H2O) pH Units pH Units pH Units 1 10/19/23 17:44 EPA 9045D pH_S pH Temperature (deg C) pH Units 1 10/19/23 17:44 EPA 9045D pH_S TP-11-IM-4.0-5.0-20231012 (A3J1366-20) Matrix: Soil	Soil/Solid pH (measured in H2O)	7.5			pH Units	1	10/19/23 17:43	EPA 9045D	pH_S		
Batch: 23J0780 Soil/Solid pH (measured in H2O) 7.5 pH Units 1 10/19/23 17:44 EPA 9045D pH_S pH Temperature (deg C) 21.9 pH Units 1 10/19/23 17:44 EPA 9045D pH_S TP-11-IM-4.0-5.0-20231012 (A3J1366-20) Matrix: Soil	pH Temperature (deg C)	22.0			pH Units	1	10/19/23 17:43	EPA 9045D	pH_S		
Soil/Solid pH (measured in H2O) 7.5 pH Units 1 10/19/23 17:44 EPA 9045D pH_S pH Temperature (deg C) 21.9 pH Units 1 10/19/23 17:44 EPA 9045D pH_S TP-11-IM-4.0-5.0-20231012 (A3J1366-20) Matrix: Soil	TP-12-IM-9.0-10.0-20231012 (A3J1366	5-19)			Matrix: Soi	I					
pH Temperature (deg C) 21.9 pH Units 1 10/19/23 17:44 EPA 9045D pH_S TP-11-IM-4.0-5.0-20231012 (A3J1366-20) Matrix: Soil	Batch: 23J0780										
TP-11-IM-4.0-5.0-20231012 (A3J1366-20) Batch: 23J0780	Soil/Solid pH (measured in H2O)	7.5			pH Units	1	10/19/23 17:44	EPA 9045D	pH_S		
Batch: 23J0780	pH Temperature (deg C)	21.9			pH Units	1	10/19/23 17:44	EPA 9045D	pH_S		
	TP-11-IM-4.0-5.0-20231012 (A3J1366-2	20)			Matrix: Soi	I					
Soil/Solid pH (measured in H2O) 7.8 pH Units 1 10/19/23 17:46 EPA 9045D pH_S	Batch: 23J0780										
	Soil/Solid pH (measured in H2O)	7.8			pH Units	1	10/19/23 17:46	EPA 9045D	pH_S		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Conventional Chemistry Parameters									
	Sample	Detection	Reporting			Date				
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes		
TP-11-IM-4.0-5.0-20231012 (A3J1366-20	0)			Matrix: Soi						
pH Temperature (deg C)	22.0			pH Units	1	10/19/23 17:46	EPA 9045D	pH_S		
TP-09-IM-11.0-12.0-20231011 (A3J1366	-22)			Matrix: Soi	l					
Batch: 23J0820										
Soil/Solid pH (measured in H2O)	7.3			pH Units	1	10/20/23 13:21	EPA 9045D	pH_S		
pH Temperature (deg C)	22.2			pH Units	1	10/20/23 13:21	EPA 9045D	pH_S		
SS-06-0.0-1.0-20231011 (A3J1366-23)				Matrix: Soi	I					
Batch: 23J0820										
Soil/Solid pH (measured in H2O)	7.6			pH Units	1	10/20/23 13:24	EPA 9045D	pH_S		
pH Temperature (deg C)	22.1			pH Units	1	10/20/23 13:24	EPA 9045D	pH_S		
SS-05-0.0-1.0-20231011 (A3J1366-24)				Matrix: Soi	I					
Batch: 23J0820										
Soil/Solid pH (measured in H2O)	6.6			pH Units	1	10/20/23 13:26	EPA 9045D	pH_S		
pH Temperature (deg C)	22.0			pH Units	1	10/20/23 13:26	EPA 9045D	pH_S		
TP-04-IM-4.0-5.0-20231010 (A3J1366-2	5)			Matrix: Soi	I					
Batch: 23J0820										
Soil/Solid pH (measured in H2O)	7.3			pH Units	1	10/20/23 13:29	EPA 9045D	pH_S		
pH Temperature (deg C)	22.1			pH Units	1	10/20/23 13:29	EPA 9045D	pH_S		
TP-03-IM-14.0-15.0-20231010 (A3J1366	-26)			Matrix: Soi	I					
Batch: 23J0820										
Soil/Solid pH (measured in H2O)	7.4			pH Units	1	10/20/23 13:31	EPA 9045D	pH_S		
pH Temperature (deg C)	22.1			pH Units	1	10/20/23 13:31	EPA 9045D	pH_S		
TP-02-IM-4.0-5.0-20231010 (A3J1366-2	7)			Matrix: Soi	I					
Batch: 23J0820										
Soil/Solid pH (measured in H2O)	7.3			pH Units	1	10/20/23 13:33	EPA 9045D	pH_S		
pH Temperature (deg C)	22.9			pH Units	1	10/20/23 13:33	EPA 9045D	pH_S		
TP-01-IM-5.0-6.0-20231010 (A3J1366-2	8)			Matrix: Soi	I					
Batch: 23J0820										
Soil/Solid pH (measured in H2O)	7.7			pH Units	1	10/20/23 13:34	EPA 9045D	pH_S		
pH Temperature (deg C)	22.2			pH Units	1	10/20/23 13:34	EPA 9045D	pH_S		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

Conventional Chemistry Parameters										
	Sample	Detection	Reporting	Date						
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Mounterg

Page 77 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300

Portland, OR 97209

Project: Eatonville Landfill Characterization

Project Number: **00171.074.008**Project Manager: **Ben Johnson**

Report ID: A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry W	eight				
	Sample	Detection	Reporting	** *	75 W	Date	V 1 1 1 0 0	N Y .
Analyte (Analyte (Analyte)	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
WS-01-0.0-2.0-10102023 (A3J1366-01)				Matrix: Soi			23J0745	
% Solids	48.5	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
WS-02-0.0-2.0-1010-2023 (A3J1366-02)				Matrix: Soi	I	Batch:	23J0745	
% Solids	55.6	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
WS-03-0.0-2.0-10102023 (A3J1366-03)				Matrix: Soi	I	Batch:	23J0745	
% Solids	54.1	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
WS-04-0.0-2.0-10102023 (A3J1366-04)				Matrix: Soi	I	Batch:	23J0745	
% Solids	29.7	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
WS-05-0.0-2.0-10102023 (A3J1366-05)				Matrix: Soi	I	Batch:	23J0745	
% Solids	34.4	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
TP-01-IM-10.0-11.0-20231010 (A3J1366-06)			Matrix: Soi	I	Batch:	23J0745		
% Solids	86.1	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
TP-04-NS-9.0-10.0-20231010 (A3J1366-07)			Matrix: Soi	I	Batch:	23J0745	
% Solids	88.5	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
TP-05-NS-4.0-5.0-20231011 (A3J1366-08)				Matrix: Soi	I	Batch:	23J0745	
% Solids	86.6	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
TP-06-NS-9.0-10.0-20231011 (A3J1366-09))			Matrix: Soi	I	Batch:	23J0745	
% Solids	83.5	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
TP-08-NS-12.0-13.0-20231011 (A3J1366-1	D)			Matrix: Soi	I	Batch:	23J0745	
% Solids	89.6	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
TP-10-NS-12.0-13.0-20231011 (A3J1366-1	1)			Matrix: Soi	I	Batch:	23J0745	
% Solids	88.6	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
TP-15-NS-9.0-10.0-20231012 (A3J1366-12)			Matrix: Soi	I	Batch:	23J0745		
% Solids	89.5	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
P-15-IM-4.0-5.0-20231012 (A3J1366-13)				Matrix: Soi	ı	Batch:	23J0745	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 78 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

Project: <u>Eatonville Landfill Characterization</u>

Project Number: **00171.074.008**Project Manager: **Ben Johnson**

Report ID: A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry W	eight				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-15-IM-4.0-5.0-20231012 (A3J1366-13)				Matrix: Soil		Batch:		
% Solids	90.9	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
TP-07-IM-14.0-15.0-20231011 (A3J1366-14)			Matrix: So	il	Batch:	23J0745	
% Solids	86.4	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
TP-08-IM-4.0-5.0-20231011 (A3J1366-15)				Matrix: So	il	Batch:	23J0745	
% Solids	88.3	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
TP-07-IM-9.0-10.0-20231011 (A3J1366-16)				Matrix: So	il	Batch:	23J0745	
% Solids	89.3	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
TP-14-IM-14.0-15.0-20231012 (A3J1366-17)			Matrix: So	il	Batch:	23J0745	
% Solids	79.7	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
TP-13-IM-14.0-15.0-20231012 (A3J1366-18)			Matrix: So	il	Batch:	23J0745	
% Solids	82.3	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
TP-12-IM-9.0-10.0-20231012 (A3J1366-19)				Matrix: So	il	Batch:	23J0745	
% Solids	85.5	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
TP-11-IM-4.0-5.0-20231012 (A3J1366-20)				Matrix: So	il	Batch:	23J0745	
% Solids	87.5	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
TP-10-IM-9.0-10.0-20231011 (A3J1366-21)				Matrix: So	iI	Batch:	23J0745	
% Solids	78.6	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
TP-09-IM-11.0-12.0-20231011 (A3J1366-22)			Matrix: So	il	Batch:	23J0745	
% Solids	84.9	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
SS-06-0.0-1.0-20231011 (A3J1366-23)				Matrix: So	il	Batch:	23J0745	
% Solids	92.0	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
SS-05-0.0-1.0-20231011 (A3J1366-24)				Matrix: So	il	Batch:	23J0745	
% Solids	83.4	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D	
TP-04-IM-4.0-5.0-20231010 (A3J1366-25)				Matrix: So	il	Batch:	23J0745	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 79 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

	Pe	ercent Dry W	eight						
Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
Matrix: Soil Batch: 23J0745									
88.4	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D			
1-14.0-15.0-20231010 (A3J1366-26)				oil	Batch:	Batch: 23J0745			
83.2	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D			
			Matrix: So	oil	Batch:	23J0745			
81.7	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D			
TP-01-IM-5.0-6.0-20231010 (A3J1366-28)				oil	Batch:	23J0745			
74.1	1.00	1.00	%	1	10/20/23 04:36	EPA 8000D			
	88.4) 83.2 81.7	Sample Result Detection Limit 88.4 1.00) 83.2 1.00 81.7 1.00	Sample Result Detection Limit Reporting Limit 88.4 1.00 1.00 9 1.00 1.00 81.7 1.00 1.00	Result Limit Limit Units	Sample Result Detection Limit Reporting Limit Units Dilution Matrix: Soil 88.4 1.00 1.00 % 1 Matrix: Soil 83.2 1.00 1.00 % 1 Matrix: Soil 81.7 1.00 1.00 % 1 Matrix: Soil	Sample Result Detection Limit Reporting Limit Units Dilution Analyzed Matrix: Soil Batch: 88.4 1.00 1.00 % 1 10/20/23 04:36 Natrix: Soil Batch: 83.2 1.00 1.00 % 1 10/20/23 04:36 Matrix: Soil Batch: 81.7 1.00 1.00 % 1 10/20/23 04:36 Matrix: Soil Batch:	Sample Result Detection Limit Reporting Limit Units Dilution Analyzed Method Ref. Matrix: Soil Batch: 23J0745 88.4 1.00 1.00 % 1 10/20/23 04:36 EPA 8000D 9 Matrix: Soil Batch: 23J0745 EPA 8000D 83.2 1.00 1.00 % 1 10/20/23 04:36 EPA 8000D Matrix: Soil Batch: 23J0745 81.7 1.00 1.00 % 1 10/20/23 04:36 EPA 8000D Matrix: Soil Batch: 23J0745		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menterg

Page 80 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: **Eatonville Landfill Characterization**

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		TCLP E	Extraction by	EPA 1311				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
WS-01-0.0-2.0-10102023 (A3J1366-01)				Units Date Analyzed Method Ref. Matrix: Soil Batch: 23J0867 N/A 1 10/23/23 16:40 EPA 1311 Matrix: Soil Batch: 23J0867 N/A 1 10/23/23 16:40 EPA 1311 Matrix: Soil Batch: 23J0867 N/A 1 10/23/23 16:40 EPA 1311 Matrix: Soil Batch: 23J0867 N/A 1 10/23/23 16:40 EPA 1311 Matrix: Soil Batch: 23J0868 N/A 1 10/23/23 16:40 EPA 1311 Matrix: Soil Batch: 23J0868 N/A 1 10/23/23 16:40 EPA 1311 Matrix: Soil Batch: 23J0868 N/A 1 10/23/23 16:40 EPA 1311 Matrix: Soil Batch: 23J0868 N/A 1 10/23/23 16:40 EPA 1311 Matrix: Soil Batch: 23J0868 N/A 1 10/23/23 16:40 EPA 1311 <t< td=""><td></td></t<>				
TCLP Extraction	PREP			N/A	1	10/23/23 16:40	EPA 1311	
WS-02-0.0-2.0-1010-2023 (A3J1366-02)				Matrix: Soi	iI	Batch:	23J0867	
TCLP Extraction	PREP			N/A	1	10/23/23 16:40	EPA 1311	
WS-03-0.0-2.0-10102023 (A3J1366-03)				Matrix: Soi	il	Batch:	23J0867	
TCLP Extraction	PREP			N/A	1	10/23/23 16:40	EPA 1311	
WS-04-0.0-2.0-10102023 (A3J1366-04)				Matrix: Soi	iI	Batch:	23J0867	
TCLP Extraction	PREP			N/A	1	10/23/23 16:40	EPA 1311	
WS-05-0.0-2.0-10102023 (A3J1366-05)				Matrix: Soi	il	Batch:	23J0868	
TCLP Extraction	PREP			N/A	1	10/23/23 16:40	EPA 1311	
TP-01-IM-10.0-11.0-20231010 (A3J1366-0	6)			Matrix: Soi	iI	Batch:	23J0868	
TCLP Extraction	PREP			N/A	1	10/23/23 16:40	EPA 1311	
TP-04-NS-9.0-10.0-20231010 (A3J1366-07	7)			Matrix: Soi	il	Batch:	23J0868	
TCLP Extraction	PREP			N/A	1	10/23/23 16:40	EPA 1311	
TP-05-NS-4.0-5.0-20231011 (A3J1366-08)				Matrix: Soi	il	Batch:	23J0868	
TCLP Extraction	PREP			N/A	1	10/23/23 16:40	EPA 1311	
TP-06-NS-9.0-10.0-20231011 (A3J1366-09	9)			Matrix: Soi	il	Batch:	23J0868	
TCLP Extraction	PREP			N/A	1	10/23/23 16:40	EPA 1311	
TP-08-NS-12.0-13.0-20231011 (A3J1366-1	10)			Matrix: Soi	il	Batch:	23J0868	
TCLP Extraction	PREP			N/A	1	10/23/23 16:40	EPA 1311	
TP-10-NS-12.0-13.0-20231011 (A3J1366-1	11)			Matrix: Soi	iI	Batch:	23J0868	
TCLP Extraction	PREP			N/A	1	10/23/23 16:40	EPA 1311	
TP-15-NS-9.0-10.0-20231012 (A3J1366-12)				Matrix: Soi	Matrix: Soil Batch: 23J0868			
TCLP Extraction	PREP			N/A	1	10/23/23 16:40	EPA 1311	
TP-15-IM-4.0-5.0-20231012 (A3J1366-13)				Matrix: Soi	iI	Batch:	23J0868	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions 55 SW Yamhill St, Ste 300 Portland, OR 97209 Project: Eatonville Landfill Characterization

Project Number: **00171.074.008**Project Manager: **Ben Johnson**

Report ID: A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		TCLP E	xtraction by	EPA 1311				
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
TP-15-IM-4.0-5.0-20231012 (A3J1366-13)				Matrix: Soi			23J0868	
TCLP Extraction	PREP			N/A	1	10/23/23 16:40	EPA 1311	
TP-07-IM-14.0-15.0-20231011 (A3J1366-14	4)			Matrix: Soi	il	Batch:		
TCLP Extraction	PREP			N/A	1	10/24/23 16:30	EPA 1311	
TP-08-IM-4.0-5.0-20231011 (A3J1366-15)						23J0904		
TCLP Extraction	PREP			N/A	1	10/24/23 16:30	EPA 1311	
TP-07-IM-9.0-10.0-20231011 (A3J1366-16)		Matrix: Soi	il	Batch:	23J0904			
TCLP Extraction	PREP			N/A	1	10/24/23 16:30	EPA 1311	
TP-14-IM-14.0-15.0-20231012 (A3J1366-1	7)			Matrix: Soi	il	23J0904		
TCLP Extraction	PREP			N/A	1	10/24/23 16:30	EPA 1311	
TP-13-IM-14.0-15.0-20231012 (A3J1366-1	TP-13-IM-14.0-15.0-20231012 (A3J1366-18)					Batch:	23J0904	
TCLP Extraction	PREP			N/A	1	10/24/23 16:30	EPA 1311	
TP-12-IM-9.0-10.0-20231012 (A3J1366-19))			Matrix: Soi	il	Batch:	23J0904	
TCLP Extraction	PREP			N/A	1	10/24/23 16:30	EPA 1311	
TP-11-IM-4.0-5.0-20231012 (A3J1366-20)				Matrix: Soi	ix: Soil Batch: 23J0904			
TCLP Extraction	PREP			N/A	1	10/24/23 16:30	EPA 1311	
TP-10-IM-9.0-10.0-20231011 (A3J1366-21))			Matrix: Soil Batc			23J0904	
TCLP Extraction	PREP			N/A	1	10/24/23 16:30	EPA 1311	
TP-09-IM-11.0-12.0-20231011 (A3J1366-22	2)			Matrix: Soi	il	Batch:	23J0904	
TCLP Extraction	PREP			N/A	1	10/24/23 16:30	EPA 1311	
SS-06-0.0-1.0-20231011 (A3J1366-23)				Matrix: Soi	il	Batch:	23J0904	
TCLP Extraction	PREP			N/A	1	10/24/23 16:30	EPA 1311	
SS-05-0.0-1.0-20231011 (A3J1366-24)	20231011 (A3J1366-24)				Matrix: Soil Batch:			
TCLP Extraction	PREP			N/A	1	10/24/23 16:30	EPA 1311	
TP-04-IM-4.0-5.0-20231010 (A3J1366-25)				Matrix: Soi	il	Batch:	23J0904	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 82 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

ANALYTICAL SAMPLE RESULTS

		TCLP E	xtraction by	EPA 1311				
Analyte	Sample Detection Reporting Date Result Limit Limit Units Dilution Analyzed Meth							Notes
TP-04-IM-4.0-5.0-20231010 (A3J1366-25)	IM-4.0-5.0-20231010 (A3J1366-25)						23J0904	
TCLP Extraction	PREP			N/A	1	10/24/23 16:30	EPA 1311	
TP-03-IM-14.0-15.0-20231010 (A3J1366-26)				Matrix: So	oil	Batch:	23J0904	
TCLP Extraction	PREP			N/A	1	10/24/23 16:30	EPA 1311	
TP-02-IM-4.0-5.0-20231010 (A3J1366-27)				Matrix: So	oil	Batch:	23J0904	
TCLP Extraction	PREP			N/A	1	10/24/23 16:30	EPA 1311	
TP-01-IM-5.0-6.0-20231010 (A3J1366-28)				Matrix: So	oil	Batch:	23J0904	
TCLP Extraction	PREP			N/A	1	10/24/23 16:30	EPA 1311	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menterg

Page 83 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: **Eatonville Landfill Characterization**

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/o	or Oil Hydro	carbor	ns by NW	TPH-Dx						
Analyte	Result	Detection Limit	Reporting Limit	Units I	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Not	es
Batch 23J0850 - EPA 3546 (F	uels)						So	il					
Blank (23J0850-BLK1)			Prepared	d: 10/23/23 05	:36 Ana	lyzed: 10/23	3/23 21:47						
NWTPH-Dx													
Diesel	ND	10.0	20.0	mg/kg wet	1								
Oil	ND	20.0	40.0	mg/kg wet	1								
Surr: o-Terphenyl (Surr)		Rec	overy: 83 %	Limits: 50-1	50 %	Dil	ution: 1x						
LCS (23J0850-BS1)			Prepared	d: 10/23/23 05	:36 Ana	lyzed: 10/23	3/23 22:08						
NWTPH-Dx													
Diesel	107	10.0	20.0	mg/kg wet	1	125		86	38-132%				
Surr: o-Terphenyl (Surr)		Rec	overy: 83 %	Limits: 50-1	50 %	Dil	ution: 1x						
Duplicate (23J0850-DUP2)			Prepared	d: 10/23/23 05	:36 Ana	lyzed: 10/24	1/23 07:54						
QC Source Sample: Non-SDG (A	3J1504-01)												
Diesel	ND	11.7	23.3	mg/kg dry	1		ND				30%		
Oil	ND	23.3	46.6	mg/kg dry	1		ND				30%		
Surr: o-Terphenyl (Surr)		Rec	overy: 67 %	Limits: 50-1	50 %	Dil	ution: 1x						
Duplicate (23J0850-DUP3)			Prepared	d: 10/23/23 05	:36 Ana	lyzed: 10/24	1/23 15:30						
OC Source Sample: TP-01-IM-10	.0-11.0-2023	1010 (A3J1360	6-06RE1 <u>)</u>										
Diesel	ND	107	214	mg/kg dry	10		ND				30%		
Oil	2540	214	429	mg/kg dry	10		1000			87	30%		Q-1
Surr: o-Terphenyl (Surr)		Rec	overy: 75 %	Limits: 50-1.		Dil	ution: 10x					S-05	
Batch 23J0954 - EPA 3546 (F	uels)						Soi	il					
Blank (23J0954-BLK1)			Prepared	d: 10/25/23 04	:11 Ana	lyzed: 10/25	5/23 07:41						
NWTPH-Dx													
Diesel	ND	10.0	20.0	mg/kg wet	1								
Oil	ND	20.0	40.0	mg/kg wet	1								
Surr: o-Terphenyl (Surr)		Rec	overy: 92 %	Limits: 50-1.	50 %	Dil	ution: 1x						
LCS (23J0954-BS1)			Prepared	d: 10/25/23 04	:11 Ana	lyzed: 10/25	5/23 08:02						
NWTPH-Dx													

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Mountag

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: **Eatonville Landfill Characterization**

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

		D	iesel and/d	r Oil Hyd	rocarbor	s by NW1	ГРН-Dx					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0954 - EPA 3546 (F	uels)						Soi	il				
LCS (23J0954-BS1)			Prepared	1: 10/25/23	04:11 Ana	yzed: 10/25	/23 08:02					
Diesel	128	10.0	20.0	mg/kg w	et 1	125		102	38-132%			
Surr: o-Terphenyl (Surr)		Reco	very: 104 %	Limits: 50	-150 %	Dilı	ution: 1x					
Duplicate (23J0954-DUP1)			Prepared	1: 10/25/23	04:11 Ana	yzed: 10/25	/23 08:42					
QC Source Sample: Non-SDG (A.	3J1644-01)											
Diesel	ND	10.7	21.4	mg/kg di	y 1		ND				30%	
Oil	ND	21.4	42.8	mg/kg di	y 1		ND				30%	
Surr: o-Terphenyl (Surr)		Reco	overy: 99 %	Limits: 50	-150 %	Dilı	ution: 1x					
Duplicate (23J0954-DUP2)			Prepared	1: 10/25/23	04:11 Ana	yzed: 10/25	/23 10:24					
QC Source Sample: Non-SDG (A.	3J1648-02)											
Diesel	13800	218	436	mg/kg di	y 20		13500			2	30%	
Oil	ND	436	873	mg/kg di	y 20		ND				30%	
Surr: o-Terphenyl (Surr)		Ro	ecovery: %	Limits: 50	-150 %	Dilı	ution: 20x					S-01

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 85 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

	Gasolii	ne Range H	ydrocarbo	ons (Ben	zene thro	ıgh Naph	thalene)	by NWTP	H-Gx			
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0806 - EPA 5035A							Soi	il				
Blank (23J0806-BLK1)			Prepared	d: 10/20/23	08:57 Ana	yzed: 10/20	/23 13:01					
NWTPH-Gx (MS)												
Gasoline Range Organics	ND	2.50	5.00	mg/kg v	vet 50							
Surr: 4-Bromofluorobenzene (Sur)		Reco	very: 99 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			101 %	5	0-150 %		"					
LCS (23J0806-BS2)			Prepare	d: 10/20/23	08:57 Ana	yzed: 10/20	/23 11:36					
NWTPH-Gx (MS)												
Gasoline Range Organics	24.0	2.50	5.00	mg/kg v	vet 50	25.0		96	80-120%			
Surr: 4-Bromofluorobenzene (Sur)		Recov	ery: 101 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			99 %	5	0-150 %		"					
Duplicate (23J0806-DUP1)			Prepared	d: 10/12/23	15:00 Ana	yzed: 10/20	/23 13:52					
QC Source Sample: Non-SDG (A3	J1466-01)											
Gasoline Range Organics	ND	8.76	17.5	mg/kg	lry 50		ND				30%	
Surr: 4-Bromofluorobenzene (Sur)		Recove	ery: 105 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			102 %	5	0-150 %		"					
Duplicate (23J0806-DUP2)			Prepared	d: 10/17/23	14:00 Anal	yzed: 10/20	/23 21:36					
QC Source Sample: Non-SDG (A3	J1457-01)											
Gasoline Range Organics	6.56	4.44	8.89	mg/kg	lry 50		6.42			2	30%	
Surr: 4-Bromofluorobenzene (Sur)		Recove	ery: 105 %	Limits: 5	0-150 %	Dilı	ution: 1x					
1,4-Difluorobenzene (Sur)			99 %	5	0-150 %		"					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 86 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source % REC Result Units Dilution RPD Analyte Limit Limit Amount Result Limits Limit Notes Batch 23J0806 - EPA 5035A Soil Blank (23J0806-BLK1) Prepared: 10/20/23 08:57 Analyzed: 10/20/23 13:01 5035A/8260D ND 1000 1000 ug/kg wet ICV-02 Acetone ND 100 50 Acrylonitrile 50.0 ug/kg wet Benzene ND 5.00 10.0 ug/kg wet 50 Bromobenzene ND 12.5 25.0 ug/kg wet 50 Bromochloromethane ND 25.0 50.0 ug/kg wet 50 Bromodichloromethane ND 50.0 ug/kg wet 50 25.0 Bromoform ND 50.0 100 ug/kg wet 50 Bromomethane 500 ND 500 ug/kg wet 50 2-Butanone (MEK) ND 250 500 ug/kg wet 50 n-Butylbenzene ND 25.0 50.0 50 ug/kg wet sec-Butylbenzene ND 25.0 50.0 ug/kg wet 50 ND 25.0 tert-Butylbenzene 50.0 50 ug/kg wet ---Carbon disulfide ND 250 500 ug/kg wet 50 Carbon tetrachloride ND 25.0 50.0 ug/kg wet 50 Chlorobenzene ND 12.5 25.0 ug/kg wet 50 Chloroethane ND 250 500 ug/kg wet 50 ------Chloroform ND 25.0 50.0 ug/kg wet 50 Chloromethane 125 250 ND ug/kg wet 50 ---2-Chlorotoluene ND 25.0 50.0 ug/kg wet 50 4-Chlorotoluene ND 25.0 50.0 ug/kg wet 50 Dibromochloromethane ND 50.0 100 ug/kg wet 50 1,2-Dibromo-3-chloropropane ND 125 250 ug/kg wet 50 1,2-Dibromoethane (EDB) 25.0 ND 50.0 ug/kg wet 50 Dibromomethane ND 25.0 50.0 ug/kg wet 50 25.0 1,2-Dichlorobenzene ND 12.5 ug/kg wet 50 1,3-Dichlorobenzene ND 12.5 25.0 ug/kg wet 50 1,4-Dichlorobenzene ND 12.5 25.0 ug/kg wet 50 Dichlorodifluoromethane ND 50.0 100 ug/kg wet 50 ---ND 12.5 25.0 1,1-Dichloroethane ug/kg wet 50 ug/kg wet 1,2-Dichloroethane (EDC) ND 12.5 25.0 50 1,1-Dichloroethene ND 50 12.5 25.0 ug/kg wet cis-1,2-Dichloroethene ND 12.5 25.0 ug/kg wet 50 trans-1,2-Dichloroethene ND 12.5 25.0 ug/kg wet 50

Apex Laboratories

Philip Menherg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 87 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23J0806 - EPA 5035A Soil Blank (23J0806-BLK1) Prepared: 10/20/23 08:57 Analyzed: 10/20/23 13:01 ND 12.5 25.0 50 1,2-Dichloropropane ug/kg wet 1,3-Dichloropropane ND 25.0 50.0 ug/kg wet 50 ------50 2,2-Dichloropropane ND 25.0 50.0 ug/kg wet 1,1-Dichloropropene ND 25.0 50.0 ug/kg wet 50 ND 25.0 50.0 cis-1,3-Dichloropropene ug/kg wet 50 trans-1,3-Dichloropropene ND 25.0 50.0 ug/kg wet 50 25.0 Ethylbenzene ND 12.5 ug/kg wet 50 Hexachlorobutadiene ND 50.0 100 ug/kg wet 50 2-Hexanone ND 500 500 ug/kg wet 50 Isopropylbenzene ND 25.0 50.0 ug/kg wet 50 4-Isopropyltoluene ND 50.0 50 25.0 ug/kg wet Methylene chloride ND 250 500 ug/kg wet 50 4-Methyl-2-pentanone (MiBK) ND 250 500 ug/kg wet 50 ---Methyl tert-butyl ether (MTBE) ND 25.0 50.0 ug/kg wet 50 ND Naphthalene 100 100 ug/kg wet 50 n-Propylbenzene ND 12.5 25.0 ug/kg wet 50 ND 25.0 50.0 Styrene ug/kg wet 50 1,1,1,2-Tetrachloroethane ND 12.5 25.0 ug/kg wet 50 ND 1,1,2,2-Tetrachloroethane 25.0 50.0 ug/kg wet 50 ---------Tetrachloroethene (PCE) ND 12.5 25.0 ug/kg wet 50 Toluene ND 25.0 50.0 ug/kg wet 50 1,2,3-Trichlorobenzene ND 125 250 ug/kg wet 50 1,2,4-Trichlorobenzene ND 125 250 50 ug/kg wet 1,1,1-Trichloroethane ND 12.5 25.0 ug/kg wet 50 ND 12.5 1,1,2-Trichloroethane 25.0 50 ug/kg wet ------Trichloroethene (TCE) ND 12.5 25.0 ug/kg wet 50 Trichlorofluoromethane ND 50.0 100 ug/kg wet 50 ---1,2,3-Trichloropropane ND 25.0 50.0 ug/kg wet 50 1,2,4-Trimethylbenzene ND 25.0 50.0 50 ug/kg wet 1,3,5-Trimethylbenzene ND 25.0 50.0 ug/kg wet 50 Vinyl chloride ND 25.0 12.5 ug/kg wet 50 m,p-Xylene ND 25.0 50.0 ug/kg wet 50 o-Xylene ND 12.5 25.0 ug/kg wet 50

Surr: 1,4-Difluorobenzene (Surr) Recovery: 102 % Limits: 80-120 % Dilution: 1x

Apex Laboratories

Philip Menherg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 88 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Cor	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0806 - EPA 5035A							Soi	l				
Blank (23J0806-BLK1)			Prepared	d: 10/20/23 0	8:57 Ana	lyzed: 10/20	/23 13:01					
Surr: Toluene-d8 (Surr)		Rece	overy: 99 %	Limits: 80-	120 %	Dilt	ution: 1x					
4-Bromofluorobenzene (Surr)			101 %	79-	120 %		"					
LCS (23J0806-BS1)			Prepared	d: 10/20/23 0	8:57 Ana	lyzed: 10/20	/23 12:02					
5035A/8260D												
Acetone	1720	1000	1000	ug/kg we	t 50	2000		86	80-120%			ICV-0
Acrylonitrile	979	50.0	100	ug/kg we	t 50	1000		98	80-120%			
Benzene	1020	5.00	10.0	ug/kg we	t 50	1000		102	80-120%			
Bromobenzene	1000	12.5	25.0	ug/kg we	t 50	1000		100	80-120%			
Bromochloromethane	975	25.0	50.0	ug/kg we	t 50	1000		98	80-120%			
Bromodichloromethane	1000	25.0	50.0	ug/kg we	t 50	1000		100	80-120%			
Bromoform	1070	50.0	100	ug/kg we	t 50	1000		107	80-120%			
Bromomethane	1030	500	500	ug/kg we	t 50	1000		103	80-120%			
2-Butanone (MEK)	1850	250	500	ug/kg we	t 50	2000		92	80-120%			
n-Butylbenzene	1170	25.0	50.0	ug/kg we	t 50	1000		117	80-120%			
sec-Butylbenzene	1000	25.0	50.0	ug/kg we	t 50	1000		100	80-120%			
tert-Butylbenzene	979	25.0	50.0	ug/kg we	t 50	1000		98	80-120%			
Carbon disulfide	981	250	500	ug/kg we	t 50	1000		98	80-120%			
Carbon tetrachloride	1130	25.0	50.0	ug/kg we	t 50	1000		113	80-120%			
Chlorobenzene	1010	12.5	25.0	ug/kg we	t 50	1000		101	80-120%			
Chloroethane	1050	250	500	ug/kg we	t 50	1000		105	80-120%			
Chloroform	985	25.0	50.0	ug/kg we	t 50	1000		98	80-120%			
Chloromethane	920	125	250	ug/kg we	t 50	1000		92	80-120%			
2-Chlorotoluene	1080	25.0	50.0	ug/kg we	t 50	1000		108	80-120%			
4-Chlorotoluene	1090	25.0	50.0	ug/kg we	t 50	1000		109	80-120%			
Dibromochloromethane	1070	50.0	100	ug/kg we	t 50	1000		107	80-120%			
1,2-Dibromo-3-chloropropane	942	125	250	ug/kg we	t 50	1000		94	80-120%			
1,2-Dibromoethane (EDB)	1050	25.0	50.0	ug/kg we	t 50	1000		105	80-120%			
Dibromomethane	1000	25.0	50.0	ug/kg we	t 50	1000		100	80-120%			
1,2-Dichlorobenzene	1050	12.5	25.0	ug/kg we	t 50	1000		105	80-120%			
1,3-Dichlorobenzene	1150	12.5	25.0	ug/kg we		1000		115	80-120%			
1,4-Dichlorobenzene	1000	12.5	25.0	ug/kg we	t 50	1000		100	80-120%			
Dichlorodifluoromethane	930	50.0	100	ug/kg we	t 50	1000		93	80-120%			
1,1-Dichloroethane	1000	12.5	25.0	ug/kg we		1000		100	80-120%			

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 89 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source % REC Analyte Result Units Dilution RPD Limit Limit Amount Result Limits Limit Notes Batch 23J0806 - EPA 5035A Soil LCS (23J0806-BS1) Prepared: 10/20/23 08:57 Analyzed: 10/20/23 12:02 1,2-Dichloroethane (EDC) 1010 12.5 25.0 50 1000 101 ug/kg wet 80-120% 1,1-Dichloroethene 1030 12.5 25.0 ug/kg wet 50 1000 103 80-120% --------cis-1.2-Dichloroethene 1040 12.5 25.0 ug/kg wet 50 1000 104 80-120% trans-1,2-Dichloroethene 994 12.5 25.0 ug/kg wet 50 1000 99 80-120% 1000 1,2-Dichloropropane 1000 12.5 25.0 50 100 80-120% ug/kg wet 1,3-Dichloropropane 1010 25.0 50.0 ug/kg wet 50 1000 101 80-120% 2,2-Dichloropropane 1160 25.0 50.0 ug/kg wet 50 1000 116 80-120% 1000 1,1-Dichloropropene 1110 25.0 50.0 ug/kg wet 50 111 80-120% 25.0 50.0 1000 O-56 cis-1,3-Dichloropropene 1220 ug/kg wet 50 122 80-120% trans-1,3-Dichloropropene 1040 25.0 50.0 ug/kg wet 50 1000 104 80-120% Ethylbenzene 25.0 50 1000 111 80-120% 1110 12.5 ug/kg wet ---Hexachlorobutadiene 50.0 1050 100 ug/kg wet 50 1000 105 80-120% 2-Hexanone 1570 500 2000 O-55 500 ug/kg wet 50 ---**78** 80-120% ---Isopropylbenzene 990 25.0 50.0 ug/kg wet 50 1000 99 80-120% 99 990 50 1000 80-120% 4-Isopropyltoluene 25.0 50.0 ug/kg wet Methylene chloride 1010 250 500 ug/kg wet 50 1000 101 80-120% 4-Methyl-2-pentanone (MiBK) 250 500 2000 1880 50 94 80-120% ug/kg wet Methyl tert-butyl ether (MTBE) 1040 25.0 50 1000 104 80-120% 50.0 ug/kg wet Naphthalene 840 100 200 1000 84 ug/kg wet 50 ---80-120% --n-Propylbenzene 1060 12.5 25.0 ug/kg wet 50 1000 106 80-120% 1000 25.0 50.0 1000 100 80-120% Styrene ug/kg wet 50 ---1,1,1,2-Tetrachloroethane 1060 12.5 25.0 ug/kg wet 50 1000 106 80-120% 1,1,2,2-Tetrachloroethane 977 25.0 50.0 50 1000 98 80-120% ug/kg wet Tetrachloroethene (PCE) 1110 12.5 25.0 50 1000 111 80-120% ug/kg wet 996 25.0 1000 100 Toluene 50.0 50 80-120% ug/kg wet ------1,2,3-Trichlorobenzene 1050 125 250 ug/kg wet 50 1000 105 80-120% 1.2.4-Trichlorobenzene 1040 125 250 50 1000 104 80-120% ug/kg wet ------1,1,1-Trichloroethane 1070 12.5 25.0 ug/kg wet 50 1000 107 80-120% 1,1,2-Trichloroethane 1020 12.5 25.0 50 1000 102 80-120% ug/kg wet Trichloroethene (TCE) 1010 12.5 25.0 ug/kg wet 50 1000 101 80-120% Trichlorofluoromethane 1150 50.0 100 50 1000 80-120% ug/kg wet 115 ---1,2,3-Trichloropropane 1010 25.0 50.0 ug/kg wet 50 1000 101 80-120% 1,2,4-Trimethylbenzene 1020 25.0 50.0 ug/kg wet 50 1000 102 80-120% 1,3,5-Trimethylbenzene 1010 25.0 50.0 ug/kg wet 50 1000 101 80-120%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 90 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Cor	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0806 - EPA 5035A							So	il				
LCS (23J0806-BS1)			Prepared	1: 10/20/23 0	8:57 Ana	lyzed: 10/20	/23 12:02					
Vinyl chloride	884	12.5	25.0	ug/kg we	t 50	1000		88	80-120%			
m,p-Xylene	2020	25.0	50.0	ug/kg we	t 50	2000		101	80-120%			
o-Xylene	950	12.5	25.0	ug/kg we	t 50	1000		95	80-120%			
Surr: 1,4-Difluorobenzene (Surr)		Rece	overy: 99 %	Limits: 80-	-120 %	Dilt	ution: 1x					
Toluene-d8 (Surr)			98 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			99 %	79-	120 %		"					
Duplicate (23J0806-DUP1)			Prepared	l: 10/12/23 1	5:00 Ana	lyzed: 10/20	/23 13:52					
OC Source Sample: Non-SDG (A3	J1466-01)											
Acetone	ND	3500	3500	ug/kg dr	y 50		ND				30%	ICV-
Acrylonitrile	ND	175	350	ug/kg dr	y 50		ND				30%	
Benzene	ND	17.5	35.0	ug/kg dr	y 50		ND				30%	
Bromobenzene	ND	43.8	87.6	ug/kg dr	y 50		ND				30%	
Bromochloromethane	ND	87.6	175	ug/kg dr	y 50		ND				30%	
Bromodichloromethane	ND	87.6	175	ug/kg dr	y 50		ND				30%	
Bromoform	ND	175	350	ug/kg dr	y 50		ND				30%	
Bromomethane	ND	1750	1750	ug/kg dr	y 50		ND				30%	
2-Butanone (MEK)	ND	876	1750	ug/kg dr	y 50		ND				30%	
n-Butylbenzene	ND	87.6	175	ug/kg dr	y 50		ND				30%	
sec-Butylbenzene	ND	87.6	175	ug/kg dr	y 50		ND				30%	
tert-Butylbenzene	ND	87.6	175	ug/kg dr	y 50		ND				30%	
Carbon disulfide	ND	876	1750	ug/kg dr	y 50		ND				30%	
Carbon tetrachloride	ND	87.6	175	ug/kg dr	y 50		ND				30%	
Chlorobenzene	ND	43.8	87.6	ug/kg dr	y 50		ND				30%	
Chloroethane	ND	876	1750	ug/kg dr	y 50		ND				30%	
Chloroform	ND	87.6	175	ug/kg dr			ND				30%	
Chloromethane	ND	438	876	ug/kg dr			ND				30%	
2-Chlorotoluene	ND	87.6	175	ug/kg dr			ND				30%	
4-Chlorotoluene	ND	87.6	175	ug/kg dr			ND				30%	
Dibromochloromethane	ND	175	350	ug/kg dr			ND				30%	
1,2-Dibromo-3-chloropropane	ND	438	876	ug/kg dr			ND				30%	
1,2-Dibromoethane (EDB)	ND	87.6	175	ug/kg dr	,		ND				30%	
Dibromomethane	ND	87.6	175	ug/kg dr			ND				30%	
1,2-Dichlorobenzene	ND	43.8	87.6	ug/kg dr			ND				30%	

Apex Laboratories

Philip Newsberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 91 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Cor	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0806 - EPA 5035A							Soi	I				
Ouplicate (23J0806-DUP1)			Prepared	: 10/12/23 1	5:00 Anal	lyzed: 10/20	/23 13:52					
QC Source Sample: Non-SDG (A3J	1466-01)											
1,3-Dichlorobenzene	ND	43.8	87.6	ug/kg dr	y 50		ND				30%	
1,4-Dichlorobenzene	ND	43.8	87.6	ug/kg dr	y 50		ND				30%	
Dichlorodifluoromethane	ND	175	350	ug/kg dr	y 50		ND				30%	
1,1-Dichloroethane	ND	43.8	87.6	ug/kg dr	y 50		ND				30%	
1,2-Dichloroethane (EDC)	ND	43.8	87.6	ug/kg dr	y 50		ND				30%	
1,1-Dichloroethene	ND	43.8	87.6	ug/kg dr	y 50		ND				30%	
cis-1,2-Dichloroethene	ND	43.8	87.6	ug/kg dr	y 50		ND				30%	
trans-1,2-Dichloroethene	ND	43.8	87.6	ug/kg dr	y 50		ND				30%	
1,2-Dichloropropane	ND	43.8	87.6	ug/kg dr	y 50		ND				30%	
1,3-Dichloropropane	ND	87.6	175	ug/kg dr	y 50		ND				30%	
2,2-Dichloropropane	ND	87.6	175	ug/kg dr	y 50		ND				30%	
1,1-Dichloropropene	ND	87.6	175	ug/kg dr	y 50		ND				30%	
cis-1,3-Dichloropropene	ND	87.6	175	ug/kg dr	y 50		ND				30%	
trans-1,3-Dichloropropene	ND	87.6	175	ug/kg dr	y 50		ND				30%	
Ethylbenzene	ND	43.8	87.6	ug/kg dr	y 50		ND				30%	
Hexachlorobutadiene	ND	175	350	ug/kg dr	y 50		ND				30%	
2-Hexanone	ND	1750	1750	ug/kg dr	y 50		ND				30%	
Isopropylbenzene	ND	87.6	175	ug/kg dr	y 50		ND				30%	
4-Isopropyltoluene	ND	87.6	175	ug/kg dr	y 50		ND				30%	
Methylene chloride	ND	876	1750	ug/kg dr	y 50		ND				30%	
4-Methyl-2-pentanone (MiBK)	ND	876	1750	ug/kg dr			ND				30%	
Methyl tert-butyl ether (MTBE)	ND	87.6	175	ug/kg dr	y 50		ND				30%	
Naphthalene	ND	350	701	ug/kg dr	y 50		ND				30%	
n-Propylbenzene	ND	43.8	87.6	ug/kg dr			ND				30%	
Styrene	ND	87.6	175	ug/kg dr			ND				30%	
1,1,1,2-Tetrachloroethane	ND	43.8	87.6	ug/kg dr			ND				30%	
1,1,2,2-Tetrachloroethane	ND	87.6	175	ug/kg dr			ND				30%	
Tetrachloroethene (PCE)	ND	43.8	87.6	ug/kg dr			ND				30%	
Toluene	ND	87.6	175	ug/kg dr			ND				30%	
1,2,3-Trichlorobenzene	ND	438	876	ug/kg dr			ND				30%	
1,2,4-Trichlorobenzene	ND	438	876	ug/kg dr			ND				30%	
1,1,1-Trichloroethane	ND	43.8	87.6	ug/kg dr	,		ND				30%	
1,1,2-Trichloroethane	ND	43.8	87.6	ug/kg dr			ND				30%	

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 92 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Co	mpounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0806 - EPA 5035A							Soi	I				
Duplicate (23J0806-DUP1)			Prepared	1: 10/12/23	15:00 Ana	lyzed: 10/20	/23 13:52					
QC Source Sample: Non-SDG (A3	J1466-01)											
Trichloroethene (TCE)	ND	43.8	87.6	ug/kg dr	y 50		ND				30%	
Trichlorofluoromethane	ND	175	350	ug/kg dr	y 50		ND				30%	
1,2,3-Trichloropropane	ND	87.6	175	ug/kg dr	y 50		ND				30%	
1,2,4-Trimethylbenzene	ND	87.6	175	ug/kg dr	y 50		ND				30%	
1,3,5-Trimethylbenzene	ND	87.6	175	ug/kg dr			ND				30%	
Vinyl chloride	ND	43.8	87.6	ug/kg dr	y 50		ND				30%	
m,p-Xylene	ND	87.6	175	ug/kg dr	y 50		ND				30%	
o-Xylene	ND	43.8	87.6	ug/kg dr	y 50		ND				30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 102 %	Limits: 80	-120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			97 %	80-	-120 %		"					
4-Bromofluorobenzene (Surr)			104 %	79-	-120 %		"					
OC Source Sample: Non-SDG (A3		1790	1790	na/lra du	50		ND				200/	ICV
Acetone	ND	1780	1780	ug/kg dr	y 50		ND				30%	ICV
Acrylonitrile	ND	88.9	178	ug/kg dr	y 50		ND				30%	
Benzene	ND	8.89	17.8	ug/kg dr	y 50		ND				30%	
Bromobenzene	ND	22.2	44.4	ug/kg dr	y 50		ND				30%	
Bromochloromethane	ND	44.4	88.9	ug/kg dr	y 50		ND				30%	
Bromodichloromethane	ND	44.4	88.9	ug/kg dr	y 50		ND				30%	
Bromoform	ND	88.9	178	ug/kg dr	y 50		ND				30%	
Bromomethane	ND	889	889	ug/kg dr	y 50		ND				30%	
2-Butanone (MEK)	ND	444	889	ug/kg dr	y 50		ND				30%	
n-Butylbenzene	ND	44.4	88.9	ug/kg dr	y 50		ND				30%	
sec-Butylbenzene	ND	44.4	88.9	ug/kg dr	y 50		ND				30%	
tert-Butylbenzene	ND	44.4	88.9	ug/kg dr	y 50		ND				30%	
Carbon disulfide	ND	444	889	ug/kg dr	y 50		ND				30%	
Carbon tetrachloride	ND	44.4	88.9	ug/kg dr	y 50		ND				30%	
Chlorobenzene	ND	22.2	44.4	ug/kg dr	y 50		ND				30%	
Chloroethane	ND	444	889	ug/kg dr	y 50		ND				30%	
Chloroform	ND	44.4	88.9	ug/kg dr	y 50		ND				30%	
Chloromethane	ND	222	444	ug/kg dr	y 50		ND				30%	
2-Chlorotoluene	ND	44.4	88.9	ug/kg dr	y 50		ND				30%	

Apex Laboratories

Philip Newsberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 93 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Org	ganic Cor	npounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0806 - EPA 5035A							Soi					
Ouplicate (23J0806-DUP2)			Prepared	: 10/17/23 1	4:00 Anal	yzed: 10/20	/23 21:36					
QC Source Sample: Non-SDG (A3J	J1457-01)											
4-Chlorotoluene	ND	44.4	88.9	ug/kg dr	y 50		ND				30%	
Dibromochloromethane	ND	88.9	178	ug/kg dr	y 50		ND				30%	
1,2-Dibromo-3-chloropropane	ND	222	444	ug/kg dr	y 50		ND				30%	
1,2-Dibromoethane (EDB)	ND	44.4	88.9	ug/kg dr	y 50		ND				30%	
Dibromomethane	ND	44.4	88.9	ug/kg dr			ND				30%	
1,2-Dichlorobenzene	ND	22.2	44.4	ug/kg dr			ND				30%	
1,3-Dichlorobenzene	ND	22.2	44.4	ug/kg dr			ND				30%	
1,4-Dichlorobenzene	ND	22.2	44.4	ug/kg dr	,		ND				30%	
Dichlorodifluoromethane	ND	88.9	178	ug/kg dr	y 50		ND				30%	
1,1-Dichloroethane	ND	22.2	44.4	ug/kg dr			ND				30%	
1,2-Dichloroethane (EDC)	ND	22.2	44.4	ug/kg dr			ND				30%	
1,1-Dichloroethene	ND	22.2	44.4	ug/kg dr			ND				30%	
cis-1,2-Dichloroethene	ND	22.2	44.4	ug/kg dr			ND				30%	
trans-1,2-Dichloroethene	ND	22.2	44.4	ug/kg dr			ND				30%	
1,2-Dichloropropane	ND	22.2	44.4	ug/kg dr			ND				30%	
1,3-Dichloropropane	ND	44.4	88.9	ug/kg dr			ND				30%	
2,2-Dichloropropane	ND	44.4	88.9	ug/kg dr			ND				30%	
1,1-Dichloropropene	ND	44.4	88.9	ug/kg dr			ND				30%	
cis-1,3-Dichloropropene	ND	44.4	88.9	ug/kg dr			ND				30%	
trans-1,3-Dichloropropene	ND	44.4	88.9	ug/kg dr			ND				30%	
Ethylbenzene	ND	22.2	44.4	ug/kg dr			ND				30%	
Hexachlorobutadiene	ND	88.9	178	ug/kg dr	,		ND				30%	
2-Hexanone	ND	889	889	ug/kg dr			ND				30%	
Isopropylbenzene	ND	44.4	88.9	ug/kg dr			ND				30%	
4-Isopropyltoluene	ND	44.4	88.9	ug/kg dr	,		ND				30%	
Methylene chloride	ND	444	889	ug/kg dr	,		ND				30%	
4-Methyl-2-pentanone (MiBK)	ND	444	889	ug/kg dr	,		ND				30%	
Methyl tert-butyl ether (MTBE)	ND	44.4	88.9	ug/kg dr	,		ND				30%	
Naphthalene	ND	178	355	ug/kg dr			ND				30%	
n-Propylbenzene	ND	22.2	44.4	ug/kg dr	,		ND				30%	
Styrene	ND	44.4	88.9	ug/kg dr			ND				30%	
1,1,1,2-Tetrachloroethane	ND	22.2	44.4	ug/kg dr			ND				30%	
1,1,2,2-Tetrachloroethane	ND	44.4	88.9	ug/kg dr			ND				30%	

Apex Laboratories

Philip Menherg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 94 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Cor	npounds	by EPA 8	3260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0806 - EPA 5035A							So	il				
Duplicate (23J0806-DUP2)			Prepared	d: 10/17/23 1	4:00 Ana	lyzed: 10/20	/23 21:36					
QC Source Sample: Non-SDG (A3	J1457-01)											
Tetrachloroethene (PCE)	ND	22.2	44.4	ug/kg dr	7 50		ND				30%	
Toluene	ND	44.4	88.9	ug/kg dr	7 50		ND				30%	
1,2,3-Trichlorobenzene	ND	222	444	ug/kg dr	50		ND				30%	
1,2,4-Trichlorobenzene	ND	222	444	ug/kg dr	7 50		ND				30%	
1,1,1-Trichloroethane	ND	22.2	44.4	ug/kg dr	7 50		ND				30%	
1,1,2-Trichloroethane	ND	22.2	44.4	ug/kg dr	7 50		ND				30%	
Trichloroethene (TCE)	ND	22.2	44.4	ug/kg dr	50		ND				30%	
Trichlorofluoromethane	ND	88.9	178	ug/kg dr	7 50		ND				30%	
1,2,3-Trichloropropane	ND	44.4	88.9	ug/kg dr	50		ND				30%	
1,2,4-Trimethylbenzene	ND	44.4	88.9	ug/kg dr	50		ND				30%	
1,3,5-Trimethylbenzene	ND	44.4	88.9	ug/kg dr	50		ND				30%	
Vinyl chloride	ND	22.2	44.4	ug/kg dr	50		ND				30%	
m,p-Xylene	ND	44.4	88.9	ug/kg dr	50		ND				30%	
o-Xylene	32.9	22.2	44.4	ug/kg dr	50		30.2			8	30%	
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 101 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			95 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			103 %	79-	120 %		"					
Matrix Spike (23J0806-MS1)			Prepared	d: 10/11/23 1	1:55 Anal	yzed: 10/20	/23 20:19					
QC Source Sample: TP-07-IM-14.	0-15.0-2023	1011 (A3J1366	5 <u>-14)</u>									
5035A/8260D												
Acetone	1750	1020	1020	ug/kg dr	50	2040	ND	86	36-164%			ICV-0
Acrylonitrile	1000	50.9	102	ug/kg dr	7 50	1020	ND	98	65-134%			
Benzene	1070	5.09	10.2	ug/kg dr	50	1020	ND	105	77-121%			
Bromobenzene	1040	12.7	25.4	ug/kg dr	50	1020	ND	102	78-121%			
Bromochloromethane	1040	25.4	50.9	ug/kg dr	50	1020	ND	102	78-125%			
Bromodichloromethane	1030	25.4	50.9	ug/kg dr	50	1020	ND	101	75-127%			
Bromoform	1060	50.9	102	ug/kg dr	50	1020	ND	104	67-132%			
Bromomethane	1140	509	509	ug/kg dr	50	1020	ND	112	53-143%			
2-Butanone (MEK)	1790	254	509	ug/kg dr	50	2040	ND	88	51-148%			
n-Butylbenzene	1220	25.4	50.9	ug/kg dr	50	1020	ND	120	70-128%			
sec-Butylbenzene	1050	25.4	50.9	ug/kg dr	7 50	1020	ND	103	73-126%			
tert-Butylbenzene	1010	25.4	50.9	ug/kg dr	7 50	1020	ND	99	73-125%			

Apex Laboratories

Philip Newsberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 95 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

Volatile Organic Compounds by EPA 8260D % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23J0806 - EPA 5035A Soil Matrix Spike (23J0806-MS1) Prepared: 10/11/23 11:55 Analyzed: 10/20/23 20:19 QC Source Sample: TP-07-IM-14.0-15.0-20231011 (A3J1366-14) Carbon disulfide 1020 254 509 50 1020 ND 100 63-132% ug/kg dry Carbon tetrachloride 25.4 50.9 1020 1170 ug/kg dry 50 ND 115 70-135% Chlorobenzene 1040 12.7 25.4 ug/kg dry 50 1020 ND 102 79-120% Chloroethane 1220 254 509 ug/kg dry 50 1020 ND 119 59-139% Chloroform 1020 25.4 50.9 ug/kg dry 50 1020 ND 101 78-123% Chloromethane 993 254 1020 97 127 ug/kg dry 50 ND 50-136% 2-Chlorotoluene 1130 25.4 50.9 50 1020 ND 111 75-122% ug/kg dry 50.9 1020 4-Chlorotoluene 1120 25.4 ug/kg dry 50 ND 110 72-124% Dibromochloromethane 1070 50.9 102 ug/kg dry 50 1020 ND 105 74-126% 1,2-Dibromo-3-chloropropane 932 127 254 ug/kg dry 50 1020 ND 91 61-132% 1,2-Dibromoethane (EDB) 1080 25.4 50.9 ug/kg dry 50 1020 ND 106 78-122% Dibromomethane 25.4 50.9 1020 ND 78-125% 1040 ug/kg dry 50 103 1070 1020 1,2-Dichlorobenzene 12.7 25.4 ug/kg dry 50 ND 105 78-121% 1020 1170 12.7 25.4 ND 77-121% 1,3-Dichlorobenzene ug/kg dry 50 115 1,4-Dichlorobenzene 1020 12.7 25.4 ug/kg dry 50 1020 ND 100 75-120% Dichlorodifluoromethane 1040 50.9 102 ug/kg dry 50 1020 ND 102 29-149% ___ 1,1-Dichloroethane 1040 12.7 25.4 ug/kg dry 50 1020 ND 102 76-125% 1030 12.7 25.4 1020 ND 101 1,2-Dichloroethane (EDC) 50 73-128% ug/kg dry 1020 70-131% 1,1-Dichloroethene 1080 12.7 25.4 ug/kg dry 50 ND 106 cis-1,2-Dichloroethene 12.7 1020 1100 25.4 50 ND 108 77-123% ug/kg dry trans-1,2-Dichloroethene 1020 ND 74-125% 1040 12.7 25.4 ug/kg dry 50 102 1020 1,2-Dichloropropane 1050 12.7 25.4 ug/kg dry 50 ND 103 76-123% 1,3-Dichloropropane 1020 25.4 50.9 ug/kg dry 50 1020 ND 100 77-121% 50.9 1020 ND 108 67-133% 2,2-Dichloropropane 1100 25.4 ug/kg dry 50 1,1-Dichloropropene 25.4 50.9 1020 76-125% 1200 ug/kg dry 50 ND 117 1020 1210 25.4 50.9 ND 119 74-126% O-54 cis-1,3-Dichloropropene ug/kg dry 50 trans-1,3-Dichloropropene 1010 25.4 50.9 1020 ND 99 71-130% ug/kg dry 50 1020 Ethylbenzene 1140 12.7 25.4 ug/kg dry 50 ND 112 76-122% Hexachlorobutadiene 1230 50.9 102 ug/kg dry 50 1020 ND 121 61-135% 2-Hexanone 1550 509 509 2040 ND 76 Q-54a ug/kg dry 50 53-145% ---Isopropylbenzene 1040 25.4 50.9 ug/kg dry 50 1020 ND 102 68-134% 4-Isopropyltoluene 25.4 50.9 1020 1040 50 ND 102 73-127% ug/kg dry Methylene chloride 1050 254 509 ug/kg dry 50 1020 ND 103 70-128%

Apex Laboratories

Philip Menherg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 96 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			Volatile Or	ganic Con	npounds	by EPA 8	260D					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0806 - EPA 5035A							Soi	I				
Matrix Spike (23J0806-MS1)			Prepared	1: 10/11/23 1	1:55 Anal	yzed: 10/20/	/23 20:19					
QC Source Sample: TP-07-IM-14.0-	15.0-2023	1011 (A3J1366	<u>5-14)</u>									
4-Methyl-2-pentanone (MiBK)	1900	254	509	ug/kg dry	7 50	2040	ND	93	65-135%			
Methyl tert-butyl ether (MTBE)	1080	25.4	50.9	ug/kg dry	7 50	1020	ND	106	73-125%			
Naphthalene	854	102	204	ug/kg dry	50	1020	ND	84	62-129%			
n-Propylbenzene	1100	12.7	25.4	ug/kg dry	50	1020	ND	108	73-125%			
Styrene	1030	25.4	50.9	ug/kg dry	50	1020	ND	101	76-124%			
1,1,1,2-Tetrachloroethane	1080	12.7	25.4	ug/kg dry	50	1020	ND	107	78-125%			
1,1,2,2-Tetrachloroethane	968	25.4	50.9	ug/kg dry	50	1020	ND	95	70-124%			
Tetrachloroethene (PCE)	1140	12.7	25.4	ug/kg dry	50	1020	ND	112	73-128%			
Toluene	1020	25.4	50.9	ug/kg dry	50	1020	ND	100	77-121%			
1,2,3-Trichlorobenzene	1080	127	254	ug/kg dry	50	1020	ND	106	66-130%			
1,2,4-Trichlorobenzene	1080	127	254	ug/kg dry	50	1020	ND	106	67-129%			
1,1,1-Trichloroethane	1110	12.7	25.4	ug/kg dry	7 50	1020	ND	109	73-130%			
1,1,2-Trichloroethane	1030	12.7	25.4	ug/kg dry	50	1020	ND	101	78-121%			
Trichloroethene (TCE)	1090	12.7	25.4	ug/kg dry	50	1020	ND	107	77-123%			
Trichlorofluoromethane	1400	50.9	102	ug/kg dry	50	1020	ND	137	62-140%			
1,2,3-Trichloropropane	1020	25.4	50.9	ug/kg dry	50	1020	ND	100	73-125%			
1,2,4-Trimethylbenzene	1040	25.4	50.9	ug/kg dry	50	1020	ND	102	75-123%			
1,3,5-Trimethylbenzene	1040	25.4	50.9	ug/kg dry	7 50	1020	ND	102	73-124%			
Vinyl chloride	979	12.7	25.4	ug/kg dry	50	1020	ND	96	56-135%			
m,p-Xylene	2090	25.4	50.9	ug/kg dry	50	2040	ND	103	77-124%			
o-Xylene	995	12.7	25.4	ug/kg dry	50	1020	ND	98	77-123%			
Surr: 1,4-Difluorobenzene (Surr)		Reco	very: 100 %	Limits: 80-	120 %	Dilı	ution: 1x					
Toluene-d8 (Surr)			95 %	80-	120 %		"					
4-Bromofluorobenzene (Surr)			101 %	79-	120 %		"					

Apex Laboratories

Philip Menterg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 97 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: **Eatonville Landfill Characterization**

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

Analyte Batch 23J0900 - EPA 3546 Blank (23J0900-BLK1) EPA 8082A Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242	ND ND ND ND ND ND ND	5.00 5.00 5.00	Reporting Limit Prepared 10.0 10.0	Units d: 10/24/23 00 ug/kg wet	Dilution 6:45 Ana	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Blank (23J0900-BLK1) EPA 8082A Aroclor 1016 Aroclor 1221 Aroclor 1232	ND ND ND	5.00 5.00	10.0		6:45 Ana	lyzed: 10/24		I				
EPA 8082A Aroclor 1016 Aroclor 1221 Aroclor 1232	ND ND ND	5.00 5.00	10.0		6:45 Ana	lyzed: 10/24	/22 17.29					
Aroclor 1016 Aroclor 1221 Aroclor 1232	ND ND ND	5.00 5.00		ug/kg wet			123 17:38					C-0
Aroclor 1221 Aroclor 1232	ND ND ND	5.00 5.00		ug/kg wet								
Aroclor 1232	ND ND	5.00	10.0		t 1							
	ND			ug/kg wet	t 1							
Aroclor 1242			10.0	ug/kg wet	t 1							
	ND	5.00	10.0	ug/kg wet	t 1							
Aroclor 1248	ND	5.00	10.0	ug/kg wet	t 1							
Aroclor 1254	ND	5.00	10.0	ug/kg wet	t 1							
Aroclor 1260	ND	5.00	10.0	ug/kg wet	t 1							
Surr: Decachlorobiphenyl (Surr)		Reco	overy: 99 %	Limits: 60-	125 %	Dilt	ution: 1x					
LCS (23J0900-BS1)			Prepared	d: 10/24/23 0	6:45 Anal	lyzed: 10/24	/23 17:56					C-0
EPA 8082A												
Aroclor 1016	200	5.00	10.0	ug/kg wet	t 1	250		80	47-134%			
Aroclor 1260	217	5.00	10.0	ug/kg wet	t 1	250		87	53-140%			
Surr: Decachlorobiphenyl (Surr)		Reco	overy: 94 %	Limits: 60-	125 %	Dilt	ution: 1x					
Duplicate (23J0900-DUP1)			Prepared	d: 10/24/23 0	6:45 Anal	lyzed: 10/24	/23 18:49					C-0
QC Source Sample: WS-01-0.0-2.0-1	0102023 ((A3J1366-01)										
EPA 8082A		<u> </u>										
Aroclor 1016	ND	10.1	20.1	ug/kg dry	1		ND				30%	
Aroclor 1221	ND	10.1	20.1	ug/kg dry			ND				30%	
Aroclor 1232	ND	10.1	20.1	ug/kg dry			ND				30%	
Aroclor 1242	ND	10.1	20.1	ug/kg dry			ND				30%	
Aroclor 1248	ND	10.1	20.1	ug/kg dry			ND				30%	
Aroclor 1254	ND	10.1	20.1	ug/kg dry			ND				30%	
Aroclor 1260	ND	10.1	20.1	ug/kg dry			ND				30%	
Surr: Decachlorobiphenyl (Surr)		Reco	overy: 68 %	Limits: 60-		Dilt	ution: 1x					
Matrix Spike (23J0900-MS1)			Prepared	d: 10/24/23 0	6:45 Anal	lyzed: 10/25	/23 00:43					C-0
QC Source Sample: Non-SDG (A3J1	576-07)		<u> </u>									
EPA 8082A												
Aroclor 1016	225	5.40	10.8	ug/kg dry	, 1	270	ND	83	47-134%			
Aroclor 1016 Aroclor 1260	223	5.40	10.8	ug/kg dry ug/kg dry		270	ND ND	85	53-140%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

Polychlorinated Biphenyls by EPA 8082A Detection Reporting Spike Source % REC **RPD** % REC Analyte Result Ĺimit Units Dilution Amount Result Limits RPD Limit Limit Notes Batch 23J0900 - EPA 3546 Soil Matrix Spike (23J0900-MS1) Prepared: 10/24/23 06:45 Analyzed: 10/25/23 00:43 C-07 QC Source Sample: Non-SDG (A3J1576-07) Dilution: 1x Surr: Decachlorobiphenyl (Surr) Recovery: 100 % Limits: 60-125 %

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menherg

Page 99 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: **Eatonville Landfill Characterization**

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychlor	rinated Bi	phenyls	by EPA 80	082A					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J1014 - EPA 3546							So	il				
Blank (23J1014-BLK1)			Prepared	d: 10/26/23 (04:52 Anal	lyzed: 10/26	5/23 18:41					C-07
EPA 8082A												
Aroclor 1016	ND	5.00	10.0	ug/kg we	et 1							
Aroclor 1221	ND	5.00	10.0	ug/kg we	et 1							
Aroclor 1232	ND	5.00	10.0	ug/kg we	et 1							
Aroclor 1242	ND	5.00	10.0	ug/kg we	et 1							
Aroclor 1248	ND	5.00	10.0	ug/kg we	et 1							
Aroclor 1254	ND	5.00	10.0	ug/kg we	et 1							
Aroclor 1260	ND	5.00	10.0	ug/kg we	et 1							
Surr: Decachlorobiphenyl (Surr)		Reco	overy: 90 %	Limits: 60	-125 %	Dili	ution: 1x					
LCS (23J1014-BS1)			Prepared	1: 10/26/23 ()4:52 Anal	lyzed: 10/26	5/23 18:59					C-07
EPA 8082A						·						
Aroclor 1016	186	5.00	10.0	ug/kg we	et 1	250		74	47-134%			
Aroclor 1260	213	5.00	10.0	ug/kg we		250		85	53-140%			
Surr: Decachlorobiphenyl (Surr)		Reco	overy: 94 %	Limits: 60	-125 %	Dili	ution: 1x					
Duplicate (23J1014-DUP1)			Prepared	1: 10/26/23 ()4:52 Anal	lyzed: 10/26	5/23 19:52					C-07, PRO
QC Source Sample: Non-SDG (A3	3J1253-02)					<u>-</u>						
Aroclor 1016	ND	4.83	9.66	ug/kg dr	y 1		ND				30%	
Aroclor 1221	ND	4.83	9.66	ug/kg dr	v 1		ND				30%	
Aroclor 1232	ND	4.83	9.66	ug/kg dr	v 1		ND				30%	
Aroclor 1242	ND	4.83	9.66	ug/kg dr	•		ND				30%	
Aroclor 1248	ND	4.83	9.66	ug/kg dr	•		ND				30%	
Aroclor 1254	ND	4.83	9.66	ug/kg dr	•		ND				30%	
Aroclor 1260	ND	4.83	9.66	ug/kg dr			ND				30%	
Surr: Decachlorobiphenyl (Surr)		Reco	overy: 82 %	Limits: 60	•	Dili	ution: 1x					
Matrix Spike (23J1014-MS2)		_	Prepared	d: 10/26/23 ()4:52 Ana	lyzed: 10/27	7/23 11:58			_		C-07
QC Source Sample: TP-08-IM-4.0	-5.0-202310	11 (A3,I1366-1				<u>- </u>						
EPA 8082A	<u></u>	(/1001000-1	<u></u>									
Aroclor 1016	245	5.42	10.8	ug/kg dr	v 1	271	ND	90	47-134%			
Aroclor 1260	191	5.42	10.8	ug/kg dr ug/kg dr	•	271	82.9	40	53-140%			Q-0
	171	J.42	10.0	u2/K2 (If								

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

Polychlorinated Biphenyls by EPA 8082A Detection Reporting Spike Source % REC **RPD** % REC Analyte Result Ĺimit Units Dilution Amount Result Limits RPD Limit Notes Limit Batch 23J1014 - EPA 3546 Soil

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 101 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: **Eatonville Landfill Characterization**

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychlor	rinated Bi _l	ohenyls	by EPA 80	082A					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J1015 - EPA 3546							So	il				
Blank (23J1015-BLK1)			Prepared	d: 10/26/23 0	4:55 Ana	lyzed: 10/26	5/23 19:00					C-07
EPA 8082A												
Aroclor 1016	ND	5.00	10.0	ug/kg we	t 1							
Aroclor 1221	ND	5.00	10.0	ug/kg we	t 1							
Aroclor 1232	ND	5.00	10.0	ug/kg we	t 1							
Aroclor 1242	ND	5.00	10.0	ug/kg we	t 1							
Aroclor 1248	ND	5.00	10.0	ug/kg we	t 1							
Aroclor 1254	ND	5.00	10.0	ug/kg we	t 1							
Aroclor 1260	ND	5.00	10.0	ug/kg we	t 1							
Surr: Decachlorobiphenyl (Surr)		Reco	very: 112 %	Limits: 60-	125 %	Dil	ution: 1x					
LCS (23J1015-BS1)			Prepared	d: 10/26/23 0	4:55 Ana	lyzed: 10/26	5/23 19:17					C-07
EPA 8082A												
Aroclor 1016	213	5.00	10.0	ug/kg we	t 1	250		85	47-134%			
Aroclor 1260	241	5.00	10.0	ug/kg we	t 1	250		96	53-140%			
Surr: Decachlorobiphenyl (Surr)		Reco	very: 116 %	Limits: 60-	125 %	Dil	ution: 1x					
Duplicate (23J1015-DUP1)			Prepared	d: 10/26/23 0	4:55 Ana	lyzed: 10/26	5/23 20:10					C-07
QC Source Sample: TP-07-IM-9.0	-10.0-202310	011 (A3J1366-	16)									
EPA 8082A		•										
Aroclor 1016	ND	33.8	33.8	ug/kg dry	/ 1		ND				30%	R-0
Aroclor 1221	ND	10.7	10.7	ug/kg dry			ND				30%	
Aroclor 1232	ND	108	108	ug/kg dry			ND				30%	R-0
Aroclor 1242	ND	46.9	46.9	ug/kg dry	/ 1		ND				30%	R-0
Aroclor 1248	ND	33.2	33.2	ug/kg dry	/ 1		ND				30%	R-0
Aroclor 1254	95.7	5.35	10.7	ug/kg dry	/ 1		74.2			25	30%	P-1
Aroclor 1260	74.3	5.35	10.7	ug/kg dry	/ 1		53.6			32	30%	P-12, Q-1
Surr: Decachlorobiphenyl (Surr)		Reco	very: 108 %	Limits: 60-	125 %	Dil	ution: 1x					
Matrix Spike (23J1015-MS2)			Prepared	d: 10/26/23 0	4:55 Ana	lyzed: 10/27	7/23 11:41					C-07
OC Source Sample: TP-01-IM-5.0	-6.0-202310	10 (A3,I1366-2	8)									
EPA 8082A	<u>202</u> 310.	10 (/1001000-2	<u>~,</u>									
Aroclor 1016	1420	6.70	13.4	ug/kg dry	, 1	335	ND	422	47-134%			E, Q-4
		0.70	10.7	we ne ui								

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 102 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

Polychlorinated Biphenyls by EPA 8082A Detection Reporting Spike Source % REC **RPD** Analyte Result Ĺimit Units Dilution Amount Result % REC Limits RPD Limit Limit Notes Batch 23J1015 - EPA 3546 Soil Matrix Spike (23J1015-MS2) Prepared: 10/26/23 04:55 Analyzed: 10/27/23 11:41 C-07 QC Source Sample: TP-01-IM-5.0-6.0-20231010 (A3J1366-28) Dilution: 1x Surr: Decachlorobiphenyl (Surr) Recovery: 101 % Limits: 60-125 %

Apex Laboratories

Philip Menherg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 103 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection Spike % REC RPD Reporting Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 23J0793 - EPA 3546 Soil Blank (23J0793-BLK2) Prepared: 10/20/23 04:48 Analyzed: 10/23/23 10:18 EPA 8270E ND 1.33 2.67 ug/kg wet Acenaphthene ND 1.33 2.67 Acenaphthylene ug/kg wet 1 Anthracene ND 1.33 2.67 ug/kg wet 1 Benz(a)anthracene ND 1.33 2.67 ug/kg wet 1 Benzo(a)pyrene ND 2.00 4.00 ug/kg wet 1 Benzo(b)fluoranthene ND 2.00 4.00 ug/kg wet 1 ------Benzo(k)fluoranthene ND 2.00 4.00 ug/kg wet 1.33 2.67 Benzo(g,h,i)perylene ND ug/kg wet 1 Chrysene ND 1.33 2.67 ug/kg wet 1 Dibenz(a,h)anthracene ND 1.33 2.67 1 ug/kg wet Fluoranthene ND 1.33 2.67 ug/kg wet 1 ND 1.33 Fluorene 2.67 1 ug/kg wet ---Indeno(1,2,3-cd)pyrene ND 1.33 2.67 ug/kg wet 1 1-Methylnaphthalene ND 5.33 2.67 ug/kg wet 1 2-Methylnaphthalene ND 2.67 5.33 ug/kg wet 1 Naphthalene ND 2.67 5.33 ug/kg wet 1 ---------Phenanthrene ND 1.33 2.67 ug/kg wet 1 Pyrene ND 1.33 2.67 ug/kg wet 1 ---------Carbazole ND 2.00 4.00 ug/kg wet 1 Dibenzofuran ND 1.33 2.67 ug/kg wet 1 2-Chlorophenol ND 6.67 13.3 ug/kg wet 1 4-Chloro-3-methylphenol ND 13.3 26.7 ug/kg wet 1 2,4-Dichlorophenol ND 6.67 13.3 ug/kg wet 2,4-Dimethylphenol ND 6.67 13.3 ug/kg wet 1 2,4-Dinitrophenol 33.3 66.7 ND ug/kg wet 1 4,6-Dinitro-2-methylphenol ND 33.3 66.7 ug/kg wet 1 2-Methylphenol ND 3.33 6.67 ug/kg wet 1 3+4-Methylphenol(s) ND 3.33 6.67 ug/kg wet 1 ------2-Nitrophenol ND 13.3 26.7 ug/kg wet 1 13.3 4-Nitrophenol ND 26.7 ug/kg wet 1 ug/kg wet Pentachlorophenol (PCP) ND 13.3 26.7 1 Phenol ND 2.67 5.33 ug/kg wet 1 2,3,4,6-Tetrachlorophenol ND 6.67 13.3 ug/kg wet 1

Apex Laboratories

Philip Menterg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 104 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23J0793 - EPA 3546 Soil Blank (23J0793-BLK2) Prepared: 10/20/23 04:48 Analyzed: 10/23/23 10:18 2,3,5,6-Tetrachlorophenol ND 6.67 13.3 ug/kg wet 2,4,5-Trichlorophenol ND 6.67 13.3 ug/kg wet 1 ------2,4,6-Trichlorophenol ND 6.67 13.3 ug/kg wet 1 Bis(2-ethylhexyl)phthalate ND 20.0 40.0 ug/kg wet 1 Butyl benzyl phthalate ND 13.3 26.7 ug/kg wet 1 Diethylphthalate ND 13.3 26.7 ug/kg wet 1 Dimethylphthalate ND 13.3 26.7 ug/kg wet 1 Di-n-butylphthalate ND 13.3 26.7 ug/kg wet 1 13.3 Di-n-octyl phthalate ND 26.7 ug/kg wet 1 N-Nitrosodimethylamine ND 3.33 6.67 ug/kg wet 1 ND N-Nitroso-di-n-propylamine 3.33 6.67 ug/kg wet 1 3.33 N-Nitrosodiphenylamine ND 6.67 ug/kg wet 1 Bis(2-Chloroethoxy) methane ND 3.33 6.67 ug/kg wet 1 ------Bis(2-Chloroethyl) ether ND 3.33 6.67 ug/kg wet 1 2,2'-Oxybis(1-Chloropropane) ND 3.33 6.67 ug/kg wet 1 Hexachlorobenzene ND 1.33 2.67 ug/kg wet Hexachlorobutadiene ND 3.33 6.67 ug/kg wet 1 Hexachlorocyclopentadiene ND 6.67 13.3 ug/kg wet 1 ND Hexachloroethane 3.33 6.67 ug/kg wet 1 ---------2-Chloronaphthalene ND 1.33 2.67 ug/kg wet 1,2,4-Trichlorobenzene ND 3.33 6.67 ug/kg wet 1 ---4-Bromophenyl phenyl ether ND 3.33 6.67 ug/kg wet 1 4-Chlorophenyl phenyl ether ND 3.33 6.67 ug/kg wet 1 Aniline ND 6.67 13.3 ug/kg wet 4-Chloroaniline ND 3.33 6.67 1 ug/kg wet ------------2-Nitroaniline ND 26.7 53.3 ug/kg wet 1 3-Nitroaniline ND 26.7 53.3 ug/kg wet 1 ---4-Nitroaniline ND 26.7 53.3 ug/kg wet 1 Nitrobenzene ND 13.3 26.7 1 ug/kg wet ---2,4-Dinitrotoluene ND 13.3 26.7 ug/kg wet 1 2,6-Dinitrotoluene ND 13.3 26.7 ug/kg wet 1 ---Benzoic acid ND 167 333 ug/kg wet Benzyl alcohol ND 6.67 13.3 ug/kg wet 1 Isophorone ND 3.33 6.67 ug/kg wet 1

Apex Laboratories

Philip Menherg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 105 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile	Organic C	ompour	ds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0793 - EPA 3546							So	il				
Blank (23J0793-BLK2)			Prepared	1: 10/20/23 0	4:48 Ana	lyzed: 10/23	/23 10:18					
Azobenzene (1,2-DPH)	ND	3.33	6.67	ug/kg we	t 1							
Bis(2-Ethylhexyl) adipate	ND	33.3	66.7	ug/kg we	t 1							
3,3'-Dichlorobenzidine	ND	26.7	53.3	ug/kg we	t 1							Q-
1,2-Dinitrobenzene	ND	33.3	66.7	ug/kg we	t 1							
1,3-Dinitrobenzene	ND	33.3	66.7	ug/kg we	t 1							
1,4-Dinitrobenzene	ND	33.3	66.7	ug/kg we	t 1							
Pyridine	ND	6.67	13.3	ug/kg we	t 1							
1,2-Dichlorobenzene	ND	3.33	6.67	ug/kg we	t 1							
1,3-Dichlorobenzene	ND	3.33	6.67	ug/kg we	t 1							
1,4-Dichlorobenzene	ND	3.33	6.67	ug/kg we	t 1							
Surr: Nitrobenzene-d5 (Surr)		Reco	overy: 94 %	Limits: 37-	122 %	Dilı	ution: 1x					
2-Fluorobiphenyl (Surr)			88 %	44-	120 %		"					
Phenol-d6 (Surr)			91 %	33-	122 %		"					
p-Terphenyl-d14 (Surr)			85 %	54-	127 %		"					
2-Fluorophenol (Surr)			76 %	35-	120 %		"					
2,4,6-Tribromophenol (Surr)			94 %	39-	132 %		"					
LCS (23J0793-BS2)			Prepared	1: 10/20/23 0	4:48 Ana	lyzed: 10/23	/23 10:52					
EPA 8270E												
Acenaphthene	469	5.32	10.7	ug/kg we	t 4	533		88	40-123%			
Acenaphthylene	504	5.32	10.7	ug/kg we	t 4	533		95	32-132%			
Anthracene	492	5.32	10.7	ug/kg we	t 4	533		92	47-123%			
Benz(a)anthracene	473	5.32	10.7	ug/kg we	t 4	533		89	49-126%			
Benzo(a)pyrene	533	8.00	16.0	ug/kg we	t 4	533		100	45-129%			
Benzo(b)fluoranthene	517	8.00	16.0	ug/kg we	t 4	533		97	45-132%			
Benzo(k)fluoranthene	541	8.00	16.0	ug/kg we	t 4	533		101	47-132%			
Benzo(g,h,i)perylene	484	5.32	10.7	ug/kg we	t 4	533		91	43-134%			
Chrysene	467	5.32	10.7	ug/kg we		533		88	50-124%			
Dibenz(a,h)anthracene	481	5.32	10.7	ug/kg we		533		90	45-134%			
Fluoranthene	523	5.32	10.7	ug/kg we	t 4	533		98	50-127%			
Fluorene	463	5.32	10.7	ug/kg we		533		87	43-125%			
Indeno(1,2,3-cd)pyrene	437	5.32	10.7	ug/kg we		533		82	45-133%			
1-Methylnaphthalene	514	10.7	21.3	ug/kg we		533		96	40-120%			
2-Methylnaphthalene	538	10.7	21.3	ug/kg we		533		101	38-122%			

Apex Laboratories

Philip Newsberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23J0793 - EPA 3546 Soil LCS (23J0793-BS2) Prepared: 10/20/23 04:48 Analyzed: 10/23/23 10:52 475 10.7 21.3 533 89 35-123% Naphthalene ug/kg wet Phenanthrene 478 5.32 10.7 ug/kg wet 4 533 90 50-121% ---------Pyrene 525 5.32 10.7 ug/kg wet 4 533 98 47-127% Carbazole 511 8.00 16.0 ug/kg wet 4 533 96 50-123% 98 Dibenzofuran 521 5.32 10.7 4 533 44-120% ug/kg wet 529 99 2-Chlorophenol 26.7 53.2 ug/kg wet 4 533 34-121% 4-Chloro-3-methylphenol 510 53.2 107 ug/kg wet 4 533 96 45-122% 40-122% Q-41 2,4-Dichlorophenol 612 26.7 53.2 ug/kg wet 4 533 115 Q-41 53.2 2,4-Dimethylphenol 546 26.7 ug/kg wet 4 533 102 30-127% 2,4-Dinitrophenol 574 133 267 ug/kg wet 4 533 108 10-137% Q-41 4,6-Dinitro-2-methylphenol 538 133 267 4 533 101 29-132% ug/kg wet ---13.3 Q-41 2-Methylphenol 603 26.7 ug/kg wet 4 533 113 32-122% O-41 3+4-Methylphenol(s) 634 13.3 4 533 119 26.7 ug/kg wet ---34-120% ---2-Nitrophenol 577 53.2 107 ug/kg wet 4 533 108 36-123% Q-41 4-Nitrophenol 565 53.2 107 4 533 106 30-132% ug/kg wet ---Pentachlorophenol (PCP) 494 53.2 107 ug/kg wet 4 533 93 25-133% Phenol 10.7 21.3 533 Q-41 634 ug/kg wet 4 119 34-121% 2,3,4,6-Tetrachlorophenol 508 26.7 53.2 4 533 95 44-125% ug/kg wet 2,3,5,6-Tetrachlorophenol 530 26.7 53.2 4 533 99 40-120% ug/kg wet ------2,4,5-Trichlorophenol 579 26.7 53.2 ug/kg wet 4 533 109 41-124% Q-41 2,4,6-Trichlorophenol 572 26.7 53.2 4 533 107 39-126% Q-41 ug/kg wet ------Bis(2-ethylhexyl)phthalate 477 80.0 160 ug/kg wet 4 533 89 51-133% Butyl benzyl phthalate 488 53.2 107 4 533 92 48-132% ug/kg wet Diethylphthalate 410 53.2 107 ug/kg wet 4 533 77 50-124% 479 53.2 107 4 533 90 Dimethylphthalate 48-124% ug/kg wet ------Di-n-butylphthalate 482 53.2 107 ug/kg wet 4 533 90 51-128% Di-n-octyl phthalate 498 53.2 107 4 533 93 45-140% ug/kg wet ---N-Nitrosodimethylamine 392 13.3 26.7 ug/kg wet 4 533 74 23-120% N-Nitroso-di-n-propylamine 484 13.3 26.7 4 533 91 36-120% ug/kg wet 97 N-Nitrosodiphenylamine 519 13.3 26.7 ug/kg wet 4 533 38-127% Bis(2-Chloroethoxy) methane 512 13.3 4 533 96 36-121% 26.7 ug/kg wet Bis(2-Chloroethyl) ether 451 13.3 26.7 ug/kg wet 4 533 85 31-120%

Apex Laboratories

Hexachlorobenzene

2,2'-Oxybis(1-Chloropropane)

Philip Nevenberg

447

500

13.3

5.32

26.7

10.7

ug/kg wet

ug/kg wet

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

84

94

39-120%

45-122%

Philip Nerenberg, Lab Director

Page 107 of 156

4

4

533

533

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E % REC RPD Detection Reporting Spike Source Result Units Dilution % REC RPD Analyte Limit Limit Amount Result Limits Limit Notes Batch 23J0793 - EPA 3546 Soil LCS (23J0793-BS2) Prepared: 10/20/23 04:48 Analyzed: 10/23/23 10:52 473 13.3 26.7 533 89 32-123% Hexachlorobutadiene ug/kg wet Q-41 Hexachlorocyclopentadiene 531 26.7 53.2 ug/kg wet 4 533 100 10-140% ---------Hexachloroethane 459 13.3 26.7 ug/kg wet 4 533 86 28-120% 2-Chloronaphthalene 524 5.32 10.7 ug/kg wet 4 533 98 41-120% 1,2,4-Trichlorobenzene 481 13.3 26.7 4 533 90 34-120% ug/kg wet 97 4-Bromophenyl phenyl ether 519 13.3 26.7 ug/kg wet 4 533 46-124% 4-Chlorophenyl phenyl ether 505 13.3 26.7 ug/kg wet 4 533 95 45-121% Q-31 Aniline 363 26.7 53.2 ug/kg wet 4 533 68 10-120% 13.3 4-Chloroaniline 404 26.7 ug/kg wet 4 533 76 17-120% 2-Nitroaniline 508 107 213 ug/kg wet 4 533 95 44-127% 449 107 213 4 533 84 33-120% 3-Nitroaniline ug/kg wet 4-Nitroaniline 107 213 525 ug/kg wet 4 533 98 51-125% Nitrobenzene 529 107 533 99 34-122% 53.2 ug/kg wet 4 2,4-Dinitrotoluene 476 53.2 107 ug/kg wet 4 533 89 48-126% 2,6-Dinitrotoluene 479 53.2 107 4 533 90 46-124% ug/kg wet Benzoic acid 883 668 668 ug/kg wet 4 1070 83 10-140% Benzyl alcohol 26.7 53.2 Q-41 618 4 533 116 29-122% ug/kg wet 450 26.7 4 533 84 30-122% Isophorone 13.3 ug/kg wet 533 Azobenzene (1,2-DPH) 481 13.3 26.7 4 90 39-125% ug/kg wet ---Bis(2-Ethylhexyl) adipate 452 133 267 ug/kg wet 4 533 85 61-121% 3,3'-Dichlorobenzidine 1190 107 213 4 1070 111 22-121% O-31, O-52 ug/kg wet ---1,2-Dinitrobenzene 514 133 267 ug/kg wet 4 533 96 44-120% 1,3-Dinitrobenzene 499 133 4 533 93 43-127% 267 ug/kg wet 1,4-Dinitrobenzene 533 133 267 4 533 100 37-132% ug/kg wet 4 533 Pyridine 337 26.7 53.2 63 10-120% ug/kg wet ------1,2-Dichlorobenzene 467 13.3 26.7 ug/kg wet 4 533 88 33-120% 1.3-Dichlorobenzene 451 13.3 26.7 4 533 85 30-120% ug/kg wet ---1,4-Dichlorobenzene 454 13.3 26.7 ug/kg wet 4 533 85 31-120% Surr: Nitrobenzene-d5 (Surr) Recovery: 103 % Limits: 37-122 % Dilution: 4x 98 % 44-120 % 2-Fluorobiphenyl (Surr) Phenol-d6 (Surr) 111 % 33-122 % p-Terphenyl-d14 (Surr) 99% 54-127 % 2-Fluorophenol (Surr) 87% 35-120 % 2,4,6-Tribromophenol (Surr) 112 % 39-132 %

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile	Organic C	Compour	nds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0793 - EPA 3546							Soi	I				
Duplicate (23J0793-DUP2)			Prepared	1: 10/20/23 0)4:48 Ana	lyzed: 10/23	/23 14:14					R-04
QC Source Sample: TP-01-IM-10	.0-11.0-2023	1010 (A3J1366	6-06RE1)									
<u>EPA 8270E</u>												
Acenaphthene	ND	58.5	117	ug/kg dr			ND				30%	
Acenaphthylene	ND	58.5	117	ug/kg dr	•		ND				30%	
Anthracene	ND	58.5	117	ug/kg dr	•		ND				30%	
Benz(a)anthracene	ND	58.5	117	ug/kg dr	-		ND				30%	
Benzo(a)pyrene	ND	87.9	176	ug/kg dr	y 40		ND				30%	
Benzo(b)fluoranthene	ND	87.9	176	ug/kg dr	y 40		ND				30%	
Benzo(k)fluoranthene	ND	87.9	176	ug/kg dr	y 40		ND				30%	
Benzo(g,h,i)perylene	ND	58.5	117	ug/kg dr	y 40		100			***	30%	Q-1
Chrysene	ND	58.5	117	ug/kg dr	y 40		ND				30%	
Dibenz(a,h)anthracene	ND	58.5	117	ug/kg dr	y 40		ND				30%	
Fluoranthene	ND	58.5	117	ug/kg dr	y 40		ND				30%	
Fluorene	ND	58.5	117	ug/kg dr	y 40		ND				30%	
Indeno(1,2,3-cd)pyrene	ND	58.5	117	ug/kg dr	y 40		68.1			***	30%	Q-1
1-Methylnaphthalene	ND	117	234	ug/kg dr	y 40		ND				30%	
2-Methylnaphthalene	ND	117	234	ug/kg dr	y 40		ND				30%	
Naphthalene	ND	117	234	ug/kg dr	y 40		ND				30%	
Phenanthrene	ND	58.5	117	ug/kg dr	y 40		ND				30%	
Pyrene	ND	58.5	117	ug/kg dr	y 40		71.3			***	30%	Q-1
Carbazole	ND	87.9	176	ug/kg dr	y 40		ND				30%	
Dibenzofuran	ND	58.5	117	ug/kg dr	y 40		ND				30%	
2-Chlorophenol	ND	293	585	ug/kg dr	y 40		ND				30%	
4-Chloro-3-methylphenol	ND	585	1170	ug/kg dr	y 40		ND				30%	
2,4-Dichlorophenol	ND	293	585	ug/kg dr	y 40		ND				30%	
2,4-Dimethylphenol	ND	293	585	ug/kg dr			ND				30%	
2,4-Dinitrophenol	ND	1460	2930	ug/kg dr	-		ND				30%	
4,6-Dinitro-2-methylphenol	ND	1460	2930	ug/kg dr	•		ND				30%	
2-Methylphenol	ND	146	293	ug/kg dr	•		ND				30%	
3+4-Methylphenol(s)	ND	146	293	ug/kg dr	•		ND				30%	
2-Nitrophenol	ND	585	1170	ug/kg dr	•		ND				30%	
4-Nitrophenol	ND	585	1170	ug/kg dr	•		ND				30%	
Pentachlorophenol (PCP)	ND	585	1170	ug/kg dr	•		ND				30%	

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23J0793 - EPA 3546 Soil Duplicate (23J0793-DUP2) Prepared: 10/20/23 04:48 Analyzed: 10/23/23 14:14 R-04 QC Source Sample: TP-01-IM-10.0-11.0-20231010 (A3J1366-06RE1) Phenol ND 117 234 40 ND 30% ug/kg dry ND 293 585 2,3,4,6-Tetrachlorophenol ug/kg dry 40 ND 30% 2,3,5,6-Tetrachlorophenol ND 293 585 ug/kg dry 40 ND 30% 2,4,5-Trichlorophenol ND 293 585 ug/kg dry 40 ND 30% 2,4,6-Trichlorophenol ND 293 585 ug/kg dry 40 ND 30% ------879 ND Bis(2-ethylhexyl)phthalate 1760 ug/kg dry 40 ND 30% Butyl benzyl phthalate ND 585 1170 40 ND 30% ug/kg dry Diethylphthalate ND 585 ND 30% 1170 ug/kg dry 40 Dimethylphthalate ND 585 1170 ug/kg dry 40 ND 30% Di-n-butylphthalate ND 585 1170 ug/kg dry 40 ND 30% Di-n-octyl phthalate ND 585 1170 ug/kg dry 40 ND 30% N-Nitrosodimethylamine ND 146 293 ND 30% ug/kg dry 40 N-Nitroso-di-n-propylamine ND 146 293 ug/kg dry 40 ND 30% N-Nitrosodiphenylamine ND 146 293 ND 30% ug/kg dry 40 293 Bis(2-Chloroethoxy) methane ND 146 ug/kg dry 40 ND 30% Bis(2-Chloroethyl) ether ND 146 293 ug/kg dry 40 ND ___ 30% 2,2'-Oxybis(1-Chloropropane) ND 146 293 ug/kg dry 40 ND 30% ND 30% Hexachlorobenzene 58.5 117 40 ND ug/kg dry ---ND 293 Hexachlorobutadiene 146 ug/kg dry 40 ND 30% ND 293 585 Hexachlorocyclopentadiene ND 30% ug/kg dry 40 ND 293 Hexachloroethane 146 ug/kg dry 40 ND 30% 2-Chloronaphthalene ND 58.5 117 ug/kg dry 40 ND ------30% 1,2,4-Trichlorobenzene ND 146 293 ug/kg dry 40 ND 30% ND 293 ND 30% 4-Bromophenyl phenyl ether 146 40 ug/kg dry 4-Chlorophenyl phenyl ether ND 146 293 30% ug/kg dry 40 ND ND 293 Aniline 585 40 ND 30% ug/kg dry 4-Chloroaniline ND 146 293 ND 30% ug/kg dry 40 2-Nitroaniline ND 1170 2340 ug/kg dry 40 ND ------30% 3-Nitroaniline ND 1170 2340 ug/kg dry 40 ND 30% 4-Nitroaniline ND 1170 2340 ND 30% ug/kg dry 40 ---Nitrobenzene ND 585 1170 ug/kg dry 40 ND 30% 585 1170 2.4-Dinitrotoluene ND 40 ND 30% ug/kg dry ---2,6-Dinitrotoluene ND 585 1170 ug/kg dry 40 ND 30%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 110 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Q-01

Q-01

Q-01

Q-01

Q-01

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile	Organic (Compour	nds by EP	A 8270E						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Not	es
Batch 23J0793 - EPA 3546							Soi	il					
Duplicate (23J0793-DUP2)			Prepared	1: 10/20/23 (04:48 Ana	lyzed: 10/23	/23 14:14						R-04
QC Source Sample: TP-01-IM-10.	0-11.0-2023	1010 (A3J1366	5-06RE1)										
Benzoic acid	ND	7340	14600	ug/kg dr	y 40		ND				30%		
Benzyl alcohol	ND	293	585	ug/kg dr	y 40		ND				30%		
Isophorone	ND	146	293	ug/kg dr	y 40		ND				30%		
Azobenzene (1,2-DPH)	ND	146	293	ug/kg dr	y 40		ND				30%		
Bis(2-Ethylhexyl) adipate	ND	1460	2930	ug/kg dr	y 40		ND				30%		
3,3'-Dichlorobenzidine	ND	1170	2340	ug/kg dr	y 40		ND				30%		Q-52
1,2-Dinitrobenzene	ND	1460	2930	ug/kg dr	y 40		ND				30%		
1,3-Dinitrobenzene	ND	1460	2930	ug/kg dr	y 40		ND				30%		
1,4-Dinitrobenzene	ND	1460	2930	ug/kg dr	y 40		ND				30%		
Pyridine	ND	293	585	ug/kg dr	y 40		ND				30%		
1,2-Dichlorobenzene	ND	146	293	ug/kg dr	y 40		ND				30%		
1,3-Dichlorobenzene	ND	146	293	ug/kg dr	y 40		ND				30%		
1,4-Dichlorobenzene	ND	146	293	ug/kg dr	y 40		ND				30%		
Surr: Nitrobenzene-d5 (Surr)		Reco	very: 111 %	Limits: 37	-122 %	Dilt	ution: 40x					S-05	
2-Fluorobiphenyl (Surr)			120 %	44	-120 %		"					S-05	
Phenol-d6 (Surr)			109 %	33-	-122 %		"					S-05	
p-Terphenyl-d14 (Surr)			124 %	54	-127 %		"					S-05	
2-Fluorophenol (Surr)			90 %	35-	-120 %		"					S-05	
2,4,6-Tribromophenol (Surr)			122 %	39	-132 %		"					S-05	
Matrix Spike (23J0793-MS2)			Prepared	l: 10/20/23 (04:48 Ana	lyzed: 10/23	/23 13:07						
QC Source Sample: TP-04-NS-9.0	-10.0-202310	010 (A3J1366-	07RE2)										
EPA 8270E													
Acenaphthene	798	5.97	12.0	ug/kg dr	y 4	599	ND	133	40-123%				Q-0
Acenaphthylene	858	5.97	12.0	ug/kg dr	y 4	599	ND	143	32-132%				Q-0
Anthracene	816	5.97	12.0	ug/kg dr		599	ND	136	47-123%				Q-0
Benz(a)anthracene	825	5.97	12.0	ug/kg dr	y 4	599	ND	138	49-126%				Q-0
Benzo(a)pyrene	927	8.98	18.0	ug/kg dr	y 4	599	ND	155	45-129%				Q-0

Apex Laboratories

Chrysene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Benzo(g,h,i)perylene

Dibenz(a,h)anthracene

Philip Nevenberg

919

913

849

812

846

8.98

8.98

5.97

5.97

5.97

18.0

18.0

12.0

12.0

12.0

ug/kg dry

ug/kg dry

ug/kg dry

ug/kg dry

ug/kg dry

599

599

599

599

599

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

153

152

142

136

141

ND

ND

ND

ND

ND

45-132%

47-132%

43-134%

50-124%

45-134%

Philip Nerenberg, Lab Director

Page 111 of 156

4

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23J0793 - EPA 3546 Soil Matrix Spike (23J0793-MS2) Prepared: 10/20/23 04:48 Analyzed: 10/23/23 13:07 QC Source Sample: TP-04-NS-9.0-10.0-20231010 (A3J1366-07RE2) Fluoranthene 866 5.97 12.0 4 599 ND 145 50-127% O-01 ug/kg dry Fluorene Q-01 773 5.97 599 12.0 ug/kg dry 4 ND 129 43-125% Indeno(1,2,3-cd)pyrene 788 5.97 12.0 ug/kg dry 4 599 ND 132 45-133% Q-01 1-Methylnaphthalene 878 12.0 23.9 ug/kg dry 4 599 ND 147 40-120% 2-Methylnaphthalene 930 12.0 23.9 4 599 ND 155 38-122% Q-01 ug/kg dry ---Naphthalene 819 23.9 599 ND O-01 12.0 ug/kg dry 4 137 35-123% 5.97 Q-01 Phenanthrene 790 12.0 4 599 ND 132 50-121% ug/kg dry 5.97 599 ND O-01 Pyrene 864 12.0 ug/kg dry 4 144 47-127% ---Q-01 Carbazole 808 8.98 18.0 ug/kg dry 4 599 ND 135 50-123% Dibenzofuran 884 5.97 12.0 ug/kg dry 4 599 ND 148 44-120% O - 0.12-Chlorophenol 903 30.0 59.7 ug/kg dry 4 599 ND 151 34-121% Q-01 Q-01 4-Chloro-3-methylphenol 884 59.7 120 599 ND 45-122% ug/kg dry 4 148 599 Q-41, Q-01 2,4-Dichlorophenol 961 30.0 59.7 ug/kg dry 4 ND 160 40-122% 1090 30.0 Q-41, Q-01 2,4-Dimethylphenol 59.7 4 599 ND 182 30-127% ug/kg dry Q-41, Q-01 2,4-Dinitrophenol 887 150 300 ug/kg dry 4 599 ND 148 10-137% 599 Q-01 4,6-Dinitro-2-methylphenol 877 150 300 ug/kg dry 4 ND 146 29-132% ___ 2-Methylphenol 1070 15.0 30.0 ug/kg dry 4 599 ND 179 32-122% Q-41, Q-01 1060 30.0 599 ND Q-41, Q-01 3+4-Methylphenol(s) 15.0 4 34-120% ug/kg dry 177 ---599 36-123% Q-41, Q-01 2-Nitrophenol 965 59.7 120 ug/kg dry 4 ND 161 4-Nitrophenol 912 59.7 120 Q-01 4 599 ND 30-132% ug/kg dry 152 Pentachlorophenol (PCP) 4 599 ND Q-01 856 59.7 120 ug/kg dry 143 25-133% O-41, O-01 Phenol 1100 12.0 23.9 ug/kg dry 4 599 ND 184 34-121% ---2,3,4,6-Tetrachlorophenol 878 30.0 59.7 ug/kg dry 4 599 ND 147 44-125% Q-01 926 30.0 59.7 4 599 ND 40-120% Q-01 2,3,5,6-Tetrachlorophenol ug/kg dry 155 ---2,4,5-Trichlorophenol 984 30.0 59.7 599 ND 41-124% Q-01, Q-41 ug/kg dry 4 164 917 Q-41, Q-01 2,4,6-Trichlorophenol 30.0 59.7 4 599 ND 153 39-126% ug/kg dry ---Bis(2-ethylhexyl)phthalate 887 89.8 180 599 ND 148 51-133% Q-01 ug/kg dry 4 599 Q-01 Butyl benzyl phthalate 888 59.7 120 ug/kg dry 4 ND 148 48-132% ---Diethylphthalate 690 59.7 120 ug/kg dry 4 599 ND 115 50-124% Dimethylphthalate 835 59.7 120 4 599 ND Q-01 ug/kg dry 139 48-124% ---Di-n-butylphthalate 804 59.7 120 4 599 ND 51-128% Q-01 ug/kg dry 134 935 59.7 120 4 ND Q-01 Di-n-octyl phthalate 599 156 45-140% ug/kg dry ---N-Nitrosodimethylamine 695 15.0 30.0 ug/kg dry 4 599 ND 116 23-120%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 112 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E % REC RPD Detection Reporting Spike Source Result Units Dilution % REC RPD Analyte Limit Limit Amount Result Limits Limit Notes Batch 23J0793 - EPA 3546 Soil Matrix Spike (23J0793-MS2) Prepared: 10/20/23 04:48 Analyzed: 10/23/23 13:07 QC Source Sample: TP-04-NS-9.0-10.0-20231010 (A3J1366-07RE2) N-Nitroso-di-n-propylamine 820 15.0 30.0 4 599 ND 137 36-120% O-01 ug/kg dry Q-01 15.0 30.0 599 N-Nitrosodiphenylamine 846 ug/kg dry 4 ND 141 38-127% Bis(2-Chloroethoxy) methane 869 15.0 30.0 ug/kg dry 4 599 ND 145 36-121% O - 01Q-01 Bis(2-Chloroethyl) ether 788 15.0 30.0 ug/kg dry 4 599 ND 132 31-120% 2,2'-Oxybis(1-Chloropropane) 724 15.0 30.0 4 599 ND 121 39-120% O-01 ug/kg dry ---5.97 854 599 Q-01 Hexachlorobenzene 12.0 ug/kg dry 4 ND 143 45-122% Hexachlorobutadiene 777 15.0 30.0 4 599 ND 130 32-123% O-01 ug/kg dry 865 59.7 599 ND Q-41, Q-01 Hexachlorocyclopentadiene 30.0 ug/kg dry 4 144 10-140% ---Q-01 Hexachloroethane 802 15.0 30.0 ug/kg dry 4 599 ND 134 28-120% 2-Chloronaphthalene 878 5.97 12.0 ug/kg dry 4 599 ND 147 41-120% O - 0.11,2,4-Trichlorobenzene 82.7 15.0 30.0 ug/kg dry 4 599 ND 138 34-120% Q-01 Q-01 4-Bromophenyl phenyl ether 871 30.0 599 15.0 ug/kg dry 4 ND 145 46-124% 599 Q-01 4-Chlorophenyl phenyl ether 841 15.0 30.0 ug/kg dry 4 ND 140 45-121% Aniline 30.0 O-31 586 59.7 4 599 ND 98 ug/kg dry 10-120% 4-Chloroaniline 681 15.0 30.0 ug/kg dry 4 599 ND 114 17-120% Q-01 2-Nitroaniline 865 120 239 ug/kg dry 4 599 ND 144 44-127% ___ 3-Nitroaniline 674 120 239 ug/kg dry 4 599 ND 113 33-120% 4-Nitroaniline 840 599 ND Q-01 120 239 4 140 51-125% ug/kg dry ---890 599 34-122% Q-01 Nitrobenzene 59.7 120 ug/kg dry 4 ND 149 Q-01 59.7 2.4-Dinitrotoluene 807 120 4 599 ND 48-126% ug/kg dry 135 2.6-Dinitrotoluene 4 599 ND Q-01 828 59.7 120 ug/kg dry 138 46-124% Q-01, J Benzoic acid 1150 750 1500 ug/kg dry 4 1200 ND 96 10-140% ---Benzyl alcohol 1000 30.0 59.7 ug/kg dry 4 599 ND 167 29-122% Q-41, Q-01 781 15.0 4 599 ND Q-01 Isophorone 30.0 130 30-122% ug/kg dry ---Azobenzene (1,2-DPH) 793 15.0 30.0 599 ND 39-125% Q-01 ug/kg dry 4 132 Q-01 Bis(2-Ethylhexyl) adipate 853 150 300 4 599 ND 142 61-121% ug/kg dry 3,3'-Dichlorobenzidine 1760 120 239 1200 ND 22-121% Q-31, Q-52, ug/kg dry 4 147 O - 01150 1,2-Dinitrobenzene 878 300 4 599 ND 147 44-120% Q-01 ug/kg dry ------Q-01 1,3-Dinitrobenzene 841 150 300 ug/kg dry 4 599 ND 140 43-127% 1,4-Dinitrobenzene 859 150 300 4 599 ND 143 37-132% Q-01 ug/kg dry Pyridine 582 30.0 59.7 599 ND 97 10-120% ug/kg dry 4 599 Q-01 1,2-Dichlorobenzene 787 15.0 30.0 ug/kg dry 4 ND 131 33-120% ---

Apex Laboratories

Philip Menherg

1.3-Dichlorobenzene

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

129

30-120%

Q-01

Philip Nerenberg, Lab Director

Page 113 of 156

4

599

ND

ug/kg dry

30.0

15.0

771

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection Reporting Spike Source % REC **RPD** Limits RPD Analyte Result Limit Units Dilution Amount Result % REC Limit Limit Notes Batch 23J0793 - EPA 3546 Soil Matrix Spike (23J0793-MS2) Prepared: 10/20/23 04:48 Analyzed: 10/23/23 13:07 QC Source Sample: TP-04-NS-9.0-10.0-20231010 (A3J1366-07RE2) Q-01 1,4-Dichlorobenzene 768 15.0 30.0 ND 128 31-120% ug/kg dry Surr: Nitrobenzene-d5 (Surr) Recovery: 154 % Limits: 37-122 % Dilution: 4x S-05 2-Fluorobiphenyl (Surr) 147 % 44-120 % S-05 Phenol-d6 (Surr) 33-122 % 176 % S-05 p-Terphenyl-d14 (Surr) 54-127 % 158 % S-05 2-Fluorophenol (Surr) 137 % 35-120 % S-05 2,4,6-Tribromophenol (Surr) 39-132 % 169 % S-05

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 114 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection Spike % REC RPD Reporting Source Analyte Result Limit Units Dilution % REC RPD Limit Amount Result Limits Limit Notes Batch 23J0901 - EPA 3546 Soil Blank (23J0901-BLK2) Prepared: 10/24/23 06:49 Analyzed: 10/24/23 15:35 EPA 8270E ND 1.33 2.67 ug/kg wet Acenaphthene ND 1.33 2.67 Acenaphthylene ug/kg wet 1 Anthracene ND 1.33 2.67 ug/kg wet 1 Benz(a)anthracene ND 1.33 2.67 ug/kg wet 1 Benzo(a)pyrene ND 2.00 4.00 ug/kg wet 1 ND Benzo(b)fluoranthene 2.00 4.00 ug/kg wet 1 ---Benzo(k)fluoranthene ND 2.00 4.00 ug/kg wet 1.33 2.67 Benzo(g,h,i)perylene ND ug/kg wet 1 Chrysene ND 1.33 2.67 ug/kg wet 1 Dibenz(a,h)anthracene ND 1.33 2.67 1 ug/kg wet Fluoranthene ND 1.33 2.67 ug/kg wet 1 ND 1.33 Fluorene 2.67 1 ug/kg wet ---Indeno(1,2,3-cd)pyrene ND 1.33 2.67 ug/kg wet 1 1-Methylnaphthalene ND 5.33 2.67 ug/kg wet 1 2-Methylnaphthalene ND 2.67 5.33 ug/kg wet 1 Naphthalene ND 2.67 5.33 ug/kg wet 1 ---------Phenanthrene ND 1.33 2.67 ug/kg wet 1 Pyrene ND 1.33 2.67 ug/kg wet 1 ---------Carbazole ND 2.00 4.00 ug/kg wet 1 Dibenzofuran ND 1.33 2.67 ug/kg wet 1 2-Chlorophenol ND 6.67 13.3 ug/kg wet 1 4-Chloro-3-methylphenol ND 13.3 26.7 ug/kg wet 1 2,4-Dichlorophenol ND 6.67 13.3 ug/kg wet 1 2,4-Dimethylphenol ND 6.67 13.3 ug/kg wet 1 2,4-Dinitrophenol 33.3 66.7 ND ug/kg wet 1 4,6-Dinitro-2-methylphenol ND 33.3 66.7 ug/kg wet 1 2-Methylphenol ND 3.33 6.67 ug/kg wet 1 3+4-Methylphenol(s) ND 3.33 6.67 ug/kg wet 1 ------2-Nitrophenol ND 13.3 26.7 ug/kg wet 1 13.3 4-Nitrophenol ND 26.7 ug/kg wet 1 ug/kg wet Pentachlorophenol (PCP) ND 13.3 26.7 1 Phenol ND 2.67 5.33 ug/kg wet 1 2,3,4,6-Tetrachlorophenol ND 6.67 13.3 ug/kg wet 1

Apex Laboratories

Philip Menterg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 115 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23J0901 - EPA 3546 Soil Blank (23J0901-BLK2) Prepared: 10/24/23 06:49 Analyzed: 10/24/23 15:35 2,3,5,6-Tetrachlorophenol ND 6.67 13.3 ug/kg wet 2,4,5-Trichlorophenol ND 6.67 13.3 ug/kg wet 1 ------2,4,6-Trichlorophenol ND 6.67 13.3 ug/kg wet 1 Bis(2-ethylhexyl)phthalate ND 20.0 40.0 ug/kg wet 1 Butyl benzyl phthalate ND 13.3 26.7 ug/kg wet 1 Diethylphthalate ND 13.3 26.7 ug/kg wet 1 Dimethylphthalate ND 13.3 26.7 ug/kg wet 1 Di-n-butylphthalate ND 13.3 26.7 ug/kg wet 1 13.3 Di-n-octyl phthalate ND 26.7 ug/kg wet 1 N-Nitrosodimethylamine ND 3.33 6.67 ug/kg wet 1 ND N-Nitroso-di-n-propylamine 3.33 6.67 ug/kg wet 1 3.33 N-Nitrosodiphenylamine ND 6.67 ug/kg wet 1 Bis(2-Chloroethoxy) methane ND 3.33 6.67 ug/kg wet 1 ------Bis(2-Chloroethyl) ether ND 3.33 6.67 ug/kg wet 1 2,2'-Oxybis(1-Chloropropane) ND 3.33 6.67 ug/kg wet 1 Hexachlorobenzene ND 1.33 2.67 ug/kg wet Hexachlorobutadiene ND 3.33 6.67 ug/kg wet 1 Hexachlorocyclopentadiene ND 6.67 13.3 ug/kg wet 1 ND Hexachloroethane 3.33 6.67 ug/kg wet 1 ---------2-Chloronaphthalene ND 1.33 2.67 ug/kg wet 1,2,4-Trichlorobenzene ND 3.33 6.67 ug/kg wet 1 ---4-Bromophenyl phenyl ether ND 3.33 6.67 ug/kg wet 1 4-Chlorophenyl phenyl ether ND 3.33 6.67 ug/kg wet 1 Aniline ND 6.67 13.3 ug/kg wet 4-Chloroaniline ND 3.33 6.67 1 ug/kg wet ------------2-Nitroaniline ND 26.7 53.3 ug/kg wet 1 3-Nitroaniline ND 26.7 53.3 ug/kg wet 1 ---4-Nitroaniline ND 26.7 53.3 ug/kg wet 1 Nitrobenzene ND 13.3 26.7 1 ug/kg wet ---2,4-Dinitrotoluene ND 13.3 26.7 ug/kg wet 1 2,6-Dinitrotoluene ND 13.3 26.7 ug/kg wet 1 ---Benzoic acid ND 167 333 ug/kg wet Benzyl alcohol ND 6.67 13.3 ug/kg wet 1 Isophorone ND 3.33 6.67 ug/kg wet 1

Apex Laboratories

Philip Menherg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 116 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

		Semivolatile Organic Compounds by EPA 8270E										
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0901 - EPA 3546							Soi	I				
Blank (23J0901-BLK2)			Prepared	1: 10/24/23 0	6:49 Ana	lyzed: 10/24	/23 15:35					
Azobenzene (1,2-DPH)	ND	3.33	6.67	ug/kg we	t 1							
Bis(2-Ethylhexyl) adipate	ND	33.3	66.7	ug/kg we	t 1							
3,3'-Dichlorobenzidine	ND	26.7	53.3	ug/kg we	t 1							Q-
1,2-Dinitrobenzene	ND	33.3	66.7	ug/kg we	t 1							
1,3-Dinitrobenzene	ND	33.3	66.7	ug/kg we	t 1							
1,4-Dinitrobenzene	ND	33.3	66.7	ug/kg we	t 1							
Pyridine	ND	6.67	13.3	ug/kg we	t 1							
1,2-Dichlorobenzene	ND	3.33	6.67	ug/kg we	t 1							
1,3-Dichlorobenzene	ND	3.33	6.67	ug/kg we	t 1							
1,4-Dichlorobenzene	ND	3.33	6.67	ug/kg we	t 1							
Surr: Nitrobenzene-d5 (Surr)		Reco	overy: 95 %	Limits: 37-	122 %	Dilı	ution: 1x					
2-Fluorobiphenyl (Surr)			82 %	44-	120 %		"					
Phenol-d6 (Surr)			97 %	33-	122 %		"					
p-Terphenyl-d14 (Surr)			82 %	54-	127 %		"					
2-Fluorophenol (Surr)			76 %	35-	120 %		"					
2,4,6-Tribromophenol (Surr)			97 %	39-	132 %		"					
LCS (23J0901-BS2)			Prepared	l: 10/24/23 0	6:49 Ana	lyzed: 10/24	/23 16:09					
EPA 8270E												
Acenaphthene	541	5.32	10.7	ug/kg we	t 4	533		101	40-123%			
Acenaphthylene	571	5.32	10.7	ug/kg we	t 4	533		107	32-132%			
Anthracene	551	5.32	10.7	ug/kg we	t 4	533		103	47-123%			
Benz(a)anthracene	552	5.32	10.7	ug/kg we	t 4	533		103	49-126%			
Benzo(a)pyrene	628	8.00	16.0	ug/kg we	t 4	533		118	45-129%			
Benzo(b)fluoranthene	610	8.00	16.0	ug/kg we		533		114	45-132%			
Benzo(k)fluoranthene	636	8.00	16.0	ug/kg we		533		119	47-132%			
Benzo(g,h,i)perylene	549	5.32	10.7	ug/kg we		533		103	43-134%			
Chrysene	554	5.32	10.7	ug/kg we		533		104	50-124%			
Dibenz(a,h)anthracene	575	5.32	10.7	ug/kg we		533		108	45-134%			
Fluoranthene	581	5.32	10.7	ug/kg we		533		109	50-127%			
Fluorene	526	5.32	10.7	ug/kg we		533		99	43-125%			
Indeno(1,2,3-cd)pyrene	526	5.32	10.7	ug/kg we		533		99	45-133%			
1-Methylnaphthalene	576	10.7	21.3	ug/kg we		533		108	40-120%			
2-Methylnaphthalene	598	10.7	21.3	ug/kg we		533		112	38-122%			

Apex Laboratories

Philip Newsberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23J0901 - EPA 3546 Soil LCS (23J0901-BS2) Prepared: 10/24/23 06:49 Analyzed: 10/24/23 16:09 535 10.7 21.3 533 100 35-123% Naphthalene ug/kg wet Phenanthrene 531 5.32 10.7 ug/kg wet 4 533 99 50-121% ---------Pyrene 577 5.32 10.7 ug/kg wet 4 533 108 47-127% Carbazole 554 8.00 16.0 ug/kg wet 4 533 104 50-123% 598 Dibenzofuran 5.32 10.7 4 533 112 44-120% ug/kg wet 577 2-Chlorophenol 26.7 53.2 ug/kg wet 4 533 108 34-121% 4-Chloro-3-methylphenol 597 53.2 107 ug/kg wet 4 533 ---112 45-122% Q-29, Q-41 2,4-Dichlorophenol 667 26.7 53.2 ug/kg wet 4 533 125 40-122% Q-29, Q-41 53.2 2,4-Dimethylphenol 739 26.7 ug/kg wet 4 533 138 30-127% 2,4-Dinitrophenol 656 133 267 ug/kg wet 4 533 123 10-137% Q-41 Q-41 4,6-Dinitro-2-methylphenol 613 133 267 4 533 115 29-132% ug/kg wet ------13.3 Q-29, Q-41 2-Methylphenol 657 26.7 ug/kg wet 4 533 123 32-122% Q-29, Q-41 775 53.2 107 4 533 2-Nitrophenol ug/kg wet ---145 36-123% ---4-Nitrophenol 607 53.2 107 ug/kg wet 4 533 114 30-132% Q-41 106 Pentachlorophenol (PCP) 565 53.2 107 4 533 25-133% ug/kg wet ---Phenol 671 10.7 21.3 ug/kg wet 4 533 ---126 34-121% Q-29, Q-41 591 26.7 53.2 4 533 2,3,4,6-Tetrachlorophenol ug/kg wet 111 44-125% ---2,3,5,6-Tetrachlorophenol 621 26.7 53.2 4 533 116 40-120% ug/kg wet Q-29, Q-41 2,4,5-Trichlorophenol 26.7 53.2 4 533 125 666 ug/kg wet ---41-124% ---2,4,6-Trichlorophenol 643 26.7 53.2 ug/kg wet 4 533 121 39-126% Q-41 Bis(2-ethylhexyl)phthalate 561 80.0 160 4 533 105 51-133% ug/kg wet ------Butyl benzyl phthalate 568 53.2 107 ug/kg wet 4 533 107 48-132% Diethylphthalate 478 53.2 107 4 533 90 50-124% ug/kg wet Dimethylphthalate 581 53.2 107 4 533 109 48-124% ug/kg wet 53.2 107 4 533 102 Di-n-butylphthalate 546 51-128% ug/kg wet ------Di-n-octyl phthalate 590 53.2 107 ug/kg wet 4 533 111 45-140% N-Nitrosodimethylamine 440 13.3 26.7 4 533 83 23-120% ug/kg wet ------N-Nitroso-di-n-propylamine 531 13.3 26.7 ug/kg wet 4 533 100 36-120% N-Nitrosodiphenylamine 578 13.3 26.7 4 533 108 38-127% ug/kg wet Bis(2-Chloroethoxy) methane 561 13.3 26.7 ug/kg wet 4 533 105 36-121% 487 13.3 4 533 91 31-120% Bis(2-Chloroethyl) ether 26.7 ug/kg wet ---2,2'-Oxybis(1-Chloropropane) 461 13.3 26.7 ug/kg wet 4 533 87 39-120% Hexachlorobenzene 574 5.32 10.7 ug/kg wet 4 533 108 45-122%

Apex Laboratories

Philip Nevenberg

Hexachlorobutadiene

526

13.3

26.7

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

99

32-123%

Philip Nerenberg, Lab Director

Page 118 of 156

4

533

ug/kg wet

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23J0901 - EPA 3546 Soil LCS (23J0901-BS2) Prepared: 10/24/23 06:49 Analyzed: 10/24/23 16:09 Hexachlorocyclopentadiene 26.7 53.2 533 119 10-140% Q-41 636 ug/kg wet Hexachloroethane 503 13.3 26.7 ug/kg wet 4 533 94 28-120% ------2-Chloronaphthalene 582 5.32 10.7 ug/kg wet 4 533 109 41-120% 1,2,4-Trichlorobenzene 547 13.3 26.7 ug/kg wet 4 533 103 34-120% 4-Bromophenyl phenyl ether 588 13.3 26.7 4 533 110 46-124% ug/kg wet 4-Chlorophenyl phenyl ether 559 13.3 26.7 ug/kg wet 4 533 105 45-121% O-31 Aniline 308 26.7 53.2 ug/kg wet 4 533 58 10-120% 399 4-Chloroaniline 13.3 26.7 ug/kg wet 4 533 75 17-120% 2-Nitroaniline 107 595 213 ug/kg wet 4 533 112 44-127% 3-Nitroaniline 464 107 213 ug/kg wet 4 533 87 33-120% 4-Nitroaniline 608 107 213 4 533 51-125% ug/kg wet 114 Nitrobenzene 53.2 107 554 ug/kg wet 4 533 104 34-122% 102 2.4-Dinitrotoluene 53.2 107 533 546 ug/kg wet 4 48-126% 2,6-Dinitrotoluene 563 53.2 107 ug/kg wet 4 533 106 46-124% Q-41 998 4 1070 94 10-140% Benzoic acid 668 668 ug/kg wet Benzyl alcohol 645 26.7 53.2 ug/kg wet 4 533 121 29-122% Q-41 13.3 26.7 533 97 Isophorone 516 4 30-122% ug/kg wet Azobenzene (1,2-DPH) 530 13.3 4 533 99 39-125% 26.7 ug/kg wet Bis(2-Ethylhexyl) adipate 133 267 4 533 102 61-121% 544 ug/kg wet -----ug/kg wet 3,3'-Dichlorobenzidine 1690 107 213 4 1070 158 22-121% Q-29, Q-31, Q-52 1,2-Dinitrobenzene 609 133 267 ug/kg wet 4 533 114 44-120% 1,3-Dinitrobenzene 581 133 267 ug/kg wet 4 533 109 43-127% 1,4-Dinitrobenzene 600 133 267 ug/kg wet 4 533 112 37-132% Pyridine 354 26.7 53.2 ug/kg wet 4 533 66 10-120% 1,2-Dichlorobenzene 513 13.3 26.7 ug/kg wet 4 533 96 33-120% 495 93 1,3-Dichlorobenzene 13.3 26.7 4 533 30-120% ug/kg wet 1,4-Dichlorobenzene 506 13.3 26.7 ug/kg wet 4 533 95 31-120% Limits: 37-122 % Surr: Nitrobenzene-d5 (Surr) Recovery: 105 % Dilution: 2-Fluorobiphenyl (Surr) 106 % 44-120 % Phenol-d6 (Surr) 116 % 33-122 % p-Terphenyl-d14 (Surr) 110 % 54-127 % 35-120 % 2-Fluorophenol (Surr) 94% 2,4,6-Tribromophenol (Surr) 119 % 39-132 %

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 119 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

		Se	mivolatile	Organic C	Compour	ds by EP	A 8270E					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0901 - EPA 3546							So	il				
LCS (23J0901-BS3)			Prepared	: 10/24/23 0	6:49 Ana	lyzed: 10/27	/23 10:56					Q-16
EPA 8270E	462	12.2	26.7	а		522		0.7	24.1200/			
3+4-Methylphenol(s)	462	13.3	26.7	ug/kg we	et 4	533		87	34-120%			
Duplicate (23J0901-DUP2)			Prepared	: 10/24/23 0)6:49 Ana	lyzed: 10/24	/23 17:16					PRO
QC Source Sample: Non-SDG (A.	3J1259-23)											
Acenaphthene	16.1	13.4	26.8	ug/kg dr	y 10		16.6			3	30%	
Acenaphthylene	ND	13.4	26.8	ug/kg dr	y 10		ND				30%	
Anthracene	ND	13.4	26.8	ug/kg dr	y 10		ND				30%	
Benz(a)anthracene	41.7	13.4	26.8	ug/kg dr	y 10		35.7			15	30%	
Benzo(a)pyrene	75.4	20.1	40.2	ug/kg dr	y 10		70.3			7	30%	
Benzo(b)fluoranthene	72.3	20.1	40.2	ug/kg dr	y 10		63.6			13	30%	
Benzo(k)fluoranthene	27.7	20.1	40.2	ug/kg dr	y 10		22.8			19	30%	
Benzo(g,h,i)perylene	87.8	13.4	26.8	ug/kg dr	y 10		75.2			15	30%	
Chrysene	59.2	13.4	26.8	ug/kg dr	y 10		49.3			18	30%	
Dibenz(a,h)anthracene	ND	13.4	26.8	ug/kg dr	y 10		ND				30%	
Fluoranthene	72.2	13.4	26.8	ug/kg dr	y 10		61.2			17	30%	
Fluorene	ND	13.4	26.8	ug/kg dr	y 10		ND				30%	
Indeno(1,2,3-cd)pyrene	72.2	13.4	26.8	ug/kg dr	y 10		60.9			17	30%	
1-Methylnaphthalene	ND	26.8	53.5	ug/kg dr	y 10		ND				30%	
2-Methylnaphthalene	ND	26.8	53.5	ug/kg dr	y 10		ND				30%	
Naphthalene	ND	26.8	53.5	ug/kg dr	y 10		ND				30%	
Phenanthrene	21.9	13.4	26.8	ug/kg dr	y 10		20.5			7	30%	
Pyrene	102	13.4	26.8	ug/kg dr	y 10		84.3			19	30%	
Carbazole	ND	20.1	40.2	ug/kg dr	y 10		ND				30%	
Dibenzofuran	ND	13.4	26.8	ug/kg dr	y 10		ND				30%	
2-Chlorophenol	ND	67.0	134	ug/kg dr	y 10		ND				30%	
4-Chloro-3-methylphenol	ND	134	268	ug/kg dr	y 10		ND				30%	
2,4-Dichlorophenol	ND	67.0	134	ug/kg dr	y 10		ND				30%	
2,4-Dimethylphenol	ND	67.0	134	ug/kg dr	y 10		ND				30%	
2,4-Dinitrophenol	ND	334	670	ug/kg dr	y 10		ND				30%	
4,6-Dinitro-2-methylphenol	ND	334	670	ug/kg dr			ND				30%	
2-Methylphenol	ND	33.4	67.0	ug/kg dr			ND				30%	
3+4-Methylphenol(s)	ND	33.4	67.0	ug/kg dr			ND				30%	
2-Nitrophenol	ND	134	268	ug/kg dr			ND				30%	

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23J0901 - EPA 3546 Soil Duplicate (23J0901-DUP2) Prepared: 10/24/23 06:49 Analyzed: 10/24/23 17:16 PRO QC Source Sample: Non-SDG (A3J1259-23) 4-Nitrophenol ND 134 268 ug/kg dry 10 ND 30% Pentachlorophenol (PCP) ND 134 268 ug/kg dry 10 ND 30% Phenol ND 26.8 53.5 ug/kg dry 10 ND 30% 2,3,4,6-Tetrachlorophenol ND 67.0 134 ug/kg dry 10 ND 30% 2,3,5,6-Tetrachlorophenol ND 67.0 134 ug/kg dry 10 ND 30% ------ND 2,4,5-Trichlorophenol 67.0 134 ug/kg dry 10 ND 30% 2,4,6-Trichlorophenol ND 67.0 134 10 ND 30% ug/kg dry Bis(2-ethylhexyl)phthalate ND 402 ND 30% 201 ug/kg dry 10 Butyl benzyl phthalate ND 134 268 ug/kg dry 10 ND 30% Diethylphthalate ND 134 268 ug/kg dry 10 ND 30% Dimethylphthalate ND 134 268 ug/kg dry 10 ND 30% Di-n-butylphthalate ND 134 268 ND 30% ug/kg dry 10 Di-n-octyl phthalate ND 134 268 ug/kg dry 10 ND 30% N-Nitrosodimethylamine ND 33.4 67.0 ND 30% ug/kg dry 10 33.4 N-Nitroso-di-n-propylamine ND 67.0 ug/kg dry 10 ND 30% N-Nitrosodiphenylamine ND 33.4 67.0 ug/kg dry 10 ND ___ 30% Bis(2-Chloroethoxy) methane ND 33.4 67.0 ug/kg dry 10 ND 30% ND 33.4 30% Bis(2-Chloroethyl) ether 67.0 10 ND ug/kg dry ---2,2'-Oxybis(1-Chloropropane) ND 33.4 67.0 ug/kg dry 10 ND 30% Hexachlorobenzene ND 13.4 26.8 10 ND 30% ug/kg dry ND 33.4 Hexachlorobutadiene 67.0 ug/kg dry 10 ND 30% Hexachlorocyclopentadiene ND 67.0 134 ug/kg dry 10 ND ------30% Hexachloroethane ND 33.4 67.0 ug/kg dry 10 ND 30% ND ND 30% 2-Chloronaphthalene 13.4 26.8 ug/kg dry 10 1,2,4-Trichlorobenzene ND 33.4 67.0 30% ug/kg dry 10 ND ND 4-Bromophenyl phenyl ether 33.4 67.0 10 ND 30% ug/kg dry 4-Chlorophenyl phenyl ether ND 33.4 67.0 10 ND 30% ug/kg dry Aniline ND 67.0 134 ug/kg dry 10 ND ------30% 4-Chloroaniline ND 33.4 67.0 ug/kg dry 10 ND 30% 2-Nitroaniline ND 268 535 ND 30% ug/kg dry 10 ---3-Nitroaniline ND 268 535 10 ND 30% ug/kg dry 4-Nitroaniline ND 268 535 10 ND 30% ug/kg dry ---Nitrobenzene ND 134 268 ug/kg dry 10 ND 30%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 121 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

	Semivolatile Organic Compounds by EPA 8270E											
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0901 - EPA 3546							So	il				
Duplicate (23J0901-DUP2)			Prepared	d: 10/24/23 ()6:49 Ana	lyzed: 10/24	/23 17:16					PRO
QC Source Sample: Non-SDG (A3	3J1259-23)											
2,4-Dinitrotoluene	ND	134	268	ug/kg dr	y 10		ND				30%	
2,6-Dinitrotoluene	ND	134	268	ug/kg dr	y 10		ND				30%	
Benzoic acid	ND	1680	3340	ug/kg dr	y 10		ND				30%	
Benzyl alcohol	ND	67.0	134	ug/kg dr	y 10		ND				30%	
Isophorone	ND	33.4	67.0	ug/kg dr	y 10		ND				30%	
Azobenzene (1,2-DPH)	ND	33.4	67.0	ug/kg dr	y 10		ND				30%	
Bis(2-Ethylhexyl) adipate	ND	334	670	ug/kg dr	y 10		ND				30%	
3,3'-Dichlorobenzidine	ND	268	535	ug/kg dr	y 10		ND				30%	Q-5
1,2-Dinitrobenzene	ND	334	670	ug/kg dr			ND				30%	
1,3-Dinitrobenzene	ND	334	670	ug/kg dr	y 10		ND				30%	
1,4-Dinitrobenzene	ND	334	670	ug/kg dr	y 10		ND				30%	
Pyridine	ND	67.0	134	ug/kg dr			ND				30%	
1,2-Dichlorobenzene	ND	33.4	67.0	ug/kg dr			ND				30%	
1,3-Dichlorobenzene	ND	33.4	67.0	ug/kg dr			ND				30%	
1,4-Dichlorobenzene	ND	33.4	67.0	ug/kg dr			ND				30%	
Surr: Nitrobenzene-d5 (Surr)		Reco	overy: 84 %	Limits: 37		Dilt	ution: 10x					
2-Fluorobiphenyl (Surr)			82 %	44	-120 %		"					
Phenol-d6 (Surr)			75 %	33-	-122 %		"					
p-Terphenyl-d14 (Surr)			84 %	54	-127 %		"					
2-Fluorophenol (Surr)			64 %	35-	-120 %		"					
2,4,6-Tribromophenol (Surr)			64 %		-132 %		"					
Matrix Spike (23J0901-MS2)			Prepared	d: 10/24/23 ()6:49 Ana	lyzed: 10/25	/23 17:50					
QC Source Sample: Non-SDG (A3	3J1425-01)		1									
EPA 8270E	_											
Acenaphthene	574	6.51	13.1	ug/kg dr	y 4	653	ND	88	40-123%			
Acenaphthylene	620	6.51	13.1	ug/kg dr	•	653	ND	95	32-132%			
Anthracene	580	6.51	13.1	ug/kg dr		653	ND	89	47-123%			
Benz(a)anthracene	550	6.51	13.1	ug/kg dr		653	ND	79	49-126%			
Benzo(a)pyrene	617	9.80	19.6	ug/kg dr		653	ND	94	45-129%			
Benzo(b)fluoranthene	624	9.80	19.6	ug/kg dr		653	ND	92	45-132%			
Benzo(k)fluoranthene	635	9.80	19.6	ug/kg dr		653	ND	97	47-132%			
Benzo(g,h,i)perylene	576	6.51	13.1	ug/kg dr		653	ND	88	43-134%			

Apex Laboratories

Philip Newsberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 122 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection % REC RPD Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23J0901 - EPA 3546 Soil Matrix Spike (23J0901-MS2) Prepared: 10/24/23 06:49 Analyzed: 10/25/23 17:50 QC Source Sample: Non-SDG (A3J1425-01) 572 6.51 13.1 ug/kg dry 4 653 ND 88 50-124% Chrysene Dibenz(a,h)anthracene 6.51 90 585 13.1 ug/kg dry 4 653 ND 45-134% Fluoranthene 601 6.51 13.1 ug/kg dry 4 653 ND 88 50-127% Fluorene 565 6.51 13.1 ug/kg dry 4 653 ND 87 43-125% Indeno(1,2,3-cd)pyrene 521 6.51 13.1 4 653 ND 80 45-133% ug/kg dry 1-Methylnaphthalene 636 13.1 26.1 653 ND 97 ug/kg dry 4 40-120% 2-Methylnaphthalene 686 13.1 26.1 4 653 ND 105 38-122% ug/kg dry Naphthalene 652 26.1 653 ND 92 35-123% 13.1 ug/kg dry 4 Phenanthrene 596 6.51 13.1 ug/kg dry 4 653 ND 86 50-121% Pyrene 596 6.51 13.1 ug/kg dry 4 653 ND 87 47-127% Carbazole 573 9.80 19.6 ug/kg dry 4 653 ND 88 50-123% Dibenzofuran 6.51 13.1 653 ND 97 44-120% 636 ug/kg dry 4 701 653 2-Chlorophenol 32.7 65.1 ug/kg dry 4 ND 107 34-121% 4-Chloro-3-methylphenol 626 65.1 131 4 653 ND 96 45-122% ug/kg dry 32.7 Q-41 2,4-Dichlorophenol 780 65.1 ug/kg dry 4 653 ND 119 40-122% 2,4-Dimethylphenol 854 32.7 65.1 ug/kg dry 4 653 ND 131 30-127% ___ Q-01, Q-41 2,4-Dinitrophenol ND 163 327 ug/kg dry 4 653 ND 10-137% Q-01, Q-41 4,6-Dinitro-2-methylphenol 215 163 327 653 ND 33 29-132% Q-41, J 4 ug/kg dry ---827 32.7 653 ND 127 32-122% Q-01 2-Methylphenol 16.3 ug/kg dry 4 Q-41 3+4-Methylphenol(s) 894 16.3 32.7 4 653 ND 120 34-120% ug/kg dry 2-Nitrophenol 517 65.1 4 653 ND 79 36-123% Q-41 131 ug/kg dry 4-Nitrophenol 499 65.1 131 ug/kg dry 4 653 ND 76 30-132% ---Pentachlorophenol (PCP) 657 65.1 131 ug/kg dry 4 653 ND 23 25-133% Q-01 822 26.1 4 653 ND Q-01, Q-41 Phenol 13.1 ug/kg dry 126 34-121% ---2,3,4,6-Tetrachlorophenol 606 32.7 65.1 653 ND 93 44-125% ug/kg dry 4 32.7 98 2,3,5,6-Tetrachlorophenol 639 65.1 4 653 ND 40-120% ug/kg dry 2,4,5-Trichlorophenol 683 32.7 65.1 4 653 ND 105 41-124% ug/kg dry 39-126% 2,4,6-Trichlorophenol 713 32.7 65.1 ug/kg dry 4 653 ND 109 Bis(2-ethylhexyl)phthalate 597 98.0 196 ug/kg dry 4 653 ND 91 51-133% Butyl benzyl phthalate 602 65.1 131 4 653 ND 92 48-132% ug/kg dry Diethylphthalate 479 65.1 131 ug/kg dry 4 653 ND 73 50-124% Dimethylphthalate 65.1 131 4 88 576 653 ND 48-124% ug/kg dry ---Di-n-butylphthalate 549 65.1 131 ug/kg dry 4 653 ND 84 51-128%

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 123 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E % REC RPD Detection Reporting Spike Source Analyte Result Units Dilution % REC RPD Limit Limit Amount Result Limits Limit Notes Batch 23J0901 - EPA 3546 Soil Matrix Spike (23J0901-MS2) Prepared: 10/24/23 06:49 Analyzed: 10/25/23 17:50 QC Source Sample: Non-SDG (A3J1425-01) Di-n-octyl phthalate 651 65.1 131 4 653 ND 100 45-140% ug/kg dry 16.3 32.7 N-Nitrosodimethylamine 417 ug/kg dry 4 653 ND 64 23-120% N-Nitroso-di-n-propylamine 616 16.3 32.7 ug/kg dry 4 653 ND 94 36-120% N-Nitrosodiphenylamine 598 16.3 32.7 ug/kg dry 4 653 ND 92 38-127% Bis(2-Chloroethoxy) methane 604 16.3 32.7 4 653 ND 92 36-121% ug/kg dry 522 653 Bis(2-Chloroethyl) ether 16.3 32.7 ug/kg dry 4 ND 80 31-120% 2,2'-Oxybis(1-Chloropropane) 526 16.3 32.7 4 653 ND 81 39-120% ug/kg dry 608 653 93 Hexachlorobenzene 6.51 13.1 ug/kg dry 4 ND 45-122% Hexachlorobutadiene 577 16.3 32.7 ug/kg dry 4 653 ND 88 32-123% Hexachlorocyclopentadiene 123 32.7 65.1 ug/kg dry 4 653 ND 19 10-140% 0-41Hexachloroethane 461 16.3 32.7 ug/kg dry 4 653 ND 71 28-120% 2-Chloronaphthalene 631 6.51 ND 41-120% 13.1 ug/kg dry 4 653 86 605 653 93 1,2,4-Trichlorobenzene 16.3 32.7 ug/kg dry 4 ND 34-120% 4-Bromophenyl phenyl ether 615 16.3 32.7 4 653 ND 94 ug/kg dry 46-124% 4-Chlorophenyl phenyl ether 592 16.3 32.7 ug/kg dry 4 653 ND 91 45-121% Aniline 297 32.7 65.1 ug/kg dry 4 653 ND 45 10-120% ___ Q-31 4-Chloroaniline 212 16.3 32.7 ug/kg dry 4 653 ND 18 17-120% Q-31 2-Nitroaniline 628 653 ND 96 44-127% 131 261 4 ug/kg dry ---183 653 28 33-120% Q-01, Q-31, J 3-Nitroaniline 131 261 ug/kg dry 4 ND Q-01 131 4-Nitroaniline 330 261 4 653 ND 50 51-125% ug/kg dry 605 4 653 ND 93 34-122% Nitrobenzene 65.1 131 ug/kg dry 653 2,4-Dinitrotoluene 435 65.1 131 ug/kg dry 4 ND 67 48-126% ---2,6-Dinitrotoluene 470 65.1 131 ug/kg dry 4 653 ND 72 46-124% 1250 1630 4 96 10-140% Q-41, J Benzoic acid 818 1310 ND ug/kg dry ---Benzyl alcohol 32.7 65.1 653 29-122% Q-01 811 ug/kg dry 4 ND 124 540 16.3 32.7 4 653 ND 83 30-122% Isophorone ug/kg dry Azobenzene (1,2-DPH) 540 16.3 32.7 4 653 ND 83 39-125% ug/kg dry Bis(2-Ethylhexyl) adipate 561 163 327 ug/kg dry 4 653 ND 86 61-121% ---3,3'-Dichlorobenzidine ND 131 261 ug/kg dry 4 1310 ND 22-121% Q-01, Q-31, Q-52 1,2-Dinitrobenzene 383 163 327 ug/kg dry 4 653 ND 59 44-120% 163 327 4 653 ND 63 43-127% 1,3-Dinitrobenzene 412 ug/kg dry 305 J 1,4-Dinitrobenzene 163 327 ug/kg dry 4 653 ND 47 37-132%

Apex Laboratories

Philip Menberg

435

32.7

65.1

Pyridine

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

10-120%

67

ND

Philip Nerenberg, Lab Director

Page 124 of 156

4

653

ug/kg dry

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

Semivolatile Organic Compounds by EPA 8270E Detection Reporting Spike Source % REC **RPD** Analyte Result Limit Units Dilution Amount Result % REC Limits RPD Limit Limit Notes Batch 23J0901 - EPA 3546 Soil Prepared: 10/24/23 06:49 Analyzed: 10/25/23 17:50 Matrix Spike (23J0901-MS2) QC Source Sample: Non-SDG (A3J1425-01) 653 90 1,2-Dichlorobenzene 585 16.3 32.7 ug/kg dry 4 ND 33-120% 1,3-Dichlorobenzene 566 16.3 32.7 653 87 ug/kg dry 4 ND 30-120% 1,4-Dichlorobenzene 568 ND 87 31-120% 16.3 32.7 ug/kg dry 4 Surr: Nitrobenzene-d5 (Surr) 99 % Limits: 37-122 % Dilution: 4x Recovery: 2-Fluorobiphenyl (Surr) 96 % 44-120 % Phenol-d6 (Surr) 117 % 33-122 % p-Terphenyl-d14 (Surr) 93 % 54-127% 2-Fluorophenol (Surr) 95 % 35-120 % 2,4,6-Tribromophenol (Surr) 112 % 39-132 %

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 125 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)												
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0999 - EPA 3051A							So	il				
Blank (23J0999-BLK1)			Prepared	: 10/25/23 1	3:41 Ana	lyzed: 10/26	5/23 08:31					
EPA 6020B												
Arsenic	ND	0.500	1.00	mg/kg we	et 10							
Barium	ND	0.500	1.00	mg/kg we	et 10							
Cadmium	ND	0.100	0.200	mg/kg we	et 10							
Chromium	ND	0.500	1.00	mg/kg we	et 10							
Copper	ND	1.00	2.00	mg/kg we	et 10							
Lead	ND	0.100	0.200	mg/kg we	et 10							
Mercury	ND	0.0400	0.0800	mg/kg we	et 10							
Nickel	ND	1.00	2.00	mg/kg we	et 10							
Selenium	ND	0.500	1.00	mg/kg we	et 10							
Silver	ND	0.100	0.200	mg/kg we	et 10							
Zinc	ND	2.00	4.00	mg/kg we	et 10							
LCS (23J0999-BS1)			Prepared	: 10/25/23 1	3:41 Ana	lyzed: 10/26	5/23 08:36					
EPA 6020B						-						
Arsenic	49.5	0.500	1.00	mg/kg we	et 10	50.0		99	80-120%			
Barium	51.5	0.500	1.00	mg/kg we	et 10	50.0		103	80-120%			
Cadmium	49.1	0.100	0.200	mg/kg we	et 10	50.0		98	80-120%			
Chromium	50.2	0.500	1.00	mg/kg we		50.0		100	80-120%			
Copper	51.9	1.00	2.00	mg/kg we		50.0		104	80-120%			
Lead	50.2	0.100	0.200	mg/kg we	et 10	50.0		100	80-120%			
Mercury	0.952	0.0400	0.0800	mg/kg we		1.00		95	80-120%			
Nickel	51.4	1.00	2.00	mg/kg we		50.0		103	80-120%			
Selenium	23.9	0.500	1.00	mg/kg we		25.0		96	80-120%			
Silver	26.8	0.100	0.200	mg/kg we		25.0		107	80-120%			
Zinc	49.0	2.00	4.00	mg/kg we		50.0		98	80-120%			
Ouplicate (23J0999-DUP1)			Dranarad	. 10/25/22 1	2:41 Ano	lyzod: 10/26	1/22 00.46					
	0.15.0.2022	1011 (4211266		. 10/23/23 I	J.+1 Alla	lyzed: 10/26	123 08:40					
QC Source Sample: TP-07-IM-14. EPA 6020B	.u-15.U-2U23	1011 (A3J1300	<u>-14)</u>									
Arsenic	6.67	0.626	1.25	ma/lea 4-	y 10		10.7			46	20%	Q-
Barium				mg/kg dr	•							Q- Q-
	322	0.626	1.25	mg/kg dr	•		619			63	20%	Q.
Cadmium	1.72	0.125	0.251	mg/kg dr	•		1.71			0.4	20%	^
Chromium	33.5	0.626	1.25	mg/kg dr	y 10		47.0			34	20%	Q-

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Newsberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

<u> </u>			Total M	letals by l	EPA 6020	OB (ICPMS	3)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0999 - EPA 3051A							So	il				
Duplicate (23J0999-DUP1)			Prepared	: 10/25/23 1	3:41 Ana	lyzed: 10/26	/23 08:46					
QC Source Sample: TP-07-IM-14.0	-15.0-2023	1011 (A3J1366	<u>-14)</u>									
Copper	153	1.25	2.51	mg/kg dr	y 10		208			30	20%	Q-04
Lead	311	0.125	0.251	mg/kg dr	y 10		278			11	20%	
Mercury	0.479	0.0501	0.100	mg/kg dr	y 10		0.405			17	20%	
Nickel	63.7	1.25	2.51	mg/kg dr	y 10		73.0			14	20%	
Selenium	ND	0.626	1.25	mg/kg dr	y 10		ND				20%	
Silver	0.610	0.125	0.251	mg/kg dr	y 10		0.712			15	20%	
Zinc	1970	2.51	5.01	mg/kg dr	y 10		453			125	20%	Q-04
Matrix Spike (23J0999-MS1)			-	: 10/25/23 1	3:41 Ana	lyzed: 10/26	/23 08:51					
QC Source Sample: TP-07-IM-14.0	-15.0-2023	1011 (A3J1366	<u>-14)</u>									
EPA 6020B	64.0	0.60		,,	10	60 5	10.5	0.0	10-0/			
Arsenic Barium	64.0	0.607 0.607	1.21	mg/kg dr	-	60.7	10.7	88	75-125%			Q-6:
	342		1.21	mg/kg dr	-	60.7	619	-457	75-125%			Q-0.
Cadmium Chromium	59.8	0.121 0.607	0.243 1.21	mg/kg dr		60.7	1.71	96	75-125%			
	97.8 246	1.21	2.43	mg/kg dr		60.7 60.7	47.0 208	84	75-125%			Q-6:
Copper Lead		0.121		mg/kg dr			208	62	75-125%			Q-6. Q-6.
	368	0.121	0.243 0.0971	mg/kg dr	•	60.7 1.21	0.405	148 97	75-125% 75-125%			Q-0.
Mercury Nickel	1.59 101	1.21	2.43	mg/kg dr		60.7	73.0	47	75-125% 75-125%			O-04
Selenium	28.9	0.607	1.21	mg/kg dr		30.3	/3.0 ND	47 95	75-125% 75-125%			Q-0 ²
Silver	32.2	0.007	0.243	mg/kg dr mg/kg dr		30.3	0.712	93 104	75-125% 75-125%			
Zinc	907	2.43	4.85	mg/kg dr	•	60.7	453	748	75-125% 75-125%			Q-65

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	etals by	EPA 6020	B (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
3atch 23J1022 - EPA 3051A							Soi	il				
Blank (23J1022-BLK1)			Prepared	: 10/26/23 0	9:08 Anal	yzed: 10/27	/23 10:42					
EPA 6020B												
Arsenic	ND	0.500	1.00	mg/kg we	et 10							
Barium	ND	0.500	1.00	mg/kg we	et 10							
Cadmium	ND	0.100	0.200	mg/kg we	et 10							
Chromium	ND	0.500	1.00	mg/kg we	et 10							
Copper	ND	1.00	2.00	mg/kg we	et 10							
Lead	ND	0.100	0.200	mg/kg we	et 10							
Mercury	ND	0.0400	0.0800	mg/kg we	et 10							
Nickel	ND	1.00	2.00	mg/kg we	et 10							
Selenium	ND	0.500	1.00	mg/kg we	et 10							
Silver	ND	0.100	0.200	mg/kg we	et 10							
Zinc	ND	2.00	4.00	mg/kg we	et 10							
LCS (23J1022-BS1)			Prepared	: 10/26/23 0	9:08 Anal	yzed: 10/27	/23 10:47					
EPA 6020B												
Arsenic	48.0	0.500	1.00	mg/kg we	et 10	50.0		96	80-120%			
Barium	50.4	0.500	1.00	mg/kg we	et 10	50.0		101	80-120%			
Cadmium	48.2	0.100	0.200	mg/kg we	et 10	50.0		96	80-120%			
Chromium	48.8	0.500	1.00	mg/kg we	et 10	50.0		98	80-120%			
Copper	50.5	1.00	2.00	mg/kg we	et 10	50.0		101	80-120%			
Lead	50.6	0.100	0.200	mg/kg we	et 10	50.0		101	80-120%			
Mercury	0.956	0.0400	0.0800	mg/kg we	et 10	1.00		96	80-120%			
Nickel	49.0	1.00	2.00	mg/kg we	et 10	50.0		98	80-120%			
Selenium	23.5	0.500	1.00	mg/kg we	et 10	25.0		94	80-120%			
Silver	26.8	0.100	0.200	mg/kg we	et 10	25.0		107	80-120%			
Zinc	49.3	2.00	4.00	mg/kg we		50.0		99	80-120%			
Ouplicate (23J1022-DUP1)			Prepared	: 10/26/23 0	9:08 Anal	yzed: 10/27	/23 10:57					
QC Source Sample: WS-01-0.0-2.0	0-10102023	(A3J1366-01)										
EPA 6020B												
Arsenic	3.93	1.01	2.01	mg/kg dr	y 10		4.26			8	20%	
Barium	78.4	1.01	2.01	mg/kg dr	•		77.3			1	20%	
Cadmium	1.52	0.201	0.403	mg/kg dr	•		1.68			10	20%	
Chromium	7.63	1.01	2.01	mg/kg dr	•		8.88			15	20%	

Apex Laboratories

Philip Newsberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 128 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: **Eatonville Landfill Characterization**

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total N	letals by l	EPA 6020	B (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J1022 - EPA 3051A							So	il				
Duplicate (23J1022-DUP1)			Prepared	: 10/26/23 0	9:08 Ana	lyzed: 10/27	/23 10:57					
QC Source Sample: WS-01-0.0-2.0	-10102023	(A3J1366-01)										
Copper	30.5	2.01	4.03	mg/kg dr	y 10		33.8			10	20%	
Lead	42.7	0.201	0.403	mg/kg dr	y 10		41.6			3	20%	
Mercury	ND	0.0806	0.161	mg/kg dr	y 10		ND				20%	
Nickel	17.5	2.01	4.03	mg/kg dr	y 10		19.7			12	20%	
Selenium	ND	1.01	2.01	mg/kg dr	y 10		ND				20%	
Silver	ND	0.201	0.403	mg/kg dr	y 10		ND				20%	
Zinc	3440	4.03	8.06	mg/kg dr	y 10		2460			33	20%	Q-0
Matrix Spike (23J1022-MS1)			Prepared	: 10/26/23 0	9:08 Ana	lyzed: 10/27	/23 11:13					
QC Source Sample: WS-01-0.0-2.0	-10102023	(A3J1366-01)										
EPA 6020B												
Arsenic	109	1.07	2.15	mg/kg dr	y 10	107	4.26	97	75-125%			
Barium	183	1.07	2.15	mg/kg dr		107	77.3	99	75-125%			
Cadmium	105	0.215	0.430	mg/kg dr	y 10	107	1.68	96	75-125%			
Chromium	115	1.07	2.15	mg/kg dr	y 10	107	8.88	98	75-125%			
Copper	146	2.15	4.30	mg/kg dr	y 10	107	33.8	104	75-125%			
Lead	156	0.215	0.430	mg/kg dr		107	41.6	106	75-125%			
Mercury	2.18	0.0860	0.172	mg/kg dr	y 10	2.15	ND	102	75-125%			
Nickel	125	2.15	4.30	mg/kg dr	y 10	107	19.7	98	75-125%			
Selenium	51.8	1.07	2.15	mg/kg dr	y 10	53.7	ND	96	75-125%			
Silver	59.4	0.215	0.430	mg/kg dr	y 10	53.7	ND	111	75-125%			
Zinc	2530	4.30	8.60	mg/kg dr	y 10	107	2460	58	75-125%			Q-6
Matrix Spike Dup (23J1022-M	SD1)		Prepared	: 10/26/23 0	9:08 Ana	yzed: 10/27	/23 12:30					
QC Source Sample: WS-01-0.0-2.0	-10102023	(A3J1366-01)										
EPA 6020B												
Arsenic	106	5.37	10.7	mg/kg dr	y 50	107	ND	98	75-125%	3	20%	
Barium	186	5.37	10.7	mg/kg dr	y 50	107	77.3	101	75-125%	1	20%	
Cadmium	105	1.07	2.15	mg/kg dr	y 50	107	1.68	97	75-125%	0.3	20%	
Chromium	114	5.37	10.7	mg/kg dr	y 50	107	8.88	98	75-125%	0.6	20%	
Copper	147	10.7	21.5	mg/kg dr	y 50	107	33.8	105	75-125%	0.8	20%	
Lead	154	1.07	2.15	mg/kg dr		107	41.6	104	75-125%	2	20%	

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total N	letals by	EPA 6020	B (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J1022 - EPA 3051A							Soi	I				
Matrix Spike Dup (23J1022-M	SD1)		Prepared	: 10/26/23 0	9:08 Ana	lyzed: 10/27	/23 12:30					
QC Source Sample: WS-01-0.0-2.0	-10102023	(A3J1366-01)										
Mercury	2.16	0.430	0.860	mg/kg dr	y 50	2.15	ND	101	75-125%	0.9	20%	
Nickel	126	10.7	21.5	mg/kg dr	y 50	107	19.7	99	75-125%	0.2	20%	
Selenium	51.5	5.37	10.7	mg/kg dr	y 50	53.7	ND	96	75-125%	0.5	20%	
Silver	57.1	1.07	2.15	mg/kg dr	y 50	53.7	ND	106	75-125%	4	20%	

Apex Laboratories

Philip Menberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			TCLP M	etais by	EPA 6020	JB (ICPIVIS	3)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0933 - EPA 1311/301	15A						Soi	il				
Blank (23J0933-BLK2)			Prepared:	10/24/23	13:20 Anal	yzed: 10/24	/23 15:42					
1311/6020B												
Arsenic	ND	0.0500	0.100	mg/L	10							Q-16, TCL
Barium	ND	2.50	5.00	mg/L	10							Q-16, TCL
Cadmium	ND	0.0500	0.100	mg/L	10							Q-16, TCL
Chromium	ND	0.0500	0.100	mg/L	10							Q-16, TCL
Lead	ND	0.0250	0.0500	mg/L	10							Q-16, TCL
Mercury	ND	0.00375	0.00700	mg/L	10							Q-16, TCL
Selenium	ND	0.0500	0.100	mg/L	10							Q-16, TCL
Silver	ND	0.0500	0.100	mg/L	10							Q-16, TCL
LCS (23J0933-BS3)			Prepared:	10/24/23	13:20 Anal	yzed: 10/24	/23 15:47					
1311/6020B												
Arsenic	4.97	0.0500	0.100	mg/L	10	5.00		99	80-120%			Q-16, TCL
Barium	10.3	2.50	5.00	mg/L	10	10.0		103	80-120%			Q-16, TCL
Cadmium	1.04	0.0500	0.100	mg/L	10	1.00		104	80-120%			Q-16, TCL
Chromium	5.15	0.0500	0.100	mg/L	10	5.00		103	80-120%			Q-16, TCL
Lead	5.25	0.0250	0.0500	mg/L	10	5.00		105	80-120%			Q-16, TCL
Mercury	0.0973	0.00375	0.00700	mg/L	10	0.100		97	80-120%			Q-16, TCL
Selenium	1.02	0.0500	0.100	mg/L	10	1.00		102	80-120%			Q-16, TCL
Silver	1.07	0.0500	0.100	mg/L	10	1.00		107	80-120%			Q-16, TCL
Ouplicate (23J0933-DUP1)			Prepared:	10/24/23	13:20 Anal	yzed: 10/24	/23 16:07					
QC Source Sample: Non-SDG (A	3J1257-01RE	(2)										
Arsenic	ND	0.0500	0.100	mg/L	10		ND				20%	
Barium	ND	2.50	5.00	mg/L	10		ND				20%	
Cadmium	ND	0.0500	0.100	mg/L	10		ND				20%	
Chromium	ND	0.0500	0.100	mg/L	10		ND				20%	
Lead	ND	0.0250	0.0500	mg/L	10		ND				20%	
Mercury	ND	0.00375	0.00700	mg/L	10		ND				20%	
Selenium	ND	0.0500	0.100	mg/L	10		ND				20%	
Seienium	1,12	3.0300	0.100	mg/L	10		ND				20%	

Apex Laboratories

Philip Menterg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 131 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			TCLP M	letals by	EPA 602	OB (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0933 - EPA 1311/301	5A						Soi	il				
Matrix Spike (23J0933-MS1)			Prepared:	10/24/23	13:20 Ana	yzed: 10/24	/23 16:13					
QC Source Sample: Non-SDG (A3	J1257-01RE	2)										
<u>1311/6020B</u>												
Arsenic	4.93	0.0500	0.100	mg/L	10	5.00	ND	99	50-150%			
Barium	10.2	2.50	5.00	mg/L	10	10.0	ND	102	50-150%			
Cadmium	1.01	0.0500	0.100	mg/L	10	1.00	ND	101	50-150%			
Chromium	5.08	0.0500	0.100	mg/L	10	5.00	ND	102	50-150%			
Lead	5.10	0.0250	0.0500	mg/L	10	5.00	ND	102	50-150%			
Mercury	0.0957	0.00375	0.00700	mg/L	10	0.100	ND	96	50-150%			
Selenium	0.993	0.0500	0.100	mg/L	10	1.00	ND	99	50-150%			
Silver	1.10	0.0500	0.100	mg/L	10	1.00	ND	110	50-150%			
Matrix Spike (23J0933-MS2)			Prepared:	10/24/23	13:20 Ana	yzed: 10/24	/23 16:28					
QC Source Sample: Non-SDG (A3	J1432-02)											
<u>1311/6020B</u>												
Arsenic	4.94	0.0500	0.100	mg/L	10	5.00	ND	99	50-150%			CON
Barium	10.2	2.50	5.00	mg/L	10	10.0	ND	102	50-150%			CON
Cadmium	1.04	0.0500	0.100	mg/L	10	1.00	ND	104	50-150%			CON
Chromium	6.93	0.0500	0.100	mg/L	10	5.00	1.79	103	50-150%			CON
Lead	5.13	0.0250	0.0500	mg/L	10	5.00	ND	103	50-150%			CON
Mercury	0.0951	0.00375	0.00700	mg/L	10	0.100	ND	95	50-150%			CON
Selenium	0.983	0.0500	0.100	mg/L	10	1.00	ND	98	50-150%			CON
Silver	1.08	0.0500	0.100	mg/L	10	1.00	ND	108	50-150%			CON

Apex Laboratories

Philip Menberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: **Eatonville Landfill Characterization**

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			TCLP N	letals by	EPA 602	OB (ICPM	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0987 - EPA 1311/30	15A						So	il				
Blank (23J0987-BLK1)			Prepared:	: 10/25/23	10:53 Anal	lyzed: 10/25	/23 16:05					
1311/6020B												
Arsenic	ND	0.0500	0.100	mg/L	10							TCLF
Barium	ND	2.50	5.00	mg/L	10							TCLF
Cadmium	ND	0.0500	0.100	mg/L	10							TCLF
Chromium	ND	0.0500	0.100	mg/L	10							TCLF
Lead	ND	0.0250	0.0500	mg/L	10							TCLF
Mercury	ND	0.00375	0.00700	mg/L	10							TCLF
Selenium	ND	0.0500	0.100	mg/L	10							TCLF
Silver	ND	0.0500	0.100	mg/L	10							TCLF
LCS (23J0987-BS1)			Prepared:	: 10/25/23	10:53 Anal	lyzed: 10/25	/23 16:10					
1311/6020B												
Arsenic	5.01	0.0500	0.100	mg/L	10	5.00		100	80-120%			TCLF
Barium	10.1	2.50	5.00	mg/L	10	10.0		101	80-120%			TCLF
Cadmium	1.00	0.0500	0.100	mg/L	10	1.00		100	80-120%			TCLF
Chromium	5.22	0.0500	0.100	mg/L	10	5.00		104	80-120%			TCLF
Lead	5.18	0.0250	0.0500	mg/L	10	5.00		104	80-120%			TCLF
Mercury	0.0950	0.00375	0.00700	mg/L	10	0.100		95	80-120%			TCLF
Selenium	1.03	0.0500	0.100	mg/L	10	1.00		103	80-120%			TCLF
LCS (23J0987-BS2)			Prepared:	: 10/25/23	10:53 Ana	lyzed: 10/26	/23 10:05					
1311/6020B												
Silver	1.07	0.0500	0.100	mg/L	10	1.00		107	80-120%			Q-16, TCLF
Duplicate (23J0987-DUP1)			Prepared:	: 10/25/23	10:53 Anal	lyzed: 10/25	/23 16:31					
QC Source Sample: WS-05-0.0-2	0-10102023 ((A3J1366-05)										
1311/6020B	•	<u> </u>										
Arsenic	ND	0.0500	0.100	mg/L	10		ND				20%	
Barium	ND	2.50	5.00	mg/L	10		ND				20%	
Cadmium	ND	0.0500	0.100	mg/L	10		ND				20%	
Chromium	ND	0.0500	0.100	mg/L	10		ND				20%	
Lead	ND	0.0250	0.0500	mg/L	10		ND				20%	
Mercury	ND	0.00375	0.00700	mg/L	10		ND				20%	
Selenium	ND	0.0500	0.100	mg/L	10		ND				20%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 133 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			TCLP M	letals by	EPA 602	B (ICPM	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0987 - EPA 1311/301	5A						Soi	I				
Duplicate (23J0987-DUP1)			Prepared:	10/25/23	10:53 Anal	yzed: 10/25	/23 16:31					
QC Source Sample: WS-05-0.0-2.0-	-10102023	(A3J1366-05)										
Silver	ND	0.0500	0.100	mg/L	10		ND				20%	
Matrix Spike (23J0987-MS1) OC Source Sample: WS-05-0.0-2.0-	-10102023	(A3J1366-05)	Prepared:	10/25/23	10:53 Anal	yzed: 10/25	/23 16:36					
1311/6020B Arsenic	5.10	0.0500	0.100	mg/L	10	5.00	ND	102	50-150%			
Barium	10.3	2.50	5.00	mg/L	10	10.0	ND	103	50-150%			
Cadmium	1.03	0.0500	0.100	mg/L	10	1.00	ND	103	50-150%			
Chromium	5.27	0.0500	0.100	mg/L	10	5.00	ND	105	50-150%			
Lead	5.31	0.0250	0.0500	mg/L	10	5.00	ND	106	50-150%			
Mercury	0.0971	0.00375	0.00700	mg/L	10	0.100	ND	97	50-150%			
Selenium	1.02	0.0500	0.100	mg/L	10	1.00	ND	102	50-150%			
Silver	1.48	0.0500	0.100	mg/L	10	1.00	ND	148	50-150%			

Apex Laboratories

Philip Menberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 134 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			TCLP M	letals by	EPA 602	B (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J1044 - EPA 1311/301	5A						Soi	I.				
Blank (23J1044-BLK1)			Prepared:	10/26/23	10:46 Ana	yzed: 10/26	/23 16:40					
1311/6020B												
Arsenic	ND	0.0500	0.100	mg/L	10							TCLF
Barium	ND	2.50	5.00	mg/L	10							TCLP
Cadmium	ND	0.0500	0.100	mg/L	10							TCLP
Chromium	ND	0.0500	0.100	mg/L	10							TCLP
Lead	ND	0.0250	0.0500	mg/L	10							TCLP
Mercury	ND	0.00375	0.00700	mg/L	10							TCLP
Selenium	ND	0.0500	0.100	mg/L	10							TCLP
Silver	ND	0.0500	0.100	mg/L	10							TCLP
LCS (23J1044-BS1)			Prepared:	10/26/23	10:46 Ana	yzed: 10/26	/23 16:45					
1311/6020B												
Arsenic	5.34	0.0500	0.100	mg/L	10	5.00		107	80-120%			TCLP
Barium	10.4	2.50	5.00	mg/L	10	10.0		104	80-120%			TCLP
Cadmium	1.09	0.0500	0.100	mg/L	10	1.00		109	80-120%			TCLP
Chromium	5.29	0.0500	0.100	mg/L	10	5.00		106	80-120%			TCLP
Mercury	0.102	0.00375	0.00700	mg/L	10	0.100		102	80-120%			TCLP
Selenium	1.04	0.0500	0.100	mg/L	10	1.00		104	80-120%			TCLP
Silver	1.07	0.0500	0.100	mg/L	10	1.00		107	80-120%			TCLP
LCS (23J1044-BS2)			Prepared:	10/26/23	10:46 Ana	yzed: 10/27	/23 08:06					
1311/6020B												
Lead	5.39	0.0250	0.0500	mg/L	10	5.00		108	80-120%			Q-16, Q-41 TCLP
Duplicate (23J1044-DUP1)			Prepared:	10/26/23	10:46 Ana	yzed: 10/27	/23 09:44					
QC Source Sample: Non-SDG (A3	3J1576-06)											
Arsenic	ND	0.0500	0.100	mg/L	10		ND				20%	COM
Barium	ND	2.50	5.00	mg/L	10		ND				20%	COM
Cadmium	ND	0.0500	0.100	mg/L	10		ND				20%	COM
Chromium	ND	0.0500	0.100	mg/L	10		ND				20%	COM
Lead	ND	0.0250	0.0500	mg/L	10		ND				20%	COM
Mercury	ND	0.00375	0.00700	mg/L	10		ND				20%	COM
Selenium	ND	0.0500	0.100	mg/L	10		ND				20%	COM

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 135 of 156 $\,$

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

TCLP Metals by EPA 6020B (ICPMS) Detection Reporting Spike % REC RPD Source Dilution Analyte Result Limit Units Amount Result % REC Limits RPD Limit Limit Notes Batch 23J1044 - EPA 1311/3015A Soil Prepared: 10/26/23 10:46 Analyzed: 10/27/23 09:44 Duplicate (23J1044-DUP1) QC Source Sample: Non-SDG (A3J1576-06) 0.0500 COMP Silver 0.100 10 ND 20% mg/L Matrix Spike (23J1044-MS1) Prepared: 10/26/23 10:46 Analyzed: 10/27/23 09:50 QC Source Sample: Non-SDG (A3J1576-06) 1311/6020B 5.13 0.0500 0.100 10 5.00 ND 103 50-150% COMP Arsenic mg/L Barium 10.9 2.50 5.00 10 10.0 ND 109 50-150% COMP mg/L 0.0500 COMP Cadmium 1.08 0.100 10 1.00 ND 108 50-150% mg/L Chromium 5.16 0.0500 0.100 mg/L 10 5.00 ND 103 50-150% COMP 0.0250 COMP Lead 5.49 0.0500 mg/L 10 5.00 ND 110 50-150% ___ Mercury 0.0998 0.00375 0.0070010 0.100 ND 100 50-150% COMP mg/L COMP Selenium 1.03 0.0500 0.10010 1.00 ND mg/L103 50-150% ---Silver 1.06 0.0500 0.100 10 1.00 ND 106 50-150% COMP mg/L

Apex Laboratories

Philip Menberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 136 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: **Eatonville Landfill Characterization**

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			Conver	tional Ch	emistry	Paramete	rs					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0780 - DI Leach							Soi	il				
Duplicate (23J0780-DUP1)			Prepared	: 10/19/23 1	5:59 Ana	lyzed: 10/19	/23 17:14					
QC Source Sample: Non-SDG (A3J1	176-02)											
Soil/Solid pH (measured in H2O)	5.9			pH Units	s 1		6.1			3	5%	PRO,pH_
pH Temperature (deg C)	22.5			pH Units	s 1		22.6			0.4	30%	PRO,pH_
Duplicate (23J0780-DUP2)			Prepared	: 10/19/23 1	5:59 Anal	lyzed: 10/19	/23 17:41					
QC Source Sample: TP-07-IM-9.0-1	0.0-20231	011 (A3J1366-	<u>-16)</u>									
EPA 9045D												
Soil/Solid pH (measured in H2O)	7.5			pH Units	s 1		7.5			0.1	5%	pH_
pH Temperature (deg C)	22.1			pH Units	s 1		22.0			0.5	30%	pH_
Reference (23J0780-SRM1)			Prepared	: 10/19/23 1	5:59 Anal	lyzed: 10/19	/23 17:12					
EPA 9045D												
Soil/Solid pH (measured in H2O)	6.0			pH Units	s 1	6.00		101	98.33-101.3	3%		
pH Temperature (deg C)	22.2			pH Unit	s 1	20.0		111	50-200%			
Reference (23J0780-SRM2)			Prepared	: 10/19/23 1	5:59 Anal	lyzed: 10/19	/23 17:33					
EPA 9045D												
Soil/Solid pH (measured in H2O)	8.0			pH Units	s 1	8.00		99	99-101%			
pH Temperature (deg C)	22.2			pH Unit	s 1	20.0		111	50-200%			
Reference (23J0780-SRM3)			Prepared	: 10/19/23 1	5:59 Anal	lyzed: 10/19	/23 17:46					
EPA 9045D												
Soil/Solid pH (measured in H2O)	6.0			pH Units	s 1	6.00		100	98.33-101.3	3%		
pH Temperature (deg C)	22.2			pH Units	s 1	20.0		111	50-200%			

Apex Laboratories

Philip Menberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

			Conven	tional Ch	emistry	Paramete	rs					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC C Limits	RPD	RPD Limit	Notes
Batch 23J0820 - DI Leach							Soi	1				
Duplicate (23J0820-DUP1)			Prepared	: 10/20/23	2:15 Ana	lyzed: 10/20	/23 13:30					
QC Source Sample: TP-04-IM-4.0-5.	0-202310	10 (A3J1366-2	<u></u>									
EPA 9045D												
Soil/Solid pH (measured in H2O)	7.4			pH Unit	s 1		7.3			1	5%	pH_S
pH Temperature (deg C)	22.0			pH Unit	s 1		22.1			0.5	30%	pH_S
Reference (23J0820-SRM1)			Prepared	: 10/20/23	2:15 Ana	lyzed: 10/20	/23 13:17					
EPA 9045D												
Soil/Solid pH (measured in H2O)	6.0			pH Unit	s 1	6.00		100	98.33-101.33	%		
pH Temperature (deg C)	22.0			pH Unit	s 1	20.0		110	50-200%			
Reference (23J0820-SRM2)			Prepared	: 10/20/23	2:15 Ana	lyzed: 10/20	/23 13:35					
EPA 9045D												
Soil/Solid pH (measured in H2O)	8.0			pH Unit	s 1	8.00		100	99-101%			
pH Temperature (deg C)	22.1			pH Unit	s 1	20.0		110	50-200%			

Apex Laboratories

Philip Menberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 138 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Wei	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0745 - Total Solids (Dry Weigh	nt) - 2022					Soi	l				
Duplicate (23J0745-DUP1)			Prepared	: 10/19/23	09:37 Anal	yzed: 10/20	/23 04:36					
QC Source Sample: Non-SDG (A3	3J1419-01)											
% Solids	78.4	1.00	1.00	%	1		79.6			2	10%	
Duplicate (23J0745-DUP2)			Prepared	: 10/19/23	09:37 Anal	yzed: 10/20	/23 04:36					
QC Source Sample: Non-SDG (A3	3J1419-02)											
% Solids	77.5	1.00	1.00	%	1		77.6			0.09	10%	
Duplicate (23J0745-DUP3)			Prepared	: 10/19/23	09:37 Anal	yzed: 10/20	/23 04:36					
QC Source Sample: Non-SDG (A3	3J1419-03)											
% Solids	76.4	1.00	1.00	%	1		76.5			0.1	10%	
Duplicate (23J0745-DUP4)			Prepared	: 10/19/23	18:06 Anal	yzed: 10/20	/23 04:36					
QC Source Sample: TP-04-NS-9.0	-10.0-202310	010 (A3J1366-	<u>07)</u>									
<u>EPA 8000D</u> % Solids	88.4	1.00	1.00	%	1		88.5			0.02	10%	
Duplicate (23J0745-DUP5)			Prepared	: 10/19/23	18:06 Anal	yzed: 10/20	/23 04:36					
QC Source Sample: TP-05-NS-4.0	-5.0-202310	11 (A3J1366-0				<u>-</u>						
EPA 8000D												
% Solids	84.9	1.00	1.00	%	1		86.6			2	10%	
Duplicate (23J0745-DUP6)			Prepared	: 10/19/23	18:06 Anal	yzed: 10/20	/23 04:36					
QC Source Sample: TP-06-NS-9.0	-10.0-20231	011 (A3J1366-	<u>09)</u>									
EPA 8000D	02.0	1.00	1.00	0/	1		02.5			1	100/	
% Solids	82.8	1.00	1.00	%	1		83.5			1	10%	
Duplicate (23J0745-DUP7)			Prepared	: 10/19/23	19:06 Anal	yzed: 10/20	/23 04:36					
QC Source Sample: Non-SDG (A3												
% Solids	74.9	1.00	1.00	%	1		74.5			0.5	10%	
Duplicate (23J0745-DUP8)			Prepared	: 10/19/23	19:06 Anal	yzed: 10/20	/23 04:36					
- r (=====)			opared	. 10. 17. 20	->.00 / 11101	,						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Wei	ght						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0745 - Total Solids	(Dry Weigh	nt) - 2022					Soil					
Duplicate (23J0745-DUP8)			Prepared	: 10/19/23	19:06 Ana	yzed: 10/20	/23 04:36					
QC Source Sample: Non-SDG (A	3J1482-02)											
% Solids	69.1	1.00	1.00	%	1		84.0			20	10%	Q-17

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 140 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

SAMPLE PREPARATION INFORMATION

		Diesel an	d/or Oil Hydrocarbor	ns by NWTPH-Dx			
Prep: EPA 3546 (Fu	els)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23J0850							
A3J1366-06RE1	Soil	NWTPH-Dx	10/10/23 11:25	10/23/23 05:36	10.82g/5mL	10g/5mL	0.92
A3J1366-07	Soil	NWTPH-Dx	10/10/23 15:45	10/23/23 05:36	10.09g/5mL	10g/5mL	0.99
Batch: 23J0954							
A3J1366-08	Soil	NWTPH-Dx	10/11/23 08:45	10/25/23 13:05	10.68g/5mL	10g/5mL	0.94
A3J1366-09RE1	Soil	NWTPH-Dx	10/11/23 10:15	10/25/23 13:05	10.77g/5mL	10g/5mL	0.93
A3J1366-10	Soil	NWTPH-Dx	10/11/23 13:10	10/25/23 13:05	10.31g/5mL	10g/5mL	0.97
A3J1366-11	Soil	NWTPH-Dx	10/11/23 15:45	10/25/23 13:05	10.06g/5mL	10g/5mL	0.99
A3J1366-12RE1	Soil	NWTPH-Dx	10/12/23 14:45	10/25/23 13:05	10.5g/5mL	10g/5mL	0.95
A3J1366-14RE1	Soil	NWTPH-Dx	10/11/23 11:55	10/25/23 16:38	10.41g/5mL	10g/5mL	0.96

Prep: EPA 5035A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23J0806							
A3J1366-01	Soil	NWTPH-Gx (MS)	10/10/23 08:50	10/10/23 08:50	5.55g/5mL	5g/5mL	0.90
A3J1366-05	Soil	NWTPH-Gx (MS)	10/10/23 07:50	10/10/23 07:50	4.8g/5mL	5g/5mL	1.04
A3J1366-06	Soil	NWTPH-Gx (MS)	10/10/23 11:25	10/10/23 11:25	4.84g/5mL	5g/5mL	1.03
A3J1366-07	Soil	NWTPH-Gx (MS)	10/10/23 15:45	10/10/23 15:45	5.49g/5mL	5g/5mL	0.91
A3J1366-08	Soil	NWTPH-Gx (MS)	10/11/23 08:45	10/11/23 08:45	6.73g/5mL	5g/5mL	0.74
A3J1366-09	Soil	NWTPH-Gx (MS)	10/11/23 10:15	10/11/23 10:15	7.19g/5mL	5g/5mL	0.70
A3J1366-10	Soil	NWTPH-Gx (MS)	10/11/23 13:10	10/11/23 13:10	6.92g/5mL	5g/5mL	0.72
A3J1366-11	Soil	NWTPH-Gx (MS)	10/11/23 15:45	10/11/23 15:45	5.38g/5mL	5g/5mL	0.93
A3J1366-12	Soil	NWTPH-Gx (MS)	10/12/23 14:45	10/12/23 14:45	4.65g/5mL	5g/5mL	1.08
A3J1366-14	Soil	NWTPH-Gx (MS)	10/11/23 11:55	10/11/23 11:55	6.73g/5mL	5g/5mL	0.74

	Volatile Organic Compounds by EPA 8260D										
Prep: EPA 5035A					Sample	Default	RL Prep				
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
Batch: 23J0806											
A3J1366-07	Soil	5035A/8260D	10/10/23 15:45	10/10/23 15:45	5.49g/5mL	5g/5mL	0.91				
A3J1366-08	Soil	5035A/8260D	10/11/23 08:45	10/11/23 08:45	6.73g/5mL	5g/5mL	0.74				
A3J1366-09	Soil	5035A/8260D	10/11/23 10:15	10/11/23 10:15	7.19g/5mL	5g/5mL	0.70				
A3J1366-10	Soil	5035A/8260D	10/11/23 13:10	10/11/23 13:10	6.92g/5mL	5g/5mL	0.72				
A3J1366-11	Soil	5035A/8260D	10/11/23 15:45	10/11/23 15:45	5.38g/5mL	5g/5mL	0.93				

Apex Laboratories

Philip Menberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

SAMPLE PREPARATION INFORMATION

	Volatile Organic Compounds by EPA 8260D										
Prep: EPA 5035A					Sample	Default	RL Prep				
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
A3J1366-12	Soil	5035A/8260D	10/12/23 14:45	10/12/23 14:45	4.65g/5mL	5g/5mL	1.08				
A3J1366-14	Soil	5035A/8260D	10/11/23 11:55	10/11/23 11:55	6.73g/5mL	5g/5mL	0.74				

		Polych	hlorinated Biphenyls t	ру ЕРА 8082A			
Prep: EPA 3546	<u></u> _				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23J0900		 -	 -				
A3J1366-01	Soil	EPA 8082A	10/10/23 08:50	10/24/23 06:45	10.56g/5mL	10g/5mL	0.95
A3J1366-02	Soil	EPA 8082A	10/10/23 08:40	10/24/23 06:45	10.1g/5mL	10g/5mL	0.99
A3J1366-03	Soil	EPA 8082A	10/10/23 08:20	10/24/23 06:45	10.51g/5mL	10g/5mL	0.95
A3J1366-04	Soil	EPA 8082A	10/10/23 08:05	10/24/23 06:45	10.31g/5mL	10g/5mL	0.97
Batch: 23J1014							
A3J1366-05RE1	Soil	EPA 8082A	10/10/23 07:50	10/26/23 04:52	10.13g/5mL	10g/5mL	0.99
A3J1366-06	Soil	EPA 8082A	10/10/23 11:25	10/26/23 04:52	10.05g/5mL	10g/5mL	1.00
A3J1366-07	Soil	EPA 8082A	10/10/23 15:45	10/26/23 04:52	10.47g/5mL	10g/5mL	0.96
A3J1366-08	Soil	EPA 8082A	10/11/23 08:45	10/26/23 04:52	10.04g/5mL	10g/5mL	1.00
A3J1366-09	Soil	EPA 8082A	10/11/23 10:15	10/26/23 04:52	10.07g/5mL	10g/5mL	0.99
A3J1366-10	Soil	EPA 8082A	10/11/23 13:10	10/26/23 04:52	10.56g/5mL	10g/5mL	0.95
A3J1366-11	Soil	EPA 8082A	10/11/23 15:45	10/26/23 04:52	10.64g/5mL	10g/5mL	0.94
A3J1366-12	Soil	EPA 8082A	10/12/23 14:45	10/26/23 04:52	10.09g/5mL	10g/5mL	0.99
A3J1366-13	Soil	EPA 8082A	10/12/23 14:30	10/26/23 04:52	10.2g/5mL	10g/5mL	0.98
A3J1366-14	Soil	EPA 8082A	10/11/23 11:55	10/26/23 04:52	10.11g/5mL	10g/5mL	0.99
A3J1366-15RE1	Soil	EPA 8082A	10/11/23 12:50	10/26/23 04:52	10.29g/5mL	10g/5mL	0.97
Batch: 23J1015							
A3J1366-16	Soil	EPA 8082A	10/11/23 11:30	10/26/23 04:55	10.4g/5mL	10g/5mL	0.96
A3J1366-17	Soil	EPA 8082A	10/12/23 13:25	10/26/23 04:55	10.06g/5mL	10g/5mL	0.99
A3J1366-18	Soil	EPA 8082A	10/12/23 12:35	10/26/23 04:55	10.26g/5mL	10g/5mL	0.98
A3J1366-19RE1	Soil	EPA 8082A	10/12/23 11:30	10/26/23 04:55	10.28g/5mL	10g/5mL	0.97
A3J1366-20	Soil	EPA 8082A	10/12/23 09:45	10/26/23 04:55	10.25g/5mL	10g/5mL	0.98
A3J1366-21	Soil	EPA 8082A	10/11/23 15:30	10/26/23 04:55	10.04g/5mL	10g/5mL	1.00
A3J1366-22	Soil	EPA 8082A	10/11/23 14:50	10/26/23 04:55	10.04g/5mL	10g/5mL	1.00
A3J1366-23	Soil	EPA 8082A	10/11/23 09:35	10/26/23 04:55	10.16g/5mL	10g/5mL	0.98
A3J1366-24	Soil	EPA 8082A	10/11/23 08:35	10/26/23 04:55	10.31g/5mL	10g/5mL	0.97
A3J1366-25RE1	Soil	EPA 8082A	10/10/23 15:25	10/26/23 04:55	10.25g/5mL	10g/5mL	0.98
A3J1366-26	Soil	EPA 8082A	10/10/23 14:30	10/26/23 04:55	10.67g/5mL	10g/5mL	0.94

Apex Laboratories

Philip Menberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

SAMPLE PREPARATION INFORMATION

	Polychlorinated Biphenyls by EPA 8082A										
Prep: EPA 3546					Sample	Default	RL Prep				
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor				
A3J1366-27RE1	Soil	EPA 8082A	10/10/23 12:55	10/26/23 04:55	10.07g/5mL	10g/5mL	0.99				
A3J1366-28	Soil	EPA 8082A	10/10/23 10:55	10/26/23 04:55	10.45g/5mL	10g/5mL	0.96				

Prep: EPA 3546					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23J0793							
A3J1366-06RE1	Soil	EPA 8270E	10/10/23 11:25	10/20/23 04:49	15.02g/2mL	15g/2mL	1.00
A3J1366-07RE2	Soil	EPA 8270E	10/10/23 15:45	10/20/23 04:49	15.23g/2mL	15g/2mL	0.99
Batch: 23J0901							
A3J1366-08RE2	Soil	EPA 8270E	10/11/23 08:45	10/24/23 06:49	15.69g/2mL	15g/2mL	0.96
A3J1366-09RE1	Soil	EPA 8270E	10/11/23 10:15	10/24/23 06:49	15.04g/2mL	15g/2mL	1.00
A3J1366-10RE1	Soil	EPA 8270E	10/11/23 13:10	10/24/23 06:49	15.23g/5mL	15g/2mL	2.46
A3J1366-11RE2	Soil	EPA 8270E	10/11/23 15:45	10/24/23 06:49	15.36g/2mL	15g/2mL	0.98
A3J1366-12RE1	Soil	EPA 8270E	10/12/23 14:45	10/24/23 06:49	15.58g/2mL	15g/2mL	0.96
A3J1366-14	Soil	EPA 8270E	10/11/23 11:55	10/24/23 06:49	15.62g/5mL	15g/2mL	2.40
A3J1366-14RE1	Soil	EPA 8270E	10/11/23 11:55	10/24/23 06:49	15.62g/5mL	15g/2mL	2.40

		Tota	al Metals by EPA 602	0B (ICPMS)			
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23J0999							
A3J1366-14	Soil	EPA 6020B	10/11/23 11:55	10/25/23 13:41	0.478g/50mL	0.5g/50mL	1.05
A3J1366-15	Soil	EPA 6020B	10/11/23 12:50	10/25/23 13:41	0.482g/50mL	0.5g/50mL	1.04
A3J1366-16	Soil	EPA 6020B	10/11/23 11:30	10/25/23 13:41	0.498g/50mL	0.5g/50mL	1.00
A3J1366-17	Soil	EPA 6020B	10/12/23 13:25	10/25/23 13:41	0.464g/50mL	0.5g/50mL	1.08
A3J1366-18	Soil	EPA 6020B	10/12/23 12:35	10/25/23 13:41	0.49g/50mL	0.5g/50mL	1.02
A3J1366-18RE1	Soil	EPA 6020B	10/12/23 12:35	10/25/23 13:41	0.49g/50mL	0.5g/50mL	1.02
A3J1366-19	Soil	EPA 6020B	10/12/23 11:30	10/25/23 13:41	0.47g/50mL	0.5g/50mL	1.06
A3J1366-20	Soil	EPA 6020B	10/12/23 09:45	10/25/23 13:41	0.488g/50mL	0.5g/50mL	1.02
A3J1366-21	Soil	EPA 6020B	10/11/23 15:30	10/25/23 13:41	0.475g/50mL	0.5g/50mL	1.05
A3J1366-22	Soil	EPA 6020B	10/11/23 14:50	10/25/23 13:41	0.466g/50mL	0.5g/50mL	1.07
A3J1366-23	Soil	EPA 6020B	10/11/23 09:35	10/25/23 13:41	0.485g/50mL	0.5g/50mL	1.03
A3J1366-24	Soil	EPA 6020B	10/11/23 08:35	10/25/23 13:41	0.513g/50mL	0.5g/50mL	0.98
A3J1366-25	Soil	EPA 6020B	10/10/23 15:25	10/25/23 13:41	0.507g/50mL	0.5g/50mL	0.99

Apex Laboratories

Philip Menberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 143 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

SAMPLE PREPARATION INFORMATION

		Tota	al Metals by EPA 602	OB (ICPMS)			
Prep: EPA 3051A					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A3J1366-26	Soil	EPA 6020B	10/10/23 14:30	10/25/23 13:41	0.469g/50mL	0.5g/50mL	1.07
A3J1366-26RE1	Soil	EPA 6020B	10/10/23 14:30	10/25/23 13:41	0.469g/50mL	0.5g/50mL	1.07
A3J1366-27	Soil	EPA 6020B	10/10/23 12:55	10/25/23 13:41	0.479g/50mL	0.5g/50mL	1.04
A3J1366-27RE1	Soil	EPA 6020B	10/10/23 12:55	10/25/23 13:41	0.479g/50mL	0.5g/50mL	1.04
A3J1366-28	Soil	EPA 6020B	10/10/23 10:55	10/25/23 13:41	0.51g/50mL	0.5g/50mL	0.98
A3J1366-28RE1	Soil	EPA 6020B	10/10/23 10:55	10/25/23 13:41	0.51g/50mL	0.5g/50mL	0.98
Batch: 23J1022							
A3J1366-01	Soil	EPA 6020B	10/10/23 08:50	10/26/23 09:08	0.495g/50mL	0.5g/50mL	1.01
A3J1366-02	Soil	EPA 6020B	10/10/23 08:40	10/26/23 09:08	0.488g/50mL	0.5g/50mL	1.02
A3J1366-03	Soil	EPA 6020B	10/10/23 08:20	10/26/23 09:08	0.497g/50mL	0.5g/50mL	1.01
A3J1366-04	Soil	EPA 6020B	10/10/23 08:05	10/26/23 09:08	0.453g/50mL	0.5g/50mL	1.10
A3J1366-05	Soil	EPA 6020B	10/10/23 07:50	10/26/23 09:08	0.465g/50mL	0.5g/50mL	1.08
A3J1366-06	Soil	EPA 6020B	10/10/23 11:25	10/26/23 09:08	0.46g/50mL	0.5g/50mL	1.09
A3J1366-07	Soil	EPA 6020B	10/10/23 15:45	10/26/23 09:08	0.466g/50mL	0.5g/50mL	1.07
A3J1366-08	Soil	EPA 6020B	10/11/23 08:45	10/26/23 09:08	0.498g/50mL	0.5g/50mL	1.00
A3J1366-09	Soil	EPA 6020B	10/11/23 10:15	10/26/23 09:08	0.453g/50mL	0.5g/50mL	1.10
A3J1366-09RE1	Soil	EPA 6020B	10/11/23 10:15	10/26/23 09:08	0.453g/50mL	0.5g/50mL	1.10
A3J1366-10	Soil	EPA 6020B	10/11/23 13:10	10/26/23 09:08	0.49g/50mL	0.5g/50mL	1.02
A3J1366-11	Soil	EPA 6020B	10/11/23 15:45	10/26/23 09:08	0.487g/50mL	0.5g/50mL	1.03
A3J1366-12	Soil	EPA 6020B	10/12/23 14:45	10/26/23 09:08	0.482g/50mL	0.5g/50mL	1.04
A3J1366-13	Soil	EPA 6020B	10/12/23 14:30	10/26/23 09:08	0.48g/50mL	0.5g/50mL	1.04

		TCL	P Metals by EPA 602	0B (ICPMS)			
Prep: EPA 1311/3015	<u>A</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23J0933							
A3J1366-01	Soil	1311/6020B	10/10/23 08:50	10/24/23 13:20	10mL/50mL	10mL/50mL	1.00
A3J1366-02	Soil	1311/6020B	10/10/23 08:40	10/24/23 13:20	10mL/50mL	10mL/50mL	1.00
A3J1366-03	Soil	1311/6020B	10/10/23 08:20	10/24/23 13:20	10mL/50mL	10mL/50mL	1.00
A3J1366-04	Soil	1311/6020B	10/10/23 08:05	10/24/23 13:20	10 mL / 50 mL	10mL/50mL	1.00
Batch: 23J0987							
A3J1366-05	Soil	1311/6020B	10/10/23 07:50	10/25/23 10:53	10mL/50mL	10mL/50mL	1.00
A3J1366-06	Soil	1311/6020B	10/10/23 11:25	10/25/23 10:53	10mL/50mL	10mL/50mL	1.00
A3J1366-07	Soil	1311/6020B	10/10/23 15:45	10/25/23 10:53	10mL/50mL	10mL/50mL	1.00
A3J1366-08	Soil	1311/6020B	10/11/23 08:45	10/25/23 10:53	10 mL / 50 mL	10mL/50mL	1.00

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 144 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

SAMPLE PREPARATION INFORMATION

		TCL	P Metals by EPA 602	0B (ICPMS)			
Prep: EPA 1311/3015	<u>—</u>				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A3J1366-09	Soil	1311/6020B	10/11/23 10:15	10/25/23 10:53	10mL/50mL	10mL/50mL	1.00
A3J1366-10	Soil	1311/6020B	10/11/23 13:10	10/25/23 10:53	10mL/50mL	10mL/50mL	1.00
A3J1366-11	Soil	1311/6020B	10/11/23 15:45	10/25/23 10:53	10mL/50mL	10mL/50mL	1.00
A3J1366-12	Soil	1311/6020B	10/12/23 14:45	10/25/23 10:53	10mL/50mL	10mL/50mL	1.00
A3J1366-13	Soil	1311/6020B	10/12/23 14:30	10/25/23 10:53	10mL/50mL	10 mL/50 mL	1.00
Batch: 23J1044							
A3J1366-14	Soil	1311/6020B	10/11/23 11:55	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-14RE1	Soil	1311/6020B	10/11/23 11:55	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-15	Soil	1311/6020B	10/11/23 12:50	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-15RE1	Soil	1311/6020B	10/11/23 12:50	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-16	Soil	1311/6020B	10/11/23 11:30	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-17	Soil	1311/6020B	10/12/23 13:25	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-17RE1	Soil	1311/6020B	10/12/23 13:25	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-18	Soil	1311/6020B	10/12/23 12:35	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-18RE1	Soil	1311/6020B	10/12/23 12:35	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-19RE1	Soil	1311/6020B	10/12/23 11:30	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-20RE1	Soil	1311/6020B	10/12/23 09:45	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-21RE1	Soil	1311/6020B	10/11/23 15:30	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-22	Soil	1311/6020B	10/11/23 14:50	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-23	Soil	1311/6020B	10/11/23 09:35	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-24	Soil	1311/6020B	10/11/23 08:35	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-25	Soil	1311/6020B	10/10/23 15:25	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-26	Soil	1311/6020B	10/10/23 14:30	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-27	Soil	1311/6020B	10/10/23 12:55	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00
A3J1366-28	Soil	1311/6020B	10/10/23 10:55	10/26/23 10:46	10mL/50mL	10mL/50mL	1.00

		Cor	ventional Chemistry	Parameters			
Prep: DI Leach					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23J0780							
A3J1366-06	Soil	EPA 9045D	10/10/23 11:25	10/19/23 15:59	20.9763g/20mL	20g/20mL	NA
A3J1366-07	Soil	EPA 9045D	10/10/23 15:45	10/19/23 15:59	20.9161g/20mL	20g/20mL	NA
A3J1366-08	Soil	EPA 9045D	10/11/23 08:45	10/19/23 15:59	20.6736g/20mL	20g/20mL	NA
A3J1366-09	Soil	EPA 9045D	10/11/23 10:15	10/19/23 15:59	20.4459g/20mL	20g/20mL	NA
A3J1366-10	Soil	EPA 9045D	10/11/23 13:10	10/19/23 15:59	20.156g/20mL	20g/20mL	NA
A3J1366-11	Soil	EPA 9045D	10/11/23 15:45	10/19/23 15:59	20.701g/20mL	20g/20mL	NA

Apex Laboratories

Philip Menberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

SAMPLE PREPARATION INFORMATION

		Con	ventional Chemistry	Parameters			
Prep: DI Leach					Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A3J1366-12	Soil	EPA 9045D	10/12/23 14:45	10/19/23 15:59	20.0679g/20mL	20g/20mL	NA
A3J1366-13	Soil	EPA 9045D	10/12/23 14:30	10/19/23 15:59	20.967g/20mL	20g/20mL	NA
A3J1366-14	Soil	EPA 9045D	10/11/23 11:55	10/19/23 15:59	20.2564g/20mL	20g/20mL	NA
A3J1366-15	Soil	EPA 9045D	10/11/23 12:50	10/19/23 15:59	20.6724g/20mL	20g/20mL	NA
A3J1366-16	Soil	EPA 9045D	10/11/23 11:30	10/19/23 15:59	20.8175g/20mL	20g/20mL	NA
A3J1366-17	Soil	EPA 9045D	10/12/23 13:25	10/19/23 15:59	20.5433g/20mL	20g/20mL	NA
A3J1366-18	Soil	EPA 9045D	10/12/23 12:35	10/19/23 15:59	20.8919g/20mL	20g/20mL	NA
A3J1366-19	Soil	EPA 9045D	10/12/23 11:30	10/19/23 15:59	20.7889g/20mL	20g/20mL	NA
A3J1366-20	Soil	EPA 9045D	10/12/23 09:45	10/19/23 15:59	20.7956g/20mL	20g/20mL	NA
Batch: 23J0820							
A3J1366-22	Soil	EPA 9045D	10/11/23 14:50	10/20/23 12:15	20.0364g/20mL	20g/20mL	NA
A3J1366-23	Soil	EPA 9045D	10/11/23 09:35	10/20/23 12:15	20.0486g/20mL	20g/20mL	NA
A3J1366-24	Soil	EPA 9045D	10/11/23 08:35	10/20/23 12:15	20.0768g/20mL	20g/20mL	NA
A3J1366-25	Soil	EPA 9045D	10/10/23 15:25	10/20/23 12:15	20.0842g/20mL	20g/20mL	NA
A3J1366-26	Soil	EPA 9045D	10/10/23 14:30	10/20/23 12:15	20.0156g/20mL	20g/20mL	NA
A3J1366-27	Soil	EPA 9045D	10/10/23 12:55	10/20/23 12:15	20.0014g/20mL	20g/20mL	NA
A3J1366-28	Soil	EPA 9045D	10/10/23 10:55	10/20/23 12:15	20.0192g/20mL	20g/20mL	NA

			Percent Dry Wei	ght			
Prep: Total Solids (Di	ry Weight) - 2022				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23J0745							
A3J1366-01	Soil	EPA 8000D	10/10/23 08:50	10/19/23 18:06			NA
A3J1366-02	Soil	EPA 8000D	10/10/23 08:40	10/19/23 18:06			NA
A3J1366-03	Soil	EPA 8000D	10/10/23 08:20	10/19/23 18:06			NA
A3J1366-04	Soil	EPA 8000D	10/10/23 08:05	10/19/23 18:06			NA
A3J1366-05	Soil	EPA 8000D	10/10/23 07:50	10/19/23 18:06			NA
A3J1366-06	Soil	EPA 8000D	10/10/23 11:25	10/19/23 18:06			NA
A3J1366-07	Soil	EPA 8000D	10/10/23 15:45	10/19/23 18:06			NA
A3J1366-08	Soil	EPA 8000D	10/11/23 08:45	10/19/23 18:06			NA
A3J1366-09	Soil	EPA 8000D	10/11/23 10:15	10/19/23 18:06			NA
A3J1366-10	Soil	EPA 8000D	10/11/23 13:10	10/19/23 18:06			NA
A3J1366-11	Soil	EPA 8000D	10/11/23 15:45	10/19/23 18:06			NA
A3J1366-12	Soil	EPA 8000D	10/12/23 14:45	10/19/23 18:06			NA
A3J1366-13	Soil	EPA 8000D	10/12/23 14:30	10/19/23 18:06			NA
A3J1366-14	Soil	EPA 8000D	10/11/23 11:55	10/19/23 18:06			NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 146 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

SAMPLE PREPARATION INFORMATION

			Percent Dry Wei	ght			
Prep: Total Solids (Dry Weight) - 2022				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A3J1366-15	Soil	EPA 8000D	10/11/23 12:50	10/19/23 18:06			NA
A3J1366-16	Soil	EPA 8000D	10/11/23 11:30	10/19/23 18:06			NA
A3J1366-17	Soil	EPA 8000D	10/12/23 13:25	10/19/23 18:06			NA
A3J1366-18	Soil	EPA 8000D	10/12/23 12:35	10/19/23 18:06			NA
A3J1366-19	Soil	EPA 8000D	10/12/23 11:30	10/19/23 18:06			NA
A3J1366-20	Soil	EPA 8000D	10/12/23 09:45	10/19/23 18:06			NA
A3J1366-21	Soil	EPA 8000D	10/11/23 15:30	10/19/23 18:06			NA
A3J1366-22	Soil	EPA 8000D	10/11/23 14:50	10/19/23 18:06			NA
A3J1366-23	Soil	EPA 8000D	10/11/23 09:35	10/19/23 18:06			NA
A3J1366-24	Soil	EPA 8000D	10/11/23 08:35	10/19/23 18:06			NA
A3J1366-25	Soil	EPA 8000D	10/10/23 15:25	10/19/23 18:06			NA
A3J1366-26	Soil	EPA 8000D	10/10/23 14:30	10/19/23 18:06			NA
A3J1366-27	Soil	EPA 8000D	10/10/23 12:55	10/19/23 18:06			NA
A3J1366-28	Soil	EPA 8000D	10/10/23 10:55	10/19/23 18:06			NA

			TCLP Extraction by E	PA 1311			
Prep: EPA 1311 (TC	LP)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
Batch: 23J0867							
A3J1366-01	Soil	EPA 1311	10/10/23 08:50	10/23/23 16:40	100g/2000.3g	100g/2000g	NA
A3J1366-02	Soil	EPA 1311	10/10/23 08:40	10/23/23 16:40	100g/2000g	100g/2000g	NA
A3J1366-03	Soil	EPA 1311	10/10/23 08:20	10/23/23 16:40	100g/2000.2g	100g/2000g	NA
A3J1366-04	Soil	EPA 1311	10/10/23 08:05	10/23/23 16:40	100g/2000.3g	100g/2000g	NA
Batch: 23J0868							
A3J1366-05	Soil	EPA 1311	10/10/23 07:50	10/23/23 16:40	100g/2000.3g	100g/2000g	NA
A3J1366-06	Soil	EPA 1311	10/10/23 11:25	10/23/23 16:40	100g/2000.5g	100g/2000g	NA
A3J1366-07	Soil	EPA 1311	10/10/23 15:45	10/23/23 16:40	100g/2000.2g	100g/2000g	NA
A3J1366-08	Soil	EPA 1311	10/11/23 08:45	10/23/23 16:40	100g/2000g	100g/2000g	NA
A3J1366-09	Soil	EPA 1311	10/11/23 10:15	10/23/23 16:40	100g/2000.2g	100g/2000g	NA
A3J1366-10	Soil	EPA 1311	10/11/23 13:10	10/23/23 16:40	100g/2000.6g	100g/2000g	NA
A3J1366-11	Soil	EPA 1311	10/11/23 15:45	10/23/23 16:40	100g/2000.2g	100g/2000g	NA
A3J1366-12	Soil	EPA 1311	10/12/23 14:45	10/23/23 16:40	100g/2000.2g	100g/2000g	NA
A3J1366-13	Soil	EPA 1311	10/12/23 14:30	10/23/23 16:40	100g/2000.9g	100g/2000g	NA
Batch: 23J0904							
A3J1366-14	Soil	EPA 1311	10/11/23 11:55	10/24/23 16:30	100g/2000.1g	100g/2000g	NA

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menterg

Page 147 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

SAMPLE PREPARATION INFORMATION

			TCLP Extraction by E	PA 1311			
Prep: EPA 1311 (TO	CLP)				Sample	Default	RL Prep
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor
A3J1366-15	Soil	EPA 1311	10/11/23 12:50	10/24/23 16:30	100g/2000.2g	100g/2000g	NA
A3J1366-16	Soil	EPA 1311	10/11/23 11:30	10/24/23 16:30	100g/2000g	100g/2000g	NA
A3J1366-17	Soil	EPA 1311	10/12/23 13:25	10/24/23 16:30	100g/2000g	100g/2000g	NA
A3J1366-18	Soil	EPA 1311	10/12/23 12:35	10/24/23 16:30	100g/2000.8g	100g/2000g	NA
A3J1366-19	Soil	EPA 1311	10/12/23 11:30	10/24/23 16:30	100g/2000.9g	100g/2000g	NA
A3J1366-20	Soil	EPA 1311	10/12/23 09:45	10/24/23 16:30	100g/2000.2g	100g/2000g	NA
A3J1366-21	Soil	EPA 1311	10/11/23 15:30	10/24/23 16:30	100g/2000.4g	100g/2000g	NA
A3J1366-22	Soil	EPA 1311	10/11/23 14:50	10/24/23 16:30	100g/2000.6g	100g/2000g	NA
A3J1366-23	Soil	EPA 1311	10/11/23 09:35	10/24/23 16:30	100g/2000.2g	100g/2000g	NA
A3J1366-24	Soil	EPA 1311	10/11/23 08:35	10/24/23 16:30	100g/2000.1g	100g/2000g	NA
A3J1366-25	Soil	EPA 1311	10/10/23 15:25	10/24/23 16:30	100g/2000.2g	100g/2000g	NA
A3J1366-26	Soil	EPA 1311	10/10/23 14:30	10/24/23 16:30	100g/2000.3g	100g/2000g	NA
A3J1366-27	Soil	EPA 1311	10/10/23 12:55	10/24/23 16:30	100g/2000.2g	100g/2000g	NA
A3J1366-28	Soil	EPA 1311	10/10/23 10:55	10/24/23 16:30	100g/2000.4g	100g/2000g	NA

Apex Laboratories

Philip Menberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

A 0	Labora	torios
ADex	Labora	tories

C-07	Extract has undergone Sulfuric Acid Cleanup by EPA 3665A, Sulfur Cleanup by EPA 3660B, and Florisil Cleanup by EPA 3620B in order
	to minimize matrix interference

- **COMP** Analyzed sample is a composite of discrete samples that was performed in the laboratory.
- **CONT** The Sample Container provided for this analysis was not provided by Apex Laboratories, and has not been verified as part of the Apex Quality System.
 - **E** Estimated Value. The result is above the calibration range of the instrument.
- ICV-02 Estimated Result. Initial Calibration Verification (ICV) failed low.
 - J Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
- M-05 Estimated results. Peak separation for structural isomers is insufficient for accurate quantification.
- **P-09** Due to weathering and/or the presence of an unknown mixture of PCB Congeners, the pattern does not match the standard used for calibration. Results are Estimated and based on the closest matching Aroclor.
- P-10 Result estimated due to the presence of multiple PCB Aroclors and/or matrix interference.
- P-12 Result estimated due to the presence of multiple PCB Aroclors and/or PCB congeners not defined as Aroclors.
- pH_S Method recommends preparation 'as soon as possible'. See Sample Preparation Information section of report for details. Consult regulator or permit manager to determine the usability of data for intended purpose.
- **PRO** Sample has undergone sample processing prior to extraction and analysis.
- **Q-01** Spike recovery and/or RPD is outside acceptance limits.
- Q-04 Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.
- Q-16 Reanalysis of an original Batch QC sample.
- Q-17 RPD between original and duplicate sample, or spike duplicates, is outside of established control limits.
- Q-29 Recovery for Lab Control Spike (LCS) is above the upper control limit. Data may be biased high.
- Q-31 Estimated Results. Recovery of Continuing Calibration Verification sample below lower control limit for this analyte. Results are likely biased low.
- Q-41 Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.
- Q-42 Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)
- Q-43 Matrix Spike recovery is not applicable due to interfering Aroclor(s) in source sample.
- Q-52 Due to known erratic recoveries, the result and reporting levels for this analyte are reported as Estimated Values. This analyte may not have passed all QC requirements for this method.

Apex Laboratories

Philip Neinberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 149 of 156

GSI Water Solutions

TCLPa

TCLPb

ANALYTICAL REPORT

Eatonville Landfill Characterization

Project:

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

55 SW Yamh	ill St, Ste 300	Project Number: 00171.074.008	Report ID:
Portland, OR	R 97209	Project Manager: Ben Johnson	A3J1366 - 11 10 23 1227
Q-54	Daily Continuing Calibration Verification results are reported as Estimated Values.	recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/	8270 by +2%. The
Q-54a	Daily Continuing Calibration Verification results are reported as Estimated Values.	recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/	8270 by -2%. The
Q-55	Daily CCV/LCS recovery for this analyte detection at the reporting level.	was below the +/-20% criteria listed in EPA 8260, however there is adequate s	ensitivity to ensure
Q-56	Daily CCV/LCS recovery for this analyte	was above the +/-20% criteria listed in EPA 8260	
Q-65	Spike recovery is estimated due to the high	n analyte concentration of the source sample.	
R-02	The Reporting Limit for this analyte has be	een raised to account for interference from coeluting organic compounds prese	ent in the sample.
R-04	Reporting levels elevated due to preparation	on and/or analytical dilution necessary for analysis.	
S-01	Surrogate recovery for this sample is not a interference.	vailable due to sample dilution required from high analyte concentration and/	or matrix
S-03	Sample re-extract, or the analysis of an ass	sociated Batch QC sample, confirms surrogate failure due to sample matrix eff	lect.
S-05	Surrogate recovery is estimated due to same	nple dilution required for high analyte concentration and/or matrix interference	e.
S-06	Surrogate recovery is outside of established	d control limits.	
TCLP	This batch QC sample was prepared with T	TCLP or SPLP fluid from preparation batch 23J0867.	

This batch QC sample was prepared with TCLP or SPLP fluid from preparation batch 23J0868.

This batch QC sample was prepared with TCLP or SPLP fluid from preparation batch 23J0904.

Apex Laboratories

Philip Menterg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

<u>Detection Limits:</u> Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neventrera

Page 151 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks:

- Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).
- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.
- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 152 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1366 - 11 10 23 1227

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Philip Nevenberg

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions 55 SW Yamhill St, Ste 300

Portland, OR 97209

Project:

Eatonville Landfill Characterization

Project Number: 00171.074.008

Project Manager: Ben Johnson

Report ID: A3J1366 - 11 10 23 1227

Sant Let Report To: Benjamin Johnson Address: Kato NE Holladay Sinet; Sults 950 Pendand, CAR 97233, 4:10	Company of the compan	Lab Batch 4:		
Tel 후 90-679-1548 Email. bj¢/n80/환장nins.cam and dba원(paiws.cam				2 9094 77 haurs 48 haurs 24 haurs Ohruss
Project Mains. " Gerren Salemale Land'II Waste Characterator COTT (74 A) Die Project & Forner Zalomale Land'II Wasia Characterien COTT (074 OGS Sarrjan Name).	88		Things in Preservation	
Semistra DF	Sample Date Sample Time Matrice Confi	Official of the control of the contr	by Harper) ACI-teres and by Harper) ACI-teres and by Harper) By Harper By Ha	Comments
W5-01-0-4-4-0-10-10-10-10-10-10-10-10-10-10-10-10-1	Ĺ	- X	×	WET, WIS OF OFFICE
\$4500-0101-20-20-40-201	Cof 3 5 5 5 50	×		
W5-03-4-0-2-0 -10102025	\vdash	× × ×	.~~	THE PARTY OF THE P
(NS-10410:00-4:01-10:10-4:04:04:04:04:04:04:04:04:04:04:04:04:04	3	* y	>	>
1	i	\(\frac{1}{2}\)	2	***************************************
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		< x < x < x < x < x < x < x < x < x < x	<>	745.4A
		(> (>	97	
COLUMN TO COLUMN TO THE COLUMN	のうないできるとう	4	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
1 41.	1.0	** ** **	×.	
2010 - COLON -	25.0.55	\times \times \times	× ×	V. 488 P.V.
このかはいからしているとのとうとうと	SES を 8 か	イメゲイ	X X X	
たか、元、ころ、一名のよう。ことに近く	8	ナメン	メ	
TP-16-IM-40-54-2031012	N 00 84 54 N	X X X	×	
10.09.09.14. 10.00.50-50-5050.11	2 July 1855 See 5	アスメ		SAB2.0
110-02-Ira-40-52- 2025/011	80 148 1480 SO S	y x L	ж.	
TO-04-THA- 20-10-20-787410-19	15/11/25	× × ×	24	
	1277 J.	*	×-:	
140-150-25-25-25-25-25-25-25-25-25-25-25-25-25-	17.53		~	3
10-10-10-10-10-10-10-10-10-10-10-10-10-1	1500 AT 1500 A	X y	< >	კ>.
10101 N - 6-16-2 20 101	12 12 12 12 12 12 12 12 12 12 12 12 12 1	: <i>F</i> : ×		
VOTES, Collect, With District (TR, 200 2549, Januaron 200 at Part of the Collection of the Collectio	onison (803.629.4843, bjohman (8981445.com) with Survey (1977-1978)	questions, include ECO with first less impact, class or CTARS, AMOND 1 1/4, 10/45	d to make sure that will is are kept low to ensure yee o ASTS OF Me ON VOYS	en ecreen date. If thete stell rowel sample prep methods that
Selenquiented By: Selenge 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Agency/Agent (9.5)	Received By: £W.	\ \mathrea{M}	STATE CONTRACTOR
1 1	0000 (0.022) (5000)	Signature:		10(523
Reimpuistred By. Spronture:	Agancywagent Yvne & Date:	Received by.	A Commence of the Commence of	Agency/Agent Time & Date:
			•	· · · · · · · · · · · · · · · · · · ·

Apex Laboratories

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 154 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1366 - 11 10 23 1227

Send Leb Roport To: Benjamin Johnson Address: CSD INE Holaday Street, Sure 600				Lab Belich #:	alco and y						93	
Funition 1897/22-4100. Tel. # 50-87%-4543. E-mail bjohnson@gative.com drd.dbo@gative.com				ijrro(ce							₽	72 hours 28 hours 20 hours
Project Names: Formal Editoride Leadiff Wasta Charasterzeno (1077) (074 (2)) Podacia Formal Editoride Leadiff Wasta Charasterzeno (1077) (2)4 (0)) Sandeli Marte:	74.008						Semole P	Programme lonertiew				
NCI #E HIS	Sample Date	Sample Tene M	Natrix Container of	Metale by EPA 50208 PCRA 8 + Cu, Ni, sund Ag)	POED by Medical Price of Arian Social Price of English Box 69 ENG Arian Social Arian Arian Social Arian Arian Social Arian Arian Social Arian A	SYOCE by EPA STORING S	OPPROMS /	borllett ARB vd 2000 00008 00000 Ombo Santh Wildeling Ondr borbert yd	Company (pH) by		Commissible	
10-01-124-11.0-120-2005101.	5000	1950	8	,	×	N		+	X		750	
55-C\$-00-00-32-33	101(25)		9	×	1-	<u> </u>		1	×	ļ		Ì
55-05-04-4-4-4045-011 16-04-14-5-6-04	(5/0/2)	2888 2888 2888	V)	, s.c.	У. У	_		+	×			
10-04-14-4-54-4-50231610	1.00 M	13	-	×	X			ļ	×			
TP 05-124-42-52-224 101	10/10/23	950	3 8	y z .:		4-11	_	-	><	280.0		ļ
TO-04-12(1-4/6/06-7824/10)0	10/10/23	357	SO (×				×	ļ.,	,	7.3k.
TA-01-1M-5.5-60-70/3/419	10,76723	<u>S</u> <u>SS</u>	NT On	<u>~</u>	×				×			
											- Inner	7000
				1			1			,		
	11.0							-	Ì			
						-		-	+-			1
- NA.71							†~†			++		
77.01	10.01				-	+	1	*				
in in the second				-								
1.44.				 -				-		-		Toward Co.
NOTES COMBASIO (702.000 2548), SUBTREE STATES (AND ASSES),	Johnson (503,679,45	43, bromaco@gss	as.com) wth que	lors, holode El	Owith final last	nated. Nead to	I enut even: c	tal MDLs are	kept knw to ana	INT WE CAT BOTH	th date. A there are nowel sample prepared	methods that
Springer Comment Br. Spring July 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Agency/Agent: /	285	75.50	a a	1		TXXX.				AgencyAgent X PE 1.4	7
Ph.	1 1			1 22 1A	Received By:						Agenty/Ageni.	
	-						ĺ				HILL OF LOSIDE	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 155 of 156 $\,$

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions 55 SW Yamhill St, Ste 300 Portland, OR 97209 Project: Eatonville Landfill Characterization

Project Number: **00171.074.008**Project Manager: **Ben Johnson**

Report ID: A3J1366 - 11 10 23 1227

APEXLABS COOLER RECEIPT FORM
Client: 65I Water Solution 5 Element WO#: A351366
Project/Project #: FOYMEY Eafon Wille (antil) Whate Chiefer
Delivery Info: Delivery Info: Delivery Info: Delivery Info:
Date/time received: 10/13/23@ 1300 By: JS ET
Delivered by: Apex Client ESS FedEx UPS Radio Morgan SDS Evergreen Other
Cooler Inspection Date/time inspected; 10/13/23@ 1358 By: J
Chain of Custody included? Yes X No
Signed/dated by client? Yes No
Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Temperature (°C) Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7
Custody seals? (Y/N)
Received on ice? (Y/N)
Temp. blanks? (Y/N)
Ice type: (Gel/Real/Other) Year Year Year
Condition (In/Out):
All samples intact? Yes No Comments:
Bottle labels/COCs agree? Yes No _X Comments: _dates_ MAC Colicies on _WS -05-00 -Z0 \ \text{10 io 163} \text{ MEOH 10AS (42) \\ \text{12 MEOH 10AS SUFFIX (1648 \\ \text{2023})01 \\ for TP-07 \\ \text{COC/container discrepancies form initiated? Yes No \\ Containers/volumes received appropriate for analysis? Yes \(\text{ No Comments: \)
Do VOA vials have visible headspace? Yes No NA Comments
Water samples: pH checked: YesNoNA X pH appropriate? YesNoNA X pH ID:
Comments:
113 FOT TP-08-2M-4,0-5,0-2013 1011
Additional information: date on 8 07 TAG (CAC) while time on 313 Ros
TAS 1998 1135 FOT IP-12-TAI-900-1000-2073/017
Labeled by: Witness: Cooler Inspected by: A TIM -003 R-01

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Mounterg

Page 156 of 156

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Wednesday, November 8, 2023
Ben Johnson
GSI Water Solutions
55 SW Yamhill St, Ste 300
Portland, OR 97209

RE: A3J1375 - Eatonville Landfill Characterization - 00171.074.008

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A3J1375, which was received by the laboratory on 10/16/2023 at 4:55:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: pnerenberg@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

Acceptable Receipt Temperature is less than, or equal to, 6 degC (not frozen), or received on ice the same day as sampling.

(See Cooler Receipt Form for details)

Default Cooler 3.6 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 1 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1375 - 11 08 23 1632

ANALYTICAL REPORT FOR SAMPLES

SAMPLE INFORMATION								
Client Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received				
TP-02-IM-14.0-15.0-20231010	A3J1375-01	Soil	10/10/23 13:35	10/16/23 16:55				
TP-03-IM-9.0-10.0-20231010	A3J1375-02	Soil	10/10/23 14:20	10/16/23 16:55				
SS-09-0.0-1.0-20231011	A3J1375-03	Soil	10/11/23 13:55	10/16/23 16:55				
TP-11-IM-14.0-15.0-20231012	A3J1375-04	Soil	10/12/23 10:45	10/16/23 16:55				
TP-12-IM-13.0-14.0-20231012	A3J1375-05	Soil	10/12/23 11:50	10/16/23 16:55				
TP-13-IM-9.0-10.0-20231012	A3J1375-06	Soil	10/12/23 12:20	10/16/23 16:55				
SS-14-0.0-1.020231012	A3J1375-07	Soil	10/12/23 08:50	10/16/23 16:55				
TP-14-IM-9.0-10.020231012	A3J1375-08	Soil	10/12/23 13:15	10/16/23 16:55				

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 2 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1375 - 11 08 23 1632

ANALYTICAL SAMPLE RESULTS

		Polychlorina	ted Bipheny	ls by EPA 8082	2A			
	Sample	Detection	Reporting			Date		
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
TP-02-IM-14.0-15.0-20231010 (A3J1375-01RE1)			Matrix: Soil		Batch: 2	23J1016	C-07	
Aroclor 1016	ND	29.0	58.1	ug/kg dry	5	10/27/23 09:54	EPA 8082A	
Aroclor 1221	ND	29.0	58.1	ug/kg dry	5	10/27/23 09:54	EPA 8082A	
Aroclor 1232	ND	29.0	58.1	ug/kg dry	5	10/27/23 09:54	EPA 8082A	
Aroclor 1242	767	29.0	58.1	ug/kg dry	5	10/27/23 09:54	EPA 8082A	P-09, Q-42
Aroclor 1248	ND	29.0	58.1	ug/kg dry	5	10/27/23 09:54	EPA 8082A	
Aroclor 1254	301	29.0	58.1	ug/kg dry	5	10/27/23 09:54	EPA 8082A	P-12, Q-42
Aroclor 1260	47.3	29.0	58.1	ug/kg dry	5	10/27/23 09:54	EPA 8082A	J
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 95 %	Limits: 60-125 %	5	10/27/23 09:54	EPA 8082A	
TP-03-IM-9.0-10.0-20231010 (A3J1375-02RE1)		Matrix: Soil		Batch: 2	23J1016	C-07		
Aroclor 1016	ND	29.2	58.3	ug/kg dry	5	10/27/23 10:30	EPA 8082A	
Aroclor 1221	ND	29.2	58.3	ug/kg dry	5	10/27/23 10:30	EPA 8082A	
Aroclor 1232	ND	29.2	58.3	ug/kg dry	5	10/27/23 10:30	EPA 8082A	
Aroclor 1242	ND	29.2	58.3	ug/kg dry	5	10/27/23 10:30	EPA 8082A	
Aroclor 1248	ND	29.2	58.3	ug/kg dry	5	10/27/23 10:30	EPA 8082A	
Aroclor 1254	1570	29.2	58.3	ug/kg dry	5	10/27/23 10:30	EPA 8082A	
Aroclor 1260	ND	29.2	58.3	ug/kg dry	5	10/27/23 10:30	EPA 8082A	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 96 %	Limits: 60-125 %	5	10/27/23 10:30	EPA 8082A	
SS-09-0.0-1.0-20231011 (A3J1375-03)				Matrix: Soil		Batch: 23J1016		C-07
Aroclor 1016	ND	12.2	12.2	ug/kg dry	1	10/26/23 21:07	EPA 8082A	
Aroclor 1221	ND	12.2	12.2	ug/kg dry	1	10/26/23 21:07	EPA 8082A	
Aroclor 1232	ND	27.7	27.7	ug/kg dry	1	10/26/23 21:07	EPA 8082A	R-02
Aroclor 1242	ND	12.2	12.2	ug/kg dry	1	10/26/23 21:07	EPA 8082A	
Aroclor 1248	ND	12.2	12.2	ug/kg dry	1	10/26/23 21:07	EPA 8082A	
Aroclor 1254	36.1	6.11	12.2	ug/kg dry	1	10/26/23 21:07	EPA 8082A	P-10
Aroclor 1260	33.8	6.11	12.2	ug/kg dry	1	10/26/23 21:07	EPA 8082A	P-10
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 75 %	Limits: 60-125 %	6 I	10/26/23 21:07	EPA 8082A	
TP-11-IM-14.0-15.0-20231012 (A3J1375-04) Matrix: Soil Batc					Batch:	23J1016	C-07	
Aroclor 1016	ND	5.89	11.8	ug/kg dry	1	10/26/23 21:43	EPA 8082A	
Aroclor 1221	ND	5.89	11.8	ug/kg dry	1	10/26/23 21:43	EPA 8082A	
Aroclor 1232	ND	5.89	11.8	ug/kg dry	1	10/26/23 21:43	EPA 8082A	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1375 - 11 08 23 1632

ANALYTICAL SAMPLE RESULTS

Polychlorinated Biphenyls by EPA 8082A									
	Sample	Detection	Reporting			Date			
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes	
TP-11-IM-14.0-15.0-20231012 (A3J1375-04)			Matrix: Soil		Batch:	23J1016	C-07		
Aroclor 1242	112	5.89	11.8	ug/kg dry	1	10/26/23 21:43	EPA 8082A	P-12	
Aroclor 1248	ND	5.89	11.8	ug/kg dry	1	10/26/23 21:43	EPA 8082A		
Aroclor 1254	129	5.89	11.8	ug/kg dry	1	10/26/23 21:43	EPA 8082A	P-12	
Aroclor 1260	36.4	5.89	11.8	ug/kg dry	1	10/26/23 21:43	EPA 8082A	P-12	
Surrogate: Decachlorobiphenyl (Surr)		Reco	very: 83 %	Limits: 60-125 %	1	10/26/23 21:43	EPA 8082A		
TP-12-IM-13.0-14.0-20231012 (A3J137	(5-05)			Matrix: Soil		Batch: 23J1016		C-07	
Aroclor 1016	ND	5.64	11.3	ug/kg dry	1	10/26/23 18:42	EPA 8082A		
Aroclor 1221	ND	5.64	11.3	ug/kg dry	1	10/26/23 18:42	EPA 8082A		
Aroclor 1232	ND	5.64	11.3	ug/kg dry	1	10/26/23 18:42	EPA 8082A		
Aroclor 1242	ND	5.64	11.3	ug/kg dry	1	10/26/23 18:42	EPA 8082A		
Aroclor 1248	ND	5.64	11.3	ug/kg dry	1	10/26/23 18:42	EPA 8082A		
Aroclor 1254	422	5.64	11.3	ug/kg dry	1	10/26/23 18:42	EPA 8082A	P-10	
Aroclor 1260	169	5.64	11.3	ug/kg dry	1	10/26/23 18:42	EPA 8082A	P-10	
Surrogate: Decachlorobiphenyl (Surr)		Recove	ery: 121%	Limits: 60-125 %	1	10/26/23 18:42	EPA 8082A		
TP-13-IM-9.0-10.0-20231012 (A3J1375	i-06)			Matrix: Soil		Batch: 23J1016		C-07	
Aroclor 1016	ND	10.9	10.9	ug/kg dry	1	10/26/23 19:18	EPA 8082A		
Aroclor 1221	ND	5.47	10.9	ug/kg dry	1	10/26/23 19:18	EPA 8082A		
Aroclor 1232	ND	22.4	22.4	ug/kg dry	1	10/26/23 19:18	EPA 8082A	R-02	
Aroclor 1242	ND	11.7	11.7	ug/kg dry	1	10/26/23 19:18	EPA 8082A	R-02	
Aroclor 1248	ND	14.0	14.0	ug/kg dry	1	10/26/23 19:18	EPA 8082A	R-02	
Aroclor 1254	62.7	5.47	10.9	ug/kg dry	1	10/26/23 19:18	EPA 8082A	P-10	
Aroclor 1260	22.4	5.47	10.9	ug/kg dry	1	10/26/23 19:18	EPA 8082A	P-10	
Surrogate: Decachlorobiphenyl (Surr)		Recov	ery: 113 %	Limits: 60-125 %	1	10/26/23 19:18	EPA 8082A		
SS-14-0.0-1.020231012 (A3J1375-07)			Matrix: Soil		Batch: 23J1016		C-07	
Aroclor 1016	ND	6.07	12.1	ug/kg dry	1	10/26/23 19:55	EPA 8082A		
Aroclor 1221	ND	6.07	12.1	ug/kg dry	1	10/26/23 19:55	EPA 8082A		
Aroclor 1232	ND	12.1	12.1	ug/kg dry	1	10/26/23 19:55	EPA 8082A		
Aroclor 1242	ND	6.07	12.1	ug/kg dry	1	10/26/23 19:55	EPA 8082A		
Aroclor 1248	ND	21.5	21.5	ug/kg dry	1	10/26/23 19:55	EPA 8082A	R-02	
Aroclor 1254	63.5	6.07	12.1	ug/kg dry	1	10/26/23 19:55	EPA 8082A	P-10	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 4 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1375 - 11 08 23 1632

ANALYTICAL SAMPLE RESULTS

Polychlorinated Biphenyls by EPA 8082A										
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes		
SS-14-0.0-1.020231012 (A3J1375-07)			Matrix: Soil		Batch: 23J1016		C-07			
Aroclor 1260	43.9	6.07	12.1	ug/kg dry	1	10/26/23 19:55	EPA 8082A	P-10		
Surrogate: Decachlorobiphenyl (Surr)		Recove	ery: 105 %	Limits: 60-125 %	5 1	10/26/23 19:55	EPA 8082A			
TP-14-IM-9.0-10.020231012 (A3J1375-08)				Matrix: Soil		Batch: 23J1016		C-07		
Aroclor 1016	ND	25.4	25.4	ug/kg dry	1	10/26/23 20:31	EPA 8082A	R-02		
Aroclor 1221	ND	5.68	11.4	ug/kg dry	1	10/26/23 20:31	EPA 8082A			
Aroclor 1232	ND	45.7	45.7	ug/kg dry	1	10/26/23 20:31	EPA 8082A	R-02		
Aroclor 1242	ND	30.5	30.5	ug/kg dry	1	10/26/23 20:31	EPA 8082A	R-02		
Aroclor 1248	ND	26.7	26.7	ug/kg dry	1	10/26/23 20:31	EPA 8082A	R-02		
Aroclor 1254	57.9	5.68	11.4	ug/kg dry	1	10/26/23 20:31	EPA 8082A	P-12		
Aroclor 1260	135	5.68	11.4	ug/kg dry	1	10/26/23 20:31	EPA 8082A	P-12		
Surrogate: Decachlorobiphenyl (Surr)		Recove	ery: 556 %	Limits: 60-125 %	5 1	10/26/23 20:31	EPA 8082A	S-03		

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menterg

Page 5 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1375 - 11 08 23 1632

ANALYTICAL SAMPLE RESULTS

Total Metals by EPA 6020B (ICPMS)									
	Sample	Detection	Reporting			Date			
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes	
TP-02-IM-14.0-15.0-20231010 (A3J1375	i-01)			Matrix: Soi	I				
Batch: 23J1033									
Arsenic	8.10	0.634	1.27	mg/kg dry	10	10/27/23 12:46	EPA 6020B		
Barium	166	0.634	1.27	mg/kg dry	10	10/27/23 12:46	EPA 6020B		
Cadmium	5.51	0.127	0.254	mg/kg dry	10	10/27/23 12:46	EPA 6020B		
Chromium	39.1	0.634	1.27	mg/kg dry	10	10/27/23 12:46	EPA 6020B		
Copper	341	1.27	2.54	mg/kg dry	10	10/27/23 12:46	EPA 6020B		
Mercury	0.856	0.0507	0.101	mg/kg dry	10	10/27/23 12:46	EPA 6020B		
Nickel	60.6	1.27	2.54	mg/kg dry	10	10/27/23 12:46	EPA 6020B		
Selenium	ND	0.634	1.27	mg/kg dry	10	10/27/23 12:46	EPA 6020B		
Silver	1.41	0.127	0.254	mg/kg dry	10	10/27/23 12:46	EPA 6020B		
Zinc	1610	2.54	5.07	mg/kg dry	10	10/27/23 12:46	EPA 6020B		
TP-02-IM-14.0-15.0-20231010 (A3J1375	5-01RE2)			Matrix: Soi	l				
Batch: 23J1033									
Lead	646	1.27	2.54	mg/kg dry	100	10/29/23 18:44	EPA 6020B		
TP-03-IM-9.0-10.0-20231010 (A3J1375-	02)			Matrix: Soi	I				
Batch: 23J1033									
Arsenic	11.9	0.606	1.21	mg/kg dry	10	10/27/23 13:01	EPA 6020B		
Barium	600	0.606	1.21	mg/kg dry	10	10/27/23 13:01	EPA 6020B		
Cadmium	2.60	0.121	0.242	mg/kg dry	10	10/27/23 13:01	EPA 6020B		
Chromium	31.0	0.606	1.21	mg/kg dry	10	10/27/23 13:01	EPA 6020B		
Copper	238	1.21	2.42	mg/kg dry	10	10/27/23 13:01	EPA 6020B		
Mercury	0.667	0.0484	0.0969	mg/kg dry	10	10/27/23 13:01	EPA 6020B		
Nickel	49.8	1.21	2.42	mg/kg dry	10	10/27/23 13:01	EPA 6020B		
Selenium	ND	0.606	1.21	mg/kg dry	10	10/27/23 13:01	EPA 6020B		
Silver	0.588	0.121	0.242	mg/kg dry	10	10/27/23 13:01	EPA 6020B		
Zinc	1680	2.42	4.84	mg/kg dry	10	10/27/23 13:01	EPA 6020B		
ГР-03-IM-9.0-10.0-20231010 (A3J1375-	02RE2)			Matrix: Soi	I				
Batch: 23J1033									
Lead	2240	1.21	2.42	mg/kg dry	100	10/29/23 18:50	EPA 6020B		
SS-09-0.0-1.0-20231011 (A3J1375-03)				Matrix: Soi	l I				

Batch: 23J1033

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Newsberg

Page 6 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1375 - 11 08 23 1632

ANALYTICAL SAMPLE RESULTS

Manlyton Sample Delection Climit Sample Climit Climit Sample Climit Sample Climit Sample Climit Climi			Total Meta	ls by EPA 60	20B (ICPMS)				
Matrix: Soil Matr				1 0					
New S.23 0.659 1.32 mg/kg dry 10 1027/23 13:17 EPA 6020B	Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
Barium 152 0.659 1.32 mgkg dry 10 1027/23 13:17 EPA 6020B Cadmium 3.20 0.132 0.264 mgkg dry 10 1027/23 13:17 EPA 6020B Chromium 21.5 0.659 1.32 mgkg dry 10 1027/23 13:17 EPA 6020B Copper 107 1.32 2.64 mgkg dry 10 1027/23 13:17 EPA 6020B Mercury 0.740 0.0527 0.105 mgkg dry 10 1027/23 13:17 EPA 6020B Sclenium ND 0.0527 0.105 mgkg dry 10 1027/23 13:17 EPA 6020B Silver 0.556 0.132 0.264 mgkg dry 10 1027/23 13:17 EPA 6020B TP-1-1-IM-14.0-15.0-20231012 (A3J1375-0+) Matrix: Soll Matrix: Soll EPA 6020B Barim 107 0.602 1.20 mgkg dry 10 1027/23 13:17 EPA 6020B Barium 107 0.602 1.20 mgkg dry 10 1	SS-09-0.0-1.0-20231011 (A3J1375-03)				Matrix: Soi	l			
Cadmium 3.20 0.132 0.264 mg/kg dry 10 1027/23 13:17 EPA 6020B Chromium 21.5 0.659 1.32 mg/kg dry 10 1027/23 13:17 EPA 6020B Copper 107 1.32 2.64 mg/kg dry 10 1027/23 13:17 EPA 6020B Lead 171 0.132 0.264 mg/kg dry 10 1027/23 13:17 EPA 6020B Nickel 25.2 1.32 2.64 mg/kg dry 10 1027/23 13:17 EPA 6020B Silver 0.556 0.132 0.264 mg/kg dry 10 1027/23 13:17 EPA 6020B Silver 0.556 0.132 0.264 mg/kg dry 10 1027/23 13:17 EPA 6020B Total 535 2.64 5.27 mg/kg dry 10 1027/23 13:17 EPA 6020B Silver 535 2.64 0.602 1.20 mg/kg dry 10 1027/23 13:22 EPA 6020B Total 102 0.22 <th< td=""><td>Arsenic</td><td>5.23</td><td>0.659</td><td>1.32</td><td>mg/kg dry</td><td>10</td><td>10/27/23 13:17</td><td>EPA 6020B</td><td></td></th<>	Arsenic	5.23	0.659	1.32	mg/kg dry	10	10/27/23 13:17	EPA 6020B	
Chromium 21.5 0.659 1.32 mg/kg dry 10 1027/23 13:17 EPA 6020B Copper 107 1.32 2.64 mg/kg dry 10 1027/23 13:17 EPA 6020B Lead 171 0.132 0.264 mg/kg dry 10 1027/23 13:17 EPA 6020B Mercury 0.740 0.0527 0.105 mg/kg dry 10 1027/23 13:17 EPA 6020B Nickel 25.2 1.32 2.64 mg/kg dry 10 1027/23 13:17 EPA 6020B Silver 0.556 0.132 0.264 mg/kg dry 10 1027/23 13:17 EPA 6020B Silver 0.556 0.132 0.264 mg/kg dry 10 1027/23 13:17 EPA 6020B Silver 0.556 0.132 0.264 mg/kg dry 10 1027/23 13:17 EPA 6020B TP-1-1-1M-14.0-15.0-20231012 (A3J1375-04) The Accessory Marity: Solt The Accessory The Accessory The Accessory EPA 6020B The Accessory EPA 6020B	Barium	152	0.659	1.32	mg/kg dry	10	10/27/23 13:17	EPA 6020B	
Copper 107 1.32 2.64 mg/kg dry 10 1027/23 13:17 EPA 60208 Lead 171 0.132 0.264 mg/kg dry 10 1027/23 13:17 EPA 60208 Mercury 0.740 0.0527 0.105 mg/kg dry 10 1027/23 13:17 EPA 60208 Nickel 25.2 1.32 2.64 mg/kg dry 10 1027/23 13:17 EPA 60208 Silver 0.556 0.132 0.264 mg/kg dry 10 1027/23 13:17 EPA 60208 Zine 0.555 2.64 5.27 mg/kg dry 10 1027/23 13:17 EPA 60208 Zine 5.55 2.64 5.27 mg/kg dry 10 1027/23 13:17 EPA 60208 Zine 5.55 2.64 5.27 mg/kg dry 10 1027/23 13:27 EPA 60208 Zine 4.54 0.602 1.20 mg/kg dry 10 1027/23 13:22 EPA 60208 Barium 107 0.602 1.20 mg/kg	Cadmium	3.20	0.132	0.264	mg/kg dry	10	10/27/23 13:17	EPA 6020B	
Lead 171 0.132 0.264 mg/kg dry 10 1027/23 13:17 EPA 6020B Mcrcury 0.740 0.0527 0.105 mg/kg dry 10 1027/23 13:17 EPA 6020B Nickel 25.2 1.32 2.64 mg/kg dry 10 1027/23 13:17 EPA 6020B Silver 0.556 0.132 0.264 mg/kg dry 10 1027/23 13:17 EPA 6020B Zinc 535 2.64 5.27 mg/kg dry 10 1027/23 13:17 EPA 6020B TP-11-IM-14.0-15.0-20231012 (A3J1375-04) Matrix: Soil Matrix: Soi	Chromium	21.5	0.659	1.32	mg/kg dry	10	10/27/23 13:17	EPA 6020B	
Mercury 0.740 0.0527 0.105 mg/kg dry 10 1027/23 13:17 EPA 6020B Nickel 25.2 1.32 2.64 mg/kg dry 10 1027/23 13:17 EPA 6020B Sclenium ND 0.659 1.32 mg/kg dry 10 1027/23 13:17 EPA 6020B Silver 0.556 0.132 0.264 mg/kg dry 10 1027/23 13:17 EPA 6020B Zinc 535 2.64 5.27 mg/kg dry 10 1027/23 13:17 EPA 6020B TP-11-IM-14.0-15.0-20231012 (A3J1375-04) Matrix: Soil Matrix: Soil Batch: 23J1033 Arsenic 4.54 0.602 1.20 mg/kg dry 10 1027/23 13:22 EPA 6020B Barium 107 0.602 1.20 mg/kg dry 10 1027/23 13:22 EPA 6020B Cadmium 2.21 0.120 0.241 mg/kg dry 10 1027/23 13:22 EPA 6020B Chyonia	Copper	107	1.32	2.64	mg/kg dry	10	10/27/23 13:17	EPA 6020B	
Nickel 25.2 1.32 2.64 mg/kg dry 10 1027/23 13:17 EPA 6020B Selenium ND 0.659 1.32 mg/kg dry 10 1027/23 13:17 EPA 6020B Silver 0.556 0.132 0.264 mg/kg dry 10 1027/23 13:17 EPA 6020B Zinc 535 2.64 5.27 mg/kg dry 10 1027/23 13:17 EPA 6020B TP-11-IM-14.0-15.0-20231012 (A3J1375-04) Matrix: Soil Batch: 23J1033 Arsenic 4.54 0.602 1.20 mg/kg dry 10 1027/23 13:22 EPA 6020B Cadmium 107 0.602 1.20 mg/kg dry 10 1027/23 13:22 EPA 6020B Chronium 30.1 0.602 1.20 mg/kg dry 10 1027/23 13:22 EPA 6020B Lead 247 0.120 0.241 mg/kg dry 10 1027/23 13:22 EPA 6020B Mercury 0.569 0.0481 0.0962 mg	Lead	171	0.132	0.264	mg/kg dry	10	10/27/23 13:17	EPA 6020B	
Scientium ND 0.659 1.32 mg/kg dry 10 10/27/23 13:17 EPA 6020B	Mercury	0.740	0.0527	0.105	mg/kg dry	10	10/27/23 13:17	EPA 6020B	
Silver 0.556 0.132 0.264 mg/kg dry 10 1027/23 13:17 EPA 6020B	Nickel	25.2	1.32	2.64	mg/kg dry	10	10/27/23 13:17	EPA 6020B	
Zine 535 2.64 5.27 mg/kg dry 10 10/27/23 13:17 EPA 6020B TP-11-IM-14.0-15.0-20231012 (A3J1375-04) Matrix: Soil Batch: 23J1033 Arsenic 4.54 0.602 1.20 mg/kg dry 10 10/27/23 13:22 EPA 6020B Gadmium 107 0.602 1.20 mg/kg dry 10 10/27/23 13:22 EPA 6020B Chromium 30.1 0.602 1.20 mg/kg dry 10 10/27/23 13:22 EPA 6020B Copper 175 1.20 0.241 mg/kg dry 10 10/27/23 13:22 EPA 6020B Mercury 0.569 0.0481 0.0962 mg/kg dry 10 10/27/23 13:22 EPA 6020B Nickel 28.4 1.20 2.41 mg/kg dry 10 10/27/23 13:22 EPA 6020B Silver 0.418 0.120 0.241 mg/kg dry 10 10/27/23 13:22 EPA 6020B Silver 0.418 0.120 0.241 mg/	Selenium	ND	0.659	1.32	mg/kg dry	10	10/27/23 13:17	EPA 6020B	
TP-11-IM-14.0-15.0-20231012 (A3J1375-04)	Silver	0.556	0.132	0.264	mg/kg dry	10	10/27/23 13:17	EPA 6020B	
Batch: 23J1033	Zinc	535	2.64	5.27	mg/kg dry	10	10/27/23 13:17	EPA 6020B	
Arsenic 4.54 0.602 1.20 mg/kg dry 10 10/27/23 13:22 EPA 6020B Barium 107 0.602 1.20 mg/kg dry 10 10/27/23 13:22 EPA 6020B Cadmium 2.21 0.120 0.241 mg/kg dry 10 10/27/23 13:22 EPA 6020B Chromium 30.1 0.602 1.20 mg/kg dry 10 10/27/23 13:22 EPA 6020B Copper 175 1.20 2.41 mg/kg dry 10 10/27/23 13:22 EPA 6020B Lead 247 0.120 0.241 mg/kg dry 10 10/27/23 13:22 EPA 6020B Mercury 0.569 0.0481 0.0962 mg/kg dry 10 10/27/23 13:22 EPA 6020B Nickel 28.4 1.20 2.41 mg/kg dry 10 10/27/23 13:22 EPA 6020B Silver 0.418 0.120 0.241 mg/kg dry 10 10/27/23 13:22 EPA 6020B Zinc 585 2.41 4.81 <th>TP-11-IM-14.0-15.0-20231012 (A3J1375-0</th> <th>04)</th> <th></th> <th></th> <th>Matrix: Soi</th> <th>I</th> <th></th> <th></th> <th></th>	TP-11-IM-14.0-15.0-20231012 (A3J1375-0	04)			Matrix: Soi	I			
Barium 107 0.602 1.20 mg/kg dry 10 10/27/23 13:22 EPA 6020B Cadmium 2.21 0.120 0.241 mg/kg dry 10 10/27/23 13:22 EPA 6020B Chromium 30.1 0.602 1.20 mg/kg dry 10 10/27/23 13:22 EPA 6020B Copper 175 1.20 2.41 mg/kg dry 10 10/27/23 13:22 EPA 6020B Lead 247 0.120 0.241 mg/kg dry 10 10/27/23 13:22 EPA 6020B Mercury 0.569 0.0481 0.0962 mg/kg dry 10 10/27/23 13:22 EPA 6020B Nickel 28.4 1.20 2.41 mg/kg dry 10 10/27/23 13:22 EPA 6020B Silver 0.418 0.120 0.241 mg/kg dry 10 10/27/23 13:22 EPA 6020B Zinc 585 2.41 4.81 mg/kg dry 10 10/27/23 13:22 EPA 6020B TP-12-IM-13.0-14.0-20231012 (A3J1375-05) Matrix:	Batch: 23J1033								
Cadmium 2.21 0.120 0.241 mg/kg dry 10 10/27/23 13:22 EPA 6020B Chromium 30.1 0.602 1.20 mg/kg dry 10 10/27/23 13:22 EPA 6020B Copper 175 1.20 2.41 mg/kg dry 10 10/27/23 13:22 EPA 6020B Lead 247 0.120 0.241 mg/kg dry 10 10/27/23 13:22 EPA 6020B Mercury 0.569 0.0481 0.0962 mg/kg dry 10 10/27/23 13:22 EPA 6020B Nickel 28.4 1.20 2.41 mg/kg dry 10 10/27/23 13:22 EPA 6020B Selenium ND 0.602 1.20 mg/kg dry 10 10/27/23 13:22 EPA 6020B Silver 0.418 0.120 0.241 mg/kg dry 10 10/27/23 13:22 EPA 6020B Zinc 585 2.41 4.81 mg/kg dry 10 10/27/23 13:22 EPA 6020B TP-12-IM-13.0-14.0-20231012 (A3J1375-05) Matrix	Arsenic	4.54	0.602	1.20	mg/kg dry	10	10/27/23 13:22	EPA 6020B	
Chromium 30.1 0.602 1.20 mg/kg dry 10 10/27/23 13:22 EPA 6020B Copper 175 1.20 2.41 mg/kg dry 10 10/27/23 13:22 EPA 6020B Lead 247 0.120 0.241 mg/kg dry 10 10/27/23 13:22 EPA 6020B Mercury 0.569 0.0481 0.0962 mg/kg dry 10 10/27/23 13:22 EPA 6020B Nickel 28.4 1.20 2.41 mg/kg dry 10 10/27/23 13:22 EPA 6020B Selenium ND 0.602 1.20 mg/kg dry 10 10/27/23 13:22 EPA 6020B Silver 0.418 0.120 0.241 mg/kg dry 10 10/27/23 13:22 EPA 6020B Zinc 585 2.41 4.81 mg/kg dry 10 10/27/23 13:22 EPA 6020B TP-12-IM-13.0-14.0-20231012 (A3J1375-05) Matrix: Soil Batch: 23J1033 Arsenic 5.41 0.619 1.24 mg/kg dry 10 10/2	Barium	107	0.602	1.20	mg/kg dry	10	10/27/23 13:22	EPA 6020B	
Copper 175 1.20 2.41 mg/kg dry 10 10/27/23 13:22 EPA 6020B Lead 247 0.120 0.241 mg/kg dry 10 10/27/23 13:22 EPA 6020B Mercury 0.569 0.0481 0.0962 mg/kg dry 10 10/27/23 13:22 EPA 6020B Nickel 28.4 1.20 2.41 mg/kg dry 10 10/27/23 13:22 EPA 6020B Selenium ND 0.602 1.20 mg/kg dry 10 10/27/23 13:22 EPA 6020B Silver 0.418 0.120 0.241 mg/kg dry 10 10/27/23 13:22 EPA 6020B Zinc 585 2.41 4.81 mg/kg dry 10 10/27/23 13:22 EPA 6020B TP-12-IM-13.0-14.0-20231012 (A3J1375-05) Matrix: Soil Matrix: Soil Batch: 23J1033 Arsenic 5.41 0.619 1.24 mg/kg dry 10 10/27/23 13:27 EPA 6020B Cadmium 3.22 0.124<	Cadmium	2.21	0.120	0.241	mg/kg dry	10	10/27/23 13:22	EPA 6020B	
Lead 247 0.120 0.241 mg/kg dry 10 10/27/23 13:22 EPA 6020B Mercury 0.569 0.0481 0.0962 mg/kg dry 10 10/27/23 13:22 EPA 6020B Nickel 28.4 1.20 2.41 mg/kg dry 10 10/27/23 13:22 EPA 6020B Selenium ND 0.602 1.20 mg/kg dry 10 10/27/23 13:22 EPA 6020B Silver 0.418 0.120 0.241 mg/kg dry 10 10/27/23 13:22 EPA 6020B Zinc 585 2.41 4.81 mg/kg dry 10 10/27/23 13:22 EPA 6020B TP-12-IM-13.0-14.0-20231012 (A3J1375-05) Matrix: Soil Matrix: Soil Batch: 23J1033 Arsenic 5.41 0.619 1.24 mg/kg dry 10 10/27/23 13:27 EPA 6020B Barium 106 0.619 1.24 mg/kg dry 10 10/27/23 13:27 EPA 6020B Chromium 26.2	Chromium	30.1	0.602	1.20	mg/kg dry	10	10/27/23 13:22	EPA 6020B	
Mercury 0.569 0.0481 0.0962 mg/kg dry 10 10/27/23 13:22 EPA 6020B Nickel 28.4 1.20 2.41 mg/kg dry 10 10/27/23 13:22 EPA 6020B Selenium ND 0.602 1.20 mg/kg dry 10 10/27/23 13:22 EPA 6020B Silver 0.418 0.120 0.241 mg/kg dry 10 10/27/23 13:22 EPA 6020B Zinc 585 2.41 4.81 mg/kg dry 10 10/27/23 13:22 EPA 6020B TP-12-IM-13.0-14.0-20231012 (A3J1375-05) Matrix: Soil Matrix: Soil Batch: 23J1033 Arsenic 5.41 0.619 1.24 mg/kg dry 10 10/27/23 13:27 EPA 6020B Barium 106 0.619 1.24 mg/kg dry 10 10/27/23 13:27 EPA 6020B Cadmium 3.22 0.124 0.248 mg/kg dry 10 10/27/23 13:27 EPA 6020B Chromium 26.2	Copper	175	1.20	2.41	mg/kg dry	10	10/27/23 13:22	EPA 6020B	
Nickel 28.4 1.20 2.41 mg/kg dry 10 10/27/23 13:22 EPA 6020B Selenium ND 0.602 1.20 mg/kg dry 10 10/27/23 13:22 EPA 6020B Silver 0.418 0.120 0.241 mg/kg dry 10 10/27/23 13:22 EPA 6020B Zinc 585 2.41 4.81 mg/kg dry 10 10/27/23 13:22 EPA 6020B TP-12-IM-13.0-14.0-20231012 (A3J1375-05) Matrix: Soil Batch: 23J1033 Arsenic 5.41 0.619 1.24 mg/kg dry 10 10/27/23 13:27 EPA 6020B Barium 106 0.619 1.24 mg/kg dry 10 10/27/23 13:27 EPA 6020B Cadmium 3.22 0.124 0.248 mg/kg dry 10 10/27/23 13:27 EPA 6020B Chromium 26.2 0.619 1.24 mg/kg dry 10 10/27/23 13:27 EPA 6020B Copper 196 1.24 2.48 mg/kg dry </td <td>Lead</td> <td>247</td> <td>0.120</td> <td>0.241</td> <td>mg/kg dry</td> <td>10</td> <td>10/27/23 13:22</td> <td>EPA 6020B</td> <td></td>	Lead	247	0.120	0.241	mg/kg dry	10	10/27/23 13:22	EPA 6020B	
Selenium ND 0.602 1.20 mg/kg dry 10 10/27/23 13:22 EPA 6020B Silver 0.418 0.120 0.241 mg/kg dry 10 10/27/23 13:22 EPA 6020B Zinc 585 2.41 4.81 mg/kg dry 10 10/27/23 13:22 EPA 6020B TP-12-IM-13.0-14.0-20231012 (A3J1375-05) Matrix: Soil Batch: 23J1033 Arsenic 5.41 0.619 1.24 mg/kg dry 10 10/27/23 13:27 EPA 6020B Barium 106 0.619 1.24 mg/kg dry 10 10/27/23 13:27 EPA 6020B Cadmium 3.22 0.124 0.248 mg/kg dry 10 10/27/23 13:27 EPA 6020B Chromium 26.2 0.619 1.24 mg/kg dry 10 10/27/23 13:27 EPA 6020B Copper 196 1.24 2.48 mg/kg dry 10 10/27/23 13:27 EPA 6020B	Mercury	0.569	0.0481	0.0962	mg/kg dry	10	10/27/23 13:22	EPA 6020B	
Silver 0.418 0.120 0.241 mg/kg dry 10 10/27/23 13:22 EPA 6020B Zinc 585 2.41 4.81 mg/kg dry 10 10/27/23 13:22 EPA 6020B TP-12-IM-13.0-14.0-20231012 (A3J1375-05) Matrix: Soil Batch: 23J1033 Arsenic 5.41 0.619 1.24 mg/kg dry 10 10/27/23 13:27 EPA 6020B Barium 106 0.619 1.24 mg/kg dry 10 10/27/23 13:27 EPA 6020B Cadmium 3.22 0.124 0.248 mg/kg dry 10 10/27/23 13:27 EPA 6020B Chromium 26.2 0.619 1.24 mg/kg dry 10 10/27/23 13:27 EPA 6020B Copper 196 1.24 2.48 mg/kg dry 10 10/27/23 13:27 EPA 6020B	Nickel	28.4	1.20	2.41	mg/kg dry	10	10/27/23 13:22	EPA 6020B	
Zinc 585 2.41 4.81 mg/kg dry 10 10/27/23 13:22 EPA 6020B TP-12-IM-13.0-14.0-20231012 (A3J1375-05) Matrix: Soil Batch: 23J1033 Arsenic 5.41 0.619 1.24 mg/kg dry 10 10/27/23 13:27 EPA 6020B Barium 106 0.619 1.24 mg/kg dry 10 10/27/23 13:27 EPA 6020B Cadmium 3.22 0.124 0.248 mg/kg dry 10 10/27/23 13:27 EPA 6020B Chromium 26.2 0.619 1.24 mg/kg dry 10 10/27/23 13:27 EPA 6020B Copper 196 1.24 2.48 mg/kg dry 10 10/27/23 13:27 EPA 6020B	Selenium	ND	0.602	1.20	mg/kg dry	10	10/27/23 13:22	EPA 6020B	
TP-12-IM-13.0-14.0-20231012 (A3J1375-05) Matrix: Soil	Silver	0.418	0.120	0.241	mg/kg dry	10	10/27/23 13:22	EPA 6020B	
Batch: 23J1033 Arsenic 5.41 0.619 1.24 mg/kg dry 10 10/27/23 13:27 EPA 6020B Barium 106 0.619 1.24 mg/kg dry 10 10/27/23 13:27 EPA 6020B Cadmium 3.22 0.124 0.248 mg/kg dry 10 10/27/23 13:27 EPA 6020B Chromium 26.2 0.619 1.24 mg/kg dry 10 10/27/23 13:27 EPA 6020B Copper 196 1.24 2.48 mg/kg dry 10 10/27/23 13:27 EPA 6020B	Zinc	585	2.41	4.81	mg/kg dry	10	10/27/23 13:22	EPA 6020B	
Arsenic 5.41 0.619 1.24 mg/kg dry 10 10/27/23 13:27 EPA 6020B Barium 106 0.619 1.24 mg/kg dry 10 10/27/23 13:27 EPA 6020B Cadmium 3.22 0.124 0.248 mg/kg dry 10 10/27/23 13:27 EPA 6020B Chromium 26.2 0.619 1.24 mg/kg dry 10 10/27/23 13:27 EPA 6020B Copper 196 1.24 2.48 mg/kg dry 10 10/27/23 13:27 EPA 6020B	TP-12-IM-13.0-14.0-20231012 (A3J1375-0	05)			Matrix: Soi	I			
Barium 106 0.619 1.24 mg/kg dry 10 10/27/23 13:27 EPA 6020B Cadmium 3.22 0.124 0.248 mg/kg dry 10 10/27/23 13:27 EPA 6020B Chromium 26.2 0.619 1.24 mg/kg dry 10 10/27/23 13:27 EPA 6020B Copper 196 1.24 2.48 mg/kg dry 10 10/27/23 13:27 EPA 6020B	Batch: 23J1033								
Cadmium 3.22 0.124 0.248 mg/kg dry 10 10/27/23 13:27 EPA 6020B Chromium 26.2 0.619 1.24 mg/kg dry 10 10/27/23 13:27 EPA 6020B Copper 196 1.24 2.48 mg/kg dry 10 10/27/23 13:27 EPA 6020B	Arsenic	5.41	0.619	1.24	mg/kg dry	10	10/27/23 13:27	EPA 6020B	
Chromium 26.2 0.619 1.24 mg/kg dry 10 10/27/23 13:27 EPA 6020B Copper 196 1.24 2.48 mg/kg dry 10 10/27/23 13:27 EPA 6020B	Barium	106	0.619	1.24	mg/kg dry	10	10/27/23 13:27	EPA 6020B	
Copper 196 1.24 2.48 mg/kg dry 10 10/27/23 13:27 EPA 6020B	Cadmium	3.22	0.124	0.248	mg/kg dry	10	10/27/23 13:27	EPA 6020B	
	Chromium	26.2	0.619	1.24	mg/kg dry	10	10/27/23 13:27	EPA 6020B	
	Copper	196	1.24	2.48	mg/kg dry	10	10/27/23 13:27	EPA 6020B	
	• •						10/27/23 13:27	EPA 6020B	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 7 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1375 - 11 08 23 1632

ANALYTICAL SAMPLE RESULTS

		Total Meta	ils by EPA 60	20B (ICPMS)				
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-12-IM-13.0-14.0-20231012 (A3J1375-0	5)			Matrix: Soi	l			
Mercury	0.514	0.0495	0.0990	mg/kg dry	10	10/27/23 13:27	EPA 6020B	
Nickel	29.0	1.24	2.48	mg/kg dry	10	10/27/23 13:27	EPA 6020B	
Selenium	ND	0.619	1.24	mg/kg dry	10	10/27/23 13:27	EPA 6020B	
Silver	0.420	0.124	0.248	mg/kg dry	10	10/27/23 13:27	EPA 6020B	
Zinc	596	2.48	4.95	mg/kg dry	10	10/27/23 13:27	EPA 6020B	
TP-13-IM-9.0-10.0-20231012 (A3J1375-06)	ı			Matrix: Soi				
Batch: 23J1033		·	·	·	·			
Arsenic	3.26	0.614	1.23	mg/kg dry	10	10/27/23 13:32	EPA 6020B	
Barium	96.9	0.614	1.23	mg/kg dry	10	10/27/23 13:32	EPA 6020B	
Cadmium	1.08	0.123	0.246	mg/kg dry	10	10/27/23 13:32	EPA 6020B	
Chromium	14.2	0.614	1.23	mg/kg dry	10	10/27/23 13:32	EPA 6020B	
Copper	41.4	1.23	2.46	mg/kg dry	10	10/27/23 13:32	EPA 6020B	
Lead	65.9	0.123	0.246	mg/kg dry	10	10/27/23 13:32	EPA 6020B	
Mercury	0.263	0.0492	0.0983	mg/kg dry	10	10/27/23 13:32	EPA 6020B	
Nickel	14.9	1.23	2.46	mg/kg dry	10	10/27/23 13:32	EPA 6020B	
Selenium	ND	0.614	1.23	mg/kg dry	10	10/27/23 13:32	EPA 6020B	
Silver	0.301	0.123	0.246	mg/kg dry	10	10/27/23 13:32	EPA 6020B	
Zinc	177	2.46	4.92	mg/kg dry	10	10/27/23 13:32	EPA 6020B	
SS-14-0.0-1.020231012 (A3J1375-07)				Matrix: Soi				
Batch: 23J1033								
Arsenic	3.29	0.604	1.21	mg/kg dry	10	10/27/23 13:37	EPA 6020B	
Barium	101	0.604	1.21	mg/kg dry	10	10/27/23 13:37	EPA 6020B	
Cadmium	4.77	0.121	0.242	mg/kg dry	10	10/27/23 13:37	EPA 6020B	
Chromium	25.4	0.604	1.21	mg/kg dry	10	10/27/23 13:37	EPA 6020B	
Copper	69.5	1.21	2.42	mg/kg dry	10	10/27/23 13:37	EPA 6020B	
Lead	187	0.121	0.242	mg/kg dry	10	10/27/23 13:37	EPA 6020B	
Mercury	0.454	0.0484	0.0967	mg/kg dry	10	10/27/23 13:37	EPA 6020B	
Nickel	30.9	1.21	2.42	mg/kg dry	10	10/27/23 13:37	EPA 6020B	
Selenium	ND	0.604	1.21	mg/kg dry	10	10/27/23 13:37	EPA 6020B	
Silver	0.350	0.121	0.242	mg/kg dry	10	10/27/23 13:37	EPA 6020B	
Zinc	628	2.42	4.84	mg/kg dry	10	10/27/23 13:37	EPA 6020B	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 8 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1375 - 11 08 23 1632

ANALYTICAL SAMPLE RESULTS

	Total Metals by EPA 6020B (ICPMS)													
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes						
TP-14-IM-9.0-10.020231012 (A3J1375-08)	1			Matrix: Soi	I									
Batch: 23J1033	•													
Arsenic	14.4	0.582	1.16	mg/kg dry	10	10/27/23 13:43	EPA 6020B							
Barium	145	0.582	1.16	mg/kg dry	10	10/27/23 13:43	EPA 6020B							
Cadmium	8.49	0.116	0.233	mg/kg dry	10	10/27/23 13:43	EPA 6020B							
Chromium	58.2	0.582	1.16	mg/kg dry	10	10/27/23 13:43	EPA 6020B							
Copper	341	1.16	2.33	mg/kg dry	10	10/27/23 13:43	EPA 6020B							
Lead	350	0.116	0.233	mg/kg dry	10	10/27/23 13:43	EPA 6020B							
Mercury	0.596	0.0466	0.0931	mg/kg dry	10	10/27/23 13:43	EPA 6020B							
Nickel	36.4	1.16	2.33	mg/kg dry	10	10/27/23 13:43	EPA 6020B							
Selenium	ND	0.582	1.16	mg/kg dry	10	10/27/23 13:43	EPA 6020B							
Silver	0.715	0.116	0.233	mg/kg dry	10	10/27/23 13:43	EPA 6020B							
Zinc	1310	2.33	4.66	mg/kg dry	10	10/27/23 13:43	EPA 6020B							

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 9 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1375 - 11 08 23 1632

ANALYTICAL SAMPLE RESULTS

		TCLP Meta	als by EPA 60	20B (ICPMS	5)			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-02-IM-14.0-15.0-20231010 (A3J1375-0	01)			Matrix: So	oil			
Batch: 23J0814								
Arsenic	ND	0.0500	0.100	mg/L	10	10/20/23 14:01	1311/6020B	
Barium	ND	2.50	5.00	mg/L	10	10/20/23 14:01	1311/6020B	
Cadmium	ND	0.0500	0.100	mg/L	10	10/20/23 14:01	1311/6020B	
Chromium	ND	0.0500	0.100	mg/L	10	10/20/23 14:01	1311/6020B	
Lead	0.183	0.0250	0.0500	mg/L	10	10/20/23 14:01	1311/6020B	
Mercury	ND	0.00375	0.00700	mg/L	10	10/20/23 14:01	1311/6020B	
Selenium	ND	0.0500	0.100	mg/L	10	10/20/23 14:01	1311/6020B	
Silver	ND	0.0500	0.100	mg/L	10	10/20/23 14:01	1311/6020B	
TP-03-IM-9.0-10.0-20231010 (A3J1375-02	2)			Matrix: So	oil			
Batch: 23J0814								
Arsenic	ND	0.0500	0.100	mg/L	10	10/20/23 14:42	1311/6020B	
Barium	ND	2.50	5.00	mg/L	10	10/20/23 14:42	1311/6020B	
Cadmium	ND	0.0500	0.100	mg/L	10	10/20/23 14:42	1311/6020B	
Chromium	ND	0.0500	0.100	mg/L	10	10/20/23 14:42	1311/6020B	
Lead	0.795	0.0250	0.0500	mg/L	10	10/20/23 14:42	1311/6020B	
Mercury	ND	0.00375	0.00700	mg/L	10	10/20/23 14:42	1311/6020B	
Selenium	ND	0.0500	0.100	mg/L	10	10/20/23 14:42	1311/6020B	
Silver	ND	0.0500	0.100	mg/L	10	10/20/23 14:42	1311/6020B	
SS-09-0.0-1.0-20231011 (A3J1375-03)				Matrix: So	oil			
Batch: 23J0814								
Arsenic	ND	0.0500	0.100	mg/L	10	10/20/23 14:47	1311/6020B	
Barium	ND	2.50	5.00	mg/L	10	10/20/23 14:47	1311/6020B	
Cadmium	ND	0.0500	0.100	mg/L	10	10/20/23 14:47	1311/6020B	
Chromium	ND	0.0500	0.100	mg/L	10	10/20/23 14:47	1311/6020B	
Lead	ND	0.0250	0.0500	mg/L	10	10/20/23 14:47	1311/6020B	
Mercury	ND	0.00375	0.00700	mg/L	10	10/20/23 14:47	1311/6020B	
Selenium	ND	0.0500	0.100	mg/L	10	10/20/23 14:47	1311/6020B	
Silver	ND	0.0500	0.100	mg/L	10	10/20/23 14:47	1311/6020B	
TP-11-IM-14.0-15.0-20231012 (A3J1375-0	\4\			Matrix: So	.:.			

Batch: 23J0814

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 10 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1375 - 11 08 23 1632

ANALYTICAL SAMPLE RESULTS

TCLP Metals by EPA 6020B (ICPMS)													
	Sample	Detection	Reporting			Date							
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes					
TP-11-IM-14.0-15.0-20231012 (A3J1375-0	04)			Matrix: So	oil								
Arsenic	ND	0.0500	0.100	mg/L	10	10/20/23 14:53	1311/6020B						
Barium	ND	2.50	5.00	mg/L	10	10/20/23 14:53	1311/6020B						
Cadmium	ND	0.0500	0.100	mg/L	10	10/20/23 14:53	1311/6020B						
Chromium	ND	0.0500	0.100	mg/L	10	10/20/23 14:53	1311/6020B						
Lead	0.0394	0.0250	0.0500	mg/L	10	10/20/23 14:53	1311/6020B	J					
Mercury	ND	0.00375	0.00700	mg/L	10	10/20/23 14:53	1311/6020B						
Selenium	ND	0.0500	0.100	mg/L	10	10/20/23 14:53	1311/6020B						
Silver	ND	0.0500	0.100	mg/L	10	10/20/23 14:53	1311/6020B						
TP-12-IM-13.0-14.0-20231012 (A3J1375-	05)			Matrix: So	oil								
Batch: 23J0814													
Arsenic	ND	0.0500	0.100	mg/L	10	10/20/23 14:58	1311/6020B						
Barium	ND	2.50	5.00	mg/L	10	10/20/23 14:58	1311/6020B						
Cadmium	ND	0.0500	0.100	mg/L	10	10/20/23 14:58	1311/6020B						
Chromium	ND	0.0500	0.100	mg/L	10	10/20/23 14:58	1311/6020B						
Lead	0.0372	0.0250	0.0500	mg/L	10	10/20/23 14:58	1311/6020B	J					
Mercury	ND	0.00375	0.00700	mg/L	10	10/20/23 14:58	1311/6020B						
Selenium	ND	0.0500	0.100	mg/L	10	10/20/23 14:58	1311/6020B						
Silver	ND	0.0500	0.100	mg/L	10	10/20/23 14:58	1311/6020B						
TP-13-IM-9.0-10.0-20231012 (A3J1375-0	6)			Matrix: So	oil								
Batch: 23J0814													
Arsenic	ND	0.0500	0.100	mg/L	10	10/20/23 15:03	1311/6020B						
Barium	ND	2.50	5.00	mg/L	10	10/20/23 15:03	1311/6020B						
Cadmium	ND	0.0500	0.100	mg/L	10	10/20/23 15:03	1311/6020B						
Chromium	ND	0.0500	0.100	mg/L	10	10/20/23 15:03	1311/6020B						
Lead	ND	0.0250	0.0500	mg/L	10	10/20/23 15:03	1311/6020B						
Mercury	ND	0.00375	0.00700	mg/L	10	10/20/23 15:03	1311/6020B						
Selenium	ND	0.0500	0.100	mg/L	10	10/20/23 15:03	1311/6020B						
Silver	ND	0.0500	0.100	mg/L	10	10/20/23 15:03	1311/6020B						
SS-14-0.0-1.020231012 (A3J1375-07)				Matrix: So	oil								
Batch: 23J0814													
Arsenic	ND	0.0500	0.100	mg/L	10	10/20/23 15:08	1311/6020B						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1375 - 11 08 23 1632

ANALYTICAL SAMPLE RESULTS

TCLP Metals by EPA 6020B (ICPMS)												
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes				
SS-14-0.0-1.020231012 (A3J1375-07)				Matrix: So	oil							
Barium	ND	2.50	5.00	mg/L	10	10/20/23 15:08	1311/6020B					
Cadmium	ND	0.0500	0.100	mg/L	10	10/20/23 15:08	1311/6020B					
Chromium	ND	0.0500	0.100	mg/L	10	10/20/23 15:08	1311/6020B					
Lead	0.0798	0.0250	0.0500	mg/L	10	10/20/23 15:08	1311/6020B					
Mercury	ND	0.00375	0.00700	mg/L	10	10/20/23 15:08	1311/6020B					
Selenium	ND	0.0500	0.100	mg/L	10	10/20/23 15:08	1311/6020B					
Silver	ND	0.0500	0.100	mg/L	10	10/20/23 15:08	1311/6020B					
TP-14-IM-9.0-10.020231012 (A3J1375	i-08)			Matrix: So	oil							
Batch: 23J0814												
Arsenic	ND	0.0500	0.100	mg/L	10	10/20/23 15:13	1311/6020B					
Barium	ND	2.50	5.00	mg/L	10	10/20/23 15:13	1311/6020B					
Cadmium	ND	0.0500	0.100	mg/L	10	10/20/23 15:13	1311/6020B					
Chromium	ND	0.0500	0.100	mg/L	10	10/20/23 15:13	1311/6020B					
Lead	0.251	0.0250	0.0500	mg/L	10	10/20/23 15:13	1311/6020B					
Mercury	ND	0.00375	0.00700	mg/L	10	10/20/23 15:13	1311/6020B					
Selenium	ND	0.0500	0.100	mg/L	10	10/20/23 15:13	1311/6020B					
Silver	ND	0.0500	0.100	mg/L	10	10/20/23 15:13	1311/6020B					

Apex Laboratories

Philip Mounterg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1375 - 11 08 23 1632

ANALYTICAL SAMPLE RESULTS

	Conventional Chemistry Parameters												
	Sample	Detection	Reporting			Date							
Analyte	Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes					
TP-02-IM-14.0-15.0-20231010 (A3J137	75-01)			Matrix: Soi	il								
Batch: 23J0703													
Soil/Solid pH (measured in H2O)	7.2			pH Units	1	10/18/23 14:43	EPA 9045D	pH_S					
pH Temperature (deg C)	22.3			pH Units	1	10/18/23 14:43	EPA 9045D	pH_S					
TP-03-IM-9.0-10.0-20231010 (A3J1375	5-02)			Matrix: Soi	il								
Batch: 23J0703													
Soil/Solid pH (measured in H2O)	7.2			pH Units	1	10/18/23 14:44	EPA 9045D	pH_S					
pH Temperature (deg C)	22.2			pH Units	1	10/18/23 14:44	EPA 9045D	pH_S					
SS-09-0.0-1.0-20231011 (A3J1375-03))			Matrix: Soi	iI								
Batch: 23J0703													
Soil/Solid pH (measured in H2O)	7.3			pH Units	1	10/18/23 14:46	EPA 9045D	pH_S					
pH Temperature (deg C)	22.8			pH Units	1	10/18/23 14:46	EPA 9045D	pH_S					
TP-11-IM-14.0-15.0-20231012 (A3J137	75-04)			Matrix: Soi	il								
Batch: 23J0703													
Soil/Solid pH (measured in H2O)	7.4			pH Units	1	10/18/23 14:48	EPA 9045D	pH_S					
pH Temperature (deg C)	22.7			pH Units	1	10/18/23 14:48	EPA 9045D	pH_S					
TP-12-IM-13.0-14.0-20231012 (A3J137	75-05)			Matrix: Soi	il								
Batch: 23J0703													
Soil/Solid pH (measured in H2O)	7.6			pH Units	1	10/18/23 14:51	EPA 9045D	pH_S					
pH Temperature (deg C)	22.1			pH Units	1	10/18/23 14:51	EPA 9045D	pH_S					
TP-13-IM-9.0-10.0-20231012 (A3J137	5-06)			Matrix: Soi	il								
Batch: 23J0703													
Soil/Solid pH (measured in H2O)	7.8			pH Units	1	10/18/23 14:55	EPA 9045D	pH_S					
pH Temperature (deg C)	22.1			pH Units	1	10/18/23 14:55	EPA 9045D	pH_S					
SS-14-0.0-1.020231012 (A3J1375-07	7)			Matrix: Soi	i								
Batch: 23J0703													
Soil/Solid pH (measured in H2O)	6.8			pH Units	1	10/18/23 14:59	EPA 9045D	pH_S					
pH Temperature (deg C)	21.9			pH Units	1	10/18/23 14:59	EPA 9045D	pH_S					
TP-14-IM-9.0-10.020231012 (A3J137	75-08)			Matrix: Soi	il								

Batch: 23J0703

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1375 - 11 08 23 1632

ANALYTICAL SAMPLE RESULTS

		Conventio	nal Chemistr	y Parameter:	S			
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes
TP-14-IM-9.0-10.020231012 (A3J137	'5-08)			Matrix: So	il			
Soil/Solid pH (measured in H2O)	7.4			pH Units	1	10/18/23 15:03	EPA 9045D	pH_S
pH Temperature (deg C)	21.6			pH Units	1	10/18/23 15:03	EPA 9045D	pH_S

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Mounterg

Page 14 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1375 - 11 08 23 1632

ANALYTICAL SAMPLE RESULTS

		Pe	ercent Dry W	eight					
Analyte	Sample Result	Detection Limit	Reporting Limit	Units	Dilution	Date Analyzed	Method Ref.	Notes	
TP-02-IM-14.0-15.0-20231010 (A3J1375-0	1)			Matrix: So	oil	Batch:	23J0679		
% Solids	83.5	1.00	1.00	% 1		10/19/23 06:40 EPA 8000D			
TP-03-IM-9.0-10.0-20231010 (A3J1375-02))			Matrix: So	oil	Batch:	23J0679		
% Solids	83.9	1.00	1.00	%	1	10/19/23 06:40	EPA 8000D		
SS-09-0.0-1.0-20231011 (A3J1375-03)				Matrix: So	oil	Batch:	23J0679		
% Solids	80.7	1.00	1.00	%	1	10/19/23 06:40	EPA 8000D		
TP-11-IM-14.0-15.0-20231012 (A3J1375-04)				Matrix: So	oil	Batch:	tch: 23J0679		
% Solids	82.6	1.00	1.00	%	1	10/19/23 06:40	EPA 8000D		
TP-12-IM-13.0-14.0-20231012 (A3J1375-05	5)			Matrix: So	oil	Batch:	23J0679		
% Solids	84.1	1.00	1.00	%	1	10/19/23 06:40	EPA 8000D		
TP-13-IM-9.0-10.0-20231012 (A3J1375-06))			Matrix: So	oil	Batch:	23J0679		
% Solids	89.0	1.00	1.00	%	1	10/19/23 06:40	EPA 8000D		
SS-14-0.0-1.020231012 (A3J1375-07)	5-07) Matrix: Soil Batch: 23J06			23J0679					
% Solids	81.3	1.00	1.00	%	1	10/19/23 06:40	EPA 8000D		
TP-14-IM-9.0-10.020231012 (A3J1375-08	3)			Matrix: So	oil	Batch:			
% Solids	87.1	1.00	1.00	%	1	10/19/23 06:40	EPA 8000D		

Apex Laboratories

Philip Neimberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1375 - 11 08 23 1632

ANALYTICAL SAMPLE RESULTS

Sample	Detection						
	Detection	Reporting			Date		
Result	Limit	Limit	Units	Dilution	Analyzed	Method Ref.	Notes
1)			Matrix: So	il	Batch:	23J0739	
PREP			N/A 1 10		10/19/23 15:15	EPA 1311	
:)			Matrix: So	il	Batch:	23J0739	
PREP			N/A	1	10/19/23 15:15	EPA 1311	
			Matrix: So	il	Batch:	23J0739	•
PREP			N/A	1	10/19/23 15:15	EPA 1311	
0231012 (A3J1375-04)			Matrix: So	il	Batch:	23J0739	
PREP			N/A	1	10/19/23 15:15	EPA 1311	
5)			Matrix: So	il	Batch:	23J0739	
PREP			N/A	1	10/19/23 15:15	EPA 1311	
i)			Matrix: So	il	Batch:	23J0739	
PREP			N/A	1	10/19/23 15:15	EPA 1311	
375-07)		Matrix: So	il	Batch:	23J0739		
PREP			N/A	1	10/19/23 15:15	EPA 1311	
3J1375-08)			Matrix: So	il	Batch:		
PREP			N/A	1	10/19/23 15:15	EPA 1311	
	PREP PREP PREP PREP PREP PREP PREP PREP	PREP PREP PREP PREP PREP PREP PREP PREP	PREP PREP PREP PREP PREP PREP PREP PREP	PREP N/A Matrix: So PREP N/A Matrix: So PREP N/A Matrix: So PREP N/A Matrix: So PREP N/A Matrix: So PREP N/A Matrix: So PREP N/A Matrix: So PREP N/A Matrix: So PREP N/A Matrix: So PREP N/A Matrix: So PREP N/A Matrix: So	PREP N/A 1	PREP N/A 1 10/19/23 15:15 PREP Matrix: Soil Batch: PREP N/A 1 10/19/23 15:15 PREP N/A 1 10/19/23 15:15 4) Matrix: Soil Batch: PREP N/A 1 10/19/23 15:15 PREP N/A 1 10/19/23 15:15 Matrix: Soil Batch: PREP N/A 1 10/19/23 15:15 Batch: Description Description Description Matrix: Soil Batch: Description Description Batch: Description Description Description Description Matrix: Soil Batch: Description Descri	PREP N/A 1 10/19/23 15:15 EPA 1311 x) Matrix: Soil Batch: 23J0739 PREP N/A 1 10/19/23 15:15 EPA 1311 Matrix: Soil Batch: 23J0739 PREP N/A 1 10/19/23 15:15 EPA 1311 4) Matrix: Soil Batch: 23J0739 PREP N/A 1 10/19/23 15:15 EPA 1311 5) Matrix: Soil Batch: 23J0739 PREP N/A 1 10/19/23 15:15 EPA 1311 5) Matrix: Soil Batch: 23J0739 PREP N/A 1 10/19/23 15:15 EPA 1311 6) Matrix: Soil Batch: 23J0739 PREP N/A 1 10/19/23 15:15 EPA 1311 8) Matrix: Soil Batch: 23J0739

Apex Laboratories

Philip Menterg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1375 - 11 08 23 1632

QUALITY CONTROL (QC) SAMPLE RESULTS

			Polychlo	rinated Bi _l	ohenyls	by EPA 80	082A					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J1016 - EPA 3546							So	il				
Blank (23J1016-BLK1)			Prepared	d: 10/26/23 0	4:56 Ana	lyzed: 10/26	5/23 18:42					C-07
EPA 8082A												
Aroclor 1016	ND	5.00	10.0	ug/kg we	t 1							
Aroclor 1221	ND	5.00	10.0	ug/kg we	t 1							
Aroclor 1232	ND	5.00	10.0	ug/kg we	t 1							
Aroclor 1242	ND	5.00	10.0	ug/kg we	t 1							
Aroclor 1248	ND	5.00	10.0	ug/kg we	t 1							
Aroclor 1254	ND	5.00	10.0	ug/kg we	t 1							
Aroclor 1260	ND	5.00	10.0	ug/kg we								
Surr: Decachlorobiphenyl (Surr)		Reco	very: 101 %	Limits: 60-	125 %	Dil	lution: 1x					
LCS (23J1016-BS1)			Prepared	d: 10/26/23 0	4:56 Ana	lyzed: 10/26	5/23 19:00					C-07
EPA 8082A						-						
Aroclor 1016	213	5.00	10.0	ug/kg we	t 1	250		85	47-134%			
Aroclor 1260	240	5.00	10.0	ug/kg we		250		96	53-140%			
Surr: Decachlorobiphenyl (Surr)		Reco	very: 103 %	Limits: 60-		Dil	lution: 1x					
Duplicate (23J1016-DUP1)			Prepared	d: 10/26/23 0	4:56 Ana	lyzed: 10/26	5/23 19:55					C-07
QC Source Sample: TP-02-IM-14.0	0-15.0-2023	1010 (A3J1375	5-01RE1)									
EPA 8082A												
Aroclor 1016	ND	5.86	11.7	ug/kg dry	7 1		ND				30%	
Aroclor 1221	ND	5.86	11.7	ug/kg dry	7 1		ND				30%	
Aroclor 1232	ND	5.86	11.7	ug/kg dry	/ 1		ND				30%	
Aroclor 1242	175	5.86	11.7	ug/kg dry			767			126	30%	P-09, Q-1
Aroclor 1248	ND	5.86	11.7	ug/kg dry			ND				30%	
Aroclor 1254	118	5.86	11.7	ug/kg dry			301			87	30%	P-12, Q-1
Aroclor 1260	22.7	5.86	11.7	ug/kg dry			47.3			70	30%	P-12, Q-1
Surr: Decachlorobiphenyl (Surr)		Reco	overy: 78 %	Limits: 60-		Dil	lution: 1x					
Matrix Spike (23J1016-MS1)			Prepared	d: 10/26/23 0	4:56 Ana	lyzed: 10/26	5/23 21:07					C-07
			•									
OC Source Sample: TP-14-IM 0 0	_10 020231	1012 (A311375	-08)									
OC Source Sample: TP-14-IM-9.0-	-10.020231	1012 (A3J1375	<u>-08)</u>									
OC Source Sample: TP-14-IM-9.0- EPA 8082A Aroclor 1016	-10.020231 266	1012 (A3J1375 5.48	<u>-08)</u> 11.0	ug/kg dry	, 1	274	ND	97	47-134%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1375 - 11 08 23 1632

QUALITY CONTROL (QC) SAMPLE RESULTS

Polychlorinated Biphenyls by EPA 8082A Detection Reporting Spike Source % REC **RPD** Analyte Result Ĺimit Units Dilution Amount Result % REC Limits RPD Limit Limit Notes Batch 23J1016 - EPA 3546 Soil Matrix Spike (23J1016-MS1) Prepared: 10/26/23 04:56 Analyzed: 10/26/23 21:07 C-07 QC Source Sample: TP-14-IM-9.0-10.0--20231012 (A3J1375-08) Dilution: 1x Surr: Decachlorobiphenyl (Surr) Recovery: 141 % Limits: 60-125 % S-03

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 18 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1375 - 11 08 23 1632

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	letals by l	EPA 6020	B (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J1033 - EPA 3051A							So	il				
Blank (23J1033-BLK1)			Prepared	: 10/26/23 0	9:28 Ana	yzed: 10/27	/23 12:36					
EPA 6020B												
Arsenic	ND	0.500	1.00	mg/kg we	t 10							
Barium	ND	0.500	1.00	mg/kg we	t 10							
Cadmium	ND	0.100	0.200	mg/kg we	et 10							
Chromium	ND	0.500	1.00	mg/kg we	et 10							
Copper	ND	1.00	2.00	mg/kg we	et 10							
Lead	ND	0.100	0.200	mg/kg we	et 10							
Mercury	ND	0.0400	0.0800	mg/kg we	et 10							
Nickel	ND	1.00	2.00	mg/kg we	et 10							
Selenium	ND	0.500	1.00	mg/kg we	et 10							
Silver	ND	0.100	0.200	mg/kg we	et 10							
Zinc	ND	2.00	4.00	mg/kg we	et 10							
LCS (23J1033-BS1)			Prepared	: 10/26/23 0	9:28 Ana	yzed: 10/27	/23 12:41					
EPA 6020B				_								
Arsenic	48.9	0.500	1.00	mg/kg we		50.0		98	80-120%			
Barium	51.5	0.500	1.00	mg/kg we		50.0		103	80-120%			
Cadmium	48.9	0.100	0.200	mg/kg we		50.0		98	80-120%			
Chromium	49.7	0.500	1.00	mg/kg we		50.0		99	80-120%			
Copper	51.7	1.00	2.00	mg/kg we		50.0		103	80-120%			
Lead	53.2	0.100	0.200	mg/kg we	et 10	50.0		106	80-120%			
Mercury	1.01	0.0400	0.0800	mg/kg we	et 10	1.00		101	80-120%			
Nickel	51.4	1.00	2.00	mg/kg we	et 10	50.0		103	80-120%			
Selenium	24.8	0.500	1.00	mg/kg we		25.0		99	80-120%			
Silver	28.3	0.100	0.200	mg/kg we	et 10	25.0		113	80-120%			
Zinc	49.6	2.00	4.00	mg/kg we	t 10	50.0		99	80-120%			
Ouplicate (23J1033-DUP1)			Prepared	: 10/26/23 0	9:28 Anal	lyzed: 10/27	/23 12:51					
QC Source Sample: TP-02-IM-14	.0-15.0-2023	1010 (A3J1375	-01)									
EPA 6020B												
Arsenic	7.71	0.648	1.30	mg/kg dr	y 10		8.10			5	20%	
Barium	175	0.648	1.30	mg/kg dr	y 10		166			5	20%	
Cadmium	5.66	0.130	0.259	mg/kg dr			5.51			3	20%	
Chromium	28.6	0.648	1.30	mg/kg dr			39.1			31	20%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 19 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1375 - 11 08 23 1632

QUALITY CONTROL (QC) SAMPLE RESULTS

			Total M	letals by I	PA 602	OB (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J1033 - EPA 3051A							So	il				
Duplicate (23J1033-DUP1)			Prepared	: 10/26/23 0	9:28 Ana	lyzed: 10/27	//23 12:51					
QC Source Sample: TP-02-IM-14.	0-15.0-2023	1010 (A3J1375	-01)									
Copper	319	1.30	2.59	mg/kg dr	y 10		341			7	20%	
Lead	539	0.130	0.259	mg/kg dr	y 10		652			19	20%	
Mercury	0.624	0.0518	0.104	mg/kg dr	y 10		0.856			31	20%	Q-04
Nickel	41.8	1.30	2.59	mg/kg dr	y 10		60.6			37	20%	Q-04
Selenium	ND	0.648	1.30	mg/kg dr	y 10		ND				20%	
Silver	1.24	0.130	0.259	mg/kg dr	y 10		1.41			13	20%	
Zinc	1420	2.59	5.18	mg/kg dr	y 10		1610			13	20%	
Matrix Spike (23J1033-MS1)			Prepared	: 10/26/23 0	9:28 Ana	lyzed: 10/27	//23 12:56					
QC Source Sample: TP-02-IM-14.	0-15.0-2023	1010 (A3J1375	<u>-01)</u>									
EPA 6020B												
Arsenic	62.5	0.616	1.23	mg/kg dr		61.6	8.10	88	75-125%			
Barium	182	0.616	1.23	mg/kg dr	•	61.6	166	25	75-125%			Q-6:
Cadmium	63.0	0.123	0.246	mg/kg dr		61.6	5.51	93	75-125%			
Chromium	76.2	0.616	1.23	mg/kg dr	•	61.6	39.1	60	75-125%			Q-65
Copper	325	1.23	2.46	mg/kg dr		61.6	341	-25	75-125%			Q-65
Lead	342	0.123	0.246	mg/kg dr	y 10	61.6	652	-503	75-125%			Q-65
Mercury	1.49	0.0493	0.0985	mg/kg dr	y 10	1.23	0.856	51	75-125%			Q-65
Nickel	83.8	1.23	2.46	mg/kg dr		61.6	60.6	38	75-125%			Q-65
Selenium	28.2	0.616	1.23	mg/kg dr		30.8	ND	92	75-125%			
Silver	35.5	0.123	0.246	mg/kg dr	y 10	30.8	1.41	111	75-125%			
Zinc	4290	2.46	4.93	mg/kg dr	y 10	61.6	1610	4350	75-125%			E, Q-65

Apex Laboratories

Philip Newsberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1375 - 11 08 23 1632

QUALITY CONTROL (QC) SAMPLE RESULTS

			TCLP M	etals by	EPA 602	OB (ICPMS	S)					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0814 - EPA 1311/301	15A						So	il				
Blank (23J0814-BLK1)			Prepared:	10/20/23	10:31 Anal	yzed: 10/20	/23 13:14					
1311/6020B												
Arsenic	ND	0.0500	0.100	mg/L	10							TCL
Barium	ND	2.50	5.00	mg/L	10							TCL
Cadmium	ND	0.0500	0.100	mg/L	10							TCL
Chromium	ND	0.0500	0.100	mg/L	10							TCL
Lead	ND	0.0250	0.0500	mg/L	10							TCL
Mercury	ND	0.00375	0.00700	mg/L	10							TCL
Selenium	ND	0.0500	0.100	mg/L	10							TCL
Silver	ND	0.0500	0.100	mg/L	10							TCL
LCS (23J0814-BS1)			Prepared:	10/20/23	10:31 Anal	yzed: 10/20	/23 13:19					
1311/6020B												
Arsenic	4.89	0.0500	0.100	mg/L	10	5.00		98	80-120%			TCL
Barium	10.8	2.50	5.00	mg/L	10	10.0		108	80-120%			TCL
Cadmium	1.01	0.0500	0.100	mg/L	10	1.00		101	80-120%			TCL
Chromium	5.09	0.0500	0.100	mg/L	10	5.00		102	80-120%			TCL
Lead	5.17	0.0250	0.0500	mg/L	10	5.00		103	80-120%			TCL
Mercury	0.0973	0.00375	0.00700	mg/L	10	0.100		97	80-120%			TCL
Selenium	0.985	0.0500	0.100	mg/L	10	1.00		99	80-120%			TCL
Silver	0.958	0.0500	0.100	mg/L	10	1.00		96	80-120%			TCL
Duplicate (23J0814-DUP1)			Prepared:	10/20/23	10:31 Anal	yzed: 10/20	/23 15:44					
QC Source Sample: Non-SDG (A.	3J1425-01)											
Arsenic	ND	0.0500	0.100	mg/L	10		ND				20%	
Barium	ND	2.50	5.00	mg/L	10		ND				20%	
Cadmium	ND	0.0500	0.100	mg/L	10		ND				20%	
Chromium	ND	0.0500	0.100	mg/L	10		ND				20%	
Lead	ND	0.0250	0.0500	mg/L	10		ND				20%	
Mercury	ND	0.00375	0.00700	mg/L	10		ND				20%	
Selenium	ND	0.0500	0.100	mg/L	10		ND				20%	
Silver	ND	0.0500	0.100	mg/L	10		ND				20%	
Matrix Spike (23J0814-MS1)			Prepared:	10/20/23	10:31 Anal	yzed: 10/20	/23 15:50					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Newsberg

Page 21 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1375 - 11 08 23 1632

QUALITY CONTROL (QC) SAMPLE RESULTS

TCLP Metals by EPA 6020B (ICPMS) Detection Reporting Spike Source % REC **RPD** Analyte Result Ĺimit Units Dilution Amount Result % REC Limits RPD Limit Limit Notes Batch 23J0814 - EPA 1311/3015A Soil Matrix Spike (23J0814-MS1) Prepared: 10/20/23 10:31 Analyzed: 10/20/23 15:50 QC Source Sample: Non-SDG (A3J1425-01) 1311/6020B 0.0500 0.100 5.00 Arsenic 4.98 mg/L 10 ND 100 50-150% Barium 11.4 2.50 5.00 mg/L 10 10.0 ND 114 50-150% Cadmium 1.05 0.0500 0.100 10 1.00 50-150% mg/L ND 105 Chromium 5.14 0.0500 0.100 mg/L 10 5.00 ND 103 50-150% Lead 5.26 0.0250 0.0500 10 5.00 105 mg/L ND 50-150%Mercury 0.100 0.003750.0070010 0.100 ND 100 50-150% mg/L 1.01 1.00 Selenium 0.0500 0.100 10 ND 101 50-150% mg/L ---Silver 1.04 0.05000.100 mg/L 10 1.00 ND 104 50-150%

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 22 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1375 - 11 08 23 1632

QUALITY CONTROL (QC) SAMPLE RESULTS

			Conven	tional Ch	nemistry	Paramete	rs					
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0703 - DI Leach							Soi	I				
Duplicate (23J0703-DUP1)			Prepared	: 10/18/23	13:10 Ana	lyzed: 10/18	/23 15:04					
QC Source Sample: TP-14-IM-9.0-10).020231	012 (A3J1375	5-08 <u>)</u>									
EPA 9045D												
Soil/Solid pH (measured in H2O)	7.6			pH Unit	s 1		7.4			2	5%	pH_S
pH Temperature (deg C)	21.8			pH Unit	s 1		21.6			0.9	30%	pH_S
Reference (23J0703-SRM1)			Prepared	: 10/18/23	13:10 Ana	lyzed: 10/18	/23 14:40					
EPA 9045D												
Soil/Solid pH (measured in H2O)	6.0			pH Unit	s 1	6.00		100 98	3.33-101.33	3%		
pH Temperature (deg C)	22.1			pH Unit	s 1	20.0		110	50-200%			
Reference (23J0703-SRM2)			Prepared	: 10/18/23	13:10 Anal	lyzed: 10/18	/23 15:08					
EPA 9045D							-		-			
Soil/Solid pH (measured in H2O)	8.0			pH Unit	s 1	8.00		100	99-101%			
pH Temperature (deg C)	22.0			pH Unit	s 1	20.0		110	50-200%			

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Page 23 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: **Eatonville Landfill Characterization**

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1375 - 11 08 23 1632

QUALITY CONTROL (QC) SAMPLE RESULTS

				Percen	t Dry Weio	jht						
Analyte	Result	Detection Limit	Reporting Limit	Units	Dilution	Spike Amount	Source Result	% REC	% REC Limits	RPD	RPD Limit	Notes
Batch 23J0679 - Total Solids (Dry	y Weigh	nt) - 2022					Soi					
Duplicate (23J0679-DUP1)			Prepared	: 10/18/23	09:27 Anal	yzed: 10/19/	23 06:40					
QC Source Sample: Non-SDG (A3J13	<u>367-01)</u>											
% Solids	93.6	1.00	1.00	%	1		91.8			2	10%	
Duplicate (23J0679-DUP2)			Prepared	: 10/18/23	09:27 Anal	yzed: 10/19/	23 06:40					
QC Source Sample: Non-SDG (A3J13	<u>367-02)</u>											
% Solids	94.4	1.00	1.00	%	1		95.4			1	10%	
Duplicate (23J0679-DUP3)			Prepared	: 10/18/23	09:27 Anal	yzed: 10/19/	23 06:40					
QC Source Sample: Non-SDG (A3J13	367-03)											
% Solids	95.0	1.00	1.00	%	1		94.1			0.9	10%	
Duplicate (23J0679-DUP4)			Prepared	10/18/23	09:27 Anal	yzed: 10/19/	23 06:40					
QC Source Sample: Non-SDG (A3J13	<u>367-04)</u>											
% Solids	93.9	1.00	1.00	%	1		94.1			0.2	10%	
Duplicate (23J0679-DUP5)			Prepared	: 10/18/23	09:27 Anal	yzed: 10/19/	23 06:40					
QC Source Sample: Non-SDG (A3J13	<u>367-05)</u>											
% Solids	94.1	1.00	1.00	%	1		93.8			0.4	10%	
Duplicate (23J0679-DUP6)			Prepared	: 10/18/23	09:27 Anal	yzed: 10/19/	23 06:40					
QC Source Sample: Non-SDG (A3J13	<u>367-06)</u>											
% Solids	93.5	1.00	1.00	%	1		93.5			0.07	10%	
Duplicate (23J0679-DUP7)			Prepared	: 10/18/23	16:59 Anal	yzed: 10/19/	23 06:40					
QC Source Sample: Non-SDG (A3J14	<u>415-01)</u>											
% Solids	91.9	1.00	1.00	%	1		91.9			0.02	10%	
Duplicate (23J0679-DUP8)			Prepared	: 10/18/23	19:04 Anal	yzed: 10/19/	23 06:40					
QC Source Sample: Non-SDG (A3J14	437-02)											
% Solids	78.3	1.00	1.00	%	1		79.1			1	10%	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menberg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1375 - 11 08 23 1632

QUALITY CONTROL (QC) SAMPLE RESULTS

Percent Dry Weight

Detection Reporting Spike % REC **RPD** Source % REC Analyte Result Ĺimit Units Dilution Amount Result Limits RPD Limit Notes Limit

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Menherg

Page 25 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1375 - 11 08 23 1632

SAMPLE PREPARATION INFORMATION

	Polychlorinated Biphenyls by EPA 8082A											
Prep: EPA 3546					Sample	Default	RL Prep					
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor					
Batch: 23J1016												
A3J1375-01RE1	Soil	EPA 8082A	10/10/23 13:35	10/26/23 04:56	10.31g/5mL	10g/5mL	0.97					
A3J1375-02RE1	Soil	EPA 8082A	10/10/23 14:20	10/26/23 04:56	10.22g/5mL	10g/5mL	0.98					
A3J1375-03	Soil	EPA 8082A	10/11/23 13:55	10/26/23 04:56	10.14g/5mL	10g/5mL	0.99					
A3J1375-04	Soil	EPA 8082A	10/12/23 10:45	10/26/23 04:56	10.28g/5mL	10g/5mL	0.97					
A3J1375-05	Soil	EPA 8082A	10/12/23 11:50	10/26/23 04:56	10.53g/5mL	10g/5mL	0.95					
A3J1375-06	Soil	EPA 8082A	10/12/23 12:20	10/26/23 04:56	10.27g/5mL	10g/5mL	0.97					
A3J1375-07	Soil	EPA 8082A	10/12/23 08:50	10/26/23 04:56	10.14g/5mL	10g/5mL	0.99					
A3J1375-08	Soil	EPA 8082A	10/12/23 13:15	10/26/23 04:56	10.11g/5mL	10g/5mL	0.99					

	Total Metals by EPA 6020B (ICPMS)											
Prep: EPA 3051A					Sample	Default	RL Prep					
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor					
Batch: 23J1033												
A3J1375-01	Soil	EPA 6020B	10/10/23 13:35	10/26/23 09:28	0.472g/50mL	0.5g/50mL	1.06					
A3J1375-01RE2	Soil	EPA 6020B	10/10/23 13:35	10/26/23 09:28	0.472g/50mL	0.5g/50mL	1.06					
A3J1375-02	Soil	EPA 6020B	10/10/23 14:20	10/26/23 09:28	0.492g/50mL	0.5g/50mL	1.02					
A3J1375-02RE2	Soil	EPA 6020B	10/10/23 14:20	10/26/23 09:28	0.492g/50mL	0.5g/50mL	1.02					
A3J1375-03	Soil	EPA 6020B	10/11/23 13:55	10/26/23 09:28	0.47g/50mL	0.5g/50mL	1.06					
A3J1375-04	Soil	EPA 6020B	10/12/23 10:45	10/26/23 09:28	0.503g/50mL	0.5g/50mL	0.99					
A3J1375-05	Soil	EPA 6020B	10/12/23 11:50	10/26/23 09:28	0.48g/50mL	0.5g/50mL	1.04					
A3J1375-06	Soil	EPA 6020B	10/12/23 12:20	10/26/23 09:28	0.457g/50mL	0.5g/50mL	1.09					
A3J1375-07	Soil	EPA 6020B	10/12/23 08:50	10/26/23 09:28	0.509g/50mL	0.5g/50mL	0.98					
A3J1375-08	Soil	EPA 6020B	10/12/23 13:15	10/26/23 09:28	0.493g/50mL	0.5g/50mL	1.01					

	TCLP Metals by EPA 6020B (ICPMS)												
Prep: EPA 1311/30	<u>15A</u>				Sample	Default	RL Prep						
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor						
Batch: 23J0814													
A3J1375-01	Soil	1311/6020B	10/10/23 13:35	10/20/23 10:31	10mL/50mL	10mL/50mL	1.00						
A3J1375-02	Soil	1311/6020B	10/10/23 14:20	10/20/23 10:31	10mL/50mL	10mL/50mL	1.00						
A3J1375-03	Soil	1311/6020B	10/11/23 13:55	10/20/23 10:31	10mL/50mL	10mL/50mL	1.00						
A3J1375-04	Soil	1311/6020B	10/12/23 10:45	10/20/23 10:31	10mL/50mL	10mL/50mL	1.00						
A3J1375-05	Soil	1311/6020B	10/12/23 11:50	10/20/23 10:31	10mL/50mL	10mL/50mL	1.00						
A3J1375-06	Soil	1311/6020B	10/12/23 12:20	10/20/23 10:31	10mL/50mL	10mL/50mL	1.00						

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neimberg

Page 26 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1375 - 11 08 23 1632

SAMPLE PREPARATION INFORMATION

	TCLP Metals by EPA 6020B (ICPMS)												
Prep: EPA 1311/301	<u>15A</u>				Sample	Default	RL Prep						
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor						
A3J1375-07	Soil	1311/6020B	10/12/23 08:50	10/20/23 10:31	10mL/50mL	10mL/50mL	1.00						
A3J1375-08	Soil	1311/6020B	10/12/23 13:15	10/20/23 10:31	10 mL / 50 mL	10 mL/50 mL	1.00						

	Conventional Chemistry Parameters											
Prep: DI Leach					Sample	Default	RL Prep					
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor					
Batch: 23J0703												
A3J1375-01	Soil	EPA 9045D	10/10/23 13:35	10/18/23 13:10	20.1005g/20mL	20g/20mL	NA					
A3J1375-02	Soil	EPA 9045D	10/10/23 14:20	10/18/23 13:10	20.0094g/20mL	20g/20mL	NA					
A3J1375-03	Soil	EPA 9045D	10/11/23 13:55	10/18/23 13:10	20.0698g/20mL	20g/20mL	NA					
A3J1375-04	Soil	EPA 9045D	10/12/23 10:45	10/18/23 13:10	20.0131g/20mL	20g/20mL	NA					
A3J1375-05	Soil	EPA 9045D	10/12/23 11:50	10/18/23 13:10	20.0084g/20mL	20g/20mL	NA					
A3J1375-06	Soil	EPA 9045D	10/12/23 12:20	10/18/23 13:10	20.0126g/20mL	20g/20mL	NA					
A3J1375-07	Soil	EPA 9045D	10/12/23 08:50	10/18/23 13:10	20.0317g/20mL	20g/20mL	NA					
A3J1375-08	Soil	EPA 9045D	10/12/23 13:15	10/18/23 13:10	20.0303g/20mL	20g/20mL	NA					

	Percent Dry Weight											
Prep: Total Solids (Dr	/ Weight) - 2022				Sample	Default	RL Prep					
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor					
Batch: 23J0679												
A3J1375-01	Soil	EPA 8000D	10/10/23 13:35	10/18/23 09:27			NA					
A3J1375-02	Soil	EPA 8000D	10/10/23 14:20	10/18/23 09:27			NA					
A3J1375-03	Soil	EPA 8000D	10/11/23 13:55	10/18/23 09:27			NA					
A3J1375-04	Soil	EPA 8000D	10/12/23 10:45	10/18/23 09:27			NA					
A3J1375-05	Soil	EPA 8000D	10/12/23 11:50	10/18/23 09:27			NA					
A3J1375-06	Soil	EPA 8000D	10/12/23 12:20	10/18/23 09:27			NA					
A3J1375-07	Soil	EPA 8000D	10/12/23 08:50	10/18/23 09:27			NA					
A3J1375-08	Soil	EPA 8000D	10/12/23 13:15	10/18/23 09:27			NA					

	TCLP Extraction by EPA 1311											
Prep: EPA 1311 (TCL	<u>LP)</u>	_			Sample	Default	RL Prep					
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor					
Batch: 23J0739												
A3J1375-01	Soil	EPA 1311	10/10/23 13:35	10/19/23 15:15	100g/2000.2g	100g/2000g	NA					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Mounterg

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1375 - 11 08 23 1632

SAMPLE PREPARATION INFORMATION

	TCLP Extraction by EPA 1311											
Prep: EPA 1311 (TO	CLP)				Sample	Default	RL Prep					
Lab Number	Matrix	Method	Sampled	Prepared	Initial/Final	Initial/Final	Factor					
A3J1375-02	Soil	EPA 1311	10/10/23 14:20	10/19/23 15:15	100g/2000g	100g/2000g	NA					
A3J1375-03	Soil	EPA 1311	10/11/23 13:55	10/19/23 15:15	100g/2000g	100g/2000g	NA					
A3J1375-04	Soil	EPA 1311	10/12/23 10:45	10/19/23 15:15	100g/2000.2g	100g/2000g	NA					
A3J1375-05	Soil	EPA 1311	10/12/23 11:50	10/19/23 15:15	100g/2000.1g	100g/2000g	NA					
A3J1375-06	Soil	EPA 1311	10/12/23 12:20	10/19/23 15:15	100g/2000.8g	100g/2000g	NA					
A3J1375-07	Soil	EPA 1311	10/12/23 08:50	10/19/23 15:15	100g/2000.9g	100g/2000g	NA					
A3J1375-08	Soil	EPA 1311	10/12/23 13:15	10/19/23 15:15	100g/2000.6g	100g/2000g	NA					

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Mounterg

Page 28 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1375 - 11 08 23 1632

QUALIFIER DEFINITIONS

Client Sample and Quality Control (QC) Sample Qualifier Definitions:

Apex Laboratories

- C-07 Extract has undergone Sulfuric Acid Cleanup by EPA 3665A, Sulfur Cleanup by EPA 3660B, and Florisil Cleanup by EPA 3620B in order to minimize matrix interference.
 - E Estimated Value. The result is above the calibration range of the instrument.
 - J Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
- P-09 Due to weathering and/or the presence of an unknown mixture of PCB Congeners, the pattern does not match the standard used for calibration. Results are Estimated and based on the closest matching Aroclor.
- P-10 Result estimated due to the presence of multiple PCB Aroclors and/or matrix interference.
- P-12 Result estimated due to the presence of multiple PCB Aroclors and/or PCB congeners not defined as Aroclors.
- pH_S Method recommends preparation 'as soon as possible'. See Sample Preparation Information section of report for details. Consult regulator or permit manager to determine the usability of data for intended purpose.
- Q-04 Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.
- Q-17 RPD between original and duplicate sample, or spike duplicates, is outside of established control limits.
- Q-42 Matrix Spike and/or Duplicate analysis was performed on this sample. % Recovery or RPD for this analyte is outside laboratory control limits. (Refer to the QC Section of Analytical Report.)
- Q-65 Spike recovery is estimated due to the high analyte concentration of the source sample.
- R-02 The Reporting Limit for this analyte has been raised to account for interference from coeluting organic compounds present in the sample.
- S-03 Sample re-extract, or the analysis of an associated Batch QC sample, confirms surrogate failure due to sample matrix effect.
- TCLP This batch QC sample was prepared with TCLP or SPLP fluid from preparation batch 23J0739.

Apex Laboratories

Philip Meinberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 29 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1375 - 11 08 23 1632

REPORTING NOTES AND CONVENTIONS:

Abbreviations:

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

Reporting Conventions:

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"___" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

QC Source:

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

Miscellaneous Notes:

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"*** Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Neventrera

Page 30 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number: 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager: Ben Johnson
 A3J1375 - 11 08 23 1632

REPORTING NOTES AND CONVENTIONS (Cont.):

Blanks:

- Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).
- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.
- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

Preparation Notes:

Mixed Matrix Samples:

Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

Sampling and Preservation Notes:

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Nevenberg

Page 31 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions Project: Eatonville Landfill Characterization

 55 SW Yamhill St, Ste 300
 Project Number:
 00171.074.008
 Report ID:

 Portland, OR 97209
 Project Manager:
 Ben Johnson
 A3J1375 - 11 08 23 1632

LABORATORY ACCREDITATION INFORMATION

ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Apex Laboratories

Matrix Analysis TNI_ID Analyte TNI_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

Secondary Accreditations

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

Subcontract Laboratory Accreditations

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories

Philip Nevenberg

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Page 32 of 34

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Report ID:

GSI Water Solutions 55 SW Yamhill St, Ste 300 Portland, OR 97209 Project: Eatonville Landfill Characterization

Project Number: 00171.074.008

Project Manager: Ben Johnson A3J1375 - 11 08 23 1632

Services to the Benjamin Johnson Johnson That is Service Service Service Frequent Service Service Service Frequent Service Service Service Service Frequent Service Se	del own	Lab Balder #:		6 days 72 bound
16				A Pour 24 Pours 24 Pours Other
		1	Pala included in the pala incl	-
Bampie Da Sampie Dea Sampie Tere H	Neuris by EPA consider the Media by EPA consider the Consider the Consideration of the Consid	bins by dead with the bins by U.S. of ARDP) 1921 by bins by U.S. of ARDP) 1921 by bins by U.S. of ARDP 1921 by U.S. o	MOHATIVAN SACRO ADAPTAN ADA	Comments
IM-130-150-1802 1010 1919 13 1555	50 5 × ×	× × × ×	××	
SS-04-0-10-2028[0][(0][[[23] 1755 5	× N	×	X	10 March 10
10/14/3 10%	٨	×	×	
10/13/23 1/50	~	<u>×</u>	×	
17.15-IM-10-100-20251012 10/2/2/23 1220 5	× × • • • •	× × ×	× ×	
TP-14-IM-20-20-2018(1012 10/12/23 1815) S	So 3	×	×	
The state of the s				
				TOTAL PROPERTY OF THE PARTY OF
		W	Complete Com	
No. of Contract of				
			7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2000 3000 3000
NOTES. Current Januaro Difference (2023/2023/44) (pinned committee) in the second committee of the committee	ins. cont) with questions. Inst	lude EDD with final ten report. Noted to (Friend male that INCL is the vegittow for entries we can extreme the	uth If there are novel somple prop methods that
Separate S.	. 16:55	Received Br. Received Br.	511 51 m/m vs	AgencyAgent: AgencyAgent AgencyAgen
		Signature:		Time & Date:

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Mounterg

Page 33 of 34

Apex Laboratories, LLC

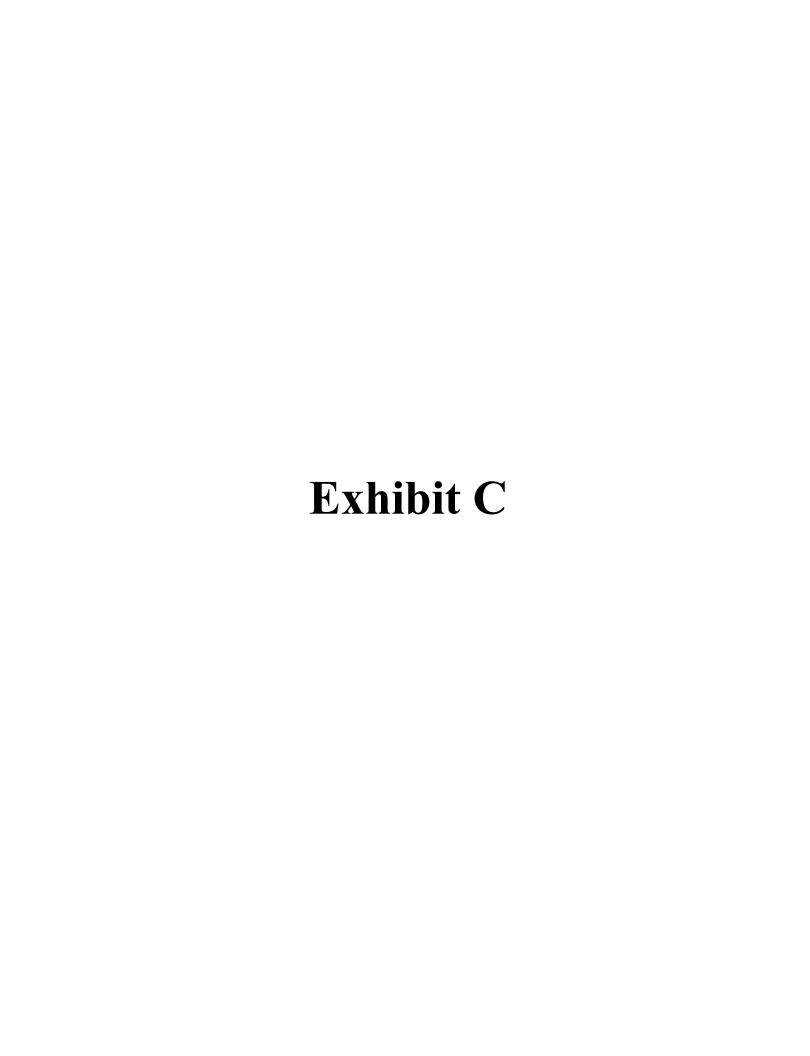
6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

GSI Water Solutions 55 SW Yamhill St, Ste 300 Portland, OR 97209 Project: Eatonville Landfill Characterization

Project Number: **00171.074.008**Project Manager: **Ben Johnson**

Report ID: A3J1375 - 11 08 23 1632


Client: 651 Worker Solution Element Wo#: A35 1375 Project/Project #: 67Mer Eq-Could Land fill Worker Delivery Info: Date/time received: 6 10 10 10 10 10 10 Delivered by: Apex Client ESS FedEx UPS Radio Morgan SDS Evergreen Other Cooler Inspection Date/time inspected: 6 10 10 10 10 10 Chain of Custody included? Yes No Signed/dated by client? Yes No Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Temperature (°C) 3 10 10 10 10 10 Custody scals? (Y/N) 10 10 10 Received on ice? (Y/N) 10 10 10 Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Received on ice? (Y/N) 10 10 10 Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Custody scals? (Y/N) 10 10 10 Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7	
Project/Project #: FOYMEY E GOVER LONG FILL Works Delivery Info: Date/time received:	
Date/time received: Date/time received: Date/time received: Date/time received: Date/time inspected: Date/time ins	
Delivered by: Apex_Client /ESS_FedEx_UPS_Radio Morgan_SDS_Evergreen_Other	
Cooler Inspection Chain of Custody included? Yes No Signed/dated by client? Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Temperature (°C) Custody scals? (Y/N)	
Chain of Custody included? Yes No No Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Temperature (°C)	
Signed/dated by client? Yes No Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Temperature (°C) Custody scals? (Y/N)	
Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Temperature (°C) Custody scals? (Y/N)	
Temperature (°C) Custody scals? (Y/N) A	
Temp. blanks? (Y/N) lee type: (Gel/Real/Other) Condition (In/Out): Cooler out of temp? (Y/N) Possible reason why: Green dots applied to out of temperature samples? Yes/No Out of temperature samples form initiated? Yes/No Sample Inspection: Date/time inspected: (O-17-27) @ YZ \ S By:	
All samples intact? Yes No Comments: Bottle labels/COCs agree? Yes No Comments: \$55-04-0.001-0-2013001 Time on Containers	
fends 1335.	
COC/container discrepancies form initiated? Yes No Comments:	
Do VOA vials have visible headspace? Yes No NA Comments	
Water samples: pH checked: YesNoNA_XpH appropriate? YesNoNA_XpH 1D: Comments:	
Additional information:	
Labeled by: Witness: Cooler Inspected by: Any Form Y-003 R-01	
AAW Form Y-003 R-01	

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Philip Nerenberg, Lab Director

Philip Mounterg

Exhibit C SCHEDULE of DELIVERABLES

The schedule for deliverables is presented below and is in calendar days. If the date for the Defendants' submission of any item or notification required by this Schedule of Deliverables occurs on a weekend, state or federal holiday, the date for submission of that item or notification is extended to the next business day following the weekend or holiday. Where a deliverable due date is triggered by Ecology notification, comments, or approval, the starting date for the period shown is the date the Defendants received such notification, comments, or approval from Ecology. Schedule extensions granted pursuant to Section XV.1 shall be minor changes documented in writing without formally amending this Decree.

Task	Deliverables	Due Date			
Task	A. Administrative				
A.1	Progress reports	Monthly on the 10th of the month beginning after the effective date of the Consent Decree until completion of active construction, and thereafter quarterly.			
	B. Design	1			
B. 1	Draft Engineering Design Report (EDR) per WAC 173-340-400(4)(a)	90 days from the effective date of the Consent Decree			
B.2	Final EDR	60 days from the receipt of Ecology comments on the draft EDR			
В.3	100% Construction Plans and Specifications (Plans and Specs) per WAC 173-340-400(4)(b)	Within 90 days after receipt of all required permits			
	C. Construction				
C.1	Construction procurement	Within 160 days after Ecology's acceptance of the 100% Plans and Specs (B.3)			

¹ Required permits and approvals and the substantive requirements of procedurally exempt permits or approvals shall be obtained, and their requirements incorporated into the design, as applicable.

-

C.2	Construction	Within the period authorized by the required permits			
	D. Post Construction Work				
D.1	Draft Construction Completion Report (CCR), including As Built Drawings and an Operation, Maintenance, and Monitoring Plan (OMMP)	Within 120 days of completion of construction (C.2)			
D.2	Final CCR, including As Built Drawings and an OMMP	Within 60 days of receipt of Ecology comments on Draft As Built Drawings and Report (D.1)			
D.3	Draft Environmental Covenant(s)	Within 30 days of Ecology approval of Final As Built Drawings and Report (D.2)			
D.4	Final Environmental Covenant(s)	Within 30 days of receipt of Ecology comments on Draft Environmental Covenants Environmental Covenant(s) (D.3)			
D.5	Record Covenant(s)	Within 60 days of Ecology approval of Final Environmental Covenant(s) (D.4)			
D.6	Compliance Monitoring Reports	As detailed in the OMMP (D.2)			