

TECHNICAL MEMORANDUM

TO:	Sandy Smith – Washington State Department of Ecology Andy Smith – Washington State Department of Ecology
cc:	William Joyce – Hillis Clark Martin & Peterson P.S. Jacob Blair – Hillis Clark Martin & Peterson P.S. Nathan Blomgren – Chevron U.S.A. Inc Cheryl Cameron – Chevron U.S.A. Inc Dave Mariano – Shelton Yacht Club
FROM:	Javan Ruark, Associate Geologist, L.G. Jeffrey Kaspar, Principal Geologist, L.G., L.H.G.
DATE:	September 15, 2023
RE:	PERFORMANCE SOIL SAMPLING – 2022 FORMER EVERGREEN FUEL FACILITY 661 EAST PINE STREET SHELTON, WASHINGTON FARALLON PN: 863-001

Farallon Consulting, L.L.C. (Farallon) has prepared this Technical Memorandum to present the results for performance soil sampling that was conducted at the Former Evergreen Fuel Facility at 661 East Pine Street in Shelton, Washington (herein referred to as the Site) (Figure 1). The purpose of the performance soil sampling was to evaluate current soil conditions in areas where soil with concentrations of constituents of concern (COCs), which consist of total petroleum hydrocarbons as gasoline-range organics (GRO), as diesel-range organics (DRO), and as oil-range organics (ORO); benzene, toluene, ethylbenzene, and xylenes (BTEX); naphthalenes; and carcinogenic polycyclic aromatic hydrocarbons (cPAHs) previously exceeding the Washington State Model Toxics Control Act Cleanup Regulation (MTCA) cleanup levels, was left in-place following the cleanup action completed in January 2007. The main objectives of the performance soil sampling were to:

• Collect sufficient soil samples to assess concentrations of COCs remaining in soil at the Site since completion of the 2007 cleanup action;

- Delineate the lateral and vertical extent of COCs remaining in soil at the Site;
- Evaluate the current nature of DRO and ORO present in soil related to the status of biodegradation, using data regarding representative carbon fractions present, evidence of polar metabolites, and the potential for naturally occurring total organic carbon (TOC);
- Use the soil data collected to evaluate whether the MTCA Method A cleanup levels that were approved in the Cleanup Action Plan (CAP)¹ are exceeded, and if so, where;
- Use the soil data collected to define areas of the Site that could be targeted for future focused cleanup activities during the proposed Shelton Yacht Club (SYC) habitat improvements, and, if appropriate;
- Define a pathway to remove the Site from the Hazardous Sites List and obtain a No Further Action (NFA) or sufficiency determination.

The performance soil sampling was conducted in accordance with the Soil Sampling Work Plan Addendum (Work Plan)².

BACKGROUND

Cleanup action activities completed at the Site in January 2007 included excavation and disposal at a licensed disposal facility of 7,508 tons of soil containing COCs at concentrations exceeding regulatory cleanup levels. The excavation areas were backfilled with quarry spalls to above the water table at a depth of approximately 3 feet below ground surface (bgs). Prior to the backfilling, 4,000 pounds of Advanced Oxygen Release Compound manufactured by Regenesis, Inc. of San Clemente, California was mixed with the quarry spalls used for backfill to enhance aerobic biodegradation of residual COCs in saturated soil and groundwater. Confirmational groundwater monitoring and sampling was initiated in April 2007 to document the effects of the source removal action and ongoing biodegradation of residual COCs in groundwater. The Site is graded with gravel and used as a parking lot for SYC (Figure 2).

Confirmational groundwater monitoring and sampling conducted from 2007 to 2013 indicated that source removal and Oxygen Release Compound treatment had resulted in a

 ² Farallon Consulting, L.L.C. 2022. Soil Sampling Work Plan, Addendum to Cleanup Action Plan, Former Evergreen Fuel Facility, 661, East Pine Street, Shelton, Washington; Agreed Order: DE 3937; Facility/Site No.: 6773108; Cleanup Site No.: 4306 (Work Plan). October 11.

¹ Farallon Consulting, L.L.C. 2006. Draft Cleanup Action Plan, Evergreen Fuel Facility, 661 East Pine Street, Shelton, Washington. July 18.

significant reduction of COCs, with overall decreasing to stable conditions observed at monitoring wells MW-5, MW-6, MW-8, and MW-9. COCs were not detected at concentrations exceeding MTCA Method A cleanup levels between 2008 and 2013 throughout the Site. DRO was detected at concentrations exceeding the MTCA Method A cleanup level in six of eight groundwater samples collected from monitoring well MW-10 between 2007 and 2013.

Concentrations of DRO and ORO in groundwater samples collected from monitoring well MW-10 have exceeded MTCA Method A cleanup levels from 2013 to 2022 (Figure 3). However, DRO and ORO concentrations have indicated an overall stable trend since 2013. DRO was detected at a concentration exceeding the MTCA Method A cleanup level in a single groundwater sample collected from monitoring well MW-9 during the August 2016 confirmational groundwater monitoring and sampling event. Concentrations of DRO and ORO have not exceeded MTCA Method A cleanup levels in the remaining groundwater samples collected from monitoring well MW-9 from 2013 to 2022. Concentrations of DRO and ORO have not exceeded MTCA Method A cleanup levels in the groundwater samples collected from monitoring well MW-9 from 2013 to 2022. Concentrations of DRO and ORO have not exceeded MTCA Method A cleanup levels in the groundwater samples collected from monitoring well MW-9 from 2013 to 2022. Concentrations of DRO and ORO have not exceeded MTCA Method A cleanup levels in the groundwater samples collected from monitoring well MW-8 since confirmational groundwater monitoring and sampling was initiated in 2007. Analysis for GRO and BTEX has not been performed on the groundwater samples collected from monitoring wells MW-8 through MW-10, based on the following:

- Previous analytical data demonstrated that concentrations of GRO and BTEX detected in samples collected at the Site were less than MTCA Method A cleanup levels for four consecutive guarters; and
- As indicated in the March 2014 letter from the Washington State Department of Ecology (Ecology) Ecology Comments Letter³, Ecology has not required further analysis for GRO or BTEX.

In the Ecology Comments Letter, Ecology stated that additional performance soil and confirmational groundwater monitoring and sampling were required to receive an NFA determination and closure of the Agreed Order requirements for the Site. Ecology indicated in its response that confirmational groundwater monitoring would be altered, consistent with MTCA, with the goal to achieve compliance for soil. The amended performance soil and

³ Washington State Department of Ecology. 2014. Letter Regarding Transmittal of Ecology Comments on Request for No Further Action Determination and Revised Groundwater Monitoring Status Report – May 2013, Evergreen Fuel Facility, 661 East Pine Street, Shelton Washington, Agreed Order No. DE 3937 dated March 10, 2014, Facility/Site ID No. 6773108, Cleanup Site ID No. 4306, From Scott Rose of Ecology. To Peter Jewett of Farallon. August 25.

confirmational groundwater monitoring and sampling required by Ecology consisted of the following:

- Collecting additional soil samples at locations where residual COCs were left in-place to determine whether current concentrations were less than MTCA Method A cleanup levels for protection of groundwater. If concentrations of residual COCs still exceeded MTCA Method A cleanup levels, the locations with the highest concentrations of DRO were to be used to develop Site-specific Method B cleanup levels for direct contact and continued protection of groundwater; and
- Performing semiannual confirmational groundwater monitoring and sampling at existing Site monitoring wells until MTCA Method A cleanup levels had been achieved and maintained for 1 year at all monitoring wells required to be sampled, as detailed in the Agreed Order No. DE 3937 entered into by Ecology and Chevron U.S.A. Inc. (Chevron) and C.C. Cole and Sons, Inc (AO). Once groundwater analytical results indicated that COCs were less than MTCA Method A cleanup levels for 1 year, four consecutive quarters of confirmational groundwater monitoring and sampling are required to demonstrate that MTCA Method A cleanup levels for groundwater had been achieved for the Site. Neither of these requirements for groundwater has been attained for DRO in monitoring well MW-10 (Figure 3).

In an August 2015 email⁴, Ecology provided additional details regarding confirmational groundwater monitoring and sampling to be conducted at the Site, which consisted of the following activities:

- Confirmational groundwater monitoring and sampling were to be conducted in accordance with the AO, and were to include monitoring wells MW-8 through MW-10; and
- Monitoring wells MW-5 and MW-6, which were covered during re-grading activities conducted in the Site parking lot, were to be located and decommissioned in accordance with Chapter 173-160 of the Washington Administrative Code.

Monitoring well decommissioning activities were conducted in December 2017. The results from the confirmational groundwater sampling conducted in 2019 indicated that further

www.farallonconsulting.com

⁴ Washington State Department of Ecology (Ecology). 2015. Email regarding Evergreen Fuels Monitoring. From Jason Landskron of Ecology. To Javan Ruark of Farallon. August 6.

confirmational groundwater monitoring and sampling at the Site was warranted to comply with the AO.

On June 16, 2021, Ecology requested that groundwater samples collected from monitoring wells MW-9 and MW-10 be analyzed using the silica gel cleanup procedure. The purposes of the additional analysis were to gather supportive information for Ecology's update of the Northwest Total Petroleum Hydrocarbons-Dx Method analysis, and to evaluate whether DRO detected in groundwater was petroleum-related or due to naturally occurring organic materials. Details of the Ecology request were provided in a June 2021 email⁵.

As detailed in a September 2021 email⁶ Ecology provided notification that SYC is in the process of applying for a U.S. Army Corps of Engineers 404 permit, and certification under Section 401 of the Clean Water Act before initiating proposed shoreline restoration work. The shoreline work is part of a habitat improvement project being conducted in conjunction with the Squaxin Island Tribe that originally was scheduled to begin in July 2022. That work likely begin by the end of 2023, pending receipt of permits and coordination with all stakeholders.

PERFORMANCE SOIL SAMPLING - 2022

The performance soil sampling was conducted from October 26 through 28, 2022 in accordance with the Work Plan to evaluate current soil conditions in areas where soil with COC concentrations exceeding MTCA cleanup levels was left in-place following the cleanup action completed in January 2007. The following sections describe the elements of the performance soil sampling and results. The elements of the performance soil sampling included:

- Preparing a Health and Safety Plan in accordance with Chapter 296-62 of the Washington Administrative Code and Part 1910.120 of Title 29 of the Code of Federal Regulations prior to initiating field activities;
- Performing a utility locate at the boring locations using a private utility location service and contacting the One-Call Center for utility location;

⁵ Washington State Department of Ecology. 2021. Email regarding Evergreen Fuels Shelton. From Charles San Juan of Ecology. To Javan Ruark of Farallon. June 16.

⁶ Washington State Department of Ecology. 2021. Email regarding Former Evergreen Fuel Facility. From Joyce Mercuri of Ecology. To Javan Ruark of Farallon. September 29.

- Advancing borings B-11, B-12, B-16 through B-18, and B-21 through B-24 to evaluate COCs exceeding cleanup levels that were left in-place following the 2006 remedial excavation;
- Advancing boring B-13 to evaluate COCs exceeding cleanup levels upland of the bulkhead;
- Advancing borings B-14, B-15, and B-19 to evaluate COCs upland of the bulkhead;
- Advancing boring B-20 to evaluate COCs upland of the 2006 remedial excavation;
- Describing subsurface conditions encountered during advancement of each boring in accordance with ASTM International Standard D2488, Standard Practice for Description and Identification of Soils, and field-screening soil samples for physical evidence of contamination by a photoionization detector (PID) and screening for sheen in the soil samples;
- Monitoring soil generated during drilling activities for potential historical artifacts using a professional archaeologist from Drayton Archaeology of Blaine, Washington (Drayton) in accordance with the Inadvertent Discovery Plan (IDP);
- Submitting select soil samples collected from the borings for chemical analysis for one or more of the following:
 - o GRO by Northwest Method NWTPH-Gx;
 - o BTEX by U.S. Environmental Protection Agency (EPA) Method 8260D;
 - DRO and ORO by Northwest Method NWTPH-Dx with silica gel cleanup procedure;
 - o cPAHs by EPA Method 8270 Select Ionization Method;
 - Extractable petroleum hydrocarbons (EPH) by NWEPH;
 - Total organic compounds (TOC) by EPA Method 9060; and
- Preparing this Technical Memorandum.

PERFORMANCE SOIL SAMPLING ACTIVITIES

Drilling services for the advancement of borings B-11 through B-24 were provided by HOLT Services, Inc. of Edgewood, Washington. Continuous soil cores were collected from borings B-11 through B-24 to depths ranging from 10 to 25 bgs to document soil conditions. Soil

was described in accordance with the Unified Soil Classification System and was screened in the field for evidence of contamination.

Visual observations, notations of odor and sheen, and headspace analysis using a PID were performed to screen for the presence of contamination, including volatile organic vapors, in soil. Sheen was observed at depth of 7 feet bgs at boring B-21. All remaining soil observed did not exhibit sheen during the soil sampling. Headspace analysis was conducted by placing soil from each sample interval into a resealable plastic bag and allowing the sample to warm for several minutes. The probe of the PID was inserted into the bag, and the highest reading obtained over an approximately 30-second interval was recorded. PID readings ranged from less than 0.0 parts per million by volume at borings B-11, B-13 through B-15, and B-17 through B-20 at depths ranging from 3.5 to 20 feet bgs to 255.5 parts per million by volume at boring B-24 at a depth of 5 feet bgs. The Unified Soil Classification System symbol, visual and olfactory notations for the samples, and PID readings were recorded on boring log forms, which are provided in Attachment A.

The soil samples were collected and handled in general accordance with the following procedures:

- Soil samples were collected directly from the sampling sleeve using either stainless steel or plastic sampling tools. Non-dedicated sampling equipment was decontaminated between uses, as appropriate. Soil cores were inspected by a professional archaeologist in accordance with the IDP prior to transfer to containers for laboratory analysis. Due to insufficient recovery during drilling, selected soil samples were not able to be collected as outlined in the Work Plan.
- Soil samples selected for laboratory analysis were transferred immediately into laboratory-supplied sample containers. Soil samples collected for analysis for GRO and BTEX were collected in accordance with EPA Method 5035A. This sampling method entails collecting approximately 5 grams of a representative soil sample using a dedicated sampling tool from target locations and placing the sample in a standard 40-milliliter, septum-sealed, threaded, screw-capped glass vial containing a laboratory-provided preservative.
- Soil samples to be analyzed for DRO, ORO, cPAHs, TOC, and EPH were transferred immediately into a laboratory-supplied 4-ounce glass container and sealed.

- Each sample container was labeled with the client name, project name and number, date and time of collection, sample identification, sampler's initials, and analysis. Sample identification included boring designation, sample depth, and date collected.
- Each sample was logged on a Chain of Custody form and placed into a cooler with ice to maintain a temperature of approximately 4 degrees Celsius. The samples were submitted to the laboratory for analysis within 24 to 48 hours of collection.

Soil samples were transported under standard chain-of-custody protocols to Libby Environmental, Inc. of Olympia, Washington for laboratory analysis. A minimum of two soil samples collected from each boring were submitted for laboratory analysis for one or more of the following:

- GRO by Northwest Method NWTPH-Gx;
- BTEX by EPA Method 8260D;
- DRO and ORO by Northwest Method NWTPH-Dx with silica gel cleanup procedure;
- Selected soil samples with the highest COC concentrations were analyzed for cPAHs by EPA Method 8270;
- Selected soil samples with the highest COC concentrations were analyzed for EPH by NWEPH;
- Soil samples collected from the borings outside the areas of historical COC impacts were analyzed for TOC by EPA Method 9060.
- Field duplicate soil samples were collected from borings B-14, B-15, B-19, and B-23 for quality assurance/quality control (QA/QC) purposes. As detailed in the Work Plan, trip blanks were not submitted for laboratory analysis based on the concentrations of COCs evaluated following receipt of the laboratory analytical results.

As required by the IDP, a professional archaeologist from Drayton observed the soil generated during the advancement of the borings.

Following the advancement of the borings, each location was backfilled with bentonite grout placed into the borehole from the base to within approximately 4 inches of the ground surface, followed by sand to the ground surface.

Boring locations were recorded by a licensed surveyor within 1 foot relative to the North American Datum of 1983, and elevation information to within 0.1 foot relative to the North American Vertical Datum of 1988 (Figure 2, Table 1).

PERFORMANCE SOIL SAMPLING RESULTS - 2022

A summary of the results of the soil sampling conducted is presented below and summarized on Figures 4 through 7 and in Tables 2 through 5. Farallon reviewed the analytical data package provided by Libby for sample delivery L22J130 v2, L22J143, L22K084 v2, and L22K085 v2. The soil samples from this group were analyzed for COCs by the methods cited in the section above, within the prescribed method holding times. The QA/QC testing performed by Libby included evaluation of surrogate recoveries and matrix spike/matrix spike duplicates. Results from the QA/QC testing were within established laboratory control limits. Based on Farallon's review of the QA/QC data generated during the October 2022 sampling event, the soil analytical results are acceptable for use in characterizing soil at the Site relative to the cleanup levels used for comparative purposes in this report. The laboratory analytical reports for the samples analyzed by Libby are provided in Appendix B.

GEOLOGY/HYDROGEOLOGY

The general stratigraphy encountered during the advancement of borings B-11 through B-24 was comprised of interbedded silty sands, silts, sands, and gravels from the ground surface to the total depth explored of 25 feet bgs. Fill material consisting of wood debris was observed to depths ranging from 5 to 6.5 feet bgs at the eastern and western areas upland of the bulkhead. A shallow groundwater-bearing zone was observed at depths ranging from 5 to 6.5 feet bgs at the northeastern portion of the Site. Boring logs are provided in Attachment A. Photographs of the borings are included in Attachment C.

Based on the evaluation of the soil generated during the advancement of the borings, Drayton did not identify any historical materials of cultural significance at the Site. The complete letter report detailing Drayton's findings is included in Attachment D.

ANALYTICAL RESULTS

Soil analytical results for borings B-11 through B-20, which were advanced proximate to the bulkhead and former excavation areas (Figure 4), were as follows:

- GRO was detected at concentrations ranging from 66 to 320 milligrams per kilogram (mg/kg) in the soil samples collected from borings B-11, B-14, and B-15 at depths ranging from 6 to 15 feet bgs, which exceed the MTCA Method A cleanup level of 30 mg/kg (Figure 4; Table 2). GRO was not detected at concentrations exceeding the MTCA Method A cleanup level in the remaining samples collected from borings advanced upland of the bulkhead.
- Benzene was detected at concentrations ranging from 0.11 to 0.28 mg/kg in the soil samples collected from boring B-14 at depths ranging from 10 to 15 feet bgs, which exceed the MTCA Method A cleanup level of 0.03 mg/kg (Figure 4; Table 2). Benzene was not detected at concentrations exceeding the MTCA Method A cleanup level in the remaining samples collected from borings advanced upland of the bulkhead.
- DRO, ORO, toluene, ethylbenzene, xylenes, and cPAHs, including naphthalenes were not detected at concentrations exceeding MTCA Method A cleanup levels (Figures 4 and 5; Tables 2 and 3).

Soil analytical results for borings B-21 through B-24, which were advanced immediately south of State Route 3 (Figure 4) at areas where residual soil contamination was left inplace following the 2006 cleanup activities, were as follows:

- GRO was detected at concentrations of 50 and 340 mg/kg in the soil samples collected from borings B-23 and B-21 at depths of 10 and 11 feet bgs, respectively, which exceed the MTCA Method A cleanup level of 30 mg/kg (Figure 4; Table 2). GRO was not detected at concentrations exceeding the MTCA Method A cleanup level in the remaining samples collected from borings advanced upland of the 2006 remedial excavation.
- DRO, ORO, BTEX, and cPAHs, including naphthalenes were not detected at concentrations exceeding the MTCA Method A cleanup levels (Figures 4 and 5; Tables 2 and 3).

EPH analysis was performed on the soil samples with the highest concentrations of DRO. This included a soil sample collected from boring B-17 at a depth of 16 feet bgs that had a DRO concentration of 800 mg/kg and a soil sample collected from boring B-24 at a depth of

6 feet bgs that had a DRO concentration of 1,100 mg/kg (Figure 4; Table 2). ORO was not detected in either sample. Ecology concurred that analyzing samples for EPH outside the holding time would not preclude consideration of the EPH analytical data in evaluating the composition of residual DRO. EPH analytical results analyzed outside of the holding time are considered estimated, with a potential low bias.

The EPH results were variable between the sample locations. The results of the sampling at boring B-17 indicated that weathering and biodegradation processes along the northern portion of the Site bounded by State Route 3 are occurring. The lighter aliphatic and aromatic hydrocarbon fractions are no longer present. The sample was comprised of C12 to C34 aliphatic and C16 to C34 aromatic hydrocarbon fractions (Table 5).

The EPH result at boring B-24 indicates less prevalent weathering and biodegradation. C8 through C34 aliphatic and C10 through C34 aromatic hydrocarbon fractions were detected. The highest hydrocarbon fractions included the C12 to C16 aliphatics and aromatics (Table 5).

TOC was detected at 0.361 percent by weight of in the soil sample collected from boring B-13 at a depth of 6 feet bgs, which was in unsaturated soil (Figure 6; Table 4). TOC was detected at 0.400 and 0.615 percent by weight in the soil samples collected from borings B-13 and B-19 at depths of 10 and 20 feet bgs, respectively, which were in saturated soil (Figure 6; Table 4). TOC values are used to evaluate the capacity of the soil matrix to adsorb organic contaminants, and also the potential for interference with the DRO/ORO analysis that would provide rationale for application of silica gel to filter out biogenic bias to an analytical result. A typical subsurface soil value for groundwater fate and transport modeling is 0.2 percent. TOC values exceeding this value indicate the presence of a higher proportion of organic materials, such as decomposing plant matter. A typical topsoil ranges from approximately 0.5 to 3 percent TOC.

There are no current standards to evaluate the degree of TOC values that could necessitate application of a silica gel cleanup process to filter out bias to a standard NWTPH-DX analysis from biogenic materials (and polar metabolites). However, since Ecology allowed the use of the silica gel cleanup procedure for soil analysis, distinguishing the potential contributions of polar metabolites versus biogenic materials on the analytical data results at the Site is unnecessary. The TOC values and observations of organic materials in the soil matrix; however, are indicative of potential to bias groundwater sample analysis low. The biogenic

materials would be expected to adsorb COCs, allowing more resonance time for biodegradation and lower proportions of dissolved-phase COCs. The absence of GRO and BTEX compounds in groundwater is likely associated with the sorptive nature of the soil matrix.

CONCLUSIONS

Based on the results of the performance soil sampling, concentrations of selected COCs, specifically DRO, have decreased significantly since the 2006 remedial excavation (Figures 4 and 7; Table 2). DRO was not detected at concentrations exceeding the MTCA Method A cleanup level of 2,000 mg/kg in samples collected.

GRO and benzene concentrations continue to exceed MTCA Method A cleanup levels in shallow soil, less than 16 feet bgs at borings B-11, B-14, and B-15, located upland of the bulkhead near monitoring well MW-8 and east of monitoring well MW-9 (Figure 4; Table 2). GRO also exceeds the MTCA Method A cleanup level in shallow soil, less than 12 feet bgs at borings B-21 and B-23, located proximate to State Route 3 (Figure 4; Table 2). All remaining COCs were not detected at concentrations exceeding MTCA Method A cleanup levels at the Site during the 2022 performance soil sampling. The vertical extent of current COC concentrations in soil has adequately been defined sufficiently to support decisions regarding further actions, based on the results of the performance soil sampling.

The overall soil and historical groundwater analytical data, including the EPH petroleum fractions analysis, demonstrate that biodegradation of COCs is occurring at the Site. The naturally occurring TOC present in unsaturated and saturated soil outside the areas of historical COC impacts suggests that the higher TOC concentrations likely are contributing to sorbing of COCs and mitigating leaching to groundwater. The groundwater analytical results from the confirmational groundwater monitoring and sampling events conducted in December 2020 and December 2022 indicate that soil with residual concentrations of DRO and related polar metabolites resulting from ongoing biodegradation are present in a smear zone and leach from soil to groundwater when groundwater elevations are highest.

The recent evaluation of historical groundwater data indicates that polar metabolites being generated by ongoing biodegradation processes, rather than total petroleum hydrocarbon components, are affecting groundwater quality. According to the Draft Silica Gel Cleanup

Guidance⁷, Ecology has recommended using the following screening levels for evaluation of toxicity of polar metabolites:

- Human health via drinking water pathway = 500 micrograms per liter ($\mu g/I$);
- Aquatic freshwater species = 3,040 µg/l; and
- Aquatic marine species = $2,120 \mu g/I$.

There are currently no established polar metabolite values for evaluation of terrestrial ecologic receptor risk.

Based on the screening levels above and proximate to Oakland Bay, the aquatic marine species screening level would be appropriate to evaluate polar metabolite risk at the Site rather than human health risk. The concentrations of DRO and ORO have fluctuated over the past several years of monitoring, sometimes exceeding the applicable polar metabolite screening level and consistently exceeding the Site cleanup levels for DRO and ORO established in the Draft Cleanup Action Plan of 500 μ g/I when the silica gel cleanup procedure is not applied.

The limited detections of GRO and BTEX at only five of the 14 borings completed, coupled with the relatively low concentrations of GRO and BTEX where detected in soil, also support the presence of a limited residual mass of GRO and BTEX that is present at the Site.

If Ecology determines that institutional controls with an environmental covenant is appropriate for the Site, residual soil with COCs exceeding applicable cleanup levels at the Site will be contained and subject to institutional controls and managed under a new environmental covenant consistent with MTCA.

⁷ Washington State Department of Ecology. 2022. *Draft Guidance for Use of Silica Gel Cleanup in Washington State.* Washington State Department of Ecology, Toxics Cleanup Program, Publication No. 22-09-059. September.

Attachments: Figure 1, Site Vicinity Map

Figure 2, Site Plan

Figure 3, Groundwater Analytical Data

Figure 4, 2022 Soil Analytical Results for TPH and BTEX

Figure 5, 2022 Soil Analytical Results for cPAHs

Figure 6, 2022 Soil Analytical Results for TOC

Figure 7, Residual Soil Contamination

Table 1, Survey Data Table 2, Soil Analytical Results for TPH and BTEX Table 3, Soil Analytical Results for cPAHs Table 4, Soil Analytical Results for Total Organic Carbon Table 5, Soil Analytical Results for EPH

Attachment A, Boring Logs Attachment B, Laboratory Analytical Reports Attachment C, Photograph Log Attachment D, Cultural Resources Evaluation Letter Report

JR/JK:ca

LIMITATIONS

The conclusions contained in this report/assessment are based on professional opinions with regard to the subject matter. These opinions have been arrived at in accordance with currently accepted hydrogeologic and engineering standards and practices applicable to this location. The conclusions contained herein are subject to the following inherent limitations:

- Accuracy of Information. Farallon reviewed certain information used in this report/assessment from sources that were believed to be reliable. Farallon's conclusions, opinions, and recommendations are based in part on such information. Farallon's services did not include verification of its accuracy. Should the information upon which Farallon relied prove to be inaccurate, Farallon may revise its conclusions, opinions, and/or recommendations.
- Reconnaissance and/or Characterization. Farallon performed a reconnaissance and/or characterization of the Site that is the subject of this report/assessment to document current conditions. Farallon focused on areas deemed more likely to exhibit hazardous materials conditions. Contamination may exist in other areas of the Site that were not investigated or were inaccessible. Site activities beyond Farallon's control could change at any time after the completion of this report/assessment.

Farallon does not guarantee that the Site is free of hazardous or potentially hazardous substances or conditions, or that latent or undiscovered conditions will not become evident in the future. Farallon's observations, findings, and opinions are as of the date of the report.

This report/assessment has been prepared in accordance with the contract for services between Farallon and CC Cole and Sons, Inc. and Chevron U.S.A. Inc. No other warranties, representations, or certifications are made.

FIGURES

PERFORMANCE SOIL SAMPLING - 2022

Former Evergreen Fuel Facility 661 East Pine Street Shelton, Washington

Farallon PN: 863-001

Document Path: \\edgefs02\GIS\Projects\863 Former Evergreen Fuel\Mapfiles\001 Fmr Evergreen Fuel Facility\044\2023-03-10 Figs3 thru 7\Figure-02 SitePlan.mxd

LEGEND

- MONITORING WELL (FARALLON, 2007)
- DECOMMISSIONED MONITORING WELL (FARALLON, 2017)
- ------ ESTIMATED GROUNDWATER FLOW DIRECTION
- BULKHEAD RETAINING WALL
- ESTIMATED LIMITES OF FORMER EXCAVATION AREA
- APPROXIMATE SITE BOUNDARY

NOTES:

- UNITS ARE IN MICROGRAMS PER LITER (μ g/L).
- **BOLD** = DENOTES CONCENTRATIONS IN GROUNDWATER THAT EXCEED THE WASHINGTON STATE MODEL TOXICS CONTROL ACT CLEANUP REGULATION (MTCA) CLEANUP LEVEL
 - < = DENOTES ANALYTE NOT DETECTED AT OR EXCEEDING
 - THE REPORTING LIMIT LISTED.
- * = SILICA GEL CLEANUP PROCESS APPLIED TO SAMPLE PRIOR TO ANALYSIS. DRO = TOTAL PETROLEUM HYDROCARBONS (TPH) AS DIESEL-RANGE ORGANICS.
- ORO = TPH AS OIL-RANGE ORGANICS

ALL LOCATIONS ARE APPROXIMATE. FIGURES WERE PRODUCED IN COLOR. GRAYSCALE COPIES MAY NOT REPRODUCE ALL ORIGINAL INFORMATION.

H wither	A CONTRACTOR OF		などが読みでいう	かいのないない	大学がない		でに高い	の時代です。		
TE	DRO	ORO		1	100	100	-	-3	0.1151	TOU
2020	4,000	2,000	1	ter.	Sec.4	1.13	1 10	-11	SHEL YACH	TON
2020	3,200	2,900	-	and a	- Al		1	1L	CLUE	5
2021	1,100	640			60.	-	-	4 1	City Mar	-
	<210*	<210*	and a	12	-	115	100	1º	1.12	100
2021	3,400	3,400	3	T	17	1-	20	-	14.81	G.N.
	<210*	<210*	-	-	1	31	-	(Jan	Contraction of	-
2022	1,800	1,100	A and	13		and a			100	No. of
			A SALE AND AND A					のであるというない	State of the second	Pur Dalla Villa
DATE	DRO	OR	2							-
30/2020	<210	450)							
23/2020) <210	<21	0							
21/2021	<210) <210 * _210	J)*							2
	<210	</td <td>,)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	,)							
/9/2021	<210	* <210)*							35
20/2022	<200	<20	0							1
20/2022	<200	* <200)*							
		- All	1918							120

A DECK	The second
Washington Bellingham Seattle	FIGURE 3
Oregon Portland Baker City	GROUNDWATER ANALYTICAL DATA FORMER EVERGREEN FUEL FACILITY
California Oakland Irvine	661 EAST PINE STREET SHELTON, WASHINGTON
	FARALLON PN: 863-001

 Drawn By: Imurock
 Checked By: JR
 Date: 8/9/2023
 Disc Reference:

 Document Path: \\edgefs02\GIS\Projects\863 Former Evergreen Fuel\Mapfiles\001 Fmr Evergreen Fuel Facility\044\2023-03-10_Figs3_thru_7\Figure-03_2022_GW_TPH.mxd

	Image: Normal State	
LEGEND RESIDUAL SOIL SAMPLE (FARALLON, 2006 AND 2007) BORING (FARALLON, 2022) MONITORING WELL (FARALLON, 2007) DECOMMISSIONED MONITORING WELL (FARALLON, 2017) BULKHEAD RETAINING WALL ESTIMATED LIMITES OF FORMER EXCAVATION AREA 	NOTES: DEPTH IN FEET BELOW GROUND SURFACE. ANALYTICAL RESULTS IN MILLIGRAMS PER KILOGRAM. BOLD = DENOTES CONCENTRATIONS THAT EXCEED THE WASHINGTON STATE MODEL TOXICS CONTROL ACT CLEANUP REGULATION CLEANUP LEVEL < = DENOTES ANALYTE NOT DETECTED AT OR EXCEEDING THE LISTED REPORTING LIMIT DENOTES SAMPLE NOT ANALYZED GRO = TPH AS GASOLINE-RANGE ORGANICS DRO = TOTAL PETROLEUM HYDROCARBONS (TPH) AS DIESEL-RANGE ORGANICS B = BENZENE T = TOLUENE E = ETHYLBENZENE X = XYLENES	N SCALE IN FEET ALLICATIONS ARE APPROXIMATE. FOURSE WERE REPORTING TO THE INTEGER ALLICATIONS ARE APPROXIMATE. FOURSE WERE REPORTING TO THE INTEGER ALLICATIONS ARE APPROXIMATE. FOURSE WERE REPORTING TO THE INTEGER Checked By: IR Checked By: I

- APPROXIMATE SITE BOUNDARY

 GRAYSCALE COPIES MAY NOT
 Drawn By: Imurock
 Checked By: JR
 Date: 8/9/2023
 Disc Reference:

 REPRODUCE ALL ORIGINAL INFORMATIOn provide provide the structure of the structure

- DECOMMISSIONED MONITORING WELL (FARALLON, 2017)
- BULKHEAD RETAINING WALL
- ESTIMATED LIMITES OF FORMER EXCAVATION AREA
- APPROXIMATE SITE BOUNDARY L_1

FARALLON CONSULTING nges. Our Priority

Drawn By: Imurock

ALL LOCATIONS ARE APPROXIMATE. FIGURES WERE PRODUCED IN COLOR. GRAYSCALE COPIES MAY NOT REPRODUCE ALL ORIGINAL INFORMATION.

FARALLON PN: 863-001

Checked By: J Date: 8/9/202 Disc Reference Document Path: \\edgefs02\GIS\Projects\863 Former Evergreen FuelMapfiles\001 Fmr Evergreen Fuel Facility\044/2023-03-10 Figs3 thru 7\Figure-05 2022 Soil cPAHs.mxd

Oakland | Irvine

LEGEND

- RESIDUAL SOIL SAMPLE (FARALLON, 2006 AND 2007)
- ۲ BORING (FARALLON, 2022)
- MONITORING WELL (FARALLON, 2007)
- DECOMMISSIONED MONITORING WELL (FARALLON, 2017)
- BULKHEAD RETAINING WALL
- ESTIMATED LIMITES OF FORMER EXCAVATION AREA

- NOTES:
- NOTES: DEPTH IN FEET BELOW GROUND SURFACE. ANALYTICAL RESULTS IN PERCENT DRY WEIGHT. < = DENOTES ANALYTE NOT DETECTED AT OR EXCEEDING THE LISTED REPORTING LIMIT TOC = TOTAL ORGANIC CARBON

-	/			34	54	-inter
		: las	-	1	-	1
-	250			And	and a	15
/-5	e?	1			P.M.	
1	r	-	E	1		
	DATE 10/27/2022 10/27/2022	DEPTH 5.0 20.0	TOC <0.150 0.400			
	192		1.e		1	18
	~	● B-20	-	• /•	2	
1		X	N	1.		
1	D11-BTI	M2-16	B-18	Prof-		-
0)B-16	● B-17●	11	A.		
1	21	1	1			100
٧V	V-10	1	Call I			192
W	-4	1-		-		1 20
•	8-15					
	1					19.5
, ,						
			2500			and and
						12.00
		Ser.	- Alt			
	dia 19	ne i	The state	-	1	and the Mark

F١	GL	IRE	6
FI	GL	IRE	6

2022 SOIL ANALYTICAL RESULTS FOR TOC 661 EAST PINE STREET SHELTON, WASHINGTON

FARALLON PN: 863-001

Date: 8/9/2023 Disc Reference: _____Document Path: \\edaefs02\GIS\Projects\863 Former Evergreen Fuel\Mapfiles\001 Fmr Evergreen Fuel Facility\044\2023-03-10 Figs3 thru 7\Figure-06 2022 Soil TOC.mxd

Washington

California

Oakland | Irvine

- BULKHEAD RETAINING WALL
- ESTIMATED LIMITS OF FORMER EXCAVATION AREA
 - RESIDUAL SOIL CONTAMINATION AREA
- FIGURES WERE PRODUCED IN COLOR. GRAYSCALE COPIES MAY NOT REPRODUCE ALL ORIGINAL INFORMATION.
- GRO = TPH AS GASOLINE-RANGE ORGANICS NA = NOT ANALYZED
- T = TOLUENE
- X = XYLENES

SCALE IN FEET

	I we with the second we	A CARDEN CARDEN								SHEI	LTON HT 3
	DEPTH	GRO	DRO	В	Т	E ST	X	141			
)7	16	<1,000	23,000	<1.5	<5	0.9	7				52
「「「「「「「「「「「「「」」」」」」」」」」」」」」」」」」」」」」」」		and the second se			a the state of a state	A Section and a section of the secti	and the second of the second	and the second and a second and			
Bell	Wash ingham S	nington Seattle				FIG	URE	7			
Portl	C and Bak Cal Oakland	Dregon er City lifornia Irvine		RE: FORM	SIDUA IER E` 661 SHEI	L SOI VERG EAST _TON,	L CON REEN PINE WASI	NTAMI FUEI STRE HING	NATIO _ FAC ET FON	NC ILITY	
		•			E/			262 001			

Checked By: JF Date: 8/9/2023 Disc Reference ument Path: \\edgefs02\GIS\Projects\863 Former Evergreen Fuel\Mapfiles\001 Fmr Evergreen Fuel Facility\044/2023-03-10 Figs3 thru 7\Figure-07 ResidualSoil TPH.mxd

TABLES

PERFORMANCE SOIL SAMPLING - 2022

Former Evergreen Fuel Facility 661 East Pine Street Shelton, Washington

Farallon PN: 863-001

Table 1 Survey Data Former Evergreen Fuel Facility Shelton, Washington Farallon PN: 863-001

Location	Date	Ground Surface Elevation ¹	Northing ²	Easting ²
B-11		17.94	696394.02	997351.66
B-12		17.30	696381.48	997358.81
B-13		17.32	696373.74	997394.75
B-14		16.56	696364.86	997446.73
B-15		17.10	696392.22	997511.63
B-16		18.44	696428.97	997513.83
B-17	10/29/2022	18.04	696429.39	997542.66
B-18	10/20/2022	18.28	696438.19	997546.98
B-19		18.33	696465.63	997562.57
B-20		20.08	696466.14	997535.63
B-21		20.86	696469.12	997421.54
B-22		21.20	696453.61	997395.24
B-23		21.40	696440.91	997368.50
B-24		19.88	696440.79	997343.45

NOTES:

¹Vertical Datum: NAVD 88 - Based on GPS measurments using the Washington State reference network.

²Horizontal Datum: NAD 83/2007 Washington South Zone - Based on GPS measurements using the Washington State reference network.

Table 2Summary of Soil Analytical Results for TPH and BTEXFormer Evergreen Fuel FacilityShelton, WashingtonFarallon PN: 863-001

				Analytical Results (milligrams per kilogram)						
0		Sampla Donth								
Sample	Comple Identification	Sample Depth	Sample Date				Banzana ⁴	Toluono ⁴	Ethylbonzono ⁴	Vulence ⁴
Location	B 11 5 0	(reet)			0RU	GRU	Benzene		Ethylbenzene	Aylenes
	B-11-5.0	5.0	10/20/2022	< <u>50</u>	< 250	< 10 160	< 0.02	< 0.10	< 0.05	< 0.15
B-11	B-11-11.0	11.0	10/26/2022	78	< 250	12	< 0.02	< 0.10	< 0.05	< 0.15
	B-11-16.0	16.0	10/26/2022	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
	B-12-5.0	5.0	10/26/2022	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
B-12	B-12-9.0	9.0	10/26/2022	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
	B-12-3.0	4.0	10/26/2022				< 0.02	< 0.10	< 0.05	< 0.15
	B-13-6.0	6.0	10/26/2022				< 0.02	< 0.10	< 0.05	< 0.15
B-13	B-13-8.0	8.0	10/26/2022	< 50	< 250		< 0.02	< 0.10	< 0.05	< 0.15
	B-13-10.0	10.0	10/26/2022				< 0.02	< 0.10	< 0.05	< 0.15
	B-14-5.0	5.0	10/26/2022	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
	B-14-10.0	10.0	10/27/2022	150	< 250	320	0.11	< 0.10	0.18	0.24
	B-14-15.0	15.0	10/27/2022	420	< 250	110	0.21	< 0.10	0.73	0.41
B-14	B-140-15.0	15.0	10/27/2022	< 50	< 250	66	0.28	< 0.10	0.47	0.47
	B-14-20.0	20.0	10/27/2022	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
	B-140-20.0	20.0	10/27/2022	< 50	< 250	17	< 0.02	< 0.10	< 0.05	< 0.15
	B-15-5.0	5.0	10/26/2022	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
B-15	B-15-10.0	10.0	10/27/2022	< 50	< 250	83	< 0.02	< 0.10	< 0.05	< 0.15
	B-150-10.0	10.0	10/27/2022	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
	B-15-15.0	15.0	10/27/2022	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
D 16	B-16-16.0	16.0	10/26/2022	120	< 250					
B-10	B-16-19.5	19.5	10/26/2022	< 50	< 250					
D 17	B-17-16.0	16.0	10/26/2022	800	< 250					
D-17	B-17-19.0	19.0	10/26/2022	< 50	< 250					
P 19	B-18-16.0	16.0	10/27/2022	< 50	< 250					
D-10	B-18-20.0	20.0	10/27/2022	< 50	< 250					
	B-19-5.0	5.0	10/27/2022	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
	B-19-10.0	10.0	10/27/2022	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
B-19	B-19-15.0	15.0	10/27/2022	< 50	< 250	19	< 0.02	< 0.10	< 0.05	< 0.15
	B-19-20.0	20.0	10/27/2022	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
	B-190-20.0	20.0	10/27/2022	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
	B-20-5.0	5.0	10/26/2022	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
B-20	B-20-10.0	10.0	10/27/2022	< 50	< 250	28	< 0.02	< 0.10	< 0.05	< 0.15
	B-20-15.0	15.0	10/27/2022	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
	B-21-3.0	3.0	10/27/2022			< 10				
B-21	B-21-11.0	11.0	10/27/2022			340				
	B-21-13.0	13.0	10/27/2022			11				
	B-22-7.0	7.0	10/27/2022	< 50	< 250		< 0.02	< 0.10	< 0.05	< 0.15
B-22	B-22-11.0	11.0	10/27/2022	< 50	< 250		< 0.02	< 0.10	< 0.05	< 0.15
	B-22-15.0	15.0	10/27/2022	< 50	< 250		< 0.02	< 0.10	< 0.05	< 0.15
MTCA Method A	Cleanup Levels for Soi	l°		2,000	2,000	30/100 ^⁵	0.03	7	6	9

Table 2Summary of Soil Analytical Results for TPH and BTEXFormer Evergreen Fuel FacilityShelton, WashingtonFarallon PN: 863-001

				Analytical Results (milligrams per kilogram)						
Sample Location	Sample Identification	Sample Depth (feet) ¹	Sample Date	DRO ²	ORO ²	GRO ³	Benzene⁴	Toluene⁴	Ethylbenzene ⁴	Xylenes⁴
	B-23-10.0	10.0	10/27/2022	56	< 250	50	< 0.02	< 0.10	< 0.05	< 0.15
B-23	B-23-11.5	11.5	10/27/2022	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
	B-230-11.5	11.5	10/27/2022	< 50	< 250	< 10	< 0.02	< 0.10	< 0.05	< 0.15
	B-24-6.0	6.0	10/27/2022	1,100	< 250		< 0.02	< 0.10	< 0.05	< 0.15
B-24	B-24-7.0	7.0	10/27/2022	880	< 250		< 0.02	< 0.10	< 0.05	< 0.15
	B-24-10.0	10.0	10/27/2022	62	< 250		< 0.02	< 0.10	< 0.05	< 0.15
MTCA Method A	Cleanup Levels for Soil	5		2,000	2,000	30 ⁶	0.03	7	6	9

NOTES:

Results in **bold** and highlighted yellow denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or exceeding the laboratory reporting limit listed.

- denotes sample not analyzed.

¹Depth in feet below ground surface.

²Analyzed by Northwest Method NWTPH-Dx with silica gel cleanup.

³Analyzed by Northwest Method NWTPH-Gx.

⁴Analyzed by U.S. Environmental Protection Agency Method 8260D.

⁵Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted

Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

⁶Cleanup level is 30 milligrams per kilogram as indicated in the Draft Cleanup Action Plan, Evergreen Fuel Facility, 661 East Pine Street, Shelton, Washington dated July 18, 2006 prepared by Farallon.

BTEX = benzene, toluene, ethylbenzene and xylenes

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

GRO = TPH as gasoline-range organics

ORO = TPH as oil-range organics

Table 3Summary of Soil Analytical Results for PAHsFormer Evergreen Fuel FacilityShelton, WashingtonFarallon PN: 863-001

					Analytical Results (milligrams per kilogram) ²										
				Non-Carcinogenic PAHs				Carcinogenic PAHs							
Sample	Samolo	Sample	Samplo	hthalene	ethylnaphthalene	ethylnaphthalene	al Naphthalenes ³	zo(a)Pyrene	zo(a)Anthracene	zo(b)Fluoranthene	zo(k)Fluoranthene	ysene	enz(a,h)Anthracene	:no(1,2,3-cd)Pyrene	Total cPAHs
Location	Identification	(feet) ¹	Date	Nap	1-M	2-M	Tota	Ben	Ben	Ben	Ben	Chr	Dibe	Inde	TEC ^{4,5}
P 12	B-12-5.0	5.0	10/26/2022	< 0.0226	< 0.0226	< 0.0226	< 0.0678	< 0.0226	< 0.0226	< 0.0226	< 0.0226	< 0.0453	< 0.0453	< 0.0453	< 0.019
D-12	B-12-9.0	9.0	10/26/2022	0.0500	< 0.0219	< 0.0219	0.0500	< 0.0219	< 0.0219	< 0.0219	< 0.0219	< 0.0438	< 0.0438	< 0.0438	< 0.019
	B-13-4.0	4.0	10/26/2022	< 0.0220	< 0.0220	< 0.0220	< 0.0660	< 0.0220	< 0.0220	< 0.0220	< 0.0220	< 0.0440	< 0.0440	< 0.0440	< 0.019
D 12	B-13-6.0	6.0	10/26/2022	< 0.0206	< 0.0206	< 0.0206	< 0.0618	< 0.0206	< 0.0206	< 0.0206	< 0.0206	< 0.0412	< 0.0412	< 0.0412	< 0.018
D-13	B-13-8.0	8.0	10/26/2022	< 0.0220	< 0.0220	< 0.0220	< 0.0660	< 0.0220	< 0.0220	< 0.0220	< 0.0220	< 0.0440	< 0.0440	< 0.0440	< 0.019
	B-13-10.0	10.0	10/26/2022	< 0.0209	< 0.0209	< 0.0209	< 0.0627	< 0.0209	< 0.0209	< 0.0209	< 0.0209	< 0.0418	< 0.0418	< 0.0418	< 0.018
B-17	B-17-16.0 ^H	16.0	10/26/2022	< 0.0196	0.0214	0.0242	0.0456	< 0.0293	< 0.0196	< 0.0245	< 0.0245	< 0.0196	< 0.0489	< 0.0391	< 0.023
B-24	B-24-6.0 ^H	6.0	10/27/2022	< 0.0219	< 0.0219	< 0.0219	< 0.0657	< 0.0328	< 0.0219	< 0.0274	< 0.0274	< 0.0219	< 0.0547	< 0.0438	< 0.025
MTCA Metho	d A Cleanup Leve	el for Soil ⁶					5								0.1

NOTES:

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Depth in feet below ground surface.

²Analyzed by U.S. Environmental Protection Agency Method 8270E/SIM.

³Sum of naphthalene, 1-methylnaphthalene and 2-methylnaphthalene.

⁴Total carcinogenic polycyclic aromatic hydrocarbons derived using the total toxicity equivalency method in Section

708(8) of Chapter 173-340 of the Washington Administrative Code.

⁵For concentrations reported at less than the laboratory reporting limit, half the reporting limit was used to calculate the TEC.

⁶Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013. PAHs = polycyclic aromatic hydrocarbons H = sample analyzed outside of holding time

TEC = toxic equivalent concentration

Table 4 Soil Analytical Results for Total Organic Carbon Former Evergreen Fuel Facility Shelton, Washington Farallon PN: 863-001

		Sample		Analytical Results (percent dry weight) ²
Sample Location	Sample Identification	Depth (feet) ¹	Sample Date	Total Organic Carbon
B-13	B-13-6.0	6.0	10/26/2022	0.361
D-13	B-13-10.0	10.0	10/26/2022	0.615
B-10	B-19-5.0	5.0	10/27/2022	< 0.150
D-19	B-19-20.0	20.0	10/27/2022	0.400

NOTES:

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Depth in feet below ground surface.

²Analyzed by U.S. Environmental Protection Agency Method 9060.

Table 5 Soil Analytical Results for EPH Former Evergreen Fuel Facility Shelton, Washington Farallon PN: 863-001

Sample Location	B-17	B-24
Sample Identification	B-17-16.0 ^H	B-24-6.0 ^H
Sample Depth (ft bgs) ¹	16.0	6.0
Sample Date	10/26/2022	10/27/2022
Parameter		
Total Petroleum Hydrocarbons ² (mg/kg	g)	
DRO	800	1,100
ORO	< 250	< 250
Extractable Petroleum Hydrocarbons ³	(mg/kg)	
C8-C10 Aliphatics	< 20.3	131
C10-C12 Aliphatics	< 10.2	659
C12-C16 Aliphatics	24.0	1,550
C16-C21 Aliphatics	90.0	410
C21-C34 Aliphatics	43.0	40.4
C8-C10 Aromatics	< 20.3	< 23.2
C10-C12 Aromatics	< 10.2	14.5
C12-C16 Aromatics	< 10.2	229
C16-C21 Aromatics	33.7	136
C21-C34 Aromatics	52.9	73.0

NOTES:

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Depth in feet below ground surface.

²Analyzed by Northwest Method NWTPH-Dx with silica gel cleanup.

³Analvzed by Northwest Method NWEPH.

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics H = NWEPH analysis conducted outside of holding time mg/kg = milligrams per kilogram ORO = TPH as oil-range organics

ATTACHMENT A BORING LOGS

PERFORMANCE SOIL SAMPLING - 2022

Former Evergreen Fuel Facility 661 East Pine Street Shelton, Washington

Farallon PN: 863-001

	FARALLON	Log of Bor	ing:	B	-1	1		Page 1 of 1	
Clien	it: CC Cole and Son's	Date/Time Started: 10/26/22 0940		Dept	h to	Wate	r ATD	(ft bgs): 5.0	
Proje	tion: Chalter, Weakington	Drilling Company: Holt		Tota	l Bor	ina D	epth (ft bas): 19.0	
Loca	tion: Shelton, washington	Drilling Method: Direct Push				5	- F - X		
Fara	llon PN: 863-001	Drilling Equipment: 7720DT							
Logg	ed By: M. Ysaguirre	Drilling Operator: Louie Fehner							
Revi	ewed By: J. Ruark	Sampler Type: 5' Macrocore							
Depth (ft bgs)	Lithologic Des	scription	nscs	USCS Graphic	Water Level	% Recovery	PID (ppmv)	Sample ID	Sample Analyzed
	0.0 - 5.0': Cleared to 5.0' bgs for utilities. Fill materia 5.0 - 6.5': Poorly graded GRAVEL with sand (90% of fine sand, gray, wet, faint petroleum-like odor. 6.5 - 10.0': No Recovery.	al. gravel, 10% sand), fine and coarse gravel,	GP			30	4.0	B-11-5.0 B-11-6.0	
10-	10.0 - 11.0': SILT (100% silt), gray, wet, no odor.		ML	hnr		90	17.2		

-	\mathbb{N}	11.0 - 12.0': Well graded SAND (80% sand, 15% gravel, 5% silt) fine to coarse sand, fine and coarse gravel, gray, moist, petroleum-like odor. Black interior inside core.	SW				B-11-11.0	
-	\wedge	12.0 - 14.5': Silty SAND (60% sand, 35% silt, 5% gravel), fine sand and gravel, gray, moist, no odor. Orange/ reddish brown from 12.0 - 14.0'	SM			2.4		
15		14.5 - 15.0': No Recovery.	[
-	\bigvee	15.0 - 17.0': Well graded SAND with gravel (80% sand, 20% gravel), fine sand, fine gravel, gray, wet, no odor.	SW		80	0.0	B-11-16.0	
-	$\left \right\rangle$	17.0 - 19.0': Poorly graded SAND (95% sand, 5% gravel), coarse sand, fine gravel, reddish brown, wet, no odor.	SP					
20_	$ \rangle$	19.0 - 20.0': No Recovery.						

Completion Information									
Temporary Well Casing Diameter (in):	N/A	Surface Seal:	N/A						
Temporary Well Screened Interval (ft bgs):	N/A	Ground Surface Elevation (ft):	N/A						
Boring Abandonment:	Bentonite	Surveyed Location: X: N/A	Y: N/A						

FARALLON CONSULTING	Lo	og of Boring	: E	8-12	2		Pag	e 1 of 1	
Client: CC Cole and Son's	Date/Time Started:	10/26/22 1010	Dept	th to \	Wate	r ATD ((ft bgs):	5.0	
Project: Fmr Evergreen Fuel Facility	Date/Time Completed:	10/26/22 1230	Bori	ng Di	amet	er (in):	:	N/A	
Location: Shelton, Washington	Drilling Company:	Holt	Tota	l Bori	ing D	epth (f	ft bgs):	10.0	
Farallon PN: 863.001	Drilling Method:	Direct Push							
	Drilling Equipment:	7720DT							
Logged By: M. Ysaguirre	Drilling Operator:	Louie Fehner							
Reviewed By: J. Ruark	Sampler Type:	5' Macrocore							
Cepth (ft bgs) Sample Interval Cithologic Des	scription	RSCS	USCS Graphic	Water Level	% Recovery	PID (ppmv)	Samp	le ID	Sample Analyzed

	0.0 - 5.0': Cleared to 5.0' bgs for utilities. Poorly graded GRAVEL (100%) coarse gravel, black, wet, faint petroleum-like odor.	GP			100	0.1		
5	5.0 - 9.0': Poorly graded GRAVEL (100% gravel), fine and coarse gravel, gray, wet, no odor.	GP	8 8 8 8 8 8 8 8	¥	100		B-12-5.0	
10	9.0 - 10.0': Poorly graded GRAVEL with sand (80% gravel, 20% sand), fine and coarse gravel and sand, gray, wet, no odor.	GP					B-12-9.0	

Completion Information									
Temporary Well Casing Diameter (in):	N/A	Surface Seal:	N/A						
Temporary Well Screened Interval (ft bgs):	N/A	Ground Surface Elevation (ft):	N/A						
Boring Abandonment:	Bentonite	Surveyed Location: X: N/A	Y: N/A						

FARALLON CONSULTING	Log of Bor	ing:	В	-13	3		Page 1 of 1
Client:CC Cole and Son'sProject:Fmr Evergreen Fuel FacilityLocation:Shelton, WashingtonFarallon PN:863-001Logged By:M. YsaguirreReviewed By:J. Ruark	Date/Time Started:10/26/22 1056Date/Time Completed:10/26/22 1300Drilling Company:HoltDrilling Method:Direct PushDrilling Equipment:7720DTDrilling Operator:Louie FehnerSampler Type:5' Macrocore		Deptl Borir Total	h to N ng Di Bori	Water amet ing D	r ATD (er (in): epth (f	(ft bgs): 7.5 N/A ft bgs): 12.0
Depth (ft bgs) Sample Interval Sample Sample Interval	cription	nscs	USCS Graphic	Water Level	% Recovery	PID (ppmv)	Sample ID Sample VI
0 0.0 - 5.0': Cleared to 5.0' bgs for utilities. Silty SAND sand, coarse gravel, brown, moist, no odor. - - -	9 (90% sand, 15% silt, 5% gravel), fine el), fine sand, gray, moist, no odor. 1 from 7.5 to 8.5'.	SM SM		¥	70	0.0	B-13-4.0 B-13-6.0 B-13-8.0 B-13-10.0

Completion Information									
Temporary Well Casing Diameter (in):	N/A	Surface Seal:	N/A						
Temporary Well Screened Interval (ft bgs):	N/A	Ground Surface Elevation (ft):	N/A						
Boring Abandonment:	Bentonite	Surveyed Location: X: N/A	Y: N/A						

Clie Pro Loc	ent: ject	CC Cole and Son's CC Cole and Son's There is the	Log of Bori Date/Time Started: 10/26/22 1620 Date/Time Completed: 10/26/22 1700 Drilling Company: Holt Drilling Method: Direct Push	ng:	B Depti Borir Total	-14 h to V ng Dia Bori	1 Wate amet	r ATD ter (in): Depth (1	Page 1 of 1 (ft bgs): N/E . N/A	
Far Loc	allo	on PN: 863-001 d Bv: M Ysaquirre	Drilling Equipment: 7720DT							
Rev	view	ved By: J. Ruark	Sampler Type: 5' Macrocore							
Depth (ft bgs)	Sample Interval	Lithologic Des	scription	nscs	USCS Graphic	Water Level	% Recovery	PID (ppmv)	Sample ID	Sample Analyzed
0 -		0.0 - 5.0': No Recovery.					0			
5- - -		5.0 - 5.5': Poorly graded SAND (90% sand, 10% gra brown, moist, no odor. 5.5 - 10.0': No Recovery.	avel), coarse sand, fine and coarse gravel,	SP			10		B-14-5.0	
10 — - - - -		10.0 - 10.4': Poorly graded SAND (90% sand, 10% gravel, brown, moist, no odor. 10.4 - 15.0': No Recovery.	gravel), coarse sand, fine and coarse	SP	DC:E		10	42.5	B-14-10.0	

Completion Information									
Temporary Well Casing Diameter (in):	N/A	Surface Seal:	N/A						
Temporary Well Screened Interval (ft bgs):	N/A	Ground Surface Elevation (ft):	N/A						
Boring Abandonment:	Bentonite	Surveyed Location: X: N/A	Y: N/A						

ML

100 6.0

0.0

0.0

B-14-15.0 B-140-15.0

B-14-20.0

B-140-20.0

15.0 - 20.0': Sandy SILT (85% silt, 15% sand), fine sand, moist, dark gray, no odor. Organic material and woody debris and shell fragments at 19.5 to 20.0'.

15

20

		FARALLON	L	og of Bori	ng:	В	-15	5		Page 1 of 1	
Clie Proj Loca Fara Log Rev	nt: jec ati allo ge	 CC Cole and Son's Fmr Evergreen Fuel Facilities Shelton, Washington PN: 863-001 d By: M. Ysaguirre wed By: J. Ruark 	Date/Time Started: Date/Time Completed: Drilling Company: Drilling Method: Drilling Equipment: Drilling Operator: Sampler Type:	10/27/22 1525 : 10/27/22 1600 Holt Direct Push 7720DT Louie Fehner 5' Macrocore		Deptl Borir Total	h to N ng Di Bori	Wate amet ing D	r ATD (er (in): Pepth (f	ft bgs): 5.5 N/A t bgs): 20.0	
Depth (ft bgs)	Sample Interval	Lithologic Des	scription		nscs	USCS Graphic	Water Level	% Recovery	PID (ppmv)	Sample ID	Sample Analyzeu
0	1	0.0 - 5.0': Cleared to 5.0' bgs for utilities.						100			
		5.0 - 5.5': Poorly graded SAND (90% sand, 10% gra brown, moist, no odor. 5.5 - 6.5': Silty SAND (70% sand, 20% silt, 10% gra brown, wet, no odor. Gray at 6.3' to 6.5'. 6.5 - 10.0': No Recovery.	avel), coarse sand, fine an vel), coarse sand, fine ar	nd coarse gravel, Id coarse gravel,	SP SM		¥	30	42.0	B-15-5.0	
10		10.0 - 11.0': Silty SAND (70% sand, 20% silt, 10% g gravel, brown, no odor. Wet at 10.5'. 11.0 - 15.0': No Recovery.	gravel), coarse sand, fine	and coarse	 			20	4.9	B-15-10.0 B-150-10.0	
15		15.0 - 16.5': Silty SAND (70% sand, 20% silt, 10% o gravel, wet, brown, no odor. 16.5 - 20.0': No Recovery.	gravel), coarse sand, fine	and coarse	SM			30	0.0	B-15-15.0 B-150-15.0	

Completion Information						
Temporary Well Casing Diameter (in):	N/A	Surface Seal:	N/A			
Temporary Well Screened Interval (ft bgs):	N/A	Ground Surface Elevation (ft):	N/A			
Boring Abandonment:	Bentonite	Surveyed Location: X: N/A	Y: N/A			

FARALLON CONSULTING	Log of Bori	ng: E	3-16		Page 1 of 1
Client:CC Cole and Son'sProject:Fmr Evergreen Fuel FacilityLocation:Shelton, WashingtonFarallon PN:863-001Logged By:M. YsaguirreReviewed By:J. Ruark	Date/Time Started:10/26/22 1353Date/Time Completed:10/26/22 1422Drilling Company:HoltDrilling Method:Direct PushDrilling Equipment:7720DTDrilling Operator:Louie FehnerSampler Type:5' Macrocore	Dep Bor Tot	oth to Wa ing Diam al Boring	iter ATD neter (in) I Depth ((ft bgs): 6.5 : N/A ft bgs): 20.0
Depth (ft bgs) Sample Interval Sample Sample	cription	USCS USCS Graphic	Water Level	PID (ppmv)	Samble ID Sample
0 0.0 - 5.0': Cleared to 5.0' bgs for utilities. 5 5.0 - 6.5': Poorly graded GRAVEL (100% gravel), co 6.5 - 7.0': Poorly graded SAND (90% sand, 5% silt, 9) 10 6.5 - 7.0': No Recovery. 10 10.0 - 12.0': Poorly graded SAND with gravel (80% scoarse gravel, dark gray, moist, no odor. Wet from 1 10 12.0 - 15.0': No Recovery.	Parse gravel, gray, dry, no odor. 5% gravel), coarse sand, fine gravel, dark	GP SP SP SP		00 01 16.4 03.2	B-16-7.0
15 15 15.0 - 16.0': Poorly graded SAND with gravel (80% s coarse gravel, dark gray, moist, no odor. 16.0 - 19.5': Silty SAND (60% sand, 35% silt, 5% gravel, dark gray. Slight petroleum-like odor at 16.0'. 20 19.5 - 20.0': No Recovery.	sand, 20% gravel), coarse sand, fine and avel) coarse sand, fine and coarse gravel,	SM	9	0	B-16-16.0 B-16-19.5

Completion Information										
Temporary Well Casing Diameter (in):	N/A	Surface Seal:	N/A							
Temporary Well Screened Interval (ft bgs):	N/A	Ground Surface Elevation (ft):	N/A							
Boring Abandonment:	Bentonite	Surveyed Location: X: N/A	Y: N/A							
Clie Pro Loc Fara Log Rev	ent: jec ati allc ge	CC Cole and Son's CC Cole and Son's Fmr Evergreen Fuel Facility on: Shelton, Washington DN: 863-001 d By: M. Ysaguirre wed By: J. Ruark	Date/Time Started:10/26/2Date/Time Completed:10/26/2Drilling Company:HoltDrilling Method:Direct FDrilling Equipment:77200Drilling Operator:Louie FSampler Type:5' Macr	f Boring: 2 1450 2 1500 Push ehner ocore	B Dept Borin Total	h to V ng Dia	7 Wate amet ng D	r ATD (er (in): epth (f	Page 1 of 1 ft bgs): N/E N/A t bgs): 20.0	
--	----------------------------------	--	--	---	-----------------------------	------------------	---------------------------	--------------------------------	--	-----------------
Depth (ft bgs)	Sample Interval	Lithologic Des	scription	RSCS	USCS Graphic	Water Level	% Recovery	PID (ppmv)	Sample ID	Sample Analyzed
0		0.0 - 5.0': Clear to 5.0' bgs for utilities. No recovery 5.0 - 6.5': Poorly graded SAND (95% sand, 5% grav odor. Woody debris present at 6.1'. Cobbles and ro 6.5 - 10.0': No Recovery.	from hand auger due to loose mai rel), fine sand, fine gravel, brown, ck at 6.3'.	erial. dry, no SP			0 30	18.1	B-17-5.0	
- 10		10.0 - 10.6': Poorly graded SAND (95% sand, 5% g no odor. 10.6 - 11.2': Silty SAND (60% sand, 35% silt, 5% g odor. 11.2 - 15.0': No Recovery.	ravel), fine sand, fine gravel, brow avel), coarse sand, fine gravel, m	n, dry, SP SM pist, no			25	9.5		
15		15.0 - 16.0': Poorly graded SAND (95% sand, 5% g no odor. 16.0 - 19.0': Silty SAND (60% sand, 35% silt, 5% gr moist, no odor. 19.0 - 20.0': No Recovery.	ravel), fine sand, fine gravel, brow avel), coarse sand, fine gravel, br	n, dry, SP own, SM			80	2.3	B-17-16.0 B-17-19.0	

Completion Information								
Temporary Well Casing Diameter (in):	N/A	Surface Seal:	N/A					
Temporary Well Screened Interval (ft bgs):	N/A	Ground Surface Elevation (ft):	N/A					
Boring Abandonment:	Bentonite	Surveyed Location: X: N/A	Y: N/A					

		FARALLON	L	og of Bori	ing:	В	-18	3		Page 1 of 1	
Clie Pro Loc Far	ent: jec :ati allo	CC Cole and Son's t: Fmr Evergreen Fuel Facility on: Shelton, Washington on PN: 863-001	Date/Time Started: Date/Time Completed: Drilling Company: Drilling Method: Drilling Equipment:	10/27/22 0945 10/27/22 1005 Holt Direct Push 7720DT		Depti Borir Total	h to V ng Di I Bori	Wate amet ing D	r ATD (er (in): epth (f	(ft bgs): 10.0 N/A it bgs): 20.0	
Log Rev	gge /iev	d By: M. Ysaguirre wed By: J. Ruark	Drilling Operator: Sampler Type:	Louie Fehner 5' Macrocore							
Depth (ft bgs)	Sample Interval	Lithologic De	scription		nscs	USCS Graphic	Water Level	% Recovery	PID (ppmv)	Sample ID	Sample Analyzed
0 - - 5 -		0.0 - 5.0': Cleared to 5.0' bgs for utilities. 5.0 - 5.5': Poorly graded SAND (90% sand, 10% gr. reddish brown, dry, no odor. 5.5 - 10.0': No Recovery.	avel), fine sand, fine and c	oarse gravel,	SP			100	4.9		
- - 10 - -		10.0 - 12.0': Poorly graded SAND (90% sand, 10% reddish brown, dry, no odor. Wet from 11.0 to 12.0' 12.0 - 15.0': Silty SAND with gravel (70% sand, 15% coarse gravel, reddish brown, wet, no odor. Transiti present at 14.7'.	gravel), fine sand, fine an % silt, 15% gravel), coarse ion to gray at 13.5'. Organ	d coarse gravel, sand, fine and ic material	SP SM		×	100	0.3		
15		 15.0 - 15.5': Poorly graded SAND (90% sand, 10% reddish brown, dry, no odor. 15.5 - 20.0': Silty SAND with gravel (70% sand, 15% coarse gravel, reddish brown, wet. 	gravel), fine sand, fine an % silt, 15% gravel), coarse	d coarse gravel, sand, fine and	SP SM			100	0.0	B-18-16.0	

Completion Information									
Temporary Well Casing Diameter (in):	N/A	Surface Seal:	N/A						
Temporary Well Screened Interval (ft bgs):	N/A	Ground Surface Elevation (ft):	N/A						
Boring Abandonment:	Bentonite	Surveyed Location: X: N/A	Y: N/A						

(

li

B-18-20.0

FARALLON CONSULTING	Log of Bor	ing:	B	-19		Page 1 of 1
Client:CC Cole and Son'sProject:Fmr Evergreen Fuel FacilityLocation:Shelton, WashingtonFarallon PN:863-001Logged By:M. YsaguirreReviewed By:L Ruark	Date/Time Started:10/27/22 1100Date/Time Completed:10/27/22 1140Drilling Company:HoltDrilling Method:Direct PushDrilling Equipment:7720DTDrilling Operator:Louie FehnerSampler Type:5' Macrocore		Depth Borin Total	n to Wa g Dian Boring	ter ATD eter (in) Depth ((ft bgs): 10.0 : N/A ft bgs): 25.0
Lithologic De	scription	nscs	USCS Graphic	Water Level	PID (ppmv)	Sample ID
0 0.0 -5.0': Cleared to 5.0' bgs for utilities.				10	0	
5- 5- 5- 5- 5.0 - 6.0': Well graded SAND (95% sand, 5% grave gravel, brown, dry, no odor. 6.0 - 10.0': No Recovery.	el), fine to coarse sand, fine and coarse	sw 	• • • • • • • • • • • •	2	0.0	B-19-5.0
10 10.0 - 13.5': Poorly graded SAND with silt (80% sau fine and coarse gravel, brown, wet, no odor. Transi	nd, 10% silt, 10% gravel), coarse sand, tion to gray at 12.0'.	SP- SM		▼ 7	0.0	B-19-10.0
13.5 - 15.0': No Recovery. 15 15.0 - 15.5': Poorly graded SAND with silt (80% sat fine and coarse gravel, brown, wet, no odor. 15.5 - 20.0': No Recovery.	nd, 10% silt, 10% gravel), coarse sand,	SP- SP- SM- SM-	<u> </u>	1	כ	B-19-15.0
20 20.0 - 25.0': Poorly graded SAND with silt (80% sau fine and coarse gravel, gray, moist, no odor. Peat f	nd, 10% silt, 10% gravel), coarse sand, rom 23.0 to 23.5'.	SP- SM		10	0 0.0	B-19-20.0 B-190-20.0

Completion Information								
Temporary Well Casing Diameter (in):	N/A	Surface Seal:	N/A					
Temporary Well Screened Interval (ft bgs):	N/A	Ground Surface Elevation (ft):	N/A					
Boring Abandonment:	Bentonite	Surveyed Location: X: N/A	Y: N/A					

		FARALLON	Log of Bor	ing:	В	-2()		Page 1 of 1	
Clie	ent:	CC Cole and Son's	Date/Time Started: 10/27/22 0905		Dept Bori	h to V na Di	Wate	r ATD (er (in):	ft bgs): 15.0	
	jec ati	n: Shelton Washington	Drilling Company: Holt		Tota	l Bori	ing D	epth (f	t bgs): 20.0	
Far	allo	on PN: 863-001	Drilling Method: Direct Push							
		d By: M Vsaquirre	Drilling Equipment: 7720DT							
Reviewed By: I Ruark			Drilling Operator: Louie Fehner Sampler Type: 5' Macrocore							
Depth (ft bgs)	Sample Interval	Lithologic Des	scription	nscs	USCS Graphic	Water Level	% Recovery	PID (ppmv)	Sample ID	Sample Analyzed
0		0.0 - 5.0': Cleared to 5.0' bgs for utilities.					0			
5 - - -		5.0 - 7.0': Poorly graded SAND with silt (80% sand, 15% silt, 5% gravel), coarse sand, fine gravel, reddish brown, moist, no odor. SP-SM 7.0 - 7.5': Silty SAND (60% sand, 35% silt, 5% gravel), fine sand, fine gravel, reddish brown, moist, no odor. SM 7.5 - 10.0': No Recovery. SM						0.0	B-20-5.0	
- 10		10.0 - 13.0': Silty SAND (70% sand, 25% silt, 5% gr gravel, gray, moist. Wet from 11.0 to 12.0'.	avel), coarse sand, fine and coarse	SM			80		B-20-10.0	
-	$\left \right\rangle$	13.0 - 14.0': Silty SAND (70% sand, 25% silt, 5% gr gravel, gray, dry, no odor. Woody debris present at 14.0 - 15.0': No Recovery.	ravel), coarse sand, fine and coarse 13.5'. 	SM 		-		0.0		
- כו - -		15.0 - 19.0': Sandy SILT (60% silt, 35% sand, 5% g odor. Reddish brown tinge at 18.5'.	ravel), fine sand, fine gravel, gray, wet, no	ML			80	0.0	B-20-15.0	
20_	$ \rangle$	19.0 - 20.0': No Recovery.								

Completion Information								
Temporary Well Casing Diameter (in):	N/A	Surface Seal:	N/A					
Temporary Well Screened Interval (ft bgs):	N/A	Ground Surface Elevation (ft):	N/A					
Boring Abandonment:	Bentonite	Surveyed Location: X: N/A	Y: N/A					

	-	FARALLON	Lo	og of Bori	ng:	В	-21	1		Page 1 of 1	
Clie Pro Loc Far Loc	ent: ojec cati allo gge /iev	CC Cole and Son's t: Fmr Evergreen Fuel Facility on: Shelton, Washington on PN: 863-001 d By: M. Ysaguirre wed By: J. Ruark	Date/Time Started: Date/Time Completed: Drilling Company: Drilling Method: Drilling Equipment: Drilling Operator: Sampler Type:	10/27/22 1225 10/27/22 1310 Holt Direct Push 7720DT Louie Fehner 5' Macrocore		Depti Borir Total	h to N ng Di Bori	Wate amet ing D	r ATD (er (in): epth (f	ft bgs): 5.0 N/A t bgs): 20.0	
Depth (ft bgs)	Sample Interval	Lithologic Des	scription		nscs	USCS Graphic	Water Level	% Recovery	PID (ppmv)	Sample ID	Sample Analyzed
0		0.0 - 5.0': Cleared to 5.0' bgs for utilities. Well grade gravel), fine and coarse sand and gravel, dark brow 5.0 - 7.0': Poorly graded GRAVEL with sand (80% g coarse gravel, brown, wet. Sheen present at 7.0'. 7.0 - 10.0': No Recovery.	ed SAND with gravel (80% n, moist, no odor. gravel, 20% sand), coarse	sand, 20%	SW GP		¥	40		B-21-3.0 B-21-7.0	
- 10 - - -		10.0 - 13.0': Silty SAND (70% sand, 20% silt, 10% g gravel, gray, wet, petroleum-like odor. Peat present	gravel), coarse sand, fine at 11.0 to 11.3'.	and coarse				60	102.5 9.6	B-21-11.0 B-21-13.0	
- 15 –	$\left \right $	15.0 - 20.0': No Recovery.									

Completion Information									
Temporary Well Casing Diameter (in):	N/A	Surface Seal:	N/A						
Temporary Well Screened Interval (ft bgs):	N/A	Ground Surface Elevation (ft):	N/A						
Boring Abandonment:	Bentonite	Surveyed Location: X: N/A	Y: N/A						

Client: CC Cole and Son's Project: Fmr Evergreen Fuel Facility Location: Shelton, Washington Farallon PN: 863-001 Logged By: M. Ysaguirre	Log of BorDate/Time Started:10/27/22 1330Date/Time Completed:10/27/22 1345Drilling Company:HoltDrilling Method:Direct PushDrilling Equipment:7720DTDrilling Operator:Louie Fehner	ing:	B- Depth Boring Total I	to Wat g Diam Boring	er ATD eter (in) Depth (Page 1 of 1 (ft bgs): 6.5 : N/A ft bgs): 20.0
Lithologic Des	scription	RSCS	USCS Graphic	Water Level % Recovery	PID (ppmv)	Sample ID Sample
0 0.0 - 5.0': Cleared to 5.0' bgs for utilities. 5 5.0 - 6.5': Poorly graded GRAVEL with sand (80% g fine sand, brown, dry, no odor. 6.5 - 7.0': Silty SAND with gravel (70% sand, 15% s coarse gravel, gray, wet, petroleum-like odor preser 7.0 - 10.0': No Recovery.	ilt, 15% gravel), coarse sand, fine and t	GP		10	1.3	B-22-7.0
10 10.0 - 11.0': Silty SAND with gravel (70% sand, 15% coarse gravel, gray, wet, strong petroleum-like odor 11.0 - 15.0': No Recovery.	5 silt, 15% gravel), coarse sand, fine and			20	22.9	B-22-11.0
15 15.0 - 17.0': Silty SAND with gravel (70% sand, 15% coarse gravel, gray, wet, faint petroleum-like odor. 17.0 - 19.0': Silty SAND (60% sand, 35% silt, 5% gr gravel, dark gray, wet, faint petroleum-like odor. Mo 19.0 - 20.0': No Recovery. Refusal at 20.0' bgs.	6 silt, 15% gravel), coarse sand, fine and avel), coarse sand, fine and coarse ist at 19.0'. No odor from 17.5 to 19.0'.	SM SM		80	0.6	B-22-15.0

Completion Information								
Temporary Well Casing Diameter (in):	N/A	Surface Seal:	N/A					
Temporary Well Screened Interval (ft bgs):	N/A	Ground Surface Elevation (ft):	N/A					
Boring Abandonment:	Bentonite	Surveyed Location: X: N/A	Y: N/A					

FARALLON	Log of Bori	ng:	B	-23	3		Page 1 of 1
Client: CC Cole and Son's	Date/Time Started: 10/27/22 1416 Date/Time Completed: 10/27/22 1445		Depti Borin	h to V ng Dia	Vate amet	r ATD (er (in):	(ft bgs): 5.5 N/A
Location: Shelton, Washington	Drilling Company: Holt		Total	Bori	ng D	epth (f	t bgs): 15.0
Farallon PN: 863-001	Drilling Method: Direct Push Drilling Equipment: 7720DT						
Logged By: M. Ysaguirre	Drilling Operator: Louie Fehner						
Reviewed By: J. Ruark	Sampler Type: 5' Macrocore						
Depth (ft bgs) Sample Interval A Depth (ft bgs) Sample Interval	scription	nscs	USCS Graphic	Water Level	% Recovery	PID (ppmv)	Sample ID Sample
0 0.0 - 5.0': Cleared to 5.0' bgs for utilities. 5 5.0 - 5.5': Poorly graded SAND (90% sand, 10% gr. brown, dry, no odor. 5.5 - 6.0': Poorly graded GRAVEL (100% gravel), fi 6.0 - 10.0': No Recovery.	avel), coarse sand, fine and coarse gravel, 	SP GP			20	54.8	
10 10.0 - 12.0': Poorly graded SAND with gravel (80% coarse gravel, dark gray, wet. Transition to light gra 12.0 - 15.0': No Recovery.	sand, 20% gravel), coarse sand, fine and ay at 11.5'. Woody debris at 11.0'.	SP			40	170.4	B-23-10.0 B-23-11.5 B-230-11.5

Completion Information										
Temporary Well Casing Diameter (in):	N/A	Surface Seal:	N/A							
Temporary Well Screened Interval (ft bgs):	N/A	Ground Surface Elevation (ft):	N/A							
Boring Abandonment:	Bentonite	Surveyed Location: X: N/A	Y: N/A							

	FARALLON	Log of Bor	ing:	В	-24	1		Page 1 of 1
Clier Proje Loca Fara	 t: CC Cole and Son's ect: Fmr Evergreen Fuel Facility tion: Shelton, Washington llon PN: 863-001 	Date/Time Started:10/27/22 1500Date/Time Completed:10/27/22 1520Drilling Company:HoltDrilling Method:Direct PushDrilling Equipment:7720DT		Depti Borir Total	h to N ng Di Bori	Wate amet ing D	r ATD (ter (in): Depth (1	(ft bgs): 5.0 N/A it bgs): 15.0
Logg	ed By: M. Ysaguirre	Drilling Operator: Louie Fehner						
Revi	ewed By: J. Ruark	Sampler Type: 5' Macrocore	1					
Depth (ft bgs)	Lithologic De	scription	uscs	USCS Graphic	Water Level	% Recovery	PID (ppmv)	Sample ID
	0.0 - 5.0': Cleared to 5.0' bgs for utilities. 5.0 - 7.0': Silty SAND (80% sand, 15% silt, 5% gra dark gray, wet, no odor. Strong petroleum-like odor 7.0 - 10.0': No Recovery.	vel), coarse sand, fine and coarse gravel, r at 6.0'.	SM		¥	40	255.5 195.4	B-24-6.0 B-24-7.0
	10.0 - 15.0': Poorly graded SAND (90% sand, 10% brown, wet, no odor.	gravel), coarse sand, fine gravel, reddish	SP			100	0.9	B-24-10.0

Completion Information											
Temporary Well Casing Diameter (in):	N/A	Surface Seal:	N/A								
Temporary Well Screened Interval (ft bgs):	N/A	Ground Surface Elevation (ft):	N/A								
Boring Abandonment:	Bentonite	Surveyed Location: X: N/A	Y : N/A								

ATTACHMENT B LABORATORY ANALYTICAL REPORTS

PERFORMANCE SOIL SAMPLING - 2022

Former Evergreen Fuel Facility 661 East Pine Street Shelton, Washington

Farallon PN: 863-001

3322 South Bay Road NE • Olympia, WA 98506-2957

July 26, 2023

Javan Ruark Farallon Consulting 975 5th Avenue NW Issaquah, WA 98027

Dear Mr. Ruark:

Please find enclosed the analytical data report for the 661 E Pine St. Project located in Shelton, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

2 1 Um

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

Libby Environmen	tal, Ir	IC.	(Chain	of C	ust	ody F	Recor	d				١	www.LibbyE	nvironm	ental.com	
3322 South Bay Road NE Olympia, WA 98506	Ph: Fax:	360-352-2 360-352-4	2110 154			Date	e: 10	126122				Pag	je:	ι	01	f 2	
Client: Farallon Consul	Iting					Proj	ect N	lanager:	Javar	Rua	rK						
Address: 975 5th Ave Nu	3					Project Name: 661 E Pine St											
City: Issaquah		State: W	A Zip	98027		Location: Statera, 661 E Pine St City, Sta								tate: Shelton, WA			
Phone:		Fax:				Coll	ector	mich	ael Ys	saquire	e	Dat	e of C	Collec	tion: 10/2	6/22	
Client Project # 863-001						Ema	ail:	Jruark 6) farall	Ion con	sultin	q.con	n				
THE REAL		T	Sample	Containe	er joe	820 00 820 00	augher	2100 57 800 57 800 17 190		A Sheld	PARANS AND	8210 vo	8210			10- Made Per Jaw Mail.	31-22 Changes an Uia
Sample Number	Depth	11me	Solu		+	2 2 2	\sim		<u> </u>		$\frac{\sqrt{\sqrt{\sqrt{2}}}}{\sqrt{2}}$	S		\leftarrow		votes	
2 B all = 7.0	7.0	1412	1	Jar, vor			~	Ý					JK		HOLD	1. (1994)	
3 B- \$16 - 160	1.0	1418						X							HULD		
4 B-\$16-195	19.5	1422				-		X				-				and a second	
5 3-015-5.0	5.0	1501				X	X	×									
6 B- Ø14-5.0	5.0	1459				X	X	X				×	TR				
7 8-117-5.0	5.0	1457						X							HOLD		
8 3-017-16.0	16.0	1440						X									
9 13-017-19.0	19.0	1451						X									
10 3-011-5.0	5.0	1122				X	X	×									
11 3-011-6.0	6.0	1150				X	X	X									
12 B-Ø11-11.0	11.0	1157				X	X	×									
13 3-011-16.0	16.0	1205				X	X	X									
14 B- \$12- 5.0	5.0	1234				X	X	X		×							
15 3-112-9.0	9.0	1236				X	X	X		X							
16 B-013-4.0	4.0	1249					X			X							
17 13-013-6.0	6.0	1256	1	1			(\mathbf{X})			X					48 h	TAT I	Adde 2 1-2-22
Relinquished by:	?/	10/2	Date / Time 6/22 1625	Received by:	ett.a	du	5	D 10-26-	ate / Time ZZ 1629	Sa Good Co	mple R	Receip Y	nt N	Rem	arks: 🏻 🎙	r Java	email
Relinquished by:			Date / Time	Received by:				D	ate / Time	Cooler To	emp.		°C				
Relinquished by: Date / Time Received by:							D	ate / Time	Total Nu Conta	mber of ners		0	TAT	: 24HR	48HR	5-DAY	
						nd manage and	attomou	food to be datam	ningd hu o sour	t of low					lateibution: Whit	lah Ya	Deleterter

Libby Environmer	Libby Environmental, Inc. 322 South Bay Road NE Ph: 360-352-2110				Chain of Custody Record							d	www.LibbyEnviro				onmental.com						
Olympia, WA 98506	Ph: Fax:	360-352-	2110 4154				Date:	10	126	122							Pag	e:		2	(of	2
Client: Farallon Consult	ting						Proje	ct Ma	inag	er:	Jav	an	R	Jari	~								
Address: 975 5th Ave	NW					Project Name: (261 E Pine St																	
City: TSSaauah		State: V	JA Zip:	98027			Location: 661 E Pige St City, Sta								ate: Shelton. WA								
Phone:		Fax:					Colle	ctor:	M	icho	el	YS	000	irre			Date	e of (Colle	ction	: 10/	261	22
Client Project # 863-001							Email	I: J	rua	Ka	æ-f	ara	llon	cor	301	tine		om					
Sample Number	Depth	Time	Sample Type	Container Type	10	5 826 5 826	4 Na	AL C	000 1000 1000 1000	Rep. 12	R C C	10 00 X	SASA	101 00 00 00 00 00 00 00 00 00 00 00 00	Att BA	10 10 CS	mivol	8210			Field	Per	10-31-22 ade changes Javan Vin 1. 85
1 3-013-8.0	8.0	1300	SOIL	Jar, VOA				X		X				X									
2 B-013-10.0	10.0	1305	1	T			C	$\langle \rangle$					(\mathcal{D}						48	hr T	AT	Added 11-2-22
3																						Per	Javan uig il
4																							
5																							
6																							
7																							
8																							
9																				1			
10																							
11																							
12																							
13																							
14																							
15																				\square			
16																							
17									+		1												
Relinquished by:	Anto	h.	Date / Time	Received by:	11	1.	1	1.	_	Da	te / T	ime		Sam	ple	Rec	eipt		Rer	nark	S:		
Bolizatikhad bur	- 0001	10	1625 Data / Timo	- Mil	and	in	de	n	10-1	26-2	12/1	629	Good	Cond	ition?		Y	N °C					
rteinioaisneu by.				Novou by.						Da	6/1	me	Samp	le Ter	np.		_	°C					
Relinquished by: Date / Time			Date / Time	Received by:	7: Date / Time					ïme	Total Number of Containers				TAT: 24HR 48HR 5-DAY								

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay. Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a court of law.

Distribution: White - Lab, Yellow - Originator

661 E PINE ST PROJECT Farallon Consulting Shelton, Washington Libby Project # L22J130 Client Project # 863-001 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method	B-13-4.0	B-13-8.0							
1 I		Blank									
Date Sampled		N/A	10/26/2022	10/26/2022							
Date Analyzed	PQL	11/3/2022	11/3/2022	11/3/2022							
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)							
Benzene	0.02	nd	nd	nd							
Toluene	0.10	nd	nd	nd							
Ethylbenzene	0.05	nd	nd	nd							
Total Xylenes	0.15	nd	nd	nd							
Surrogate Recovery	Acceptable Limits (%)										
Dibromofluoromethane	27-188	101	95	101							
1,2-Dichloroethane-d4	17-212	99	98	106							
Toluene-d8	41-142	104	98	99							
4-Bromofluorobenzene	47-167	88	86	97							
"nd" Indicates not detected at listed detection limit.											
"int" Indicates that inter	rference pre	vents determ	ination.								

Analyses of BTEX (EPA Method 8260D) in Soil

661 E PINE ST PROJECT Farallon Consulting Shelton, Washington Libby Project # L22J130 Client Project # 863-001 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Soil

	Matrix Spike Sample Identification: L22J130-19												
		Date	e Analyzed:	11/3/2022									
	Spiked	MS	MSD	MS	MSD	RPD	Recovery	Data					
	Conc.	Response	Response	Recovery	Recovery		Limits	Flag					
	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)	-					
Benzene	0.25	0.28	0.28	113	112	1.4	65-126						
Toluene	0.25	0.29	0.27	116	110	6.0	67-136						
Ethylbenzene	0.25	0.27	0.26	109	105	4.0	55-140						
Total Xylenes	0.75	0.90	0.84	120	112	6.4	43-149						
Surrogate Recovery (%)				MS	MSD								
Dibromofluoromethane				103	103		27-188						
1,2-Dichloroethane-d4				105	108		17-212						
Toluene-d8				98	97		41-142						
4-Bromofluorobenzene				93	92		47-167						
A COLDEADIE DODIO	E0/												

ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Alex Randolph

Laboratory Control Sample

Dat	e Analyzed: 11/3/2022				
	Spiked	LCS	LCS	Recovery	Data
	Conc.	Response	Recovery	Limits	Flag
	(mg/kg)	(mg/kg)	(%)	(%)	
Benzene	0.25	0.27	109	65-118	
Toluene	0.25	0.26	106	68-125	
Ethylbenzene	0.25	0.27	108	49-144	
Total Xylenes	0.75	0.85	113	38-140	
Surrogate Recovery					
Dibromofluorometha	ne		98	27-188	
1,2-Dichloroethane-d	4		98	17-212	
Toluene-d8			97	41-142	
4-Bromofluorobenzer	ne		92	47-167	

661 E PINE ST PROJECT Farallon Consulting Shelton, Washington Libby Project # L22J130 Client Project # 863-001 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method	B-20-5.0	B-15-5.0	B-14-5.0	B-11-5.0	B-11-5.0				
		Blank					Dup				
Date Sampled		N/A	10/26/2022	10/26/2022	10/26/2022	10/26/2022	10/26/2022				
Date Analyzed	PQL	11/1/2022	11/1/2022	11/1/2022	11/1/2022	11/1/2022	11/1/2022				
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)				
Benzene	0.02	nd	nd	nd	nd	nd	nd				
Toluene	0.10	nd	nd	nd	nd	nd	nd				
Ethylbenzene	0.05	nd	nd	nd	nd	nd	nd				
Total Xylenes	0.15	nd	nd	nd	nd	nd	nd				
Gasoline	10	nd	nd	nd	nd	nd	nd				
Surrogate Recovery	Acceptable										
	Limits (%)										
Dibromofluoromethane	27-188	72	73	73	73	72	71				
1,2-Dichloroethane-d4	17-212	54	53	53	56	52	51				
Toluene-d8	41-142	89	87	90	89	89	88				
4-Bromofluorobenzene	47-167	151	146	148	149	154	152				
"nd" Indicates not detected at listed detection limit.											
"int" Indicates that inte	erference pre	vents determ	nination.								

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260D) in Soil

661 E PINE ST PROJECT Farallon Consulting Shelton, Washington Libby Project # L22J130 Client Project # 863-001 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

		D 11 (0	D 11 11 0	D 11 1 (0	D 10 5 0	D 10 0 0	<u> </u>				
Sample Description		B-11-6.0	B-11-11.0	B-11-16.0	B-12-5.0	B-12-9.0					
Data Samulad		10/26/2022	10/26/2022	10/26/2022	10/26/2022	10/26/2022					
Date Sampled		10/20/2022	10/20/2022	10/20/2022	10/20/2022	10/20/2022					
Date Analyzed	PQL	11/1/2022	11/1/2022	11/1/2022	11/1/2022	11/1/2022					
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)					
Benzene	0.02	nd	nd	nd	nd	nd					
Toluene	0.10	nd	nd	nd	nd	nd					
Ethylbenzene	0.05	nd	nd	nd	nd	nd					
Total Xylenes	0.15	nd	nd	nd	nd	nd					
Gasoline	10	160	12	nd	nd	nd					
Surrogate Decovery	Acceptable										
Surlogate Recovery	Limits (%)										
Dibromofluoromethane	27-188	70	68	69	68	70					
1,2-Dichloroethane-d4	17-212	49	48	51	49	48					
Toluene-d8	41-142	93	90	87	88	89					
4-Bromofluorobenzene	47-167	196 S	156	149	147	147					
"nd" Indicates not deter	"nd" Indicates not detected at listed detection limit.										
"S" Spike recovery outside accepted recovery limits.											
"int" Indicates that inte	rference pre	vents determ	ination.								

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260D) in Soil

661 E PINE ST PROJECT Farallon Consulting Shelton, Washington Libby Project # L22J130 Client Project # 863-001 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

QA/QC for Volatile Organic Compounds by EPA Method 8260D in Soil

	Matrix Spike Sample Identification: B-11-5.0												
		Date	e Analyzed:	11/1/2022									
	Spiked	MS	MSD	MS	MSD	RPD	Recovery	Data					
	Conc.	Response	Response	Recovery	Recovery		Limits	Flag					
	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)	_					
Benzene	0.25	0.19	0.19	78	76	2.9	65-126						
Toluene	0.25	0.20	0.19	79	77	2.0	67-136						
Ethylbenzene	0.25	0.28	0.28	111	112	0.7	55-140						
Total Xylenes	0.75	0.88	0.89	117	119	1.2	43-149						
Surrogate Recovery (%)				MS	MSD								
Dibromofluoromethane				72	71		27-188						
1,2-Dichloroethane-d4				49	49		17-212						
Toluene-d8				90	89		41-142						
4-Bromofluorobenzene				155	159		47-167						
A COEDTADIE DDD IC 2	E O /												

ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Alex Randolph

Laboratory Control Sample

D.t. A	11/1/2022				
Date Analyzed:	11/1/2022				
	Spiked	LCS	LCS	Recovery	Data
	Conc.	Response	Recovery	Limits	Flag
	(mg/kg)	(mg/kg)	(%)	(%)	
Benzene	0.25	0.18	71	65-118	
Toluene	0.25	0.17	68	68-125	
Ethylbenzene	0.25	0.24	95	49-144	
Total Xylenes	0.75	0.75	100	38-140	
Surrogate Recovery					
Dibromofluoromethane			73	27-188	
1,2-Dichloroethane-d4			54	17-212	
Toluene-d8			91	41-142	
4-Bromofluorobenzene			158	47-167	

661 E PINE ST PROJECT Farallon Consulting Shelton, Washington Libby Project # L22J130 Client Project # 863-001 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample	Date	Surrogate	Diesel	Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)
Method Blank	11/2/2022	96	nd	nd
B-20-5.0	11/2/2022	115	nd	nd
B-20-5.0 Dup	11/2/2022	112	nd	nd
B-16-16.0	11/2/2022	126	120	nd
B-16-19.5	11/2/2022	103	nd	nd
B-15-5.0	11/2/2022	107	nd	nd
B-14-5.0	11/2/2022	99	nd	nd
B-17-16.0	11/2/2022	int	800	nd
B-17-19.0	11/2/2022	106	nd	nd
B-11-5.0	11/2/2022	103	nd	nd
B-11-5.0 Dup	11/2/2022	103	nd	nd
B-11-6.0	11/2/2022	int	140	nd
B-11-11.0	11/2/2022	133	78	nd
B-11-16.0	11/2/2022	108	nd	nd
B-12-5.0	11/2/2022	107	nd	nd
B-12-9.0	11/2/2022	94	nd	nd
B-13-8.0	11/2/2022	108	nd	nd
Practical Quantitation Limit			50	250

Analyses of Diesel & Oil w/Silica Gel Clean-Up (NWTPH-Dx/Dx Extended) in Soil

"nd" Indicates not detected at the listed detection limits.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Lucy Owens

661 E PINE ST PROJECT Farallon Consulting Libby Project # L22J130 Date Received 10/26/22 16:29 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By JA

Sample Receipt Checklist

Chain of Custody			
1. Is the Chain of Custody complete?	✓ Yes	🗌 No	
2. How was the sample delivered?	✓ Hand Delivered	Picked Up	Shipped
Log In			
3. Cooler or Shipping Container is present.	✓ Yes	🗌 No	N/A
4. Cooler or Shipping Container is in good condition.	✓ Yes	🗌 No	N/A
5. Cooler or Shipping Container has Custody Seals present.	Yes	✓ No	N/A
6. Was an attempt made to cool the samples?	✓ Yes	🗌 No	N/A
7. Temperature of cooler (0°C to 8°C recommended)	3.3	_°C	
8. Temperature of sample(s) (0°C to 8°C recommended)	14.4	°C	
9. Did all containers arrive in good condition (unbroken)?	✓ Yes	🗌 No	
10. Is it clear what analyses were requested?	✓ Yes	🗌 No	
11. Did container labels match Chain of Custody?	✓ Yes	🗌 No	
12. Are matrices correctly identified on Chain of Custody?	✓ Yes	🗌 No	
13. Are correct containers used for the analysis indicated?	✓ Yes	🗌 No	
14. Is there sufficient sample volume for indicated analysis?	✓ Yes	🗌 No	
15. Were all containers properly preserved per each analysis?	✓ Yes	🗌 No	
16. Were VOA vials collected correctly (no headspace)?	Yes	🗌 No	✓ N/A
17. Were all holding times able to be met?	✓ Yes	🗌 No	
Discrepancies/ Notes			
18. Was client notified of all discrepancies?	Yes	🗌 No	✓ N/A
Person Notified:		_	Date:
By Whom:		_	Via:
Regarding:		_	
19. Comments. B-17-5.0 only 4 oz jar, split into 20 mL	VOAs upon receipt.		

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Libby Environmental Sherry Chilcutt 3322 South Bay Road NE Olympia, WA 98506

RE: 661 E Pine St Work Order Number: 2211046

July 25, 2023

Attention Sherry Chilcutt:

Fremont Analytical, Inc. received 6 sample(s) on 11/2/2022 for the analyses presented in the following report.

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM) Sample Moisture (Percent Moisture)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Revision v1

CLIENT: Project: Work Order:	Libby Environmental 661 E Pine St 2211046	Work Order Sample Summary				
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received			
2211046-001	B-12-5.0	10/26/2022 12:34 PM	11/02/2022 9:35 AM			
2211046-002	B-12-9.0	10/26/2022 12:36 PM	11/02/2022 9:35 AM			
2211046-003	B-13-4.0	10/26/2022 12:49 PM	11/02/2022 9:35 AM			
2211046-004	B-13-6.0	10/26/2022 12:56 PM	11/02/2022 9:35 AM			
2211046-005	B-13-8.0	10/26/2022 1:00 PM	11/02/2022 9:35 AM			
2211046-006	B-13-10.0	10/26/2022 1:05 PM	11/02/2022 9:35 AM			

Case Narrative

WO#: **2211046** Date: **7/25/2023**

CLIENT:Libby EnvironmentalProject:661 E Pine St

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

7/25/2023: Revision 1 includes additional PAH analytes per client request.

Qualifiers & Acronyms

WO#: **2211046** Date Reported: **7/25/2023**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

- CCB Continued Calibration Blank
- CCV Continued Calibration Verification
- DF Dilution Factor
- DUP Sample Duplicate
- HEM Hexane Extractable Material
- ICV Initial Calibration Verification
- LCS/LCSD Laboratory Control Sample / Laboratory Control Sample Duplicate
- MCL Maximum Contaminant Level
- MB or MBLANK Method Blank
- MDL Method Detection Limit
- MS/MSD Matrix Spike / Matrix Spike Duplicate
- PDS Post Digestion Spike
- Ref Val Reference Value
- REP Sample Replicate
- RL Reporting Limit
- RPD Relative Percent Difference
- SD Serial Dilution
- SGT Silica Gel Treatment
- SPK Spike
- Surr Surrogate

Work Order: 2211046 Date Reported: 7/25/2023

Client: Libby Environmental				Collection	Date	e: 10/26/2022 12:34:00 PM
Project: 661 E Pine St						
Lab ID: 2211046-001				Matrix: So	oil	
Client Sample ID: B-12-5.0						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by	EPA Method 82	<u>70 (SIM)</u>		Batch	ID: ;	38380 Analyst: SK
Naphthalene	ND	22.6		µg/Kg-dry	1	11/4/2022 10:30:39 AM
2-Methylnaphthalene	ND	22.6		µg/Kg-dry	1	11/4/2022 10:30:39 AM
1-Methylnaphthalene	ND	22.6		µg/Kg-dry	1	11/4/2022 10:30:39 AM
Benz(a)anthracene	ND	22.6		µg/Kg-dry	1	11/4/2022 10:30:39 AM
Chrysene	ND	45.3		µg/Kg-dry	1	11/4/2022 10:30:39 AM
Benzo(b)fluoranthene	ND	22.6		µg/Kg-dry	1	11/4/2022 10:30:39 AM
Benzo(k)fluoranthene	ND	22.6		µg/Kg-dry	1	11/4/2022 10:30:39 AM
Benzo(a)pyrene	ND	22.6		µg/Kg-dry	1	11/4/2022 10:30:39 AM

Benzo(a)pyrene	ND	22.6	µg/Kg-dry	1	11/4/2022 10:30:39 AM
Indeno(1,2,3-cd)pyrene	ND	45.3	µg/Kg-dry	1	11/4/2022 10:30:39 AM
Dibenz(a,h)anthracene	ND	45.3	µg/Kg-dry	1	11/4/2022 10:30:39 AM
Surr: 2-Fluorobiphenyl	94.0	22.2 - 146	%Rec	1	11/4/2022 10:30:39 AM
Surr: Terphenyl-d14 (surr)	101	20.2 - 159	%Rec	1	11/4/2022 10:30:39 AM
Sample Moisture (Percent Moisture))		Batch	ID:	R79538 Analyst: CO
Percent Moisture	2.94	0.500	wt%	1	11/3/2022 1:30:33 PM

remont

An Alliance Technical Group Company

Analytical

 Work Order:
 2211046

 Date Reported:
 7/25/2023

h	Analytical An Alliance Technical Group Company
Client:	Libby Environmental
Project:	661 E Pine St

Fremont

Lab ID: 2211046-002

Collection Date: 10/26/2022 12:36:00 PM

Matrix: Soil

Client Sample ID: B-12-9.0	Descrit			11-16-		
Analyses	Result	RL	Quai	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons b	y EPA Method 8	<u>3270 (SIM)</u>		Batch	ID:	38380 Analyst: SK
Naphthalene	50.0	21.9		µg/Kg-dry	1	11/4/2022 10:58:58 AM
2-Methylnaphthalene	ND	21.9		µg/Kg-dry	1	11/4/2022 10:58:58 AM
1-Methylnaphthalene	ND	21.9		µg/Kg-dry	1	11/4/2022 10:58:58 AM
Benz(a)anthracene	ND	21.9		µg/Kg-dry	1	11/4/2022 10:58:58 AM
Chrysene	ND	43.8		µg/Kg-dry	1	11/4/2022 10:58:58 AM
Benzo(b)fluoranthene	ND	21.9		µg/Kg-dry	1	11/4/2022 10:58:58 AM
Benzo(k)fluoranthene	ND	21.9		µg/Kg-dry	1	11/4/2022 10:58:58 AM
Benzo(a)pyrene	ND	21.9		µg/Kg-dry	1	11/4/2022 10:58:58 AM
Indeno(1,2,3-cd)pyrene	ND	43.8		µg/Kg-dry	1	11/4/2022 10:58:58 AM
Dibenz(a,h)anthracene	ND	43.8		µg/Kg-dry	1	11/4/2022 10:58:58 AM
Surr: 2-Fluorobiphenyl	90.4	22.2 - 146		%Rec	1	11/4/2022 10:58:58 AM
Surr: Terphenyl-d14 (surr)	99.0	20.2 - 159		%Rec	1	11/4/2022 10:58:58 AM
Sample Moisture (Percent Mo	sture)			Batch	ID:	R79538 Analyst: CO
Percent Moisture	12.9	0.500		wt%	1	11/3/2022 1:30:33 PM

1

1

1

1

Batch ID: R79538

1

µg/Kg-dry

µg/Kg-dry

µg/Kg-dry

%Rec

%Rec

wt%

 Work Order:
 2211046

 Date Reported:
 7/25/2023

11/4/2022 11:27:26 AM

11/3/2022 1:30:33 PM

Analyst: CO

Client: Libby Environmental				Collection	Date:	10/26/2022 12:49:00 PM
Project: 661 E Pine St Lab ID: 2211046-003 Client Sample ID: B-13-4.0				Matrix: So	bil	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by	EPA Method 82	<u>70 (SIM)</u>		Batch	ID: 38	380 Analyst: SK
Naphthalene	ND	22.0		µg/Kg-dry	1	11/4/2022 11:27:26 AM
2-Methylnaphthalene	ND	22.0		µg/Kg-dry	1	11/4/2022 11:27:26 AM
1-Methylnaphthalene	ND	22.0		µg/Kg-dry	1	11/4/2022 11:27:26 AM
Benz(a)anthracene	ND	22.0		µg/Kg-dry	1	11/4/2022 11:27:26 AM
Chrysene	ND	44.0		µg/Kg-dry	1	11/4/2022 11:27:26 AM
Benzo(b)fluoranthene	ND	22.0		µg/Kg-dry	1	11/4/2022 11:27:26 AM
Benzo(k)fluoranthene	ND	22.0		ua/Ka-drv	1	11/4/2022 11:27:26 AM

22.0

44.0

44.0

22.2 - 146

20.2 - 159

0.500

ND

ND

ND

72.3

84.2

12.7

Benzo(a)pyrene

Percent Moisture

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Surr: 2-Fluorobiphenyl

Surr: Terphenyl-d14 (surr)

Sample Moisture (Percent Moisture)

Work Order: 2211046 Date Reported: 7/25/2023

Client: Libby Environmental		Collection Date: 10/26/2022 12:56:00 PN				
Project: 661 E Pine St Lab ID: 2211046-004 Oliopit Complex ID: D: D: <thd:< th=""> D: D: <t< th=""><th></th><th></th><th></th><th>Matrix: So</th><th>bil</th><th></th></t<></thd:<>				Matrix: So	bil	
Client Sample ID: B-13-6.0	Dessilt			Har Mar		Defe Avelue 1
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by EP	A Method 82	270 (SIM)		Batch	ID: (38380 Analyst: SK
Naphthalene	ND	20.6		µg/Kg-dry	1	11/4/2022 11:55:46 AM
2-Methylnaphthalene	ND	20.6		µg/Kg-dry	1	11/4/2022 11:55:46 AM
1-Methylnaphthalene	ND	20.6		µg/Kg-dry	1	11/4/2022 11:55:46 AM
Benz(a)anthracene	ND	20.6		µg/Kg-dry	1	11/4/2022 11:55:46 AM
Chrysene	ND	41.2		µg/Kg-dry	1	11/4/2022 11:55:46 AM
Benzo(b)fluoranthene	ND	20.6		µg/Kg-dry	1	11/4/2022 11:55:46 AM
Benzo(k)fluoranthene	ND	20.6		µg/Kg-dry	1	11/4/2022 11:55:46 AM
Benzo(a)pyrene	ND	20.6		µg/Kg-dry	1	11/4/2022 11:55:46 AM
Indeno(1,2,3-cd)pyrene	ND	41.2		µg/Kg-dry	1	11/4/2022 11:55:46 AM
Dibenz(a,h)anthracene	ND	41.2		µg/Kg-dry	1	11/4/2022 11:55:46 AM

22.2 - 146

20.2 - 159

0.500

Sample Moisture (Percent Moisture)

Percent Moisture

Surr: 2-Fluorobiphenyl

Surr: Terphenyl-d14 (surr)

17.4

75.2

82.7

%Rec 1 Batch ID: R79538

%Rec

wt%

1

1

11/3/2022 1:30:33 PM

11/4/2022 11:55:46 AM

11/4/2022 11:55:46 AM

Analyst: CO

An Alliance Technical Group Company

emont

nalvtical

 Work Order:
 2211046

 Date Reported:
 7/25/2023

Client: Libby Environmental	Collection Date: 10/26/2022 1:00:00 PM					
Project: 661 E Pine St Lab ID: 2211046-005				Matrix: So	oil	
Client Sample ID: B-13-8.0						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by I	EPA Method 8	<u>3270 (SIM)</u>		Batch	n ID: 38	3380 Analyst: SK
Naphthalene	ND	22.0		µg/Kg-dry	1	11/4/2022 12:24:10 PM
2-Methylnaphthalene	ND	22.0		µg/Kg-dry	1	11/4/2022 12:24:10 PM
1-Methylnaphthalene	ND	22.0		µg/Kg-dry	1	11/4/2022 12:24:10 PM
Benz(a)anthracene	ND	22.0		µg/Kg-dry	1	11/4/2022 12:24:10 PM
Chrysene	ND	44.0		µg/Kg-dry	1	11/4/2022 12:24:10 PM
Benzo(b)fluoranthene	ND	22.0		µg/Kg-dry	1	11/4/2022 12:24:10 PM
Benzo(k)fluoranthene	ND	22.0		µg/Kg-dry	1	11/4/2022 12:24:10 PM
Benzo(a)pyrene	ND	22.0		µg/Kg-dry	1	11/4/2022 12:24:10 PM
Indeno(1,2,3-cd)pyrene	ND	44.0		µg/Kg-dry	1	11/4/2022 12:24:10 PM
Dibenz(a,h)anthracene	ND	44.0		µg/Kg-dry	1	11/4/2022 12:24:10 PM
Surr: 2-Fluorobiphenyl	80.5	22.2 - 146		%Rec	1	11/4/2022 12:24:10 PM
Surr: Terphenyl-d14 (surr)	89.0	20.2 - 159		%Rec	1	11/4/2022 12:24:10 PM

0.500

Sample	Moisture	(Percent	Moisture)
oumpic	monstare		monotarc

emon

An Alliance Technical Group Company

Percent Moisture

Moisture

16.6

Batch ID: R79538

wt%

1

11/3/2022 1:30:33 PM

Analyst: CO

 Work Order:
 2211046

 Date Reported:
 7/25/2023

Client: Libby Environmental				Collection	Date	e: 10/26/2022 1:05:00 PM
Project: 661 E Pine St						
Lab ID: 2211046-006				Matrix: So	oil	
Client Sample ID: B-13-10.0						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Polyaromatic Hydrocarbons by El	PA Method	<u>8270 (SIM)</u>		Batch	ID: (38380 Analyst: SK
Naphthalene	ND	20.9		µg/Kg-dry	1	11/4/2022 12:52:39 PM
2-Methylnaphthalene	ND	20.9		µg/Kg-dry	1	11/4/2022 12:52:39 PM
1-Methylnaphthalene	ND	20.9		µg/Kg-dry	1	11/4/2022 12:52:39 PM
Benz(a)anthracene	ND	20.9		µg/Kg-dry	1	11/4/2022 12:52:39 PM
Chrysene	ND	41.8		µg/Kg-dry	1	11/4/2022 12:52:39 PM
Benzo(b)fluoranthene	ND	20.9		µg/Kg-dry	1	11/4/2022 12:52:39 PM
Benzo(k)fluoranthene	ND	20.9		µg/Kg-dry	1	11/4/2022 12:52:39 PM
Benzo(a)pyrene	ND	20.9		µg/Kg-dry	1	11/4/2022 12:52:39 PM
Indeno(1,2,3-cd)pyrene	ND	41.8		µg/Kg-dry	1	11/4/2022 12:52:39 PM
Dibenz(a,h)anthracene	ND	41.8		µg/Kg-dry	1	11/4/2022 12:52:39 PM
Surr: 2-Fluorobiphenyl	81.5	22.2 - 146		%Rec	1	11/4/2022 12:52:39 PM
Surr: Terphenyl-d14 (surr)	90.1	20.2 - 159		%Rec	1	11/4/2022 12:52:39 PM

0.500

Sample Moisture (Percent Moisture)

emont

An Alliance Technical Group Company

vtical

Percent Moisture

19.9

Batch ID: R79538

wt%

1

11/3/2022 1:30:33 PM

Analyst: CO

Work Order: 2211046

CLIENT: Libby Environmental

Project: 661 E Pine St

QC SUMMARY REPORT

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: MB-38380	SampType: MBLK			Units: µg/Kg		Prep Da	ite: 11/3/20	22	RunNo: 79	585	
Client ID: MBLKS	Batch ID: 38380					Analysis Da	nte: 11/4/20	22	SeqNo: 164	40699	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	20.0									
2-Methylnaphthalene	ND	20.0									
1-Methylnaphthalene	ND	20.0									
Benz(a)anthracene	ND	20.0									
Chrysene	ND	40.0									
Benzo(b)fluoranthene	ND	20.0									
Benzo(k)fluoranthene	ND	20.0									
Benzo(a)pyrene	ND	20.0									
Indeno(1,2,3-cd)pyrene	ND	40.0									
Dibenz(a,h)anthracene	ND	40.0									
Surr: 2-Fluorobiphenyl	953		1,000		95.3	34.4	132				
Surr: Terphenyl-d14 (surr)	1,030		1,000		103	32.8	147				
Sample ID: LCS-38380	SampType: LCS			Units: µg/Kg		Prep Da	ite: 11/3/20	22	RunNo: 79	585	
Client ID: LCSS	Batch ID: 38380					Analysis Da	nte: 11/4/20	22	SeqNo: 164	40700	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,980	20.0	2,000	0	98.8	64.3	115				
2-Methylnaphthalene	2,000	20.0	2,000	0	100	58.9	122				
1-Methylnaphthalene	2,000	20.0	2,000	0	100	57.4	122				
Benz(a)anthracene	2,260	20.0	2,000	0	113	61.5	123				
Chrysene	1,920	40.0	2,000	0	96.1	58.6	120				
Benzo(b)fluoranthene	2,060	20.0	2,000	0	103	62.1	124				

0

0

0

0

99.3

105

99.9

99.7

101

107

60.3

51.6

53.8

53.3

34.4

32.8

116

115

127

127

132

147

Benzo(k)fluoranthene

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Surr: 2-Fluorobiphenyl

Surr: Terphenyl-d14 (surr)

Benzo(a)pyrene

1,990

2,110

2,000

1,990

1,010

1,070

20.0

20.0

40.0

40.0

2,000

2,000

2,000

2,000

1,000

1,000

Work Order: 2211046

CLIENT: Libby Environmental

Project: 661 E Pine St

QC SUMMARY REPORT

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 2211046-003AMS	SampType: MS			Units: µg/	Kg-dry	Prep Da	te: 11/3/20)22	RunNo: 79	585	
Client ID: B-13-4.0	Batch ID: 38380					Analysis Da	te: 11/4/20)22	SeqNo: 164	40707	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,960	22.1	2,210	9.813	88.3	55.7	105				
2-Methylnaphthalene	1,970	22.1	2,210	14.27	88.7	56.6	103				
1-Methylnaphthalene	1,960	22.1	2,210	7.379	88.4	56.1	101				
Benz(a)anthracene	2,250	22.1	2,210	0	102	53.4	112				
Chrysene	1,750	44.2	2,210	12.42	78.8	52	105				
Benzo(b)fluoranthene	1,930	22.1	2,210	6.100	87.0	51.3	119				
Benzo(k)fluoranthene	1,730	22.1	2,210	0	78.5	50.3	108				
Benzo(a)pyrene	1,870	22.1	2,210	0	84.5	48.5	106				
Indeno(1,2,3-cd)pyrene	1,540	44.2	2,210	0	69.7	42.1	113				
Dibenz(a,h)anthracene	1,580	44.2	2,210	0	71.5	40.4	114				
Surr: 2-Fluorobiphenyl	978		1,105		88.6	34.4	132				
Surr: Terphenyl-d14 (surr)	1,110		1,105		101	32.8	147				

Sample ID: 2211046-003AMSD	SampType: MSD			Units: µg/ł	(g-dry	Prep Dat	te: 11/3/20	22	RunNo: 795	585	
Client ID: B-13-4.0	Batch ID: 38380					Analysis Da	te: 11/4/20	22	SeqNo: 164	0708	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,810	22.2	2,216	9.813	81.4	55.7	105	1,962	7.86	30	
2-Methylnaphthalene	1,830	22.2	2,216	14.27	81.9	56.6	103	1,975	7.63	30	
1-Methylnaphthalene	1,820	22.2	2,216	7.379	81.6	56.1	101	1,961	7.65	30	
Benz(a)anthracene	2,110	22.2	2,216	0	95.3	53.4	112	2,254	6.51	30	
Chrysene	1,660	44.3	2,216	12.42	74.5	52	105	1,754	5.32	30	
Benzo(b)fluoranthene	1,850	22.2	2,216	6.100	83.4	51.3	119	1,927	3.89	30	
Benzo(k)fluoranthene	1,650	22.2	2,216	0	74.3	50.3	108	1,735	5.19	30	
Benzo(a)pyrene	1,820	22.2	2,216	0	82.2	48.5	106	1,866	2.46	30	
Indeno(1,2,3-cd)pyrene	1,530	44.3	2,216	0	68.9	42.1	113	1,541	0.957	30	
Dibenz(a,h)anthracene	1,550	44.3	2,216	0	70.1	40.4	114	1,581	1.77	30	
Surr: 2-Fluorobiphenyl	894		1,108		80.6	34.4	132		0		
Surr: Terphenyl-d14 (surr)	1,010		1,108		91.5	32.8	147		0		

Client Name:	LIBBY	Work Order Num	per: 2211046	
Logged by:	Elisabeth Samoray	Date Received:	11/2/2022	9:35:00 AM
Chain of Cus	tody			
1. Is Chain of (Custody complete?	Yes 🖌	No 🗌	Not Present
2. How was the	e sample delivered?	<u>UPS</u>		
<u>Log In</u>				
 Custody Sea (Refer to con 	als present on shipping container/cooler? nments for Custody Seals not intact)	Yes	No 🗌	Not Present
4. Was an atter	mpt made to cool the samples?	Yes 🗹	No 🗌	
5. Were all item	ns received at a temperature of >2°C to 6°C *	Yes 🖌	No 🗌	
6. Sample(s) in	proper container(s)?	Yes 🖌	No 🗌	
7. Sufficient sa	mple volume for indicated test(s)?	Yes 🖌	No 🗌	
8. Are samples	properly preserved?	Yes 🗹	No 🗌	
9. Was preserv	vative added to bottles?	Yes	No 🗹	NA 🗌
10. Is there head	dspace in the VOA vials?	Yes	No 🗌	NA 🗹
11. Did all samp	les containers arrive in good condition(unbroken)?	Yes 🗹	No 🗌	
12. Does paperv	vork match bottle labels?	Yes 🗹	No 🗌	
13. Are matrices	correctly identified on Chain of Custody?	Yes 🗹	No 🗌	
14. Is it clear wh	at analyses were requested?	Yes 🗹	No 🗌	
15. Were all hold	ding times able to be met?	Yes 🗹	No 🗌	
Special Hand	lling (if applicable)			
16. Was client	notified of all discrepancies with this order?	Yes	No 🗌	NA 🗹
Perso	n Notified: Date	e:		
By Wł	nom: Via:	eMail Pr	none 🗌 Fax	In Person
Regar	ding:			
Client	Instructions:			
17 Additional r	emarks:			

Item Information

Item #	Temp ⁰C
Sample 1	3.6

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

RONMEN		
Sending Laboratory:	Subcontracted Laboratory:	2211046
Libby Environmental, Inc. 3322 South Bay Road NE Olympia, WA 98506 Phone: 360-352-2110 Fax: 360-352-4154 Project Manager: Sherry Chilcutt LibbyEnv@gmail.com	Fremont Analytical, Inc. 3600 Fremont Ave N Seattle, WA 98103 Phone: (206) 352-3790 Fax: Requested Turnaround (TAT)	Std
Project: 661 E Pine St		
Analysis	Comments	
Client Sample ID: B-012-5.0 Soil Sampled: 10/26/2022	12:34	Lab ID: L22J130-1-
cPAH by 8270		
Containers Supplied:		
Client Sample ID: B-012-9.0 Soil Sampled: 10/26/2022	12:36	Lab ID: L22J130-1
cPAH by 8270		
Containers Supplied:		
Client Sample ID: B-013-4.0 Soil Sampled: 10/26/2022	12:49	Lab ID: L22J130-1
cPAH by 8270		
Containers Supplied:		
Client Sample ID: B-013-6.0 Soil Sampled: 10/26/2022	12:56	Lab ID: L22J130-1
cPAH by 8270		
Containers Supplied:		
Client Sample ID: B-013-8.0 Soil Sampled: 10/26/2022	13:00	Lab ID: L22J130-1
cPAH by 8270		
Containers Supplied:		
Client Sample ID: B-013-10.0 Soil Sampled: 10/26/202	2 13:05	Lab ID: L22J130-1
cPAH by 8270		
Containers Supplied;		
16-0-	man n'r an uh	122 0.25
	VEALE COTINOL 112	1441:55
Released By Date	Received By	Date

Edits per S.C. 11/3/22 - WA 98103 (206) 352-3790 Eted Turnaround (TAT) Lab ID: L22J130-1 Lab ID: L22J130-1
ments Lab ID: L22J130-1 Lab ID: L22J130-1
ments Lab ID: L22J130-1 Lab ID: L22J130-1
ments Lab ID: L22J130-1 Lab ID: L22J130-1
Lab ID: L22J130-1 Lab ID: L22J130-1
Lab ID: L22J130-1
Lab ID: L22J130-1
Lab ID: L22J130-1
Lab ID: L22J130-1
/ TAT Lab ID: L22J130-1
Lab ID: L22J130-1
Day TAT Lab ID: L22J130-1

Subcontracted Laboratory:	2211046
Fremont Analytical, Inc. 3600 Fremont Ave N Edit Seattle, WA 98103 Edit Phone: (206) 352-3790 Fax:	ts per S.C. 11/3/22 -Bl s per E.B. 7/25/2023-B
Requested Turnaround (TA	ŋ <u></u>
Comments	100 A. C. A.
22 12:34	Lab ID: L22J130-14
177 17:26	Lab ID: 1221130-15
22 12:30	
22 12:49	Lab ID: L22J130-16
22 12:56 2 Day TAT	Lab ID: L22J130-17
22 13:00	Lab ID: L22J130-18
2022 13:05 2 Day TAT	Lab ID: L22J130-19
	Subcontracted Laboratory: Fremont Analytical, Inc. 3600 Fremont Ave N Seattle, WA 98103 Phone: (206) 352-3790 Fax: Requested Turnaround (TA) 22 12:34 22 12:36 22 12:36 22 12:36 22 12:36 22 12:36 22 12:36 22 12:36 22 12:36 22 12:36

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Libby Environmental Sherry Chilcutt 3322 South Bay Road NE Olympia, WA 98506

RE: 661 E Pine St Work Order Number: 2211203

November 15, 2022

Attention Sherry Chilcutt:

Fremont Analytical, Inc. received 2 sample(s) on 11/8/2022 for the analyses presented in the following report.

Total Organic Carbon by EPA 9060

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

CLIENT: Project: Work Order:	Libby Environmental 661 E Pine St 2211203	Work Order S	Sample Summary
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2211203-001	B-13-6.0	10/26/2022 12:56 PM	11/08/2022 3:27 PM
2211203-002	B-13-10.0	10/26/2022 1:05 PM	11/08/2022 3:27 PM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: **2211203** Date: **11/15/2022**

CLIENT:Libby EnvironmentalProject:661 E Pine St

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: **2211203** Date Reported: **11/15/2022**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recoverv CCB - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor **DUP - Sample Duplicate** HEM - Hexane Extractable Material ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MCL - Maximum Contaminant Level MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **REP - Sample Replicate RL** - Reporting Limit **RPD** - Relative Percent Difference **SD** - Serial Dilution SGT - Silica Gel Treatment SPK - Spike Surr - Surrogate

Analytical Report

 Work Order:
 2211203

 Date Reported:
 11/15/2022

Client:	Libby Environmental	Collection Date: 10/26/2022 12:56:00 PM												
Project:	661 E Pine St													
Lab ID:	2211203-001				Matrix: So	oil								
Client Sa	ample ID: B-13-6.0													
Analyses	S	Result	esult RL Qual Units DF Date An											
Total O	rganic Carbon by EPA 9060)			Batcl	n ID: 38	505 Analyst: ALT							
Total Or	rganic Carbon	0.361	0.150		%-dry	1	11/15/2022 1:33:00 PM							

Analytical Report

 Work Order:
 2211203

 Date Reported:
 11/15/2022

Client:	Libby Environmental	Collection Date: 10/26/2022 1:05:00 PM												
Project:	661 E Pine St													
Lab ID:	2211203-002	Matrix: Soil												
Client Sa	ample ID: B-13-10.0													
Analyses	8	Result	t RL Qual Units DF Date Ana											
Total O	rganic Carbon by EPA 9060				Batch	n ID: 38	505 Analyst: ALT							
Total Or	ganic Carbon	0.615	0.150		%-dry	1	11/15/2022 1:45:00 PM							

Work Order: CLIENT: Project:	2211203 Libby Enviro 661 E Pine S	onmental St							QC S	SUMMAF anic Carbo	RY REF	PORT A 9060
Sample ID: MB-38	505	SampType	BLK			Units: %-dry		Prep Date: 11/15/2	022	RunNo: 798	65	
Client ID: MBLK	S	Batch ID:	38505					Analysis Date: 11/15/2	022	SeqNo: 164	7774	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carb	oon		ND	0.150								
Sample ID: LCS-3	8505	SampType	LCS			Units: %-dry		Prep Date: 11/15/2	022	RunNo: 798	65	
Client ID: LCSS		Batch ID:	38505					Analysis Date: 11/15/2	022	SeqNo: 164	7775	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carb	oon		1.04	0.150	1.000	0	104	80 120				
Sample ID: 22112	03-002ADUP	SampType	DUP			Units: %-dry		Prep Date: 11/15/2	022	RunNo: 798	65	
Client ID: B-13-1	0.0	Batch ID:	38505					Analysis Date: 11/15/2	022	SeqNo: 164	7782	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carb	oon		0.472	0.150					0.6150	26.3	20	
Sample ID: 22112	03-002AMS	SampType	MS			Units: %-dry		Prep Date: 11/15/2	022	RunNo: 798	65	
Client ID: B-13-1	0.0	Batch ID:	38505					Analysis Date: 11/15/2	022	SeqNo: 164	7783	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carb	oon		1.58	0.150	1.000	0.6150	96.3	75 125				
Sample ID: 22112	03-002AMSD	SampType	MSD			Units: %-dry		Prep Date: 11/15/2	022	RunNo: 798	65	
Client ID: B-13-1	0.0	Batch ID:	38505					Analysis Date: 11/15/2	022	SeqNo: 164	7784	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Total Organic Carb	oon		1.64	0.150	1.000	0.6150	102	75 125	1.578	3.67	20	

Sample Log-In Check List

Client Name: LIBBY	Work Order Number: 2211203	
Logged by: Clare Griggs	Date Received: 11/8/2022	3:27:00 PM
Chain of Custody		
1. Is Chain of Custody complete?	Yes 🗹 No 🗌	Not Present
2. How was the sample delivered?	UPS	
Log In		
3 Coolers are present?	Yes 🗸 No	
J		
4. Shipping container/cooler in good condition?	Yes 🗹 No 🗌	
5. Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact)	Yes No 🗌	Not Present 🗹
6 Was an attempt made to cool the samples?	Yes 🖌 No	
0. This an allompt made to obol the samples:		
7. Were all items received at a temperature of >2°C to 6	C * Yes 🗹 No 🗌	
8. Sample(s) in proper container(s)?	Yes 🗹 No 🗌	
9. Sufficient sample volume for indicated test(s)?	Yes ✓ No □	
10. Are samples properly preserved?	Yes 🗹 No 🗌	
11. Was preservative added to bottles?	Yes 🗌 No 🗹	NA 📖
12. Is there headspace in the VOA vials?	Yes 🗌 No 🗌	NA 🗹
13. Did all samples containers arrive in good condition(unt	roken)? Yes 🗹 No 🗌	
14. Does paperwork match bottle labels?	Yes 🗹 No 🗌	
4.5 Are matrices correctly identified on Chain of Custody?		
 16 Is it clear what analyses were requested? 		
17. Were all holding times able to be met?	Yes V No	
Special Handling (if applicable)		
18. Was client notified of all discrepancies with this order?	Yes No 🗌	NA 🗹
Person Notified:	Date:	
By Whom:	Via: 🗌 eMail 🗌 Phone 🗌 Fax [In Person
Regarding:		
Client Instructions:		
19. Additional remarks:		
Item Information		

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

3322 South Bay Road NE • Olympia, WA 98506-2957

SUBCONTRACT ORDER L22J130

221120

Sending	Laboratory
---------	------------

Libby Environmental, Inc.
3322 South Bay Road NE
Olympia, WA 98506
Phone: 360-352-2110
Fax: 360-352-4154

Project Manager: Sherry Chilcutt LibbyEnv@gmail.com

Project: 661 E Pine St

Subcontracted Laboratory:

Fremont Analytical, Inc.	
3600 Fremont Ave N	
Seattle, WA 98103	
Phone: (206) 352-3790	
Fax:	

Comments

Requested Turnaround (TAT) _ Standard

Lab ID: L22J130-17

Lab ID: L22J130-19

Client Sample ID: B-13-6.0 Soil Sampled: 10/26/2022 12:56

TOC

Analysis

Containers Supplied:

Client Sample ID: B-13-10.0 Soil Sampled: 10/26/2022 13:05

TOC

Containers Supplied:

11/7/22 Date

Received E

11/8/22

Date

Released By

Libby Environm 3322 South Bay Road NE • Olym	ental, Inc.	ORDER L22J130
Sending Laboratory:	Subcontracted Laboratory	203
Libby Environmental, Inc. 3322 South Bay Road NE Olympia, WA 98506 Phone: 360-352-2110 Fax: 360-352-4154 Project Manager: Sherry Chilcutt LibbyEnv@gmail.com	Fremont Analytical, Inc. 3600 Fremont Ave N Seattle, WA 98103 Phone: (206) 352-3790 Fax:	Standard
Project: 661 E Pine St	requested furnaround (TAT)	
Analysis		
Client Sample ID: B-13-6 0 Soil Samplade 10/25/2000	Comments	
TOC	2:56	Lab ID: L22J130-17
Containers Supplied:	1	
lient Sample ID: B-13-10.0 Soil Sampled: 10/26/2022	13:05	Lab ID: L22J130-19
OC ontainers Supplied:		
		17
		2
1)		
	٨	11 Intan
B2 11/7/22	MARA	1517
eased By Date R	eceived By	Date

3322 South Bay Road NE • Olympia, WA 98506-2957

November 15, 2022

Javan Ruark Farallon Consulting 975 5th Avenue NW Issaquah, WA 98027

Dear Mr. Ruark:

Please find enclosed the analytical data report for the 661 E Pine St. Project located in Shelton, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

2 1 Um

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

Libby Environmen	ntal, In	IC.		Chain of Custody Recor							d						www.Lil	bbyEnv	ironmental.com
3322 South Bay Road NE	Ph: Fax:	360-352-2	110			Date		1771	22				F	Page			1	of	2
Client: Eacellon Con	sultin	000-002-4		Project Manager: Toulogo Report															
Address: 0175 5th Aug	ALL)	3			Project Name: (/) E Disc St														
Aduless. TS Strand	1000	State: 1	1 Zin:	98027		FIU	etion				111		1.						
City: 1554guan		State: W	Zip.	1002]		LOC	auon.	001		1110		hada		Data	Stat		TEIT	10m	202
		Fax:				Coll	ector	TIC	nge		1849	urre		Jate	orc	ollec	ction:	10/2	-1100
Client Project # 665-001						Ema		rugek	(4) 1	rara	ANION	CONS		ig.				_	10 21 22
Sample Number	Depth	Time	Sample Type	Container Type	JC-59	8 0 5 4 1	augher C	2100 37 8280 4 8280	ROLL S	4 10 10 10 10 10 10 10 10 10 10 10 10 10	L SMO	819 181 191 8 19 191 9 19 191 9 19 191 9 19 191 9 19 191 9 191 191	10 10 X 8210	in Vole	3270		Fi	An Jav en	elected alysis per an via lail.
1 B-14-10.0	10.0	1625	SOIL			X	X	X									48	hr T	AT
2 B-14-15.0	15.0	1630				×	X	X											
3 B-140-15.0	15.0	1635				×	×	×											
4 B-14-20.0	20.0	1640				X	X	· X									481	nr TA	т
5 B-140-20.0	20.0	1645				×	X	×											
6 B-15-10.0	10.0	1536				×	X	×											
7 B-150- 10.0	10.0	1540				X	×	X											
8 B-15-15.0	15.0	1545				×	×	×											
9 B-15-16.0	16.0	1605															HOL	-D	
10 13-23-10.0	10.0	1437				×	×	×											
11 3-23- 11.5	11.5	1442				×	×	×											
12 3-230-11.5	11.5	1450				×	×	×											
13 B-24-6.0	6.0	1506					×	×											
14 B-24-7.0	7.0	1520					×	×											
15 3-24-10.0	10.0	1524					×	×											
16 B-22-7.0	7.0	1332					×	×											
17 13-22-11.0	11.0	1341					×	×											
Relinquished by: M	_	10/27/22	Date / Time	Received by:			101	28/22	Date /	Time D	S Good C	ample ondition?	Rece	eipt Y	N	Rem	narks:	for	PM
Relinquished by:			Date / Time	Received by:					Date /	Time	Cooler	Temp.			°C	0	nol.	SIC	
Relinquished by: Date / Time				Received by: Date / Time					Total Number of Containers				TAT: 24HR 48HR 5-DAY						

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay, Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a court of law.

Distribution: White - Lab, Yellow - Originator

Libby Environmen		Chain of Custody Record							d						www.	LibbyE	nvironn	nental.com		
3322 South Bay Road NE	Ph:	360-352-2	110			Det		127	122					Pag	<u>.</u>	2	,		2	
Olympia, WA 98506	Fax:	360-352-4	154			Date	<u>. IC</u>	121			0)	. /	Fay	е.			0	-	
Client: rarallon Cons	ulting				Project Manager: Javan Kuark															
Address: 975 5th Ave	NW			0.0	Project Name: 661 E Pine St											2				
City: Issaquah		State: 🗸	JA Zip:	48027		Loca	ation	66	E	Pir	1e	87-		City	, Sta	te: 2	she	Hor	$, \omega r$	J
Phone:		Fax:				Coll	ector	: Mic	nce	YS	gqu	me	/	Date	e of (Colle	ction:	10	1271	22
Client Project # 863 00						Ema	ail:	Trugr	Ka) fai	ralle	onco	nsul	Hin	g.	Con	^			
Sample Number	Depth	Time	Sample Type	Container Type	JOC 82	S S S	ALLUL C	2100 37 8260 57 8260	EST PT ST	101 101 101 101 101 101 101 101 101 101	A CASE	24 24 24	312 10 18210 10 10 10	10 vol	8210 50			Field N	Selen Selen Inalys enc	is per ia iil
1 B-22-15 D	15.0	1348	SOIL			<u>í</u>	X	Ē,	$\hat{\langle}$	<u>í</u>	\square			1	ſ					
2 B-21-3.0	3.0	1232				×													×.	-
3 3-21-7.0	7.0	1245															HC	LD	~	
4 3-21-11.0	11.0	1309				×														
5 B-21-13.0	13.0	1312				×		1												
6 B-19-5.0	5.0	1105				×	×	>	<					\otimes			481	r TA	т	
7 B-19-10.0	10.0	1115				×	X	×	()						A	dded	11-	2-22	JR	STD
- 8 B-19-15.0	15.0	1130				X	X	×												
9 B-19-20.0	20.0	1140				X	X	×						\otimes			48	hr T	AT	
10 13-190-20.0	20.0	1142				X	×	>	C						A	dde	2 11	-2-27	2 JR	STD
11 B-18-16.0	16.0	1005						>	<											
12 B-18-20.0	20.0	1007						>	<											
- 13 B-20- 10.0	10.0	0925				×	×	>	<											
- 14 B-20-15.0	15.0	0930				X	×	7	<											
15																			_	
16														_						
17																				
Relinquished by:		10/27	Date / Time 2 2 1323 Date / Time	Received by: Received by:				10/28/	Date / Date /	/ Time / Time	Good Coole	Samp Conditi er Temp	on?	ceipt Y	t ℃	Ren	narks See	: Pge	ge I	
Relinquished by:			Date / Time	Received by:					Date	/ Time	Total Co	Numbe ntainers	r of		0	TA	T: 2	4HR	48HR	5-DAY

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay, Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a court of law.

Distribution: White - Lab, Yellow Originator

661 E PINE ST PROJECT Farallon Consulting Shelton, Washington Libby Project # L22J143 Client Project # 863-001 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method	B-14-10.0	B-14-20.0	B-19-5.0	B-19-20.0	
		Blank					
Date Sampled		N/A	10/27/2022	10/27/2022	10/27/2022	10/27/2022	
Date Analyzed	PQL	11/2/2022	11/2/2022	11/2/2022	11/2/2022	11/2/2022	
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
Benzene	0.02	nd	0.11	nd	nd	nd	
Toluene	0.10	nd	nd	nd	nd	nd	
Ethylbenzene	0.05	nd	0.18	nd	nd	nd	
Total Xylenes	0.15	nd	0.24	nd	nd	nd	
Gasoline	10	nd	320	nd	nd	nd	
Surrogate Recovery							
Dibromofluoromethane	27-188	169	116	110	120	121	
1,2-Dichloroethane-d4	17-212	148	132	107	129	135	
Toluene-d8	41-142	91	118	89	86	91	
4-Bromofluorobenzene	47-167	81	118	82	81	85	
"nd" Indicates not deter	cted at listed	d detection li	mit.				
"int" Indicates that inte	rference pre	vents determ	nination.				

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260D) in Soil

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

ANALYSES PERFORMED BY: Matthew Hansen

661 E PINE ST PROJECT Farallon Consulting Shelton, Washington Libby Project # L22J143 Client Project # 863-001

Matrix Spike Sample Identification: L22K003-01										
		Date	Analyzed:	11/2/2022						
Spiked MS MSD MS MSD RPD Recover										
	Conc.	Response	Response	Recovery	Recovery		Limits	Flag		
	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)			
Benzene	0.25	0.29	0.23	117	92	24.2	65-126			
Toluene	0.25	0.26	0.12	104	49	72.0	67-136	R, S		
Ethylbenzene	0.25	0.25	0.23	99	90	9.4	55-140			
Total Xylenes	0.75	0.76	0.70	102	93	9.2	43-149			
Surrogate Recovery (%)				MS	MSD					
Dibromofluoromethane				129	122		27-188			
1,2-Dichloroethane-d4				134	112		17-212			
Toluene-d8				93	47		41-142			
4-Bromofluorobenzene				110	109		47-167			

QA/QC for Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260D) in Soil

ACCEPTABLE RPD IS 35%

"R" High relative percent difference observed.

"S" Spike compound recovery is outside acceptance limits.

ANALYSES PERFORMED BY: Matthew Hansen

Laboratory Control Sample

Date Analyzed	1: 11/2/2022				
	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(mg/kg)	(mg/kg)	(%)	Limits (%)	
Benzene	0.25	0.27	109	65-118	
Toluene	0.25	0.25	98	68-125	
Ethylbenzene	0.25	0.25	100	49-144	
Total Xylenes	0.75	0.70	93	38-140	
Surrogate Recovery					
Dibromofluoromethane			252 S	27-188	
1,2-Dichloroethane-d4			149	17-212	
Toluene-d8			92	41-142	
4-Bromofluorobenzene			109	47-167	

"S" Spike compound recovery is outside acceptance limits.

ANALYSES PERFORMED BY: Matthew Hansen

661 E PINE ST PROJECT Farallon Consulting Shelton, Washington Libby Project # L22J143 Client Project # 863-001 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample	Date	Surrogate	Diesel	Oil		
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)		
Method Blank	11/1/2022	98	nd	nd		
B-14-10.0	11/1/2022	int	150	nd		
B-14-10.0 Dup	11/1/2022	int	170	nd		
B-14-20.0	11/1/2022	92	nd	nd		
B-19-5.0	11/1/2022	95	nd	nd		
B-19-20.0	11/1/2022	102	nd	nd		
Practical Quantitation Limit 50 250						
"nd" Indicates not detected at the	he listed dete	ection limits.				

Analyses of Diesel & Oil w/ Silica Gel Clean up (NWTPH-Dx/Dx Extended) in Soil

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Lucy Owens

661 E PINE ST PROJECT Farallon Consulting Shelton, Washington Libby Project # L22J143 Client Project # 863-001

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method	B-14-15.0	B-140-15.0	B-140-20.0	B-15-10.0	B-150-10.0
		Blank					
Date Sampled		N/A	10/27/2022	10/27/2022	10/27/2022	10/27/2022	10/27/2022
Date Analyzed	PQL	11/2/2022	11/2/2022	11/2/2022	11/2/2022	11/2/2022	11/2/2022
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Benzene	0.02	nd	0.21	0.28	nd	nd	nd
Toluene	0.10	nd	nd	nd	nd	nd	nd
Ethylbenzene	0.05	nd	0.73	0.47	nd	nd	nd
Total Xylenes	0.15	nd	0.41	0.47	nd	nd	nd
Gasoline	10	nd	110	66	17	83	nd
Surrogate Recovery							
Dibromofluoromethane	27-188	103	88	90	97	95	94
1,2-Dichloroethane-d4	17-212	112	100	101	99	98	90
Toluene-d8	41-142	98	98	93	95	99	96
4-Bromofluorobenzene	47-167	91	132	116	101	147	94
"nd" Indicates not detec	cted at listed	l detection li	mit.				

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260D) in Soil

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

661 E PINE ST PROJECT Farallon Consulting Shelton, Washington Libby Project # L22J143 Client Project # 863-001

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		B-15-15.0	B-23-10.0	B-23-10.0	B-23-11.5	B-230-11.5	B-19-10.0
				Dup			
Date Sampled		10/27/2022	10/27/2022	10/27/2022	10/27/2022	10/27/2022	10/27/2022
Date Analyzed	PQL	11/2/2022	11/2/2022	11/2/2022	11/2/2022	11/2/2022	11/3/2022
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Benzene	0.02	nd	nd	nd	nd	nd	nd
Toluene	0.10	nd	nd	nd	nd	nd	nd
Ethylbenzene	0.05	nd	nd	0.074	nd	nd	nd
Total Xylenes	0.15	nd	nd	0.36	nd	nd	nd
Gasoline	10	nd	50	49	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane	27-188	97	99	95	99	102	96
1,2-Dichloroethane-d4	17-212	101	105	102	105	108	87
Toluene-d8	41-142	96	96	97	101	98	96
4-Bromofluorobenzene	47-167	96	101	113	90	91	88
"nd" Indicates not dete	cted at listed	d detection lin	mit.				

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260D) in Soil

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

661 E PINE ST PROJECT Farallon Consulting Shelton, Washington Libby Project # L22J143 Client Project # 863-001 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		B-19-15 0	B-190-20.0	B-20-10.0	B-20-15.0	Method	
Sample Description		D 17 15.0	D 170 20.0	D 20 10.0	D 20 13.0	Dlaula	
						Blank	
Date Sampled		10/27/2022	10/27/2022	10/27/2022	10/27/2022	N/A	
Date Analyzed	PQL	11/3/2022	11/3/2022	11/3/2022	11/3/2022	11/2/2022	
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
Benzene	0.02	nd	nd	nd	nd	nd	
Toluene	0.10	nd	nd	nd	nd	nd	
Ethylbenzene	0.05	nd	nd	nd	nd	nd	
Total Xylenes	0.15	nd	nd	nd	nd	nd	
Gasoline	10	19	nd	28	nd	nd	
Surrogate Recovery							
Dibromofluoromothano	27 199	102	100	104	00	101	
Dibromonuorometnane	27-100	102	100	104	99	101	
1,2-Dichloroethane-d4	17-212	104	107	106	109	99	
Toluene-d8	41-142	98	97	97	97	104	
4-Bromofluorobenzene	47-167	90	93	95	93	88	
"nd" Indicates not detect	ted at listed	l detection li	mit.				

Analyses of Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260D) in Soil

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

661 E PINE ST PROJECT Farallon Consulting Shelton, Washington Libby Project # L22J143 Client Project # 863-001 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

]	Matrix Spike	Sample Ide	ntification:	B-23-11.5							
Date Analyzed: 11/2/2022											
	Spiked	MS	MSD	MS	MSD	RPD	Recovery	Data			
	Conc.	Response	Response	Recovery	Recovery		Limits	Flag			
	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)				
Benzene	0.25	0.30	0.30	119	120	1.4	65-126				
Toluene	0.25	0.32	0.31	129	123	4.8	67-136				
Ethylbenzene	0.25	0.29	0.30	115	122	5.3	55-140				
Total Xylenes	0.75	0.94	0.94	126	125	0.4	43-149				
Surrogate Recovery (%)				MS	MSD						
Dibromofluoromethane				100	101		27-188				
1,2-Dichloroethane-d4				101	102		17-212				
Toluene-d8				102	99		41-142				
4-Bromofluorobenzene				90	90		47-167				

QA/QC for Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260D) in Soil

ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Alex Randolph

Laboratory Control Sample

Date Analyzed:	11/2/2022				
	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(mg/kg)	(mg/kg)	(%)	Limits (%)	
Benzene	0.25	0.28	113	65-118	
Toluene	0.25	0.26	105	68-125	
Ethylbenzene	0.25	0.28	111	49-144	
Total Xylenes	0.75	0.84	112	38-140	
Surrogate Recovery					
Dibromofluoromethane			98	27-188	
1,2-Dichloroethane-d4			94	17-212	
Toluene-d8			95	41-142	
4-Bromofluorobenzene			88	47-167	

661 E PINE ST PROJECT Farallon Consulting Shelton, Washington Libby Project # L22J143 Client Project # 863-001 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

1	Matrix Spike	Sample Ide	ntification:	L22J130				
		Date	Analyzed:	11/3/2022				
	Spiked	MS	MSD	MS	MSD	RPD	Recovery	Data
	Conc.	Response	Response	Recovery	Recovery		Limits	Flag
	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)	-
Benzene	0.25	0.29	0.28	116	112	3.9	65-126	
Toluene	0.25	0.33	0.31	132	124	6.3	67-136	
Ethylbenzene	0.25	0.28	0.27	112	108	3.6	55-140	
Total Xylenes	0.75	0.95	0.90	127	120	5.4	43-149	
Surrogate Recovery (%)				MS	MSD			
Dibromofluoromethane				103	103		27-188	
1,2-Dichloroethane-d4				105	108		17-212	
Toluene-d8				98	97		41-142	
4-Bromofluorobenzene				93	92		47-167	

QA/QC for Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260D) in Soil

ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Alex Randolph

Laboratory Control Sample

Date Analyzed:	11/3/2022				
	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(mg/kg)	(mg/kg)	(%)	Limits (%)	
Benzene	0.25	0.27	109	65-118	
Toluene	0.25	0.26	106	68-125	
Ethylbenzene	0.25	0.27	108	49-144	
Total Xylenes	0.75	0.85	113	38-140	
Surrogate Recovery					
Dibromofluoromethane			98	27-188	
1,2-Dichloroethane-d4			98	17-212	
Toluene-d8			97	41-142	
4-Bromofluorobenzene			92	47-167	

661 E PINE ST PROJECT Farallon Consulting Shelton, Washington Libby Project # L22J143 Client Project # 863-001 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample	Date	Surrogate	Gasoline					
Number	Analyzed	Recovery (%)	(mg/kg)					
Method Blank	11/2/2022	98	nd					
B-21-3.0	11/2/2022	95	nd					
B-21-11.0	11/2/2022	91	340					
B-21-13.0	11/2/2022	95	11					
Practical Quantitation Limit			10					
"nd" Indicates not detected at the	e listed detection li	mits.						
"int" Indicates that interference prevents determination.								
ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (Toluene-d8): 58% TO 125%								

Analyses of Gasoline (NWTPH-Gx) in Soil

661 E PINE ST PROJECT Farallon Consulting Shelton, Washington Libby Project # L22J143 Client Project # 863-001 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		Method	B-24-6.0	B-24-7.0	B-24-10.0	B-22-7.0	B-22-11.0
		Blank					
Date Sampled		N/A	10/27/2022	10/27/2022	10/27/2022	10/27/2022	10/27/2022
Date Analyzed	PQL	11/2/2022	11/2/2022	11/2/2022	11/2/2022	11/2/2022	11/2/2022
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Benzene	0.02	nd	nd	nd	nd	nd	nd
Toluene	0.10	nd	nd	nd	nd	nd	nd
Ethylbenzene	0.05	nd	nd	nd	nd	nd	nd
Total Xylenes	0.15	nd	nd	nd	nd	nd	nd
Surrogate Recovery							
Dibromofluoromethane	27-188	103	99	95	93	96	95
1,2-Dichloroethane-d4	17-212	112	108	107	105	103	98
Toluene-d8	41-142	98	105	96	96	98	96
4-Bromofluorobenzene	47-167	91	216 S	241 S	95	96	97

BTEX by EPA Method 8260D in Soil

"nd" Indicates not detected at listed detection limit.

"S" Spike recovery outside accepted recovery limits.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

661 E PINE ST PROJECT **Farallon Consulting** Shelton, Washington Libby Project # L22J143 Client Project # 863-001

3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample Description		B-22-15.0
Date Sampled		10/27/2022
Date Analyzed	PQL	11/2/2022
	(mg/kg)	(mg/kg)
Benzene	0.02	nd
Toluene	0.10	nd
Ethylbenzene	0.05	nd
Total Xylenes	0.15	nd
Surrogate Recovery		
Dibromofluoromethane	27-188	89
1,2-Dichloroethane-d4	17-212	97
Toluene-d8	41-142	94
4-Bromofluorobenzene	47-167	100
"nd" Indicates not dete	cted at listed	detection limit
и и т 1 и и и и и	C	. 1

BTEX by EPA Method 8260D in Soil

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE : 65% TO 135%

661 E PINE ST PROJECT Farallon Consulting Shelton, Washington Libby Project # L22J143 Client Project # 863-001 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

1	Matrix Spike	Sample Ide	ntification:	B-23-11.5				
		Date	Analyzed:	11/2/2022				
	Spiked	MS	MSD	MS	MSD	RPD	Limits	Data
	Conc.	Response	Response	Recovery	Recovery		Recovery	Flag
	(mg/kg)	(mg/kg)	(mg/kg)	(%)	(%)	(%)	(%)	
Benzene	0.25	0.30	0.30	119	120	1.4	65-126	
Toluene	0.25	0.32	0.31	129	123	4.8	67-136	
Ethylbenzene	0.25	0.29	0.30	115	122	5.3	55-140	
Total Xylenes	0.75	0.94	0.94	126	125	0.4	43-149	
Surrogate Recovery (%)				MS	MSD			
Dibromofluoromethane				100	101		27-188	
1,2-Dichloroethane-d4				101	102		17-212	
Toluene-d8				102	99		41-142	
4-Bromofluorobenzene				90	90		47-167	

QA/QC for Gasoline (NWTPH-Gx) & BTEX (EPA Method 8260D) in Soil

ACCEPTABLE RPD IS 35%

ANALYSES PERFORMED BY: Alex Randolph

Laboratory Control Sample

Date Analyzed:	11/2/2022				
	Spiked	LCS	LCS	LCS	Data
	Conc.	Response	Recovery	Recovery	Flag
	(mg/kg)	(mg/kg)	(%)	Limits (%)	
Benzene	0.25	0.28	113	65-118	
Toluene	0.25	0.26	105	68-125	
Ethylbenzene	0.25	0.28	111	49-144	
Total Xylenes	0.75	0.84	112	38-140	
Surrogate Recovery					
Dibromofluoromethane			98	27-188	
1,2-Dichloroethane-d4			94	17-212	
Toluene-d8			95	41-142	
4-Bromofluorobenzene			88	47-167	

661 E PINE ST PROJECT Farallon Consulting Shelton, Washington Libby Project # L22J143 Client Project # 863-001 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample	Date	Surrogate	Diesel	Oil
Number	Analyzed	Recovery (%	(mg/kg)	(mg/kg)
Method Blank	11/1/2022	98	nd	nd
Method Blank	11/2/2022	92	nd	nd
Method Blank	11/3/2022	95	nd	nd
B-14-15.0	11/1/2022	int	420	nd
B-140-15.0	11/2/2022	88	nd	nd
B-140-20.0	11/2/2022	106	nd	nd
B-15-10.0	11/2/2022	85	nd	nd
B-150-10.0	11/2/2022	91	nd	nd
B-15-15.0	11/2/2022	96	nd	nd
B-23-10.0	11/2/2022	96	56	nd
B-23-10.0 Dup	11/2/2022	96	43 J	nd
B-23-11.5	11/2/2022	102	nd	nd
B-230-11.5	11/2/2022	109	nd	nd
B-24-6.0	11/2/2022	int	1100	nd
B-24-7.0	11/2/2022	int	880	nd
B-24-10.0	11/2/2022	116	62	nd
B-22-7.0	11/2/2022	88	nd	nd
B-22-11.0	11/3/2022	99	nd	nd
Practical Quantitation Limit			50	250
"I" Degult is loss than the DOI	but greater t	han tha MDI	Departed value is oppr	ovimato

Analyses of Diesel & Oil w/ Silica Gel Clean up (NWTPH-Dx/Dx Extended) in Soil

"J" Result is less than the PQL but greater than the MDL. Reported value is approximate. "nd" Indicates not detected at the listed detection limits.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Lucy Owens

661 E PINE ST PROJECT Farallon Consulting Shelton, Washington Libby Project # L22J143 Client Project # 863-001 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Sample	Date	Surrogate	Diesel	Oil
Number	Analyzed	Recovery (%)	(mg/kg)	(mg/kg)
Method Blank	11/2/2022	93	nd	nd
B-22-15.0	11/2/2022	91	nd	nd
B-19-10.0	11/2/2022	95	nd	nd
B-19-15.0	11/2/2022	106	nd	nd
B-190-20.0	11/2/2022	94	nd	nd
B-18-16.0	11/2/2022	114	nd	nd
B-18-20.0	11/2/2022	89	nd	nd
B-20-10.0	11/2/2022	90	nd	nd
B-20-15.0	11/2/2022	93	nd	nd
Practical Quantitation Limit			50	250
"nd" Indicates not detected at t	ha listed date	action limits		

Analyses of Diesel & Oil w/ Silica Gel Clean up (NWTPH-Dx/Dx Extended) in Soil

"nd" Indicates not detected at the listed detection limits.

"int" Indicates that interference prevents determination.

ACCEPTABLE RECOVERY LIMITS FOR SURROGATE (2-F Biphenyl): 65% TO 135%

ANALYSES PERFORMED BY: Lucy Owens

661 E PINE ST PROJECT Farallon Consulting Libby Project # L22J143 Date Received 10/28/22 9:10 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By KD

Sample Receipt Checklist

Chain of Custod	<u>v</u>			
1. Is the Chain of Cust	ody complete?	🗆 Yes	☑ No	
2. How was the sample	e delivered?	🗵 Hand Delivered	🗆 Picked Up	🗆 Shipped
<u>Log In</u>				
3. Cooler or Shipping C	Container is present.	✓ Yes	🗆 No	🗆 N/A
4. Cooler or Shipping C	Container is in good condition.	✓ Yes	🗆 No	□ N/A
5. Cooler or Shipping C	Container has Custody Seals present.	🗆 Yes	☑ No	🗆 N/A
6. Was an attempt mad	de to cool the samples?	✓ Yes	🗆 No	🗆 N/A
7. Temperature of cool	er (0°C to 8°C recommended)	4.9	°C	
8. Temperature of sam	ple(s) (0°C to 8°C recommended)	5.2	°C	
9. Did all containers ar	rive in good condition (unbroken)?	✓ Yes	🗆 No	
10. Is it clear what ana	lyses were requested?	✓ Yes	🗆 No	
11. Did container label	s match Chain of Custody?	✓ Yes	🗆 No	
12. Are matrices correct	ctly identified on Chain of Custody?	✓ Yes	🗆 No	
13. Are correct contain	ers used for the analysis indicated?	✓ Yes	🗆 No	
14. Is there sufficient s	ample volume for indicated analysis?	✓ Yes	🗆 No	
15. Were all containers	s properly preserved per each analysis?	✓ Yes	🗆 No	
16. Were VOA vials co	llected correctly (no headspace)?	✓ Yes	🗆 No	🗆 N/A
17. Were all holding tin	nes able to be met?	✓ Yes	🗆 No	
Discrepancies/ No	otes			
18. Was client notified	of all discrepancies?	✓ Yes	🗆 No	🗆 N/A
Person Notified:	Javan		Date	10/28/2022
By Whom:	KD		Via	Email
Regarding:	Analyses		_	
19. Comments.	COC had no analyses marked, but had	a note to hold for F	PM on analyses	
	10-31-2022, Client selected analyses.			

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Libby Environmental Sherry Chilcutt 3322 South Bay Road NE Olympia, WA 98506

RE: 661 E Pine St Work Order Number: 2211116

November 15, 2022

Attention Sherry Chilcutt:

Fremont Analytical, Inc. received 2 sample(s) on 11/4/2022 for the analyses presented in the following report.

Sample Moisture (Percent Moisture) Total Organic Carbon by EPA 9060

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

CLIENT: Project: Work Order:	Libby Environmental 661 E Pine St 2211116	Work Order S	Sample Summary
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2211116-001	B-19-5.0	10/27/2022 11:05 AM	11/04/2022 9:21 AM
2211116-002	B-19-20.0	10/27/2022 11:40 AM	11/04/2022 9:21 AM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: **2211116** Date: **11/15/2022**

CLIENT:Libby EnvironmentalProject:661 E Pine St

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Qualifiers & Acronyms

WO#: 2211116 Date Reported: 11/15/2022

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery CCB - Continued Calibration Blank CCV - Continued Calibration Verification DF - Dilution Factor DUP - Sample Duplicate HEM - Hexane Extractable Material ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate

MCL - Maximum Contaminant Level

MB or MBLANK - Method Blank

- MDL Method Detection Limit
- MS/MSD Matrix Spike / Matrix Spike Duplicate
- PDS Post Digestion Spike
- Ref Val Reference Value
- **REP Sample Replicate**
- RL Reporting Limit
- **RPD** Relative Percent Difference
- SD Serial Dilution
- SGT Silica Gel Treatment
- SPK Spike
- Surr Surrogate

Analytical Report

 Work Order:
 2211116

 Date Reported:
 11/15/2022

CLIENT: Libby Environmental Project: 661 E Pine St					
Lab ID: 2211116-001 Client Sample ID: B-19-5.0			Collection Matrix: S	n Date: Soil	10/27/2022 11:05:00 AM
Analyses	Result	RL Qual	Units	DF	Date Analyzed
Sample Moisture (Percent Moist	ure)		Batcl	h ID: R7	9681 Analyst: AP
Percent Moisture	2.64	0.500	wt%	1	11/9/2022 9:19:38 AM
Total Organic Carbon by EPA 90	<u>)60</u>		Batcl	h ID: 384	436 Analyst: ALT
Total Organic Carbon	ND	0.150	%-dry	1	11/10/2022 10:22:00 AM
Lab ID: 2211116-002 Client Sample ID: B-19-20.0			Collection Matrix: S	n Date: Soil	10/27/2022 11:40:00 AM
Analyses	Result	RL Qual	Units	DF	Date Analyzed
Sample Moisture (Percent Moist	<u>ure)</u>		Batcl	h ID: R7	9681 Analyst: AP
Percent Moisture	13.8	0.500	wt%	1	11/9/2022 9:19:38 AM
Total Organic Carbon by EPA 90	<u>)60</u>		Batcl	h ID: 384	436 Analyst: ALT
Total Organic Carbon	0.400	0.150	%-dry	1	11/10/2022 11:20:00 AM

Work Order: CLIENT: Project:	2211116 Libby Enviro 661 E Pine S	nmental St					QC S Total Org	SUMMARY REPORT anic Carbon by EPA 9060
Sample ID: MB-38	3436	SampType: MBLK			Units: %-dry		Prep Date: 11/9/2022	RunNo: 79826
Client ID: MBLK	S	Batch ID: 38436					Analysis Date: 11/10/2022	SeqNo: 1646750
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Organic Carl	oon	ND	0.150					
Sample ID: LCS-3	8436	SampType: LCS			Units: %-dry		Prep Date: 11/9/2022	RunNo: 79826
Client ID: LCSS		Batch ID: 38436					Analysis Date: 11/10/2022	SeqNo: 1646751
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Organic Carl	oon	0.963	0.150	1.000	0	96.3	80 120	
Sample ID: 22111	16-001ADUP	SampType: DUP			Units: %-dry		Prep Date: 11/9/2022	RunNo: 79826
Client ID: B-19-	5.0	Batch ID: 38436					Analysis Date: 11/10/2022	SeqNo: 1646743
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Organic Carl	oon	ND	0.150				0	20
Sample ID: 22111	16-001AMS	SampType: MS			Units: %-dry		Prep Date: 11/9/2022	RunNo: 79826
Client ID: B-19-	5.0	Batch ID: 38436					Analysis Date: 11/10/2022	SeqNo: 1646744
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Organic Carl	oon	1.17	0.150	1.000	0.09800	107	75 125	
Sample ID: 22111	16-001AMSD	SampType: MSD			Units: %-dry		Prep Date: 11/9/2022	RunNo: 79826
Client ID: B-19-	5.0	Batch ID: 38436					Analysis Date: 11/10/2022	SeqNo: 1646745
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Total Organic Cart	oon	1.15	0.150	1.000	0.09800	106	75 125 1.167	1.21 20

Sample Log-In Check List

С	lient Name:	LIBBY	Work Order Num	ber: 2211116		
Lo	ogged by:	Elisabeth Samoray	Date Received:	11/4/2022	9:21:00 AM	
<u>Cha</u>	nin of Cust	odv				
1.	Is Chain of C	ustody complete?	Yes 🖌	No 🗌	Not Present	
2.	How was the	sample delivered?	UPS			
Loo	ı In					
3.	Coolers are p	present?	Yes 🗹	No 🗌		
4.	Shipping con	tainer/cooler in good condition?	Yes 🗹	No 🗌	_	
5.	Custody Sea (Refer to con	Is present on shipping container/cooler? nments for Custody Seals not intact)	Yes	No 🗌	Not Present 🗹	
6.	Was an atter	npt made to cool the samples?	Yes 🖌	No 🗌		
7.	Were all item	is received at a temperature of $>2^{\circ}C$ to $6^{\circ}C$ *	Yes 🗸	No 🗌		
8.	Sample(s) in	proper container(s)?	Yes 🖌	No 🗌		
9.	Sufficient sar	mple volume for indicated test(s)?	Yes 🖌	No 🗌		
10.	Are samples	properly preserved?	Yes 🖌	No 🗌		
11.	Was preserv	ative added to bottles?	Yes	No 🔽	NA 🗌	
12.	Is there head	Ispace in the VOA vials?	Yes	No 🗌	NA 🔽	
13.	Did all sampl	es containers arrive in good condition(unbroken)?	Yes 🖌	No 🗌		
14.	Does paperw	vork match bottle labels?	Yes 🗹	No 🗌		
15.	Are matrices	correctly identified on Chain of Custody?	Yes 🖌	No 🗌		
16.	Is it clear what	at analyses were requested?	Yes 🖌	No 🗌		
17.	Were all hold	ling times able to be met?	Yes 🗹	No 🗌		
<u>Spe</u>	cial Handl	<u>ing (if applicable)</u>				
18.	Was client no	otified of all discrepancies with this order?	Yes	No 🗌	NA 🗹	
	Person	Notified: Date	:			
	By Who	om: Via:	🗌 eMail 🗌 Ph	one 🗌 Fax [In Person	
	Regardi	ing:				
	Client Ir	nstructions:				
19	Additional rei	marks:				
10.						

Item Ir	nformation	
	Item #	Temp °C
:	Sample 1	2.4

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

Sending Laboratory:	Subcontracted Laboratory: 22-11116
Libby Environmental, Inc. 3322 South Bay Road NE Olympia, WA 98506 Phone: 360-352-2110 Fax: 360-352-4154 Project Manager: Sherry Chilcutt	Fremont Analytical, Inc. 3600 Fremont Ave N Seattle, WA 98103 Phone: (206) 352-3790 Fax:
LibbyEnv@gmail.com Project: 661 E Pine St	
	Comments
Analysis	Lab ID: L22J143-23
Client Sample ID: B-19-5.0 Soil Sampled: 10/	27/2022 11:05
Containers Supplied:	
Client Sample ID: B-19-20 0 Sail Sampled: 10	Lab ID: L22J143-26
TOC	<u></u>
Containers Supplied:	
	2 Kalkant for 11/164

Page 1 of 1

Page 8 of 8

3322 South Bay Road NE • Olympia, WA 98506-2957

July 26, 2023

Javan Ruark Farallon Consulting 975 5th Avenue NW Issaquah, WA 98027

Dear Javan Ruark:

Please find enclosed the analytical data report for the 661 E Pine St project located in Shelton, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

2 1 Um

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.
Libby Environmental, Inc. Cha 3322 South Bay Road NE Ph: 360-352-2110						ain of Custody Record							www.LibbyEnvironmental.com			
Olympia, WA 98506	Fax:	360-352-2	154		Ċ.	Date	e: 10	126122	*1		Pag	e:	۱	of	2	
Client: Farallon Consul	ting					Proj	ect M	anager:	Javan	Ruark						
Address: 975 5th Ave Nu	3					Proj	ect N	ame: 661	E Pir	ne St						
City: Issaquah		State: W	A Zip:	98027		Loca	ation:	Man	1, 661	E Pine St	City	, State	e: 5	netton, w	A	
Phone:		Fax:				Coll	ector:	Micha	el Ys	aquirre	Date	e of C	ollec	tion: 10/24	0/22	
Client Project # 863-001					S 1.	Ema	ail: J	Truark @	farall	onconsult	ing.com	n				
Sample Number	Denth	Time	Sample	Container	100.82	8 0	aughter aughter	100 100 100 100 100 100 100 100 100 100		S S S S S S	10 10 10 31 30 50 10	8210	~	Field N	Made change or Javan via nail.	
1 B-020-50	5.0	1332	SOIL	Jar. VOA	r r	X	X	TXT	Ϋ́		X	TR	1			
2 B-016-7.0	7.0	1412	1	1				+X+						HOLD		
3 3-1016-16.0	16.0	1418						X								
4 13-1016-19.5	19.5	1422						X								
5 B-Ø15-5.0	5.0	1501				X	X	×								
6 B- Ø14-5.0	5.0	1459				X	X	X			X	TR				
7 B-1017-5.0	5.0	1457						X						HOLD		
8 B-Ø17-16.0	16.0	1440						X		\otimes		\otimes	(11-17-22	Analyses	
9 13-101-19.0	19.0	1451						X						added	per Javan	
10 B-Ø11-5.0	5.0	1122				X	X	\times						via em	ail. STD TAT	
11 3-011-6.0	6.0	1150				X	X	X								
12 3-1011-11.0	11.0	1157				X	X	X								
13 13-011-16.0	16.0	1205				X	X	X								
14 B- \$12- 5.0	5.0	1234				X	X	X		X						
15 3-1012-9.0	9.0	1236				X	X	X		X						
16 B-13-4.0	4.0	1249					X			X		1		-Added 11-	7-22	
17 13-,013- 6.0	6.0	1256	T	1 1		(X			X	\otimes			48 h T	AT 11-2-22	
Relinquished by:	2	10/2	Date / Time	Received by:	than	du	h	Dat 0 ~ 26- 27	e / Time 2 16 2 9	Sample Good Condition	e Receip	t N	Rem	narks: Pe	Javan via email	
Relinquisnea by:			Date / Time	Received by:				Dat	e / Time	Sample Temp.		°C				
Relinquished by:				Dat	e / Time	Total Number of Containers	of		TAT	Г: 24HR	48HR 5-DAY					

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay, Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a court of law.

Distribution: White - Lab, Yellow - Originator

Libby Environmer	South Bay Road NE Ph: 360-352-2110 Chai					ain of Custody Record									www.LibbyEnvironmental.com					
3322 South Bay Road NE Olympia, WA 98506	Ph: Fax:	360-352-2 360-352-4	2110 1154			1	Date:	0/20	0/27	L .					Page	e:	2	2	of	2
Client: Farallon Consult	ring					1	Project	Mana	ger:	Jav	an	Ruc	rK							
Address: 975 5th Ave	NW					1	Project	Name	e: (e)	OLE	P	ine s	t.							
City: Issaquah		State: U	JA Zip:	98027		1	Locatio	n: 60	OLE	Pir	ne	St		(City,	State	e: SI	nelto	n, WF	
Phone:		Fax:					Collecte	or: M	lich	ael	YS	aquir	ne		Date	of C	collec	ction: 1	0/20	/22
Client Project # 863-001					9.5.	1	Email:	Jru	ark	af	ara	llone	onsul	ting	0	m				
Sample Number	Depth	Time	Sample Type	Container Type	10	5 2 C	Court Court	400 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ANTPHY MIPHY	SAI SAI SAI SAI SAI SAI	4 00 00 10	ST CT CT	2 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2	10 10 XH 8210	NO NO	310		F	Pe em	Nade changes Tawan Via ail.
1 B-\$13-8.0	8.0	1300	SOIL	Jar, VOA			X		X			X			-					A /
2 B-\$13-10.0	10.0	1305	1	1			X	2				0	0		\otimes			48h	- TA	-10ded 11-2-22
3																			Pe	r Javan Uta email
4																4		Adde	d 11-	7-22
5																				
6																				
7																				
8																				
9																	-			
10																				
11																				
12																		-		
13																				
14																				
15																				
16																				
17																				
Relinquished by:	- AAI	1	Date / Time	Received by:	11	1	1.	_	D	ate / T	ime	S	ample	Rec	eipt		Ren	narks:		
Multithate	ma	n	1625	Mi	the	(n	du	~ 10	-26	221	6%	Good C	ondition?	?	Y	N				
Relingeished by:			Date / Time	Received by:					D	ate / T	ime	Cooler	emp.			°C				
Relinguished by:	Date / Time Received by:					Date / Time Total Number of						-								
	Date / Time Received by:											Cont	ainers				TAT: 24HR 48HR 5-DAY			

Libby Environmental, Inc.

661 E PINE ST PROJECT Farallon Consulting Libby Project # L22K084 Date Received 10/26/22 16:29 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By JA

Sample Receipt Checklist

Chain of Custody			
1. Is the Chain of Custody complete?	✓ Yes	No No	
2. How was the sample delivered?	✓ Hand Delivered	Picked Up	Shipped
Log In			
3. Cooler or Shipping Container is present.	✓ Yes	🗌 No	□ N/A
4. Cooler or Shipping Container is in good condition.	✓ Yes	No No	□ N/A
5. Cooler or Shipping Container has Custody Seals present.	Yes	✓ No	□ N/A
6. Was an attempt made to cool the samples?	✓ Yes	🗌 No	□ N/A
7. Temperature of cooler (0°C to 8°C recommended)	3.3	°C	
8. Temperature of sample(s) (0°C to 8°C recommended)	14.4	°C	
9. Did all containers arrive in good condition (unbroken)?	✓ Yes	🗌 No	
10. Is it clear what analyses were requested?	✓ Yes	🗌 No	
11. Did container labels match Chain of Custody?	✓ Yes	🗌 No	
12. Are matrices correctly identified on Chain of Custody?	✓ Yes	🗌 No	
13. Are correct containers used for the analysis indicated?	✓ Yes	🗌 No	
14. Is there sufficient sample volume for indicated analysis?	✓ Yes	🗌 No	
15. Were all containers properly preserved per each analysis?	✓ Yes	🗌 No	
16. Were VOA vials collected correctly (no headspace)?	Yes	🗌 No	✓ N/A
17. Were all holding times able to be met?	✓ Yes	🗌 No	
Discrepancies/ Notes			
18. Was client notified of all discrepancies?	Yes	🗌 No	✓ N/A
Person Notified:		_	Date:
By Whom:		_	Via:
Regarding:		_	
19. Comments. B-17-5.0 only 4 oz jar, split into 20 mL	VOAs upon receipt.		

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Libby Environmental Sherry Chilcutt 3322 South Bay Road NE Olympia, WA 98506

RE: 661 E Pine St Work Order Number: 2211393

July 25, 2023

Attention Sherry Chilcutt:

Fremont Analytical, Inc. received 1 sample(s) on 11/18/2022 for the analyses presented in the following report.

Extractable Petroleum Hydrocarbons by NWEPH Polyaromatic Hydrocarbons by EPA Method 8270 (SIM) Sample Moisture (Percent Moisture)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Revision v1

CLIENT: Project: Work Order:	Libby Environmental 661 E Pine St 2211393	Work Order S	Sample Summary
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2211393-001	B-17-16.0	10/26/2022 2:40 PM	11/18/2022 9:55 AM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: **2211393** Date: **7/25/2023**

CLIENT:Libby EnvironmentalProject:661 E Pine St

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

7/25/2023: Revision 1 includes additional PAH analytes per client request.

Qualifiers & Acronyms

 WO#:
 2211393

 Date Reported:
 7/25/2023

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

- CCB Continued Calibration Blank
- CCV Continued Calibration Verification
- DF Dilution Factor
- DUP Sample Duplicate
- HEM Hexane Extractable Material
- ICV Initial Calibration Verification
- LCS/LCSD Laboratory Control Sample / Laboratory Control Sample Duplicate
- MCL Maximum Contaminant Level
- MB or MBLANK Method Blank
- MDL Method Detection Limit
- MS/MSD Matrix Spike / Matrix Spike Duplicate
- PDS Post Digestion Spike
- Ref Val Reference Value
- REP Sample Replicate
- RL Reporting Limit
- RPD Relative Percent Difference
- SD Serial Dilution
- SGT Silica Gel Treatment
- SPK Spike
- Surr Surrogate

 Work Order:
 2211393

 Date Reported:
 7/25/2023

Client: Libby Environmental				Collection	Dat	te: 10/26/2022 2:40:00 PM
Project: 661 E Pine St						
Lab ID: 2211393-001				Matrix: So	oil	
Client Sample ID: B-17-16.0						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Extractable Petroleum Hydrocarbor	ns by NWI	<u>EPH</u>		Batch	ID:	38881 Analyst: KJ
Aliphatic Hydrocarbon (C8-C10)	ND	20.3	Н	mg/Kg-dry	1	12/28/2022 4:11:38 PM
Aliphatic Hydrocarbon (C10-C12)	ND	10.2	Н	mg/Kg-dry	1	12/28/2022 4:11:38 PM
Aliphatic Hydrocarbon (C12-C16)	24.0	10.2	Н	mg/Kg-dry	1	12/28/2022 4:11:38 PM
Aliphatic Hydrocarbon (C16-C21)	90.0	10.2	Н	mg/Kg-dry	1	12/28/2022 4:11:38 PM
Aliphatic Hydrocarbon (C21-C34)	43.0	10.2	Н	mg/Kg-dry	1	12/28/2022 4:11:38 PM
Aromatic Hydrocarbon (C8-C10)	ND	20.3	Н	mg/Kg-dry	1	12/28/2022 11:23:05 AM
Aromatic Hydrocarbon (C10-C12)	ND	10.2	Н	mg/Kg-dry	1	12/28/2022 11:23:05 AM
Aromatic Hydrocarbon (C12-C16)	ND	10.2	Н	mg/Kg-dry	1	12/28/2022 11:23:05 AM
Aromatic Hydrocarbon (C16-C21)	33.7	9.83	Н	mg/Kg-dry	1	12/15/2022 10:09:32 AM
Aromatic Hydrocarbon (C21-C34)	52.9	10.2	Н	mg/Kg-dry	1	12/28/2022 11:23:05 AM
Surr: 1-Chlorooctadecane	64.4	50 - 150	Н	%Rec	1	12/28/2022 4:11:38 PM
Surr: o-Terphenyl	82.3	50 - 150	Н	%Rec	1	12/28/2022 11:23:05 AM
Polyaromatic Hydrocarbons by EPA	Method	<u>8270 (SIM)</u>		Batch	ID:	38582 Analyst: SK
Naphthalene	ND	19.6	Н	µg/Kg-dry	1	11/23/2022 2:52:05 AM
2-Methylnaphthalene	24.2	19.6	Н	µg/Kg-dry	1	11/23/2022 2:52:05 AM
1-Methylnaphthalene	21.4	19.6	н	µg/Kg-dry	1	11/23/2022 2:52:05 AM
Benz(a)anthracene	ND	19.6	н	µg/Kg-dry	1	11/23/2022 2:52:05 AM
Chrysene	ND	19.6	н	µg/Kg-dry	1	11/23/2022 2:52:05 AM
Benzo(b)fluoranthene	ND	24.5	н	µg/Kg-dry	1	11/23/2022 2:52:05 AM
Benzo(k)fluoranthene	ND	24.5	н	µg/Kg-dry	1	11/23/2022 2:52:05 AM
Benzo(a)pyrene	ND	29.3	Н	µg/Kg-dry	1	11/23/2022 2:52:05 AM
Indeno(1,2,3-cd)pyrene	ND	39.1	Н	µg/Kg-dry	1	11/23/2022 2:52:05 AM
Dibenz(a,h)anthracene	ND	48.9	н	µg/Kg-dry	1	11/23/2022 2:52:05 AM
Surr: 2-Fluorobiphenyl	68.9	22.2 - 146	Н	%Rec	1	11/23/2022 2:52:05 AM
Surr: Terphenyl-d14 (surr)	76.7	20.2 - 159	Н	%Rec	1	11/23/2022 2:52:05 AM
Sample Moisture (Percent Moisture)			Batch	ID:	R80033 Analyst: AP
Percent Moisture	5.69	0.500		wt%	1	11/23/2022 8:37:22 AM

Work Order:	2211393									QCS	SUMMAR	RY REF	PORT
CLIENT:	Libby Enviror	nmental						Extra	octoblo I			one by N	
Project:	661 E Pine S	St						EXUC			nyurocarb		
Sample ID: MB-38	628	SampType	BLK			Units: mg/Kg		Prep Dat	e: 11/28/2	022	RunNo: 805	515	
Client ID: MBLK	S	Batch ID:	38628					Analysis Dat	e: 12/15/2	022	SeqNo: 166	64704	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocar	bon (C16-C21)		ND	10.0									
Surr: o-Terpheny	yl		60.5		100.0		60.5	50	150				
Sample ID: LCS-3	8628	SampType	LCS			Units: mg/Kg		Prep Dat	e: 11/28/2	022	RunNo: 805	515	
Client ID: LCSS		Batch ID:	38628					Analysis Dat	e: 12/15/2	022	SeqNo: 166	64705	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocar	bon (C16-C21)		110	10.0	125.0	0	88.3	55.4	124				
Surr: o-Terpheny	yl		98.5		100.0		98.5	50	150				
Sample ID: 22113	93-001AMS	SampType	MS			Units: mg/Kg	-dry	Prep Dat	e: 11/28/2	022	RunNo: 805	515	
Client ID: B-17-1	6.0	Batch ID:	38628					Analysis Dat	e: 12/15/2	022	SeqNo: 166	64707	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocar	bon (C16-C21)		84.5	9.89	123.6	33.73	41.1	23.7	139				Н
Surr: o-Terpheny	yl		59.8		98.91		60.4	50	150				Н
Sample ID: 22113	93-001AMSD	SampType	MSD			Units: mg/Kg	-dry	Prep Dat	e: 11/28/2	022	RunNo: 805	515	
Client ID: B-17-1	6.0	Batch ID:	38628					Analysis Dat	e: 12/15/2	022	SeqNo: 166	64708	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocar	bon (C16-C21)		116	9.90	123.8	33.73	66.7	23.7	139	84.48	31.7	30	RH
Surr: o-Terpheny	yl		88.0		99.01		88.9	50	150		0		Н
R - High RPD ob	oserved, spike rec	overy is withi	n range.										
Sample ID: LCS-3	8628	SampType	LCS			Units: mg/Kg		Prep Dat	e: 11/28/2	022	RunNo: 805	515	
Client ID: LCSS		Batch ID:	38628					Analysis Dat	e: 12/15/2	022	SeqNo: 166	64710	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocar	bon (C16-C21)		119	10.0	125.0	0	95.3	55.4	124				

Work Order: 2211393							2.00	SUMMARY	RFPORT
CLIENT: Libby Enviro	nmental								
Project: 661 E Pine S	St					Extractable	Petroleum	Hydrocarbons	by NWEPH
Sample ID: LCS-38628	SampType: LCS			Units: mg/Kg		Prep Date: 11/28	/2022	RunNo: 80515	
Client ID: LCSS	Batch ID: 38628					Analysis Date: 12/15	/2022	SeqNo: 1664710	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimi	t RPD Ref Val	%RPD RPD	Limit Qual
Surr: o-Terphenyl	120		100.0		120	50 150)		
Sample ID: MB-38881	SampType: MBLK			Units: mg/Kg		Prep Date: 12/19	/2022	RunNo: 80790	
Client ID: MBLKS	Batch ID: 38881					Analysis Date: 12/28	/2022	SeqNo: 1671179	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimi	t RPD Ref Val	%RPD RPD	Limit Qual
Aromatic Hydrocarbon (C8-C10)	ND	20.0							
Aromatic Hydrocarbon (C10-C12)	ND	10.0							
Aromatic Hydrocarbon (C12-C16)	ND	10.0							
Aromatic Hydrocarbon (C21-C34)	ND	10.0							
Surr: o-Terphenyl	66.9		100.0		66.9	50 150)		
Sample ID: LCS-38881	SampType: LCS			Units: mg/Kg		Prep Date: 12/19	/2022	RunNo: 80790	
Sample ID: LCS-38881 Client ID: LCSS	SampType: LCS Batch ID: 38881			Units: mg/Kg		Prep Date: 12/19 Analysis Date: 12/28	/2022 /2022	RunNo: 80790 SeqNo: 1671180	
Sample ID: LCS-38881 Client ID: LCSS Analyte	SampType: LCS Batch ID: 38881 Result	RL	SPK value	Units: mg/Kg SPK Ref Val	%REC	Prep Date: 12/19 Analysis Date: 12/28 LowLimit HighLimi	/2022 /2022 t RPD Ref Val	RunNo: 80790 SeqNo: 1671180 %RPD RPE	Limit Qual
Sample ID: LCS-38881 Client ID: LCSS Analyte Aromatic Hydrocarbon (C8-C10)	SampType: LCS Batch ID: 38881 Result 108	RL 20.0	SPK value 250.0	Units: mg/Kg SPK Ref Val	%REC 43.3	Prep Date: 12/19 Analysis Date: 12/28 LowLimit HighLimi 23.1 130	/2022 /2022 t RPD Ref Val	RunNo: 80790 SeqNo: 1671180 %RPD RPE	Limit Qual
Sample ID: LCS-38881 Client ID: LCSS Analyte Aromatic Hydrocarbon (C8-C10) Aromatic Hydrocarbon (C10-C12)	SampType: LCS Batch ID: 38881 Result 108 63.7	RL 20.0 10.0	SPK value 250.0 125.0	Units: mg/Kg SPK Ref Val 0 0	%REC 43.3 50.9	Prep Date: 12/19 Analysis Date: 12/28 LowLimit HighLimi 23.1 130 46.8 104	/2022 /2022 t RPD Ref Val	RunNo: 80790 SeqNo: 1671180 %RPD RPE	ıLimit Qual
Sample ID: LCS-38881 Client ID: LCSS Analyte Aromatic Hydrocarbon (C8-C10) Aromatic Hydrocarbon (C10-C12) Aromatic Hydrocarbon (C12-C16)	SampType: LCS Batch ID: 38881 Result 108 63.7 77.0	RL 20.0 10.0 10.0	SPK value 250.0 125.0 125.0	Units: mg/Kg SPK Ref Val 0 0 0	%REC 43.3 50.9 61.6	Prep Date: 12/19 Analysis Date: 12/28 LowLimit HighLimit 23.1 130 46.8 104 54.1 111	/2022 /2022 t RPD Ref Val	RunNo: 80790 SeqNo: 1671180 %RPD RPE	lLimit Qual
Sample ID: LCS-38881 Client ID: LCSS Analyte Aromatic Hydrocarbon (C8-C10) Aromatic Hydrocarbon (C10-C12) Aromatic Hydrocarbon (C12-C16) Aromatic Hydrocarbon (C21-C34)	SampType: LCS Batch ID: 38881 Result 108 63.7 77.0 90.0	RL 20.0 10.0 10.0 10.0	SPK value 250.0 125.0 125.0 125.0	Units: mg/Kg SPK Ref Val 0 0 0 0 0	%REC 43.3 50.9 61.6 72.0	Prep Date: 12/19 Analysis Date: 12/28 LowLimit HighLimit 23.1 130 46.8 104 54.1 111 48.5 134	/2022 /2022 t RPD Ref Val	RunNo: 80790 SeqNo: 1671180 %RPD RPE	Limit Qual
Sample ID: LCS-38881 Client ID: LCSS Analyte Aromatic Hydrocarbon (C8-C10) Aromatic Hydrocarbon (C10-C12) Aromatic Hydrocarbon (C12-C16) Aromatic Hydrocarbon (C21-C34) Surr: o-Terphenyl	SampType: LCS Batch ID: 38881 Result 108 63.7 77.0 90.0 63.4	RL 20.0 10.0 10.0 10.0	SPK value 250.0 125.0 125.0 125.0 125.0 100.0	Units: mg/Kg SPK Ref Val 0 0 0 0	%REC 43.3 50.9 61.6 72.0 63.4	Prep Date: 12/19 Analysis Date: 12/28 LowLimit HighLimit 23.1 130 46.8 104 54.1 111 48.5 134 50 150	/2022 /2022 t RPD Ref Val	RunNo: 80790 SeqNo: 1671180 %RPD RPE	Limit Qual
Sample ID: LCS-38881 Client ID: LCSS Analyte Aromatic Hydrocarbon (C8-C10) Aromatic Hydrocarbon (C10-C12) Aromatic Hydrocarbon (C12-C16) Aromatic Hydrocarbon (C21-C34) Surr: o-Terphenyl Sample ID: 2211394-001AMS	SampType: LCS Batch ID: 38881 Result 108 63.7 77.0 90.0 63.4 SampType: MS	RL 20.0 10.0 10.0 10.0	SPK value 250.0 125.0 125.0 125.0 125.0 100.0	Units: mg/Kg SPK Ref Val 0 0 0 0 0 Units: mg/Kg-	%REC 43.3 50.9 61.6 72.0 63.4 dry	Prep Date: 12/19 Analysis Date: 12/28 LowLimit HighLimit 23.1 130 46.8 104 54.1 111 48.5 134 50 150 Prep Date: 12/19	/2022 /2022 t RPD Ref Val	RunNo: 80790 SeqNo: 1671180 %RPD RPD	Limit Qual
Sample ID: LCS-38881 Client ID: LCSS Analyte Aromatic Hydrocarbon (C8-C10) Aromatic Hydrocarbon (C10-C12) Aromatic Hydrocarbon (C12-C16) Aromatic Hydrocarbon (C21-C34) Surr: o-Terphenyl Sample ID: 2211394-001AMS Client ID: BATCH	SampType: LCS Batch ID: 38881 Result 108 63.7 77.0 90.0 63.4 SampType: MS Batch ID: 38881	RL 20.0 10.0 10.0 10.0	SPK value 250.0 125.0 125.0 125.0 100.0	Units: mg/Kg SPK Ref Val 0 0 0 0 0 Units: mg/Kg-	%REC 43.3 50.9 61.6 72.0 63.4 dry	Prep Date: 12/19 Analysis Date: 12/28 LowLimit HighLimit 23.1 130 46.8 104 54.1 111 48.5 134 50 150 Prep Date: 12/19 Analysis Date: 12/28	/2022 /2022 t RPD Ref Val	RunNo: 80790 SeqNo: 1671180 %RPD RPD RPD RunNo: 80790 SeqNo: 1671183	Limit Qual
Sample ID: LCS-38881 Client ID: LCSS Analyte Aromatic Hydrocarbon (C8-C10) Aromatic Hydrocarbon (C10-C12) Aromatic Hydrocarbon (C12-C16) Aromatic Hydrocarbon (C21-C34) Surr: o-Terphenyl Sample ID: 2211394-001AMS Client ID: BATCH Analyte	SampType: LCS Batch ID: 38881 Result 108 63.7 77.0 90.0 63.4 SampType: MS Batch ID: 38881 Result	RL 20.0 10.0 10.0 10.0 RL	SPK value 250.0 125.0 125.0 125.0 100.0	Units: mg/Kg SPK Ref Val 0 0 0 0 Units: mg/Kg- SPK Ref Val	%REC 43.3 50.9 61.6 72.0 63.4 dry %REC	Prep Date: 12/19 Analysis Date: 12/28 LowLimit HighLimit 23.1 130 46.8 104 54.1 111 48.5 134 50 150 Prep Date: 12/19 Analysis Date: 12/28 LowLimit HighLimit	/2022 /2022 t RPD Ref Val	RunNo: 80790 SeqNo: 1671180 %RPD RPD RunNo: 80790 SeqNo: 1671183 %RPD RPE	PLimit Qual
Sample ID: LCS-38881 Client ID: LCSS Analyte Aromatic Hydrocarbon (C8-C10) Aromatic Hydrocarbon (C10-C12) Aromatic Hydrocarbon (C12-C16) Aromatic Hydrocarbon (C21-C34) Surr: o-Terphenyl Sample ID: 2211394-001AMS Client ID: BATCH Analyte Aromatic Hydrocarbon (C8-C10)	SampType: LCS Batch ID: 38881 Result 108 63.7 77.0 90.0 63.4 SampType: MS Batch ID: 38881 Result 140	RL 20.0 10.0 10.0 10.0 RL 23.7	SPK value 250.0 125.0 125.0 100.0 SPK value 296.2	Units: mg/Kg SPK Ref Val 0 0 0 0 Units: mg/Kg- SPK Ref Val 0	%REC 43.3 50.9 61.6 72.0 63.4 dry %REC 47.1	Prep Date: 12/19 Analysis Date: 12/28 LowLimit HighLimit 23.1 130 46.8 104 54.1 111 48.5 134 50 150 Prep Date: 12/19 Analysis Date: 12/28 LowLimit HighLimit 11.3 130	/2022 /2022 t RPD Ref Val	RunNo: 80790 SeqNo: 1671180 %RPD RPD RunNo: 80790 SeqNo: 1671183 %RPD RPD	PLimit Qual
Sample ID: LCS-38881 Client ID: LCSS Analyte Aromatic Hydrocarbon (C8-C10) Aromatic Hydrocarbon (C10-C12) Aromatic Hydrocarbon (C12-C16) Aromatic Hydrocarbon (C21-C34) Surr: o-Terphenyl Sample ID: 2211394-001AMS Client ID: BATCH Analyte Aromatic Hydrocarbon (C8-C10) Aromatic Hydrocarbon (C10-C12)	SampType: LCS Batch ID: 38881 Result 108 63.7 77.0 90.0 63.4 SampType: MS Batch ID: 38881 Result 140 93.9	RL 20.0 10.0 10.0 10.0 10.0 RL 23.7 11.8	SPK value 250.0 125.0 125.0 125.0 100.0 SPK value 296.2 148.1	Units: mg/Kg SPK Ref Val 0 0 0 0 0 Units: mg/Kg- SPK Ref Val 0 14.53	%REC 43.3 50.9 61.6 72.0 63.4 dry %REC 47.1 53.6	Prep Date: 12/19 Analysis Date: 12/28 LowLimit HighLimit 23.1 130 46.8 104 54.1 111 48.5 134 50 150 Prep Date: 12/19 Analysis Date: 12/28 LowLimit HighLimit 11.3 130 19.3 130	/2022 /2022 t RPD Ref Val	RunNo: 80790 SeqNo: 1671180 %RPD RPD RunNo: 80790 SeqNo: 1671183 %RPD RPD	PLimit Qual
Sample ID: LCS-38881 Client ID: LCSS Analyte Aromatic Hydrocarbon (C8-C10) Aromatic Hydrocarbon (C10-C12) Aromatic Hydrocarbon (C12-C16) Aromatic Hydrocarbon (C21-C34) Surr: o-Terphenyl Sample ID: 2211394-001AMS Client ID: BATCH Analyte Aromatic Hydrocarbon (C8-C10) Aromatic Hydrocarbon (C10-C12) Aromatic Hydrocarbon (C10-C12)	SampType: LCS Batch ID: 38881 Result 108 63.7 77.0 90.0 63.4 SampType: MS Batch ID: 38881 Result 140 93.9 338	RL 20.0 10.0 10.0 10.0 10.0 8 RL 23.7 11.8 11.8	SPK value 250.0 125.0 125.0 100.0 SPK value 296.2 148.1 148.1	Units: mg/Kg SPK Ref Val 0 0 0 0 Units: mg/Kg- SPK Ref Val 0 14.53 229.4	%REC 43.3 50.9 61.6 72.0 63.4 dry %REC 47.1 53.6 73.0	Prep Date: 12/19 Analysis Date: 12/28 LowLimit HighLimit 23.1 130 46.8 104 54.1 111 48.5 134 50 150 Prep Date: 12/19 Analysis Date: 12/19 Analysis Date: 12/28 LowLimit HighLimit 11.3 130 19.3 130 30.3 131	/2022 /2022 t RPD Ref Val	RunNo: 80790 SeqNo: 1671180 %RPD RPD RunNo: 80790 SeqNo: 1671183 %RPD RPD	PLimit Qual

Work Order: 2211393								00.5	SUMMAR		ORT
CLIENT: Libby Enviro	nmental										
Project: 661 E Pine S	St					Extrac	ctable H	etroleum H	Hydrocarb	ons by N	WEPH
Sample ID: 2211394-001AMS	SampType: MS			Units: mg/Kg	dry	Prep Date:	12/19/2	022	RunNo: 807	'90	
Client ID: BATCH	Batch ID: 38881					Analysis Date:	12/28/2	022	SeqNo: 167	'1183	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: o-Terphenyl	87.3		118.5		73.7	50	150				Н
Sample ID: 2211394-001AMSD	SampType: MSD			Units: mg/Kg	dry	Prep Date:	12/19/2	022	RunNo: 807	/90	
Client ID: BATCH	Batch ID: 38881					Analysis Date:	12/28/2	022	SeqNo: 167	'1184	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C8-C10)	150	22.4	280.4	0	53.6	11.3	130	139.6	7.48	30	Н
Aromatic Hydrocarbon (C10-C12)	92.3	11.2	140.2	14.53	55.4	19.3	130	93.92	1.78	30	Н
Aromatic Hydrocarbon (C12-C16)	297	11.2	140.2	229.4	47.9	30.3	131	337.5	12.9	30	Н
Aromatic Hydrocarbon (C21-C34)	189	11.2	140.2	73.05	82.4	38.8	143	177.5	6.00	30	Н
Surr: o-Terphenyl	76.8		112.2		68.5	50	150		0		Н
Sample ID: MB-38881	SampType: MBLK			Units: mg/Kg		Prep Date:	12/19/2	022	RunNo: 807	'90	
Client ID: MBLKS	Batch ID: 38881					Analysis Date:	12/28/2	022	SeqNo: 167	1188	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	ND	20.0									
Aliphatic Hydrocarbon (C10-C12)	ND	10.0									
Aliphatic Hydrocarbon (C12-C16)	ND	10.0									
Aliphatic Hydrocarbon (C16-C21)	ND	10.0									
Aliphatic Hydrocarbon (C21-C34)	ND	10.0									
Surr: 1-Chlorooctadecane	75.9		100.0		75.9	50	150				
Sample ID: LCS-38881	SampType: LCS			Units: mg/Kg		Prep Date:	12/19/2	022	RunNo: 807	/90	
Client ID: LCSS	Batch ID: 38881					Analysis Date:	: 12/28/2	022	SeqNo: 167	1189	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	93.4	20.0	250.0	0	37.3	16.3	130				
Aliphatic Hydrocarbon (C10-C12)	70.1	10.0	125.0	0	56.1	36.7	107				
Aliphatic Hydrocarbon (C12-C16)	78.3	10.0	125.0	0	62.7	45.3	127				

17.6

21.9

18.1

0

Work Order:	2211393									2.00	SUMMA	RY RFF	PORT
CLIENT:	Libby Enviro	nmental											•
Project:	661 E Pine S	St						Extra	actable I	Petroleum I	Hydrocarb	ons by N	IWEPH
Sample ID: LCS-3	8881	SampType	LCS			Units: mg/Kg	9	Prep Dat	e: 12/19/2	2022	RunNo: 807	790	
Client ID: LCSS		Batch ID:	38881					Analysis Dat	e: 12/28/2	2022	SeqNo: 167	71189	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocar	bon (C16-C21)		70.4	10.0	125.0	0	56.3	47.3	129				
Aliphatic Hydrocar	bon (C21-C34)		67.2	10.0	125.0	0	53.7	35.2	139				
Surr: 1-Chlorood	ctadecane		93.1		100.0		93.1	50	150				
Sample ID: 22113	94-001AMS	SampType	MS			Units: mg/Kg	g-dry	Prep Dat	e: 12/19/2	2022	RunNo: 80	790	
Client ID: BATC	н	Batch ID:	38881					Analysis Dat	e: 12/28/2	2022	SeqNo: 16	71192	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocar	bon (C8-C10)		260	23.7	296.2	131.1	43.5	5.66	130				Н
Aliphatic Hydrocar	bon (C10-C12)		764	11.8	148.1	659.3	70.6	9.14	134				Н
Aliphatic Hydrocar	bon (C12-C16)		1,710	11.8	148.1	1,546	113	23.1	139				Н
Aliphatic Hydrocar	bon (C16-C21)		582	11.8	148.1	409.9	116	24.4	134				Н
Aliphatic Hydrocar	bon (C21-C34)		119	11.8	148.1	40.44	52.9	21.4	152				Н
Surr: 1-Chlorood	ctadecane		95.1		118.5		80.2	50	150				Н
Sample ID: 22113	94-001AMSD	SampType	MSD			Units: mg/Kg	g-dry	Prep Dat	e: 12/19/2	2022	RunNo: 80	790	
Client ID: BATC	н	Batch ID:	38881					Analysis Dat	e: 12/28/2	2022	SeqNo: 16	71193	
Analyte		F	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocar	bon (C8-C10)		294	22.4	280.4	131.1	58.0	5.66	130	259.8	12.3	30	Н
Aliphatic Hvdrocar	bon (C10-C12)		699	11.2	140.2	659.3	28.0	9.14	134	763.8	8.92	30	н

1,546

409.9

40.44

23.1

24.4

21.4

50

139

134

152

150

1,714

581.9

118.8

-78.1

40.8

41.8

76.4

Surr: 1-Chlorooctadecane
NOTES:

Aliphatic Hydrocarbon (C12-C16)

Aliphatic Hydrocarbon (C16-C21)

Aliphatic Hydrocarbon (C21-C34)

S - Outlying spike recovery(ies) observed. A duplicate analysis was performed and recovered within range.

1,440

467

99.1

85.7

11.2

11.2

11.2

140.2

140.2

140.2

112.2

SH

Н

Н

н

30

30

30

CLIENT: Libby Environmental

Project: 661 E Pine St

QC SUMMARY REPORT

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: MB-38582	SampType: MBLK			Units: µg/Kg		Prep Date	e: 11/21/202	2	RunNo: 800	61	
Client ID: MBLKS	Batch ID: 38582					Analysis Date	e: 11/22/202	2	SeqNo: 165	2940	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	PD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	ND	20.0									
2-Methylnaphthalene	ND	20.0									
1-Methylnaphthalene	ND	20.0									
Benz(a)anthracene	ND	20.0									
Chrysene	ND	20.0									
Benzo(b)fluoranthene	ND	25.0									
Benzo(k)fluoranthene	ND	25.0									
Benzo(a)pyrene	ND	30.0									
Indeno(1,2,3-cd)pyrene	ND	40.0									
Dibenz(a,h)anthracene	ND	50.0									
Surr: 2-Fluorobiphenyl	822		1,000		82.2	34.4	132				
Surr: Terphenyl-d14 (surr)	782		1,000		78.2	32.8	147				
Sample ID: LCS-38582	SampType: LCS			Units: µg/Kg		Prep Date	e: 11/21/202	2	RunNo: 800	61	
Client ID: LCSS	Batch ID: 38582					Analysis Date	e: 11/22/202	2	SeqNo: 165	2941	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	PD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,610	20.0	2,000	0	80.4	64.3	115				
2-Methylnaphthalene	1,500	20.0	2,000	0	75.1	58.9	122				
1-Methylnaphthalene	1,500	20.0	2,000	0	75.2	57.4	122				
Benz(a)anthracene	1,660	20.0	2,000	0	83.1	61.5	123				
Chrysene	1,540	20.0	2,000	0	76.9	58.6	120				

0

0

0

0

0

81.6

76.3

82.5

79.1

77.4

82.7

79.4

62.1

60.3

51.6

53.8

53.3

34.4

32.8

124

116

115

127

127

132

147

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

Surr: 2-Fluorobiphenyl

Surr: Terphenyl-d14 (surr)

Benzo(a)pyrene

1,630

1,530

1,650

1,580

1,550

827

794

25.0

25.0

30.0

40.0

50.0

2,000

2,000

2,000

2,000

2,000

1,000

1,000

CLIENT: Libby Environmental

Project: 661 E Pine St

QC SUMMARY REPORT

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 2211329-019AMS	SampType: MS	MS Units: µg/Kg-dry Prep			Prep Dat	e: 11/21/2	022	RunNo: 800			
Client ID: BATCH	Batch ID: 38582					Analysis Dat	e: 11/22/2	022	SeqNo: 165	52943	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,390	208	2,076	0	66.9	55.7	105				D
2-Methylnaphthalene	1,290	208	2,076	0	62.0	56.6	103				D
1-Methylnaphthalene	1,330	208	2,076	0	64.0	56.1	101				D
Benz(a)anthracene	1,460	208	2,076	0	70.4	53.4	112				D
Chrysene	1,300	208	2,076	0	62.7	52	105				D
Benzo(b)fluoranthene	1,450	260	2,076	0	69.6	51.3	119				D
Benzo(k)fluoranthene	1,410	260	2,076	0	67.7	50.3	108				D
Benzo(a)pyrene	1,570	311	2,076	0	75.5	48.5	106				D
Indeno(1,2,3-cd)pyrene	1,280	415	2,076	0	61.7	42.1	113				D
Dibenz(a,h)anthracene	1,240	519	2,076	0	59.8	40.4	114				D
Surr: 2-Fluorobiphenyl	694		1,038		66.9	34.4	132				D
Surr: Terphenyl-d14 (surr)	635		1,038		61.2	32.8	147				D

Sample ID: 2211329-019AMSD	SampType: MSD			Units: µg/Kg	g-dry	Prep Dat	te: 11/21/2	022	RunNo: 800	061	
Client ID: BATCH	Batch ID: 38582					Analysis Da	te: 11/22/2	022	SeqNo: 165	52944	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,350	208	2,080	0	64.8	55.7	105	1,388	2.95	30	D
2-Methylnaphthalene	1,260	208	2,080	0	60.4	56.6	103	1,288	2.56	30	D
1-Methylnaphthalene	1,290	208	2,080	0	61.9	56.1	101	1,330	3.20	30	D
Benz(a)anthracene	1,540	208	2,080	0	74.1	53.4	112	1,462	5.32	30	D
Chrysene	1,350	208	2,080	0	64.7	52	105	1,302	3.31	30	D
Benzo(b)fluoranthene	1,510	260	2,080	0	72.5	51.3	119	1,445	4.31	30	D
Benzo(k)fluoranthene	1,320	260	2,080	0	63.2	50.3	108	1,405	6.59	30	D
Benzo(a)pyrene	1,560	312	2,080	0	75.1	48.5	106	1,567	0.360	30	D
Indeno(1,2,3-cd)pyrene	1,220	416	2,080	0	58.7	42.1	113	1,282	4.85	30	D
Dibenz(a,h)anthracene	1,190	520	2,080	0	57.4	40.4	114	1,241	3.86	30	D
Surr: 2-Fluorobiphenyl	674		1,040		64.8	34.4	132		0		D
Surr: Terphenyl-d14 (surr)	646		1,040		62.1	32.8	147		0		D

Client Name:	LIBBY	Work Order Num	per: 2211393	
Logged by:	Elisabeth Samoray	Date Received:	11/18/202	2 9:55:00 AM
Chain of Cus	stody			
1. Is Chain of	Custody complete?	Yes 🖌	No 🗌	Not Present
2. How was th	ne sample delivered?	<u>UPS</u>		
<u>Log In</u>				
3. Custody Se (Refer to co	als present on shipping container/cooler? mments for Custody Seals not intact)	Yes	No 🗌	Not Present ✔
4. Was an atte	empt made to cool the samples?	Yes 🗹	No 🗌	NA 🗌
5. Were all iter	ms received at a temperature of >2°C to 6°C *	Yes 🖌	No 🗌	
6. Sample(s) in	n proper container(s)?	Yes 🖌	No 🗌	
7. Sufficient sa	ample volume for indicated test(s)?	Yes 🗹	No 🗌	
8. Are sample:	s properly preserved?	Yes 🗹	No 🗌	
9. Was preser	vative added to bottles?	Yes	No 🗹	NA 🗌
10. Is there hea	adspace in the VOA vials?	Yes	No 🗌	NA 🗹
11. Did all samp	ples containers arrive in good condition(unbroken)?	Yes 🗹	No 🗌	
12. Does paper	work match bottle labels?	Yes 🖌	No 🗌	
13. Are matrice	s correctly identified on Chain of Custody?	Yes 🖌	No 🗌	
14. Is it clear whether the test of te	hat analyses were requested?	Yes 🗹	No 🗌	
15. Were all hol	lding times able to be met?	Yes	No 🗹	
Special Han	<u>dling (if applicable)</u>			
16. Was client	t notified of all discrepancies with this order?	Yes	No 🗌	NA 🗹
Perso	on Notified: Date	e:		
By W	/hom: Via:	🗌 eMail 🗌 Pł	none 🗌 Fax	In Person
Rega	arding:			
Clien	t Instructions:			
17 Additional	remarks:			

Item Information

Item #	Temp ⁰C
Sample 1	5.6

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

1	IBB.
67	
E	
4	PONMER

Libby Environmental, Inc. 3322 South Bay Road NE • Olympia, WA 98506-2957

SUBCONTRACT ORDER L22K084

Sending Laboratory:	Subcontracted Laboratory	, 2711 292
Libby Environmental, Inc. 3322 South Bay Road NE Olympia, WA 98506 Phone: 360-352-2110 Fax: 360-352-4154	Fremont Analytical, Inc. 3600 Fremont Ave N Seattle, WA 98103 Phone: (206) 352-3790 Fax:	
Project Manager: Sherry Chilcutt LibbyEnv@gmail.com	Requested Turnaround	(TAT) STANDARD
Project: 661 E Pine St		
Analysis	Comments	
Client Sample ID: B-17-16.0 Soil Sampled:	10/26/2022 14:40	Lab ID: L22K084-01
EPH cPAH by 8270 <i>Containers Supplied:</i> Jar 4 oz (A)	Please analyze out of hold Please analyze out of hold	
Amily any Date	22 Verthenne Por Received By	ter 1118
Juit ander 11,17	22 Page 1 of 1	Page 13 of 14

Sending Laboratory:	Subcontracted Laboratory:	2211.392
Libby Environmental, Inc. 3322 South Bay Road NE Olympia, WA 98506 Phone: 360-352-2110 Fax: 360-352-4154 Project Manager: Sherry Chilcutt LibbyEnv@gmail.com	Fremont Analytical, Inc. 3600 Fremont Ave N Seattle, WA 98103 Phone: (206) 352-3790 Fax:	AT) STANDARD
roject: 661 E Pine St		AT) OTHINOHRD
Analysis	Comments	
lient Sample ID: B-17-16.0 Soil Sampled: 10/26/2022	14:40	Lab ID: L22K084-01
PH PAH by 8270 +Naphthalenes per EB 7/25/2023 -BB ontainers Supplied: Jar 4 oz (A)	Please analyze out of hold Please analyze out of hold	
10/	1.2.2	

Libby Environmental, Inc.

3322 South Bay Road NE • Olympia, WA 98506-2957

July 19, 2023

Javan Ruark Farallon Consulting 975 5th Avenue NW Issaquah, WA 98027

Dear Javan Ruark:

Please find enclosed the analytical data report for the 661 E Pine St. project located in Shelton, Washington.

The results of the analyses are summarized in the attached tables. Applicable detection limits and QA/QC data are included. The sample(s) will be disposed of within 30 days unless we are contacted to arrange long term storage.

Libby Environmental, Inc. appreciates the opportunity to have provided analytical services for this project. If you have any further questions about the data report, please give me a call. It was a pleasure working with you on this project, and we are looking forward to the next opportunity to work together.

Sincerely,

2 1 Um

Sherry L. Chilcutt Senior Chemist Libby Environmental, Inc.

Libby Environmen 3322 South Bay Road NE	n tal, In Ph:	C. 360-352-2	110	Cl	nain c	of C	ust	ody	Reco	ord	d				٧	ww.Lib	byEnv	ironmental.com
Olympia, WA 98506	Fax:	360-352-4	154			Date	e: 10	127/	22				Page	e:		1	of	2
Client: Farallon Con	sulting	3				Pro	ect M	lanager:	Jan	Ja	nR	varl	2					
Address: 975 5th Ave	NW					Pro	ect N	ame: (61	E	Pine	St.						
City: Issaquah		State: W	A Zip:	98027		Loc	ation:	6611	E Ph	ne	st st		City,	Stat	te: S	helt	bn, l	WA
Phone:		Fax:				Col	ector	Mic	ngel	Y	sagui	me	Date	of C	Collect	tion:	0/2	7/22
Client Project # 863-00)					2.14	Ema	ail: J	Truark	a fa	ra	Monce	onsul	Iting.	CC	m			
Sample Number	Depth	Time	Sample Type	Container Type	100 ×	8 4	augner augner	2400 57 8250 17 1917	BOLL CO	13 20 CO 14	5 Need	Ne 152	SETO JO	210		Fie	An Jau Jau em	10-31-22 elected alysis per an via ail. tes
1 B-14-10.0	10.0	1625	SOIL			X	X	X								481	T	AT
2 B-14-15.0	15.0	1630				×	X	X										
3 B-140-15.0	15.0	1635				×	×	×										
4 B-14-20.0	20.0	1640				X	X	·X								48 h	r TA	T
5 B-140-20.0	20.0	1645				×	X	×										
6 B-15-10.0	10.0	1536				X	X	×										
7 B-150- 10.0	10.0	1540				X	×	X										
8 B-15-15.0	15.0	1545				X	×	X										
9 13-15-16.0	16.0	1605													-	HOL	D	
10 B-23-10.0	10.0	1437				X	×	X										
11 3-23- 11.5	11.5	1442				×	×	×										
12 3-230-11.5	11.5	1450				×	×	×										
13 B-24-6.0	6.0	1506					X.	X			\otimes		\otimes			1-17-2	22	Analyses
14 13-24-7.0	7.0	1520					X	×								adde	ed pe	er Javan
15 B-24-10.0	10.0	1524					X	×								viae	mail	. STD TAT
16 B-22-7.0	7.0	1332					X	×							1			
17 B-22-11.0	11.0	1341					×	×										
Relinquished by: M	_	10/27/22	Date / Time 1823	Received by:			101	28/22	Date / Tim OGIO Date / Tim	ne	San Good Cone	dition?	eceipt Y	N °C	Rem	arks: 512 f	or (PM
Relinquished by:			Date / Time	Received by:					Date / Tim	nie	Sample Te Total Num	mp. ber of		°C	QU	nalys	15	
											oonum				IAI	. 2411	r 4	TAU-9 AND

LEGAL ACTION CLAUSE: In the event of default of payment and/or failure to pay, Client agrees to pay the costs of collection including court costs and reasonable attorney fees to be determined by a court of law.

Distribution: White - Lab, Yellow - Originator

Libby Environmen	ital, In	IC.		Cł	nain c	of C	ust	ody	Re	cor	d			e.			www.l	LibbyE	nvironm	ental.com
3322 South Bay Road NE Olympia, WA 98506	Ph: Fax:	360-352-2 360-352-4	110 154			Date	e: 10	127	122	-				Pag	e:	2	1	0	f 2	
Client: Farallon Cons	ulting					Proj	ect N	lanage	r: J	avar	nf	200	rK							
Address: 975 5th Ave	NW		1.4			Proj	ect N	ame:	64	15	P;	ne	St	-						
city: Issaquah		State: U	JA Zip:	98027		Loc	ation:	661	E	Pin	e	87	-	City	, Sta	te: S	She	itor	NWF.	+
Phone:		Fax:				Coll	ector	Mic	ncel	Ys	Gau	me	2	Dat	e of (Colle	ction:	10	1271:	22
Client Project # 863-00)				1	Ema	ail:	Truge	KG) for	all	onci	onsi	ultir	G.	Con	2		1	
Sample Number	Depth	Time	Sample Type	Container Type	10-8	00 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	augrer augrer	2400 - 24	HHCR HHCR	259 W	21 22 P	Net 10 10	245 TO 241 82 TO	8270 VG	8210			Field	Select tralysi ema Notes	si-22 tes s per ia il
1 B-22-15.0	15.0	1348	SOIL				X	>	<											
2 3-21-3.0	3.0	1232				×														
3 B-21-7.0	7.0	1245															HO	LD		
4 3-21-11.0	11.0	1309				X														
5 B-21-13.0	13.0	1312				X														
6 B-19-5.0	5.0	1105				X	X	>	<					\otimes			484	- TA	Т	10.00
7 3-19-10.0	10.0	1115				×	X	X							A	bled	11-	2-22	JR :	STD
8 B-19-15.0	15.0	1130				X	X	×												
9 B-19-20.0	20.0	1140				X	X	×						X			48	hr T	AT	
10 13-190-20.0	20.0	1142				X	×)	<						A	dde	9 11	-2-2	2. 3R	STD
11 B-18-16.0	16.0	1005						>	<											
12 B-18-20.0	20.0	1007						>	<					_			-			
13 B-20-10.0	10.0	0925				X	X	>	$\langle $											
-14 B-20-15.0	15.0	0930				X	X	>	<						-					
15					\square				_					_	-					
16													_							
17										1.000										
Relinquished by:		10/27	Date / Time 22 1823 Date / Time	Received by: Received by:				10/28/	Date Date	/ Time / / Time	Good	Condi er Tem	pie R tion? p.	Y Y	t N ℃	Ren	iarks: See	pag	ge 1	-
Relinquished by:			Date / Time	Received by:				_	Date	/ Time	Total Co	Numb	er of rs		0	TAT	Γ: 24	4HR	48HR	5-DAY

Libby Environmental, Inc.

661 E PINE ST PROJECT Farallon Consulting Libby Project # L22K085 Date Received 10/28/22 9:10 3322 South Bay Road NE Olympia, WA 98506 Phone: (360) 352-2110 FAX: (360) 352-4154 Email: libbyenv@gmail.com

Received By KD

Sample Receipt Checklist

Chain of Custody	7					
1. Is the Chain of Custo	dy complete?		Yes	⊻ No		
2. How was the sample	delivered?	\checkmark	Hand Delivered	🗆 Picked U	р	🗆 Shipped
Log In						
3. Cooler or Shipping C	ontainer is present.	\checkmark	Yes	🗆 No		🗆 N/A
4. Cooler or Shipping C	ontainer is in good condition.	\checkmark	Yes	🗆 No		🗆 N/A
5. Cooler or Shipping C	ontainer has Custody Seals present.		Yes	🗹 No		🗆 N/A
6. Was an attempt mad	le to cool the samples?	\checkmark	Yes	🗆 No		🗆 N/A
7. Temperature of coole	er (0°C to 8°C recommended)		4.9	°C		
8. Temperature of samp	ole(s) (0°C to 8°C recommended)		5.2	°C		
9. Did all containers arri	ive in good condition (unbroken)?	\checkmark	Yes	🗆 No		
10. Is it clear what analy	yses were requested?	\checkmark	Yes	🗆 No		
11. Did container labels	match Chain of Custody?	\checkmark	Yes	🗆 No		
12. Are matrices correc	tly identified on Chain of Custody?	\checkmark	Yes	🗆 No		
13. Are correct contained	ers used for the analysis indicated?	\checkmark	Yes	🗆 No		
14. Is there sufficient sa	ample volume for indicated analysis?	\checkmark	Yes	🗆 No		
15. Were all containers	properly preserved per each analysis?	\checkmark	Yes	🗆 No		
16. Were VOA vials col	lected correctly (no headspace)?	\checkmark	Yes	🗆 No		🗆 N/A
17. Were all holding tim	es able to be met?	\checkmark	Yes	🗆 No		
Discrepancies/ No	tes					
18. Was client notified of	of all discrepancies?	\checkmark	Yes	🗆 No		🗆 N/A
Person Notified:	Javan				Date:	10/28/2022
By Whom:	KD				Via:	Email
Regarding:	Analyses					
19. Comments.	COC had no analyses marked, but had	a no	ote to hold for P	M on analy	/ses	
-	10-31-2022, Client selected analyses.					
-						

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Libby Environmental Sherry Chilcutt 3322 South Bay Road NE Olympia, WA 98506

RE: 661 E Pine St Work Order Number: 2211394

July 19, 2023

Attention Sherry Chilcutt:

Fremont Analytical, Inc. received 1 sample(s) on 11/18/2022 for the analyses presented in the following report.

Extractable Petroleum Hydrocarbons by NWEPH Polyaromatic Hydrocarbons by EPA Method 8270 (SIM) Sample Moisture (Percent Moisture)

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

Revision v1

CLIENT:	Libby Environmental	Work Order S	Sample Summary
Project:	661 E Pine St		
Work Order:	2211394		
Lab Sample ID	Client Sample ID	Date/Time Collected	Date/Time Received
2211394-001	B-24-6.0	10/27/2022 3:06 PM	11/18/2022 9:55 AM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: **2211394** Date: **7/19/2023**

CLIENT:Libby EnvironmentalProject:661 E Pine St

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

7/19/2023: Revision 1 includes addiitonal analaysis per client request.

Qualifiers & Acronyms

 WO#:
 2211394

 Date Reported:
 7/19/2023

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recovery

- CCB Continued Calibration Blank
- CCV Continued Calibration Verification
- DF Dilution Factor
- DUP Sample Duplicate
- HEM Hexane Extractable Material
- ICV Initial Calibration Verification
- LCS/LCSD Laboratory Control Sample / Laboratory Control Sample Duplicate
- MCL Maximum Contaminant Level
- MB or MBLANK Method Blank
- MDL Method Detection Limit
- MS/MSD Matrix Spike / Matrix Spike Duplicate
- PDS Post Digestion Spike
- Ref Val Reference Value
- REP Sample Replicate
- RL Reporting Limit
- RPD Relative Percent Difference
- SD Serial Dilution
- SGT Silica Gel Treatment
- SPK Spike
- Surr Surrogate

 Work Order:
 2211394

 Date Reported:
 7/19/2023

Client: Libby Environmental				Collection	Da	te: 10/27/2022 3:06:00 PM
Project: 661 E Pine St						
Lab ID: 2211394-001				Matrix: So	oil	
Client Sample ID: B-24-6 0						
Analyses	Result	RL	Qual	Units	DF	Date Analyzed
Extractable Petroleum Hydrocarbon	s by NWI	<u>EPH</u>		Batch	ID:	38881 Analyst: KJ
Aliphatic Hydrocarbon (C8-C10)	131	23.2	н	mg/Kg-dry	1	12/28/2022 4:34:46 PM
Aliphatic Hydrocarbon (C10-C12)	659	11.6	Н	mg/Kg-dry	1	12/28/2022 4:34:46 PM
Aliphatic Hydrocarbon (C12-C16)	1,550	11.6	Н	mg/Kg-dry	1	12/28/2022 4:34:46 PM
Aliphatic Hydrocarbon (C16-C21)	410	11.6	Н	mg/Kg-dry	1	12/28/2022 4:34:46 PM
Aliphatic Hydrocarbon (C21-C34)	40.4	11.6	Н	mg/Kg-dry	1	12/28/2022 4:34:46 PM
Aromatic Hydrocarbon (C8-C10)	ND	23.2	Н	mg/Kg-dry	1	12/28/2022 11:46:00 AM
Aromatic Hydrocarbon (C10-C12)	14.5	11.6	Н	mg/Kg-dry	1	12/28/2022 11:46:00 AM
Aromatic Hydrocarbon (C12-C16)	229	11.6	Н	mg/Kg-dry	1	12/28/2022 11:46:00 AM
Aromatic Hydrocarbon (C16-C21)	136	10.2	Н	mg/Kg-dry	1	12/15/2022 11:18:10 AM
Aromatic Hydrocarbon (C21-C34)	73.0	11.6	Н	mg/Kg-dry	1	12/28/2022 11:46:00 AM
Surr: 1-Chlorooctadecane	83.3	50 - 150	Н	%Rec	1	12/28/2022 4:34:46 PM
Surr: o-Terphenyl	66.8	50 - 150	Н	%Rec	1	12/28/2022 11:46:00 AM
Polyaromatic Hydrocarbons by EPA	Method	<u>8270 (SIM)</u>		Batch	ID:	38582 Analyst: SK
Naphthalene	ND	21.9	Н	µg/Kg-dry	1	11/23/2022 3:19:48 AM
2-Methylnaphthalene	ND	21.9	Н	µg/Kg-dry	1	11/23/2022 3:19:48 AM
1-Methylnaphthalene	ND	21.9	Н	µg/Kg-dry	1	11/23/2022 3:19:48 AM
Benz(a)anthracene	ND	21.9	Н	µg/Kg-dry	1	11/23/2022 3:19:48 AM
Chrysene	ND	21.9	Н	µg/Kg-dry	1	11/23/2022 3:19:48 AM
Benzo(b)fluoranthene	ND	27.4	Н	µg/Kg-dry	1	11/23/2022 3:19:48 AM
Benzo(k)fluoranthene	ND	27.4	Н	µg/Kg-dry	1	11/23/2022 3:19:48 AM
Benzo(a)pyrene	ND	32.8	Н	µg/Kg-dry	1	11/23/2022 3:19:48 AM
Indeno(1,2,3-cd)pyrene	ND	43.8	Н	µg/Kg-dry	1	11/23/2022 3:19:48 AM
Dibenz(a,h)anthracene	ND	54.7	Н	µg/Kg-dry	1	11/23/2022 3:19:48 AM
Surr: 2-Fluorobiphenyl	56.7	22.2 - 146	Н	%Rec	1	11/23/2022 3:19:48 AM
Surr: Terphenyl-d14 (surr)	70.9	20.2 - 159	н	%Rec	1	11/23/2022 3:19:48 AM
Sample Moisture (Percent Moisture)				Batch	ID:	R80033 Analyst: AP
Percent Moisture	18.4	0.500		wt%	1	11/23/2022 8:37:22 AM

Work Order: 2211394							QC S	SUMMARY REF	PORT
CLIENT: Libby Envir	ronmental					Extractable P	etroleum H	lydrocarbons by N	IWEPH
Project: 661 E Pine	e St								
Sample ID: MB-38628	SampType: MBLK			Units: mg/Kg		Prep Date: 11/28/20	22	RunNo: 80515	
Client ID: MBLKS	Batch ID: 38628					Analysis Date: 12/15/20	22	SeqNo: 1664704	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Aromatic Hydrocarbon (C16-C21)	ND	10.0							
Surr: o-Terphenyl	60.5		100.0		60.5	50 150			
Sample ID: LCS-38628	SampType: LCS			Units: mg/Kg		Prep Date: 11/28/20	22	RunNo: 80515	
Client ID: LCSS	Batch ID: 38628					Analysis Date: 12/15/20	22	SeqNo: 1664705	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Aromatic Hydrocarbon (C16-C21)	110	10.0	125.0	0	88.3	55.4 124			
Surr: o-Terphenyl	98.5		100.0		98.5	50 150			
Sample ID: 2211393-001AMS	SampType: MS			Units: mg/Kg	-dry	Prep Date: 11/28/20	22	RunNo: 80515	
Client ID: BATCH	Batch ID: 38628					Analysis Date: 12/15/20	22	SeqNo: 1664707	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Aromatic Hydrocarbon (C16-C21)	84.5	9.89	123.6	33.73	41.1	23.7 139			Н
Surr: o-Terphenyl	59.8		98.91		60.4	50 150			Н
Sample ID: 2211393-001AMSD	SampType: MSD			Units: mg/Kg	-dry	Prep Date: 11/28/20	22	RunNo: 80515	
Client ID: BATCH	Batch ID: 38628					Analysis Date: 12/15/20	22	SeqNo: 1664708	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Aromatic Hydrocarbon (C16-C21)	116	9.90	123.8	33.73	66.7	23.7 139	84.48	31.7 30	RH
Surr: o-Terphenyl	88.0		99.01		88.9	50 150		0	Н
NOTES: R - High RPD observed, spike	recovery is within range.								
Sample ID: LCS-38628	SampType: LCS			Units: mg/Kg		Prep Date: 11/28/20	22	RunNo: 80515	
Client ID: LCSS	Batch ID: 38628					Analysis Date: 12/15/20	22	SeqNo: 1664710	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	RPD Ref Val	%RPD RPDLimit	Qual
Aromatic Hydrocarbon (C16-C21)	119	10.0	125.0	0	95.3	55.4 124			

Work Order: 2211394								2.00	SUMMAR	RYRF	PORT
CLIENT: Libby Enviro	onmental					Ester				· · · · · · · · · · · ·	
Project: 661 E Pine	St					Extra	actable P	etroleum I	Hydrocarb	ons by r	IWEPH
Sample ID: LCS-38628	SampType: LCS			Units: mg/Kg		Prep Dat	e: 11/28/20)22	RunNo: 805	515	
Client ID: LCSS	Batch ID: 38628					Analysis Dat	e: 12/15/20)22	SeqNo: 166	64710	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: o-Terphenyl	120		100.0		120	50	150				
Sample ID: MB-38881	SampType: MBLK			Units: mg/Kg		Prep Dat	e: 12/19/2()22	RunNo: 807	/90	
Client ID: MBLKS	Batch ID: 38881					Analysis Dat	e: 12/28/20)22	SeqNo: 167	/1179	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C8-C10)	ND	20.0									
Aromatic Hydrocarbon (C10-C12)	ND	10.0									
Aromatic Hydrocarbon (C12-C16)	ND	10.0									
Aromatic Hydrocarbon (C21-C34)	ND	10.0									
Surr: o-Terphenyl	66.9		100.0		66.9	50	150				
Sample ID: LCS-38881	SampType: LCS			Units: mg/Kg		Prep Dat	e: 12/19/20)22	RunNo: 807	790	
Sample ID: LCS-38881 Client ID: LCSS	SampType: LCS Batch ID: 38881			Units: mg/Kg		Prep Dat Analysis Dat	e: 12/19/20 e: 12/28/20)22)22	RunNo: 807 SeqNo: 167	′90 ′1180	
Sample ID: LCS-38881 Client ID: LCSS Analyte	SampType: LCS Batch ID: 38881 Result	RL	SPK value	Units: mg/Kg SPK Ref Val	%REC	Prep Dat Analysis Dat LowLimit	e: 12/19/2(e: 12/28/2(HighLimit)22) 22 RPD Ref Val	RunNo: 807 SeqNo: 167 %RPD	790 7 1180 RPDLimit	Qual
Sample ID: LCS-38881 Client ID: LCSS Analyte Aromatic Hydrocarbon (C8-C10)	SampType: LCS Batch ID: 38881 Result 108	RL 20.0	SPK value 250.0	Units: mg/Kg SPK Ref Val	%REC 43.3	Prep Dat Analysis Dat LowLimit 23.1	e: 12/19/20 e: 12/28/20 HighLimit 130	022 022 RPD Ref Val	RunNo: 807 SeqNo: 167 %RPD	790 71180 RPDLimit	Qual
Sample ID: LCS-38881 Client ID: LCSS Analyte Aromatic Hydrocarbon (C8-C10) Aromatic Hydrocarbon (C10-C12)	SampType: LCS Batch ID: 38881 Result 108 63.7	RL 20.0 10.0	SPK value 250.0 125.0	Units: mg/Kg SPK Ref Val 0 0	%REC 43.3 50.9	Prep Dat Analysis Dat LowLimit 23.1 46.8	e: 12/19/20 e: 12/28/20 HighLimit 130 104	022 022 RPD Ref Val	RunNo: 807 SeqNo: 167 %RPD	790 71180 RPDLimit	Qual
Sample ID: LCS-38881 Client ID: LCSS Analyte Aromatic Hydrocarbon (C8-C10) Aromatic Hydrocarbon (C10-C12) Aromatic Hydrocarbon (C12-C16)	SampType: LCS Batch ID: 38881 Result 108 63.7 77.0	RL 20.0 10.0 10.0	SPK value 250.0 125.0 125.0	Units: mg/Kg SPK Ref Val 0 0 0	%REC 43.3 50.9 61.6	Prep Dat Analysis Dat LowLimit 23.1 46.8 54.1	e: 12/19/20 e: 12/28/20 HighLimit 130 104 111	022 022 RPD Ref Val	RunNo: 807 SeqNo: 167 %RPD	790 71180 RPDLimit	Qual
Sample ID: LCS-38881 Client ID: LCSS Analyte Aromatic Hydrocarbon (C8-C10) Aromatic Hydrocarbon (C10-C12) Aromatic Hydrocarbon (C12-C16) Aromatic Hydrocarbon (C21-C34)	SampType: LCS Batch ID: 38881 Result 108 63.7 77.0 90.0	RL 20.0 10.0 10.0 10.0	SPK value 250.0 125.0 125.0 125.0	Units: mg/Kg SPK Ref Val 0 0 0 0	%REC 43.3 50.9 61.6 72.0	Prep Dat Analysis Dat LowLimit 23.1 46.8 54.1 48.5	e: 12/19/20 e: 12/28/20 HighLimit 130 104 111 134	022 022 RPD Ref Val	RunNo: 807 SeqNo: 167 %RPD	790 71180 RPDLimit	Qual
Sample ID: LCS-38881 Client ID: LCSS Analyte Aromatic Hydrocarbon (C8-C10) Aromatic Hydrocarbon (C10-C12) Aromatic Hydrocarbon (C12-C16) Aromatic Hydrocarbon (C21-C34) Surr: o-Terphenyl	SampType: LCS Batch ID: 38881 Result 108 63.7 77.0 90.0 63.4	RL 20.0 10.0 10.0 10.0	SPK value 250.0 125.0 125.0 125.0 100.0	Units: mg/Kg SPK Ref Val 0 0 0 0	%REC 43.3 50.9 61.6 72.0 63.4	Prep Dat Analysis Dat LowLimit 23.1 46.8 54.1 48.5 50	e: 12/19/20 e: 12/28/20 HighLimit 130 104 111 134 150	022 022 RPD Ref Val	RunNo: 807 SeqNo: 167 %RPD	790 71180 RPDLimit	Qual
Sample ID: LCS-38881 Client ID: LCSS Analyte Aromatic Hydrocarbon (C8-C10) Aromatic Hydrocarbon (C10-C12) Aromatic Hydrocarbon (C12-C16) Aromatic Hydrocarbon (C21-C34) Surr: o-Terphenyl Sample ID: 2211394-001AMS	SampType: LCS Batch ID: 38881 Result 108 63.7 77.0 90.0 63.4 SampType: MS	RL 20.0 10.0 10.0 10.0	SPK value 250.0 125.0 125.0 125.0 100.0	Units: mg/Kg SPK Ref Val 0 0 0 0 0 Units: mg/Kg -	%REC 43.3 50.9 61.6 72.0 63.4 dry	Prep Dat Analysis Dat LowLimit 23.1 46.8 54.1 48.5 50 Prep Dat	e: 12/19/20 e: 12/28/20 HighLimit 130 104 111 134 150 e: 12/19/20	022 022 RPD Ref Val	RunNo: 807 SeqNo: 167 %RPD RunNo: 807	790 71180 RPDLimit	Qual
Sample ID: LCS-38881 Client ID: LCSS Analyte Aromatic Hydrocarbon (C8-C10) Aromatic Hydrocarbon (C10-C12) Aromatic Hydrocarbon (C12-C16) Aromatic Hydrocarbon (C21-C34) Surr: o-Terphenyl Sample ID: 2211394-001AMS Client ID: B-24-6.0	SampType: LCS Batch ID: 38881 Result 108 63.7 77.0 90.0 63.4 SampType: MS Batch ID: 38881	RL 20.0 10.0 10.0 10.0	SPK value 250.0 125.0 125.0 125.0 100.0	Units: mg/Kg SPK Ref Val 0 0 0 0 Units: mg/Kg-	%REC 43.3 50.9 61.6 72.0 63.4 dry	Prep Dat Analysis Dat LowLimit 23.1 46.8 54.1 48.5 50 Prep Dat Analysis Dat	e: 12/19/20 e: 12/28/20 HighLimit 130 104 111 134 150 e: 12/19/20 e: 12/28/20	022 RPD Ref Val	RunNo: 807 SeqNo: 167 %RPD RunNo: 807 SeqNo: 167	790 71180 RPDLimit 790 71183	Qual
Sample ID: LCS-38881 Client ID: LCSS Analyte Aromatic Hydrocarbon (C8-C10) Aromatic Hydrocarbon (C10-C12) Aromatic Hydrocarbon (C12-C16) Aromatic Hydrocarbon (C21-C34) Surr: o-Terphenyl Sample ID: 2211394-001AMS Client ID: B-24-6.0 Analyte	SampType: LCS Batch ID: 38881 Result 108 63.7 77.0 90.0 63.4 SampType: MS Batch ID: 38881 Result	RL 20.0 10.0 10.0 10.0 RL	SPK value 250.0 125.0 125.0 100.0 SPK value	Units: mg/Kg SPK Ref Val 0 0 0 0 Units: mg/Kg- SPK Ref Val	%REC 43.3 50.9 61.6 72.0 63.4 dry %REC	Prep Dat Analysis Dat LowLimit 23.1 46.8 54.1 48.5 50 Prep Dat Analysis Dat LowLimit	e: 12/19/20 e: 12/28/20 HighLimit 130 104 111 134 150 e: 12/19/20 e: 12/28/20 HighLimit	022 RPD Ref Val	RunNo: 807 SeqNo: 167 %RPD RunNo: 807 SeqNo: 167 %RPD	790 71180 RPDLimit 790 71183 RPDLimit	Qual
Sample ID: LCS-38881 Client ID: LCSS Analyte Aromatic Hydrocarbon (C8-C10) Aromatic Hydrocarbon (C10-C12) Aromatic Hydrocarbon (C12-C16) Aromatic Hydrocarbon (C21-C34) Surr: o-Terphenyl Sample ID: 2211394-001AMS Client ID: B-24-6.0 Analyte Aromatic Hydrocarbon (C8-C10)	SampType: LCS Batch ID: 38881 Result 108 63.7 77.0 90.0 63.4 SampType: MS Batch ID: 38881 Result 140	RL 20.0 10.0 10.0 10.0 RL 23.7	SPK value 250.0 125.0 125.0 125.0 100.0 SPK value 296.2	Units: mg/Kg SPK Ref Val 0 0 0 0 Units: mg/Kg- SPK Ref Val 0	%REC 43.3 50.9 61.6 72.0 63.4 dry %REC 47.1	Prep Dat Analysis Dat LowLimit 23.1 46.8 54.1 48.5 50 Prep Dat Analysis Dat LowLimit 11.3	e: 12/19/20 e: 12/28/20 HighLimit 130 104 111 134 150 e: 12/19/20 e: 12/28/20 HighLimit 130	022 RPD Ref Val	RunNo: 807 SeqNo: 167 %RPD RunNo: 807 SeqNo: 167 %RPD	790 71180 RPDLimit 790 71183 RPDLimit	Qual Qual H
Sample ID: LCS-38881 Client ID: LCSS Analyte Aromatic Hydrocarbon (C8-C10) Aromatic Hydrocarbon (C10-C12) Aromatic Hydrocarbon (C12-C16) Aromatic Hydrocarbon (C21-C34) Surr: o-Terphenyl Sample ID: 2211394-001AMS Client ID: B-24-6.0 Analyte Aromatic Hydrocarbon (C8-C10) Aromatic Hydrocarbon (C10-C12)	SampType: LCS Batch ID: 38881 Result 108 63.7 77.0 90.0 63.4 SampType: MS Batch ID: 38881 Result 140 93.9	RL 20.0 10.0 10.0 10.0 RL 23.7 11.8	SPK value 250.0 125.0 125.0 125.0 100.0 SPK value 296.2 148.1	Units: mg/Kg SPK Ref Val 0 0 0 0 Units: mg/Kg - SPK Ref Val 0 14.53	%REC 43.3 50.9 61.6 72.0 63.4 dry %REC 47.1 53.6	Prep Dat Analysis Dat LowLimit 23.1 46.8 54.1 48.5 50 Prep Dat Analysis Dat LowLimit 11.3 19.3	e: 12/19/20 e: 12/28/20 HighLimit 130 104 111 134 150 e: 12/19/20 e: 12/28/20 HighLimit 130 130	022 RPD Ref Val	RunNo: 807 SeqNo: 167 %RPD RunNo: 807 SeqNo: 167 %RPD	790 71180 RPDLimit 790 71183 RPDLimit	Qual Qual H H
Sample ID: LCS-38881 Client ID: LCSS Analyte Aromatic Hydrocarbon (C8-C10) Aromatic Hydrocarbon (C10-C12) Aromatic Hydrocarbon (C12-C16) Aromatic Hydrocarbon (C21-C34) Surr: o-Terphenyl Sample ID: 2211394-001AMS Client ID: B-24-6.0 Analyte Aromatic Hydrocarbon (C8-C10) Aromatic Hydrocarbon (C10-C12) Aromatic Hydrocarbon (C10-C12)	SampType: LCS Batch ID: 38881 Result 108 63.7 77.0 90.0 63.4 SampType: MS Batch ID: 38881 Result 140 93.9 338	RL 20.0 10.0 10.0 10.0 RL 23.7 11.8 11.8	SPK value 250.0 125.0 125.0 100.0 SPK value 296.2 148.1 148.1	Units: mg/Kg SPK Ref Val 0 0 0 0 Units: mg/Kg - SPK Ref Val 0 14.53 229.4	%REC 43.3 50.9 61.6 72.0 63.4 dry %REC 47.1 53.6 73.0	Prep Dat Analysis Dat LowLimit 23.1 46.8 54.1 48.5 50 Prep Dat Analysis Dat LowLimit 11.3 19.3 30.3	e: 12/19/20 e: 12/28/20 HighLimit 130 104 111 134 150 e: 12/19/20 e: 12/28/20 HighLimit 130 130 131	022 RPD Ref Val	RunNo: 807 SeqNo: 167 %RPD RunNo: 807 SeqNo: 167 %RPD	790 71180 RPDLimit 790 71183 RPDLimit	Qual Qual H H H

Work Order:2211394CLIENT:Libby EnviroProject:661 E Pine \$	nmental St					Extrac	table F	QC S Petroleum H	SUMMA Hydrocarb	RY REF ons by N	PORT
Sample ID: 2211394-001AMS	SampType: MS			Units: mg/Kg-	dry	Prep Date:	12/19/20	022	RunNo: 807	'90	
Client ID: B-24-6.0	Batch ID: 38881				-	Analysis Date:	12/28/20	022	SeqNo: 167	'1183	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: o-Terphenyl	87.3		118.5		73.7	50	150				Н
Sample ID: 2211394-001AMSD	SampType: MSD			Units: mg/Kg-	dry	Prep Date:	12/19/20	022	RunNo: 807	'90	
Client ID: B-24-6.0	Batch ID: 38881					Analysis Date:	12/28/2	022	SeqNo: 167	1184	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C8-C10)	150	22.4	280.4	0	53.6	11.3	130	139.6	7.48	30	Н
Aromatic Hydrocarbon (C10-C12)	92.3	11.2	140.2	14.53	55.4	19.3	130	93.92	1.78	30	Н
Aromatic Hydrocarbon (C12-C16)	297	11.2	140.2	229.4	47.9	30.3	131	337.5	12.9	30	Н
Aromatic Hydrocarbon (C21-C34)	189	11.2	140.2	73.05	82.4	38.8	143	177.5	6.00	30	Н
Surr: o-Terphenyl	76.8		112.2		68.5	50	150		0		Н
Sample ID: MB-38881	SampType: MBLK			Units: mg/Kg		Prep Date:	12/19/2	022	RunNo: 807	'90	
Client ID: MBLKS	Batch ID: 38881					Analysis Date:	12/28/2	022	SeqNo: 167	1188	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	ND	20.0									
Aliphatic Hydrocarbon (C10-C12)	ND	10.0									
Aliphatic Hydrocarbon (C12-C16)	ND	10.0									
Aliphatic Hydrocarbon (C16-C21)	ND	10.0									
Aliphatic Hydrocarbon (C21-C34)	ND	10.0									
Surr: 1-Chlorooctadecane	75.9		100.0		75.9	50	150				
Sample ID: LCS-38881	SampType: LCS			Units: mg/Kg		Prep Date:	12/19/2	022	RunNo: 807	'90	
Client ID: LCSS	Batch ID: 38881					Analysis Date:	12/28/2	022	SeqNo: 167	1189	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	93.4	20.0	250.0	0	37.3	16.3	130				
Aliphatic Hydrocarbon (C10-C12)	70.1	10.0	125.0	0	56.1	36.7	107				
Aliphatic Hydrocarbon (C12-C16)	78.3	10.0	125.0	0	62.7	45.3	127				

Work Order:	2211394									00.9			
CLIENT:	Libby Enviro	nmental								901			
Project:	661 E Pine S	St						Extra	actable I	Petroleum I	Hydrocarb	ons by N	IWEPH
Sample ID: LCS-3	38881	SampType	e: LCS			Units: mg/	/Kg	Prep Dat	te: 12/19/2	2022	RunNo: 807	790	
Client ID: LCSS		Batch ID:	38881					Analysis Da	te: 12/28/2	2022	SeqNo: 167	71189	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocar	bon (C16-C21)		70.4	10.0	125.0	0	56.3	47.3	129				
Aliphatic Hydrocar	bon (C21-C34)		67.2	10.0	125.0	0	53.7	35.2	139				
Surr: 1-Chloroo	ctadecane		93.1		100.0		93.1	50	150				
Sample ID: 22113	94-001AMS	SampType	e: MS			Units: mg /	/Kg-dry	Prep Dat	te: 12/19/2	2022	RunNo: 807	790	
Client ID: B-24-0	6.0	Batch ID:	38881					Analysis Da	te: 12/28/2	2022	SeqNo: 167	71192	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocar	bon (C8-C10)		260	23.7	296.2	131.1	43.5	5.66	130				Н
Aliphatic Hydrocar	bon (C10-C12)		764	11.8	148.1	659.3	70.6	9.14	134				Н
Aliphatic Hydrocar	bon (C12-C16)		1,710	11.8	148.1	1,546	113	23.1	139				Н
Aliphatic Hydrocar	bon (C16-C21)		582	11.8	148.1	409.9	116	24.4	134				Н
Aliphatic Hydrocar	bon (C21-C34)		119	11.8	148.1	40.44	52.9	21.4	152				Н
Surr: 1-Chloroo	ctadecane		95.1		118.5		80.2	50	150				Н
Sample ID: 22113	94-001AMSD	SampType	e: MSD			Units: mg/	/Kg-dry	Prep Dat	te: 12/19/2	2022	RunNo: 807	790	
Client ID: B-24-	6.0	Batch ID:	38881					Analysis Da	te: 12/28/2	2022	SeqNo: 167	71193	
Analyte			Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocar	bon (C8-C10)		294	22.4	280.4	131.1	58.0	5.66	130	259.8	12.3	30	Н
Aliphatic Hydrocar	bon (C10-C12)		699	11.2	140.2	659.3	28.0	9.14	134	763.8	8.92	30	н
Aliphatic Hydrocar	bon (C12-C16)		1,440	11.2	140.2	1,546	-78.1	23.1	139	1,714	17.6	30	SH
Aliphatic Hydrocar	bon (C16-C21)		467	11.2	140.2	409.9	40.8	24.4	134	581.9	21.9	30	Н
Aliphatic Hydrocar	bon (C21-C34)		99.1	11.2	140.2	40.44	41.8	21.4	152	118.8	18.1	30	н
Surr: 1-Chloroo	ctadecane		85.7		112.2		76.4	50	150		0		Н

NOTES:

S - Spiked amount was low relative to sample concentration. Outlying spike recoveries may be expected.

CLIENT: Libby Environmental

Project: 661 E Pine St

QC SUMMARY REPORT

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: MB-38582	SampType	: MBLK			Units: µg/Kg		Prep Da	ite: 11/21/2	022	RunNo: 800	061	
Client ID: MBLKS	Batch ID:	38582					Analysis Da	te: 11/22/2	022	SeqNo: 16	52940	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene		ND	20.0									
2-Methylnaphthalene		ND	20.0									
1-Methylnaphthalene		ND	20.0									
Benz(a)anthracene		ND	20.0									
Chrysene		ND	20.0									
Benzo(b)fluoranthene		ND	25.0									
Benzo(k)fluoranthene		ND	25.0									
Benzo(a)pyrene		ND	30.0									
Indeno(1,2,3-cd)pyrene		ND	40.0									
Dibenz(a,h)anthracene		ND	50.0									
Surr: 2-Fluorobiphenyl		822		1,000		82.2	34.4	132				
Surr: Terphenyl-d14 (surr)		782		1,000		78.2	32.8	147				
Sample ID: LCS-38582	SampType	E LCS			Units: µg/Kg		Prep Da	ite: 11/21/2	022	RunNo: 800	061	
Client ID: LCSS	Batch ID:	38582					Analysis Da	ite: 11/22/2	022	SeqNo: 16	52941	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene		1,610	20.0	2,000	0	80.4	64.3	115				
2-Methylnaphthalene		1,500	20.0	2,000	0	75.1	58.9	122				
1-Methylnaphthalene		1,500	20.0	2,000	0	75.2	57.4	122				
Benz(a)anthracene		1,660	20.0	2,000	0	83.1	61.5	123				
Chrysene		1,540	20.0	2,000	0	76.9	58.6	120				
Benzo(b)fluoranthene		1,630	25.0	2,000	0	81.6	62.1	124				
Benzo(k)fluoranthene		1,530	25.0	2,000	0	76.3	60.3	116				
Benzo(a)pyrene		1,650	30.0	2,000	0	82.5	51.6	115				
Indeno(1,2,3-cd)pyrene		1,580	40.0	2,000	0	79.1	53.8	127				
Dibenz(a,h)anthracene		1,550	50.0	2,000	0	77.4	53.3	127				
Surr: 2-Fluorobiphenyl		827		1,000		82.7	34.4	132				

79.4

32.8

147

1,000

Surr: Terphenyl-d14 (surr)

794

CLIENT: Libby Environmental

Project: 661 E Pine St

QC SUMMARY REPORT

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 2211329-019AMS	SampType: MS			Units: µg/K	g-dry	Prep Da	te: 11/21/2	022	RunNo: 800	61	
Client ID: BATCH	Batch ID: 38582					Analysis Da	te: 11/22/2	022	SeqNo: 165	2943	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,390	208	2,076	0	66.9	55.7	105				D
2-Methylnaphthalene	1,290	208	2,076	0	62.0	56.6	103				D
1-Methylnaphthalene	1,330	208	2,076	0	64.0	56.1	101				D
Benz(a)anthracene	1,460	208	2,076	0	70.4	53.4	112				D
Chrysene	1,300	208	2,076	0	62.7	52	105				D
Benzo(b)fluoranthene	1,450	260	2,076	0	69.6	51.3	119				D
Benzo(k)fluoranthene	1,410	260	2,076	0	67.7	50.3	108				D
Benzo(a)pyrene	1,570	311	2,076	0	75.5	48.5	106				D
Indeno(1,2,3-cd)pyrene	1,280	415	2,076	0	61.7	42.1	113				D
Dibenz(a,h)anthracene	1,240	519	2,076	0	59.8	40.4	114				D
Surr: 2-Fluorobiphenyl	694		1,038		66.9	34.4	132				D
Surr: Terphenyl-d14 (surr)	635		1,038		61.2	32.8	147				D
NOTES:											

Diluted due to matrix.

Sample ID: 2211329-019AMSD	SampType: MSD			Units: µg/K	g-dry	Prep Da	te: 11/21/2	022	RunNo: 800	061	
Client ID: BATCH	Batch ID: 38582					Analysis Da	te: 11/22/2	022	SeqNo: 165	52944	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Naphthalene	1,350	208	2,080	0	64.8	55.7	105	1,388	2.95	30	D
2-Methylnaphthalene	1,260	208	2,080	0	60.4	56.6	103	1,288	2.56	30	D
1-Methylnaphthalene	1,290	208	2,080	0	61.9	56.1	101	1,330	3.20	30	D
Benz(a)anthracene	1,540	208	2,080	0	74.1	53.4	112	1,462	5.32	30	D
Chrysene	1,350	208	2,080	0	64.7	52	105	1,302	3.31	30	D
Benzo(b)fluoranthene	1,510	260	2,080	0	72.5	51.3	119	1,445	4.31	30	D
Benzo(k)fluoranthene	1,320	260	2,080	0	63.2	50.3	108	1,405	6.59	30	D
Benzo(a)pyrene	1,560	312	2,080	0	75.1	48.5	106	1,567	0.360	30	D
Indeno(1,2,3-cd)pyrene	1,220	416	2,080	0	58.7	42.1	113	1,282	4.85	30	D
Dibenz(a,h)anthracene	1,190	520	2,080	0	57.4	40.4	114	1,241	3.86	30	D
Surr: 2-Fluorobiphenyl	674		1,040		64.8	34.4	132		0		D
Surr: Terphenyl-d14 (surr)	646		1,040		62.1	32.8	147		0		D

QC SUMMARY REPORT

CLIENT: Libby Environmental

Project: 661 E Pine St

Polyaromatic Hydrocarbons by EPA Method 8270 (SIM)

Sample ID: 2211329-019AMSD	SampType: MSD			Units: µg/Kg-dry	y	Prep Date:	11/21/2022	RunNo: 800	61	
Client ID: BATCH	Batch ID: 38582					Analysis Date:	11/22/2022	SeqNo: 165	2944	
Analyte	Result	RL S	SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit RPD Ref Val	%RPD	RPDLimit	Qual

NOTES:

Diluted due to matrix.

Client Name: LIBBY	Work Order Numb	per: 2211394	
Logged by: Elisabeth Samoray	Date Received:	11/18/202	2 9:55:00 AM
Chain of Custody			
1. Is Chain of Custody complete?	Yes 🖌	No 🗌	Not Present
2. How was the sample delivered?	<u>UPS</u>		
<u>Log In</u>			
 Custody Seals present on shipping container/cooler? (Refer to comments for Custody Seals not intact) 	Yes	No 🗌	Not Present
4. Was an attempt made to cool the samples?	Yes 🗹	No 🗌	
5. Were all items received at a temperature of >2°C to 6°C *	Yes 🖌	No 🗌	
6. Sample(s) in proper container(s)?	Yes 🖌	No 🗌	
7. Sufficient sample volume for indicated test(s)?	Yes 🗹	No 🗌	
8. Are samples properly preserved?	Yes 🗹	No 🗌	
9. Was preservative added to bottles?	Yes	No 🖌	NA 🗌
10. Is there headspace in the VOA vials?	Yes	No 🗌	NA 🔽
11. Did all samples containers arrive in good condition(unbroken)?	Yes 🖌	No 🗌	
12. Does paperwork match bottle labels?	Yes 🖌	No 🗌	
13 Are matrices correctly identified on Chain of Custody?	Yes 🖌	No 🗌	
14. Is it clear what analyses were requested?	Yes 🗸	No 🗌	
15. Were all holding times able to be met?	Yes	No 🗹	
Special Handling (if applicable)			
16. Was client notified of all discrepancies with this order?	Yes	No 🗌	NA 🔽
Daroon Notified			
Person Notified: Date			
By whom: Via:			

Item Information

Item #	Temp ⁰C
Sample 1	5.6

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

6	1BBA	
EIN		
1	PONMEN	
_	1	

Libby Environmental, Inc. 3322 South Bay Road NE • Olympia, WA 98506-2957

SUBCONTRACT ORDER L22K085

	Subcontracted Laboratory: 221139
Libby Environmental, Inc. 3322 South Bay Road NE Olympia, WA 98506 Phone: 360-352-2110 Fax: 360-352-4154	Fremont Analytical, Inc. 3600 Fremont Ave N Seattle, WA 98103 Phone: (206) 352-3790 Fax:
Project Manager: Sherry Chilcutt LibbyEnv@gmail.com	Requested Turnaround (TAT) STANDARD
Project: 661 E Pine St	
Analysis	Comments
Client Sample ID: B-24-6.0 Soil Sampled: 10/27/2022	2 15:06 Lab ID: L22K085
EPH cPAH by 8270 <i>Containers Supplied:</i>	Please analyze out of hold Please analyze out of hold

3322 South Bay Road NE • OI Sending Laboratory:	Jympia, WA 98506-2957 L22K085 Subcontracted Laboratory: 221139 ^L
Libby Environmental, Inc. 3322 South Bay Road NE Olympia, WA 98506 Phone: 360-352-2110 Fax: 360-352-4154	Fremont Analytical, Inc. 3600 Fremont Ave N Seattle, WA 98103 Phone: (206) 352-3790 Fax:
LibbyEnv@gmail.com	Requested Turnaround (TAT) STANDARD
Project: 661 E Pine St	
Analysis	Comments
Client Sample ID: B-24-6.0 Soil Sampled: 10/27/202	Lab ID: L22K085-01
EPH cPAH by 8270 <i>Containers Supplied:</i>	Please analyze out of hold Please analyze out of hold Add naphthalenes per EB 7/19/23 -BB
ATTACHMENT C PHOTOGRAPH LOG

PERFORMANCE SOIL SAMPLING - 2022

FORMER EVERGREEN FUEL FACILITY 661 EAST PINE STREET SHELTON, WASHINGTON

FARALLON PN: 863-001

SITE PHOTOGRAPHS Performance Soil Sampling – 2022 Former Evergreen Fuel Facility Shelton, Washington Farallon PN: 863-001

- Photograph 1. B-13 soil cores.
- Photograph 2. B-14 soil cores.
- Photograph 3. B-16 soil cores.
- Photograph 4. B-17 soil cores.
- Photograph 5. B-18 soil cores.
- Photograph 6. B-19 soil cores.
- Photograph 7. B-20 soil cores.
- Photograph 8. B-22 soil cores.
- Photograph 9. Concrete present during use of airknife (B-12).
- Photograph 10. Side-stepped past concrete (B-12).

Photograph 1. B-13 soil cores.

Photograph 2. B-14 soil cores.

Photograph 3. B-16 soil cores.

Photograph 4. B-17 soil cores.

Photograph 5. B-18 soil cores.

Photograph 6. B-19 soil cores.

Photograph 7. B-20 soil cores.

Photograph 8. B-22 soil cores.

Photograph 9. Concrete present during use of airknife (B-12).

Photograph 10. Side-stepped past concrete (B-12).

ATTACHMENT D CULTURAL RESOURCE EVALUATION LETTER REPORT

PERFORMANCE SOIL SAMPLING - 2022

FORMER EVERGREEN FUEL FACILITY 661 EAST PINE STREET SHELTON, WASHINGTON

FARALLON PN: 863-001

CULTURAL RESOURCES REPORT COVER SHEET

Project Number: 2022-11-07709

	Author:	Garth L.	Baldwin	and	Adam	Μ.	Hefling
--	---------	----------	---------	-----	------	----	---------

Title of Report:Archaeological Monitoring of Geotechnical Testing at the FormerEvergreen Fuel Facility at 661 East Pine Street (TPN: 320175102006), City of Shelton,Mason County, Washington

County: <u>Mason</u> <u>Section: 20 Township: 20 N Range: 3W</u>

Quad: Shelton (2020) Acres: <1

PDF of report submitted (REQUIRED) X Yes

Historic Property Inventory Forms to be Approved Online?
Yes No

Archaeological Site(s)/Isolate(s) Found or Amended?
Yes
No

TCP(s) found?
Yes
No

Replace a draft?
Yes
No

Satisfy a DAHP Archaeological Excavation Permit requirement?
Yes # No

Were Human Remains Found?
Yes DAHP Case #
No

DAHP Archaeological Site #:

- Submission of PDFs is required.
- Please be sure that any PDF submitted to DAHP has its cover sheet, figures, graphics, appendices, attachments, correspondence, etc., compiled into one single PDF file.
- Please check that the PDF displays correctly when opened.

November 25, 2022 Drayton Letter 0922N

Javan Ruark FARALLON CONSULTING, L.L.C. 975 5th Avenue Northwest Issaquah, Washington 98027

Re: Archaeological Monitoring of Geotechnical Testing at the Former Evergreen Fuel Facility at 661 East Pine Street (TPN: 320175102006), City of Shelton, Mason County, Washington

Mr. Ruark,

Drayton Archaeology (Drayton) recently completed monitoring at 661 East Pine Street (TPN: 320175102006), Shelton, Washington, the former Evergreen Fuel Facility. The project lies in Mason County within the NE ¼, NE ¼, NW ¼ of Section 20, Township 20 North, Range 3 West. Currently, the project area serves as a parking lot to the Shelton Yacht Club (Figures 1 and 2). Site plans have been provided by Farallon Consulting. LLC. (Figure 3).

In 2007, this location was subject of a contaminant cleanup effort under an agreement with the Washington State Department of Ecology by C.C. Cole and Sons, Inc. and Chevron U.S.A. As a follow up to the 2007 efforts, Farallon Consulting. LLC. (Farallon) undertook additional soil sampling, which is the subject of the present monitoring review. Holt Services was contracted by Farallon to bore soil cores to collect soil samples for testing. Drayton was retained by Farallon to monitor for cultural resources that may have been encountered during this work. Monitoring for this project occurred between October 26 and 27, 2022. No cultural materials were observed during monitoring of this project. This review was undertaken as an internal measure of due diligence and for use in the event a permit is needed. This review meets all standards and requirements of the Washington Department of Archaeology and Historic Preservation (DAHP).

Figure 1. A portion of the Shelton (2020) 7.5' minute USGS topo map.

Figure 2. An aerial view illustrating the project area.

Figure 3. Site plan provided by Farallon Consulting.

MONITORING

Monitoring activity was conducted by Drayton staff archaeologist Adam Hefling on October 26 and 27, 2022. The project area is located on a constructed earthen platform with a wooden retaining wall along its southern and eastern edge (Photos 1 - 3). It is bounded on the north and west side by Washington State Highway 3 (WA-3), and on the south and east by Oakland Bay on the outskirts of Shelton, Washington. The project area is located on an artificial, man-made platform. A wooden retaining wall forms the southern and eastern boundary of the project area. This space was filled in and leveled to form a large flat platform. Fill observed was mostly glacial in origin, with some buried concrete. A layer of gravel lies over most of the project area. Along the northern boundary of the project, between Highway 3, is a landscaped strip, about 4.5-meters (m) (15 ft) wide, with a sidewalk.

Photo 1. View northeast of the retaining wall along the southern boundary of the project area.

Photo 2. Northeastern overview of the project area.

Photo 3. Project area overview looking west from near BH13.

Holt Services was employed by Farallon to conduct the excavation and boring for soil sample recovery (Figure 4). The top 1.5 m (5 ft) of each core was excavated by vacuum-truck. No monitoring was necessary during this part of the work, as vacuuming did not go below the fill sediments. Once the top 1.5 m (5 ft) were removed, a boring machine was used to take core samples in 1.5 m (5 ft) increments (Photo 4). Most cores were entirely glacial sediment. Soil descriptions were done through visual inspection only, due to known residual soil contamination at the site (Appendix A).

Figure 4. An aerial image illustrating the location of the bore holes.

Photo 4. Geoprobe boring machine operated by a Holt Services technician.

Some samples, notably BH2 and BH14, were incomplete due to poor recovery, which occurred due to the loose and wet nature of some of the soil samples. Cores were drilled to 6 m (20 ft) total depth. Soil profile depths were recorded in metric centimeters, and are only approximate, as the core samples are not always complete and sometimes have residual core material from previous samples.

Borehole 1 (BH1) is representative of the boreholes observed during the duration of the project (Photo 5). Photo 5 shows, from top to bottom, (5-10-ft), 3 - 4.5 m (10-15 ft) and 4.5 - 6 m (15-20 ft) respectively. The 1.5 - 3 m (5-10-ft) sample had poor recovery, with less than half of the sample retrieved from the borehole. The sample that is visible is primarily brown and gray gravelly sediment that is glacial in origin.

Photo 5. Borehole 1 soil samples, top to bottom respectively.

A small amount of broken shell was observed in Borehole 14 (Photo 6). Mussel (*Mytilus* spp.) shell was the only identifiable species. This species is abundant and the material was not associated with any other constituents (e.g., FMR, humic soil, or other shell). In total, 14 boreholes were monitored during this project. No cultural materials were observed during monitoring.

Photo 6. Borehole 14 samples arranged top to bottom, respectively.

CONCLUSIONS

This letter report summarizes Drayton Archaeology's Archaeological Monitoring for the Cole-Chevron Project, City of Shelton, Mason County, Washington. No cultural materials were encountered during soil coring activity for this project.

Please contact me with question or comments regarding this letter report or any of the information provided at 360.739.3921 or at <u>garth@draytonarchaeology.com</u>

My Regards,

/

Garth L. Baldwin, M.A., RPA 16248 Principal Drayton Archaeology

Cc: LEAD AGENCY?? ECOLOGY OR CORPS? ANY OTHER? Rhonda Foster, THPO, Squaxin Island Tribe Stephanie Jolivette, State Archaeologist, DAHP

DEPTH BELOW SURFACE (CM)	SOIL DESCRIPTIONS	RESULTS			
	BH01				
0-45	Gray gravelly silty clay	Negative			
45-55	Dark gray gravelly silty clay	Negative			
55-85	Dark gray brown gravelly silty clay	Negative			
85-100	Gray mottled with yellowish brown gravelly sandy clay	Negative			
100-125	Brown sandy clay	Negative			
125-215	Gray gravelly silty clay	Negative			
215-260	Brown gravelly sand	Negative			
260-330	Gray gravelly sand	Negative			
	BH02				
0-62	Gray brown gravelly sand	Negative			
Comments : Only went to 8 feet, recovery was poor for both samples (two attempts to collect the 5-10 ft sample).					
	BH03				
0-35	Gray sandy clay	Negative			
35-100	Brown sandy clay	Negative			
100-150	Gray clay silt	Negative			
150-170	Brown sandy clay	Negative			
BH04					
0-125	Gray gravelly, sandy silt	Negative			
125-150	Gray sand	Negative			
150-205	Olive brown sand	Negative			
205-230	Gray gravelly sand	Negative			
BH05					
0-10	Gravel	Negative			
10-45	Brown sand	Negative			
45-60	Gray and brown mottled sandy clay	Negative			
60-95	Brown sand	Negative			
95-165	Gray silty clay	Negative			
165-200	Brown gravelly sand	Negative			
BH06					
0-40	Brown gravelly sand	Negative			
40-70	Mixed gray brown and reddish brown sandy clay	Negative			
70-80	Dark gray gravelly sandy clay	Negative			
80-90	Reddish brown gravelly sandy clay	Negative			
90-160	Gray gravelly sandy clay	Negative			
160-180	Gray gravelly sand	Negative			
180-290	Gray gravelly clay sand	Negative			

APPENDIX A: BOREHOLE PROFILE DESCRIPTIONS.

DEPTH BELOW SURFACE (CM)	SOIL DESCRIPTIONS	RESULTS			
BH07					
0-60	Reddish brown gravelly sand mixed with brown sand	Negative			
60-120	Brown mixed with gray gravelly sand	Negative			
120-140	Gray silty sand	Negative			
140-275	Dark gray sand, 1 chunk of charcoal observed	Negative			
275-340	Brown gravelly sand	Negative			
	BH08				
0-50	Brown gravelly sand	Negative			
50-85	Brown silty clay	Negative			
85-225	Gray gravelly sandy clay	Negative			
225-250	Dark brown peat	Negative			
250-280	Dark gray clay	Negative			
280-290	Green gleied clay sand	Negative			
Comments: Organi	c peat encountered in Strat IV.				
	BH09				
0-65	Alluvial beach gravel	Negative			
65-125	Gray gravelly clay sand	Negative			
BH10					
0-30	Gravel	Negative			
30-220	Gray gravelly sandy clay	Negative			
BH11					
0-30	Brown gravelly sand	Negative			
30-50	Gray gravelly sand	Negative			
50-60	Olive brown gravelly sand	Negative			
BH12					
0-70	Brown sand	Negative			
Comments: Smells	of petroleum.				
	BH13				
0-35	Dark brown gravelly sand loam	Negative			
35-50	Gray gley colored gravelly sand	Negative			
Comments: Poor sa	ample recovery				
BH14					
0-80	Gray silty sand	Negative			
80-110	Dark gray silt, with some shell (<2%), including mussel and some organic peat material	Negative			
Comments: Poor sample recovery. Shell observed is not cultural.					