

REMEDIAL INVESTIGATION/FOCUSED FEASIBILITY STUDY

BLOCK 38 WEST SITE 500 THROUGH 536 WESTLAKE AVENUE NORTH SEATTLE, WASHINGTON

Agreed Order No. DE 17963 Facility Site Identification No. 62773 Cleanup Site Identification No. 15008

Farallon PN: 397-019

December 20, 2024

Prepared by:

Greg Peters Project Scientist

Yusuf Pehlivan, L.G. Associate Geologist

Reviewed by:

Suzy Stumpf, P.E. Principal Engineer

For: City Investors IX LLC 505 5th Avenue South Seattle, Washington 98104 Submitted by: Farallon Consulting, L.L.C. 13555 Southeast 36th Street, Suite 320 Bellevue, Washington 98006

te of Washing

TABLE OF CONTENTS

1.0	INTRODUCTION		
	1.1	PURPOSE AND OBJECTIVE	1-3
	1.2	REPORT ORGANIZATION	1-3
2.0	BLOC	38 WEST SITE DESCRIPTION AND BACKGROUND	2-1
	2.1	BLOCK 38 WEST PROPERTY DESCRIPTION	2-1
	2.2	BLOCK 38 WEST PROPERTY HISTORY	2-2
	2.3	BLOCK 38 WEST PROPERTY CURRENT LAND USE	2-3
	2.4	ADJACENT AND SURROUNDING LAND USES	2-3
		2.4.1 North – Block 37 Property	2-3
		2.4.2 East – Block 38 East Property	2-4
		2.4.3 South – 428 Westlake LLC and Firestone Tire & Rubber Co.	
		Properties	2-5
		2.4.4 West – Amazon VI Property	2-6
		2.4.5 Former American Linen Supply Co – Former American Linen	
		Property	2-7
	2.5	REGULATORY HISTORY	2-7
	2.6	GEOLOGY AND HYDROGEOLOGY	2-10
	2.7	VULNERABLE POPULATIONS AND OVERBURDENED COMMUNITIES	2-13
	2.8	CLIMATE CHANGE	2-16
		2.8.1 Sea Level Rise	2-17
		2.8.2 Flooding	2-17
		2.8.3 Wildfires	2-17
		2.8.4 Landslides and Erosion	2-18
		2.8.5 Drought	2-18
3.0	SUMM	IARY OF PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIONS	
	3.1	PHASE II SOIL INVESTIGATION – DAMES & MOORE, 1994	3-1
	3.2	GEOTECHNICAL INVESTIGATION - GEOENGINEERS, 2018	3-1
	3.3	SUBSURFACE INVESTIGATIONS	3-3
	3.4	SUPPORTING DATA FROM ADJACENT PROPERTY INVESTIGATIONS	3-9
		3.4.1 North - Block 37 Property	3-9
		3.4.2 East – Block 38 East Property	3-10
		3.4.3 Former American Linen Property	3-12
4.0	INDEP	PENDENT INTERIM ACTION	4-1
	4.1	INDEPENDENT INTERIM ACTION OBJECTIVES	4-2
	4.2	CONSTRUCTION DEWATERING AND TREATMENT	4-2
	4.3	MONITORING WELL DECOMMISSIONING	4-5
	4.4	EXCAVATION AND OFF-PROPERTY DISPOSAL OF CONTAMINATED SOIL	L4-5
	4.5	UTILITY DECOMMISSIONING – SIDE SEWER LINE	4-6
	4.6	UST DECOMMISSIONING	4-7
		4.6.1 UST01	4-9
		4.6.2 Fuel Product Line	4-10

		4.6.3 UST02	4-10
	4.7	VAPOR BARRIER INSTALLATION AND WATERPROOF FOUNDATION	4-12
5.0	ALLEY	AREA INTERIM ACTION	5-1
	5.1	EXCAVATION AND OFF-PROPERTY DISPOSAL OF CONTAMINATED SOIL	5-1
	5.2	UTILITY AND STRUCTURAL IMPROVEMENTS	5-2
6.0	REME	DIAL INVESTIGATION	6-1
	6.1	PRELIMINARY CLEANUP LEVEL DEVELOPMENT	6-1
	6.2	CONSTITUENTS OF POTENTIAL CONCERN	6-2
	6.3	2023 TO 2024 REMEDIAL INVESTIGATION OBJECTIVES	6-5
		6.3.1 Soil	6-5
		6.3.2 Groundwater	6-6
	6.4	REMEDIAL INVESTIGATION FIELD PROGRAM	6-8
		6.4.1 Permitting	6-9
		6.4.2 Subsurface Utility Location	6-10
		6.4.3 Boring Advancement and Soil Sampling	6-10
		6.4.4 Monitoring Well Installation	6-11
		6.4.5 Groundwater Monitoring	6-12
	o =	6.4.6 Laboratory Analysis	6-13
	6.5	REMEDIAL INVESTIGATION RESULTS	6-13
		6.5.1 Groundwater Elevations and Flow	6-13
		6.5.2 Soli Analytical Results	6-15
	66		6.21
	0.0		0-21
7.0	NATU	RE AND EXTENT OF CONTAMINATION	7-1
	7.1	SOIL	7-1
		7.1.1 Gasoline-Range Organics	7-1
		7.1.2 Benzene	
		7.1.3 Total DRO+ORO	
		7.1.4 Naphthalenes	1-3
		7.1.5 Carcinogenic Polycyclic Aromatic Hydrocarbons	/ -4
	7.0		7-0
	1.2	7.2.1 Casalina Panga Organias	0-1
		7.2.2 Benzene	1-1
		7.2.2 Delizerie	<i>1-1</i> 7_7
		7.2.5 Nanhthalenes	<i>1-1</i> 7_9
		7.2.5 Barium and Mercury	7-9
8.0	CONC	EPIUAL SITE MODEL	8-1
	8.1	CUNFIRMED AND SUSPECTED SOURCES OF CONTAMINATION	8-1
	8.2 0.2		ర-చ
	හ. <u>ර</u>		ŏ-4 ∘ ⊏
	ō.4	PUTEINTIAL RECEPTORS AND EXPOSURE PATHWAYS	C-ŏ
		0.4.1 JUII DIRECT CONTRACT Induction (Drinking Water Panafisial Use	ຕ-ວ
		o.4.2 Groundwater ingestion/ Drinking water Beneficial Use	Ծ-Ծ

		8.4.3 Vapor Inhalation	8-6
		8.4.4 Potential Receptors	8-6
		8.4.5 Terrestrial Ecological Evaluation	8-6
	8.5	PROPOSED CONSTITUENTS OF CONCERN	8-7
	8.6	PROPOSED CLEANUP LEVELS	8-8
9.0	FOCUS	SED FEASIBILITY STUDY	9-1
	9.1	SUMMARY OF REMAINING CONTAMINATION AND APPLICABLE CLEANUP	
		STANDARDS	9-1
	9.2	CLEANUP ACTION REQUIREMENTS AND GOALS	9-2
	9.3	TECHNOLOGY SCREENING AND ASSESSMENT OF INTERIM REMEDIAL	
		ACTIONS	9-3
	9.4	SELECTED CLEANUP ACTION	9-5
	9.5	EVALUATION OF SELECTED CLEANUP ACTION	9-6
10.0	DEEEE		10.1
10.0	REFER	(EINCES	.10-1
11.0	LIMITA	ATIONS	.11-1
	11.1	GENERAL LIMITATIONS	11-1
	11.2	LIMITATION ON RELIANCE BY THIRD PARTIES	11-1

FIGURES

- Figure 1 Vicinity Map
- Figure 2 Site Plan with Historical Features
- Figure 3 Site Plan with Sample Locations
- Figure 4 Soil Analytical Results for GRO
- Figure 5 Soil Analytical Results for Benzene
- Figure 6 Soil Analytical Results for DRO
- Figure 7 Soil Analytical Results for ORO
- Figure 8 Soil Analytical Results for DRO + ORO
- Figure 9 Soil Analytical Results for Naphthalenes
- Figure 10 Soil Analytical Results for cPAH TEC
- Figure 11A Groundwater Elevation Contours Shallow Water-Bearing Zone
- Figure 11B Groundwater Elevation Contours Intermediate Water-Bearing Zone
- Figure 11C Groundwater Elevation Contours Deep Outwash Aquifer
- Figure 12 Groundwater Analytical Results for GRO
- Figure 13 Groundwater Analytical Results for Benzene

- Figure 14 Groundwater Analytical Results for DRO + ORO
- Figure 15 Groundwater Analytical Results for Naphthalenes
- Figure 16 Groundwater Analytical Results for cPAH TEC
- Figure 17 Cross Section A-A'
- Figure 18 Cross Section B-B'
- Figure 19 Cross Section C-C'
- Figure 20 Cross Section D-D'
- Figure 21 Cross Section E-E'
- Figure 22 Soil Analytical Results for UST Decommissioning
- Figure 23 Extent of Vapor Barrier
- Figure 24 Post Interim Action Soil Analytical Results for DRO+ORO
- Figure 25 Post Interim Action Soil Analytical Results for cPAHs
- Figure 26 Post Interim Action Cross Section A-A'
- Figure 27 Post Interim Action Cross Section B-B'
- Figure 28 Post Interim Action Cross Section E-E'
- Figure 29 Exposure Pathway Analysis

TABLES

- Table 1
 Soil Analytical Results for TPH and BTEX
- Table 2Soil Analytical Results for PAHs
- Table 3
 Soil Analytical Results for Select CVOCs
- Table 4Soil Analytical Results for PCBs
- Table 5Soil Analytical Results for Metals
- Table 6Groundwater Elevations
- Table 7
 Groundwater Analytical Results for TPH and BTEX
- Table 8Groundwater Analytical Results for PAHs
- Table 9 Groundwater Analytical Results for Select CVOCs
- Table 10Groundwater Analytical Results for Select PCBs
- Table 11
 Groundwater Analytical Results for Metals
- Table 12Groundwater Analytical Results for DRO and ORO with and without Silica GelCleanup

- Table 13
 Remedial Investigation Work Plan Preliminary Screening Levels
- Table 14
 Post Interim Action Proposed Cleanup Levels
- Table 15Applicable Local, State, and Federal Laws

APPENDICES

- Appendix A Boring Logs
- Appendix B EJ Screening Tool and EHD Map Community Reports
- Appendix C Analytical Laboratory Results
- Appendix D ATC Cleanup Action Summary
- Appendix E GeoEngineers Cleanup Action Summary
- Appendix F Deep Outwash Aquifer Monitoring
- Appendix G Middour Consulting LLC Groundwater Control Design
- Appendix H WaterTectonics Water Treatment System Design
- Appendix I UST01 and UST02 Decommissioning Records
- Appendix J Vapor Barrier Specifications
- Appendix K Remedial Investigation Sampling and Analysis Summary Tables
- Appendix L Well Survey Report
- Appendix M Data Validation Report
- Appendix N Terrestrial Ecological Evaluation

ACRONYMS AND ABBREVIATIONS

1999 EA Update	Letter regarding Preliminary Environmental Assessment Update, Westlake Avenue Property (428, 500, 510, and 520 Westlake Avenue North), Seattle, Washington dated April 5, 1999, from Rob Roberts and Julie K.W. Wukelic of Hart Crowser to City Investors VI LLC c/o Joe Delaney, Foster Pepper & Shefelman.
2018 Geotechnical Report	Draft Geotechnical Engineering Services, Block 38, Seattle, Washington dated October 17, 2018, prepared by GeoEngineers, Inc.
2019 Ecology Letter	Letter regarding Early Notice of Release of Hazardous Substances and Preliminary Determination of Liability for Release at the Block 38 West Contaminated Site dated August 13, 2019, from Tamara Cardona of Ecology to City Investors IX LLC.
2019 IAWP	Interim Action Work Plan, Block 38 West Property, 500 through 536 Westlake Avenue North, Seattle, Washington dated November 8, 2019, prepared by Farallon Consulting, L.L.C.
2019 Phase I Report	Draft Phase I Environmental Site Assessment Report, South Lake Union Block 38 West Property, 500 through 536 Westlake Avenue North, Seattle, Washington dated August, 9, 2019, prepared by Farallon Consulting, L.L.C.
2020 Subsurface Investigation Results letter report	Letter Regarding Subsurface Investigation Results, Block 38 West Property, 500 through 536 Westlake Avenue North, Seattle, Washington dated January 22, 2020, from Suzy Stumpf and Clifford T. Schmitt of Farallon Consulting, L.L.C. to Tena Seeds of the Washington State Department of Ecology.
AEC	Andersen Environmental Contracting LLC of Kelso, Washington

Alley IAWP	Interim Action Work Plan, Alley Area of Block 38 West Site between Republican Street and Mercer Street, Seattle, Washington dated February 3, 2021 prepared by Farallon Consulting, L.L.C.
AO	Agreed Order No. DE 17963 between the Washington State Department of Ecology and City Investors IX, L.L.C.
bgs	below ground surface
Block 38 West Property	500 through 536 Westlake Avenue North in Seattle, Washington
Block 38 West Site	The area generally located at 500 through 536 Westlake Avenue North in Seattle, Washington, where a hazardous substance, other than a consumer product in consumer use, has been deposited, stored, disposed of, placed, or otherwise come to be located.
BTEX	benzene, toluene, ethylbenzene, and total xylenes
cDCE	cis-1,2- dichloroethene
CGI	Construction Group International of Woodinville, Washington
City Investors IX	City Investors IX, L.L.C.
COC	constituent of concern
COPC	constituent of potential concern
сРАН	carcinogenic polycyclic aromatic hydrocarbon
CSM	Conceptual Site Model
CVOC	chlorinated volatile organic compound
DCE	dichloroethene
Draft RIWP	Agency Review Draft Remedial Investigation Work Plan, 500 through 536 Westlake Avenue North, Seattle, Washington dated July 20, 2020, prepared by Farallon Consulting, L.L.C. for City Investors IX LLC.
DRO	diesel-range organics
Ecology	Washington State Department of Ecology

Ecology Climate Guidance	Sustainable Remediation: Climate Change Resiliency and Green Remediation dated November 2017, revised January 2023, prepared by the Washington State Department of Ecology
Ecology PCS Guidance	Guidance for Remediation of Petroleum Contaminated Sites dated September 2011, revised June 2016, prepared by the Washington State Department of Ecology
Ecology UST Guidance	Guidance for Site Checks and Site Assessments for Underground Storage Tanks dated February 1991, revised April 2003, prepared by the Washington State Department of Ecology
Ecology Silica Gel Guidance	<i>Guidance for Silica Gel Cleanup in Washington State</i> dated November 2023, prepared by the Washington State Department of Ecology
EHD Map	Washington State Department of Health Environmental Health Disparities Map
EJ Screening Tool	U.S. Environmental Protection Agency Environmental Justice Screening and Mapping Tool
EPA	U.S. Environmental Protection Agency
Farallon	Farallon Consulting, L.L.C.
FEMA	Federal Emergency Management Agency
FFS	focused feasibility study
Final RI/FS Work Plan	Final Remedial Investigation/Feasibility Study Work Plan, American Linen Supply Co – Dexter Avenue Site, 700 Dexter Avenue North, Seattle, Washington dated December 4, 2019, prepared by PES Environmental, Inc.
Former American Linen Property	Former American Linen Supply Co. facility at 700 Dexter Avenue North in Seattle, Washington (King County Parcel No. 224900-0285) currently owned by BMR-Dexter LLC
ft/ft	feet per foot
GLY	GLY Construction

GRO	gasoline-range organics
Hos Bros.	Hos Bros. of Woodinville, Washington
Implementation Memorandum No. 25	Implementation Memorandum No. 25: Identifying Likely Vulnerable Populations and Overburdened Communities under the Cleanup Regulations dated January 2024, prepared by the Washington State Department of Ecology
KCIW	King County Industrial Waste
LNAPL	light nonaqueous-phase liquid
µg/kg	micrograms per kilogram
µg/L	micrograms per liter
MCL	maximum contaminant level
mg/kg	milligrams per kilogram
MTBE	methyl tertiary-butyl ether
MTCA	Washington State Model Toxics Control Act
NAVD88	North American Vertical Datum of 1988
NPDES	National Pollutant Discharge Elimination System
OnSite	OnSite Environmental, Inc. of Redmond, Washington
ORO	oil-range organics
ORP	oxidation-reduction potential
РАН	polycyclic aromatic hydrocarbon
PCB	polychlorinated biphenyl
PCE	tetrachloroethene
PID	photoionization detector
PLP	potentially liable person
PQL	practical quantitation limit
PVC	polyvinyl chloride
QA/QC	quality assurance/quality control

RCW	Revised Code of Washington
Republican Street Drain	72-inch-diameter King County sewer main line in the Republican Street right-of-way and its backfill
RI	remedial investigation
RI/FFS	Remedial Investigation Report and Focused Feasibility Study
RI Work Plan	Remedial Investigation Work Plan, 500 through 536 Westlake Avenue North, Seattle, Washington dated April 26, 2023, prepared by Farallon Consulting, L.L.C.
SVOC	semivolatile organic compound
TCE	trichloroethene
TEC	toxic equivalent concentration
TEE	Terrestrial Ecological Evaluation
ТОС	total organic carbon
UST	underground storage tank
VOC	volatile organic compound
WAC	Washington Administrative Code

1.0 INTRODUCTION

Farallon Consulting, L.L.C. (Farallon) has prepared this Remedial Investigation Report and Focused Feasibility Study (collectively herein RI/FFS Report) on behalf of City Investors IX L.L.C. (City Investors IX). The purpose of the RI/FFS is to summarize the remedial investigation (RI) and focused feasibility study (FFS) completed for the Block 38 West Site and identify a preferred cleanup action for the Block 38 West Site. This RI/FFS was prepared in accordance with the requirements of Section VII.A, Work to be Performed, under Agreed Order No. DE 17963 (AO) between the Washington State Department of Ecology (Ecology) and City Investors IX and in accordance with the requirements of the Washington State Model Toxics Control Act Cleanup Regulation (MTCA) as codified in Chapters 173-340-350 and 173-340-351 of the Washington Administrative Code (WAC) (WAC 173-340-350 and 173-340-351).

The Block 38 West Site, as defined under the AO, is where a hazardous substance, other than a consumer product in consumer use, has been deposited, stored, disposed of, placed, or otherwise come to be located. The Site is generally located at 500 through 536 Westlake Avenue North in Seattle, Washington (Block 38 West Property) (Figures 1 through 3). The Block 38 West Property comprises the western half of the block bounded by Mercer Street to the north, Westlake Avenue North to the west, Republican Street to the south, and a north-south-trending alley (City of Seattle public right-of-way) that bisects the block to the east. The eastern half of the same block is referred to as the Block 38 East Property; the whole block comprising the Block 38 West and Block 38 East Properties and the alley is referred to as Block 38.¹

This RI/FFS Report (i) summarizes the results from the RI, the results from an independent interim action that began during negotiations for the AO, and results from an Ecology-approved alley interim action conducted at the Block 38 West Site, and (ii) presents the results from the FFS conducted to evaluate technically feasible cleanup action alternatives for the remaining affected media of concern. The independent interim action completed at the Block 38 West Property was conducted in accordance with the *Interim Action Work Plan, Block 38 West Property, 500 through 536 Westlake Avenue North, Seattle, Washington* dated November 8, 2019, prepared by Farallon (2019c) (2019 IAWP). Once the AO became effective, the independent interim action was conducted under the auspices of the AO. The

¹ "Block 38" and other block numbers used in this document were assigned for property development planning purposes and do not correspond to the block numbers designated by the City of Seattle (e.g., the property on which Block 38 is located is known as Block 94 by the City of Seattle).

interim action completed at the alley area of the Block 38 West Site was conducted in accordance with the Ecology-approved Interim Action Work Plan, Alley Area of Block 38 West Site between Republican Street and Mercer Street, Seattle, Washington dated February 3, 2021 prepared by Farallon (2021a) (Alley IAWP). The RI activities completed at the Block 38 West Site were conducted in accordance with the Ecology-approved Remedial Investigation Work Plan, 500 through 536 Westlake Avenue North, Seattle, Washington dated April 26, 2023, prepared by Farallon (2023) (RI Work Plan).

Farallon and others conducted a comprehensive RI that included multiple phases of characterization between 1994 and 2024. These RI activities were performed to assess the Block 38 West Site for constituents of potential concern (COPCs) in soil and groundwater associated with historical operations at the Block 38 West Property, historical fill known to have been placed in this area, and potential contaminant migration from adjacent and nearby properties. COPCs retained for the Block 38 West Site consisted of those hazardous substances which were detected in soil and/or groundwater samples collected from the Block 38 West Site and surrounding areas at concentrations exceeding regulatory screening levels and included petroleum hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), and metals (as barium and mercury).

Substantial cleanup of the Block 38 West Site was performed through interim actions from October 2019 through July 2021 in conjunction with redevelopment of the Block 38 West Property. Based on the results from the RI and interim actions, isolated areas of petroleum hydrocarbons and PAHs remain at concentrations exceeding regulatory screening levels in soil at the Block 38 West Site.

The interim actions, conducted concurrently with redevelopment, permanently removed soil with concentrations of hazardous substances that exceeded screening levels and resulted in the removal of the Shallow Water-Bearing Zone and the upper portion of the Intermediate Water-Bearing Zone² beneath the Block 38 West Property. In addition, soil with concentrations of hazardous substances that exceeded screening levels encountered during construction activities was removed during improvements made to the alley. The new building foundation design on the Block 38 West Property also included the installation of a chemical resistant vapor barrier around the entire perimeter and beneath the building foundation to mitigate the potential vapor intrusion exposure pathway. Based on the results from the remedial investigation and interim actions sufficient data have been obtained to

² These water-bearing zones are defined in Section 2.6, Geology and Hydrogeology.

demonstrate that the interim actions completed at the Block 38 West Site constitute a permanent cleanup action to the maximum extent practicable in accordance with MTCA and current and future land use.

1.1 PURPOSE AND OBJECTIVE

In accordance with WAC 173-340-350, the purpose of the RI was to collect the data necessary to adequately characterize the Block 38 West Site to establish cleanup standards, and develop and evaluate cleanup alternatives. The results from the RI and interim actions have provided sufficient data to identify and evaluate feasible cleanup alternatives.

In accordance with WAC 173-340-351, the purpose of the FFS was to develop and evaluate cleanup action alternatives to enable selection of a cleanup action that meets the requirements of WAC 173-340-360 and conforms, as appropriate, to the expectations of WAC 173-340-370.

1.2 REPORT ORGANIZATION

The report has been organized into the following sections:

- Section 2, Block 38 West Site Description and Background, provides the Block 38 West Property description and history, a summary of current and historical uses of adjacent and surrounding lands, potential off-Property sources of contamination, regulatory history, and the geology and hydrogeology of the South Lake Union region.
- Section 3, Summary of Previous Investigations and Remedial Actions, provides a summary of previous investigations and interim actions performed at the Block 38 West Site.
- Section 4, Independent Interim Action, describes the implementation of the independent interim action, results from performance and confirmation soil samples and groundwater monitoring, foundation elements, unanticipated conditions, installation of dewatering wells, dewatering and treatment activities, contaminated soil excavation, and waterproof concrete construction and vapor barrier installation.
- Section 5, Alley Area Interim Action, describes the implementation of the Ecologyapproved Alley Area Interim Action performed in conjunction with improvements to the alley associated with the redevelopment of the Block 38 West Property and the results from performance and confirmation soil samples.

- Section 6, Remedial Investigation, presents a summary of the RI conducted at the Block 38 West Site, development of preliminary screening levels, constituents and media of potential concern, data gaps identified in the RI Work Plan, and results from the RI.
- Section 7, Nature and Extent of Contamination, presents a discussion of the nature and extent of COPCs in soil and groundwater based on results from the RI, previous investigations, and interim actions conducted at the Block 38 West Site.
- Section 8, Conceptual Site Model, discusses the proposed constituents of concern (COCs), media of concern, and proposed cleanup levels for the cleanup action, confirmed and suspected source areas, nature and extent of contamination, and contaminant fate and transport at the Block 38 West Site.
- Section 9, Focused Feasibility Study, presents a summary of the technical elements for the FFS to select a preferred cleanup alternative for soil and groundwater at the Block 38 West Site.
- Section 10, References, provides a list of the documents cited in this report.
- Section 11, Limitations, provides Farallon's standard limitations associated with this report.

2.0 BLOCK 38 WEST SITE DESCRIPTION AND BACKGROUND

This section provides the Block 38 West Site description and regulatory history, a summary of current and historical uses of the Block 38 West Property, adjacent and surrounding lands and potential off-Site sources, the regulatory history, and the geology and hydrogeology of the South Lake Union region.

2.1 BLOCK 38 WEST PROPERTY DESCRIPTION

The Block 38 West Property is in a commercial and light industrial area zoned as mixed residential and commercial in the South Lake Union area (SM-SLU 175/85-280) approximately 1 mile north of downtown Seattle. According to the King County GIS Center (2018), the Block 38 West Property comprises King County Parcel No. 1983200196 on the northern portion of the Block 38 West Property (534 and 536 Westlake Avenue North), King County Parcel No. 1983200180 on the central portion of the Block 38 West Property (520 Westlake Avenue North), and King County Parcel No. 1983200170 on the southern portion of the Block 38 West Property (500 and 510 Westlake Avenue North) (Figure 2).

The Block 38 West Property totals approximately 1.06 acres of land that previously was developed with structures formerly used for retail, temporary office space, storage, and parking. The former Block 38 West Property structures were demolished as part of the recent redevelopment. The Block 38 West Property redevelopment included construction of a multi-story mixed-use building, with 12 stories above street level and four levels of underground parking.

Adjacent street elevations vary from an approximate elevation of 41 feet North American Vertical Datum of 1988 (NAVD88) on Republican Street, adjoining the southern portion of the Block 38 West Property, to an approximate elevation of 31 feet NAVD88 on Mercer Street, adjoining the northern portion of the Block 38 West Property (Figure 2). The alley bisecting Block 38 is accessed from either Republican Street or Mercer Street and descends from street level to an approximate elevation of 25 feet NAVD88, and is used for vehicle access to parking garages on the Block 38 West Property and Block 38 East Property. A historical timber-framed trestle previously extended north from Republican Street into the alley approximately 120 feet; its constructed height was approximately 18 feet higher than the ground surface of the southern portion of the alley and was removed during the independent interim action (Figure 2). The trestle was constructed for support of the rail spur that extended out to the former southern shoreline of Lake Union (Farallon 2018). As

discussed below, the northern portion of the Block 38 West Property historically was marshland along the southern shore of Lake Union.

2.2 BLOCK 38 WEST PROPERTY HISTORY

The Block 38 West Property historically was undeveloped marshland that extended along the southern shore of Lake Union and onto the north-adjacent property in the late 1880s, as detailed in the draft Phase I Environmental Site Assessment Report prepared by Farallon (2019b) (2019 Phase I Report) and the Preliminary Environmental Assessment Update letter (Hart Crowser, Inc. 1999) (1999 EA Update). Historical operations at the Block 38 West Property have included the following:

- A lumber storage yard across the majority of the Block 38 West Property from the 1890s until approximately 1920;
- Small commercial operations (e.g., a blacksmith shop, a wagon shop) in pilesupported buildings on the southern parcel in the early 1900s, which were replaced in 1919 by a two-story masonry building with a basement level at 500 and 510 Westlake Avenue North;
- Retail and commercial operations (i.e., auto parts, appliances, school and office supplies, furniture storage, clothing, and outdoor equipment) at 500 and 510
 Westlake Avenue North from the 1920s to 2019;
- Commercial operations (i.e., a horse stable and wagon house, a blacksmith shop, a wagon shop, an auto repair facility, and a veterinary hospital) from the early 1900s until 1950s on the central parcel at 520 Westlake Avenue North, which were replaced in 1964 with a two-story building with rooftop parking through 2019;
- Retail operations at 520 Westlake Avenue from 1964 to 2019; and
- Warehouse storage starting in the early 1920s and transitioning into commercial and retail operations, including a commercial printer, on the northern parcel at 534 and 536 Westlake Avenue North to 2019.

The structures on the Block 38 West Property that were used as retail, temporary office space, storage, and parking remained unchanged from 1969 through August 2019. The structures were demolished in late 2019 and early 2020 as part of the redevelopment of the Block 38 West Property.

Historical operations resulted in the release of hazardous substances that caused contamination of soil and/or groundwater at the Block 38 West Property. Ecology listed the Block 38 West Site (includes the Block 38 West Property) as a contaminated site with Facility Site ID No. 62773 and Cleanup Site ID No. 15008 in 2019.

2.3 BLOCK 38 WEST PROPERTY CURRENT LAND USE

The Block 38 West Property redevelopment included construction of a multi-story mixed-use building, with 12 stories above street level and four levels of underground parking. The finished floor elevation of the lowest level of parking is -3.25 feet NAVD88, with the bottom of footing elevation for the majority of the foundation at approximately -6.5 feet NAVD88. The excavation extended deeper in areas for footings or elevator pits. The mass excavation and installation of building superstructure has been completed. On May 6, 2022, the City of Seattle issued a certificate of occupancy for the new building.

2.4 ADJACENT AND SURROUNDING LAND USES

This section summarizes the current and historical uses of the properties that surround the Block 38 West Property.

2.4.1 North - Block 37 Property

The Block 37 Property at 600 through 630 Westlake Avenue North is located one block north of the Block 38 West Property across Mercer Street (Figure 2). The Block 37 Property has primarily been used for commercial and industrial purposes since 1885. Historical operations included a lumber mill, a planing mill, lumber storage, two gasoline service stations, a creamery, a brewery, a restaurant, and auto service and detailing. The Block 37 Property was developed with numerous commercial buildings until 2006 and all structures were removed by 2009. Currently, the Block 37 Property is an asphalt-paved vacant lot.

Historical operations resulted in releases of hazardous substances that caused contamination of soil and groundwater at the Block 37 Property and surrounding public rights-of-way. This property is currently associated with the Block 37 Site listed in Ecology's contaminated sites database as Facility Site ID No. 46445353 and Cleanup Site ID 6134. The Block 37 Site includes two sites previously identified by Ecology as the TOSCO 25535330857 Site (associated with a former gas station at 600 Westlake Avenue North) and the Auto Service Company Site (associated with a former gasoline station and auto maintenance facility at 630 Westlake Avenue North).

Cleanup actions at the Block 37 Site are being performed under Agreed Order No. DE 19430, effective May 4, 2021, between Ecology, Phillips 66 Company, and City Investors XI, L.L.C. Based on confirmed releases to soil and groundwater at the Block 37 Site and surrounding public rights-of-way, the Block 37 Site is a potential source of contamination at or near the Block 38 West Property.

2.4.2 East - Block 38 East Property

The Block 38 East Property at 535 Terry Avenue North and 960 Republican Street is eastadjacent to and separated by an alley from the Block 38 West Property (Figure 2). The Block 38 East Property totals approximately 1.08 acres of land that have primarily been used for commercial and light industrial purposes since the late 1800s and comprises King County Parcel Nos. 1983200150 and 1983200160.

Historical operations on the northern portion of the property (535 Terry Avenue North) included a lumber mill and yard, gasoline service station, and fuel yard associated with coal storage through the 1950s. By the late 1960s, the northern portion of the property was a parking lot until redeveloped in 2009 with a five-story commercial office building known as the Interurban Exchange 2 Building.

Historical operations on the southern portion of the property (960 Republican Street) included lumber storage until the late 1920s when a three-story commercial office building was built. The building, known as the Rosen Building, was used as a warehouse for electrical appliances and general storage through the 1960s and currently is a medical and dental office. Figure 2 shows the location of historical features and lot configuration on the Block 38 East Property.

Historical operations resulted in releases of hazardous substances that caused contamination of soil and groundwater at the Block 38 East Property. This property is currently associated with the Rosen Property Site, also known as the Interurban Exchange 2 Site, listed in Ecology's contaminated sites database as Facility Site ID No. 2500 and Cleanup Site ID 5123.

On May 28, 2009, the Rosen Property Site received a property-specific No Further Action determination from Ecology. Based on confirmed releases to soil and groundwater at the Rosen Property Site and residual soil contamination with detections of petroleum hydrocarbons, carcinogenic polycyclic aromatic hydrocarbons (cPAHs), and metals exceeding regulatory screening levels at the western boundary of the Block 38 East Property, the

Rosen Property Site is a potential source of contamination at or near the Block 38 West Property. Figure 2 shows the location of historical features and lot configuration on the Block 38 East Property.

2.4.3 South - 428 Westlake LLC and Firestone Tire & Rubber Co. Properties

The 428 Westlake LLC Property at 428 Westlake Avenue North is one block south of the Block 38 West Site and occupies the northern half of the block (Figure 2). The 428 Westlake LLC Property totals approximately 0.44 acre of land that has primarily been used for commercial and light industrial purposes since the 1960s and is comprised of King County Parcel No. 1983200245.

The 428 Westlake LLC Property was undeveloped prior to the 1960s and occupied by a used car dealership until the 1980s, and then a commercial parking lot into the early 2000s. The 428 Westlake LLC Property was redeveloped in 2003 to 2004 with a six-story commercial office building with four levels of below grade parking.

Historical operations resulted in releases of hazardous substances that caused contamination of soil at the 428 Westlake LLC Site, and 428 Westlake LLC Site being listed in Ecology's contaminated sites database as Facility Site ID No. 861982 and Cleanup Site ID No. 485. On May 23, 2005, the 428 Westlake LLC Site received a No Further Action determination from Ecology and a restrictive covenant was recorded for petroleum-contaminated soil that was left in-place on the southwestern portion of the 428 Westlake LLC Site and a 2-foot-wide zone that extends into the City of Seattle right-of-way. Based on a localized release to soil and no documented impacts to groundwater, the 428 Westlake LLC Site is not considered a potential source of contamination at or near the Block 38 West Property.

The Firestone Tire & Rubber Co. Property at 400 Westlake Avenue North is one block south of the Block 38 West Site and occupies the southern half of the block (Figure 2). The Firestone Tire & Rubber Co. Property totals approximately 0.44 acre of land that has primarily been used for commercial and light industrial purposes since the 1950s and is comprised of King County Parcel No. 1983200230.

The Firestone vehicle service building and former gasoline retail station reportedly was constructed in 1929 and remained a tire and vehicle service station until approximately 2017. In its original configuration, the Firestone vehicle service building's southwestern corner was reportedly open to vehicular traffic and contained fuel dispensers. The Firestone

Tire & Rubber Co. Property was redeveloped with a 15-story commercial office building with a one-story underground parking garage from 2020 to 2022.

Concurrent with redevelopment, an independent cleanup was completed at the Firestone Tire & Rubber Co. Property, which included the mass excavation of soil for a subgrade parking garage and associated construction dewatering system that reportedly operated from December 2020 through September 2021.

Historical operations resulted in releases of hazardous substances that caused contamination of soil and suspected contamination of groundwater at the Firestone Tire & Rubber Co. Property, and the Firestone Tire & Rubber Co. Property being listed in Ecology's contaminated sites database as Facility Site ID No. 32145888 and Cleanup Site ID No. 12005. Based on the confirmed groundwater flow direction in the Shallow Water-Bearing Zone (described in Section 2.6) from north to south at the Block 38 West Site, releases to soil and/or groundwater at the Firestone Tire & Rubber Co. Property are not considered a potential source of contamination at or near the Block 38 West Property.

2.4.4 West - Amazon VI Property

The Amazon VI Property at 515 Westlake Avenue North is one block west of the Block 38 West Site and occupies the majority of the block (Figure 2). The Amazon VI Property totals approximately 1.91 acres of land that has primarily been used for commercial and light industrial purposes since the 1950s and is comprised of King County Parcel Nos. 1983200065 and 1983200075.

A 2,500-gallon heating oil underground storage tank (UST) was removed along with petroleum-contaminated soil in March 2013. The Amazon VI Property was redeveloped in 2013 with a six-story commercial office building with a parking garage.

Historical operations resulted in releases of hazardous substances that caused contamination of soil at the Amazon VI Property, and the Amazon VI Property being listed in Ecology's contaminated sites database as Facility Site ID No. 7811 and Cleanup Site ID No. 12471. On October 16, 2014, the Amazon VI Site received a No Further Action determination from Ecology. Based on a localized release to soil and no documented impacts to groundwater, the Amazon VI Property is not considered a potential source of contamination at or near the Block 38 West Property.

2.4.5 Former American Linen Supply Co – Former American Linen Property

The former American Linen Supply Co. facility is located approximately two blocks northwest of Block 38 West at 700 Dexter Avenue North in Seattle, Washington (King County Parcel No. 224900-0285) and is currently owned by BMR-Dexter LLC (Former American Linen Property). The Former American Linen Property has documented releases of chlorinated volatile organic compounds (CVOCs) and petroleum hydrocarbons to soil and groundwater, with impacts to local groundwater quality in the South Lake Union area. The American Linen CVOC Plume comprises groundwater contaminated with CVOCs emanating from and downgradient of the Former American Linen Property.

Historical operations at the Former American Linen Property included operation of a commercial laundry and dry cleaner businesses from approximately 1946 through the mid-1990s. The Former American Linen Property was redeveloped in 2019 to 2020 with a 14-story commercial office and life science building with three levels of below grade parking. Releases that occurred on the Former American Linen Property during the period of operation contaminated soil and groundwater with CVOCs, including tetrachloroethene (PCE); trichloroethene (TCE); isomers of dichloroethene (DCE), primarily cis-1,2-dichloroethene (cDCE); and vinyl chloride to depths greater than 100 feet below ground surface (bgs).

The area encompassing contaminated soil and groundwater on and off property at 700 Dexter Avenue North, including the American Linen CVOC Plume, is referred to as the American Linen Supply Co. Dexter Avenue Site, listed in Ecology's contaminated sites database as Facility Site ID No. 3573 and Cleanup Site ID No. 12004. The cleanup of the American Linen Supply Co. Dexter Avenue Site (herein referred to as the American Linen Site) is being conducted under Agreed Order No. DE 14302, effective October 24, 2017, between Ecology and BMR-Dexter LLC.

Based on the confirmed presence of the American Linen CVOC Plume extending onto downgradient properties, including the Westlake Avenue North and Mercer Street rights-of-way, the American Linen Site is considered a potential source of groundwater contamination at or near the Block 38 West Property.

2.5 REGULATORY HISTORY

Based on the letter regarding Early Notice of Release of Hazardous Substances and Preliminary Determination of Liability for Release at the Block 38 West Contaminated Site

dated August 13, 2019, from Ecology to City Investors IX (2019 Ecology Letter), regulatory interaction, reporting, and concurrence from all parties involved are required to support the regulatory closure process. City Investors IX executed a PLP Waiver on August 30, 2019 that accepted its status as a potentially liable person subject to a reservation of rights with respect to what is currently referred to as the American Linen CVOC Plume. Ecology listed the Block 38 West Site (which includes the Block 38 West Property) as a contaminated site with Facility Site ID No. 62773 and Cleanup Site ID No. 15008 in August 2019. Ecology and City Investors IX executed the AO for the Block 38 West Site on April 20, 2020. The AO requires City Investors IX to, among other things, prepare a work plan to conduct an RI, conduct an RI and feasibility study, and prepare a draft Cleanup Action Plan for the Block 38 West Site. In addition, and as noted above, the remaining elements of the independent interim action described in the 2019 IAWP at the time the AO was issued were performed under the auspices of the AO.

On December 9, 2019, City Investors IX notified Ecology of a newly discovered release at the Block 38 West Site. The general contractor for the redevelopment, GLY Construction (GLY), notified Farallon on November 22, 2019 regarding the discovery of a black liquid discharging from a side sewer line at the Block 38 West Property while inspecting side sewer utilities in the alley (Figure 3). The side sewer line where the liquid was observed extended west onto the Block 38 West Property³ and was not documented on Seattle Public Utilities maps. The side sewer line was encountered at an approximate elevation of 23 feet NAVD88. Sample results indicated the presence of total petroleum hydrocarbons as gasoline-, diesel-, and oil-range organics (GRO, DRO, and ORO) in the liquid, with ORO identified as the main component. The side sewer line was inspected to the maximum extent practicable. Additionally, several test pits were advanced after building demolition, but no source of the petroleum hydrocarbons encountered in the side sewer line was identified. No further evidence of a release associated with the side sewer line was encountered during the independent interim action.

In February 2020, Ecology was notified through email correspondence that two previously unknown USTs (identified as UST01 and UST02) and an associated product fuel line had been discovered in the northwestern corner of the Block 38 West Property. Email correspondence included a description of the decommissioning and removal of UST01,

³ This side sewer extended onto King County Parcel No. 1983200170 on the southern portion of the Block 38 West Property (500 and 510 Westlake Avenue North).

UST02, and the product fuel line, a summary of soil laboratory analytical results, and UST site assessment. The removal of UST01, UST02, and product fuel line is discussed in further detail in Section 4.6, UST Decommissioning.

A Technical Memorandum was submitted to Ecology on June 15, 2020, describing proposed subsurface investigation activities to support the implementation of the Alley Area Interim Action and remedial investigation for the Block 38 West Site. On August 21, 2020, Ecology met with City Investors IX and Farallon to discuss and approve the proposed scope of work. Subsurface investigation activities in the alley area were completed in September 2020. The scope of work for the supplemental subsurface investigation is discussed in further detail in Section 3.3, Subsurface Investigations.

On February 11, 2021, Ecology provided email approval of the Sampling and Analysis Plan (Farallon 2021b) and approval to proceed with the scope of work described in the Alley IAWP (Farallon 2021a). Implementation of the Alley IAWP is discussed in Section 5, Alley Area Interim Action.

Ecology worked with City Investors IX and provided approvals for portions of the RI scope of work between June 2020 and February 2022. A Technical Memorandum was submitted to Ecology on May 22, 2020, requesting approval for the installation of monitoring wells within the building foundation. On June 18, 2020, City Investors IX requested approval⁴ of a portion of the RI scope of work from Ecology for the installation of four monitoring wells, FMW-150 through FMW-153, screened within the Intermediate Water-Bearing Zone (described in Section 2.6) through the building foundation. Ecology granted approval via email correspondence on June 22, 2020. Installation of these wells is discussed in further detail in Section 3.3, Subsurface Investigations.

On July 20, 2021, City Investors IX requested approval from Ecology to use water resource protection wells (construction dewatering observation wells) OW-1 through OW-5, screened within the Intermediate Water-Bearing Zone (see Section 4.2), for ongoing water level elevation measurements and future compliance groundwater monitoring activities.⁵ City Investors IX also requested approval from Ecology to install proposed monitoring wells in the Shallow and Intermediate Water-Bearing Zones within the alley. In email correspondence on

⁴ Approval of portions of the scope of work presented in the Agency Review Draft Remedial Investigation Work Plan was granted.

⁵ City Investors IX requested that the existing "OW" wells be used to complete remedial investigation activities instead of using other wells that were proposed in the Agency Review Draft Remedial Investigation Work Plan scope of work.

July 27, 2021 and a letter dated September 14, 2021, Ecology approved the use of observation monitoring wells OW-1 through OW-5 as groundwater monitoring wells for the RI once properly converted and developed, and granted the authorization to proceed with the installation of three monitoring wells in the Shallow Water-Bearing Zone and one monitoring well in the Intermediate Water-Bearing Zone (FMW-154 through FMW-157 in the alley; see Section 3.3, Subsurface Investigations for more details).

On November 19, 2021, Ecology approved via email the advancement and sampling of borings FB-18 and FB-19 west of test pit location TP-12, and borings FB-17 and FB-20 west and north of the former UST fuel product line. On February 3, 2022, Ecology approved via email the installation of boring FB-21 north of the alley; see Section 3.3, Subsurface Investigations.

In a letter dated May 3, 2022, Ecology clarified the final scope of work for the RI, including boring and monitoring well locations and the proposed analytes for soil and groundwater samples.

On April 26, 2023, the RI Work Plan was finalized and the remaining remedial investigation activities and groundwater monitoring were planned to occur from May 2023 through February 2024. Ecology issued final approval of the RI Work Plan in a letter dated May 1, 2023.

On June 28 and October 11, 2023, City Investors IX and Ecology participated in Key Project Meetings to review the draft RI data set; review updates to COPCs, media of concern, and screening levels; discuss combining the RI and FFS into a single report; and review the content and organization of the Draft RI/FFS Report in accordance with the AO.

Between November 2023 and January 2024, City Investors IX and Ecology participated in multiple meetings to discuss how to incorporate Ecology's Guidance for Silica Gel Cleanup in Washington State (Ecology 2023) into the RI groundwater data evaluation. Based on meetings with Ecology, background monitoring wells FMW-158 and FMW-159 were selected to support evaluation of background polar organic fractions (see Section 6.5.3 for more detail).

2.6 GEOLOGY AND HYDROGEOLOGY

The Puget Sound region is underlain by Quaternary sediments deposited by a number of glacial episodes. Deposition occurred prior to, during, and following glacial advances and

retreats, creating the existing subsurface conditions. The naturally occurring sediments in the South Lake Union area consist primarily of interlayered and/or sequential deposits of alluvial clays, silts, and sands that typically are situated over deposits of glacial till that consist of silty sand to sandy silt with gravel. Outwash sediments consisting of sands, silts, clays, and gravels were deposited by rivers, streams, and post-glacial lakes during glacial advances and recessions. Advance outwash sediments have been largely over-consolidated by the overriding ice sheets. These advance outwash sediments are overlain by a till-like layer and/or recessional outwash sediments that are less consolidated (Galster and Laprade 1991).

The Block 38 West Property is approximately 600 feet south of Lake Union. According to a U.S. Geological Survey (1909) Seattle Special quadrangle map, the original shoreline of Lake Union extended farther south than its current location, to as far as the current location of Mercer Street. In the late 1800s and the early 1900s, the southern end of Lake Union was filled with sawdust and wood waste generated by lumber mill operations and with other fill materials. The historical use of Block 38 as a lumber mill and for lumber storage resulted in deposition of wood waste across Block 38. Field observations made during subsurface investigations conducted by Farallon and others confirmed a wood debris layer was present beneath the Block 38 West Property prior to the redevelopment excavation.

Cross sections depicting the general lithology and hydrogeology of the Block 38 West Property are presented on Figures 17 through 21, which are based on field observations made during the subsurface investigations conducted by Farallon and others and documented in boring logs (Appendix A). The locations of the cross sections are shown on Figure 3 along with sampling locations from the subsurface investigations. According to Farallon observations made during subsurface investigations conducted on adjacent properties and at the Block 38 West Property and a review of boring logs from geotechnical drilling (GeoEngineers, Inc. [GeoEngineers] 2018), three general stratigraphic units were present at the Block 38 West Property and immediate vicinity prior to excavation:

- The shallowest unit consists of fill material with recent deposits, including lacustrine sediments, and comprises silt, sandy silt, and sand with variable gravel content. In some areas, this shallowest unit includes wood waste, peat, and organic silt. The shallowest unit was present across the Block 38 West Property prior to remedial and mass excavations conducted as part of redevelopment activities.
- The fill and recent deposits are underlain by a dense stratum of heterogeneous glacially consolidated deposits comprising dense sand and variable silt and gravel

content and very stiff to hard silt with variable sand and gravel content. According to GeoEngineers (2018), the recent glacially consolidated soil contact typically slopes down to the north toward Lake Union. Prior to remedial and mass excavations conducted as part of redevelopment activities at the Block 38 West Property, the contact occurred between approximate elevations of 11 to -6 feet NAVD88.

 A poorly graded dense advance glacial outwash sand with minor silt is encountered below the intermediate unit of glacially consolidated soil at elevations ranging from -30 to -40 feet NAVD88. The sand and gravel layer that was observed in the boring for monitoring well FMW-130 at an elevation of -22 feet NAVD88 is likely the transition zone between the intermediate unit of glacially consolidated soil and the poorly graded dense advance glacial outwash sand. In some areas where the intermediate glacially consolidated unit is thin or absent, the top of the outwash sand is encountered at shallower depths. The glacial outwash has been noted to be underlain by very dense fine-grained soil during drilling of borings several hundred feet northwest of the Block 38 West Property.

Three general water-bearing zones are present at the Block 38 West Property:

- The uppermost water-bearing zone encountered in the fill and underlying recent deposits is referred to as the Shallow Water-Bearing Zone. The Shallow Water-Bearing Zone at the Block 38 West Property varies in thickness from approximately 5 to 15 feet and was encountered at depths ranging from approximately 5 to 8 feet bgs. Monitoring wells formerly located at the Block 38 West Property were screened within the Shallow Water-Bearing Zone, with the exception of monitoring wells FMW-130, FMW-136, FMW-144 through FMW-147, and FMW-149, which were screened in glacially consolidated deposits comprising the Intermediate Water-Bearing Zone described below, and monitoring wells FMW-137 and FMW-138, which are screened in the outwash sand deposits comprising the Deep Outwash Aquifer that is also described below.
- A deeper water-bearing zone below the Shallow Water-Bearing Zone, referred to as the Intermediate Water-Bearing Zone, is present in the glacially consolidated soil at the Block 38 West Property encountered at approximate elevations of 5 to 10 feet NAVD88 (at depths of approximately 15 to 20 feet bgs). The Intermediate Water-Bearing Zone is continuous across the Block 38 West Property. Based on previous subsurface investigations, the Shallow Water-Bearing Zone at the Block 38 West

Property is in direct communication with the Intermediate Water-Bearing Zone (i.e., there is no aquitard separating these groundwater-bearing zones).

The third water-bearing zone is referred to as the Deep Outwash Aquifer, the top of which is present at approximate elevations of -30 and -40 feet NAVD88 (approximately 55 to 65 feet bgs) in dense advance outwash sand deposits consisting of sand with minor silt. The Deep Outwash Aquifer is continuous across the Block 38 West Property. The thickness of the Deep Outwash Aquifer at the Block 38 West Site is not known. Based on previous subsurface investigations, the Intermediate Water-Bearing Zone at the Block 38 West Property is in direct communication with the Deep Outwash Aquifer (i.e., there is no aquitard separating these groundwater-bearing zones).

2.7 VULNERABLE POPULATIONS AND OVERBURDENED COMMUNITIES

Farallon conducted an evaluation of potential impacts to likely vulnerable populations and overburdened communities in the vicinity of the Block 38 West Site in accordance with *Implementation Memorandum No. 25: Identifying Likely Vulnerable Populations and Overburdened Communities under the Cleanup Regulations* dated January 2024, prepared by Ecology (2024) (Implementation Memorandum No. 25). The purpose of this evaluation is to identify and reduce the impact of environmental and health disparities in Washington State and improve the health of Washington State residents, and to support Ecology's determinations regarding site prioritization, cleanup decisions, and site hazard rankings. Farallon has performed the assessment required by MTCA and Implementation Memorandum No. 25 and, as more fully discussed below, has determined that vulnerable populations and overburdened communities in the vicinity of the Block 38 West Site are not more susceptible for exposure to contamination at this Site compared to the general population, and that interim actions completed to date have mitigated potential exposure to environmental harms.

Implementation Memorandum No. 25 states that the potentially exposed population includes a likely vulnerable population or overburdened community if the population meets any of the following criteria:

• The potentially exposed population is located in a census tract that ranks a 9 or 10 on the Environmental Health Disparities Index from the Washington State Department of Health's Environmental Health Disparities Map (EHD Map);

- The potentially exposed population is located in a census tract that is at or above the 80th Washington State percentile of the Demographic Index from the U.S. Environmental Protection Agency's (EPA) Environmental Justice Screening and Mapping Tool (EJ Screening Tool); or
- The potentially exposed population is located in a census tract that is at or above the 80th Washington State percentile of the Supplemental Demographic Index from the EJ Screening Tool.

For the purposes of the RI, City Investors IX must assess all populations threatened by the Block 38 West Site. This includes all populations residing either on-Site or off-Site who are reasonably likely to be exposed or potentially exposed to hazardous substances based on their land and resource uses at the Site (WAC 173-340-350(6)(h)(i)).

Farallon used the EPA EJ Screening Tool⁶ and the EHD Map⁷ to evaluate whether vulnerable populations are present in the vicinity of the Block 38 West Site.

The EJ Screening Tool considers 13 environmental justice indexes and supplemental indexes reflecting 13 environmental indicators. According to the EPA guidance regarding use of the EJ Screening Tool, areas with index scores exceeding the 80th percentile nationally should be considered as potential candidates for further review, including considering other factors and sources of information such as health-based information, local knowledge, proximity and exposure to environmental hazards, susceptible populations, unique exposure pathways, or other environmental and socioeconomic information. Farallon used the EJ Screening Tool to evaluate the primary census sub-tract (53033007303) that comprises the Block 38 West Site and surrounding city blocks to the north, south, and east, and the secondary census sub-tract (53033007203) that comprises city blocks to the west. These two census sub-tracts comprise portions of the primary and secondary census tracts evaluated by the EHD Map and represent a total population of approximately 5,620 residents. Results from the EJ Screening Tool for communities in the vicinity of the Block 38 West Site indicate that environmental justice index scores met or exceeded the 80th percentile nationally for 3 of the 13 indexes: diesel particulate matter; air toxics cancer risk; and air toxics respiratory hazard index. Environmental justice indexes exceeded the statewide 80th percentile for 8 of the 13 indexes, including diesel particulate matter, air

⁶ EPA. 2024. EJ Screen Mapping Tool. <<u>https://ejscreen.epa.gov/mapper/</u>>. (May 23, 2024).

⁷ Washington State Department of Health. 2024. Washington Environmental Health Disparities Map. <<u>https://fortress.wa.gov/doh/wtnibl/WTNIBL/</u>>. (May 23, 2024).

toxics cancer risk, air toxics respiratory hazard index, toxic releases to air, traffic proximity, proximity to Superfund sites, proximity to hazardous waste facilities, and proximity to UST facilities. The EJ Screening Tool community reports for the primary and secondary sub-tracts comprising the area in the vicinity of the Block 38 West Site are included in Appendix B.

The EJ Screening Tool also includes seven socioeconomic indicators for factors including demographics, income, employment, language barriers, education, percentage of population under age 5, and percentage of population over age 64. These indicators provide additional information on whether a community may be more vulnerable to environmental harms. These socioeconomic indicators are scored in the EJ Screening tool as a Demographic Index and a Supplemental Demographic Index, and index scores exceeding the 80th Washington State percentile for each index should be considered for further review. According to the EJ Screen Community Reports the Demographic Index score is 66 for both the primary and secondary sub-tracts, and the Supplemental Demographic Index scores are 40 and 50 for the primary and secondary sub-tracts, respectively. These results indicate that, according to the EJ Screening Tool, the community in the vicinity of the Block 38 West Site is not more susceptible to environmental harms than the general population.

The EHD Map is an interactive mapping tool that compares communities across the state for environmental health disparities. It shows pollution assessments such as diesel emissions and ozone, proximity to hazardous waste sites, and measures like poverty and cardiovascular disease. The EHD Map was used to evaluate two census tracts comprising the Block 38 West Site and surrounding area (Appendix B). The primary census tract (53033007300) comprises the Block 38 West Site and city blocks to the north, south, and east, and includes the primary sub-tract (53033007303) evaluated using the EJ Screening Tool. The secondary census tract (53033007200) comprises city blocks to the west and includes the secondary sub-tract (53033007203) evaluated using the EJ Screening Tool. Results from the EHD Map indicate that the primary and secondary census tracts comprising the Block 38 West Site and surrounding area are ranked 10 out of 10 and 8 out of 10, respectively, for potential environmental health disparities, evaluated based on environmental exposures, environmental effects, socioeconomic factors, and sensitive populations. However, the EHD Map indicates that these same census tracts score 5 out of 10 and 3 out of 10 for environmental risk due to socioeconomic factors, indicating that communities in the vicinity of the Block 38 West Site generally are at low to moderate risk of environmental harms due to factors such as education, income, housing costs, unemployment, and transportation expenses. The elevated scores for these census tracts

are primarily attributed to the potential for environmental exposures as a result of proximity to diesel exhaust emissions, proximity to heavy traffic roadways, and proximity to hazardous waste facilities and cleanup sites.

Based on the above analysis, the Block 38 West Site appears likely to be in proximity to vulnerable populations and overburdened communities. Based on the index scores determined by the EJ Screening Tool and EHD Map, the likely presence of vulnerable populations and overburdened communities in the vicinity of the Block 38 West Site is primarily attributed to the potential for environmental exposures, and less attributed to socioeconomic or demographic factors. Significantly, the highest index scores for potentially exposed populations proximate to the Block 38 West Site are attributable to emissions from heavy vehicle traffic due to the location of the Block 38 West Site in a highly developed urban area proximate to major roadways. Based on the results from the EJ Screening Tool and EHD Map evaluation, the nature and extent of contamination at the Block 38 West Site, interim cleanup actions, and the completed redevelopment, vulnerable populations and overburdened communities are not more susceptible to exposure to contaminated media associated with the Block 38 West Site than the general population. The land resource use for vulnerable populations and overburdened communities in the vicinity of the Block 38 West Site is primarily commercial and/or residential with no current or future planned use of groundwater, which is consistent with the land resource use for the general population.

Although the potentially impacted population in the vicinity of Block 38 West Site contamination includes a likely vulnerable population or overburdened community, redevelopment and interim cleanup activities at the Block 38 West Site have protected human health and the environment and eliminated the potential exposure of hazardous substances attributed to the Block 38 West Site to all human receptors, including vulnerable populations and overburdened communities. This is further discussed in Section 8.3, Potential Receptors and Exposure Pathways.

2.8 CLIMATE CHANGE

In accordance with WAC 173-340-350(6)(f), Farallon evaluated current and projected local and regional climatological characteristics to determine whether these characteristics could affect the migration of hazardous substances or the resilience of cleanup action alternatives for the Block 38 West Site. According to Ecology's *Sustainable Remediation: Climate Change Resiliency and Green Remediation* dated November 2017, revised January 2023 (Ecology 2017) (Ecology Climate Guidance), sea level rise, flooding, extreme precipitation, wildfires,

landslides and erosion, and drought are the climate-related impacts that generally pose the highest potential risk for upland cleanup sites.

Based on this evaluation and the location of the Block 38 West Site in a highly developed area in Seattle, current and projected local and regional climatological characteristics are not anticipated to affect the migration of hazardous substances or the resilience of cleanup action alternatives at the Block 38 West Site. A summary of this evaluation is presented in the following sections.

2.8.1 Sea Level Rise

The Block 38 West Site is located at an elevation of approximately 31 feet NAVD88, proximate to the southern shore of Lake Union. According to the Ecology Climate Guidance, high projections estimate up to 4 feet of sea level rise by the year 2100. The water level of Lake Union is controlled at an elevation of approximately 20 to 22 feet above sea level, and the high projections for sea level rise would remain less than the height of the dam that regulates the water level of Lake Union. Sea level rise likely would not affect the surface elevation of Lake Union, and as a result is not likely to affect the migration of hazardous substances or the resilience of cleanup action alternatives at the Block 38 West Site

2.8.2 Flooding

Farallon reviewed Federal Emergency Management Agency (FEMA) flood maps for the area in the vicinity of the Block 38 West Site, which indicated that the Block 38 West Site is in an area of minimal flood hazard. As described above, sea level rise is not anticipated to affect the Block 38 West Site, and inundation due to sea level rise is not a concern. In addition, the water level of Lake Union is maintained at a consistent elevation by a dam and spillway, and is unlikely to cause flooding in the surrounding area. The completed redevelopment of the Block 38 West Site consists of a building that covers almost the entire ground surface, and incorporates a stormwater drainage system that prevents surface water from accumulating. Based on these conditions, flooding is not likely to affect the migration of hazardous substances or the resilience of cleanup action alternatives at the Block 38 West Site.

2.8.3 Wildfires

The Ecology Climate Guidance indicates that increased risk of wildfires is a potential climaterelated hazard in areas proximate to fuel sources such as forests or grasslands. Due to the location of the Block 38 West Site in a highly developed area of Seattle, fuel sources for wildfires are not present, and risk of wildfires is unlikely.

2.8.4 Landslides and Erosion

The Block 38 West Property is located in a relatively flat and highly developed area of Seattle, with minimal exposed ground surface that could create a landslide or erosion hazard. Due to local topography and extensive development covering much of the ground surface in the vicinity of the Block 38 Site, the risk of landslides and erosion is extremely low.

2.8.5 Drought

The Ecology Climate Guidance indicates that cleanup sites vulnerable to drought include groundwater sites vulnerable to a lowered water table, sediment sites in drought-prone waterbodies, and mines and landfills reliant on rain to maintain vegetative cover for slope stability. Due to proximity to Lake Union, groundwater elevations beneath the Block 38 West Property are not significantly impacted by precipitation. The remaining drought concerns are not applicable to the Block 38 West Site. Based on the conditions of the Block 38 West Property, drought is not considered to be a potential climate-related impact for the Block 38 West Site.

3.0 SUMMARY OF PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIONS

Subsurface investigations and/or remedial actions have been conducted at the Block 38 West Site since 1994. This section summarizes the activities and results from previous investigations and remedial actions conducted at the Block 38 West Site. Results from the subsurface investigations conducted at the Block 38 West Site are summarized below. The objectives of the subsurface investigations were to obtain lithologic, hydrogeologic, and analytical data to characterize environmental conditions.

Boring locations associated with these investigations are shown on Figure 3. Soil and groundwater data are summarized on Figures 4 through 21, presented in Tables 1 through 11, and discussed below. Copies of boring logs are provided in Appendix A and laboratory analytical reports are provided in Appendix C.

Results from subsurface investigations and remedial actions conducted on adjacent properties that may impact the Block 38 West Site are summarized in Section 3.4.

3.1 PHASE II SOIL INVESTIGATION - DAMES & MOORE, 1994

The 1999 EA Update referenced previous work performed, including a Phase II soil investigation performed by Dames & Moore on the Block 38 West Property in 1994. The 1994 soil investigation reportedly was performed in the area where a 1,500-gallon heating oil UST was removed in 1989 from the sidewalk north-adjacent to Republican Street, along the southern portion of the Block 38 West Property (Figure 2). The results from the 1994 soil investigation indicated that no petroleum-affected soil was present beneath the former heating oil UST; groundwater reportedly was not encountered. Information regarding the sample locations during that investigation was not provided in the documents available for review.

3.2 GEOTECHNICAL INVESTIGATION – GEOENGINEERS, 2018

GeoEngineers performed geotechnical engineering services at the Block 38 West Property in August 2018. The results from the geotechnical investigation were summarized in the draft *Geotechnical Engineering Services, Block 38, Seattle, Washington* dated October 17, 2018, prepared by GeoEngineers (2018) (2018 Geotechnical Report).

The 2018 Geotechnical Report summarized the subsurface conditions that were observed during the advancement of borings FB-01 through FB-06 and borings for monitoring wells FMW-132 through FMW-136 (Figure 3; further discussed in Section 3.3). The borings were

completed to depths ranging from 10.0 to 51.5 feet bgs. Soil samples collected during the advancement of the borings were evaluated for moisture content, fines content, organic content, and Atterberg limits. Based on the evaluation of the geotechnical data collected for the Block 38 West Property, the following soil conditions were identified by GeoEngineers:

- Fill: Fill generally consisted of very loose to medium dense silty sand with variable gravel, rubble (brick) and wood fragments, and soft to medium stiff silt and sandy silt. Wood waste was present in the lower portion of the fill soil from approximate elevation 24 to 1 feet NAVD88. The thickness of fill at the Block 38 West Property was observed to be up to approximately 17 feet.
- **Peat/Organic Silt Layer:** A layer of organic material was encountered below the fill and generally consisted of very soft to stiff peat, organic silt, and organic clay. The peat/organic silt layer was observed to be up to 9 feet thick and generally did not extend below an approximate elevation of 5 to 10 feet NAVD88.
- **Recent Deposits:** Recent deposits were encountered below the peat/organic silt layer and generally consisted of medium dense sand with variable silt and gravel content and medium stiff to very stiff silt with variable sand content. The thickness of the recent deposits was observed to be up to approximately 18 feet.
- Glacially Consolidated Soil: Glacially consolidated soil was encountered below the recent deposits and generally consisted of dense to very dense sand with variable silt and gravel content and very stiff to hard silt with variable sand and gravel content. Glacially consolidated soil represents competent foundation-bearing soil. The contact to glacially consolidated soil typically slopes down to the north toward Lake Union. The contact elevation to glacially consolidated soil ranges from approximate elevations of -6 to -11 feet NAVD88.

According to the 2018 Geotechnical Report, GeoEngineers estimated the regional water table at an elevation of 20 feet NAVD88 based on observed groundwater conditions in monitoring wells installed on adjacent properties and GeoEngineers' experience in the South Lake Union area. GeoEngineers further stated that the regional water table in the vicinity of the Block 38 West Property is influenced by recharge from Queen Anne Hill and Capitol Hill, infiltration of surface water, temporary dewatering activities, and changes in the water level in Lake Union. The 2018 Geotechnical Report also states that the 72-inch-diameter King County sewer main line in the Republican Street right-of-way and its backfill (Republican Street Drain), south of the Block 38 West Property, influence groundwater levels locally through leakage into the drain (Figures 19 and 20).

3.3 SUBSURFACE INVESTIGATIONS

Farallon conducted various subsurface investigations at and adjacent to the Block 38 West Site between 2014 and 2022. The objectives of the subsurface investigations were to obtain lithologic, hydrogeologic, and analytical data to characterize environmental conditions at the Block 38 West Site, and, in part, to facilitate implementation of the independent interim action conducted during the planned redevelopment project. These activities are summarized below.

• 2014 Subsurface Investigation

The 2014 subsurface investigation included the installation of a single boring completed as monitoring well FMW-130 in the Intermediate Water-Bearing Zone (Figure 3). Monitoring well FMW-130 was installed in July 2014 using a sonic drill rig operated by Cascade Drilling, L.P. of Woodinville, Washington. Monitoring well FMW-130 was installed to a depth of 60 feet bgs. A reconnaissance groundwater sample was collected from the Shallow Water-Bearing Zone during the advancement of the boring for monitoring well FMW-130. A temporary well screen was set at a depth of 15 to 20 feet bgs (elevation 6.9 to -3.1 feet NAVD88) prior to collection of the reconnaissance groundwater sample. The permanent well screen for monitoring well FMW-130 was set at a depth of 45 to 55 feet bgs (elevation -22.8 to -32.8 feet NAVD88). Following installation of monitoring well FMW-130, development activities were conducted that included purging of approximately 255 gallons of water from the monitoring well casing. Select soil, reconnaissance groundwater, and groundwater samples were submitted for laboratory analysis for one or more of the following: GRO, DRO, and ORO; benzene, toluene, ethylbenzene, and xylenes (BTEX); PAHs and other semivolatile organic compounds (SVOCs); and volatile organic compounds (VOCs), including CVOCs. Additional information regarding this subsurface investigation is provided in the 2019 IAWP (Farallon 2019b).

• 2017 Groundwater Monitoring

Monitoring well FMW-130 was sampled on July 3, 2017 using EPA low-flow groundwater sampling procedures. The groundwater sample analytical methods are described in the 2017 Groundwater Monitoring event summarized in the 2019 IAWP (Farallon 2019b) and the sample was analyzed for the following constituents: GRO; BTEX; and CVOCs.

• 2018 Subsurface Investigations and Groundwater Monitoring

Subsurface investigation activities conducted in 2018 included advancement of six borings (FB-01 through FB-06); collection of reconnaissance groundwater samples from borings FB-01, FB-03, and FB-05; and installation and development of five monitoring wells (FMW-132 through FMW-136) in August 2018; installation of monitoring wells FMW-137 and FMW-138 in November 2018; and groundwater monitoring activities in August and December 2018. The methodology for the 2018 subsurface investigation of the Shallow and Intermediate Water-Bearing Zones is summarized in the 2019 IAWP (Farallon 2019b).

In August 2018, borings FB-01 through FB-06 and monitoring wells FMW-132 through FMW-135 were installed to assess soil and groundwater conditions in the Shallow Water-Bearing Zone, and FMW-136 was installed to assess soil and groundwater conditions in the Intermediate Water-Bearing Zone (Figure 3). The 11 borings were drilled to depths ranging from 10 to 51.5 feet bgs. Monitoring wells FMW-132 through FMW-135 were screened in the Shallow Water-Bearing Zone at depths ranging from approximately 5 to 17 feet bgs (elevations between 20.7 and 8.4 feet NAVD88), and monitoring well FMW-136 was screened in the Intermediate Water-Bearing Zone at a depth of 30 to 40 feet bgs (elevation of -5 to -15 feet NAVD88).

Select soil samples were analyzed for the following constituents: GRO; DRO and ORO; BTEX; CVOCs; PAHs and other SVOCs; and arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver.

In November 2018, Deep Outwash Aquifer monitoring wells FMW-137 and FMW-138 were installed proximate to the northeastern and southeastern corners of the Block 38 West Property to evaluate groundwater quality in the Deep Outwash Aquifer (Figure 3). Monitoring well FMW-137 was screened at a depth of 72 to 85 feet bgs (elevation of -42 to -55 feet NAVD88) and monitoring well FMW-138 was screened at a depth of 90 to 100 feet bgs (elevation of -50 to -60 feet NAVD88). The methodology for the 2018 subsurface investigation and groundwater monitoring of the Deep Outwash Aquifer is summarized in the 2019 IAWP (Farallon 2019b).

Monitoring wells FMW-130 and FMW-132 through FMW-136 were sampled on August 30 and December 28, 2018, and monitoring wells FMW-137 and FMW-138 were sampled on November 20 and December 28, 2018. All of the wells were

sampled using EPA low-flow groundwater sampling procedures. Reconnaissance groundwater samples and the groundwater samples collected from monitoring wells FMW-130 and FMW-132 through FMW-136 were analyzed for GRO, DRO, ORO, BTEX, PAHs and other SVOCs, and CVOCs; the samples from monitoring wells FMW-137 and FMW-138 were only analyzed for CVOCs.

• 2019 Subsurface Investigations and Groundwater Monitoring

Supplemental subsurface investigation activities conducted in 2019 included advancement of 10 utility potholes (NGas-1, NGas-2, PH-1, PH-2, PH-4, PH-11, PH-11A, PH-12, PH-13, and PH-13A) in January 2019; three borings (FB-07 through FB-09) and installation of five monitoring wells (FMW-144 through FMW-147 and FMW-149) in December 2019; and groundwater monitoring activities (Figure 3). Monitoring well FMW-148 was damaged during installation and was not developed or sampled prior to being properly decommissioned in accordance with WAC 173-160, *Minimum Standards for Construction and Maintenance of Wells*. The methodologies for the 2019 subsurface investigations and groundwater monitoring are summarized in the 2019 IAWP (Farallon 2019b) and the Subsurface Investigation Results letter report for the Block 38 West Property dated January 22, 2020 (Farallon 2020b) (2020 Subsurface Investigation Results letter report).

Select soil samples collected during the January 2019 subsurface investigation were submitted for analysis from utility potholes PH-4, PH-11A, PH-12, and PH-13 for one or more of the following based on field observations (visual and olfactory evidence of contamination, and volatile organic vapor concentrations as measured using a photoionization detector): GRO; DRO and ORO; BTEX; and PAHs, including cPAHs and naphthalene. Select soil samples (FB-07 through FB-09, FMW-144 through FMW-149) and groundwater samples (FMW-144 through FMW-147 and FMW-149) from the December 2019 subsurface investigation were submitted for analysis for one or more of the following constituents: GRO; DRO and ORO; BTEX; CVOCs; and PAHs and other SVOCs.

Groundwater monitoring events were conducted in March, May, July, October, November, and December 2019. Groundwater monitoring events were conducted at monitoring wells FMW-130 and FMW-132 through FMW-136 in March 2019, at monitoring wells FMW-137 and FMW-138 in May and July 2019, and at monitoring wells FMW-144 through FMW-147 and FMW-149 in December 2019. Groundwater

monitoring events were conducted at monitoring wells FMW-137 and FMW-138 in October and November 2019. Groundwater sampling was conducted using EPA lowflow groundwater sampling procedures. Samples were analyzed for one or more of the following constituents: GRO; DRO and ORO; BTEX; CVOCs; and cPAHs and other SVOCs.

• 2019 to 2020 Test Pit Investigation

Between October 2019 and February 2020, test pits TP-1 through TP-18 were advanced at the Block 38 West Property to support and update the existing conceptual site model, support soil profiles for disposal, and collect performance or confirmation soil samples during the independent interim action (Figure 3). The test pits were advanced by Hos Bros. of Woodinville, Washington (Hos Bros.) using the bucket of an excavator. Soil samples were collected from test pits TP-2, TP-3, TP-7, and TP-10 through TP-18 based on visual and olfactory field observations and submitted or laboratory analysis for one or more of the following constituents: GRO; DRO and ORO; VOCs, including CVOCs and/or BTEX; PAHs, including cPAHs and total naphthalenes; total lead; 1,2-dibromoethane and 1,2-dichloroethane; polychlorinated biphenyls (PCBs); and methyl tertiary-butyl ether (MTBE). The methodology and results for the test pit investigation are summarized in the 2020 Subsurface Investigation Results letter report (Farallon 2020b) and in general accordance with the Agency Review Draft Remedial Investigation Work Plan dated July 20, 2020 (Draft RIWP; Farallon 2020e).

• 2020 and 2021 Subsurface Investigations and Monitoring Well Installation

Between June and July 2020, four new monitoring wells, FMW-150 through FMW-153, were installed at the Block 38 West Property (Figure 3) in general accordance with the scope of work presented in Farallon's technical memorandum regarding Monitoring Well Installation, Block 38 West Property dated May 22, 2020 (Farallon 2020c) and related discussions with Ecology. The monitoring wells were installed through the basement slab of the P4 parking garage level concurrent with the redevelopment of the Block 38 West Property. Monitoring wells FMW-150 through FMW-153 were screened in the Intermediate Water-Bearing Zone at depths of approximately 2 to 7 feet below the P4 parking garage slab (approximate elevations between -8.5 and -14.3 feet NAVD88). The monitoring well casings for FMW-150 through FMW-153 were extended up to the P1 parking garage level, above the preredevelopment static water elevation of the Intermediate Water-Bearing Zone. Soil

samples were not retained during the well installation and no groundwater was present at the time of installation to allow for well development. The monitoring wells were developed on February 21 and 24, 2022 prior to initiating compliance groundwater monitoring.

On September 12 and 13, 2020, seven borings (FB-10 through FB-16) were advanced within the alley east of the Block 38 West Property in preparation for the Alley Area Interim Action. The borings were advanced in general accordance with the scope of work presented in Farallon's technical memorandum regarding Supplemental Subsurface Investigation and Foundation Elements, Block 38 West Property dated June 15, 2020 (Farallon 2020d) and related discussions with Ecology. All of the borings were advanced to an approximate depth of 15 feet bgs, except for FB-16, which was advanced to an approximate depth of 20 feet bgs, corresponding to elevations ranging from 9.9 to 7.8 feet NAVD88. Soil samples were collected from various depths corresponding to elevations ranging between 15 and 22.5 feet NAVD88 for laboratory analysis for one or more of the following: GRO; DRO and ORO; BTEX; naphthalenes; cPAHs; and metals (i.e., arsenic, cadmium, chromium, mercury, and lead). Groundwater was not encountered and therefore groundwater samples were not collected. The methodology and results for the alley area subsurface investigation are summarized in the Final Interim Action Report, Alley Area of Block 38 West Site, between Republican Steet and Mercer Street, 500 through 536 Westlake Avenue North, Seattle, Washington dated January 5, 2024, prepared by Farallon (Farallon 2024).

On November 24, 2021, borings FB-18 and FB-19 were advanced west of former soil sample location TP-12 along the western sidewalk at the Block 38 West Property (Figure 3) in general accordance with the Draft RIWP (Farallon 2020e) and related discussions with Ecology. Borings FB-18 and FB-19 were advanced to a depth of 25 feet bgs (elevation 10.0 feet NAVD88). Select soil samples from borings FB-18 and FB-19 were submitted for analysis for cPAHs.

• 2022 Subsurface Investigation and Monitoring Well Installation

On February 5 and 6, 2022, Shallow Water-Bearing Zone monitoring wells FMW-154 through FMW-156 and Intermediate Water-Bearing Zone monitoring well FMW-157 were installed and developed in the alley east of and adjacent to the Block 38 West Property. In addition to the monitoring well installation, boring FB-20 was advanced north of mass excavation grid N1 and boring FB-21 was advanced north of the alley

(Figure 3). These locations were installed in general accordance with the Draft RIWP (Farallon 2020e) and related discussions with Ecology. Monitoring wells FMW-154 through FMW-157 were screened at the following depths:

- FMW-154: 10 to 15 feet bgs (elevation 12.8 to 7.8 feet NAVD88);
- FMW-155: 10 to 15 feet bgs (elevation 13.9 to 8.9 feet NAVD88);
- $\circ~$ FMW-156: 15 to 20 feet bgs (elevation 10.7 to 5.7 feet NAVD88); and
- FMW-157: 30 to 40 feet bgs (elevation -4.1 to -14.1 feet NAVD88).

Borings FB-20 and FB-21 were advanced to depths of 25 and 10 feet bgs (elevations 21.0 and 7.0 feet NAVD88), respectively.

Select soil samples from borings FB-20 and/or FB-21 were submitted for analysis for DRO, ORO, and/or cPAHs. Groundwater samples were not collected from monitoring wells FMW-154 through FMW-157.

The results from these investigations confirmed the presence of GRO, DRO, ORO, BTEX, and PAHs (including cPAHs) in soil at the Block 38 West Site, primarily within the upper 15 feet of fill material. Detected concentrations of ORO, total naphthalenes, and cPAHs appeared to be the most prominent throughout the Block 38 West Site, with maximum concentrations of ORO at 9,000 milligrams per kilogram (mg/kg), total naphthalenes at 14.3 mg/kg, and toxic equivalent concentrations of cPAHs at 21 mg/kg. Other compounds were detected in soil, but at a lower frequency and at relatively low concentrations. The lateral distribution of concentrations is illustrated on Figures 4 through 10 and vertical distribution is illustrated on Figures 17 through 21.

Groundwater level measurements and corresponding elevations from the monitoring events are presented in Table 6, and interpreted groundwater elevation contours and flow direction in the Shallow Water-Bearing Zone, Intermediate Water-Bearing Zone, and Deep Outwash Aquifer are shown on Figures 11A through 11C. These investigations also confirmed detectable petroleum hydrocarbons in groundwater within the Shallow and Intermediate Water-Bearing Zones beneath the Block 38 West Site. The lateral distribution of detected compounds is illustrated on Figures 12 through 16 and vertical distribution is illustrated on Figures 17 through 21.

3.4 SUPPORTING DATA FROM ADJACENT PROPERTY INVESTIGATIONS

The properties discussed in more detail below have documented releases and remedial actions that abut or are within 100 feet of the Block 38 West Site.

Boring locations associated with these investigations are shown on Figure 3. Soil and groundwater data are summarized on Figures 4 through 21, presented in Tables 1 through 11, and discussed below.

3.4.1 North - Block 37 Property

Historical operations on the Block 37 Property resulted in the release of hazardous substances to soil and groundwater beneath the Block 37 Property, adjacent rights-of-way, and some adjacent properties. The Westlake 76 Station facility was present on the southwestern portion of the Block 37 Property (Figure 2). The Westlake 76 Station facility was constructed in 1965 and comprised four 10,000-gallon fuel USTs, a waste oil UST, a heating oil UST, four hydraulic hoists, two pump islands, product dispensers, and an associated station building. The USTs were permanently decommissioned and removed from the Block 37 Property when the Westlake 76 Station facility was demolished in September 2008 (Stantec 2008).

A release of approximately 80,000 gallons of premium leaded gasoline from the Westlake 76 Station facility was reported in May 1980. A release of approximately 600 gallons of gasoline was reported from a product line that was broken by a contractor during the removal of waste oil and heating oil USTs from the Westlake 76 Station facility in May 2001.

Releases from the Westlake 76 Station facility have impacted soil and groundwater on the southern portion of the Block 37 Property, adjacent rights-of-way, and adjacent properties (ATC 2018) (Appendix D). Based on subsurface investigations completed, GRO, benzene, ethylbenzene, total xylenes, and/or total naphthalenes were detected at concentrations exceeding MTCA screening levels in soil samples collected from the borings advanced for monitoring wells MW-71 through MW-73 at elevations ranging from 20.4 to 10.4 feet NAVD88 in 2005 (Figures 4 through 9; Tables 1 and 2). Based on subsurface investigations, GRO, ORO, total DRO+ORO, benzene, total naphthalenes, and/or MTBE were detected at concentrations exceeding MTCA Method A and/or Method B screening levels in groundwater samples collected from monitoring wells MW-71 through MW-173 from 2005 to 2010 (Figures 12 through 16; Tables 7 through 9). Impacts to soil and groundwater from the Westlake 76 Station facility

were documented under and south of Mercer Street adjacent to the north and northwest Block 38 West Property boundary as early as 1991, with groundwater impacts documented through 2010 (ATC 2018).

Based on the results of previous investigations and remedial actions conducted by others (ATC 2018), the Block 37 Site COPCs for soil and groundwater include GRO; BTEX; and lead. However, in an opinion letter dated August 21, 2018, Ecology (2018) identified the following COPCs for the Westlake 76 Station Site:

- GRO, DRO, ORO, BTEX, naphthalene, cPAHs, and lead in soil; and
- GRO, DRO, ORO, BTEX, MTBE, naphthalene, and lead in groundwater.

Ecology (2018) determined that further action was necessary to evaluate COPCs in soil in the rights-of-way and that additional soil and groundwater data were necessary to define the full horizontal and vertical extent of contamination.

3.4.2 East - Block 38 East Property

Historical operations on the Block 38 East Property resulted in the release of hazardous substances to soil and groundwater beneath the Block 38 East Property, adjacent rights-of-way, and adjacent properties (Figure 2). Documented releases are associated with the former Jenks Service Station facility (Lot 1) and a former fuel yard that consisted of coal storage and distribution (Lots 2 through 5), where the Interurban Exchange 2 Building is currently located. A reported release from a former heating oil UST (Lot 6) also occurred at the Rosen Building (Lots 6 and 7). Figure 2 shows the location of historical features on the Block 38 East Property and lot configuration. A summary of environmental investigations and remedial actions completed (GeoEngineers 1999, 2008) follows.

Due to the significant amount of data associated with the Rosen Property Site, only select analytical results for soil samples collected from the western sidewall of the remedial excavation that occurred on Lots 1 through 5 (i.e., adjacent to the alley) are summarized on Figures 4 through 10, presented in Tables 1 through 3, and discussed below.

3.4.2.1 Block 38 East Property – Lots 1 through 5

Releases of petroleum hydrocarbons, metals (lead and cadmium), and PAHs, including naphthalenes and cPAHs, were confirmed prior to development and construction of the Interurban Exchange 2 Building. Farallon understands that an interim action was conducted in conjunction with redevelopment of the northern and central portions of the Block 38 East

Property in 2008, which resulted in the removal of impacted soil and groundwater at Lots 1 through 5. Based on the results from the interim action confirmation soil sampling, GRO, DRO, and ORO were detected at concentrations exceeding MTCA Method A cleanup levels in soil samples collected from the northern sidewall of the excavation on Lot 1, and cPAHs were detected at concentrations exceeding the MTCA Method A cleanup level on the western and southern sidewalls of the excavation on Lots 3 through 5 (GeoEngineers 2008, Appendix E). GRO and BTEX were detected at concentrations exceeding MTCA Method A cleanup levels in groundwater samples collected from dewatering wells on the northern shoring wall during the remedial excavation. No information regarding additional groundwater monitoring on or off the Block 38 East Property post-interim action was available.

The interim action was limited to the area of redevelopment and construction on Lots 1 through 5 of the Block 38 East Property, and impacted soil remained in the adjacent rightsof-way to the north and west, and potentially at Lot 6 (discussed below) on the southern portion of the Block 38 East Property. Based on confirmation samples from the excavation, GRO remained in the western sidewall near the northern end of the alley at a concentration of 11 mg/kg (sidewall sample EX-11-W21) (Figure 4; Table 1) and cPAHs remained in the western sidewall along the central portion of the alley at total toxic equivalent concentrations ranging from 0.07 to 6 mg/kg (EX-19-W5, EX-20-W1.5, EX-40-EL22, and EX-41-EL22) (Figure 10; Table 2). Lead also remained in the western sidewall along the central portion of 4 to 1,800 mg/kg (EX-19-W5, EX-20-W1.5, EX-20-EL22, and EX-41-EL22) (Table 5).

GeoEngineers (2008) observed that three distinct stratigraphic layers had existed under Lots 3 through 5, and that soil samples with PAHs or metals detected at concentrations exceeding MTCA Method A cleanup levels had been within the upper soil fill layer. The three layers were described as follows:

- An upper fill layer consisting of sand, silt, wood chips, and coal fragments from the ground surface to a depth of 4 to 6 feet bgs (approximate elevation of 25 to 21 feet NAVD88);
- Underlying wood debris consisting of wood chips and logs that ranged from 7 to 10 feet thick (approximate elevation of 21 to 14 feet NAVD88); and
- Native silt and sand encountered beneath the wood debris layer (elevations deeper than an approximate elevation of 14 feet NAVD88).

Ecology (2009) issued a property-specific No Further Action determination based upon the results of the 2008 remedial action conducted by GeoEngineers (2008) at Lots 1 through 5 on the East property. The No Further Action determination was property-specific to Lots 1 through 5 (the portion of the East property containing the Interurban Exchange 2 Building) and Ecology had indicated that "further remedial action is still necessary elsewhere at the Site."

3.4.2.2 Block 38 East Property – Lots 6 and 7

A release from a heating oil UST on Lot 6 associated with the Rosen Building was confirmed during the permanent decommissioning and removal of the UST in 1994 (GeoEngineers 1999). Residual DRO and ORO were detected in soil samples collected north of the former heating oil UST excavation area at concentrations exceeding MTCA cleanup levels established in 1994 but less than current MTCA Method A cleanup levels. The volume of soil associated with the former heating oil UST release that was excavated and disposed of off the Rosen Property Site was not documented. Petroleum hydrocarbons were reported as non-detect in a groundwater sample collected from a monitoring well north of the former heating oil UST excavation area. Based on the information available, it is not clear whether the monitoring well was down-gradient of the UST excavation area. No other information pertaining to this UST release was available for review.

3.4.3 Former American Linen Property

The American Linen CVOC Plume comprises groundwater contaminated with CVOCs emanating from and down-gradient of the Former American Linen Property. The site encompassing contaminated soil and groundwater on and off property at 700 Dexter Avenue North, including the American Linen CVOC Plume, is referred to as the American Linen Supply Co. – Dexter Avenue Site (American Linen Site). As described in the *Final Remedial Investigation/Feasibility Study Work Plan, American Linen Supply Co – Dexter Avenue Site, 700 Dexter Avenue North, Seattle, Washington* dated December 4, 2019, prepared by PES Environmental, Inc. (2019) (Final RI/FS Work Plan), commercial laundry and dry cleaning businesses operated on the Former American Linen Property beginning in approximately 1946 and continued through the mid-1990s. Releases that occurred on the Former American Linen Property during the period of operation contaminated soil with CVOC concentrations as PCE, TCE, isomers of DCE, and vinyl chloride that exceed the site-specific screening levels for the American Linen Site to depths greater than 100 feet bgs.

Under static conditions, contaminated groundwater from the Shallow Water-Bearing Zone, Intermediate Water-Bearing Zone, and Deep Outwash Aquifer flows from the Former American Linen Property to the east and southeast with a downward vertical gradient and then to the south at the distal end of the American Linen CVOC Plume over an approximate distance of 1,100 linear feet. The lateral and vertical extent of the American Linen CVOC Plume has not been fully characterized, but exceeds 500 feet in width and approximately 100 feet in vertical thickness at areas down-gradient of the Former American Linen Property. The areal extent of the American Linen CVOC Plume that exceeds site-specific screening levels for the American Linen Site encompasses the majority of the Former American Linen Property and extends east-northeast past 8th and 9th Avenues onto Blocks 77 (900 Roy Steet to 731 Westlake Avenue) and 79 (701, 721, 739, and 753 9th Avenue North), south and southeast across Roy Street onto Blocks 49 and 84,⁸ and east across Westlake Avenue North beyond the Block 43 Property and onto the western portion of the Block 37 Property.

Impacts from the American Linen CVOC Plume to the lower portion of the Intermediate Water-Bearing Zone and Deep Outwash Aquifer groundwater that are at concentrations less than MTCA screening levels extend as far south as the Block 38 West Property; however, the full extent of groundwater impacts at concentrations less than MTCA screening levels has not been identified. A temporary increase in CVOC concentrations was observed in dewatering wells located off property and adjacent to the northwestern corner of the Block 38 West Property, likely due to construction dewatering events that occurred on the Block 38 West Property and at least one other property that underwent redevelopment in the nearby South Lake Union area.

cDCE and/or vinyl chloride associated with the American Linen CVOC Plume were detected at concentrations exceeding MTCA screening levels in Deep Outwash Aquifer groundwater samples collected from monitoring wells MW128 and FMW-131 on the Block 37 Property,⁹ north-adjacent to the Block 38 West Property, during groundwater monitoring events conducted between 2014 and 2018 (Final RI/FS Work Plan Figure 37; Table 14). cDCE was detected at concentrations less than the MTCA Method B cleanup level in Deep Outwash Aquifer groundwater samples collected from monitoring wells FMW-137 and FMW-138 during groundwater sampling events performed from November 2018 through July 2019 on

⁸ Block 77 is located at 900 Roy Street to 731 Westlake Avenue North, and Block 79 is located at 701 through 753 9th Avenue North. Block 49 is located at 801 Roy Street, and Block 84 is located at 800 Mercer Street.

⁹ Concentrations of cDCE and vinyl chloride were also detected in groundwater samples collected from monitoring well GEI-2, which is screened from the Intermediate Water-Bearing Zone into the top of the Deep Outwash Aquifer.

the Block 38 West Property (Appendix F). Historical groundwater sampling of the Shallow Water-Bearing Zone on the Block 37 and Block 38 West Properties (including monitoring wells FMW-130 and FMW-132 through FMW-135) (Table 9) indicates that no sources of CVOCs to groundwater existed on the Block 38 West Property. Available analytical data for groundwater samples collected from the lower portion of the Intermediate Water-Bearing Zone indicate that cDCE impacts are likely associated with the American Linen CVOC Plume.

4.0 INDEPENDENT INTERIM ACTION

Investigations conducted at the Block 38 West Property have identified hazardous substances in soil and groundwater at concentrations exceeding applicable screening levels. Screening levels were established as a conservative basis for defining the extent of contamination for each hazardous substance exceeding concentrations of potentially applicable cleanup levels and affected media at the Block 38 West Site. Hazardous substances targeted for this independent interim action were selected based on the compounds detected in soil or groundwater samples collected from the Block 38 West Property at concentrations exceeding the screening levels. The hazardous substances identified for soil were GRO, DRO, ORO, benzene, total naphthalenes, and cPAHs. The hazardous substances identified for groundwater were DRO, ORO, benzene, and total naphthalenes. Screening levels and COPCs are discussed in further detail under Section 6.0, Remedial Investigation.

The independent interim action reduced the threat to human health and the environment by removal of impacted soil, the Shallow Water-Bearing Zone, and the upper portion of the Intermediate Water-Bearing Zone from within the property boundary as part of the Block 38 West Property redevelopment project. Components of the independent interim action included excavation of impacted soil to eliminate source material, construction dewatering and treatment of contaminated groundwater, installation of a vapor barrier around the entire perimeter and below the building foundation, and construction of the exterior walls and floor slab for the underground portion of the building using waterproof concrete.

Redevelopment of the Block 38 West Property began in late October 2019 and entailed construction of a multi-story mixed-use building with 12 stories above street level and 4 levels of underground parking. The finished floor elevation of the lowest level of parking is -3.25 feet NAVD88. Construction of the new building required mass excavation across the entire Block 38 West Property to approximate elevation -6.5 feet NAVD88 or approximately 30 to 35 feet below existing grade. Excavation for elevator cores and deeper structural features extended below the mass excavation subgrade. The excavation sidewalls were retained using soldier pile and lagging shoring methods in conjunction with four rows of tiebacks.

This section summarizes the results of the independent interim action conducted at the Block 38 West Site between October 2019 and July 2021. Additional details regarding the implementation of the independent interim action are summarized in the *Final Interim*

www.farallonconsulting.com

Action Report for the Block 38 West Site, 500 through 536 Westlake Avenue North, Seattle, Washington dated December 28, 2023, prepared by Farallon and approved by Ecology on January 4, 2024.

4.1 INDEPENDENT INTERIM ACTION OBJECTIVES

The objective of the independent interim action was to reduce the threat to human health and the environment at the Block 38 West Property. Impacted soil was transported off the Block 38 West Property for disposal at permitted treatment, storage, and disposal facilities. The independent interim action removed the Shallow Water-Bearing Zone and the upper portion of the Intermediate Water-Bearing Zone beneath the Block 38 West Property. The extraction and treatment of contaminated groundwater was designed to prevent impacted groundwater from entering the Block 38 West Property and to remove contaminant mass from groundwater with dissolved hazardous substances withdrawn by permitted construction dewatering. The new building foundation design included the installation of a vapor barrier around the entire perimeter and beneath the building foundation to mitigate the potential vapor intrusion exposure pathway.

The independent interim action was conducted to meet the requirements of MTCA as defined in WAC 173-340-430. The scope of work for the independent interim action was developed in accordance with Ecology requirements and guidance, including MTCA. The independent interim action will be part of the final cleanup action, and did not foreclose reasonable alternatives for the final cleanup action at the Block 38 West Site.

4.2 CONSTRUCTION DEWATERING AND TREATMENT

To facilitate redevelopment of the Block 38 West Property, construction dewatering was required. The construction dewatering system was implemented per the Middour Consulting LLC (2018) groundwater control plan and specifications to draw groundwater below the maximum excavation depth required for the redevelopment design (Appendix G). The final groundwater control plan design included nineteen 12-inch-diameter dewatering wells (DW-1 through DW-17), and two 6-inch-diameter dewatering wells (DW-18A and DW-18B) (Figure 3). The dewatering wells were installed in 30- to 36-inch-diameter boreholes drilled around the perimeter of the Block 38 West Property and screened from an elevation of 10 to -30 feet NAVD88 to extract groundwater at a combined rate of about 800 gallons per minute after approximately 1 week of pumping, tapering to approximately 540 gallons per minute

capable of initially discharging up to 100 gallons per minute under 70 feet of total dynamic head.

The construction dewatering wells were installed during December 2019 and January 2020. The construction dewatering wells on the northern and western portions of the Block 38 West Property started pumping in early January 2020 and the dewatering wells on the eastern and southern portions of the Block 38 West Property started pumping in late January 2020. Initially the system produced approximately 650 to 700 gallons per minute, which was reduced to approximately 350 gallons per minute in May 2020 before being shut down in March 2021.

The construction dewatering system was able to achieve drawdown to an approximate elevation of -10 feet NAVD88 across the Block 38 West Property, within the Intermediate Water-Bearing Zone, for a period of approximately 12 to 15 months. The groundwater elevation was monitored around the perimeter of the building by a geotechnical engineer through a series of five observation wells (OW-1 through OW-5) (Figure 3) that are generally screened from elevation -10 to -20 feet NAVD88 (Table 6). The dewatering system operated continuously until the excavation was completed and sufficient structural weight of the building or other measures to secure the building were in place to counteract buoyancy. The exterior walls and the floor slab were constructed with a vapor barrier around the entire building envelope and waterproof concrete below the water table,

The water treatment system was constructed per plans and specifications provided by WaterTectonics of Everett, Washington and is present on the Block 37 Property (Appendix H). The water treatment system was connected to the dewatering wells via headers and conveyance lines under Mercer Street. The construction dewatering system had three separate water conveyance lines: a west conveyance line associated with dewatering wells on the western and northern Block 38 West Property boundaries; an east conveyance line associated with dewatering wells on the eastern and southern Block 38 West Property boundaries; and a stormwater conveyance line. The water treatment system was comprised of baffled sedimentation tanks, an air stripper and associated vapor-phase granular activated carbon and potassium permanganate zeolite vessels, liquid-phase granular activated carbon vessels, and contingency measures for pH balancing to treat the groundwater extracted from the Block 38 West Property.

The water treatment system treated groundwater extracted from the Shallow and Intermediate Water-Bearing Zones and the Deep Outwash Aquifer, and any stormwater

generated during construction activities, sufficient to achieve permit requirements prior to discharge to Lake Union or, alternatively, to meet criteria for discharge to the municipal sanitary sewer. Compliance discharge water samples were collected in accordance with Ecology's Administrative Order Docket No. 16629 for National Pollutant Discharge Elimination System (NPDES) Construction Stormwater General Permit and King County Industrial Waste (KCIW) Discharge Authorization No. 4493-02. The COPCs listed in the NPDES Construction Stormwater General Permit or KCIW discharge limits were reported either non-detect at the laboratory practical quantitation limit (PQL) or less than the established NPDES or KCIW discharge limits, as applicable, in effluent water samples collected from the combined outfall of the water treatment systems.

The construction dewatering and treatment system was shut down on March 24, 2021. The 19 dewatering wells (DW-1 through DW-17, DW-18A, and DW-18B) associated with the construction dewatering system were decommissioned on April 26, 2021. During the system operation between January 2020 and March 2021, a total of approximately 186,500,000 gallons of water from the construction dewatering system and stormwater were collected, treated, and discharged via a private stormwater lateral to the City of Seattle stormwater system and approximately 2,545,000 gallons of water from the construction dewatering system and stormwater were collected, treated, and stormwater were collected, treated, and discharged via the municipal sanitary sewer. Compliance discharge water samples were routinely collected in accordance with the NPDES Construction Stormwater General Permit and KCIW Discharge Authorization.

As part of the independent interim action and as presented in the 2019 IAWP, performance groundwater monitoring was conducted during construction dewatering activities at, and in the vicinity of, the Block 38 West Property for the Deep Outwash Aquifer. The purpose of the performance groundwater monitoring was to monitor concentrations of CVOCs in groundwater associated with the American Linen CVOC Plume and further described in the Technical Memorandum regarding Groundwater Monitoring Program, South Lake Union Block 38 West Property dated January 13, 2020 (Farallon 2020a) and provided in Appendix F. The data collected during the groundwater monitoring program was also used to assess treatment options for extracted groundwater and make any necessary modifications to the dewatering treatment system to ensure permit compliance. Groundwater performance monitoring event conducted in February 2021 (Appendix F).

Following the performance groundwater monitoring program, groundwater elevations continued to be monitored at the Block 38 West Property to determine when static

conditions would return following dewatering. The elevation monitoring data indicated that static conditions were not achieved at the Block 38 West Property until December 2021, which was a few months after construction dewatering ceased on the Firestone Tire & Rubber Co, property to the south.

4.3 MONITORING WELL DECOMMISSIONING

The monitoring wells installed on the Block 38 West Property during the subsurface investigations were decommissioned by a licensed well driller in accordance with the Washington State Water Well Construction Act (RCW 18.104) and WAC 173-160-460. Malcolm Drilling of Kent, Washington decommissioned monitoring wells FMW-130, FMW-132, and FMW-133 on November 4, 2019, and FMW-134 and FMW-136 on February 13, 2020. Anderson Environmental Contracting, LLC of Kelso, Washington decommissioned monitoring well FMW-148 on December 23, 2019 and decommissioned monitoring wells FMW-135, FMW-144 through FMW-147, and FMW-149 on January 8, 2020. A summary of monitoring well construction details is provided in Table 6.

4.4 EXCAVATION AND OFF-PROPERTY DISPOSAL OF CONTAMINATED SOIL

Based on previous investigations and performance soil samples collected during the independent interim action, soil with detectable concentrations of hazardous substances extended to an approximate elevation of 0 feet NAVD88 for the northern half of the Block 38 West Property and 5 to 10 feet NAVD88 across the majority of the Block 38 West Property. Soil encountered with detectable concentrations of hazardous substances, whether the concentrations exceeding or were less than screening levels, was managed and disposed of off the Block 38 West Property as a nonhazardous waste at a permitted landfill.

Installation of shoring piles started in November 2019 and was completed in January 2020. Mass excavation activities started in January 2020 and were completed in June 2020. Approximately 64,200 tons of soil containing detectable concentrations of hazardous substances and wood and organic debris was removed from the Block 38 West Property through June 26, 2020. Of this total, approximately 44,000 tons of soil contained hazardous substances at concentrations exceeding the screening levels. Approximately 50 percent of the 44,000 tons (23,000 tons) of soil with hazardous substances at concentrations exceeding the screening levels was associated with wood and organic debris encountered across the Block 38 West Property.

Excavation of soil with detectable concentrations of hazardous substances removed during construction of the building required special handling and disposal measures beyond those used for handling and disposing of clean soil. Soil with detectable concentrations of hazardous substances was excavated, segregated, stored temporarily, and disposed of off the Block 38 West Property in accordance with Washington State Solid Waste Management Laws and Regulations (RCW 70A.205 and WAC 173-351 and 173-304) and the *Guidance for Remediation of Petroleum Contaminated Sites* revised June 2016 (Ecology 2011) (Ecology PCS Guidance). Management of soil with detectable concentrations of hazardous substances was conducted concurrently with other construction activities such as shoring, dewatering, and excavation of clean soil that met criteria for reuse as clean fill or other acceptance criteria for disposal at an off-Property facility; and was conducted in accordance with the procedures described in the 2019 IAWP (Farallon 2019b).

Performance soil samples were collected by Farallon at the Block 38 West Property during previous investigations and during the independent interim action. Performance soil sampling points were used as confirmation soil sampling points where analytical results for performance soil samples confirmed that screening levels were attained above or at the final limits of the excavation.

4.5 UTILITY DECOMMISSIONING - SIDE SEWER LINE

A side sewer line on the southeastern portion of the Block 38 West Property was encountered at an approximate elevation of 23 feet NAVD88 during demolition and utility capping activities by GLY in November 2019 (Figure 3). GLY notified Farallon regarding the discovery of a black liquid discharging from a side sewer line at the Block 38 West Property while inspecting side sewer utilities in the east-adjacent alley. The side sewer line where the liquid was observed extended west onto the Block 38 West Property¹⁰ and was not documented on Seattle Public Utilities maps. When GLY exposed the side sewer line on the Block 38 West Property, the side sewer line was breached and Farallon personnel collected a sample of the liquid for laboratory analysis. The sample result indicated the presence of total petroleum hydrocarbons in the liquid.

GLY capped the side sewer line at the eastern Block 38 West Property boundary and inspected the length of the line to the maximum extent practicable. The side sewer was approximately 45 feet north of the southeastern boundary of the Block 38 West Property

¹⁰ This side sewer extended onto King County Parcel No. 1983200170 on the southern portion of the Block 38 West Property (500 and 510 Westlake Avenue North).

and traced approximately 35 feet to the west until an obstruction in the side sewer line was encountered or the line had previously collapsed. Test pits were advanced in the vicinity in December 2019 to evaluate the source of separate-phase petroleum hydrocarbons that were observed in the side sewer line. Test pits TP-4 through TP-6 were advanced to evaluate the extent of the sanitary sewer line to the west. No obvious signs of contamination were observed based on field screening and no soil samples were submitted for analysis. No source of the separate-phase hydrocarbons contained within the side sewer line was observed. Test pit TP-7 was advanced adjacent to the area where the sanitary sewer line was plugged with bentonite and previous field screening indicated a sheen on soil proximate to where the side sewer line had collapsed when exposed. The analytical results for COPCs in soil were less than screening levels (Figures 3 through 10; Tables 1 through 5). No source of the petroleum hydrocarbons contained within the side sewer line was identified during subsequent demolition and excavation activities. Additional field screening in the southeastern portion of the Block 38 West Property did not indicate a release of petroleum hydrocarbons to soil or groundwater.

4.6 UST DECOMMISSIONING

As noted in Section 2.5, Regulatory History, two previously unidentified USTs containing bunker oil and a fuel product line were encountered in the northwestern corner of the Block 38 West Property and were associated with the former mechanical equipment area located west-adjacent to the former building and in the Westlake Avenue North right-of-way (Figures 3 and 22). The mechanical equipment area dimensions were approximately 60 feet north-south by 15 feet east-west, and the concrete subgrade structure was located beneath the Westlake Avenue North sidewalk and connected to the basement of the former building, which housed mechanical equipment servicing the former building utilities. As part of the Block 38 West Property redevelopment, the mechanical equipment was decommissioned and removed, and in February 2020 the mechanical equipment area was backfilled with controlled density fill. UST01 was discovered on January 21, 2020 during the removal of the concrete foundation and was approximately 1,200 gallons in volume. UST02 was discovered on February 5, 2020 during mass excavation activities in the northwestern corner and approximately 10 feet west of UST01 along the western shoring wall and located approximately 5 feet below the former concrete foundation. UST02 was approximately 2,200 gallons in volume.

A product sample was collected from UST01 and UST02 and submitted to OnSite Environmental, Inc. of Redmond, Washington (OnSite) for evaluation of total petroleum

hydrocarbons to assist with UST decommissioning activities. The product in USTO1 and USTO2 was confirmed as bunker fuel oil by OnSite. City Investors IX selected a specialty subcontractor to conduct the UST decommissioning and removal activities, which included inerting and rinsing the interior of the USTs, as necessary, and removing the USTs from the Property for recycling. The UST decommissioning services were provided by Construction Group International of Woodinville, Washington (CGI) and both USTs were permanently decommissioned by excavation and removal in accordance with Washington State *Underground Storage Tank Regulations* (WAC 173-360A) and Ecology PCS Guidance.

Mr. Brad Reilly served as the Washington State UST Decommissioning Supervisor (Certification No.8289423). Mr. Reilly confirmed that USTs containing bunker fuel oil were exempt from filing a 30-day UST Closure Notice with Ecology. Mr. Greg Peters (Certification No. 8883066) and Ms. Anastasia Burns (Certification No. 8456246) of Farallon served as the Washington State UST Site Assessors and conducted the site assessments in accordance with the Ecology *Guidance for Site Checks and Site Assessments for Underground Storage Tanks* dated February 1991, revised April 2003 (Ecology UST Guidance). The UST decommissioning process included the following activities:

- Flushing the product lines to transfer any residual fuel in the lines back into the UST;
- Cleaning and triple-rinsing the UST interior and transporting the wash water off the Property for disposal;
- Obtaining a Decommissioning Permit from the Seattle Fire Department and arranging for Seattle Fire Department inspection to authorize removal of the UST;
- Testing the internal atmosphere of the UST by a Marine Chemist in preparation for removal;
- Uncovering the UST and excavating around the sides of the UST, and lifting the UST from the excavation for inspection;
- Collecting site assessment soil samples from the four sidewalls of the UST excavation and from the bottom of the excavation; and
- Over-excavating and collecting additional soil samples from the sidewalls and/or bottom of the excavation where applicable.

A description of the site assessment activities and observations are presented below. A copy of UST decommissioning records provided by CGI are included in Appendix I.

www.farallonconsulting.com

4.6.1 UST01

UST01 was discovered on January 21, 2020 in the northwestern portion of the Block 38 West Property (Figures 3 and 22) during removal of the concrete foundation and the start of excavation activities. At the time of discovery Farallon staff observed black liquid in soil following the removal of the overlying concrete slab.

Farallon observed the decommissioning and removal of the approximately 1,200-gallon UST on January 27, 2020. Farallon completed a UST Site Assessment and holes were observed on the western and eastern ends of the UST01. Field screening indicated localized impacts to soil below and adjacent to the western and eastern sides of the UST01. One soil sample was collected directly beneath the UST and four sidewall samples from the final limits of the UST excavation (Figures 3 and 22). In-place soil observed during the UST excavation was generally poorly graded sand with gravel. Groundwater was not encountered to the maximum depth of the excavation during removal of the tank at approximately elevation 17 feet NAVD88.

Site assessment soil samples were submitted to OnSite for laboratory analysis. Samples were analyzed for one or more of the following constituents using the previously identified analytical methods, unless indicated otherwise: GRO, DRO, ORO, BTEX, cPAHs, naphthalenes, select VOCs, PCBs, and lead. The analytical results for USTO1 are summarized in Tables 1 through 5 and Figure 22.

As part of the site assessment, soil adjacent to UST01 was field screened for indications of a release. Based on field observations a soil sample, M1-TANK-24.5, was collected from the area adjacent to UST01 to evaluate COCs and other required analyses per the Ecology UST Guidance associated with unknown UST contents. The results from the product sample confirmed the contents of UST01 as bunker fuel oil and the remaining site assessment compliance soil samples collected from below and all four sides of the UST01 excavation were focused on heavy end petroleum hydrocarbons, DRO, ORO, PAHs, PCBs, and lead. Total DRO+ORO, DRO, ORO, naphthalenes, PCBs, and lead were detected at concentrations less than the screening levels in the bottom sample and were reported at the laboratory PQL in the remaining sidewall soil samples collected from UST01 excavation. 1-Methylnaphthalene was detected at a concentration exceeding the screening level in the bottom sample and reported at the PQL in the other sidewall soil samples collected from the UST01 excavation. cPAHs were detected at concentrations less than the screening level in soil samples collected from the bottom of the excavation, eastern sidewall, and southern sidewall and

reported at the PQL in the other sidewall soil samples collected from the UST01 excavation. The cPAH impacts in soil detected between elevations 25 and 15 feet NAVD88 adjacent to UST01 were similarly observed over the majority of the northern portion of the Block 38 West Property and are associated with fill material. Accordingly, Farallon does not attribute cPAH concentrations detected in soil adjacent to UST01 to be solely related to the release of bunker fuel oil.

4.6.2 Fuel Product Line

A product line apparently associated with UST01 and UST02 was discovered on January 31, 2020 in the western sidewall of the excavation directly west of UST01. The line extended north to the northwestern corner of the former building foundation (Figures 3 and 22). When the western sidewall was exposed for the installation of wood timber lagging, Farallon staff observed that shoring piles (W50 through W54) and the casing for dewatering well DW-17 had intersected and damaged the product fuel line during installation. In addition to the section where the product line was damaged with the dewatering well installation, Farallon staff observed minor staining around the joints and connection fittings. The piping in the western sidewall was removed on February 3, 2020 to the extent practicable by Hos Bros. and performance soil samples were collected to meet the site assessment requirements in the Ecology UST Guidance. Soil sidewall samples from mass excavation soil sampling grids N1, M1, and L1 and soil samples collected from boring FB-20 north of soil sampling grid N1 defined soil impacted to the north and south and vertically in the western sidewall for DRO, ORO, total DRO+ORO, naphthalene, 2-methylnaphthalene. The western extent of impacts associated with the UST product line was defined in mass excavation soil sampling grid N1-WSW3 approximately 2 feet west of the Block 38 West Property boundary. Impacts documented around the UST product line in mass excavation soil sampling grid N1 western sidewall indicate that the releases associated with the product line are localized. The extent of impacted soil associated with the UST product line to the west of soil sidewall sample M1-WSW at elevation 20 and 15 feet NAVD88 was bounded by FB-17 to the west and FB-20 to the north (Figure 22).

4.6.3 UST02

UST02 was discovered on February 5, 2020 by Hos Bros. during excavation activities in the northwestern corner of the Block 38 West Property approximately 10 feet west of the UST01 location, and the top of UST02 was encountered at approximately elevation 19 feet NAVD88 (Figures 3 and 22). A section of the UST was damaged during excavation activities resulting in a thick, black oily liquid with strong petroleum-like odors flowing out from UST02. The area

around USTO2 was bermed to contain the product release, excavated, and stockpiled for off-Property disposal. Farallon collected a sample of the product from USTO2 and submitted it to OnSite for hydrocarbon identification. OnSite confirmed the product was bunker fuel oil. Farallon also collected soil samples around USTO2 to evaluate for the previously unidentified petroleum release.

Farallon observed the decommissioning and removal of the 2,200-gallon USTO2 on February 7, 2020. Farallon completed a UST site assessment and holes were observed on all sides of the UST after removal. Field screening indicated localized impacts to soil below and adjacent to the northern, western, and eastern sides of the UST. Two soil samples were collected directly beneath the UST and four sidewall samples from the final limits of the UST excavation. In-place soil observed during the USTO2 excavation was generally layers of silty sand and organic peat-like material. Groundwater was not encountered to the maximum depth of the excavation during removal of the tank at approximate elevation 14 feet NAVD88.

UST site assessment soil samples were submitted to OnSite for laboratory analysis. Soil samples were analyzed for one or more of the following constituents, GRO, DRO, ORO, BTEX, cPAHs, naphthalenes, and PCBs. The analytical results for USTO2 are summarized in Tables 1 through 5 and Figure 22.

Based on field observations, performance soil samples were collected adjacent to USTO2 to evaluate COCs and other required analyses per the Ecology UST Guidance associated with bunker fuel oil. PCBs were not detected at a concentration exceeding the laboratory PQLs, and BTEX, DRO, ORO, and total DRO+ORO were detected at concentrations less than screening levels in performance and confirmation samples collected from beneath and along all four sides of UST02. GRO was detected at a concentration exceeding the screening level in a performance soil sample collected from the eastern side of USTO2; however, the sample was flagged by the laboratory as the hydrocarbon range being indicative of heavier fuels being present in the sample impacting the gasoline result. GRO was not detected at a concentration exceeding the laboratory PQL in the other performance soil sample collected from UST02 excavation. Naphthalenes were detected at concentrations exceeding the screening levels in one of two bottom soil samples and in soil samples collected from the northern, eastern, and western sidewalls of the UST02 excavation. cPAHs were detected at concentrations exceeding the screening levels in one of two bottom soil samples and in soil samples collected from the northern, eastern, and western sidewalls of the UST02 excavation. The cPAH impacts in soil detected between elevations 25 and 15 feet NAVD88

adjacent to USTO2 were similarly observed over the majority of the northern portion of the Block 38 West Property and are associated with fill material. Accordingly, Farallon does not attribute cPAH concentrations detected in soil adjacent to USTO2 to be solely related to the release of bunker fuel oil.

4.7 VAPOR BARRIER INSTALLATION AND WATERPROOF FOUNDATION

A chemical resistant vapor barrier was installed around the entire building perimeter from the top of the shoring wall to the base of the mat slab foundation and horizontally across the entire building foundation, which was placed prior to the mat slab foundation concrete pour (Figure 23). The exterior foundation walls and floor slab of the underground portion of the building were constructed of waterproof concrete below the water table. No provisions for drainage were needed. The vapor barrier will prevent exposure to contaminated groundwater and associated soil vapor, if present, from properties adjacent to or in the vicinity of the Block 38 West Property. In addition to the vapor barrier, the thickness of the mat slab foundation and high-performance waterproof concrete that reduces water vapor transmissivity will augment the attenuation of soil vapor, if present.

The vapor barrier specified for the Block 38 West Property building construction was Drago Wrap from Stego Industries, LLC of San Clemente, California (Appendix J).¹¹ Drago Wrap is specifically engineered to mitigate environmental contaminants and is rated for the identified hazardous substances for the Block 38 West Site and for CVOCs that are migrating from off-Property sources in deeper groundwater. Drago Wrap is a 20 mil, multi-layered plastic extrusion that meets the standards of ASTM E1745 for water vapor retarders in contact with soil or granular fill under concrete slabs, meets standard methane and radon gas specifications, and is rated for environmental contaminants such as petroleum hydrocarbons and CVOCs (Appendix J). Drago Wrap was installed per the manufacturer's specifications.

In general, the mat slab is a minimum of 48 inches thick with the top 12 inches being comprised of high-performance waterproof concrete (Hycrete) across the entire Block 38 West Property. The mat slab increases in thickness for various foundation elements up to 63 to 75 inches in the central and northern portions of the foundation. Vertical foundation walls have a 16-inch-thick foundation wall comprised of Hycrete that extends to an elevation of

¹¹ The vapor barrier and Hycrete specifications were provided to Ecology in the Technical Memorandum regarding Supplemental Subsurface Investigation and Foundation Elements (Farallon 2020d).

20 feet NAVD88, which is approximately 2 feet above the water table elevation at approximately 18 feet NAVD88. Above the water table, the foundation materials transitioned from waterproof concrete to concrete with drainage board and bentonite waterproof panels in certain below-grade garage walls where occupied space occurs such as mechanical, electrical, and storage rooms. The drainage board extends 4 feet below the water table to an elevation of 14 feet NAVD88.

The waterproofing product installed for the Block 38 West Property building foundation was the Hycrete Endure WP (formerly W1000) System from Hycrete of Seattle, Washington (Appendix J). Hycrete is an admixture that is combined with cement to create a hydrophobic concrete by combining the metallic ions in the cement with the Hycrete admixture, forming water-insoluble polymers blocking water from concrete pore space. The Hycrete Endure WP System has less than 1 percent capillary absorption in concrete, which is the main water transport mechanism in concrete, and it also bonds to steel reinforcement within concrete, providing a protective covering to prevent corrosion.

5.0 ALLEY AREA INTERIM ACTION

Investigations conducted at the alley identified hazardous substances in soil at concentrations exceeding applicable screening levels. The objective of the Ecology-approved alley interim action was to reduce the threat to human health and the environment and to correct a problem that would likely have cost substantially more to address if not completed during the alley improvements. In accordance with the AO, this work was conducted as a formal interim action under Ecology oversight and consistent with the Alley IAWP.

This section summarizes the results from the alley interim action conducted at the Block 38 West Site between February and July 2021. Additional details regarding the implementation of the alley interim action are summarized in the *Final Interim Action Report, Alley Area of Block 38 West Site, between Republican Steet and Mercer Street, 500 through 536 Westlake Avenue North, Seattle, Washington dated January 5, 2024, prepared by Farallon and approved by Ecology on January 10, 2024.*

5.1 EXCAVATION AND OFF-PROPERTY DISPOSAL OF CONTAMINATED SOIL

Based on previous investigations and performance soil samples collected during the independent interim action, soil containing detectable concentrations of hazardous substances extended to an approximate elevation of 17.5 to 15 feet NAVD88 at the alley (Figure 21). The construction excavation activities within the alley extended to a depth of approximately 5 feet bgs or an elevation of 25 to 18 feet NAVD88 (north to south) in order to place structural backfill to support the new concrete road surface and access utilities. Groundwater was not encountered during the alley excavation activities.

Performance soil samples were collected by Farallon at the alley during previous investigations and during the alley interim action. Performance soil sampling points were used as confirmation soil sampling points where analytical results for performance soil samples confirmed that screening levels were attained before or at the final limits of the excavation.

Construction excavation activities started in February 2021 and were completed in July 2021. Approximately 2,400 tons of soil containing detectable concentrations of hazardous substances and wood and organic debris was removed from the alley through July 23, 2021.

Excavation soil with detectable concentrations of hazardous substances removed during alley improvements required special handling and disposal measures beyond those used for

www.farallonconsulting.com

handling and disposing of clean soil. Soil with detectable concentrations of hazardous substances was excavated, segregated, stored temporarily, and disposed of off the Property in accordance with Washington State Solid Waste Management Laws and Regulations (RCW 70A.205 and WAC 173-351 and 173-304) and Ecology PCS Guidance. Management of soil with detectable concentrations of hazardous substances was conducted concurrently with other construction activities such as shoring, dewatering, and excavation of clean soil that met criteria for reuse as clean fill or other acceptance criteria for disposal at an off-Property facility; and was conducted in accordance with the procedures described in the Alley IAWP.

5.2 UTILITY AND STRUCTURAL IMPROVEMENTS

The alley improvements occurred over six phases to limit disruptions to operating businesses on the Block 38 East Property. Phases 1 and 2 involved connecting the sewer line from the Block 38 West Property to the existing 6-inch-diameter sewer line that runs south in the alley toward Republican Street. During Phases 1 and 2 of construction activities, 30-inch-diameter rigid inclusions (structural columns) were installed in a grid pattern to a minimum elevation of 4 feet NAVD88 to support construction of a ramp to connect the alley to Republican Street. Phases 3 through 6 involved minor improvements that required excavation of soil to a depth of approximately 5 feet bgs. Structural fill was imported and was finished with a 6-inch-thick concrete surface.

6.0 REMEDIAL INVESTIGATION

The RI was conducted for the Block 38 West Site to collect the data necessary to adequately characterize the distribution of COPCs after interim actions in order to establish cleanup standards and support the evaluation of technically feasible cleanup alternatives in accordance with the provisions of WAC 173-340-350.

Based on the results from the subsurface investigations performed by Farallon from 2014 through 2019, and the results from the interim actions, the nature and extent of soil and groundwater with concentrations exceeding screening levels within the Block 38 West Property have been defined; however, additional investigation was required under the RI to define the nature and extent of soil and groundwater with concentrations exceeding screening levels for the Block 38 West Site, including areas beyond the Block 38 West Property boundary.

To support completion of the RI, additional investigation was conducted to evaluate the nature and extent of shallow fill soil contamination and/or groundwater impacts to the north, west, south, and east of the Block 38 West Property and to evaluate groundwater quality in the Shallow and Intermediate Water-Bearing Zones following the interim actions.

This section summarizes the results from the RI activities conducted at the Block 38 West Site between May and February 2024. Soil and groundwater analytical results are presented in Tables 1 through 12. The RI activities were conducted in accordance with the RI Work Plan (Farallon 2023), which was approved by Ecology on May 1, 2023.

6.1 PRELIMINARY CLEANUP LEVEL DEVELOPMENT

Ecology calculated South Lake Union Preliminary Cleanup Levels (screening levels), which are applied to upland sites in Ecology's Northwest Region that may have complete transport pathways for contamination to reach fresh surface water (Ecology 2022b). Screening levels are established based on the potential transport and exposure pathways to provide a conservative basis for defining the extent of contamination for each hazardous substance and medium of concern at the Block 38 West Site. The screening levels were used to conduct an initial screening of existing chemical concentrations in soil and groundwater to identify COPCs and transport and exposure pathways of potential concern for the Block 38 West Site.

Table 13 provides a summary of potential exposure pathways and applicable screening levels established using MTCA Method B for hazardous substances detected in soil and/or groundwater at the Block 38 West Site. Consistent with MTCA, Method A values are used as a surrogate for Method B for compounds that do not have established Method B values; this generally applies to petroleum hydrocarbon mixtures (GRO, DRO, and ORO).

The screening levels for compounds detected in groundwater at the Block 38 West Site are based on exposure pathways that include groundwater as drinking water (for all compounds) and groundwater protective of the vapor intrusion pathway (for volatile compounds). Where applicable, some of the groundwater screening level values are based on the applicable federal maximum contaminant level (MCL) for drinking water and adjusted to a cancer risk that does not exceed one in one hundred thousand (WAC 173-340-720[7][b]). The risk-based groundwater screening level for arsenic is also adjusted up to natural background¹² in accordance with WAC 173-340-720(7)(c).

The screening levels for compounds detected in soil at the Block 38 West Site are based on exposure pathways that include direct contact (dermal absorption, ingestion) and leaching from vadose zone soil and saturated soil to groundwater for protection of drinking water. In accordance with WAC 173-340-740(5)(c), the risk-based soil screening levels for arsenic and cadmium are adjusted up to natural background¹³ and the risk-based soil screening level for mercury is adjusted up to the laboratory PQL.

6.2 CONSTITUENTS OF POTENTIAL CONCERN

COPCs were selected based on the known historical uses of the Block 38 West Site and surrounding historical land use, historical fill known to have been placed in this area, USTs encountered during redevelopment and interim actions that were completed, and the potential for releases of contaminants at concentrations exceeding screening levels.

COPCs retained for the Block 38 West Site consist of those hazardous substances that were detected in soil or groundwater samples collected from the Block 38 West Site and

¹² Based on Puget Sound Lowland natural background concentration for arsenic from *Natural Background Groundwater Arsenic Concentrations in Washington State, Study Results* dated January 2022, prepared by Ecology, Publication No. 14-09-044 (Ecology 2022a).

¹³ Based on natural background concentrations for the Puget Sound region provided in Natural Background Soil Metals Concentrations in Washington State dated October 1994, prepared by Ecology, Publication No. 94-115 (Ecology 1994).

surrounding areas at concentrations exceeding the screening levels summarized in Table 13.

The COPCs for soil at the Block 38 West Site are:

- GRO;
- Total DRO+ORO;
- Benzene;
- Naphthalene;
- 1-Methylnaphthalene;
- 2-Methylnaphthalene;
- Benzo(a)pyrene;
- Total cPAHs toxic equivalent concentration (TEC); and
- Metals as barium and mercury.

The COPCs for groundwater at the Block 38 West Site are:

- GRO;
- Total DRO+ORO;
- Benzene;
- Naphthalene;
- 1-Methylnaphthalene; and
- Metals as barium and mercury.

Other compounds were detected in soil and/or groundwater at concentrations that exceed their respective screening levels but were not retained as COPCs for the Block 38 West Site. These include chloroform, cDCE, cadmium, lead, and arsenic; the reasons for not retaining these hazardous substances for further consideration are discussed below.

Chloroform was detected at a concentration exceeding the screening level in a groundwater sample collected from monitoring well FMW-136 on August 30, 2018. Chloroform was

detected in two other groundwater samples¹⁴ and in the water sample collected from the potable water supply, which was used during drilling (Farallon 2018). Potable water was introduced to the subsurface during drilling to help control heaving sands and was subsequently recovered during well development. Potable water also can be introduced to the subsurface from leaking water supply and/or sewer lines. Chloroform is a by-product of the treatment of municipal water supplies and a common contaminant in analytical laboratories; therefore, chloroform was not retained as a COPC for groundwater for the Block 38 West Site.

cDCE and other CVOCs were detected at concentrations exceeding the screening levels in groundwater in the Intermediate Water-Bearing Zone and Deep Outwash Aquifer on the north-adjacent property and other surrounding properties, but were less than the screening levels beneath the Block 38 West Property prior to startup of the construction dewatering system. Available information indicates no known sources of CVOCs existed on the Block 38 West Property, and laboratory analytical results for soil and historical groundwater sampling of the Shallow Water-Bearing Zone indicate that no releases of CVOCs to soil or groundwater occurred on the Block 38 West Property (Tables 3 and 9). Available analytical data for groundwater samples collected from the lower portion of the Intermediate Water-Bearing Zone and/or Deep Outwash Aquifer indicate that cDCE and other CVOCs impacts are likely associated with the American Linen CVOC Plume or another off-Property source. Furthermore, there is no evidence of commingling of cDCE or other CVOCs with other Block 38 West Site COPCs in groundwater; therefore, cDCE and other CVOCs were not retained as COPCs for groundwater for the Block 38 West Site.

Cadmium and/or lead were detected at concentrations exceeding screening levels in a single test pit in the alley (TP-10-4), in soil samples collected from the eastern sidewall from the alley interim action (G/A5-ESW, H/A5-ESW, I/A5-ESW, and J/A5-ESW), and in soil samples collected from the western sidewall of the Block 38 East Property mass excavation (i.e., the western sidewall of the remedial excavation previously conducted by others on the Rosen Property Site Lots 1 through 5) (EX-40-EL22, EX-41-EL22, and P-4-3.5). Cadmium and lead were either reported non-detect at the laboratory PQLs or were detected at concentrations less than the screening levels in all of the soil samples analyzed for metals from the Block 38 West Property. Arsenic was detected at a concentration exceeding a

¹⁴ Chloroform was detected in FMW-130 in July 2014 and FMW-135 in August 2018. Both concentrations were less than screening levels protective of drinking water and vapor intrusion to indoor air, and subsequent results were reported non-detect.

screening level in a single boring in the alley (FB-14) but was reported non-detect at the laboratory PQLs or less than the screening level in the remaining soil samples analyzed for metals from the Block 38 West Property. The laboratory analytical results for soil for the Block 38 West Property indicate that no shallow releases of metals occurred on the Block 38 West Property (Table 5).

Given the available analytical data for soil samples collected from the Rosen Property Site Lots 1 through 5 (Table 5) and the localized distribution of arsenic, cadmium, and lead exceedances in soil along the western boundary of the Block 38 East Property, these metals impacts appear to be associated with the Rosen Property Site and are not retained as COPCs for the Block 38 West Site.

6.3 2023 TO 2024 REMEDIAL INVESTIGATION OBJECTIVES

The previous subsurface investigations and interim actions conducted at the Block 38 West Site defined the lateral and vertical extent of COPCs in soil and groundwater within the Block 38 West Property boundary. The 2023 to 2024 RI activities addressed remaining data gaps and included evaluating groundwater conditions in the Shallow and Intermediate Water-Bearing Zones following the interim actions and characterizing residual soil and groundwater contamination that may remain at the Block 38 West Site beyond the Block 38 West Property boundary. Soil and groundwater data gaps that were addressed during the 2023 to 2024 RI activities are discussed below.

6.3.1 Soil

Additional investigation was required during the RI to define the nature and extent of COPCs in shallow fill soil contamination to the north, west, and south of the Block 38 West Property. This included the area adjacent to the UST product line near the northwestern property corner and the area adjacent to historical shallow COPC exceedances near the southwestern property corner.

6.3.1.1 UST Product Line Area

Based on review of soil analytical data associated with the decommissioning and removal of UST01 and UST02 and removal of the associated fuel product line from the northwestern corner of the Block 38 West Property, the lateral extent of COPC exceedances in soil was not defined to the west and north. This included:

• The western extent of total DRO+ORO in soil at an elevation of 15 feet NAVD88;

- The western extent of cPAHs in soil at an elevation of 20 feet NAVD88; and
- The western and northern extent of 1-methylnaphthalene in soil at an elevation of 20 to 15 feet NAVD88.

6.3.1.2 Southwestern Property Corner

Data gaps existed near the southwestern corner of the Block 38 West Property for total DRO+ORO, naphthalenes, and cPAHs in shallow soil prior to conducting the 2023 to 2024 RI activities. These were based on the following pre-excavation conditions identified in 2018:

- Total DRO+ORO was detected at a concentration exceeding the screening level in a soil sample collected from former monitoring well FMW-134 at an elevation of 20.4 feet NAVD88 (Figure 8; Table 1). Naphthalenes and cPAHs were not analyzed in the soil sample from that elevation, but were analyzed in a deeper sample collected from former monitoring well FMW-134 at an elevation of 10.4 feet NAVD88.
- 1-Methylnaphthalene was detected at a concentration exceeding the screening level in a soil sample collected from former monitoring well FMW-134 at an elevation of 10.4 feet NAVD88 (Figure 9; Table 2).
- The lateral extent of total DRO+ORO, naphthalenes, and cPAHs in soil was not defined to the west and south of former monitoring well FMW-134.

6.3.2 Groundwater

Previous subsurface investigations documented localized petroleum hydrocarbon impacts to the Shallow and Intermediate Water-Bearing Zones at the Block 38 West Site. Additional investigation was required during the RI to define the nature and extent of COPCs in these water-bearing zones to the north, south, west, and east of the Block 38 West Property and in the Intermediate Water-Bearing Zone remaining beneath the recently constructed building on Block 38 West Property.

6.3.2.1 Shallow Water-Bearing Zone

Data gaps existed near the southwestern corner of the Block 38 West Property and to the west and east of the Block 38 West Property for one or more COPCs in the Shallow Water-

Bearing Zone prior to conducting the 2023 to 2024 RI activities. These were based on the following pre-excavation conditions identified in 2018:

- The lateral extent of total DRO+ORO at concentrations exceeding the screening level was not bounded west of boring FB-O3 or south and west of former monitoring well FMW-134 (Figure 14).
- The lateral extent of naphthalenes at concentrations exceeding screening levels was not bounded south and west of former monitoring well FMW-134 or east of former monitoring well FMW-130 (Figure 15).
- Benzene was detected at a concentration exceeding the groundwater screening level protective of indoor air in the reconnaissance groundwater sample collected from former monitoring well FMW-130 (Figure 13).

Monitoring wells screened in the Shallow Water-Bearing Zone were not installed outside of the Block 38 West Property during the pre-redevelopment subsurface investigations and independent interim action performed by Farallon. The independent interim action removed the Shallow Water-Bearing Zone within the Block 38 West Property boundary. However, additional monitoring wells were required to evaluate groundwater quality in the Shallow Water-Bearing Zone beyond the Block 38 West Property to the west, south, and east. As discussed in Section 3.3, monitoring wells FMW-154, FMW-155, and FMW-156 were installed in 2022 within the alley east of the Block 38 West Property to facilitate RI data collection within the Shallow Water-Bearing Zone to the east.

6.3.2.2 Intermediate Water-Bearing Zone

Previous investigations indicated total DRO+ORO concentrations exceeding the screening level in groundwater samples collected from former monitoring wells FMW-145, FMW-146, and FMW-147, which were screened in the Intermediate Water-Bearing Zone beneath the building footprint (Figures 14 and 20). 1-Methylnaphthalene also was detected at concentrations exceeding the groundwater screening levels in a groundwater sample collected from former monitoring well FMW-146 (Figure 15). Data gaps existed for this area of impacted groundwater prior to the 2023 to 2024 RI activities, primarily to the east of the Block 38 West Property. In addition, post-excavation conditions needed to be evaluated beneath the new building.

As discussed in Section 3.3, five monitoring wells, FMW-150 through FMW-153 and FMW-157, were installed at the Site for the purpose of evaluating the potential impacts north,

west, southwest, and northeast of former monitoring wells FMW-146 and FMW-147 (Figure 27). Monitoring wells FMW-150 through FMW-153 were installed in 2020 within the building foundation concurrent with redevelopment of the Block 38 West Property, and monitoring well FMW-157 was installed in 2022 in the alley to the east of the Block 38 West Property.

The RI required installation of additional monitoring wells to evaluate groundwater quality in the Intermediate Water-Bearing Zone beyond the Block 38 West Property to the west, south, and east.

6.4 REMEDIAL INVESTIGATION FIELD PROGRAM

The RI field program performed between May 2023 and February 2024 was conducted to collect data necessary to adequately characterize the Block 38 West Site for the purpose of developing and evaluating cleanup action alternatives by addressing the data gaps identified in Section 6.3. The field program included the following elements:

- Permitting for activities in the right-of-way;
- Locating utilities and potential utilities prior to subsurface work and to evaluate potential preferential pathways for COPC fate and transport;
- Advancing nine borings (FB-17 and FMW-158 through FMW-165) and collecting soil samples to evaluate the Block 38 West Site geology and the lateral and vertical distribution of COPCs in soil;
- Installing four monitoring wells in the Shallow Water-Bearing Zone (FMW-158, FMW-160, FMW-161, FMW-163), three monitoring wells in the Intermediate Water-Bearing Zone (FMW-159, FMW-162, FMW-164), and one monitoring well in the Deep Outwash Aquifer (FMW-165)¹⁵ along the perimeter of the Block 38 West Property to evaluate the hydrogeology and the lateral and vertical distribution of COPCs in groundwater; and
- Performing four quarterly groundwater monitoring events at the monitoring well network, including the eight newly installed wells and 14 existing wells.

¹⁵ Ecology directed City Investors IX to conduct a groundwater monitoring event in the Deep Outwash Aquifer to assess groundwater conditions post-construction dewatering events that occurred at the Block 38 West Property and at other properties undergoing development in the nearby South Lake Union area. As more fully discussed below, this monitoring event was to determine the presence of CVOCs.

The location and purpose for each boring and monitoring well is provided below (Figure 3).

- Boring FB-17 was advanced within the Westlake Avenue North right-of-way to evaluate the extent of documented concentrations of total DRO+ORO, cPAHs, and 1methylnaphthalene in soil exceeding screening levels associated with former UST01 and UST02 and the associated fuel product line on the northwestern corner of the Block 38 West Property.
- Boring/monitoring wells FMW-158 and FMW-159 were advanced/installed in the Westlake Avenue North right-of-way to evaluate the extent of COPCs in the Shallow and Intermediate Water-Bearing Zones west of the Block 38 West Property boundary.
- Boring/monitoring wells FMW-160 through FMW-164 were advanced/installed in the Westlake Avenue North and Republican Street rights-of-way to evaluate the extent of COPCs in soil and/or the Shallow and Intermediate Water-Bearing Zones south and southwest of the Block 38 West Property boundary.
- Boring/monitoring well FMW-165 was advanced/installed in the Westlake Avenue North right-of-way to evaluate the extent of CVOCs the Deep Outwash Aquifer.
- Existing monitoring wells FMW-150 through FMW-153, installed beneath the building; monitoring wells FMW-154 through FMW-157, installed in the alley; and converted observation wells OW-1 through OW-3 and OW-5¹⁶ were incorporated into the monitoring well network for evaluating groundwater quality and flow conditions in the Shallow and Intermediate Water-Bearing Zones and the Deep Outwash Aquifer.

A summary of the scope of work conducted for each of the RI work elements is provided in the following sections. Boring and monitoring well locations are shown on Figure 3. The boring logs are provided in Appendix A, and Appendix K summarizes the scope of work and the soil and/or groundwater analyses required under the RI Work Plan (Farallon 2023).

6.4.1 Permitting

A right-of-way street use permit (Permit Number SUUTIL0006281) was obtained from the City of Seattle Department of Transportation prior to conducting RI activities in the Westlake Avenue North and Republican Street rights-of-way.

¹⁶ Observation well OW-4 was damaged beyond repair during construction activities and was subsequently decommissioned by a licensed well driller.

6.4.2 Subsurface Utility Location

Linescape, LLC of Seattle, Washington conducted private utility location surveys during the RI. Underground utility locations were evaluated in the vicinity of each proposed boring location. The Northwest Utility Notification Center located public utilities in the vicinity of the Block 38 West Site.

6.4.3 Boring Advancement and Soil Sampling

A total of nine borings (FB-17 and FMW-158 through FMW-165), including those completed as monitoring wells, were advanced in May 2023. Borings were advanced using a sonic drill rig for collection of soil samples and installation of wells. Drilling services were provided by Andersen Environmental Contracting LLC of Kelso, Washington (AEC). Boring and monitoring well locations are shown in Figure 3.

Prior to beginning drilling activities, each boring was manually cleared for utilities using a vacuum excavator to depths between 3 and 6 feet bgs. Soil samples collected in the utility clearance interval were obtained using a hand auger.

A Farallon geologist observed and logged subsurface conditions, and retained soil samples from selected intervals for laboratory analysis. The information recorded for each boring log included soil types encountered, visual and olfactory observations (e.g., staining, odor), and volatile organic vapor concentrations as measured using a photoionization detector (PID). The boring logs are provided in Appendix A.

Soil samples were selected for laboratory analysis based on the data gaps described in Section 6.3 and evidence of potential contamination such as unusual odor, discoloration, sheen, or elevated PID readings. In the absence of elevated PID readings or other evidence of potential contamination, soil samples were selected for laboratory analysis from depths that correlated with the depths of field or laboratory evidence of contamination in soil noted in nearby borings or in soil samples collected during previous sampling events. Soil samples retained for laboratory analysis were transferred directly into laboratory-prepared containers. Care was taken not to handle the seal or the inside cap of the container when the samples were placed into the containers. Soil sample containers were labeled using a unique sample number and were immediately placed into a cooler on ice. Soil samples were submitted under standard chain-of-custody protocols to Apex Laboratories of Tigard, Oregon for laboratory analyses listed in Section 6.4.6. Appendix K provides a summary of the analyses conducted for each soil sampling location.

6.4.4 Monitoring Well Installation

Monitoring wells FMW-158 through FMW-165 were installed by AEC using a sonic drill rig and were constructed with 2-inch-diameter Schedule 40 polyvinyl chloride (PVC) pipe with 0.010-inch slotted PVC well screen. The borehole annulus surrounding each monitoring well screen was filled with a filter pack consisting of 10/20 silica sand to approximately 1 foot above the top of the screened interval. A bentonite chip seal was emplaced above the sand pack to a depth of approximately 2 feet bgs. A concrete surface seal was placed around the wells from the top of the bentonite, surrounding the flush-grade traffic-rated monument up to the ground surface.

Shallow Water-Bearing Zone monitoring wells FMW-158, FMW-160, FMW-161, and FMW-163 were installed to total depths ranging from 32 to 35 feet bgs (elevation 3.0 to 5.3 feet NAVD88) and were constructed with 15 feet of well screen. Intermediate Water-Bearing Water Zone monitoring wells FMW-159, FMW-162, and FMW-164 were installed to total depths ranging from 51 to 55 feet bgs (elevation -14.8 to -14.9 feet NAVD88) and were constructed with 10 feet of well screen. Deep Outwash Aquifer monitoring well FMW-165 was installed to a total depth of 87 feet bgs (elevation -54.9 feet NAVD88) and was constructed with 10 feet of well screen. Well screen intervals are summarized in Table 6 and locations are shown on Figure 3. Boring logs showing well installation details are provided in Appendix A.

Following installation, each monitoring well was developed to remove fine-grained materials from the screen and sand pack. The monitoring wells were developed using a submersible pump and surge block until the extracted water visibly cleared or was purged dry. If the monitoring well was purged dry, water levels were allowed to recharge before additional purging was conducted. Approximately 50 to 60 gallons of water was purged from each well during development.

Each monitoring well was surveyed by professional surveyors from Apex Engineering of Tacoma, Washington on May 16, 2023. The wells were surveyed for elevation and northing and easting coordinates using the NAVD88 and Washington State Plane Coordinate System of 1983/2011, North Zone. The survey elevation results are shown in Table 6 and provided in Appendix L.

6.4.5 Groundwater Monitoring

Groundwater monitoring events were conducted at the Block 38 West Site in May, August, and November 2023, and February 2024 using the newly installed and existing monitoring wells. The monitoring well network consisted of:

- Seven monitoring wells screened in the Shallow Water-Bearing Zone (FMW-154, FMW-155, FMW-156, FMW-158, FMW-160, FWM-161, and FMW-163),
- 11 monitoring wells screened in the Intermediate Water-Bearing Zone (FMW-150 through FMW-153, FMW-157, FMW-159, FMW-162, FMW-164, OW-1 through OW-3, and OW-5), and
- Three monitoring wells screened in the Deep Outwash Aquifer (FMW-137, FMW-138, and FMW-165).
- The monitoring well network is shown on Figure 3.

Prior to sampling, the depth to groundwater in each monitoring well was measured using an electronic water-level indicator to the nearest 0.01 foot. The monitoring wells were opened, and the water levels were allowed to equilibrate for approximately 30 minutes before measurement. The groundwater level was measured from the surveyed reference point on the top of the well casing to derive the groundwater elevation at each monitoring well.

Groundwater samples were collected in accordance with EPA (1996) low-flow sampling procedures. Purging and sampling of each monitoring well was performed using a peristaltic pump and dedicated silicone and polyethylene tubing, at flow rates ranging from approximately 100 to 300 milliliters per minute. The tubing intake generally was placed in the middle of the screened interval of each monitoring well.

During purging, water quality was monitored using a YSI Pro DSS water-quality system equipped with a flow-through cell. The water-quality parameters temperature, pH, specific conductance, dissolved oxygen, oxidation-reduction potential (ORP), and turbidity were monitored and recorded at 3-minute intervals during purging. Following purging, groundwater samples were collected from the pump outlet tubing located upstream of the flow-through cell and placed directly into laboratory-prepared sample containers. Samples for analysis for dissolved metals were collected through a 0.45-micron field filter that was attached to the pump outlet and removed prior to filling containers for other analyses. Each container was labeled with a unique sample identification number, placed on ice in a cooler, and transported to Apex Laboratories of Tigard, Oregon for laboratory analyses listed in

Section 6.4.6. A summary of the groundwater analyses conducted for each well is included in Appendix K.

6.4.6 Laboratory Analysis

Select soil samples collected during the RI were analyzed for one or more of the following:

- DRO and ORO by Northwest Method NWTPH-Dx; and
- PAHs, including naphthalenes and cPAHs by EPA Method 8270E/SIM.

Select groundwater samples collected during the RI were analyzed for one or more of the following:

- DRO and ORO by Northwest Method NWTPH-Dx with and without silica gel cleanup;
- GRO by Northwest Method NWTPH-Gx;
- BTEX by EPA Method 8260D;
- CVOCs by EPA Method 8260D;
- PAHs, including naphthalenes by EPA Method 8270E/SIM; and
- Total and dissolved barium and mercury by EPA Method 6020B.

6.5 REMEDIAL INVESTIGATION RESULTS

This section presents a summary of the results from the RI activities conducted at the Block 38 West Site between May and November 2023. Soil and groundwater analytical results are presented in Tables 1 through 12 and on Figures 4 through 10 and 12 through 16. Figures 17 through 21 depict cross sections A-A' through E-E', respectively, and include subsurface lithology and soil and groundwater analytical results. Boring and monitoring well logs are presented in Appendix A. Laboratory analytical reports are presented in Appendix C.

6.5.1 Groundwater Elevations and Flow

Groundwater elevations at the Block 38 West Site were measured on May 15, August 14, and November 14, 2023, and February 27, 2024. A summary of groundwater elevation measurements is provided in Table 6. Groundwater elevation contour maps for the Shallow Water-Bearing Zone, Intermediate Water-Bearing Zone, and Deep Outwash Aquifer at the Block 38 West Site for the February 2024 event are provided on Figures 11A through 11C along with rose diagrams showing general flow direction and gradient for each of the four quarterly events.

Groundwater elevations measured in the Shallow Water-Bearing Zone at the Block 38 West Site ranged from 19.00 feet NAVD88 to 17.41 feet NAVD88 between May 2023 and February 2024, based on the following observations:

- On May 15, 2023, elevations ranged from 18.72 feet NAVD88 in monitoring well FMW-161 to 17.75 feet NAVD88 in monitoring well FMW-154;
- On August 14, 2023, elevations ranged from 19.00 feet NAVD88 in monitoring well FMW-158 to 17.42 feet NAVD88 in monitoring well FMW-154;
- On November 14, 2023, elevations ranged from 17.72 feet NAVD88 in monitoring well FMW-158 to 17.41 feet NAVD88 in monitoring well FMW-154; and
- On February 27, 2024, elevations ranged from 17.91 feet NAVD88 in monitoring well FMW-158 to 17.51 feet NAVD88 in monitoring well FMW-160.

Groundwater elevations measured in the Intermediate Water-Bearing Zone at the Block 38 West Site ranged from 20.61 feet NAVD88 to 17.25 feet NAVD88 between May 2023 and February 2024, based on the following observations:

- On May 15, 2023, elevations ranged from 20.61 feet NAVD88 in monitoring well OW-5 to 17.57 feet NAVD88 in monitoring well FMW-153;
- On August 14, 2023, elevations ranged from 19.98 feet NAVD88 in monitoring well OW-5 to 17.25 feet NAVD88 in monitoring well FMW-151;
- On November 14, 2023, elevations ranged from 18.07 feet NAVD88 in monitoring well OW-3 to 17.39 feet NAVD88 in monitoring well FMW-164; and
- On February 27, 2024, elevations ranged from 18.07 feet NAVD88 in monitoring well OW-3 to 17.50 feet NAVD88 in monitoring well FMW-153.

Groundwater elevations measured in the Deep Outwash Aquifer at the Block 38 West Site ranged from 18.40 feet NAVD88 to 16.84 feet NAVD88 between May 2023 and February 2024, based on the following observations:

- On May 15, 2023, elevations ranged from 18.40 feet NAVD88 in monitoring well FMW-137 to 17.00 feet NAVD88 in monitoring well FMW-138;
- On August 14, 2023, elevations ranged from 17.80 feet NAVD88 in monitoring well FMW-137 to 16.84 feet NAVD88 in monitoring well FMW-138;
- On November 14, 2023, elevations ranged from 17.48 feet NAVD88 in monitoring well FMW-165 to 16.86 feet NAVD88 in monitoring well FMW-138; and

• On February 27, 2024, elevations ranged from 17.80 feet NAVD88 in monitoring well FMW-137 to 17.04 feet NAVD88 in monitoring well FMW-138.

The groundwater flow direction at the Block 38 West Site in the Shallow Water-Bearing Zone was observed to the south during all four groundwater monitoring events at flow gradients ranging from 0.001 to 0.002 feet per foot (ft/ft) (Figure 11A). Groundwater contour lines are not shown for the Shallow Water-Bearing Zone on the Block 38 West Property because it is no longer present with the current building in place. The groundwater flow direction at the Block 38 West Site in the Intermediate Water-Bearing Zone was observed to the southeast during all four groundwater monitoring events at flow gradients ranging from 0.002 to 0.005 ft/ft (Figure 11B). The groundwater flow direction at the Block 38 West Site in the Deep Outwash Aquifer was observed to the southwest in May and August 2023 and February 2024 at gradients ranging from 0.002 to 0.004 ft/ft and to the southeast during the November 2023 groundwater monitoring event at a gradient of approximately 0.002 ft/ft (Figure 11C).

6.5.2 Soil Analytical Results

The following sections present the analytical results from the soil sampling activities conducted during the RI at the Block 38 West Site in May 2023.

Boring FB-17

Soil samples collected from boring FB-17 were analyzed for DRO, ORO, and PAHs including naphthalenes and cPAHs. Total DRO+ORO was either detected at concentrations less than the screening levels or reported as non-detect at laboratory PQLs in the soil samples analyzed from boring FB-17. No soil sample was recoverable at elevation 20 feet NAVD88 due to the presence of CDF. The highest concentration of total DRO+ORO was 1,681 mg/kg, which is less than the screening level of 2,000 mg/kg in the soil sample collected from boring FB-17 at elevation 15 feet NAVD88 (Figures 6 through 8; Table 1).

Naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene were reported as non-detect at laboratory PQLs in the soil sample collected from boring FB-17 at an elevation of 17 feet NAVD88 (Figure 9; Table 2).

The total cPAHs TEC was 0.282 mg/kg, which exceeded the screening level of 0.19 mg/kg in the soil sample collected from boring FB-17 at an elevation of 17 feet NAVD88. The total cPAHs TEC was reported as non-detect at the laboratory PQLs in the remaining soil samples analyzed from boring FB-17 (Figure 10; Table 2).

Borings FMW-160, FMW-161, and FMW-163

Soil samples collected from borings FMW-160, FMW-161, and FMW-163 were analyzed for DRO, ORO, and PAHs including naphthalenes and cPAHs.

Total DRO+ORO was either detected at concentrations less than the screening levels or reported as non-detect at laboratory PQLs in the soil samples analyzed from borings FMW-160, FMW-161, and FMW-163 (Figures 6 through 8; Table 1).

Naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene were either detected at concentrations less than the screening levels or were reported as non-detect at laboratory PQLs in all soil samples analyzed, with the exception of the soil sample analyzed from boring FMW-163 at an elevation of 15 feet NAVD88. Naphthalene and 1-methylnaphthalene were detected at concentrations of 0.340 and 0.00789 mg/kg, respectively, which exceed the screening levels of 0.24 and 0.0042 mg/kg for naphthalene and 1-methlynaphthalene, respectively (Figure 9; Table 2).

The total cPAHs TEC were either less than the screening levels or were reported as nondetect at the laboratory PQLs in the soil samples collected from borings FMW-160, FMW-161 and FMW-163 (Figure 10; Table 2).

6.5.3 Groundwater Analytical Results

The following sections present the results from the groundwater monitoring events conducted at the Block 38 West Site in May, August, and November 2023, and February 2024. Tables 7, 8, 9, 11, and 12 provide the groundwater analytical results and screening levels for groundwater. Figures 12 through 15 present groundwater analytical results for GRO, benzene, total DRO+ORO, and naphthalenes. The laboratory analytical reports for the groundwater sampling events are provided in Appendix C.

Shallow Water Bearing Zone Monitoring Wells

Groundwater samples collected from the Shallow Water-Bearing Zone monitoring wells were analyzed for GRO, BTEX, total DRO+ORO, and naphthalenes. Groundwater samples collected from the Shallow Water-Bearing Zone monitoring wells were also analyzed for barium and mercury during the May 2023 groundwater monitoring event only.

GRO was not detected at concentrations exceeding the laboratory PQL in all groundwater samples analyzed from the Shallow Water-Bearing Zone monitoring wells during the four groundwater monitoring events (Figure 12; Table 7).

Benzene was either detected at concentrations less than the screening level or were reported as non-detect at the laboratory PQLs in all groundwater samples analyzed from the Shallow Water-Bearing Zone monitoring wells during all four groundwater monitoring events. The highest concentrations of benzene detected were 1.16, 1.22, 0.750, and 0.420 micrograms per liter (μ g/L) in groundwater samples analyzed from monitoring well FMW-163 during the May 2023, August 2023, November 2023, and February 2024 monitoring events, respectively (Figure 13; Table 7).

Total DRO+ORO was either detected at concentrations less than the screening level or reported as non-detect at the laboratory PQLs in all groundwater samples analyzed from the Shallow Water-Bearing Zone monitoring wells during the May 2023 monitoring event. Total DRO+ORO was detected at concentrations of 514, 530, and 634 µg/L, which exceeded the screening level of 500 µg/L in groundwater samples collected from monitoring wells FMW-154, FMW-155, and FMW-160, respectively, during the August 2023 monitoring event. Total DRO+ORO was detected at concentrations of 791 and 943 µg/L, which exceeded the screening level of 500 µg/L in groundwater samples collected from monitoring wells FMW-154 and FMW-155, respectively, during the November 2023 monitoring event. Total DR0+0R0 was detected at a concentration of 605 μ g/L, which exceeded the screening level of 500 µg/L in the groundwater sample collected from monitoring well FMW-155 during the February 2024 monitoring event. Total DRO+ORO was either detected at concentrations less than the screening level or reported as non-detect at laboratory PQLs in groundwater samples collected from the remaining Shallow Water-Bearing Zone monitoring wells during the May 2023, August 2023, November 2023, and February 2024 monitoring events (Figure 14; Table 7).

Based on Ecology's Guidance for Silica Gel Cleanup in Washington State dated November 2023 (Ecology Silica Gel Guidance) and correspondence with Ecology, groundwater samples with total DRO+ORO concentrations that exceeded the screening level in August and November 2023 and February 2024 were further analyzed for DRO and ORO (or total DRO+ORO)¹⁷ with silica gel cleanup to gain additional perspective on biogenic or petroleum metabolite interference. Total DRO+ORO was either detected at a concentration less than the screening level or reported as non-detect at the laboratory PQLs in groundwater samples analyzed with silica gel cleanup (Figure 14; Tables 7 and 12). This suggests that the

¹⁷ Based on guidance from Ecology, sample results for the February 2024 event were reported as a single NWTPH-Dx concentration for total DRO+ORO. The laboratory reported separate results for DRO and ORO for the three events performed in 2023.

detected concentrations of total DRO+ORO without silica gel cleanup are related to polar organics, either naturally occurring (biogenic) or from the breakdown of petroleum (polar metabolites).

Based on communications with Ecology, Shallow Water-Bearing Zone monitoring well FMW-158 was identified as a potential background well given its apparent up-gradient location and otherwise non-impacted conditions. If suitable as a background well, it can be used to evaluate the contribution of naturally occurring organics in groundwater and determine whether an adjustment to polar organic concentrations within and down-gradient of the groundwater plume are applicable. Consistent with the Ecology Silica Gel Guidance, groundwater from well FMW-158 was analyzed for total organic carbon (TOC) during the February 2024 monitoring event and chromatograms for NWTPH-Dx (with and without silica gel cleanup) were requested from the laboratory to confirm natural background conditions for polar organics. TOC was quantified at 8.8 milligrams per liter (mg/L), or 8,800 µg/L, which is considerably higher than the median TOC for groundwater of 700 µg/L (Thurman 1985) and the typical threshold of 2,000 μ g/L TOC for groundwater (Chapman et al. 1996). Review of the chromatograms (Appendix C) indicates NWTPH-Dx patterns are not consistent with the standard pattern for diesel and oil petroleum, suggesting the presence of polar organics. Given the relatively high TOC concentration at well FMW-158, the chromatogram evaluation, and analytical results for NWTPH-Gx and NWTPH-Dx (with silica gel cleanup) showing non-detectable petroleum hydrocarbons, there is strong evidence that the detected NWTPH-Dx results for well FMW-158 without silica gel cleanup is from naturally occurring organics and not petroleum. Therefore, well FMW-158 is suitable as a designated background well for the Shallow Water-Bearing Zone. As such, the detected NWTPH-Dx concentrations at well FMW-158 can be used to adjust the polar organics concentrations in the other shallow wells at the Block 38 West Site to measure compliance for polar metabolites related to the breakdown of petroleum hydrocarbons.

Based on the Ecology Silica Gel Guidance and concurrence from Ecology, an adjusted polar metabolite cleanup level of 700 μ g/L was applied since the concentrations reported by NWTPH-Gx and NWTPH-Dx (with silica gel cleanup) analyses were non-detect¹⁸ at the laboratory PQLs during all four of the groundwater monitoring events (Table 12). Using the detected total DRO+ORO concentrations from FMW-158 to adjust polar organics

¹⁸ As discussed in Section 7.2.3 below, there was one instance of detected ORO post silica gel cleanup, which the laboratory attributed to sediment interference in the silica gel cleanup analysis, as it was not detected in the sample analyzed without silica gel cleanup. The detected concentration is less than the typical PQL of 250 μg/L noted in Ecology's Silica Gel Guidance.

concentrations (i.e., total DRO+ORO without silica gel cleanup) at the other wells to account for naturally occurring organics, all of the adjusted concentrations are less than 700 µg/L.

Naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene were either detected at concentrations less than the screening levels or reported as non-detect at the laboratory PQLs in all groundwater samples analyzed from the Shallow Water-Bearing Zone monitoring wells during the May 2023, August 2023, November 2023, and February 2024 monitoring events (Figure 15; Table 8).

Total and dissolved barium were detected at concentrations less than the screening levels, and total and dissolved mercury were reported as non-detect at laboratory PQLs in groundwater samples analyzed from Shallow Water-Bearing Zone monitoring wells FMW-154 through FMW-156 and FMW-158 during the May 2023 monitoring event (Table 11).

Intermediate Water Bearing Zone Monitoring Wells

Groundwater samples collected from the Intermediate Water Bearing Zone monitoring wells were analyzed for DRO, ORO, and naphthalenes. Total DRO+ORO was detected at concentrations less than the screening levels in groundwater samples analyzed from all Intermediate Water-Bearing Zone monitoring wells during the May and August 2023 monitoring events and the February 2024 monitoring event (Figure 14; Table 7). Total DRO+ORO was detected at a concentration of 628 µg/L, which exceeded the screening level of 500 µg/L in a groundwater sample collected from monitoring well OW-1, during the November 2023 monitoring event. Total DRO+ORO was either detected at concentrations less than the screening level or reported as non-detect at laboratory PQLs in groundwater samples collected from the remaining Intermediate Water-Bearing Zone monitoring wells during the November 2023 monitoring event (Figure 14; Table 7). Based on the Ecology Silica Gel Guidance and correspondence with Ecology, the groundwater sample with a total DRO+ORO concentration that exceeded the screening level in November 2023 was further analyzed for DRO and ORO with silica gel cleanup to gain additional perspective on biogenic or petroleum metabolite interference. In addition, communications with Ecology indicated Intermediate Water-Bearing Zone monitoring well FMW-159, given its apparent up-gradient location and otherwise non-impacted conditions, may be a potential background well. If so, it could be used to evaluate the contribution of naturally occurring organics in groundwater within the Intermediate Water-Bearing Zone and determine whether an adjustment to polar organic concentrations within and down-gradient of the groundwater plume are applicable. Therefore, the groundwater sample from well FMW-159 was also analyzed for total

DRO+ORO with silica gel cleanup during the November 2023 and February 2024 monitoring events and analyzed for TOC during the February 2024 event.

Total DRO+ORO was reported as non-detect at the laboratory PQLs in both of the groundwater samples analyzed with silica gel cleanup (Figure 14; Tables 7 and 12). TOC in well FMW-159 was quantified at 4.2 mg/L, or 4,200 µg/L, which is higher than both the median TOC (700 µg/L) and typical threshold TOC (2,000 µg/L) for groundwater based on literature (Thurman 1985; Chapman et. al. 1996). Associated chromatograms (Appendix C) also indicate NWTPH-Dx patterns are not consistent with the standard pattern for diesel and oil petroleum, suggesting the presence of polar organics. Given the relatively high TOC concentration at well FMW-159, the chromatogram evaluation, and analytical results for NWTPH-Gx and NWTPH-Dx (with silica gel cleanup) showing non-detectable petroleum hydrocarbons, there is strong evidence that the detected NWTPH-Dx results for well FMW-159 without silica gel cleanup is from naturally occurring organics and not petroleum. Therefore, well FMW-159 is suitable as a designated background well for the Intermediate Water-Bearing Zone. As such, the detected NWTPH-Dx concentrations at FMW-159 can be used to adjust the polar organics concentrations in the other intermediate zone wells at the Site to measure compliance for polar metabolites related to the breakdown of petroleum hydrocarbons.

Based on the Ecology Silica Gel Guidance and concurrence from Ecology, an adjusted polar metabolite cleanup level of 700 μ g/L was applied since the concentrations reported by NWTPH-Gx and NWTPH-Dx (with silica gel cleanup) analyses were non-detect at the laboratory PQLs during all four of the groundwater monitoring events (Table 12). Using the November 2023 total DRO+ORO concentration detected in well FMW-159 to adjust the November 2023 polar organics concentration (i.e., total DRO+ORO without silica gel cleanup) detected in monitoring well OW-1 to account for naturally occurring organics, the adjusted concentration is less than 700 μ g/L.

Naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene were reported as non-detect at the laboratory PQLs¹⁹ in all groundwater samples analyzed from the Intermediate Water

¹⁹ The laboratory had quality control issues with EPA Method 8270E related to the naphthalenes results for the February 2024 groundwater monitoring event, which the laboratory attributed to equipment issues. A decision was made to report naphthalenes from the EPA Method 8260D analysis due to Method 8270E quality control issues. 1-Methylnaphthalene and 2-methylnaphthalene results are being retained for the samples in the affected delivery groups but are being qualified as estimates (UJ) as shown in Table 8. The non-detect 1-methylnaphthalene and 2-methylnaphthalene results for these sample locations are consistent with the three previous groundwater monitoring rounds conducted in 2023. On April 22, 2024, Ecology

Bearing Zone monitoring wells during all four of the groundwater monitoring events (Figure 15; Table 8).

Deep Outwash Aquifer Monitoring Wells

Groundwater samples collected from the Deep Outwash Aquifer monitoring wells were only analyzed for CVOCs during the May 2023 monitoring event to assess post-construction conditions.

cDCE was detected at a concentration of 20.3 μ g/L, which exceeded the screening level of 16 μ g/L in the groundwater sample collected from monitoring well FMW-137 during the May 2023 monitoring event. cDCE was either detected at concentrations less than the screening levels or reported as non-detect at the laboratory PQL in the remaining groundwater samples collected from the Deep Outwash Aquifer monitoring wells.

Vinyl chloride was detected at concentrations of 0.320 and 0.880 μ g/L, which exceeded the screening level of 0.29 μ g/L, in groundwater samples collected from monitoring wells FMW-137 and FMW-165, respectively, during the May 2023 monitoring event. Vinyl chloride was reported as non-detect at the laboratory PQL in the remaining groundwater sample analyzed from Deep Outwash Aquifer monitoring well FMW-138.

PCE, TCE, and trans-1,2-DCE were either detected at concentrations less than the screening levels or were reported as non-detect at the laboratory PQLs in the groundwater samples analyzed from the Deep Outwash Aquifer monitoring wells (Table 9).

6.6 DATA VALIDATION

Farallon conducted a Level I Compliance Screening on all the analytical data collected during the interim actions, and data validation reports were prepared in accordance with the quality assurance/quality control (QA/QC) criteria as recommended in the methods identified in the National Functional Guidelines for Organic and/or Inorganic Methods Data Review (EPA 2020a, 2020b). The data validation reports are included in Appendix M.

A data validation report was prepared for the remaining RI dataset following completion of the February 2024 groundwater monitoring event and is included in Appendix M.

confirmed that no additional sampling for naphthalenes was required based on the results for the prior three groundwater monitoring events completed in 2023.

7.0 NATURE AND EXTENT OF CONTAMINATION

Based on the results from the previous investigations, interim actions, and the RI, the nature and extent of contamination at the Block 38 West Site has been adequately characterized to establish cleanup standards and support the evaluation of technically feasible cleanup action alternatives. This section presents a discussion on the nature and extent of each COPC, the affected media at the Block 38 West Site, and the hazardous substances retained as proposed constituents of concern (COCs) for the FFS.

Figures 4 through 10 show the nature and extent of soil impacts by COPCs and Figures 11A, 11B, and 11C through 16 show groundwater flow direction and the extent of groundwater impacts by COPCs. Figures 17 through 21 show the nature and extent of COPCs exceeding screening levels at the Block 38 West Site in vertical cross sections. Tables 1 through 12 summarize analytical results for COPCs detected in soil and groundwater samples collected at the Block 38 West Property, the alley, and the western sidewall of the Block 38 East Property, and groundwater elevations and monitoring well construction details.

7.1 SOIL

The majority of COPCs detected at concentrations exceeding screening levels were encountered from approximate elevations 23 to 15 feet NAVD88, extending deeper to elevation 10 feet NAVD88 in localized areas and within the fill soil and/or organic debris material across the Block 38 West Property. The independent interim action and the alley interim action conducted in conjunction with the redevelopment of the Block 38 West Property has removed the fill soil, wood debris, and soil with COPCs detected at concentrations exceeding screening levels from within the limits of the Block 38 West Property and to the maximum extent practicable in the adjacent alley.

7.1.1 Gasoline-Range Organics

GRO was detected at concentrations exceeding the screening level in performance soil samples collected from two localized areas on the Block 38 West Property during the independent interim action and one localized area during the alley interim action. Confirmation soil samples collected during the interim actions defined the lateral and vertical extent of GRO in soil and confirmed that the three localized areas of GRO-impacted soil were removed from the Block 38 West Site (Figure 4, Table 1). Based on these data, GRO is no longer present in soil at the Block 38 West Site and the soil to groundwater

pathway is incomplete. Therefore, GRO is not retained as a proposed COC for soil at the Block 38 West Site.

7.1.2 Benzene

Benzene was detected at concentrations exceeding the screening level in a single soil sample at the Block 38 West Site. Confirmation soil samples collected during the independent interim action defined the lateral and vertical extent of benzene in soil and confirmed that the localized area of benzene-impacted soil was removed from the Block 38 West Site (Figure 5, Table 1). Based on these data, benzene is no longer present in soil at the Block 38 West Site and the vapor intrusion and soil to groundwater pathways are incomplete for benzene at the Block 38 West Site. Therefore, benzene is not retained as a proposed COC for soil at the Block 38 West Site.

7.1.3 Total DRO+ORO

Total DRO+ORO was detected at concentrations exceeding the screening level in performance soil samples collected from three general areas on the Block 38 West Site during the independent interim action and the alley interim action: the northwestern corner of the Block 38 West Site proximate to USTO2 and the fuel product line; east-central portion of Block 38 West Property and the alley; and southwestern portion of the Block 38 West Site. The impacts were generally observed at elevations ranging from 22.5 to 15 feet NAVD88, which are likely associated with the former coal fill layer and impacted fill soil within wood debris documented at elevations ranging from 22 to 15 feet NAVD88. Confirmation soil samples collected during the independent interim action confirmed that the lateral and vertical limits of total DRO+ORO concentrations exceeding the screening level in soil have been defined within the limits of the Block 38 West Property and removed as part of the independent interim action.

Soil samples collected during the RI confirmed that the lateral and vertical extent of total DRO+ORO-impacted soil in the northwestern and southwestern portions of the Block 38 West Site have been defined. The lateral and vertical limits of total DRO+ORO-impacted soil associated with former bunker fuel oil USTs have been defined by borings advanced on the Block 38 West Property boundary and the adjoining rights-of-way, including boring FB-20 and sampling grid N1-NSW to the north, and boring FB-17 and sampling grid N1-WSW3 to the west. Total DRO+ORO was detected at a concentration exceeding the screening level in soil samples collected from former monitoring well FMW-134 in the southwestern portion of the Block 38 West Property at an elevation of 20 feet NAVD88. The lateral and vertical limits

of total DRO+ORO-impacted soil have been defined by borings advanced in the adjoining rights-of-way including monitoring well FMW-160 to the west, and monitoring wells FMW-161 and FMW-163 to the south.

Total DRO+ORO was detected at concentrations exceeding the screening level in soil samples collected at elevations ranging from 22.5 to 17.5 feet NAVD88 in the central portion of the alley (Figures 6 through 8 and 21; Table 1). The lateral extent of total DRO+ORO impacts in soil adjacent to location PH-12 and in the central portion of the alley has been defined (Figures 6 through 8 and 21). The vertical limits at locations PH-12 and G/A5-B are estimated to be approximately 15 feet NAVD88 based on the subsurface investigations and the extent of fill soil observed during the alley interim action (Figures 8 and 21). The vertical limits of total DRO+ORO-impacted soil in the central portion of the alley are defined by borings, FB-11 through FB-16, and alley interim action confirmation samples H/A5-B and I/A5-B, at elevations ranging from 17.5 to 15 feet NAVD88 (Figures 8 and 21). The impacts observed in the central portion of the alley at elevations ranging from 22.5 to 15 feet NAVD88 are likely associated with the former coal fill layer and impacted fill soil within wood debris documented in the alley at elevations ranging from 22 to 15 feet NAVD88 (Figure 21).

Based on these data, residual concentrations of total DRO+ORO are present in fill soil that remains in a wedge of soil west of the former UST product line area on the northwestern portion of the Block 38 West Site and in the alley area of the Block 38 West Site (Figures 24, 26 through 28, Table 2). Total DRO+ORO is retained as a proposed COC for soil at the Block 38 West Site.

7.1.4 Naphthalenes

Naphthalene, 1-methylnaphthalene, and/or 2-methylnaphthalene were detected at concentrations exceeding the saturated zone soil protective of groundwater screening level in performance soil samples collected from three general areas on the Block 38 West Site during the independent interim action and the alley interim action. These areas include the northwestern corner of the Block 38 West Site proximate to USTO2 and the fuel product line, east-central portion of Block 38 Property and the alley, and southwestern portion of the Block 38 West Site. Confirmation soil samples collected during the independent interim action soil samples collected during the independent interim detected in soil at concentrations exceeding the screening levels were excavated and

removed from within the Block 38 West Property boundary and from within the limits of the alley excavation (Figure 9, Table 2).

Naphthalene, 1-methylnaphthalene, and/or 2-methylnaphthalene were detected at concentrations exceeding the saturated soil screening levels protective of groundwater in soil samples collected from the following locations (Figure 9; Table 2):

- Naphthalene and 1-methylnaphthalene in the soil sample collected from monitoring well FMW-163 in the Republican Street right-of-way at elevation 15 feet NAVD88;
- 1-Methylnaphthalene in the soil sample collected from boring FB-20 in the Mercer Street right-of-way at elevation 15 feet NAVD88;
- 1-Methylnaphthalene in the soil sample collected from boring FB-21 in the Mercer Street right-of-way at elevation 28 feet NAVD88; and
- Naphthalene, 1-methylnaphthalene, and/or 2-methylnaphthalene in soil samples collected along the eastern sidewall of the alley construction excavation.

Naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene were not detected at concentrations exceeding the screening levels in groundwater samples collected from the Shallow and Intermediate Water-Bearing Zones monitoring well network at the Block 38 West Site in May, August, and November 2023, and in February 2024 (Figure 15, Table 8). Therefore, the soil-leaching-to-groundwater pathway is no longer a complete pathway to exposure. Based on the groundwater data collected during the RI and post interim actions, the soil screening levels for protection of the direct contact pathway for naphthalenes are applicable for the Block 38 West Site. Those values were applied to the RI data set to evaluate the extent of naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene that remains in soil exceeding the applicable screening levels post interim actions (Figures 26 through 28, Table 2).

Based on the updated screening levels for soil (i.e., protective of direct contact), none of the remaining concentrations of naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene exceed the screening levels in soil at the Site. Therefore, these compounds are not retained as proposed COCs for soil at the Block 38 West Site.

7.1.5 Carcinogenic Polycyclic Aromatic Hydrocarbons

cPAHs were detected at concentrations exceeding the screening level in performance soil samples collected from the north-, east-, and west-central portions of the Block 38 West Site

during the independent interim action and the alley interim action. The impacts were generally observed at elevations ranging from 22.5 to 15 feet NAVD88, which are likely associated with the former coal fill layer and impacted fill soil within wood debris documented at elevations ranging from 22 to 15 feet NAVD88. Confirmation soil samples collected during the independent interim action confirmed that cPAHs detected in soil at concentrations exceeding the screening levels were excavated and removed from within the Block 38 West Property boundary and from within the limits of the alley excavation (Figure 10, Table 2).

Soil samples collected during the RI confirmed that the lateral and vertical extent of cPAHimpacted soil in the northwestern, west-central, and southwestern portions of the Block 38 West Site have been defined, as follows:

- The lateral and vertical limits of cPAH-impacted soil associated with former bunker fuel oil USTs have been defined by borings advanced on the Block 38 West Property boundary and the adjoining rights-of-way, including boring FB-20 and sample N1-NSW to the north. The distribution of cPAH concentrations in that area and the data for boring FB-17 suggest that the lateral extent of cPAHs to the west is slightly beyond boring FB-17within the Westlake Avenue North right-of-way.
- The lateral and vertical limits of cPAH-impacted soil associated with soil samples collected from test pit, TP-12, on the west-central portion have been defined by borings advanced on the Block 38 West Property boundary and the adjoining rights-of-way, including borings FB-18 and FB-19, to the west (Figure 10, Table 2).
- Potential cPAH-impacted soil in the southwestern portion of the Block 38 West Property at an elevation of 20 and 15 feet NAVD88 were evaluated. cPAHs were detected at concentrations less than the screening level or reported non-detect at the laboratory PQL in soil samples collected from borings advanced in the adjoining rights-of-way including monitoring well FMW-160 to the west, and monitoring wells FMW-161 and FMW-163 to the south (Figure 10).
- The vertical extent of cPAHs was defined east of the Block 38 West Property during the alley interim action by borings FB-10 through FB-16 and FB-21 at elevations ranging from 17.5 to 15 feet NAVD88 (Figures 10 and 21). The lateral extent of cPAHs east of the Block 38 West Property were defined to the south by alley interim action soil confirmation sample A/A5-SSW. The distribution of cPAH concentrations in the alley and the data for boring FB-21 suggest that the lateral extent of cPAHs to the

north is slightly beyond boring FB-21 within the Mercer Street right-of-way (Figures 10 and 21).

Based on these data, residual concentrations of cPAHs are present in fill soil that remains in the Westlake Avenue North and Mercer Street rights-of-way and in the alley area of the Block 38 West Site and are retained as proposed COCs for soil at the Block 38 West Site (Figures 25 through 28, Table 3).

7.1.6 Barium and Mercury

Barium was detected at concentrations exceeding the saturated zone soil screening level for protection of groundwater in soil samples from borings FB-01 through FB-04 and monitoring wells FMW-133 and FMW-135; and mercury was detected at a concentration exceeding the saturated zone soil screening level for protection of groundwater in the sample from boring FB-02 at the Block 38 West Site (Table 5).

Barium and mercury were not detected at concentrations exceeding the screening levels in groundwater samples collected from select Shallow Water-Bearing Zone monitoring wells at the Block 38 West Site in May 2023 (Table 11). Based on the groundwater data collected during the RI and post interim actions, the barium and mercury soil screening levels for protection of the direct contact pathway are applicable for the Block 38 West Site. Those values were applied to the RI data set to evaluate the extent of barium and mercury in soil (Table 5). After applying the revised screening levels for soil (i.e., protective of direct contact), barium and mercury were not detected at concentrations exceeding the applicable screening soil levels at the Block 38 West Site. Therefore, metals as barium and mercury are not retained as proposed COCs for soil for the Block 38 West Site.

7.2 GROUNDWATER

Previous subsurface investigations documented localized petroleum hydrocarbon and naphthalenes impacts to the Shallow and/or Intermediate Water-Bearing Zones at the Block 38 West Property. The nature and extent of groundwater impacts were evaluated postinterim actions to support the evaluation of cleanup alternatives for the Block 38 West Site. Groundwater quality in the Shallow Water-Bearing Zone was evaluated by monitoring a network of seven groundwater monitoring wells, FMW-154, FMW-155, FMW-156, FMW-158, FMW-160, FMW-161, and FMW-163, in the rights-of-way surrounding the Block 38 West Site (Figures 3 and 11A). Groundwater quality in the Intermediate Water-Bearing Zone was evaluated by a monitoring network of eleven groundwater monitoring wells, FMW-150

through FMW-153, FMW-157, FMW-159, FMW-162, FMW-164, and OW-1 through OW-3, within the building foundation and in the rights-of-way surrounding the Block 38 West Site (Figures 3 and 11B).

7.2.1 Gasoline-Range Organics

GRO was reported non-detect at the laboratory PQL in groundwater samples collected from the Shallow Water-Bearing Zone monitoring well network at the Block 38 West Site in May, August, and November 2023, and in February 2024 (Figure 12, Table 7). Based on these data, the soil to groundwater pathway is incomplete for GRO, and GRO is not retained as a proposed COC for groundwater at the Block 38 West Site.

7.2.2 Benzene

Benzene was either detected at concentrations less than the screening levels or reported as non-detect at laboratory PQLs in groundwater samples collected from the Shallow Water-Bearing Zone monitoring well network at the Block 38 West Site in May, August, and November 2023, and in February 2024 (Figure 13, Table 7). Based on these data, the vapor intrusion and soil to groundwater pathways are incomplete for benzene at the Block 38 West Site. Therefore, benzene is not retained as a proposed COC for groundwater at the Block 38 West Site.

7.2.3 Total DRO+ORO

Prior to the independent interim action, total DRO+ORO was detected at concentrations exceeding the screening levels in a reconnaissance groundwater sample collected from boring FB-O3 and in a groundwater sample collected from monitoring well FMW-134, both of which were located in the Shallow Water-Bearing Zone. Total DRO+ORO was detected at concentrations exceeding the screening level in groundwater samples collected from former monitoring wells FMW-145, FMW-146, and FMW-147 in the Intermediate Water-Bearing Zone.

The laboratory analytical results for the May 2023 groundwater monitoring event reported total DRO+ORO at concentrations less than the groundwater screening level of 500 μ g/L or reported as non-detect at the laboratory PQLs in all seven monitoring wells in the Shallow Water-Bearing Zone (Figure 14, Table 7). The laboratory analytical results for the August 2023 monitoring event detected total DRO+ORO at concentrations exceeding the screening level of 500 μ g/L in groundwater samples collected from monitoring wells FMW-154, FMW-155, and FMW-160. The laboratory analytical results for the November 2023 monitoring

event detected total DRO+ORO at concentrations exceeding the screening level of 500 μ g/L in groundwater samples collected from monitoring wells FMW-154 and FMW-155. The laboratory analytical results for the February 2024 monitoring event detected total DRO+ORO at a concentration exceeding the screening level of 500 μ g/L in the groundwater sample collected from monitoring well FMW-155.

The laboratory analytical results for the May and August 2023 and February 2024 groundwater monitoring events reported total DRO+ORO at concentrations less than the groundwater screening level of $500 \ \mu g/L$ or as non-detect at the laboratory PQLs in all eleven monitoring wells in the Intermediate Water-Bearing Zone (Figure 14, Table 7). The laboratory analytical results for the November 2023 groundwater monitoring event had a detection of total DRO +ORO at a concentration that exceeded the screening level in monitoring well OW-1 (Figure 14, Table 7).

Based on the total DRO+ORO analytical results for August and November 2023 groundwater monitoring events, groundwater samples collected from monitoring wells FMW-154, FMW-155 and/or FMW-160 in the Shallow Water-Bearing Zone and OW-1 in the Intermediate Water-Bearing Zone, were further analyzed for DRO and ORO with silica gel cleanup to gain additional perspective on biogenic or petroleum metabolite interference. The background wells identified in Section 6.5.3 (FMW-158 and FMW-159) were analyzed with silica gel cleanup to evaluate the contribution of naturally occurring organics in groundwater and determine whether an adjustment to polar organic concentrations within and down-gradient of the groundwater plume are applicable for the August and November 2023 groundwater monitoring events.

Total DRO+ORO was reported as non-detect at the laboratory PQLs in all groundwater samples analyzed with silica gel cleanup (Figure 14, Tables 7 and 12). ORO was detected post silica gel cleanup in a groundwater sample collected from monitoring well FMW-154 in August 2023 and Apex Laboratories noted that this detection may be attributed to sediment interference in the silica gel cleanup analysis and is less than Ecology's Silica Gel Guidance reporting limit of 250 μ g/L (Table 12).

In accordance with Ecology's Silica Gel Guidance, sites with no detectable concentrations of petroleum hydrocarbons (i.e., no detectable GRO and no detectable DRO+ORO when analyzed with silica gel cleanup) shall use the polar metabolite cleanup level of 700 μ g/L to demonstrate compliance under the NWTPH-Dx method. The polar organic concentrations detected in the background monitoring wells, FMW-158 and FMW-159 for the Shallow and

Intermediate Water-Bearing Zones, respectively, were subtracted from the total polar organics detected in monitoring wells, FMW-154, FMW-155, FMW-160, and OW-1 (Table 12). The adjusted concentrations of polar organics were all less than 700 μ g/L (Table 12).

Based on these data, the soil to groundwater pathway is incomplete for total DRO+ORO and for petroleum-related polar metabolites. Therefore, total DRO+ORO is not retained as a proposed COC for groundwater at the Block 38 West Site.

7.2.4 Naphthalenes

Naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene were either detected at concentrations less than the screening levels or were reported as non-detect at laboratory PQLs in groundwater samples collected from the Shallow and Intermediate Water-Bearing Zones monitoring well network at the Block 38 West Site in May, August, and November 2023 and February 2024 (Figure 15, Table 8). Based on these data, the vapor intrusion and soil to groundwater pathways are incomplete for naphthalene, 1-methylnaphthalene at the Block 38 West Site. Therefore, naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene are not retained as proposed COCs for groundwater at the Block 38 West Site.

7.2.5 Barium and Mercury

To evaluate the potential soil to groundwater exposure pathway for metals as barium and mercury, groundwater was monitored from Shallow Water-Bearing Zone monitoring wells FMW-154, FMW-155, FMW-156, and FMW-158 (Figure 3). Barium was detected at concentrations less than the groundwater screening level in all four monitoring wells analyzed (Table 11). Mercury was reported as non-detect at the laboratory PQL in a groundwater sample collected from monitoring well FMW-155 (Table 11). Based on these data, the soil to groundwater pathway is incomplete for barium and mercury. Therefore, barium and mercury are not retained as proposed COCs for groundwater at the Block 38 West Site.

8.0 CONCEPTUAL SITE MODEL

This section provides a summary of the conceptual site model (CSM) developed for the Block 38 West Site derived from the results from the RI including previous investigations and interim actions conducted at the Block 38 West Site. Included in this section is a discussion of the media of concern, potential receptors and exposure pathways, proposed cleanup levels, proposed COCs, and the confirmed and suspected sources of contamination. The CSM is used as a basis for developing technically feasible cleanup alternatives and selecting a final cleanup action in accordance with MTCA regulations.

8.1 CONFIRMED AND SUSPECTED SOURCES OF CONTAMINATION

Based on the results from the RI and the interim actions completed by Farallon and others, the following historical operations and/or features were confirmed as sources of soil and/or groundwater contamination at the Block 38 West Site:

- Historical placement of impacted fill soil;
- Impacted fill soil located within wood debris associated with the former lumber mill operations on Block 38;
- Former timber pilings associated with historical buildings;
- Oil encountered in a sanitary sewer line at the southeastern portion of the Block 38 West Property (efforts to evaluate the sanitary sewer line indicated no specific point of release or former feature to which the sanitary sewer line was connected);
- A coal fill layer ranging in thickness from 4 to 6 inches encountered across the eastcentral and northern portions of the Block 38 West Property and in the southern and central portions of the alley at approximate elevation 20 feet NAVD88;
- Localized impacts associated with bunker fuel oil USTs encountered in the northwestern portion of the Block 38 West Property; and
- Localized impacts associated with a former railroad trestle and former timber pilings within the alley.

The 1-methylnaphthalene impacts in soil detected at elevations 20 to 15 feet NAVD88 and cPAH impacts in soil detected between elevations 25 and 15 feet NAVD88 adjacent to UST01 and UST02 were similarly observed over the majority of the northern portion of the Block 38 West Property and are associated with fill material. Accordingly, Farallon does not

attribute naphthalenes and/or cPAH concentrations detected in soil adjacent to UST01, the fuel product line, and UST02 to be solely related to the release of bunker fuel oil.

Farallon observed that the fill soil layer varied in thickness from 5 to 10 feet, with a coal fill layer observed during the mass excavation on the Block 38 West Property at shallow depths, in the east-central mass excavation sidewall, and in the adjacent alley. The coal fill layer is likely attributed to former coal storage associated with the former fuel yard on the Block 38 East Property (Lots 2 through 5) as discussed in Section 2.4.2. Beneath the fill soil layer, the wood debris layer varied in thickness from 10 to 20 feet, thickest along the northern and northeastern Block 38 West Property boundaries, and is attributed to former lumber mill operations and lumber storage on Block 38 and former timber pilings associated with historical structures, including the former railroad trestle. Accordingly, silt and underlying silty sand could contain hazardous substances associated with fill and wood debris (Farallon 2018).

CVOCs detected in groundwater in the Deep Outwash Aquifer near the perimeter of the Block 38 West Property appear to be associated with the American Linen Site:

- Data indicate that the portion of the American Linen CVOC Plume within the Deep Outwash Aquifer extends northeast from the 700 Dexter Avenue North Property past Valley Street, south across Roy Street, and east and southeast across Westlake Avenue North onto the western portion of the Block 37 Property and into Mercer Street (PES 2022).
- Prior to construction dewatering at the Block 38 West Property, the American Linen CVOC Plume impacted groundwater near the Block 38 West Property in the lower portion of the Intermediate Water-Bearing Zone and Deep Outwash Aquifer. cDCE was detected at concentrations up to 1.3 µg/L in the Intermediate Water-Bearing Zone and Deep Outwash Aquifer beneath the Block 38 West Property prior to startup of the construction dewatering system. Historical groundwater sampling of the Shallow Water-Bearing Zone on the Block 38 West Property (including monitoring wells FMW-130 [reconnaissance sample] and FMW-132 through FMW-135) (Table 9) indicates that no shallow sources of CVOCs to groundwater were present on the Block 38 West Property.

Performance groundwater monitoring of the Deep Outwash Aquifer during construction dewatering indicated increasing cDCE and vinyl chloride concentrations along the northwestern boundary of the Block 38 West Property, confirming migration of the American

Linen CVOC plume toward the Block 38 West Site. The purpose of the dewatering performance groundwater monitoring was to monitor concentrations of CVOCs in groundwater associated with the American Linen CVOC Plume, as further described in the Technical Memorandum regarding Groundwater Monitoring Program (Farallon 2020a, Appendix F). Additional details and data are provided in Appendix F, and a summary is presented below:

- In May 2023, a single post-construction-dewatering groundwater performance monitoring event was completed to evaluate impacts from the American Linen CVOC Plume in the Deep Outwash Aquifer. The event was performed in general accordance with the Technical Memorandum (Farallon 2020a, Appendix F), as it included Deep Outwash Aquifer monitoring wells FMW-137 and FMW-138 but also included new well FMW-165. The results indicated that cDCE was detected at a concentration exceeding the screening level in the groundwater sample collected from FMW-137 (Table 9). cDCE was reported as non-detect at the laboratory PQLs in the samples collected from wells FMW-138 and FMW-165. Vinyl chloride was detected at concentrations exceeding the screening level in groundwater samples collected from wells FMW-137 and FMW-165, and was reported as non-detect at the laboratory PQL in the sample from well FMW-138. No other CVOCs were detected in the samples from these wells.
- These results indicate that the American Linen CVOC Plume is impacting groundwater along the northern portion of the Block 38 West Site at concentrations exceeding screening levels in the Deep Outwash Aquifer. As noted in Section 2.4.5, investigation and cleanup of the American Linen Site is being conducted by BMR-Dexter LLC under Agreed Order No. DE 14302.

8.2 MEDIA OF CONCERN

The confirmed medium of concern at the Block 38 West Site, based on the results from the RI and interim actions, is soil. Groundwater is not retained as a potential medium of concern based on the results from the groundwater monitoring conducted between May 2023 and February 2024, as discussed in Section 7.2.

8.3 TRANSPORT PATHWAYS

Hazardous substances in soil at the Block 38 West Site have the potential to migrate through natural mechanisms that may result in exposure to human and ecological receptors. The primary potential migration pathways at the Block 38 West Site are the following:

• Soil to Groundwater

Based on the results from the RI and interim actions, the soil to groundwater pathway is incomplete at the Block 38 West Site. The independent interim action and alley interim action conducted at the Block 38 West Site removed soil with proposed COCs detected at concentrations exceeding screening levels from within the limits of the Block 38 West Property and to the maximum extent practicable in the adjacent alley, eliminating the soil to groundwater pathway from the Block 38 West Property.

The RI groundwater monitoring program further evaluated the potential soil to groundwater pathway for proposed COCs detected at concentrations exceeding screening levels in soil beyond the limits of the construction excavation in the alley and the adjacent rights-of-way. Based on the groundwater data collected during the RI, the interim actions have eliminated the soil to groundwater pathway throughout the Block 38 West Site.

• Soil/Groundwater to Air

Volatile compounds in soil and shallow groundwater have the potential to volatilize to the vapor phase and intrude into nearby structures. However, based on the soil and groundwater data collected during the RI, the interim actions have eliminated throughout the Block 38 West Site any volatile compounds in soil and/or groundwater with the potential to volatilize to indoor air. The soil/groundwater pathway to air is considered incomplete.

• Groundwater to Surface Water and Sediment

Prior to interim actions, COPCs were detected at concentrations exceeding screening levels in groundwater samples collected on the Block 38 West Site. Based on the results from the RI, groundwater is no longer a medium of concern and the confirmed groundwater flow direction to the south, away from Lake Union (Figures 11A through 11C), confirm that the groundwater to surface water and sediment pathway is considered incomplete.

• Soil to Fugitive Dust

Transport of soil via fugitive dust is a secondary transport pathway for contaminated soil that was potentially complete during interim actions; however, the final cleanup action includes engineering controls (capping impacted soil with an impervious surface) to mitigate this transport pathway.

8.4 POTENTIAL RECEPTORS AND EXPOSURE PATHWAYS

The potential exposure risks to human health and the environment associated with the presence of hazardous substances in soil and/or groundwater at the Block 38 West Site were evaluated and presented on Figure 29. This subsection presents the evaluation and conclusions pertaining to the potential exposure pathways at the Block 38 West Site.

8.4.1 Soil Direct Contact

Soil containing hazardous substances detected at concentrations exceeding screening levels was removed from within the limits of the Block 38 West Property and within the construction excavation extent in the alley but may be present beyond the limits of the construction excavation in the alley and adjacent rights-of-way. The standard point of compliance for the direct contact exposure pathway for soil is a depth of 15 feet bgs for human health and 6 feet bgs for terrestrial receptors (WAC 173-340-740[6][d] and WAC 173-340-7490[4][b]). Hazardous substances (i.e., total DRO+ORO and cPAHs) at concentrations exceeding screening levels were detected in shallow soil, less than 15 feet bgs, ranging in elevation from 20 to 15 feet NAVD88 (10 to 15 feet bgs) adjacent to the northwestern corner of the Block 38 West Property and beyond the limits of the alley interim action.

Proposed COCs in soil at the Block 38 West Site after completion of the interim actions are covered by the current buildings, pavement, and sidewalks, effectively eliminating the direct contact exposure pathway. Institutional controls such as an Ecology-approved Environmental Covenant will be required to maintain current barriers and prevent potential exposure in the future.

8.4.2 Groundwater Ingestion/Drinking Water Beneficial Use

Based on the results from the RI and interim actions, the contact with and/or ingestion of groundwater exposure pathway is incomplete at the Block 38 West Site. No hazardous substances were detected in groundwater at concentrations exceeding screening levels in

the Shallow or Intermediate Water-Bearing Zones. Therefore, groundwater is not retained as a medium of concern for the Block 38 West Site.

8.4.3 Vapor Inhalation

Based on the results from the RI and interim actions, the potential for a vapor intrusion risk from hazardous substances is incomplete. Prior to interim actions, naphthalene was detected at concentrations exceeding groundwater screening levels protective of indoor air in Shallow Water-Bearing Zone groundwater samples on the southwestern portion of the Block 38 West Property. The independent interim action removed the Shallow Water-Bearing Zone within the Property boundary and included the installation of a chemical resistant vapor barrier as a preemptive vapor intrusion mitigation measure. The barrier material, which is rated for petroleum hydrocarbons and other VOCs, would eliminate and/or reduce the potential vapor inhalation pathway for future building occupants if volatile hazardous substances were still present beyond the Property boundary. However, post-construction RI sampling at Shallow Water-Bearing Zone monitoring wells surrounding the southwestern corner of the Property indicate that naphthalene is not detectable above laboratory reporting limits. The vapor barrier will also provide protection against potential vapor intrusion of CVOCs proximate to the Block 38 West Property from the American Linen Site.

8.4.4 Potential Receptors

Based on the results from the RI and interim actions, direct contact with soil, incidental ingestion of soil, and/or inhalation of fugitive dust from the residual shallow soil impacts (less than 15 feet bgs) are the only future potential complete exposure pathways at the Block 38 West Site. The future potential pathways are only complete if the existing cap is removed or breached. Potential receptors that may be exposed to proposed COCs through these pathways would likely include future construction workers excavating in soil less than 15 feet bgs, future workers and patrons of the commercial and retail facilities, and/or local residents. If a risk were present, then the risk to the vulnerable population or overburdened community would be no greater than it would be to the general public.

8.4.5 Terrestrial Ecological Evaluation

A Terrestrial Ecological Evaluation (TEE) is required by WAC 173-340-7490 at any site where there has been a release of a hazardous substance to soil. The regulation requires that one of the following actions be taken:

• Documenting a TEE exclusion using the criteria presented in WAC 173-340-7491;

- Conducting a simplified TEE in accordance with WAC 173-340-7492; or
- Conducting a site-specific TEE in accordance with WAC 173-340-7493.

Based on the criteria for TEE exclusion in WAC 173-340-7491(1)(c)(i), the Block 38 West Site is excluded from a TEE because there is less than 1.5 acres of contiguous undeveloped land on or within 500 feet of any area of the Block 38 West Site; the Block 38 West Site is not contaminated with the hazardous substances listed in WAC 173-340-7491(1)(c)(ii); and based on the criteria in WAC 173-340-7491(1)(b), all soil contaminated with hazardous substances is, or will be, covered by buildings, paved roads, pavement, or other physical barriers that will prevent plants or wildlife from being exposed to the soil contamination. No further consideration of ecological impacts is required under MTCA. The Ecology Terrestrial Ecological Evaluation Form is provided in Appendix N.

8.5 PROPOSED CONSTITUENTS OF CONCERN

COPCs were selected based on the known historical uses of the Block 38 West Property and surrounding historical land use, fill known to have been placed historically in this area of South Lake Union, USTs encountered, and the potential for releases of contaminants at concentrations exceeding screening levels.

Proposed COCs retained for the Block 38 West Site consist of those hazardous substances that were detected in soil and/or groundwater samples collected from the Block 38 West Site and surrounding areas at concentrations exceeding the screening levels identified in Section 6.1 (Table 13). Based on the RI, residual concentrations of total DRO+ORO and/or cPAHs are present in fill soil that remains in the Westlake Avenue North and Mercer Street rights-of-way and in the alley area of the Block 38 West Site (Figures 24 through 28). The results from the RI confirmed that the interim actions completed have eliminated the soil leaching to groundwater pathway at the Block 38 West Site and the applicable soil screening levels were updated to reflect a direct contact exposure pathway (Table 14). Based on the nature and extent of soil contamination remaining at the Block 38 West Site and as described above in Section 7.1, total DRO+ORO and cPAHs are the only COPCs detected at concentrations exceeding the screening levels within 15 feet of the ground surface in the Westlake Avenue North right-of-way, Mercer Street right-of-way, and/or the alley area of the Block 38 West Site. Based on these residual impacts the proposed COCs retained for soil are:

• Total DRO+ORO; and

• Total cPAHs TEC.

As discussed above and in Section 7.2, no COPCs were detected in groundwater at concentrations exceeding the screening levels identified in Section 6.1 (Table 13). Based on the results from the RI, no hazardous substances were retained as proposed COCs for groundwater.

8.6 PROPOSED CLEANUP LEVELS

Screening levels were established for the RI based on the potential exposure pathways and receptors (identified in Section 8.3) to identify a conservative basis for defining the extent of contamination for each COPC and medium of potential concern. Proposed cleanup levels for the Block 38 West Site have been developed in accordance with WAC 173-340-700 through 173-340-760 to be protective of human health and the environment, including likely vulnerable populations and/or overburdened communities as identified in Section 2.7. The proposed cleanup levels for the proposed COCs in soil identified above are based on MTCA Method B cleanup levels protective of direct contact. MTCA Method A cleanup levels can be used as a surrogate for Method B for compounds that do not have established Method B cleanup levels. Based on the residual soil contamination present at the Block 38 West Site and the current engineering controls in place, it is unlikely that any human receptors, including those that are part of a vulnerable population or overburdened community, are at risk unless the existing cap is breached or removed as discussed in Section 8.4.4.

The proposed cleanup levels for the proposed COCs in soil at the Block 38 West Site are summarized below and in Table 14:

- Total DRO+ORO: 2,000 mg/kg (based on MTCA Method A, unrestricted land uses);
- Total cPAHs TEC: 0.19 mg/kg (based on MTCA Method B, direct contact).

9.0 FOCUSED FEASIBILITY STUDY

This section provides a summary of the technical elements for an FFS to select a preferred cleanup alternative for media of concern or demonstrate that the interim actions completed at the Block 38 West Site constitute a permanent cleanup action and were permanent to the maximum extent practicable in accordance with MTCA and current land use. These technical elements include identifying the cleanup action goals, cleanup technologies, proposed COCs, affected media, and the proposed cleanup levels appropriate for the Block 38 West Site, and identifying a preferred cleanup action.

The former Block 38 West Property structures were demolished as part of the recent redevelopment. The Block 38 West Property redevelopment included construction of a multi-story mixed-use building, with 12 stories above street level and four levels of underground parking.

9.1 SUMMARY OF REMAINING CONTAMINATION AND APPLICABLE CLEANUP STANDARDS

The RI identified total DRO+ORO and cPAHs that remain in soil at concentrations greater than proposed cleanup levels on the Block 38 West Site. Based on the results from the RI, subsurface investigations, and interim actions completed to date by Farallon and others, the following historical operations and/or features were confirmed as sources of soil contamination at the Block 38 West Site: historical placement of impacted fill soil; former timber pilings associated with historical buildings; a coal fill layer encountered across the east-central and northern portions of the Block 38 West Property and within the alley; localized impacts associated with former bunker fuel oil USTs encountered in the northwestern portion of the Block 38 West Property; oil encountered in a sanitary sewer line at the southeastern portion of the Block 38 West Property, and localized impacts associated with a former timber pilings within the alley as discussed in Section 8.1. The RI also confirmed the presence of CVOCs, specifically cDCE and vinyl chloride associated with the American Linen CVOC Plume, in groundwater along the northwestern portion of the Block 38 West Property at concentrations exceeding American Linen screening levels.

Soil containing total DRO+ORO and cPAHs at concentrations greater than the proposed cleanup levels identified in Section 8.6 remains in localized areas within the alley and near the northwestern boundary of the Block 38 West Property as described in Section 7.1 and shown on Figures 24 and 25. The proposed cleanup levels—2,000 mg/kg for total DRO+ORO and 0.19 mg/kg for total cPAHs TEC—are based on protection of direct soil

contact exposures. As such, the point of compliance where the proposed soil cleanup levels must be met is soil throughout the Site from ground surface to 15 feet bgs, in accordance with WAC 173-340-740(6)(d). The remaining contaminants exceeding the proposed cleanup levels are present in soil at depths ranging from approximately 5 to 15 feet bgs.

9.2 CLEANUP ACTION REQUIREMENTS AND GOALS

As part of the focused feasibility study, Farallon evaluated remediation technologies for the Block 38 West Site with respect to the cleanup requirements set forth in MTCA. A cleanup action must satisfy the following general requirements, as specified in WAC 173-340-360(3)(a):

- Protect human health and the environment, including likely vulnerable populations and overburdened communities;
- Comply with cleanup standards;
- Comply with applicable state and federal laws;
- Prevent or minimize present and future releases and migration of hazardous substances in the environment;
- Provide resilience to climate change impacts that have a high likelihood of occurring and severely compromising its long-term effectiveness;
- Provide for compliance monitoring;
- Not rely primarily on institutional controls and monitoring at a site, or a portion thereof, if it is technically possible to implement a more permanent cleanup action;
- Not rely primarily on dilution and dispersion unless the incremental costs of any active remedial measures over the costs of dilution and dispersion grossly exceed the incremental degree of benefits;
- Provide for a reasonable restoration time frame; and
- Use permanent solutions to the maximum extent practicable.

In addition to the general requirements listed above, MTCA requires that cleanup actions be evaluated for action-specific requirements (WAC 173-340-360(3)(b)), media-specific requirements (WAC 173-340-360(3)(c), and public concerns and tribal rights and interests (WAC 173-340-360(3)(d)).

Block 38 West Site-specific cleanup action goals were also identified in accordance with WAC 173-340-351(6)(a). The cleanup action goals listed below provide additional framework for the proposed cleanup action at the Block 38 West Site:

- Achieve cleanup standards using a permanent solution as defined in WAC 173-340-200 that meets MTCA requirements for cleanup actions per WAC 173-340-360 and WAC 173-340-370;
- Eliminate the exposure pathways for proposed COCs in soil; and
- Protect human health and the environment, including vulnerable populations and overburdened communities located near the Block 38 West Site.

9.3 TECHNOLOGY SCREENING AND ASSESSMENT OF INTERIM REMEDIAL ACTIONS

Cleanup actions may consist of multiple general response actions to meet the cleanup action goals for a cleanup site. Typical general response actions that are applicable to most cleanup sites include:

- No action;
- Institutional controls;
- Containment;
- Removal;
- Ex-situ treatment; and
- In-situ treatment.

Of these response actions, the interim actions completed to date at the Block 38 West Site have primarily included removal of affected soil and groundwater. Other general response actions that are applicable to the Block 38 West Site include containment and institutional controls. In-situ and ex-situ treatment options are very limited for addressing the contaminants that remain at the Block 38 West Site, and no action would not be appropriate as it would not achieve cleanup action goals.

Property redevelopment included construction dewatering and mass excavation. A contaminant resistant vapor barrier was installed to prevent potential impacts from soil vapor contamination and/or future migration of CVOCs in soil gas and/or groundwater from the American Linen CVOC Plume onto the Block 38 West Site, if present. Because these technologies were implemented through interim actions at the Block 38 West Site at a scale

sufficient for cleanup, they were identified for the selected cleanup action (in addition to treatment of contaminated groundwater as part of the permitted extraction of groundwater during construction). Based on the results from the RI, subsurface investigations and interim actions, further evaluation of other remedial technologies is not necessary.

The interim actions conducted concurrent with redevelopment achieved the following:

- Permanent removal of soil with concentrations of the proposed COCs that exceed proposed cleanup levels from within the limits of the Block 38 West Property;
- Removal of contaminated soil and groundwater within the Shallow Water-Bearing Zone and the upper portion of the Intermediate Water-Bearing Zone beneath the Block 38 West Property; and
- Permanent removal of soil with concentrations of the proposed COCs that exceed proposed cleanup levels encountered within the limits of the construction excavation during improvements made to the alley.

In addition, the new building foundation design on the Block 38 West Property included the installation of a chemical resistant vapor barrier around the entire perimeter and beneath the building foundation, eliminating the potential for future vapor intrusion into the finished structure. All remaining soil contamination is contained beneath impervious surfaces installed as part of the property improvements.

The potential for continued migration of CVOCs from the American Linen CVOC Plume onto the Block 38 West Site in groundwater remains possible until the CVOC source on the American Linen Site is fully remediated. Any exposure pathway from soil vapor to indoor air associated with potential current and/or future migration of CVOCs in soil gas and/or groundwater from the American Linen CVOC Plume onto the Block 38 West Site will be mitigated by the vapor and groundwater barrier system installed on the below-grade portion of the new structure.

Removal of soil, removal of the Shallow Water Bearing-Zone beneath the Block 38 West Property, installation of a chemical resistant vapor barrier at the Block 38 West Site, and installation of new pavement within the alley and surrounding the Block 38 West Property comprise the cleanup action with the greatest permanence. Although other cleanup alternatives may have been less costly, those alternatives were unlikely to have resulted in a shorter restoration time frame, may not be as permanent, and were incompatible with the planned development of the Block 38 West Site.

9.4 SELECTED CLEANUP ACTION

Sufficient information is presented in this RI/FFS Report to select, design, and implement a permanent cleanup action at the Block 38 West Site that is protective of human health and the environment. As noted in Section 9.2, one of the cleanup action objectives is to achieve cleanup standards using a permanent solution as defined in WAC 173-340-200 that meets MTCA requirements for cleanup actions per WAC 173-340-360 and WAC 173-340-370. Based on the RI data, completion of interim actions, and the assessment of practical remedial alternatives in light of redevelopment of the Block 38 West Site, the selected cleanup action consists of the following elements:

- Complete removal of affected soil and groundwater by mass excavation to an elevation of -6.5 feet NAVD88 on the Block 38 West Property (completed as a result of the independent interim action);
- Removal of affected soil to the maximum extent practicable in the alley area to an elevation of 25 to 18 feet NAVD88 (completed as a result of the alley interim action);
- Installation of a permanent vapor and groundwater barrier encompassing the entire building envelope for the new structure to eliminate the potential for any future vapor intrusion into indoor air (completed as a result of the independent interim action);
- Installation of a protective cap over remaining soil contamination, consisting of new pavement within the alley and surrounding the new building (completed as a result of the independent and alley interim actions); and
- Implementation of institutional controls to protect and maintain the cap and prevent direct contact with remaining contamination (not yet completed).

In addition to the elements listed above, CVOC-impacted groundwater associated with the American Linen Site was removed during the independent interim action through the temporary construction dewatering treatment system installed to facilitate excavation.

Based on the completed interim actions to date, only implementation of institutional controls remains. This will consist of implementing an environmental covenant that meets the requirements of WAC 173-340-440(8), (9), and (10) and RCW 64.70 (Uniform Environmental Covenants Act). The Environmental Covenant will be prepared in cooperation with Ecology and consistent with the Toxics Cleanup Program Procedure 440A (Establishing Environmental Covenants under the Model Toxics Control Act).

The purpose of the covenant is to impose certain restrictions on the activities and uses of the Block 38 West Property and surrounding right-of-way to protect human health, the environment, and the integrity of the interim actions completed to date at the Block 38 West Site. The covenant will remain in place until concentrations of total DRO+ORO and cPAHs decrease to levels less than the proposed cleanup levels. It is expected that inspections and maintenance of the protective cap will be conducted on an annual basis as part of the covenant, using an Ecology-approved inspection checklist.

9.5 EVALUATION OF SELECTED CLEANUP ACTION

The selected cleanup action for the Block 38 West Site satisfies the MTCA general requirements in WAC 173-340-360(3)(a) and meets additional requirements specified in 173-340-360(3)(b), WAC 173-340-360(3)(c), and WAC 173-340-360(3)(d), and expectations specified in WAC 173-340-370. The selected cleanup action will satisfy the following general requirements, as noted above in Section 9.2 and specifically in WAC 173-340-360(3)(d).

- Protect human health and the environment. The selected cleanup action—source removal and engineering and institutional controls—will protect human health and the environment, including vulnerable populations and overburdened communities identified in the vicinity of the Block 38 West Site, by permanently reducing the volume of hazardous substances in soil and eliminating the potential exposure pathway to residual soil contamination at the Site. As discussed above, the interim actions completed to date have mitigated potential exposure to environmental harms.
- Comply with cleanup standards. Excavation, removal, and off-Property disposal of soil containing COPCs resulted in the achievement of applicable MTCA cleanup levels (including proposed soil cleanup levels for the proposed COCs) in soil at the Block 38 West Property and to the maximum extent practicable in the northwestern portion and alley area of the Block 38 West Site. These actions have also resulted in the reduction of COPCs in Site groundwater such that all concentrations have achieved compliance with applicable MTCA cleanup levels.
- **Comply with applicable state and federal laws**. Interim actions completed to date complied with applicable state and federal laws, as defined in WAC 173-340-710, and met requirements of other local, state, and federal laws related to environmental protection, health and safety, transportation, and disposal. Pursuant to MTCA, the cleanup action would be exempt from the procedural requirements of Chapters

70A.305.090 of the Revised Code of Washington, and of any laws requiring or authorizing state or local government permits or approvals. However, the cleanup action must still comply with the substantive requirements of such permits or approvals in accordance with WAC 173-340-510(2). The cleanup action must also comply with any applicable federal regulations and obtain any required federal permits as necessary. These requirements are often categorized as location-specific, action-specific, or chemical-specific.

The future cleanup action elements will also comply with all relevant and applicable local, state, and federal laws that are summarized in Table 15.

- Prevent or minimize present and future releases and migration of hazardous substances in the environment. Existing engineering controls will contain and eliminate the potential direct contact exposure pathway, and the chemical resistant vapor barrier rated for direct contact with CVOCs will eliminate any potential future migration of soil gas to indoor air on the Block 38 West Site associated with the American Linen Site CVOC Plume.
- **Provide resilience to climate change.** Based on the evaluation above in Section 2.8, the location of the Block 38 West Site in a highly developed area in Seattle, projected local and regional climatological characteristics are not anticipated to affect the migration of hazardous substances or the resilience of cleanup action alternatives at the Block 38 West Site.
- **Provide for compliance monitoring.** Compliance monitoring was performed consistent with WAC 173-340-410 during the interim actions that have already occurred. Implementation of institutional controls will ensure that engineering controls are maintained and allow for long-term compliance monitoring as needed.
- Provide for a reasonable restoration time frame. Cleanup of the Block 38 West Property is complete and cleanup of the adjacent alley and rights-of-way at the Block 38 West Site are complete to the maximum extent practicable as a result of the interim actions. The restoration time frame is considered reasonable and consistent with WAC 173-340-360(4)(c) and, based on the RI data, has proven to be effective in the long term by restoring groundwater quality and eliminating the potential exposure pathways to residual soil contamination.
- Use permanent solutions to the maximum extent practicable. The selected cleanup action is a permanent solution and has achieved applicable cleanup levels at the

points of compliance for hazardous substances throughout the majority of the Site in the short term. The completed source removal and ongoing engineering and institutional controls will protect human health and the environment by permanently reducing the volume of hazardous substances in soil and eliminating the potential exposure pathway to residual soil contamination at the Block 38 West Site.

 Consider public concerns and tribal rights and interests. The interim actions were reviewed during the SEPA process for the independent interim action and a public comment period for the Alley Area Interim Action. Public concerns were taken into consideration with regards to limiting impacts to rush hour traffic and creating through access in the alley to improve access to below grade parking garages from Republican Street. Tribal rights and interests were taken into consideration and notification of the planned development was provided to the Duwamish, Muckleshoot, Snoqualmie, and Suquamish Tribes in 2018 prior to beginning geotechnical work at the Block 38 West Property.

The selected cleanup action will meet action-specific requirements applicable under WAC 173-340-360(3)(b) to allow for use of institutional controls, provide financial assurances, and allow for periodic reviews of annual cap inspections. The selected cleanup action was implemented in conjunction with redevelopment and was highly implementable.

10.0 REFERENCES

- ATC Group Services LLC (ATC). 2018. Remedial Investigation/Feasibility Study/Cleanup Action Plan, Former Conoco Phillips Facility No. 255353, 600 Westlake Avenue North, Seattle, Washington. Prepared for Phillips 66 Company. February 16.
- Chapman, D. and V. Kimstach. 1996. Chapter 3 Selection of water quality variables." Water Quality Assessments – A Guide to Use of Biota, Sediments and Water in Environmental Monitoring – Second Edition. Edited by Deborah Chapman. UNESCO/WHO/UNEP.
- Farallon Consulting, L.L.C. (Farallon). 2018. Subsurface Investigation Report and Environmental Media Management Plan, Block 38 West Property, 500 through 536 Westlake Avenue North, Seattle, Washington. Prepared for City Investors IX LLC. December 28.
- ——. 2019a. Technical Memorandum Regarding Block 37 Subsurface Investigation, South Lake Union Block 37 Property, Seattle, Washington. From Clifford Schmitt. To Raymond Burdick, City Investors XI LLC; Barry Ziker, Joyce Ziker Parkinson, PLLC; Lisa Lui, Vulcan, Inc. June 20.
- ——. 2019b. Interim Action Work Plan, Block 38 West Property, 500 through 536 Westlake Avenue North, Seattle, Washington. Prepared for City Investors IX LLC. November 8.
- 2019c. Letter Regarding Release Notification, Block 38 West Property, 500 through 536 Westlake Avenue North, Seattle, Washington. From Suzy Stumpf and Clifford T. Schmitt. To Tena Seeds, Ecology. December 9.
- ——. 2019d. Phase I Environmental Site Assessment Report, South Lake Union Block 38 West Property, 500 through 536 Westlake Avenue North, Seattle, Washington. Prepared for City Investors IX LLC. December 13.
- ——. 2020a. Technical Memorandum Regarding Groundwater Monitoring Program, South Lake Union Block 38 West Property, Seattle, Washington. From Suzy Stumpf and Clifford T. Schmitt. To Tena Seeds, Ecology. January 13.
- ——. 2020b. Letter Regarding Subsurface Investigation Results, Block 38 West Property, 500 through 536 Westlake Avenue North, Seattle, Washington. From Suzy Stumpf and Clifford T. Schmitt. To Tena Seeds, Ecology. January 22.

- ——. 2020c. Technical Memorandum Regarding Monitoring Well Installation, Block 38 West Property, 500 through 536 Westlake Avenue North, Seattle, Washington. From Suzy Stumpf and Clifford T. Schmitt. To Tena Seeds, Ecology. May 22.
- 2020d. Technical Memorandum Regarding Supplemental Subsurface Investigation and Foundation Elements, Block 38 West Property, 500 through 536 Westlake Avenue North, Seattle, Washington. From Suzy Stumpf and Clifford T. Schmitt. To Tena Seeds, Ecology. June 15.
- ——. 2020e. Agency Review Draft Remedial Investigation Work Plan, 500 through 536 Westlake Avenue North, Seattle, Washington. Prepared for City Investors IX LLC. July 20.
- ——. 2021a. Interim Action Work Plan, Alley Area of Block 38 West Site, Between Republican Street and Mercer Street, Seattle, Washington. Prepared for City Investors IX LLC. February 3.
- ——. 2021b. Sampling and Analysis Plan. Interim Action Work Plan, Alley Area of Block 38 West Site, Between Republican Street and Mercer Street, Seattle, Washington. Prepared for City Investors IX LLC. February 10.
- ------. 2023a. Remedial Investigation Work Plan, 500 through 536 Westlake Avenue North, Seattle, Washington. Prepared for City Investors IX LLC. April 26.
- ——. 2023b. Final Interim Action Report for the Block 38 West Site, 500 through 536 Westlake Avenue North, Seattle, Washington. Prepared for City Investors IX LLC. December 28.
- ——. 2024. Final Interim Action Report, Alley Area of Block 38 West Site, 500 through 536 Westlake Avenue North, Seattle, Washington. Prepared for City Investors IX LLC. January 5.
- Federal Emergency Management Agency (FEMA). 2024. Flood Map Service Center: Search By Address query. <<u>https://msc.fema.gov/portal/search?AddressQuery=500%20westlake%20ave%20</u> <u>seattle</u>>. (January 2024.)

- Galster, Richard W., and William T. Laprade. 1991. "Geology of Seattle, Washington, United States of America." *Bulletin of the Association of Engineering Geologists* 28 (No. 3): 235-302.
- GeoEngineers, Inc. (GeoEngineers). 1994. Report of Geoenvironmental Services, Supplemental Site Assessment, Rosen Site, Seattle, Washington. Prepared for Unocal CERT – Northern Region. May 27.
- ——. 1999. Phase I Environmental Site Assessment and Soil and Groundwater Sampling and Testing, UW-IFAMS Rosen Property, 960-964 Republican, Seattle, Washington, Volume I of II. Prepared for Schnitzer NW. April 22.
- ——. 2008. Cleanup Action Report, Interurban Exchange 2, 535 Terry Avenue North, Seattle, Washington. Prepared for Lake Union IV, LLC. October 28.
- ——. 2018. Geotechnical Engineering Services, Block 38, Seattle, Washington. Prepared for City Investors IX, LLC. October 17.
- Hart Crowser, Inc. 1999. Letter Regarding Preliminary Environmental Assessment Update, Westlake Avenue Property (428, 500, 510, and 520 Westlake Avenue North), Seattle, Washington. From Rob Roberts and Julie K.W. Wukelic. To City Investors VI LLC c/o Joe Delaney, Foster Pepper & Shefelman. April 5.

King County GIS Center. 2018. Parcel Viewer Search for Parcel Nos. 1983200196, 1983200180, and 1983200170. <<u>https://www.kingcounty.gov/services/gis/Maps/parcel-viewer.aspx</u>>. (September 17, 2018.)

- Middour Consulting LLC. 2018. Groundwater Control Plan, Block 38, Seattle, Washington. Prepared for GLY Construction. October 17.
- PES Environmental, Inc. 2019. Final Remedial Investigation/Feasibility Study Work Plan, American Linen Supply Co–Dexter Avenue Site, 700 Dexter Avenue North, Seattle, Washington. Prepared for BMR-Dexter LLC. December 4.
- ——. 2022. Agency Review Draft Remedial Investigation Report, American Linen Supply Co Dexter Ave Site, 700 Dexter Avenue North, Seattle, Washington. October 14.SCS Engineers. 1990. Underground Storage Tank Investigation, Summary Report,

Westlake Avenue, City of Seattle. Prepared for Seattle Department of Administrative Services. June.

- Stantec. 2008. UST System Removal Report, Former ConocoPhillips Facility No. 25553, 600 Westlake Avenue North, Seattle, Washington. December 17.
- Thurman, E.M. 1985. Amount of Organic Carbon in Natural Waters. In: Organic Geochemistry of Natural Waters. Developments in Biogeochemistry, vol 2. Springer, Dordrecht. <<u>https://doi.org/10.1007/978-94-009-5095-5_2</u>>
- U.S. Environmental Protection Agency (EPA). 1996. Low Stress (Low Flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells. Revised September 19, 2017. July 30.
- -----. 2020a. National Functional Guidelines for Inorganic Superfund Methods Data Review. Publication No. EPA-540-R-20-006. November.
- -----.2020b. National Functional Guidelines for Organic Superfund Methods Data Review. Publication No. EPA-540-R-20-005. November.
- U.S. Geological Survey. 1909. Washington Seattle Special Quadrangle Map. May.
- Washington State Department of Ecology (Ecology). 1991. Guidance for Site Checks and Site Assessments for Underground Storage Tanks. Publication No. 90-52. Revised April 2003. February.
- ——. 1994. Natural Background Soil Metals Concentrations in Washington State. Publication No. 94-115. October.
- ——. 2009. Letter Regarding No Further Action at the 960 Republican St. Property Associated with a Site. From Joseph M. Hickey. To Janet Donelson, Schnitzer West, LLC. May 28.
- ——. 2011. Guidance for Remediation of Petroleum Contaminated Sites. Publication No. 10-09-057. Revised June 2016. September.
- ——. 2016. Toxics Cleanup Program, Remedial Investigation (RI) Checklist. Revised June 2020. May.

www.farallonconsulting.com

- -----. 2017. Sustainable Remediation: Climate Change Resiliency and Green Remediation. Publication No. 17-09-052. Revised January 2023. November.
- -----. 2018. Letter Regarding Opinion on Proposed Cleanup of the TOSCO 25535330857 Site. From Jing Song. To Ed Ralston, Phillips 66 Company. August 21.
- ——. 2019. Letter Regarding Early Notice of Release of Hazardous Substances and Preliminary Determination of Liability for Release at the Block 38 West Contaminated Site. From Tamara Cardona. To City Investors IX LLC. August 13.
- ——. 2022a. Natural Background Groundwater Arsenic Concentrations in Washington State, Study Results. Publication No. 14-09-044. January.
- ——. 2022b. Memorandum Regarding Development of preliminary cleanup levels for the South Lake Union area. From Priscilla Tomlinson. To South Lake Union Group site managers, Ecology. October 12.
- ——. 2023. Guidance for Silica Gel Cleanup in Washington State. Publication No. 22-09-059. November.
- ——. 2024. Implementation Memorandum No. 25: Identifying Likely Vulnerable Populations and Overburdened Communities under the Cleanup Regulations. From Kris Grinell. To Interested Persons. January.

11.0 LIMITATIONS

11.1 GENERAL LIMITATIONS

The conclusions contained in this report/assessment are based on professional opinions with regard to the subject matter. These opinions have been arrived at in accordance with currently accepted hydrogeologic and engineering standards and practices applicable to this location. The conclusions contained herein are subject to the following inherent limitations:

- Accuracy of Information. Farallon obtained, reviewed, and evaluated certain information used in this report/assessment from sources that were believed to be reliable. Farallon's conclusions, opinions, and recommendations are based in part on such information. Farallon's services did not include verification of its accuracy or authenticity. Should the information upon which Farallon relied prove to be inaccurate or unreliable, Farallon reserves the right to amend or revise its conclusions, opinions, and/or recommendations.
- Reconnaissance and/or Characterization. Farallon performed a reconnaissance and/or characterization of the Site that is the subject of this report/assessment to document current conditions. Farallon focused on areas deemed more likely to exhibit hazardous materials conditions. Contamination may exist in other areas of the Site that were not investigated or were inaccessible. Site activities beyond Farallon's control could change at any time after the completion of this report/assessment.

For the foregoing reasons, Farallon cannot and does not warrant or guarantee that the Site is free of hazardous or potentially hazardous substances or conditions, or that latent or undiscovered conditions will not become evident in the future. Farallon's observations, findings, and opinions can be considered valid only as of the date of the report.

This report/assessment has been prepared in accordance with the contract for services between Farallon and City Investors IX LLC, and currently accepted industry standards. No other warranties, representations, or certifications are made.

11.2 LIMITATION ON RELIANCE BY THIRD PARTIES

Reliance by third parties is prohibited. This report/assessment has been prepared for the exclusive use of City Investors IX LLC to address the unique needs of City Investors IX LLC at the Block 38 West Site at a specific point in time.

This is not a general grant of reliance. No one other than City Investors IX LLC may rely on this report unless Farallon agrees in advance to such reliance in writing. Any unauthorized use, interpretation, or reliance on this report/assessment is at the sole risk of that party and Farallon will have no liability for such unauthorized use, interpretation, or reliance.

FIGURES

REMEDIAL INVESTIGATION/FOCUSED FEASIBILITY STUDY Block 38 West Site 500 through 536 Westlake Avenue North Seattle, Washington

Farallon PN: 397-019

LEGEND

- I PILE
- BUILDING FEATURES (BUILDINGS ON BLOCK 38 WEST - - -PROPERTY DEMOLISHED IN 2019)
- --- · LOT LINE
 - GROUND SURFACE ELEVATION CONTOUR
 - PROPERTY BOUNDARY
 - KING COUNTY PARCEL BOUNDARY

NOTES: LOADING DOCK HIGHER THAN GSE ELEVATION SOURCE: BUSH, ROED, & HITCHINGS, INC. (2014) ELEVATION DATA PRESENTED IN FEET ABOVE MEAN SEA LEVEL IN THE NORTH AMERICAN VERTICAL DATUM OF 1988

- FFE = APPROXIMATE FINISH FLOOR ELEVATIONS OF GROUND FLOOR OF FORMER BUILDING GSE = APPROXIMATE GROUND SURFACE ELEVATION OF FORMER LOADING DOCK AREA UST = UNDERGROUND STORAGE TANK

FIGURES WERE PRODUCED IN COLOR. GRAYSCALE COPIES MAY NOT REPRODUCE ALL ORIGINAL INFORMATION.

Washington Issaquah Bellingham Seattle	FIGURE 2
Oregon Portland Baker City California Oakland Irvine	SITE PLAN WITH HISTORICAL FEATURES BLOCK 38 WEST SITE SEATTLE, WASHINGTON
farallonconsulting.com	FARALLON PN: 397-019
Checked By: SS	Atte: 12/23/2023 Disc Reference: Document Path: Q:\Projects\397 VULCAN\019 Block38\Mapfiles\017D RI-WP 2021-11\Figure-02 HistFeats.mxd

WESTLAKE AVENUE NORTH

WESTLAKE AVENUE NORTH

	ALL GROUNDWATER ANALYTICAL RESULTS IN MICROGRAMS PER LITER (µg/l)	
TION OR	[08/14/2023 <100 202 <0.200 0.0692 <0.0769 <0.0769 = GROUNDWATER ANALYTICAL RESULT [SAMPLE DATE GRO DRO+ORO BENZENE NAPHTHALENE 1-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE]	
	** = DENOTES SAMPLE IS RECONNAISSANCE GROUNDWATER GRAB SAMPLE	
	++ = GRO REPORTED AT A CONCENTRATION OF 1,100 µg/l; HOWEVER, RE-EVALUATION BY THE ANALYTICAL	
F OR MORE COPCS	LABORATORY INDICATED THAT THE REPORTED CONCENTRATION OF GRO WAS ATTRIBUTED TO A SINGLE PEAK	
CREENING LEVELS	UN THE CHRUMATUGRAM, WHICH WAS IN THE RANGE OF NAPHTHALENE.	
PCS ANALYZED DID		
SCREENING LEVELS		
ATION	GRO = TOTAL PETROLEUM HYDROCARBONS (TPH) AS GASOLINE-RANGE ORGANICS	
	DRO = TPH AS DIESEL-RANGE ORGANICS	
	ORO = TPH AS OIL-RANGE ORGANICS	1.
	DRO+ORO = SUM OF DRO AND ORO	2-
	CPAH TEC = CARCINOGENIC POLYCYCLIC AROMATIC HYDROCARBONS TOXIC EQUIVALENT CONCENTRATION	
	BOLD = DENOTES CONCENTRATIONS THAT EXCEED APPLICABLE SCREENING LEVELS	DAT
	= SAMPLE NOT ANALYZED OR NOT APPLICABLE	SOI
MOST RECENT)	< = DENOTES ANALYTE NOT DETECTED AT OR EXCEEDING THE REPORTING LIMIT LISTED	
,	NAVD88 = NORTH AMERICAN VERTICAL DATUM OF 1988	
OF DRILLING	COPC = CONSTITUENT OF POTENTIAL CONCERN	
	MTCA = WASHINGTON STATE MODEL TOXICS CONTROL ACT CLEANUP REGULATION	
	APPROXIMATE AREA OF WOOD DEBRIS/ORGANICS LAYER PRIOR TO INTERIM ACTIONS	
	ESTIMATED EXTENT OF SOIL EXCEEDING SCREENING LEVELS PRIOR TO INTERIM ACTIONS	
	ESTIMATED EXTENT OF GROUNDWATER EXCEEDING SCREENING LEVELS PRIOR TO INTERIM ACTIONS	

ו כ			
		Washington Issaquah Bellingham Seattle	FIGURE 18
0'		Consulting	CROSS SECTION B-B' BLOCK 38 WEST SITE SEATTLE, WASHINGTON
U	0' 20'	Your Challenges. Our Priority. farallonconsulting.com	FARALLON PN:397-019
		Drawn By: RB Checked By: GP	Date: 6/10/2024

•				
	SCREENING LEVEL		ANALYTE	SCREENING LEV
ANALYTE	VADOSE	SATURATED	GRO	800
GRO	30	30	DRO+ORO	500
DRO+ORO	2,000	2,000	BENZENE	2.4
NAPHTHALENE	4.5	0.24	NAPHTHALENE	8.9
THYLNAPHTHALENE	0.082	0.0067	1-METHYLNAPHTHALENE	1.5
THYLNAPHTHALENE	1.7	0.088	2-METHYLNAPHTHALENE	32
cPAH TEC	0.19	0.19		

SOIL (mg/kg)			GROUNDWATER (µg/L)		
	SCREENING LEVEL		ANALYTE	SCREENING LEVEL	
ANALYTE	VADOSE	SATURATED	GRO	800	
GRO	30	30	DRO+ORO	500	
DRO+ORO	2,000	2,000	BENZENE	2.4	
NAPHTHALENE	4.5	0.24	NAPHTHALENE	8.9	
HYLNAPHTHALENE	0.082	0.0067	1-METHYLNAPHTHALENE	1.5	
HYLNAPHTHALENE	1.7	0.088	2-METHYLNAPHTHALENE	32	
cPAH TEC	0.19	0.19			

DATA IS ONLY SHOWN FOR PERFORMANCE AND COMPLIANCE SAMPLES THAT REMAIN IN PLACE. NO

Washingto FIGURE 20 saquah | Bellingham | Seattl CROSS SECTION D-D' BLOCK 38 WEST SITE SEATTLE, WASHINGTON Portland | Baker Cit Califorr Oakland | Irvine CONSULTING Challenges. Our Priority. | fara FARALLON PN:397-019 Drawn By: RB Checked By: GP Date: 6/10/2024

	ALL SOIL ANALYTICAL RESULTS IN MILLIGRAMS PER KILOGRAM (mg/kg)			
0.154 <0.154]	= GROUNDWATER ANALYTICAL RESULT [SAMPLE DATE GRO DRO+ORO/DRO+ORO WITH SILICA GEL CLEANUP WHEN A BENZENE NAPHTHALENE 1-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE]	AVAILABLE		
0.065 <0.019]	= SOIL ANALYTICAL RESULT: [DEPTH (ELEVATION IN FEET NAVD88) GRO DRO+ORO NAPHTHALENE 1-METHYLNAPHTHALENE 2-METHYLNAPTH	HALENE cPAH TE	:C]	1-ME
GRO	= TOTAL PETROLEUM HYDROCARBONS (TPH) AS GASOLINE-RANGE ORGANICS			2-ME
DRO	= TPH AS DIESEL-RANGE ORGANICS			
ORO	= TPH AS OIL-RANGE ORGANICS			
DRO+ORO	= SUM OF DRO AND ORO			
cPAH TEC	= CARCINOGENIC POLYCYCLIC AROMATIC HYDROCARBONS TOXIC EQUIVALENT CONCENTRATION			SUIL DI
BOLD	= DENOTES CONCENTRATIONS THAT EXCEED APPLICABLE SCREENING LEVELS			
	= SAMPLE NOT ANALYZED FOR CONSTITUENT			
<	= DENOTES ANALYTE NOT DETECTED AT OR EXCEEDING THE REPORTING LIMIT LISTED	ORANGE	SILICA GEL CLEANUP ANALYTICAL RESULTS	
NAVD88 MTCA	= NORTH AMERICAN VERTICAL DATUM OF 1988 = WASHINGTON STATE MODEL TOXICS CONTROL ACT CLEANUP REGULATION	RED	INDICATES CONCENTRATIONS OF HAZARDOUS SUBS THE APPLICABLE MTCA SCREENING LEVELS	TANCES EX
	APPROXIMATE AREA OF WOOD DEBRIS/ORGANICS LAYER PRIOR TO INTERIM ACTIONS	GREEN	INDICATES HAZARDOUS SUBSTANCES ANALYZED DIE THE APPLICABLE MTCA SCREENING LEVELS	D NOT EXCI
	ESTIMATED EXTENT OF SOIL EXCEEDING MTCA SCREENING LEVELS PRIOR TO INTERIM ACTIONS			
			EXCAVATION BORING (FARALLON)	

SOIL (mg/kg)			GROUNDWATER (µg/L)		
	SCREENING LEVEL		ANALYTE	SCREENING LEVEL	
ANALYTE	VADOSE	SATURATED	GRO	800	
GRO	30	30	DRO+ORO	500	
DRO+ORO	2,000	2,000	BENZENE	2.4	
NAPHTHALENE	4.5	0.24	NAPHTHALENE	8.9	
HYLNAPHTHALENE	0.082	0.0067	1-METHYLNAPHTHALENE	1.5	
HYLNAPHTHALENE	1.7	0.088	2-METHYLNAPHTHALENE	32	
cPAH TEC	0.19	0.19			

SOIL (mg/kg)											
	SCREEN	SCREENING LEVEL									
ANALYTE	VADOSE	SATURATED									
GRO	30	30									
DRO+ORO	2,000	2,000									
NAPHTHALENE	1,600	1,600									
HYLNAPHTHALENE	34	34									
HYLNAPHTHALENE	320	320									
cPAH TEC	0.19	0.19									

ANALYTE	SCREENING LEVEL												
GRO	800												
DRO+ORO	500												
BENZENE	2.4												
NAPHTHALENE	8.9												
1-METHYLNAPHTHALENE	1.5												
2-METHYLNAPHTHALENE	32												

	Washington Issaquah Bellingham Seattle Oregon Portland Baker City California Oakland Irvine	FIGURE 27 POST INTERIM ACTION CROSS SECTION B-B' BLOCK 38 WEST SITE SEATTLE, WASHINGTON
	Your Challenges. Our Priority. farallonconsulting.com	FARALLON PN:397-019
0 20 ⁴	Drawn By: RB Checked By: GP	Date: 6/10/2024

	ALL GROUNDWATER ANALYTICAL RESULTS IN MICROGRAMS PER LITER (µg/l)			
5 <0.0385] =	GROUNDWATER ANALYTICAL RESULT [SAMPLE DATE GRO DRO+ORO/DRO+ORO WITH SILICA GEL CLI BENZENE NAPHTHALENE 1-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE]	EANUP WH	EN AVAILABLE	
0651-0 0101-	ALL SOIL ANALYTICAL RESULTS IN MILLIGRAMS PER KILOGRAM (mg/kg)			
- [91 0.0> 200	[DEPTH (ELEVATION IN FEET NAVD88) GRO DRO+ORO NAPHTHALENE 1-METHYLNAPHTHALENE 2-	METHYLNA	PHTHALENE cPAH TEC]	1
DRO -	- TOTAL PETROLEOM FEDROCARDONS (TPH) AS GASOLINE-RANGE ORGANICS - TPH AS DIESEL RANGE ORGANICS			2
ORO =	= TPH AS OIL BEEL NAME OR GANICS			
DRO+ORO =	= SUM OF DRO AND ORO			<u> </u>
cPAH TEC =	- CARCINOGENIC POLYCYCLIC AROMATIC HYDROCARBONS TOXIC EQUIVALENT CONCENTRATION			WE
BOLD =	E DENOTES CONCENTRATIONS THAT EXCEED APPLICABLE SCREENING LEVELS			LO
=	SAMPLE NOT ANALYZED FOR CONSTITUENT			
< =	DENOTES ANALYTE NOT DETECTED AT OR EXCEEDING THE REPORTING LIMIT LISTED	ORANGE	SILICA GEL CLEANUP ANALYTICAL RESULTS	DA SO
NAVD88 =	NORTH AMERICAN VERTICAL DATUM OF 1988		INDICATES CONCENTRATIONS OF HAZARDOUS SUBSTANCES EXCEEDING	
	WASHINGTON STATE MODEL TOXICS CONTROL ACT CLEANOF REGULATION	RED	THE APPLICABLE MTCA SCREENING LEVELS	
	APPROXIMATE AREA OF WOOD DEBRIS/ORGANICS LAYER	GREEN	INDICATES HAZARDOUS SUBSTANCES ANALYZED DID NOT EXCEED THE APPLICABLE MTCA SCREENING LEVELS	
	ESTIMATED EXTENT OF SOIL EXCEEDING MTCA SCREENING LEVELS			
//////	ESTIMATED EXTENT OF COAL/CHARCOAL LAYER		EXCAVATION BORING (FARALLON)	

SOIL (I	mg/kg)		GROUNDWATER (µg/L)							
	SCREEN	ING LEVEL	ANALYTE	SCREENING LEVEL						
ANALYTE	VADOSE	SATURATED	GRO	800						
GRO	30	30	DRO+ORO	500						
DRO+ORO	2,000	2,000	BENZENE	2.4						
NAPHTHALENE	1,600	1,600	NAPHTHALENE	8.9						
HYLNAPHTHALENE	34	34	1-METHYLNAPHTHALENE	1.5						
HYLNAPHTHALENE	320	320	2-METHYLNAPHTHALENE	32						
cPAH TEC	0.19	0.19		•						

	Current and Fi Rece	uture Potential ptors
	Site Users- Residential/ Commercial/ Visitors	Temporary Construction Workers
•	I	I
•		
-	I	1
•	I	
•		
	F	F
• •	F	F F
•	F	F
-	M_1	I
	M_1	1

	Current and Fi Rece	uture Potential ptors
	Aquatic Biota	Terrestrial
►	NA	NA
►	NA	NA
►		NA
-	I	I

-	l	
-		_

Washington ham Seattle	FIGURE 29
Oregon d Baker City	EXPOSURE PATHWAY ANALYSIS
California kland Irvine	SEATTLE, WASHINGTON
	FARALLON PN: 397-019
y: SS	Date: 2/13/2024 Disc Reference:
jects∖397 VULCAN	\019_Block38\Mapfiles\17G_2023-07\Figure-28_ExposurePathwayAnalysis.ai

TABLES

REMEDIAL INVESTIGATION/FOCUSED FEASIBILITY STUDY Block 38 West Site 500 through 536 Westlake Avenue North Seattle, Washington

Farallon PN: 397-019

												Analytical Results (milligrams per kilogram)							
				Sample		Sample			NWTP	'H-Dx ²		NWTPH-Dx wit	th Silica Gel ²	NWTPH-Gx ⁴		EPA Metho	d 8021B/8260⁵		
Sample Location	Sample Identification	General Location	Sample Type	Location Disposition	Sample Depth (feet) ¹	Elevation (feet NAVD88) ¹	Zone	Sample Date	DRO	ORO	Total NWTPH-Dx ³	DRO	ORO	GRO	Benzene	Toluene	Ethylbenzene	Xylenes	
								Block 38 V	Vest Property										
	FB-01-5.0-082118	Interior	Performance	Removed	5.0	21.3	Vadose	8/21/2018	520	3.700	4.220	510 N	1,100	< 6.2	< 0.020	< 0.062	< 0.062	< 0.124	
FB-01	FB-01-15.0-082118	Interior	Confirmation	Removed	15.0	11.3	Saturated	8/21/2018	< 40	250	250	< 40	< 81	< 9.1	< 0.020	< 0.091	< 0.091	< 0.182	
	FB-01-30.0-082118	Interior	Confirmation	Removed	30.0	-3.7	Saturated	8/21/2018	< 29	< 58	< 58			< 5.1	< 0.020	< 0.051	< 0.051	< 0.102	
	FB-02-5.0-082018	Interior	Performance	Removed	5.0	20.1	Vadose	8/20/2018	280 N	670	950			< 5.4	< 0.020	< 0.054	< 0.054	< 0.108	
ED 00	FB-02-10.0-082018	Interior	Confirmation	Removed	10.0	15.1	Saturated	8/20/2018	< 61	270	270			< 19	< 0.037	< 0.19	< 0.19	< 0.38	
FB-02	FB-02-25.0-082018	Interior	Confirmation	Removed	25.0	0.1	Saturated	8/20/2018	< 30	< 60	< 60			< 5.2	< 0.020	< 0.052	< 0.052	< 0.104	
	FB-02-35.0-082018	Interior	Confirmation	In Place	35.0	-9.9	Saturated	8/20/2018	< 31	< 62	< 62			< 5.8	< 0.020	< 0.058	< 0.058	< 0.116	
	FB-03-10.0-082318	Interior	Confirmation	Removed	10.0	15.8	Saturated	8/23/2018	< 32	< 65	< 65			< 6.5	< 0.020	< 0.065	< 0.065	< 0.130	
FB-03	FB-03-15.0-082318	Interior	Confirmation	Removed	15.0	10.8	Saturated	8/23/2018	< 32	< 65	< 65			< 6.5	< 0.020	< 0.065	< 0.065	< 0.130	
	FB-03-25.0-082318	Interior	Confirmation	Removed	25.0	0.8	Saturated	8/23/2018	< 29	< 59	< 59			< 5.5	< 0.020	< 0.055	< 0.055	< 0.110	
	FB-04-5.0-082118	Interior	Confirmation	Removed	5.0	17.0	Saturated	8/21/2018	97 N	540	637			< 16	< 0.033	< 0.16	< 0.16	< 0.32	
FB-04	FB-04-20.0-082118	Interior	Confirmation	Removed	20.0	2.0	Saturated	8/21/2018	< 29	< 58	< 58			< 5.3	< 0.020	< 0.053	< 0.053	< 0.106	
	FB-04-30.0-082118	Interior	Confirmation	In Place	30.0	-8.0	Saturated	8/21/2018	< 30	< 59	< 59			< 5.5	< 0.020	< 0.055	< 0.055	< 0.110	
	FB-05-5.0-082218	Interior	Confirmation	Removed	5.0	20.5	Vadose	8/22/2018	< 31	< 61	< 61			< 5.4	< 0.020	< 0.054	< 0.054	< 0.108	
FB-05	FB-05-20.0-082218	Interior	Confirmation	Removed	20.0	5.5	Saturated	8/22/2018	< 31	< 61	< 61			< 5.5	< 0.020	< 0.055	< 0.055	< 0.110	
	FB-05-35.0-082218	Interior	Confirmation	In Place	35.0	-9.5	Saturated	8/22/2018	< 31	< 62	< 62			< 5.8	< 0.020	< 0.058	< 0.058	< 0.116	
EB-06	FB-06-2.5-082218	Interior	Confirmation	Removed	2.5	22.9	Vadose	8/22/2018	180	310	490			17 T	< 0.024	< 0.12	< 0.12	< 0.24	
1 D-00	FB-06-20.0-082218	Interior	Confirmation	Removed	20.0	5.4	Saturated	8/22/2018	< 30	< 61	< 61			< 5.3	< 0.020	< 0.053	< 0.053	< 0.106	
	FB-07-24	Interior	Confirmation	Removed	24.0	-0.5	Saturated	12/21/2019	< 30	< 60	< 60			< 6.0	< 0.020	< 0.060	< 0.060	< 0.12	
FB-07	FB-07-29	Interior	Confirmation	Removed	29.0	-5.5	Saturated	12/21/2019	< 30	< 60	< 60			< 5.4	< 0.020	< 0.054	< 0.054	< 0.108	
	FB-07-31.5	Interior	Confirmation	In Place	31.5	-8.0	Saturated	12/21/2019	< 30	< 60	< 60			< 5.6	< 0.020	< 0.056	< 0.056	< 0.112	
	FB-08-2.5	Interior	Performance	Removed	2.5	21.2	Vadose	12/21/2019	1,700 N	4,500	6,200			23 O	0.12	0.49	0.13	0.94	
	FB-08-8	Interior	Confirmation	Removed	8.0	15.7	Saturated	12/21/2019	< 29	< 58	< 58			< 5.2	< 0.020	< 0.052	< 0.052	< 0.104	
FB-08	FB-08-13	Interior	Confirmation	Removed	13.0	10.7	Saturated	12/21/2019	< 31	< 61	< 61			15 T	< 0.020	< 0.064	< 0.064	< 0.128	
	FB-08-18	Interior	Confirmation	Removed	18.0	5.7	Saturated	12/21/2019	< 29	< 58	< 58			< 6.1	< 0.020	< 0.061	< 0.061	< 0.122	
	FB-08-30.5	Interior	Confirmation	In Place	30.5	-6.9	Saturated	12/21/2019	< 31	< 61	< 61			< 6.0	< 0.020	< 0.060	< 0.060	< 0.12	
FB-09	FB-09-11	Interior	Confirmation	Removed	11.0	12.7	Saturated	12/21/2019	< 58	220	220			< 20	< 0.039	< 0.20	< 0.20	< 0.4	
	FB-09-33	Interior	Confirmation	In Place	33.0	-9.4	Saturated	12/21/2019	< 31	< 62	< 62			< 5.8	< 0.020	< 0.058	< 0.058	< 0.116	
FD 47	FB-17-17.0	Adjacent	Confirmation	In Place	15.4	17.0	Saturated	5/9/2023	< 22.5	128	128								
FB-17	FB-17-15.0	Adjacent	Confirmation	In Place	17.4	15.0	Saturated	5/9/2023	131 I	1,550 1	1,681								
	FB-17-10.0	Adjacent	Confirmation	In Place	22.4	10.0	Saturated	5/9/2023	< 24.2	< 48.3	< 48.3								
ED 00	FB-20-12-0	Adjacent	Confirmation	In Place	12.0	20.0	Vadose	2/5/2022	< 28	< 56	< 56								
FB-20	FB-20-15.0	Adjacent	Confirmation	In Place	15.0	17.0	Saturated	2/5/2022	< 29	83	83								
EMW/ 120	FD-20-17.0	Adjacent	Confirmation	In Place	17.0	15.0	Saturated	2/3/2022	59 N	210	209				< 0.020			- 0 176	
FIVIV-130	F-IVIV-130-20.0-072114	Interior	Dorformanco	Removed	20.0	2.2	Vedeee	9/24/2014	< 30 720	2 600	2 2 2 0			< 0.0	< 0.020	< 0.084	< 0.000	< 0.170	
FIVIV-132	FIVIVE-132-5.0-082418	Interior	Confirmation	Removed	10.0	20.7	Seturated	0/24/2010	/ 30	470	3,330			< 0.4	< 0.020	< 0.004	< 0.004	< 0.100	
F1V1VV-155	FMW-133-10.0-062416	Interior	Performance	Removed	5.0	20.4	Vadose	8/23/2018	< 03 260	1 900	2 160			< 20	< 0.057	< 0.20	< 0.20	< 0.50	
FMW-134	EMW-134-15 0-082318	Interior	Confirmation	Removed	15.0	10.4	Saturated	8/23/2018	< 31	< 61	< 61			< 12	< 0.033	< 0.30	< 0.12	< 0.00	
	EMW-135-15.0-082418	Interior	Confirmation	Removed	15.0	10.4	Saturated	8/24/2018	130	680	810			< 28	< 0.025	< 0.12	< 0.12	< 0.24	
FMW-135	EMW-135-35.0-082418	Interior	Confirmation		35.0	-9.4	Saturated	8/24/2018	< 31	< 62	< 62			< 5.8	< 0.000	< 0.20	< 0.20	< 0.116	
	EMW-136-10 0-082218	Interior	Confirmation	Removed	10.0	-5.4	Saturated	8/22/2018	< 38	< 76	< 76			< 9.0	< 0.020	< 0.000	< 0.000	< 0.110	
EM\\/_136	FMW-136-20 0-082218	Interior	Confirmation	Removed	20.0	5.1	Saturated	8/22/2018	< 32	< 63	< 63			< 6.4	< 0.020	< 0.050	< 0.090	< 0.10	
1 1010 - 100	FMW-136-30 0-082218	Interior	Confirmation	Removed	30.0	Q	Saturated	8/22/2018	< 30	< 59	< 59			< 5.2	< 0.020	< 0.052	< 0.052	< 0 104	
FMW-144	FWM-144-9 0	Interior	Confirmation	Removed	9.0	20.4	Vadose	12/20/2019	< 52	110	110			< 18	< 0.020	< 0.18	< 0.18	< 0.36	
MTCA Method B Direct Contact ⁶									N	F	NE	NE	=	1 5008	18	6 400	8 000	16,000	
	Arran ing Lougle for Sail Destective of Croundwater, Medeos Zona ⁶								N	- 20 ⁷			-	1,500	0.007	0,400	0,000	10,000	
Screening Levels for Soil Protective of Groundwater - vadose Zone							2,0	00	2,000	2,00	0	30	0.027	4.5	5.9	14			
Screening Levels for Soil Protective of Groundwater - Saturated Zone ^b							2,0	00'	2,000'	2,00	0,	30'	0.0017	0.27	0.34	0.83			
Laboratory Practical	Quantitation Limits ⁸								7	5	75	75	5	5	0.001	0.005	0.001	0.003	

												Analytical Results (milligrams per kilogram)								
				Sample		Sample			NWTP	H-Dx ²		NWTPH-Dx wit	th Silica Gel ²	NWTPH-Gx ⁴		EPA Method 8021B/8260 ⁵				
Sample Location	Sample Identification	General Location	Sample Type	Location Disposition	Sample Depth (feet) ¹	Elevation (feet NAVD88) ¹	Zone	Sample Date	DRO	ORO	Total NWTPH-Dx ³	DRO	ORO	GRO	Benzene	Toluene	Ethylbenzene	Xylenes		
· ·	FMW-145-13.0	Interior	Performance	Removed	13.0	9.9	Saturated	12/20/2019	650	1,400	2,050			83 O	< 0.020	< 0.075	< 0.075	< 0.15		
	FMW-145-18.0	Interior	Confirmation	Removed	18.0	4.9	Saturated	12/20/2019	58 N	210	268			< 28 U1	< 0.020	< 0.080	< 0.080	< 0.16		
	FMW-145-23.0	Interior	Confirmation	Removed	23.0	-0.1	Saturated	12/20/2019	< 30	< 60	< 60			< 5.3	< 0.020	< 0.053	< 0.053	< 0.106		
FIVIV-145	FMW-145-28.0	Interior	Confirmation	Removed	28.0	-5.1	Saturated	12/20/2019	< 31	< 61	< 61			< 6.5	< 0.020	< 0.065	< 0.065	< 0.13		
	FMW-145-30.5	Interior	Confirmation	In Place	30.5	-7.6	Saturated	12/20/2019	< 29	< 57	< 57			< 4.8	< 0.020	< 0.048	< 0.048	< 0.096		
	FMW-145-33.0	Interior	Confirmation	In Place	33.0	-10.1	Saturated	12/20/2019	< 31	< 61	< 61			< 5.5	< 0.020	< 0.055	< 0.055	< 0.11		
EMM 146	FMW-146-13.0	Interior	Confirmation	Removed	13.0	10.2	Saturated	12/21/2019	< 34	< 69	< 69			< 7.0	< 0.020	< 0.070	< 0.070	< 0.14		
F1VIV-140	FMW-146-18.0	Interior	Confirmation	Removed	18.0	5.2	Saturated	12/21/2019	< 31	< 62	< 62			< 5.4	< 0.020	< 0.054	< 0.054	< 0.108		
	FMW-147-8.5	Interior	Confirmation	Removed	8.5	14.3	Saturated	12/21/2019	< 120	1,100	1,100			< 51	< 0.10	< 0.51	< 0.51	< 1.02		
	FMW-147-13.5	Interior	Confirmation	Removed	13.5	9.3	Saturated	12/21/2019	< 31	< 61	< 61			< 5.5	< 0.020	< 0.055	< 0.055	< 0.11		
F1V1VV-147	FMW-147-23.5	Interior	Confirmation	Removed	23.5	-0.7	Saturated	12/21/2019	< 30	< 61	< 61			< 5.1	< 0.020	< 0.051	< 0.051	< 0.102		
	FMW-147-30.5	Interior	Confirmation	In Place	30.5	-7.7	Saturated	12/21/2019	< 30	< 61	< 61			< 6.4	< 0.020	< 0.064	< 0.064	< 0.128		
FMW-148	FMW-148-27.0	Interior	Confirmation	Removed	27.0	10.4	Saturated	12/22/2019	< 31	< 63	< 63			< 5.7	< 0.020	< 0.057	< 0.057	< 0.114		
	FMW-149-21.0	Interior	Confirmation	Removed	21.0	15.2	Saturated	12/22/2019	< 33	< 66	< 66			< 7.0	< 0.020	< 0.070	< 0.070	< 0.14		
	FMW-149-31.0	Interior	Confirmation	Removed	31.0	5.2	Saturated	12/22/2019	< 31	< 63	< 63			< 6.3	< 0.020	< 0.063	< 0.063	< 0.126		
FIVIVV-149	FMW-149-41.0	Interior	Confirmation	Removed	41.0	-4.8	Saturated	12/22/2019	< 26	< 53	< 53			< 4.4	< 0.020	< 0.044	< 0.044	< 0.088		
	FMW-149-43.5	Interior	Confirmation	In Place	43.5	-7.3	Saturated	12/22/2019	< 28	< 56	< 56			< 4.3	< 0.020	< 0.043	< 0.043	< 0.086		
FMW-160	FMW-160-20.0	Adjacent	Confirmation	In Place	19.2	20.0	Vadose	5/5/2023	< 24.3	48.7	48.7									
	FMW-160-15.0	Adjacent	Confirmation	In Place	24.2	15.0	Saturated	5/5/2023	< 25.7	< 51.4	< 51.4									
FMW-161	FMW-161-20.0	Adjacent	Confirmation	In Place	20.2	20.0	Vadose	5/3/2023	< 26.6	71.6 T	71.6									
	FMW-161-15.0	Adjacent	Confirmation	In Place	25.2	15.0	Saturated	5/3/2023	< 24.0	< 48.1	< 48.1									
	FMW-163-20.0	Adjacent	Confirmation	In Place	20.7	20.0	Vadose	5/1/2023	< 23.1	< 46.2	< 46.2									
	FMW-163-15.0	Adjacent	Confirmation	In Place	25.7	15.0	Saturated	5/1/2023	< 24.1	< 48.3	< 48.3									
A2-B	A2-B-(-5.0)	Interior	Confirmation	Removed		-5.0	Saturated	4/29/2020	< 27	< 53	< 53									
A2/A3-B	A2/A3-B-(-6.75)	Interior	Confirmation	In Place		-6.75	Saturated	6/3/2020	< 30	< 59	< 59			< 5.7	< 0.020	< 0.057	< 0.057	< 0.114		
	A3-SUBSLAB-22-010920	Interior	Performance	Removed		22.0	Vadose	1/9/2020	< 76	< 150	< 150									
A3-Subsiab	A3-SUBSLAB-25-010920	Interior	Performance	Removed		25.0	Vadose	1/9/2020	82	660	742									
B/C-B	B/C-B-(-6.75)	Interior	Confirmation	In Place		-6.75	Saturated	6/3/2020	< 29	< 57	< 57			< 6.1	< 0.020	< 0.061	< 0.061	< 0.122		
C/D-B	C/D-B-(-6.75)	Interior	Confirmation	In Place		-6.75	Saturated	6/3/2020	< 28	< 56	< 56			< 5.6	< 0.020	< 0.056	< 0.056	< 0.112		
H3_B	H3-B-20	Interior	Confirmation	Removed		20.0	Vadose	2/20/2020						< 6.7						
115-D	H3-B-15.0	Interior	Confirmation	Removed		15.0	Saturated	2/24/2020	< 67	250	250			< 21						
H4-22.7	H4-1.0-121319	Interior	Performance	Removed	1.0	22.7	Vadose	12/13/2019	600 N	5,000	5,600			31	< 0.022	< 0.11	< 0.11	< 0.22		
H4-B	H4-B-20.0	Interior	Confirmation	Removed		20.0	Vadose	2/19/2020	140 N	970	1,110			< 51						
117-0	H4-B-15.0	Interior	Confirmation	Removed		15.0	Saturated	2/19/2020	< 90	500	500			< 31						
H4-ESW	H4-ESW-20.0	Sidewall	Confirmation	In Place		20.0	Vadose	2/4/2020	730 N	2,900	3,630			< 11 H						
114-2000	H4-ESW-15.0	Sidewall	Confirmation	In Place		15.0	Saturated	2/26/2020	< 55	< 110	< 110			< 17						
H4-ESW2	H4-ESW2-20.0	Sidewall	Confirmation	In Place		20.0	Vadose	2/4/2020	99 N	180	279			< 5.5 H						
H4-SSW	H4-SSW-15.0	Interior	Confirmation	Removed		15.0	Saturated	2/27/2020	< 65	170	170			< 21						
I2-B	I2-B-10.0	Interior	Confirmation	Removed		10.0	Saturated	2/28/2020	< 28	< 55	< 55									
	I3-B-20.0	Interior	Performance	Removed		20.0	Vadose	2/23/2020	< 680	6,200	6,200			< 15 H	< 0.030 H	< 0.15 H	< 0.15 H	< 0.30 H		
I3-B	I3-B-15.0	Interior	Confirmation	Removed		15.0	Saturated	2/23/2020	< 76	690	690			< 26 H						
	I3-B-DUP-15.0	Interior	Confirmation	Removed		15.0	Saturated	2/24/2020						23 T						
	I4-ESW-20.0	Sidewall	Confirmation	In Place		20.0	Vadose	2/4/2020	500 N	1,800	2,300									
I4-ESW-15.0 Sidewall Confirmation In Place 15.0 Saturated 2/22/2020						2/22/2020	< 76	160	160											
MTCA Method B Dire	ect Contact ⁶								N	E	NE	NE		1,500 ⁸	18	6,400	8,000	16,000		
Screening Levels for	creening Levels for Soil Protective of Groundwater - Vadose Zone®								2,0	00 ⁷	2,000 ⁷	2,00	07	30 ⁷	0.027	4.5	5.9	14		
Screening Levels for Soil Protective of Groundwater - Saturated Zone ⁶									2,0	007	2,000 ⁷	2,00	0'	30 ⁷	0.0017	0.27	0.34	0.83		
Laboratory Practical	poratory Practical Quantitation Limits ⁸									5	75	75	5	5	0.001	0.005	0.001	0.003		

									Analytical Results (milligrams per kilogram)										
				Sample		Sample			NWTF	PH-Dx ²		NWTPH-Dx w	vith Silica Gel ²	NWTPH-Gx ⁴	EPA Method 8021B/8260 ⁵				
		General		Location	Sample	Elevation			_		Total	_							
Sample Location	Sample Identification	Location	Sample Type	Disposition	Depth (feet)	(feet NAVD88)	Zone	Sample Date	DRO	ORO	NWTPH-Dx ³	DRO	ORO	GRO	Benzene	Toluene	Ethylbenzene	Xylenes	
I/J-B	I/J-B-(-6.75)	Interior	Confirmation	In Place		-6.75	Saturated	6/3/2020	< 26	< 53	< 53			< 5.0	< 0.020	< 0.050	< 0.050	< 0.100	
JZ-B	J2-B-20.0	Interior	Confirmation	Removed		20.0	Vadose	2/14/2020	< 29	< 58	< 58				< 0.00076	< 0.0038	< 0.00076	< 0.00226	
J4-ESW	J4-ESW-20.0	Sidewall	Confirmation	In Place		20.0	Vadose	2/4/2020	1,800 N	4,600	6,400								
	J4-ESVV-15.0	Sidewali	Confirmation	In Place		15.0	Saturated	2/22/2020	< 29	< 160	< 160								
	5/12-D-(-0.75)	Sidowall	Confirmation			-0.75	Vadaça	2/4/2020	59 N	< <u>3</u> 5	228			× 4.9	< 0.020	< 0.049	< 0.049	< 0.090	
K1-W3W	K2-B-20.0	Interior	Confirmation	Removed		20.0	Vadose	2/6/2020	56	280	280				< 0.037	< 0.10	< 0.10	< 0.38	
NZ-D	K3-B-20.0	Interior	Performance	Removed		20.0	Vadose	2/13/2020	2 500 N	9 700	12 200				< 0.037	< 0.15	< 0.15	< 0.50	
K3-B	K3-B-15.0	Interior	Confirmation	Removed		15.0	Saturated	2/24/2020	68 N	830	898								
100	K3-B-10.0	Interior	Confirmation	Removed		10.0	Saturated	2/28/2020	< 32	< 64	< 64								
	K4-B-15.0	Interior	Confirmation	Removed		15.0	Saturated	2/26/2020	< 33	< 67	< 67								
K4-B	K4-B-10.0	Interior	Confirmation	Removed		10.0	Saturated	2/26/2020	110	290	400								
	K4-ESW-20.0	Sidewall	Confirmation	In Place		20.0	Vadose	2/4/2020	290 N	960	1 250								
K4-ESW	K4-ESW-15.0	Sidewall	Confirmation	In Place		15.0	Saturated	2/22/2020	< 120	710	710								
L1-B	L1-B-15.0	Interior	Confirmation	Removed		15.0	Saturated	2/24/2020	< 170	560	560								
	L1-WSW-20.0	Sidewall	Confirmation	In Place		20.0	Vadose	2/3/2020	< 31	180	180								
L1-WSW	L1-WSW-17.0	Sidewall	Confirmation	In Place		17.0	Saturated	2/10/2020	250 N	1,200	1,450								
	L1-WSW-15.0	Sidewall	Confirmation	In Place		15.0	Saturated	2/24/2020	< 83	510	510								
L1-WSW2	L1-WSW2-17.0	Sidewall	Confirmation	In Place		17.0	Saturated	2/10/2020	86 N	740	826								
L2-B	L2-B-10.0	Interior	Confirmation	Removed		10.0	Saturated	2/28/2020	< 33	< 67	< 67								
L3-B	L3-B-15.0	Interior	Confirmation	Removed		15.0	Saturated	2/24/2020	< 140	1,300	1,300								
L4-ESW	L4-ESW-15.0	Sidewall	Confirmation	In Place		15.0	Saturated	2/22/2020	< 130	940	940								
M1 P	M1-B-15.0	Interior	Confirmation	Removed		15.0	Saturated	2/24/2020	< 160	470	470								
IVI I-D	M1-B-10	Interior	Confirmation	Removed		10.0	Saturated	2/25/2020	< 31	< 62	< 62								
	M1-WSW-20.0	Sidewall	Confirmation	In Place		20.0	Vadose	2/3/2020	200	220	420								
M1-WSW	M1-WSW-17.0	Sidewall	Confirmation	In Place		17.0	Saturated	2/10/2020	< 29	250	250								
	M1-WSW-15.0	Sidewall	Confirmation	In Place		15.0	Saturated	2/24/2020	160 N	2,100	2,260								
	M1-WSW-10	Sidewall	Confirmation	In Place		10.0	Saturated	2/25/2020	< 36	< 72	< 72								
M1-WSW2	M1-WSW2-20.0	Sidewall	Confirmation	In Place		20.0	Vadose	2/3/2020	< 30	< 61	< 61								
M3-B	M3-B-(-6.75)	Interior	Confirmation	In Place		-6.75	Saturated	5/28/2020	< 29	< 58	< 58			< 5.2	< 0.020	< 0.052	< 0.052	< 0.104	
M4-B	M4-B-12.0	Interior	Confirmation	Removed		12.0	Saturated	2/22/2020	< 76	400	400								
M4-ESW	M4-ESW-20.0	Sidewall	Confirmation	In Place		20.0	Vadose	2/6/2020	< 30	< 61	< 61								
N1-B	N1-B-15.0	Interior	Confirmation	Removed		15.0	Saturated	2/22/2020	< 110	1,900	1,900								
N1-NSW	N1-NSW-22.0	Sidewall	Confirmation	In Place		22.0	Vadose	1/31/2020	< 30	< 61	< 61								
	N1-NSW-15.0	Sidewall	Confirmation	In Place		15.0	Saturated	2/24/2020	< 150	580	580								
N1-ESW	N1-ESW-15.0	Sidewall	Confirmation	In Place		15.0	Saturated	2/22/2020	< 150	1,000	1,000								
	N1-WSW-20.0	Sidewall	Confirmation	In Place		20.0	Vadose	2/3/2020	280 N	1,400	1,680								
N1-WSW	N1-WSW-17.0	Sidewall	Confirmation	In Place		17.0	Saturated	2/10/2020	4,800 N	19,000	23,800								
	N1-WSW-15.0	Sidewall	Confirmation	In Place		15.0	Saturated	2/24/2020	< 79	630	630								
N1-WSW3	N1-WSW3-170	Sidewall	Confirmation	In Place		17.0	Saturated	2/21/2020	< 36	11	11								
	N2-B-20.0	Interior	Confirmation	Removed		20.0	Vadose	2/6/2020	< 31	< 61	< 61								
NO D	N2-B-15.0	Interior	Contirmation	Removed		15.0	Saturated	2/23/2020						< 22 H					
NZ-B	N2-B-DUP-15.0	Interior	Contirmation	Removed		15.0	Saturated	2/24/2020						< 64					
	N2-B-10.0	Interior	Confirmation	Removed		10.0	Saturated	2/23/2020	< 31	< 62	< 62			< 12 H					
	N2-B-DUP-10.0	Interior	Confirmation	Removed		10.0	Saturated	2/24/2020						< 6.4					
MICA Method B Dire	ect Contact"								N		NE	N		1,500°	18	6,400	8,000	16,000	
Screening Levels for	r Soil Protective of Ground	water - Vado	se Zone ^⁵						2,0	00′	2,000 ⁷	2,0	001	30 ⁷	0.027	4.5	5.9	14	
Screening Levels for	r Soil Protective of Ground	water - Satur	rated Zone ⁶						2,0	00 ⁷	2,000 ⁷	2,0	00 ⁷	30 ⁷	0.0017	0.27	0.34	0.83	
Laboratory Practical Quantitation Limits ⁸								7	5	75	7	75	5	0.001	0.005	0.001	0.003		
, ,											-	I		-	-				

												Analyti	cal Results (mi	lligrams per kild	ogram)			
				Sample		Sample			NWTF	PH-Dx ²		NWTPH-Dx w	ith Silica Gel ²	NWTPH-Gx ⁴	j ,	EPA Metho	1 8021B/8260 ⁵	
		General		Location	Sample	Elevation					Total							
Sample Location	Sample Identification	Location	Sample Type	Disposition	Depth (feet) ¹	(feet NAVD88) ¹	Zone	Sample Date	DRO	ORO	NWTPH-Dx ³	DRO	ORO	GRO	Benzene	Toluene	Ethylbenzene	Xylenes
N2-NSW	N2-NSW-22.0	Sidewall	Confirmation	In Place		22.0	Vadose	1/31/2020	< 29	83	83							
	N2-NSW-15.0	Sidewall	Confirmation	In Place		15.0	Saturated	2/24/2020						< 32				
N2-ESW	N2-ESW-10	Interior	Confirmation	Removed		10.0	Saturated	2/25/2020						< 6.5				
N2-SSW	N2-SSW-10	Interior	Confirmation	Removed		10.0	Saturated	2/25/2020						< 6.9				
N3-NSW	N3-NSW-20.0-121019	Sidewall	Confirmation	In Place		20.0	Vadose	12/10/2019	< 30 H	< 61 H	< 61			< 5.7 H	< 0.020 H	< 0.057 H	< 0.057 H	< 0.114 H
	N3-NSW-22.0	Sidewall	Confirmation	In Place		22.0	Vadose	1/31/2020	< 30	< 59	< 59							
N3-NSW2	N3-NSW2-22.0	Sidewall	Confirmation	In Place		22.0	Vadose	1/31/2020	< 30	< 60	< 60							
N4-NSW	N4-NSW-20.0	Sidewall	Confirmation	In Place		20.0	Vadose	2/6/2020	< 30	< 60	< 60							
N4-ESW	N4-ESW-20.0	Sidewall	Confirmation	In Place		20.0	Vadose	2/6/2020	< 29	< 58	< 58							
	TP-2-20.0-121919	Interior	Confirmation	Removed	5.0	20.0	Vadose	12/19/2019	< 27	210	210			< 4.2	< 0.020	< 0.042	< 0.042	< 0.084
TP-2	TP-2-15.0-121919	Interior	Confirmation	Removed	10.0	15.0	Saturated	12/19/2019	6,600	9,000	15,600			< 420 U1	< 0.026	< 0.13	< 0.13	< 0.26
11 2	TP-2-10.0	Interior	Confirmation	Removed		10.0	Saturated	2/13/2020	< 33	< 66	< 66			< 6.8				
	TP-2-5.0	Interior	Confirmation	Removed		5.0	Saturated	2/13/2020	< 28	< 57	< 57			< 4.9				
TD_3	TP-3-20.0-121919	Interior	Confirmation	Removed	5.0	20.0	Vadose	12/19/2019	< 29	< 59	< 59			< 5.2	< 0.020	< 0.052	< 0.052	< 0.104
11-5	TP-3-15.0-121919	Interior	Confirmation	Removed	10.0	15.0	Saturated	12/19/2019	< 160	1,700	1,700			< 59	< 0.12	< 0.59	< 0.59	< 1.18
TP-7	TP-7-4.0	Interior	Confirmation	Removed	4.0	19.5	Vadose	12/23/2019	< 74	230	230			< 25	< 0.0044	< 0.022	< 0.0044	< 0.0132
TP-10	TP-10-15.0	Interior	Confirmation	Removed		15.0	Saturated	2/4/2020	< 130	370	370							
	TP-11-20.0	Interior	Confirmation	Removed		20.0	Vadose	2/4/2020	< 30	190	190							
TP-11	TP-11-15.0	Interior	Confirmation	Removed		15.0	Saturated	2/4/2020	230	680	910							
	TP-11-10.0	Interior	Confirmation	Removed		10.0	Saturated	2/4/2020	< 36	< 71	< 71							
TD 40	TP-13-20.0	Interior	Confirmation	Removed		20.0	Vadose	2/7/2020	< 28	< 57	< 57							
TP-13	TP-13-15.0	Interior	Confirmation	Removed		15.0	Saturated	2/7/2020	< 35	< 70	< 70							
	TP-14-20.0	Interior	Confirmation	Removed		20.0	Vadose	2/14/2020	< 95	410	410							
TP-14	TP-14-15.0	Interior	Confirmation	Removed		15.0	Saturated	2/14/2020	120 N	640	760							
	TP-14-10.0	Interior	Confirmation	Removed		10.0	Saturated	2/14/2020	< 33	< 67	< 67							
	TP-15-20.0	Interior	Confirmation	Removed		20.0	Vadose	2/14/2020	< 97	700	700							
TP-15	TP-15-15.0	Interior	Confirmation	Removed		15.0	Saturated	2/14/2020	95 N	490	585							
	TP-15-10.0	Interior	Confirmation	Removed		10.0	Saturated	2/14/2020	< 32	< 65	< 65							
	TP-16-20.0	Interior	Confirmation	Removed		20.0	Vadose	2/14/2020	< 65	250	250							
TP-16	TP-16-15.0	Interior	Confirmation	Removed		15.0	Saturated	2/14/2020	88 N	400	488							
	TP-16-10.0	Interior	Confirmation	Removed		10.0	Saturated	2/14/2020	< 32	< 64	< 64							
	TP-17-20.0	Interior	Confirmation	Removed		20.0	Vadose	2/18/2020	300 N	1.700	2.000							
TP-17	TP-17-15	Interior	Confirmation	Removed		15.0	Saturated	2/25/2020	< 59	< 120	< 120							
	TP-17-10	Interior	Confirmation	Removed		10.0	Saturated	2/25/2020	< 29	< 58	< 58							
TP-18	TP-18-10.0	Interior	Confirmation	Removed		10.0	Saturated	2/19/2020	< 28	< 56	< 56							
			oomination			Unde	eraround St	torage Tank In	vestigation and	Decommissio	nina					1	1 1	
M1-Product	M1-24 5-PRODUCT	Interior	Performance	Removed		24.5	Vadose	1/17/2020	DETECTED ⁹	DETECTED ⁹				< 9.200 ⁹				
M1-Prod-Soil	M1-24.5	Interior	Performance	Removed		24.5	Vadose	1/17/2020	8 600	15 000	23 600			< 0,200				
M1-Tank	M1_TANK_24.5	Interior	Performance	Removed		24.5	Vadose	1/21/2020	850 N	2 500	3 350			< 59	< 0.00082	< 0.0041	0 00099	0.0116
LIST01-B	UST01_B_17	Interior	Confirmation	Removed		17.0	Saturated	1/27/2020	37	100	137			< 5 5	< 0.00002	< 0.0041	< 0.00099	< 0.00272
		Interior	Confirmation	Removed		10.0	Vadose	1/27/2020	< 30	< 60	< 60			- 0.0	< 0.00032	< 0.0040	< 0.00032	< 0.00272
UST01-F1	UST01-F1-19	Interior	Confirmation	Removed		19.0	Vadose	1/27/2020	< 20	< 58	< 58				< 0.00094	< 0.0047	< 0.00034	< 0.00204
		Interior	Confirmation	Removed		10.0	Vadose	1/27/2020	< 29	< 50	< 55				< 0.00003	< 0.0042	< 0.00003	< 0.00253
	LISTO1 W/1 10	Interior	Confirmation	Removed		10.0	Vadoce	1/27/2020	< 20	< 61	< 61				< 0.00004	< 0.0042	< 0.00004	< 0.00234
	USTUT-VVI-19	Sidowall	Performance	Removed		19.0	Vadose	1/21/2020	< 3U	> 01 3 100 N11	6 500				~ 0.00098	< 0.0049	< 0.00096	< 0.00∠90
	Method B Direct Contact ⁶								3,400	5,100 101	0,500							
WICA Method B Dire	TCA Method B Direct Contact [®]										NE	N	<u> </u>	1,500°	18	6,400	8,000	16,000
Screening Levels for	r Soil Protective of Ground	water - Vado	se Zone⁵						2,0	00'	2,0007	2,0	00'	30 ⁷	0.027	4.5	5.9	14
Screening Levels for Soil Protective of Groundwater - Saturated Zone ⁶									2,0	00 ⁷	2,000 ⁷	2,0	00 ⁷	30 ⁷	0.0017	0.27	0.34	0.83
Laboratory Practical	Quantitation Limits ⁸								7	5	75	7	5	5	0.001	0.005	0.001	0.003

												Analyti	cal Results (mi	lligrams per kil	ogram)			
				Sample		Sample			NWTP	PH-Dx ²		NWTPH-Dx w	ith Silica Gel ²	NWTPH-Gx ⁴		EPA Metho	d 8021B/8260 ⁵	
Semale Leastion	Comula Identification	General	Comple Turne	Location	Sample	Elevation	70.00	Semula Data	DRO	000			000	000	Banzana	Teluene	Ethylhoneona	Vulence
UST-02-Product		Interior	Performance	Removed	Depth (feet)	(Teet NAVDoo)	Saturated	2/5/2020			NWIPH-DX	DRO	URU	GRU	Benzene	Toluene	Ethylbenzene	Aylenes
LIST02-N		Interior	Performance	Removed		18.0	Saturated	2/5/2020	630	1 300	1 930			< 41,000	< 0.00091	< 0.0045	< 0.00091	< 0.00271
UST02-F	UST-02-F	Interior	Performance	Removed		18.0	Saturated	2/5/2020	370	850	1,330			79 0	0.0033	0.018	0.0075	0.048
UST02-B1	UST02-B1	Interior	Performance	Removed		15.0	Saturated	2/7/2020	140 N	820	960							
UST02-B2	UST02-B2	Interior	Confirmation	Removed		14.0	Saturated	2/7/2020	160 N	1.800	1.960							
UST02-N1	UST02-N1	Interior	Confirmation	Removed		17.5	Saturated	2/7/2020	160 N	440	600							
UST02-E1	UST02-E1	Interior	Confirmation	Removed		17.5	Saturated	2/7/2020	39 N	230	269							
UST02-S	UST02-S	Interior	Confirmation	Removed		17.5	Saturated	2/7/2020	< 50	200	200							
UST02-W1	UST02-W1	Interior	Confirmation	Removed		17.5	Saturated	2/7/2020	64 N	310	374							
								1	Alley									
D C	B-6-3	Alley	Performance	Removed	3.0	23.6	Vadose	12/29/1998	< 20	850	850			< 5.0	< 50	< 50	< 50	< 50
D-0	B-6-13	Alley	Confirmation	Removed	13.0	13.6	Saturated	12/29/1998	< 20	< 50	< 50			< 5.0	< 50	< 50	< 50	< 50
EB_11	FB-11-20.0	Alley	Performance	Removed		20.0	Vadose	9/12/2020	72 N	470	542							
10-11	FB-11-17.5	Alley	Confirmation	In Place		17.5	Vadose	9/12/2020	< 59	< 120	< 120							
FB-12	FB-12-20.0	Alley	Performance	Removed		20.0	Vadose	9/13/2020	170 N	1,600	1,770			< 41	< 0.083	< 0.41	< 0.41	< 0.82
1012	FB-12-17.5	Alley	Confirmation	In Place		17.5	Saturated	9/13/2020	< 94	1,300	1,300			< 38	< 0.075	< 0.38	< 0.38	< 0.76
	FB-13-20.0	Alley	Performance	Removed		20.0	Vadose	9/12/2020	86 N	1,400	1,486			< 35	< 0.070	< 0.35	< 0.35	< 0.70
FB-13	FB-13-17.5	Alley	Confirmation	In Place		17.5	Saturated	9/12/2020	160 N	2,700	2,860			< 51	< 0.10	< 0.51	< 0.51	< 1.02
	FB-13-15.0	Alley	Confirmation	In Place		15.0	Saturated	9/12/2020	< 130	1,200	1,200							
FB-14	FB-14-20.0	Alley	Performance	Removed		20.0	Vadose	9/12/2020	32 N	150	182							
	FB-14-17.5	Alley	Confirmation	In Place		17.5	Saturated	9/13/2020	< 65	510	510							
	FB-15-22.5	Alley	Performance	Removed		22.5	Vadose	9/13/2020	< 140	1,500	1,500							
FB-15	FB-15-20.0	Alley	Confirmation	Removed		20.0	Vadose	9/13/2020	< 30	160	160							
	FB-15-17.5	Alley	Confirmation	In Place		17.5	Saturated	9/13/2020	< 28	< 56	< 56							
EB 16	FB-16-22.5	Alley	Confirmation	Removed		22.5	Vadose	9/13/2020	< 28	110	110							
10-10	EB-16-17.5	Alley	Confirmation			17.5	Saturated	9/13/2020	130 N	1 000	1 130							
PH_11Δ	PH-11A-4 0-011919	Alley	Performance	Removed	4.0	20.0	Vadose	1/10/2010	520 N	1,000	1,130			< 20				
PH-12	PH-12-4 0-011919	Alley	Performance	Removed	4.0	21.0	Vadose	1/19/2019	9 400 N M	21 000	30 400			2 100				
PH-13	PH-13-3 0-011219	Alley	Performance	Removed	3.0	20.0	Vadose	1/12/2019	< 29	< 59	< 59			< 6.4				
E/A5-B	E/A5-B-17.5	Alley	Confirmation	In Place		17.5	Saturated	6/28/2021	130 N	2.100	2.230			< 45	< 0.0070	< 0.035	< 0.0070	< 0.021
	E/A5-ESW-22.5-050421	Alley	Confirmation	In Place		22.5	Vadose	5/4/2021	350 N	1,600	1,950			< 14	< 0.0020	< 0.010	< 0.0020	< 0.0061
E/A5-ESW	E/A5-ESW-20.0-050421	Alley	Confirmation	In Place		20.0	Vadose	5/4/2021	220 N	1,500	1,720			< 27	< 0.0039	< 0.019	< 0.0039	< 0.0117
	E/A5-ESW-17.5-050421	Alley	Confirmation	In Place		17.5	Saturated	5/4/2021	130 N	1,000	1,130			< 34	< 0.0050	< 0.025	< 0.0050	< 0.015
F/A5-B	F/A5-B-17.5	Alley	Confirmation	In Place		17.5	Saturated	6/28/2021	160 N	710	870			< 43	< 0.0062	< 0.031	< 0.0062	< 0.0182
	G/A5-ESW-22.5-070621	Alley	Confirmation	In Place		22.5	Vadose	7/6/2021	150 N	1,700	1,850							
G/A5-ESW	G/A5-ESW-20.0-070621	Alley	Confirmation	In Place		20.0	Vadose	7/6/2021	890 N	3,300	4,190							
	G/A5-ESW-17.5-070621	Alley	Confirmation	In Place		17.5	Saturated	7/6/2021	940 N	6,100	7,040							
H/A5-B	H/A5-B-17.5-070621	Alley	Confirmation	In Place		17.5	Saturated	7/6/2021	98 N	780	878							
	H/A5-ESW-22.5-070621	Alley	Confirmation	In Place		22.5	Vadose	7/6/2021	200 N	2,400	2,600							
H/A5-ESW	H/A5-ESW-20.0-070621	Alley	Confirmation	In Place		20.0	Vadose	7/6/2021	360 N	2,800	3,160							
	H/A5-ESW-17.5-070621	Alley	Confirmation	In Place		17.5	Saturated	7/6/2021	< 86	250	250							
I/A5-B	I/A5-B-17.5-070921	Alley	Confirmation	In Place		17.5	Saturated	7/9/2021	87 N	230	317							
	I/A5-ESW-22.5-070921	Alley	Confirmation	In Place		22.5	Vadose	7/9/2021	82 N	550	632							
I/A5-ESW	I/A5-ESW-20.0-070921	Alley	Confirmation	In Place		20.0	Vadose	7/9/2021	520 N	4,100	4,620							
	I/A5-ESW-17.5-070921	Alley	Confirmation	In Place		17.5	Saturated	7/9/2021	1,400 N	3,000	4,400							
MTCA Method B Dir	Method B Direct Contact ⁶								N	IE	NE	N	E	1,500 ⁸	18	6,400	8,000	16,000
Screening Levels fo	r Soil Protective of Ground	water - Vado	se Zone ⁶						2,0	00 ⁷	2,000 ⁷	2,0	00 ⁷	30 ⁷	0.027	4.5	5.9	14
Screening Levels fo	r Soil Protective of Ground	water - Satur	ated Zone ⁶						2,0	00 ⁷	2,000 ⁷	2,0	00 ⁷	30 ⁷	0.0017	0.27	0.34	0.83
Laboratory Practica	I Quantitation Limits ⁸								7	5	75	7	5	5	0.001	0.005	0.001	0.003

												Analyti	cal Results (mi	lligrams per kild	ogram)			
				Sample		Sample			NWTP	H-Dx ²		NWTPH-Dx w	ith Silica Gel ²	NWTPH-Gx ⁴		EPA Method	1 8021B/8260 ⁵	
Sample Location	Sample Identification	General	Sample Type	Location Disposition	Sample	Elevation	Zono	Sample Date	DPO	OPO	Total	DPO	OPO	GRO	Bonzono	Toluono	Ethylbonzono	Yulonos
Sample Location	J/A5-ESW-22.5-070921	Allev	Confirmation	In Place		22.5	Vadose	7/9/2021	230 N	1.700	1.930							
J/A5-ESW	J/A5-ESW-20.0-070921	Alley	Confirmation	In Place		20.0	Vadose	7/9/2021	110 N	310	420							
	J/A5-ESW-17.5-070921	Alley	Confirmation	In Place		17.5	Saturated	7/9/2021	< 32	110	110							
L/A5-B	L/A5-B-22.0-071221	Alley	Confirmation	Removed		22.0	Vadose	7/12/2021	< 29	< 57	< 57							
1/45-ESW/	L/A5-ESW-25.0-071221	Alley	Confirmation	In Place		25.0	Vadose	7/12/2021	80 N	500	580							
E/A5-E0W	L/A5-ESW-22.5-071221	Alley	Confirmation	In Place		22.5	Vadose	7/12/2021	31 N	200	231							
M/A5-ESW	M/A5-ESW-25.0-071521	Alley	Confirmation	In Place		25.0	Vadose	7/15/2021	87 N	340	427							
	M/A5-ESW-22.5-071521	Alley	Confirmation	In Place		22.5	Vadose	7/15/2021	< 28	< 55	< 55							
								Block 38 Ea	st Property									
EX-11-W21 (EL21)	EX-11-W21 (EL21)	B38E	Confirmation	In Place	9.5	21.0	Vadose	7/2/2008	< 20	< 50	< 50			11	< 0.02	< 0.05	< 0.05	< 0.15
EX-12-W16.5 (EL22)	EX-12-W16.5 (EL22)	B38E	Confirmation	In Place	7.0	22.0	Vadose	7/2/2008	< 20	< 50	< 50			< 10	< 0.02	< 0.05	< 0.05	< 0.15
EX-17-W13 (EL23)	EX-17-W13 (EL23)	B38E	Confirmation	In Place	6.5	23.0	Vadose	7/3/2008	< 20	< 50	< 50			< 10	< 0.02	< 0.05	< 0.05	< 0.15
EX-18-W9 (EL19.5)	EX-18-W9 (EL19.5)	B38E	Confirmation	In Place	6.0	19.5	Vadose	7/3/2008	< 20	< 50	< 50			< 10	< 0.02	< 0.05	< 0.05	< 0.15
P-4	P-4-3.5	B38E	Performance	Removed	3.5	21.2	Vadose	6/12/2002	< 37	530	530							
144.0	P-4-5.5	B38E	Performance	Removed	5.5	19.2	Vadose	6/12/2002	< /4	1,400	1,400							
W-3	W-3	B38E	Performance	Removed	10.0	10.5	Saturated	10/11/1993	7,800	280	8,080			470	< 0.16	< 0.16	0.19	0.87
W-4	W-4	B38E	Performance	Removed	11.0	9.5	Saturated	10/11/1993	210	< 49	210			44	< 0.030	< 0.030	< 0.030	0.063
								Block	37 Site									
MW-41	MW-41-3	B37	Confirmation	In Place	7.5	19.5	Vadose	10/28/1991	< 5		< 5			< 5	< 0.040	< 0.040	< 0.040	< 0.040
	MW-41-7	B37	Confirmation	In Place	17.5	9.5	Saturated	10/28/1991	< 5		< 5			< 5				
	MW-71-5	B37	Confirmation	In Place	5.0	25.4	Vadose	10/12/2005	< 10.8	< 27.1	< 27.1			< 3.84	< 0.0267	< 0.0891	< 0.0891	< 0.267
MW-71	MW-71-10	B37	Confirmation	In Place	10.0	20.4	Vadose	10/12/2005	< 11.2	< 28.0	< 28.0			< 4.33	0.189	< 0.0861	0.341	0.262
	MW-71-15	B37	Confirmation	In Place	15.0	15.4	Saturated	10/12/2005	< 11.7	< 29.3	< 29.3			< 4.55	< 0.0273	< 0.0910	< 0.0910	< 0.273
	MW-71-20	B37	Confirmation	In Place	20.0	10.4	Saturated	10/12/2005	135	298	433			888	1.02	0.724	9.9/	29.1
	IVIVV-72-5	B37	Confirmation	In Place	5.0	25.3	Vadose	10/12/2005	< 11.1	< 27.9	< 27.9			< 3.82	< 0.0257	< 0.0857	< 0.0857	< 0.257
MW-72	MW 72 15	B37	Confirmation		10.0	20.3	Saturated	10/12/2005	210	403	21.1622			< 4.00	< 0.0200	< 0.0000	< 0.0000	< 2.10
	MW-72-13	B37	Confirmation	In Place	20.0	10.3	Saturated	10/12/2005	109	99.6	208.6			< 11.8	< 0.0405	< 0.702	< 0.702	< 0.936
	MW-72-20	B37	Confirmation	In Place	5.0	25.1	Vadose	10/12/2005	< 11 1	< 27.7	< 27.7			< 5.05	< 0.0288	< 0.0960	< 0.0960	< 0.288
	MW-73-10	B37	Confirmation	In Place	10.0	20.1	Vadose	10/12/2005	45	< 28.5	45			4.530	< 0.0266	< 0.0888	< 0.0888	< 0.266
MW-73	MW-73-16	B37	Confirmation	In Place	15.0	15.1	Saturated	10/12/2005	129	677	806			33.4	0.261	< 0.443	< 0.443	< 1.33
	MW-73-20	B37	Confirmation	In Place	20.0	10.1	Saturated	10/12/2005	< 12.0	< 29.9	< 29.9			< 5.02	< 0.0131	< 0.100	< 0.100	< 0.301
	MW-95-5	B37	Confirmation	In Place	5.0	27.0	Vadose	10/19/2005	48.4	< 26.4	48.4			< 4.70	0.0346	< 0.0508	< 0.0508	< 0.102
MW-95	MW-95-10	B37	Confirmation	In Place	10.0	22.0	Vadose	10/19/2005	< 11.4	< 28.6	< 28.6			< 4.22	< 0.0277	< 0.0462	< 0.0462	< 0.0923
	MW-95-15	B37	Confirmation	In Place	15.0	17.0	Saturated	10/19/2005	< 12.6	< 31.5	< 31.5			< 7.39	< 0.0295	< 0.0492	< 0.0492	< 0.0985
MTCA Method B Dire	ect Contact ⁶								N	E	NE	N	IE	1,500 ⁸	18	6,400	8,000	16,000
Screening Levels for	Soil Protective of Ground	water - Vado	se Zone ⁶						2,0	D0 ⁷	2,000 ⁷	2,0	007	30 ⁷	0.027	4.5	5.9	14
Screening Levels for	Soil Protective of Ground	water - Satur	ated Zone ⁶						2,0	00 ⁷	2,000 ⁷	2,0	00 ⁷	30 ⁷	0.0017	0.27	0.34	0.83
Laboratory Practical	Quantitation Limits ⁸								7	5	75	7	75	5	0.001	0.005	0.001	0.003

NOTES:

Results in **bold** denote concentrations exceeding applicable screening levels; the shading indicates whether the exceedance is in the vadose or saturated zone as indicated to the right.

 Shading represents most stringent screening level or practical quantitation limit for vadose zone soil, or an exceedance in this zone.

 Shading represents most stringent screening level or practical quantitation limit for saturated zone soil, or an exceedance in this zone.

 Grey Text
 Grey text indicates a sample location that was subsequently removed during Interim Action excavation activities.

- denotes sample not analyzed.

¹Depth in feet below ground surface. Elevation in feet referenced to North American Vertical Datum of 1988 (NAVD88).

²Analyzed by Northwest Method NWTPH-Dx, unless otherwise noted. Results denoted as analyzed by NWTPH-Dx with silica gel were analyzed using a sample extract treated with sulfuric acid/silica gel cleanup procedure.

³Total is the sum of the DRO and ORO results. Where both results are non-detect, the higher of the two reporting limits is reported as the Total NWTPH-Dx value.

⁴Analyzed by Northwest Method NWTPH-Gx, unless otherwise noted.

⁵Analyzed by U.S. Environmental Protection Agency Method 8021B, 8260C, or 8260D.

< denotes analyte not detected at or exceeding the laboratory reporting limit listed.

⁶Washington State Cleanup Levels and Risk Calculations (CLARC) under Washington State Model Toxics Control Act Cleanup Regulation (MTCA), Method B direct contact cleanup levels and default soil concentrations protective of groundwater (leaching pathway) from CLARC Master spreadsheet, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC, unless otherwise noted.

⁷MTCA Method A is used as a surrogate for Method B because no Method B vadose or saturated leaching value has been established for TPH gasoline-, diesel- and oil-range mixtures.

⁷Laboratory Practical Quantitation Limits (PQLs) from OnSite Environmental of Redmond, Washington. PQLs for individual samples may vary due to sample matrix interferences, dilutions, or moisture content.

⁸Source of this value is the generic TPH cleanup level from Model Remedies for Sites with Petroleum Contaminated Soils, Washington State Department of Ecology, Publication No. 15-09-043, Revised: December 2017.

⁹Analyzed by Northwest Method NWTPH-HCID (hydrocarbon identification).

BTEX = benzene, toluene, ethylbenzene, and xylenes

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

F3 = result is elevated due to discrete peaks in quantitation range not representative of fuel

GRO = TPH as gasoline-range organics

H = sample analyzed outside of holding time

 ${\sf M}$ = hydrocarbons in the gasoline range are impacting the diesel-range result

 ${\sf N}$ = hydrocarbons in the oil-range are impacting the diesel-range result

 $\ensuremath{\mathsf{N1}}$ = hydrocarbons in the diesel-range are impacting the oil-range result

ORO = TPH as oil-range organics

O = Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result

T = the sample chromatographic pattern is not similar to the fuel standard used for quantitation

																		Analytical F	Results (mi	lligrams pe	r kilogram) ²							
											1	1	1	Non-C	arcinogeni	c PAHs			1	1			1	Car	cinogenic F	PAHs	1		
																									s		-		
																-							e	ane	ene		ene	ы	l I
											ene	ene				ene						ane	her	the	ut		rac	yre	1
											hal	hal		e		Ž					e	ace	ant	ran	lora		uth	d(b	1
										е	pht	pht	ene	ylei	0)Pe	ne		ene		/rer	Ę	nor	onl	oflu		A(h	ч С	1
										aler	Ina	Ina	F	Ht.	ene	j,h,	the	o	three		(l	NA N	E(,k)F	žuš	e	(a,	1,2,	1
				Sample		Sample	Sample			that	ţţ	ţţ	lap	lap	rac	3)0;	ran	ren	Jan	ne	20(2	20(5	(p	i)oi	ä	ser	DZC)ou	Total
Sample	Sample Identification	General		Location	Sample	Ueptn (foot) ¹		Zono	Sample	apł	-Me	- Ae	cer	cer	, uth	enz	on	n	her	yre	enz	enz	enz	enz	ota	L.	ibe	iepu	CPAHS
Location	Sample identification	Location	Sample Type	Disposition	composition	(ieet)	(leet NAVDoo)	Zone	Date	z	-	N Block (∢	٩		<u> </u>	L L	<u> </u>	_ <u> </u>			<u> </u>			0			
	FR 01 5 0 000110	Interior	Derformence	Domovod	Coil	5.0	01.0	Vadaaa	0/01/0010	0.00	4.4		0.46		1.0	1.0	4.0	0.46	E A	6.0	2.5	2.6	2.0	0.76		2.4	0.45	1.6	2.4
FB-01	FB-01-15.0-062116 FB-01-15.0-082118	Interior	Confirmation	Removed	Soil	5.0 15.0	21.3	Saturated	8/21/2018	< 0.011	< 0.011	< 0.011	< 0.40	< 0.011	< 0.011	< 0.011	4.0	< 0.40	5.4	< 0.011	< 0.011	< 0.011	< 0.011	< 0.70		3.1 < 0.011	< 0.011	< 0.011	< 0.008
	FB-02-5.0-082018	Interior	Performance	Removed	Soil	5.0	20.1	Vadose	8/20/2018	1.1	0.86	1.3	1.4	0.45	3.3	8.5	18	1.3	12	25	11	9.8	12	3.5		9.7	1.6	8.0	15
FB-02	FB-02-25.0-082018	Interior	Performance	Removed	Soil	25.0	0.1	Saturated	8/20/2018	0.083	0.020	0.024	0.027	< 0.0080	< 0.0080	< 0.0080	< 0.0080) < 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080		< 0.0080	< 0.0080	< 0.0080	< 0.0060
EB.03	FB-03-10.0-082318	Interior	Confirmation	Removed	Soil	10.0	15.8	Saturated	8/23/2018	< 0.0086	< 0.0086	< 0.0086	< 0.0086	< 0.0086	< 0.0086	< 0.0086	0.011	< 0.0086	0.015	0.012	< 0.0086	< 0.0086	< 0.0086	< 0.0086		< 0.0086	< 0.0086	< 0.0086	< 0.0065
1 B-03	FB-03-35.0-082318	Interior	Confirmation	In Place	Soil	35.0	-9.2	Saturated	8/23/2018	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	0.015	< 0.0080	0.017	0.017	< 0.0080	< 0.0080	< 0.0080	< 0.0080		< 0.0080	< 0.0080	< 0.0080	< 0.0060
FB-04	FB-04-10.0-082118	Interior	Performance	Removed	Soil	10.0	12.0	Saturated	8/21/2018	0.12	0.057	0.099	0.21	0.045	0.29	0.21	0.97	0.22	1.0	1.1	0.36	0.67	0.47	0.18		0.95	0.041	0.19	0.52
ED 05	FB-04-15.0-082118	Interior	Performance	Removed	Soil	15.0	7.0	Saturated	8/21/2018	0.052	0.048	0.092	0.049	< 0.0082	0.029	0.018	0.078	0.043	0.16	0.1	0.027	0.027	0.025	0.0099		0.028	< 0.0082	0.017	0.036
FB-05	FB-05-15.0-082218	Interior	Confirmation	Removed	Soll	15.0	10.5	Vadage	8/22/2018	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	0.004	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089	< 0.0089		< 0.0089	< 0.0089	< 0.0089	< 0.0067
EB-06	FB-06-10 0-082218	Interior	Confirmation	Removed	Soil	10.0	15.4	Saturated	8/22/2018	< 0.007	< 0.044	< 0.045	< 0.13	< 0.042	< 0.20	< 0.016 H	< 0.016 H	0.094	< 0.09	0.020 H	0.49 < 0.016 H	0.47	< 0.016 H	< 0.17		< 0.016 H	< 0.034	< 0.04	< 0.012
1 0 00	FB-06-20.0-082218	Interior	Confirmation	Removed	Soil	20.0	5.4	Saturated	8/22/2018	0.070	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081	< 0.0081		< 0.0081	< 0.0081	< 0.0081	< 0.0061
	FB-07-24	Interior	Confirmation	Removed	Soil	24.0	-0.5	Saturated	12/21/2019	0.028	< 0.0081	< 0.0081									< 0.0081	< 0.0081	< 0.0081	< 0.0081		< 0.0081	< 0.0081	< 0.0081	< 0.0061
FB-07	FB-07-29	Interior	Confirmation	Removed	Soil	29.0	-5.5	Saturated	12/21/2019	< 0.0080	< 0.0080	< 0.0080									< 0.0080	< 0.0080	< 0.0080	< 0.0080		< 0.0080	< 0.0080	< 0.0080	< 0.0060
	FB-07-31.5	Interior	Confirmation	In Place	Soil	31.5	-8.0	Saturated	12/21/2019	< 0.0080	< 0.0080	< 0.0080									< 0.0080	< 0.0080	< 0.0080	< 0.0080		< 0.0080	< 0.0080	< 0.0080	< 0.0060
	FB-08-2.5	Interior	Performance	Removed	Soil	2.5	21.2	Vadose	12/21/2019	3.8	5.0	5.5									4.8	4.6	6.4	2.0		4.7	0.70	3.1	6.5
FD 00	FB-08-8	Interior	Performance	Removed	Soil	8.0	15.7	Saturated	12/21/2019	0.013	< 0.0078	0.0089									0.015	0.013	0.017	< 0.0078		0.015	< 0.0078	0.011	0.020
FB-08	FB-08-13	Interior	Performance	Removed	Soil	13.0	10.7	Saturated	12/21/2019	4.6	1.9	2.3									< 0.0082	< 0.0082	< 0.0082	< 0.0082		< 0.0082	< 0.0082	< 0.0082	< 0.0062
	FB-08-30 5	Interior	Confirmation	In Place	Soil	30.5	5.7	Saturated	12/21/2019	0.12	0.040	0.040									< 0.0077	< 0.0077	< 0.0077	< 0.0077		< 0.0077	< 0.0077	< 0.0077	< 0.0056
	FB-09-11	Interior	Confirmation	Removed	Soil	11.0	12 7	Saturated	12/21/2019	< 0.0001	< 0.0001	< 0.0001									0.018	< 0.0001	0.021	< 0.0001		< 0.0001	< 0.0001	< 0.0001	0.023
FB-09	FB-09-33	Interior	Confirmation	In Place	Soil	33.0	-9.4	Saturated	12/21/2019	< 0.0083	< 0.0083	< 0.0083									< 0.0083	< 0.0083	< 0.0083	< 0.0083		< 0.0083	< 0.0083	< 0.0083	< 0.0063
	FB-17-17.0	Adjacent	Confirmation	In Place	Soil	15.4	17.0	Saturated	5/9/2023	< 0.241	< 0.241	< 0.241									0.215	0.146			0.319 J	0.192	< 0.121	0.126	0.282
FB-17	FB-17-15.0	Adjacent	Confirmation	In Place	Soil	17.4	15.0	Saturated	5/9/2023	-											< 0.131	< 0.0872			< 0.392	< 0.0872	< 0.0872	< 0.0872	< 0.0986
	FB-17-10.0	Adjacent	Confirmation	In Place	Soil	22.4	10.0	Saturated	5/9/2023												< 0.00505	o < 0.00337			< 0.0152	< 0.00337	< 0.00337	< 0.00337	< 0.00381
FB-18	FB-18-20.0	Adjacent	Confirmation	In Place	Soil		20.0	Vadose	11/24/2021												< 0.0079	< 0.0079	< 0.0079	< 0.0079		< 0.0079	< 0.0079	< 0.0079	< 0.006
	FB-18-15.0	Adjacent	Confirmation	In Place	Soil		15.0	Saturated	11/24/2021												< 0.012	< 0.012	< 0.012	< 0.012		< 0.012	< 0.012	< 0.012	< 0.0091
FB-19	FB-19-20.0 FB-19-15.0	Adjacent	Confirmation	In Place	Soil		20.0	Saturated	11/24/2021												< 0.0078	< 0.0078	< 0.0078	< 0.0078		< 0.0078	< 0.0078	< 0.0078	< 0.0059
	FB-20-12-0	Adjacent	Confirmation	In Place	Soil	12.0	20.0	Vadose	2/5/2022	0.019	< 0.0075	0.0081									0.033	0.046	0.038	0.015		0.039	< 0.0075	0.025	0.061
FB-20	FB-20-15.0	Adjacent	Confirmation	In Place	Organics	15.0	17.0	Saturated	2/5/2022	0.014	< 0.0077	< 0.0077									< 0.0077	< 0.0077	< 0.0077	< 0.0077		< 0.0077	< 0.0077	< 0.0077	< 0.0058
	FB-20-17.0	Adjacent	Confirmation	In Place	Organics	17.0	15.0	Saturated	2/5/2022	0.16	0.060	0.036									0.022	0.017	0.019	< 0.0088		0.026	< 0.0088	0.012	0.028
FMW-130	F-MW-130-20.0-072114	Interior	Performance	Removed	Soil	20.0	2.2	Saturated	7/21/2014	0.38	0.016	0.028	0.014	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079	< 0.0079		< 0.0079	< 0.0079	< 0.0079	< 0.0060
FMW-132	FMW-132-5.0-082418	Interior	Performance	Removed	Soil	5.0	20.7	Vadose	8/24/2018	2.0	2.0	2.6	1.5	0.10	3.3	4.4	15	0.84	18	27	9.4	11	10	2.9		13	1.4	4.1	12.5
FMW-133	FMW-133-10.0-082418	Interior	Confirmation	Removed	Soil	10.0	15.3	Saturated	8/24/2018	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055		< 0.055	< 0.055	< 0.055	< 0.042
	FMW-133-20.0-082418	Interior	Performance	Removed	Soil	20.0	5.3	Saturated	8/24/2018	0.25	0.035	0.042	0.021	< 0.0080	< 0.0080	< 0.0080	< 0.0080	0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080	< 0.0080		< 0.0080	< 0.0080	< 0.0080	< 0.0060
FIVIVV-134	FMW-135-15 0-082418	Interior	Confirmation	Removed	Soil	15.0	10.4	Saturated	8/24/2018	0.14	< 0.012	< 0.020	0.014	< 0.0081	< 0.0081	< 0.0001	0.042	< 0.016	0.021	0.0001	< 0.0081	< 0.0081	< 0.0081	< 0.0001		< 0.0001	< 0.0001	< 0.0081	< 0.0001
FMW-135	FMW-135-30.0-082418	Interior	Performance	Removed	Soil	30.0	-4.4	Saturated	8/24/2018	0.12	0.012	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	2 < 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082	< 0.0082		< 0.0082	< 0.0082	< 0.0082	< 0.0062
FMW-136	FMW-136-20.0-082218	Interior	Confirmation	Removed	Soil	20.0	5.1	Saturated	8/22/2018	0.030	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084	< 0.0084		< 0.0084	< 0.0084	< 0.0084	< 0.0063
FMW-144	FWM-144-9.0	Interior	Performance	Removed	Soil	9.0	20.4	Vadose	12/20/2019	< 0.014	< 0.014	< 0.014									0.085	0.033	0.088	0.025		0.032	< 0.014	0.081	0.11
	FMW-145-13.0	Interior	Performance	Removed	Soil	13.0	9.9	Saturated	12/20/2019	0.075	0.17	0.056									0.063	0.062	0.060	0.018		0.11	0.011	0.037	0.083
	FMW-145-18.0	Interior	Performance	Removed	Soil	18.0	4.9	Saturated	12/20/2019	0.018	0.054	0.044									0.055	0.051	0.051	0.016		0.066	< 0.0096	0.035	0.071
FMW-145	FMW-145-23.0	Interior	Confirmation	Removed	Soil	23.0	-0.1	Saturated	12/20/2019	< 0.0079	< 0.0079	< 0.0079									< 0.0079	< 0.0079	< 0.0079	< 0.0079		< 0.0079	< 0.0079	< 0.0079	< 0.0060
	FIVIV-145-28.0	Interior	Confirmation	In Place	Soil	28.0	-5.1	Saturated	12/20/2019	< 0.0081	< 0.0081	< 0.0081									< 0.0081	< 0.0081	< 0.0081	< 0.0081		< 0.0081	< 0.0081	< 0.0081	< 0.0061
	FMW-145-33.0	Interior	Confirmation	In Place	Soil	33.0	-10.1	Saturated	12/20/2019	< 0.0070	< 0.0070	< 0.0070									< 0.0070	< 0.0070	< 0.0070	< 0.0070		< 0.0070	< 0.0070	< 0.0070	< 0.0001
	FMW-146-13.0	Interior	Performance	Removed	Soil	13.0	10.2	Saturated	12/21/2019	0.25	0.33	0.18									0.050	0.060	0.054	0.015		0.059	< 0.0091	0.031	0.067
FIVIVV-146	FMW-146-18.0	Interior	Performance	Removed	Soil	18.0	5.2	Saturated	12/21/2019	0.20	0.13	0.12									0.031	0.034	0.031	0.0084		0.035	< 0.0082	0.018	0.041
	FMW-147-8.5	Interior	Confirmation	Removed	Soil	8.5	14.3	Saturated	12/21/2019	0.095	< 0.031	0.035									< 0.079 U ⁻	1 0.054	0.042	< 0.031		0.048	< 0.031	< 0.031	0.054
FMW-147	FMW-147-13.5	Interior	Confirmation	Removed	Soil	13.5	9.3	Saturated	12/21/2019	0.10	< 0.0081	< 0.0081									< 0.0081	< 0.0081	< 0.0081	< 0.0081		< 0.0081	< 0.0081	< 0.0081	< 0.0061
	FMW-147-23.5	Interior	Confirmation	Removed	Soil	23.5	-0.7	Saturated	12/21/2019	< 0.0081	< 0.0081	< 0.0081									< 0.0081	< 0.0081	< 0.0081	< 0.0081		< 0.0081	< 0.0081	< 0.0081	< 0.0061
	FIVIVV-147-30.5	interior	Contirmation	In Place	501	30.5	-1.1	Saturated	12/21/2019	< 0.0081	< 0.0081	< 0.0081	4 900		24.000		2 200	2 200		2 400	< 0.0081	< 0.0081	< 0.0081	< 0.0081		< 0.0081	< 0.0081	< 0.0081	< 0.0061
Screening L	A D DIRECT CONTACT	fGround	ator - Vadaaa 7	ono ⁵						1,000	0.022	17	4,000	NE	1 100	NE	630	5,200	NE	2,400	3.0	NE	NE	NE	NE	NE	NE		3.0
Screening Le	vels for Soil Protective of	f Groundw	ater - vauuse Z	Zone ⁵						0.24	0.002	0.088	25	NE	57	NE	32	2.6	NE	16	0.19	NE	NE	NE	NE	NE	NE	NE	0.19
Laboratory P	actical Quantitation Limit	ite ⁶	ater - Saturated	20116						0.0067	0.0042	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.15 NA
Proposed For	sibility Study/Cleanup A	ction Plan	Preliminary Sor	eenina Level	s (Vadose and Sa	turated)7				1.600	34	320																	0.19
	sisting study steallup A	and in the later			a vaaaaa ahu ba					.,000		020		1		1				-		-	1	1		1			

																		Analytical I	Results (mi	lligrams pe	r kilogram)	2							
														Non-C	arcinogeni	c PAHs								Carc	inogenic P	AHs			
																									0				
																							_	o	nes		e	Ð	
											e	e				e						Ð	ene	nen	the		Cel	G	
											ller	ler				ler						Sen	the	ut ut	an		Jra	Py	
											tha	tha	•	ne		- S					ne	rac	an	ora	Jor 1		, t	l(b:	
										e	ĥ	hd	ene	yle		JP (ne		ene		/rei	ıth	Ō	lue	ofli		d(h	3-6	
										ler	lna	lna	Ę	ţ	ene	, h	he		hr.		۲, E	١ A	Ē	K)F	ž	Φ	(a,	1,2,	1
				Sample		Sample	Sample			tha	Å	Å	apt	ap	ac	B)o	aut	ene	ant	Ð	o(a	o(a	e)	ò(j,	Be	en	0Z	0(1	Total
Sample		General		Location	Sample	Depth	Elevation		Sample	ĥ	Aet	/let	enä	eus	th	ž	o	or	eu	ren	uzu	ĬŽ	ž	ž	a	Š	Den	len	cPAHs
Location	Sample Identification	Location	Sample Type	Disposition	Composition	(feet) ¹	(feet NAVD88)	¹ Zone	Date	Na	4	2-1	ĂC	Ä	An	Be	E	Flu	Å	Ą	Be	Be	Be	Be	Ę	ъ	Dİ	Ind	TEC ^{3,4}
FMW-148	FMW-148-27.0	Interior	Performance	Removed	Soil	27.0	10.4	Saturated	12/22/2019	0.38	0.056	0.11									< 0.0084	< 0.0084	< 0.0084	< 0.0084		< 0.0084	< 0.0084	< 0.0084	< 0.0063
	FMW-149-21.0	Interior	Confirmation	Removed	Soil	21.0	15.2	Saturated	12/22/2019	< 0.0088	< 0.0088	< 0.0088									< 0.0088	< 0.0088	< 0.0088	< 0.0088		< 0.0088	< 0.0088	< 0.0088	< 0.0066
	FMW-149-31.0	Interior	Performance	Removed	Soil	31.0	5.2	Saturated	12/22/2019	0.044	0.010	0.013									< 0.0084	< 0.0084	< 0.0084	< 0.0084		< 0.0084	< 0.0084	< 0.0084	< 0.0063
FMW-149	FMW-149-41.0	Interior	Confirmation	Removed	Soil	41.0	-4.8	Saturated	12/22/2019	< 0.0070	< 0.0070	< 0.0070									< 0.0070	< 0.0070	< 0.0070	< 0.0070		< 0.0070	< 0.0070	< 0.0070	< 0.0053
	FMW-149-43 5	Interior	Confirmation	In Place	Soil	43.5	-7.3	Saturated	12/22/2019	< 0.0075	< 0.0075	< 0.0075									< 0.0075	< 0.0075	< 0.0075	< 0.0075		< 0.0075	< 0.0075	< 0.0075	< 0.0057
	FMW-160-20.0	Adjacent	Confirmation	In Place	Soil	19.2	20.0	Vadose	5/5/2023	0.0276	< 0.0263	< 0.0263									0.144	0.100			0 181	0.125	0.0220	0.0972	0.185
FMW-160	EMW-160-15.0	Adjacent	Confirmation	In Place	Soil	24.2	15.0	Saturated	5/5/2023	< 0.00677	< 0.00677	< 0.00677									< 0.00508	< 0.00339			< 0.0152	< 0.00339	< 0.00339	< 0.00339	< 0.00383
	FMW-161-20.0	Adjacent	Confirmation	In Place	Soil	20.2	20.0	Vadose	5/3/2023	0.0113	< 0.00695	< 0.000017									0.000000	0.00017			0.0165	0.0125	0.00100.1	0.00884	0.0136
FMW-161	EMW/ 161 15 0	Adjacent	Confirmation	In Place	Soil	20.2	15.0	Saturated	5/2/2023	0.0110	< 0.000000	< 0.000000									< 0.00007	< 0.00311			< 0.0100	< 0.00211	< 0.001000	< 0.00004	< 0.0100 0
	EMW/ 162 20.0	Adjacent	Confirmation	In Place	Soil	20.2	20.0	Vadaga	5/1/2023	0.0000	< 0.00021	< 0.00021									< 0.00400	< 0.00311			< 0.0140	< 0.00311	< 0.00311	< 0.00311	< 0.00331
FMW-163	EMW/ 162 15 0	Adjacent	Confirmation	In Place	Soil	20.7	15.0	Soturated	5/1/2023	0.00332 3	0.00780	0.00010									< 0.00402	< 0.00309			< 0.0133	< 0.00309	< 0.00309	< 0.00309	< 0.00340
A0/A2 P	A2/A2 B (6 75)	Aujacent	Confirmation		Soil	23.7	6.75	Saturated	6/2/2020	0.340	0.00769	0.00007									< 0.00477	< 0.00318	< 0.0070	< 0.0070	< 0.0143	< 0.00310	< 0.00318	< 0.00310	< 0.00359
AZ/A3-B	AZ/A3-B-(-0.75)	Interior	Confirmation	In Place	Soli		-0.75	Saturated	6/3/2020	< 0.0079	< 0.0079	< 0.0079									< 0.0079	< 0.0079	< 0.0079	< 0.0079		< 0.0079	< 0.0079	< 0.0079	< 0.0060
BZ-B	B2-B-15.0	Interior	Confirmation	Removed	Soli		15.0	Saturated	2/26/2020												< 0.015	< 0.015	< 0.015	< 0.015		< 0.015	< 0.015	< 0.015	< 0.011
D3-D	D0-D-10	Interior	Confirmation	Removed	3011		15.0	Saturated	6/2/2020												< 0.0096	< 0.0090	< 0.0090	< 0.0077		< 0.0090	< 0.0090	< 0.0077	< 0.0072
B/C-B	B/C-B-(-0.75)	Interior	Confirmation	In Place	Soli		-0.75	Saturated	6/3/2020	0.018	< 0.0077	< 0.0077									< 0.0077	< 0.0077	< 0.0077	< 0.0077		< 0.0077	< 0.0077	< 0.0077	< 0.0058
C2-B	C2-B-15.0	Interior	Confirmation	Removed	Soli		15.0	Saturated	2/26/2020												< 0.021	< 0.021	< 0.021	< 0.021		< 0.021	< 0.021	< 0.021	< 0.016
C3-B-20	C3-B-20	Interior	Performance	Removed	Soli		20.0	vadose	2/20/2020	0.46	0.12	0.16									0.25	0.32	0.29	0.090		0.27	0.029	0.14	0.34
С3-В	C3-B-15	Interior	Performance	Removed	Soll		15.0	Saturated	2/27/2020	1./	0.22	0.38									0.059	0.11	0.075	0.021		0.087	< 0.014	0.028	80.0
C4-ESW	C4-ESW-19.0	Sidewall	Confirmation	In Place	Soli		19.0	Vadose	2/28/2020												< 0.021	< 0.021	< 0.021	< 0.021		< 0.021	< 0.021	< 0.021	< 0.016
	C4-ESW-15	Sidewall	Confirmation	In Place	Soil		15.0	Saturated	2/27/2020												< 0.021	< 0.021	< 0.021	< 0.021		< 0.021	< 0.021	< 0.021	< 0.016
C/D-B	C/D-B-(-6.75)	Interior	Confirmation	In Place	Soil		-6.75	Saturated	6/3/2020	0.021	< 0.0075	< 0.0075									< 0.0075	< 0.0075	< 0.0075	< 0.0075		< 0.0075	< 0.0075	< 0.0075	< 0.0057
D2-B	D2-B-15.0	Interior	Confirmation	Removed	Soil		15.0	Saturated	2/26/2020												< 0.019	< 0.019	< 0.019	< 0.019		< 0.019	< 0.019	< 0.019	< 0.014
D3-B	D3-B-15	Interior	Confirmation	Removed	Soil		15.0	Saturated	2/27/2020												< 0.020	< 0.020	< 0.020	< 0.020		< 0.020	< 0.020	< 0.020	< 0.015
D4-ESW	D4-ESW-19.0	Sidewall	Confirmation	In Place	Soil		19.0	Vadose	2/28/2020	0.30	0.17	0.22									< 0.022	0.032	< 0.022	< 0.022		0.028	< 0.022	< 0.022	0.019
	D4-ESW-15	Sidewall	Confirmation	In Place	Soil		15.0	Saturated	2/27/2020	9.1	0.050	0.065									< 0.025	< 0.025	< 0.025	< 0.025		< 0.025	< 0.025	< 0.025	< 0.019
E4-ESW	E4-ESW-15.0	Sidewall	Confirmation	In Place	Soil		15.0	Saturated	2/26/2020												< 0.020	< 0.020	< 0.020	< 0.020		< 0.020	< 0.020	< 0.020	< 0.015
F1-B	F1-B-10.0	Interior	Confirmation	Removed	Soil		10.0	Saturated	2/29/2020												< 0.0090	< 0.0090	< 0.0090	< 0.0090		< 0.0090	< 0.0090	< 0.0090	< 0.0068
F2-B	F2-B-15.0	Interior	Performance	Removed	Soil		15.0	Saturated	2/26/2020												0.73	0.54	0.63	0.25		0.48	0.081	0.51	0.94
	F2-B-10.0	Interior	Confirmation	Removed	Soil		10.0	Saturated	2/29/2020												< 0.0081	< 0.0081	< 0.0081	< 0.0081		< 0.0081	< 0.0081	< 0.0081	< 0.0061
F4-ESW	F4-ESW-15.0	Sidewall	Confirmation	In Place	Soil		15.0	Saturated	2/26/2020												0.021	0.020	0.020	< 0.015		0.020	< 0.015	< 0.015	0.027
G1-B	G1-B-0.0	Interior	Confirmation	Removed	Soil		0.0	Saturated	5/4/2020												< 0.0076	< 0.0076	< 0.0076	< 0.0076		< 0.0076	< 0.0076	< 0.0076	< 0.0057
G2-B	G2-B-15.0	Interior	Confirmation	Removed	Soil		15.0	Saturated	2/26/2020												0.060	0.092	0.061	0.023		0.074	< 0.016	0.030	0.082
G3-B	G3-B-15.0	Interior	Confirmation	Removed	Soil		15.0	Saturated	2/26/2020	< 0.038	< 0.038	< 0.038									< 0.038	< 0.038	< 0.038	< 0.038		< 0.038	< 0.038	< 0.038	< 0.029
	G3-B-10.0	Interior	Performance	Removed	Soil		10.0	Saturated	2/28/2020	0.058	0.051	0.13									< 0.0073	< 0.0073	< 0.0073	< 0.0073		< 0.0073	< 0.0073	< 0.0073	< 0.0055
G4-ESW	G4-ESW-15.0	Sidewall	Confirmation	In Place	Soil		15.0	Saturated	2/26/2020												< 0.015	< 0.015	< 0.015	< 0.015		< 0.015	< 0.015	< 0.015	< 0.011
	H1-B-20.0	Interior	Performance	Removed	Soil		20.0	Vadose	2/4/2020												< 0.013	< 0.013	< 0.013	< 0.013		< 0.013	< 0.013	< 0.013	< 0.010
H1-B	H1-B-15.0	Interior	Performance	Removed	Soil		15.0	Saturated	2/27/2020												2.3	3.0	2.3	0.78		2.5	0.22	1.2	3.1
	H1-B-5.0	Interior	Confirmation	Removed	Soil		5.0	Saturated	5/4/2020												< 0.0079	0.019	< 0.0079	< 0.0079		0.022	< 0.0079	< 0.0079	0.008
H1-ESW	H1-ESW-20.0	Interior	Confirmation	Removed	Soil		20.0	Vadose	2/22/2020												< 0.019	< 0.019	< 0.019	< 0.019		< 0.019	< 0.019	< 0.019	< 0.014
	H1-ESW-15.0	Interior	Confirmation	Removed	Soil		15.0	Saturated	2/27/2020												< 0.010	< 0.010	< 0.010	< 0.010		< 0.010	< 0.010	< 0.010	< 0.008
H1-SSW	H1-SSW-20.0	Interior	Performance	Removed	Soil		20.0	Vadose	2/22/2020												0.13	0.080	0.13	0.052		0.074	0.015	0.11	0.17
	H1-SSW-15.0	Interior	Confirmation	Removed	Soil		15.0	Saturated	2/27/2020												0.011	0.054	0.020	< 0.0091		0.042	< 0.0091	< 0.0091	0.020
H1-WSW	H1-WSW-20.0	Sidewall	Confirmation	In Place	Soil		20.0	Vadose	2/4/2020												0.020	0.017	0.018	< 0.0086		0.016	< 0.0086	0.011	0.026
	H3-B-20	Interior	Performance	Removed	Soil		20.0	Vadose	2/20/2020	< 0.0079	< 0.0079	< 0.0079									< 0.0079	< 0.0079	< 0.0079	< 0.0079		< 0.0079	< 0.0079	< 0.0079	< 0.0060
H3-B	H3-B-15.0	Interior	Performance	Removed	Soil		15.0	Saturated	2/24/2020	0.29	0.22	0.34									0.11	0.15	0.11	0.036		0.13	< 0.018	0.056	0.15
	H3-B-10.0	Interior	Confirmation	Removed	Soil		10.0	Saturated	2/28/2020	< 0.0077	< 0.0077	< 0.0077									< 0.0077	< 0.0077	< 0.0077	< 0.0077		< 0.0077	< 0.0077	< 0.0077	< 0.0058
H4-B	H4-B-20.0	Interior	Performance	Removed	Soil		20.0	Vadose	2/19/2020	0.26	0.041	0.070									1.1	1.3	1.1	0.46		1.1	0.11	0.60	1.5
	H4-B-15.0	Interior	Confirmation	Removed	Soil		15.0	Saturated	2/19/2020	< 0.024	< 0.024	< 0.024									< 0.024	< 0.024	< 0.024	< 0.024		< 0.024	< 0.024	< 0.024	< 0.018
H4-ESW	H4-ESW-20.0	Sidewall	Confirmation	In Place	Soil		20.0	Vadose	2/4/2020												1.9	2.0	2.2	0.54		2.2	0.22	1.2	2.5
	H4-ESW-15.0	Sidewall	Confirmation	In Place	Soil		15.0	Saturated	2/26/2020												< 0.015	< 0.015	< 0.015	< 0.015		< 0.015	< 0.015	< 0.015	< 0.011
H4-ESW2	H4-ESW2-20.0	Sidewall	Confirmation	In Place	Soil		20.0	Vadose	2/4/2020												1.9	1.9	1.9	0.58		2.0	0.16	1.1	2.5
H4-SSW	H4-SSW-15.0	Interior	Confirmation	Removed	Soil		15.0	Saturated	2/27/2020												< 0.017	< 0.017	< 0.017	< 0.017		< 0.017	< 0.017	< 0.017	< 0.013
12-B	I2-B-10.0	Interior	Confirmation	Removed	Soil		10.0	Saturated	2/28/2020	< 0.0074	< 0.0074	< 0.0074																	
MTCA Method	B Direct Contact ⁵									1,600	34	320	4,800	NE	24,000	NE	3,200	3,200	NE	2,400	0.19	NE	NE	NE	NE	NE	NE	NE	0.19
Screening Lev	els for Soil Protective of	f Groundw	ater - Vadose Z	one⁵						4.5	0.082	1.7	49	NE	1,100	NE	630	51	NE	330	3.9	NE	NE	NE	NE	NE	NE	NE	3.9
Screening Lev	els for Soil Protective of	f Groundw	ater - Saturated	Zone⁵						0.24	0.0042	0.088	2.5	NE	57	NE	32	2.6	NE	16	0.19	NE	NE	NE	NE	NE	NE	NE	0.19
Laboratory Pr	actical Quantitation Limi	its ⁶								0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	NA
Proposed Fea	sibility Study/Cleanup A	ction Plan	Preliminary Scr	eenina Level	s (Vadose and Sati	urated)7				1,600	34	320																	0.19
					. ,					,						1	1	1	1		u								4

																		Analytical I	Results (mi	lligrams pe	r kilogram) ²							
														Non-C	arcinogeni	c PAHs								Carc	inogenic F	PAHs			
																									6				
																								Ð	nes		ЭС	Ð	
											e	e				e						Ð	ene	nen	the		Cel	G	
											ller	ller				ler						en .	the	Lt Lt	an		hra	Ā	1
											tha	tha	0	ne		- Le					e	rac	ran	ora	p		uth	(p	1
										ē	h	phi	ene	yle		d(ne		ene		/rei	Ę	0n	n	ofi		⊄(u	Н	
										ler	Ina	na	뒫	t,	ene	, Ļ	he		hre		e e	Ā	E(K)F	Ž	e	(a,	, N	1
				Sample		Sample	Sample			tha	hy	ĥ	apł	apt	ac	6)o	ant	ene	ant	ē	o(a	o (a	d)o	o(j,	Be	en	oz	5	Total
Sample		General		Location	Sample	Depth	Elevation		Sample	ĥ	Aet	/let	ena	eni	ţ	ž	o	Ū.	ena	ren	DZU	ž	DZU	Ĭ	la	Š	Den	len	cPAHs
Location	Sample Identification	Location	Sample Type	Disposition	Composition	(feet) ¹	(feet NAVD88)	¹ Zone	Date	Ra	 -	2-P	Ac	Ac.	An	Be	Η	L L	Æ	Ā	B	å	Be	Be	ē	చ	ă	Ind	TEC ^{3,4}
	I3-B-20.0	Interior	Performance	Removed	Soil		20.0	Vadose	2/23/2020	7.8	1.9	3.8									8.3	8.9	8.1	2.4		8.3	0.84	4.4	10.8
13-B	I3-B-15.0	Interior	Confirmation	Removed	Soil		15.0	Saturated	2/23/2020	0.024	< 0.020	< 0.020									0.021	0.022	0.023	< 0.020		0.027	< 0.020	< 0.020	0.029
	I3-B-10.0	Interior	Confirmation	Removed	Soil		10.0	Saturated	2/22/2020	< 0.0083	< 0.0083	< 0.0083																	
	14-FSW-20.0	Sidewall	Confirmation	In Place	Soil		20.0	Vadose	2/4/2020												27	27	28	8.3		28	26	16	35.5
I4-ESW	I4-ESW-15.0	Sidewall	Confirmation	In Place	Soil		15.0	Saturated	2/22/2020												< 0.020	< 0.020	< 0.020	< 0.020		< 0.020	< 0.020	< 0.020	< 0.015
I/J-B	I/J-B-(-6 75)	Interior	Confirmation	In Place	Soil		-6.75	Saturated	6/3/2020	< 0.0070	< 0.0070	< 0.0070									< 0.0020	< 0.0070	< 0.0070	< 0.0070		< 0.0070	< 0.0070	< 0.0070	< 0.0053
	.12-B-20.0	Interior	Confirmation	Removed	Soil		20.0	Vadose	2/14/2020	< 0.0077	< 0.0077	0.0087									< 0.0077	< 0.0077	< 0.0077	< 0.0077		< 0.0077	< 0.0077	< 0.0077	< 0.0058
12-B	12-B-15.0	Interior	Confirmation	Removed	Soil		15.0	Saturated	2/26/2020	- 0.0011	< 0.0011	0.0001									< 0.0011	< 0.0011	< 0.0011	< 0.0077		< 0.0077	< 0.0077	< 0.0011	< 0.0000
02 0	12 P 10.0	Interior	Dorformanco	Removed	Soil		10.0	Saturated	2/20/2020	0.15	0.076	0.15									0.010	0.024	0.015	< 0.0001		0.022	< 0.010	< 0.010	0.015
	JZ=D=10.0	Sidowall	Confirmation	In Place	Soil		20.0	Vadaga	2/20/2020	0.15	0.070	0.15									12	14	14	< 0.0001		15	1 2	7 1	17.2
J4-ESW	J4-E3W-20.0	Sidewall	Confirmation		Soil		20.0	Soturated	2/4/2020												0.020	0.022	0.025	4.4		0.026	1.3	0.022	0.051
	J4-E3W-15.0	Juterian	Confirmation		Soli		15.0	Saturated	2/22/2020	4 0 0074											0.039	0.033	0.035	< 0.021		0.030	< 0.021	10.023	10.001
J/K-B	J/K-B-(-0.75)	Interior	Confirmation	In Place	Soli		-0.75	Saturated	6/2/2020	< 0.0074	< 0.0074	< 0.0074									< 0.0074	< 0.0074	< 0.0074	< 0.0074		< 0.0074	< 0.0074	< 0.0074	< 0.0056
	K2-B-20.0	Interior	Periormance	Removed	Soll		20.0	Vadose	2/6/2020	4.0	4.6	5.0									12	11	12	3.4		10	0.96	0.7	15.5
KZ-B	KZ-B-15.0	Interior	Confirmation	Removed	Soli		15.0	Saturated	2/24/2020												< 0.020	< 0.020	< 0.020	< 0.020		< 0.020	< 0.020	< 0.020	< 0.015
	K2-B-U.U	Interior	Confirmation	Removed	Soli		0.0	Saturated	5/4/2020	< 0.0082	< 0.0082	< 0.0082									70							40	400
1/2 D	K3-B-20.0	Interior	Periormance	Removed	Soli		20.0	Vadose	2/13/2020	22	14	15									18	00	74	23		12	7.8	43	102
K3-B	K3-B-15.0	Interior	Confirmation	Removed	Soli		15.0	Saturated	2/24/2020												< 0.014	< 0.014	< 0.014	< 0.014		< 0.014	< 0.014	< 0.014	< 0.011
	K3-B-10.0	Interior	Confirmation	Removed	Soll		10.0	Saturated	2/28/2020	< 0.0086	< 0.0086	< 0.0086									< 0.0086	< 0.0086	< 0.0086	< 0.0086		< 0.0086	< 0.0086	< 0.0086	< 0.0065
K4-B	K4-B-15.0	Interior	Performance	Removed	Soil		15.0	Saturated	2/26/2020	1.2	0.33	0.59									< 0.0089	< 0.0089	< 0.0089	< 0.0089		< 0.0089	< 0.0089	< 0.0089	< 0.0067
	K4-B-10.0	Interior	Performance	Removed	Soil		10.0	Saturated	2/26/2020	0.72	0.30	0.55									0.035	0.055	0.037	< 0.018		0.052	< 0.018	0.018	0.048
K4-ESW	K4-ESW-20.0	Sidewall	Confirmation	In Place	Soil		20.0	Vadose	2/4/2020	0.46	0.45	0.49									2.4	1.9	2.3	0.68		1.9	0.23	1.4	3.1
	K4-ESW-15.0	Sidewall	Confirmation	In Place	Soil		15.0	Saturated	2/22/2020												< 0.033	< 0.033	< 0.033	< 0.033		< 0.033	< 0.033	< 0.033	< 0.025
L1-WSW	L1-WSW-20.0	Sidewall	Confirmation	In Place	Soil		20.0	Vadose	2/3/2020	0.087	0.071	0.079									0.076	0.073	0.10	0.030		0.077	0.011	0.054	0.10
	L2-B-20.0	Interior	Performance	Removed	Soil		20.0	Vadose	2/6/2020	0.41	< 0.21	< 0.21									3.0	2.9	3.3	1.1		2.4	0.42	1.8	4.0
L2-B	L2-B-10.0	Interior	Confirmation	Removed	Soil		10.0	Saturated	2/28/2020	< 0.0089	< 0.0089	< 0.0089																	
	L2-B-0.0	Interior	Confirmation	Removed	Soil		0.0	Saturated	5/4/2020												< 0.0071	< 0.0071	< 0.0071	< 0.0071		< 0.0071	< 0.0071	< 0.0071	< 0.0054
L3-B	L3-B-10.0	Interior	Confirmation	Removed	Soil		10.0	Saturated	2/26/2020	< 0.018	< 0.018	< 0.018									< 0.018	< 0.018	< 0.018	< 0.018		< 0.018	< 0.018	< 0.018	< 0.014
L4-ESW	L4-ESW-15.0	Sidewall	Confirmation	In Place	Soil		15.0	Saturated	2/22/2020												< 0.034	< 0.034	< 0.034	< 0.034		< 0.034	< 0.034	< 0.034	< 0.026
L4-SSW	L4-SSW-10.0	Interior	Confirmation	Removed	Soil		10.0	Saturated	2/28/2020	0.028	< 0.0081	0.010																	
M1-B	M1-B-0.0	Interior	Confirmation	Removed	Soil		0.0	Saturated	5/4/2020												< 0.0086	< 0.0086	< 0.0086	< 0.0086		< 0.0086	< 0.0086	< 0.0086	< 0.0065
M1-ESW	M1-ESW-10.0	Interior	Confirmation	Removed	Soil		10.0	Saturated	2/26/2020												< 0.010	< 0.010	< 0.010	< 0.010		< 0.010	< 0.010	< 0.010	< 0.008
M1-WSW	M1-WSW-20.0	Sidewall	Confirmation	In Place	Soil		20.0	Vadose	2/3/2020	0.25	1.2	1.4									0.40	0.30	0.38	0.11		0.34	0.041	0.27	0.51
M1-WSW2	M1-WSW2-20.0	Sidewall	Confirmation	In Place	Soil		20.0	Vadose	2/3/2020	0.015	0.022	0.018									0.028	0.022	0.039	0.012		0.031	< 0.0081	0.023	0.038
M2-B	M2-B-20.0	Interior	Performance	Removed	Soil		20.0	Vadose	2/6/2020												0.14	0.14	0.11	< 0.077		0.13	< 0.077	< 0.077	0.18
	M2-B-0.0	Interior	Confirmation	Removed	Soil		0.0	Saturated	4/30/2020												0.015	0.074	0.029	0.0085		0.046	< 0.0078	< 0.0078	0.027
M3-B	M3-B-(-6.75)	Interior	Confirmation	In Place	Soil		-6.75	Saturated	5/28/2020	< 0.0077	< 0.0077	< 0.0077									< 0.0077	< 0.0077	< 0.0077	< 0.0077		< 0.0077	< 0.0077	< 0.0077	< 0.0058
M4-ESW	M4-ESW-20.0	Sidewall	Confirmation	In Place	Soil		20.0	Vadose	2/6/2020												0.012	0.010	0.016	< 0.0081		0.015	< 0.0081	0.0089	0.016
N1-NSW	N1-NSW-22.0	Sidewall	Confirmation	In Place	Soil		22.0	Vadose	1/31/2020	0.013	< 0.0081	< 0.0081									0.070	0.062	0.075	0.022		0.066	< 0.0081	0.043	0.091
N1-WSW	N1-WSW-20.0	Interior	Performance	Removed	Soil		20.0	Vadose	2/3/2020	0.094	0.20	0.38									< 0.079	< 0.079	< 0.079	< 0.079		< 0.079	< 0.079	< 0.079	< 0.060
	N2-B-20.0	Interior	Performance	Removed	Soil		20.0	Vadose	2/6/2020												0.15 H	0.13 H	0.13 H	0.052 H		0.13 H	0.013 H	0.084 H	0.19
N2-B	N2-B-15.0	Interior	Confirmation	Removed	Soil		15.0	Saturated	2/23/2020												< 0.019	< 0.019	< 0.019	< 0.019		< 0.019	< 0.019	< 0.019	< 0.014
	N2-B-10.0	Interior	Confirmation	Removed	Soil		10.0	Saturated	2/23/2020												< 0.0083	< 0.0083	< 0.0083	< 0.0083		< 0.0083	< 0.0083	< 0.0083	< 0.0063
N2-NSW	N2-NSW-22.0	Sidewall	Confirmation	In Place	Soil		22.0	Vadose	1/31/2020	0.014	< 0.0078	0.0091									0.053	0.025	0.040	0.012		0.025	0.0090	0.074	0.069
N3-NSW	N3-NSW-22.0	Sidewall	Confirmation	In Place	Soil		22.0	Vadose	1/31/2020	< 0.0079	< 0.0079	< 0.0079									< 0.0079	< 0.0079	< 0.0079	< 0.0079		< 0.0079	< 0.0079	< 0.0079	< 0.0060
N3-NSW2	N3-NSW2-22.0	Sidewall	Confirmation	In Place	Soil		22.0	Vadose	1/31/2020	0.0088	0.0094	0.017									0.019	0.011	0.018	< 0.0080		0.012	< 0.0080	0.015	0.024
N4-NSW	N4-NSW-20.0	Sidewall	Confirmation	In Place	Soil		20.0	Vadose	2/6/2020												0.034	0.024	0.039	0.011		0.027	< 0.0080	0.038	0.046
N4-ESW	N4-ESW-20.0	Sidewall	Confirmation	In Place	Soil		20.0	Vadose	2/6/2020												< 0.0077	< 0.0077	< 0.0077	< 0.0077		< 0.0077	< 0.0077	< 0.0077	< 0.0058
TP-2	TP-2-10.0	Interior	Confirmation	Removed	Soil		10.0	Saturated	2/13/2020												< 0.0089	< 0.0089	< 0.0089	< 0.0089		< 0.0089	< 0.0089	< 0.0089	< 0.0067
TP-3	TP-3-20.0-121919	Interior	Confirmation	Removed	Soil	5.0	20.0	Vadose	12/19/2019	< 0.0078	< 0.0078	< 0.0078	< 0.0078	< 0.0078	< 0.0078	0.0087	0.026	< 0.0078	0.016	0.028	0.015	0.012	0.014	< 0.0078		0.012	< 0.0078	0.0089	0.019
	TP-3-15.0-121919	Interior	Confirmation	Removed	Soil	10.0	15.0	Saturated	12/19/2019	< 0.041	< 0.041	< 0.041	< 0.041	< 0.041	< 0.041	< 0.041	< 0.041	< 0.041	< 0.041	< 0.041	< 0.041	< 0.041	< 0.041	< 0.041		< 0.041	< 0.041	< 0.041	< 0.031
TP-7	TP-7-4.0	Interior	Confirmation	Removed	Soil	4.0	19.5	Vadose	12/23/2019	0.061	< 0.020	< 0.020									0.031	0.033	0.044	< 0.020		0.067	< 0.020	0.025	0.044
TP-10	TP-10-15.0	Interior	Confirmation	Removed	Soil		15.0	Saturated	2/4/2020	< 0.035	< 0.035	< 0.035									< 0.035	< 0.035	< 0.035	< 0.035		< 0.035	< 0.035	< 0.035	< 0.026
	TP-10-10.0	Interior	Confirmation	Removed	Soil		10.0	Saturated	2/4/2020	0.027	< 0.0081	< 0.0081																	
MTCA Method	B Direct Contact ⁵									1,600	34	320	4,800	NE	24,000	NE	3,200	3,200	NE	2,400	0.19	NE	NE	NE	NE	NE	NE	NE	0.19
Screening Lev	els for Soil Protective of	f Groundw	ater - Vadose Z	one⁵						4.5	0.082	1.7	49	NE	1,100	NE	630	51	NE	330	3.9	NE	NE	NE	NE	NE	NE	NE	3.9
Screening Lev	els for Soil Protective of	f Groundw	ater - Saturated	Zone⁵						0.24	0.0042	0.088	2.5	NE	57	NE	32	2.6	NE	16	0.19	NE	NE	NE	NE	NE	NE	NE	0.19
Laboratory Pr	actical Quantitation Limi	its ⁶								0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	NA
Proposed Fea	sibility Study/Cleanup A	ction Plan	Preliminary Scr	eening Levels	s (Vadose and Satı	urated) ⁷				1,600	34	320																	0.19
			-																										

																		Analytical I	Results (mi	lligrams pe	r kilogram) ²							
												1		Non-C	arcinogeni	c PAHs			T	T			1	Carc	inogenic P	AHs			
Sample Location	Sample Identification	General Location	Sample Type	Sample Location Disposition	Sample Composition	Sample Depth (feet) ¹	Sample Elevation (feet NAVD88)	1 Zone	Sample Date	Naphthalene	22 1-Methylnaphthalene	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i)Perylene	Fluoranthene	Fluorene	Phenanthrene	Pyrene	Benzo(a)Pyrene	Benzo(a)Anthracene	Benzo(b)Fluoranthene	Benzo(j,k)Fluoranthene	Total Benzofluoranthenes	Chrysene	Dibenzo(a,h)Anthracene	Indeno(1,2,3-cd)Pyrene	Total cPAHs TEC ^{3,4}
TP-11	TP-11-15.0 TP-11-10.0	Interior	Confirmation	Removed	Soil		10.0	Saturated	2/4/2020	<0.0095	<0.0095	<0.0095									1.5 < 0.0095	1.5	1.3	< 0.0095		1.4	0.15	< 0.095	1.9 < 0.0072
	TP-12-20.0	Interior	Performance	Removed	Soil		20.0	Vadose	2/7/2020												16	19	14	5.7		17	1.6	8.4	21
TP-12	TP-12-15.0	Interior	Performance	Removed	Soil		15.0	Saturated	2/7/2020												0.083	0.084	0.075	0.023		0.078	< 0.014	0.043	0.107
TD 42	TP-13-20.0	Interior	Confirmation	Removed	Soil		20.0	Vadose	2/7/2020												< 0.0076	< 0.0076	< 0.0076	< 0.0076		< 0.0076	< 0.0076	< 0.0076	< 0.0057
TP-13	TP-13-15.0	Interior	Confirmation	Removed	Soil		15.0	Saturated	2/7/2020												< 0.0093	< 0.0093	< 0.0093	< 0.0093		< 0.0093	< 0.0093	< 0.0093	< 0.0070
TP-16	TP-16-20.0	Interior	Confirmation	Removed	Soil		20.0	Vadose	2/14/2020												0.023	0.029	0.029	< 0.017		0.029	< 0.017	< 0.017	0.032
					1					Unde	rground Sto	orage Tank	Investigati	on and Dec	commission	ning					n					1		0	
M1-Tank	M1-TANK-24.5	Interior	Performance	Removed	Soil		24.5	Vadose	1/21/2020	1.8	5.1	8.0									0.29	0.39	0.30	< 0.082		0.54	0.11	0.17	0.40
UST01-B	UST01-B-17	Interior	Performance	Removed	Soil		17.0	Saturated	1/27/2020	0.029	0.041	0.055									0.011	0.011	0.010	< 0.0073		0.014	< 0.0073	< 0.0073	0.014
UST01-N1	UST01-N1-19	Interior	Confirmation	Removed	Soil		19.0	Vadose	1/27/2020	< 0.0080	< 0.0080	< 0.0080									< 0.0080	< 0.0080	< 0.0080	< 0.0080		< 0.0080	< 0.0080	< 0.0080	< 0.0060
US101-E1	UST01-E1-19	Interior	Confirmation	Removed	Soll		19.0	Vadose	1/27/2020	< 0.0078	< 0.0078	< 0.0078									0.016	0.014	0.016	< 0.0078		0.015	< 0.0078	0.010	0.021
UST01-31	UST01-N/1-10	Interior	Confirmation	Removed	Soil		19.0	Vadose	1/27/2020	< 0.0074	< 0.0074	< 0.0074									0.010	< 0.0090	< 0.0090	< 0.0074		0.0097	< 0.0074	< 0.0074	0.013
UST-01-line	LIST-01-LINE-21.0	Sidewall	Performance	Removed	Soil		21.0	Vadose	1/31/2020	0.0001	\$ 0.0001	< 0.0001									0.0001	0.53	0.0001	< 0.0001		1.2	< 0.0001	0.16	0.45
UST02-N	UST-02-N	Interior	Confirmation	Removed	Soil		18.0	Saturated	2/5/2020	0.031	0.062	0.043									0.019	0.029	0.015	< 0.000		0.081	< 0.0084	< 0.0084	0.025
UST02-E	UST-02-E	Interior	Confirmation	Removed	Soil		18.0	Saturated	2/5/2020	0.12	0.13	0.21									0.039	0.034	0.034	< 0.012		0.034	< 0.012	0.023	0.050
UST02-B1	UST02-B1	Interior	Performance	Removed	Soil		15.0	Saturated	2/7/2020	0.18	0.31	0.094									0.55	0.54	0.45	0.17		0.48	< 0.065	0.29	0.70
UST02-B2	UST02-B2	Interior	Confirmation	Removed	Soil		14.0	Saturated	2/7/2020	< 0.040	< 0.040	< 0.040									< 0.040	< 0.040	< 0.040	< 0.040		< 0.040	< 0.040	< 0.040	< 0.030
UST02-N1	UST02-N1	Interior	Performance	Removed	Soil		17.5	Saturated	2/7/2020	0.35	0.29	0.39									0.083	0.071	0.075	0.024		0.077	< 0.011	0.058	0.107
UST02-E1	UST02-E1	Interior	Performance	Removed	Soil		17.5	Saturated	2/7/2020	0.096	0.037	0.050									0.11	0.11	0.10	0.034		0.11	0.011	0.069	0.14
UST02-S	UST02-S	Interior	Confirmation	Removed	Soil		17.5	Saturated	2/7/2020	0.047	< 0.013	0.015									0.039	0.022	0.040	0.016		0.022	< 0.013	0.039	0.052
UST02-W1	UST02-W1	Interior	Performance	Removed	Soil		17.5	Saturated	2/7/2020	0.12	0.031	0.043									0.19	0.17	0.16	0.062		0.14	0.019	0.11	0.24
													Alley																
	FB-10-22.5	Alley	Performance	Removed	Soil		22.5	Vadose	9/12/2020												0.61	0.58	0.71	0.17		0.68	0.065	0.37	0.81
FB-10	FB-10-20.0	Alley	Confirmation	Removed	Soil		20.0	Vadose	9/12/2020												< 0.0097	< 0.0097	< 0.0097	< 0.0097		< 0.0097	< 0.0097	< 0.0097	< 0.0073
	FB-10-17.5	Alley	Confirmation	In Place	Soil		17.5	Vadose	9/12/2020												< 0.016	< 0.016	< 0.016	< 0.016		< 0.016	< 0.016	< 0.016	< 0.012
FB-11	FB-11-20.0	Alley	Performance	Removed	Soil		20.0	Vadose	9/12/2020												0.54	0.50	0.62	0.17		0.52	0.058	0.37	0.72
	FB-11-17.5	Alley	Confirmation	In Place	Soil		17.5	Vadose	9/12/2020												< 0.016	< 0.016	< 0.016	< 0.016		< 0.016	< 0.016	< 0.016	< 0.012
	FB-12-21.5	Alley	Performance	Removed	Soil		21.5	Vadose	9/13/2020	< 0.15	< 0.15	< 0.15																	
FB-12	FB-12-20.0	Alley	Performance	Removed	Soll		20.0	Vadose	9/13/2020												0.081	0.084	0.089	< 0.025		0.085	< 0.025	0.058	0.107
	FD-12-17.5 EB-12-15.0	Alley	Confirmation	In Place	Soil		17.5	Saturated	9/13/2020												0.23	0.21	0.22	0.003		0.19	< 0.025	0.10	0.32
	FB-13-22.5	Alley	Performance	Removed	Soil		22.5	Vadose	9/12/2020	4.1	3.4	4.1									25	24	24	7.7		24	2.1	12	32
	FB-13-20.0	Alley	Performance	Removed	Soil		20.0	Vadose	9/12/2020	0.40	0.084	0.11									0.55	0.55	0.53	0.16		0.50	0.046	0.30	0.71
FB-13	FB-13-17.5	Alley	Performance	In Place	Soil		17.5	Saturated	9/12/2020												1.8	1.9	1.8	0.46		1.6	0.15	1.0	2.3
	FB-13-15.0	Alley	Confirmation	In Place	Soil		15.0	Saturated	9/12/2020												< 0.035	< 0.035	< 0.035	< 0.035		< 0.035	< 0.035	< 0.035	< 0.026
	FB-14-22.5	Alley	Performance	Removed	Soil		22.5	Vadose	9/12/2020	0.18	0.15	0.21									2.4	2.8	2.4	0.78		2.6	0.24	1.4	3.2
FB-14	FB-14-20.0	Alley	Performance	Removed	Soil		20.0	Vadose	9/12/2020	0.14	0.13	0.14									1.8	1.7	1.6	0.47		1.6	0.16	0.97	2.3
	FB-14-17.5	Alley	Confirmation	Removed	Soil		17.5	Saturated	9/13/2020												< 0.017	< 0.017	< 0.017	< 0.017		< 0.017	< 0.017	< 0.017	< 0.013
	FB-15-22.5	Alley	Performance	In Place	Soil		22.5	Vadose	9/13/2020	0.40	0.26	0.32									2.3	2.4	2.2	0.78		2.0	0.24	1.3	3.0
FB-15	FB-15-20.0	Alley	Performance	In Place	Soil		20.0	Vadose	9/13/2020	0.25	0.29	0.34									0.20	0.21	0.20	0.064		0.20	0.020	0.11	0.26
	FB-15-17.5	Alley	Performance	In Place	Soil		17.5	Saturated	9/13/2020	0.10	0.033	0.040									0.31	0.26	0.27	0.098		0.25	0.025	0.18	0.40
	FB-15-15.0	Alley	Confirmation	In Place	Soil		15.0	Saturated	9/13/2020												< 0.022	< 0.022	< 0.022	< 0.022		< 0.022	< 0.022	< 0.022	< 0.017
FR-16	FD-10-22.3	Alley	Confirmation	Removed	Soil		22.5	Vadose	9/13/2020												0.49	0.45	0.47	0.13		0.45	0.051	0.29	0.0056
10-10	FB-16-17.5	Alley	Confirmation	In Place	Soil		20.0 17.5	Saturated	9/13/2020												< 0.0074	0.032	0.0074	< 0.0074		0.0074	< 0.0074	< 0.0074	0.0000
	FB-21-3 0	Allev	Performance	In Place	Soil/Charcoal	3.0	28.0	Vadose	2/5/2022	0.82	0.82	0.92									0.17	0.23	0.26	0.057		0.23	< 0.041	0.095	0.24
FB-21	FB-21-5.0	Allev	Confirmation	In Place	Soil	5.0	26.0	Vadose	2/5/2022	<0.0077	< 0.0077	<0.0077									< 0.0077	< 0.0077	< 0.0077	< 0.0077		< 0.0077	< 0.0077	< 0.0077	< 0.0058
PH-4	PH-4-4.5-012619	Alley	Performance	Removed	Soil	4.5	22.0	Vadose	1/26/2019												0.11	0.079	0.10	0.035		0.086	0.013	0.078	0.14
PH-11A	PH-11A-4.0-011919	Alley	Performance	Removed	Soil	4.0	20.0	Vadose	1/19/2019												0.30	0.25	0.31	0.081		0.26	0.031	0.20	0.39
MTCA Method	B Direct Contact ⁵									1,600	34	320	4,800	NE	24,000	NE	3,200	3,200	NE	2,400	0.19	NE	NE	NE	NE	NE	NE	NE	0.19
Screening Lev	els for Soil Protective of	f Groundw	ater - Vadose Z	one⁵						4.5	0.082	1.7	49	NE	1,100	NE	630	51	NE	330	3.9	NE	NE	NE	NE	NE	NE	NE	3.9
Screening Lev	els for Soil Protective of	f Groundw	ater - Saturated	I Zone⁵						0.24	0.0042	0.088	2.5	NE	57	NE	32	2.6	NE	16	0.19	NE	NE	NE	NE	NE	NE	NE	0.19
Laboratory Pr	actical Quantitation Limi	its ⁶								0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	NA
Proposed Fea	sibility Study/Cleanup A	ction Plan	Preliminary Sci	reening Level	s (Vadose and Satu	urated)7				1,600	34	320																	0.19

																		Analytical	Results (mi	illigrams pe	er kilogram) ²							
														Non-C	arcinogeni	ic PAHs								Carc	inogenic F	PAHs			
																									"				1
																								Ð	nes		e	¢)	1
											Q	Ð				e						æ	ane	e	he		cer	en	1
											len	len				en						en	the	Ę	aut		Ira	ž	1
											ha	ha		e		Σ					e	ac	ani	rai	o		nth	d)F	1
										n	, pt	bt.	ne	ler		Ъ	ē		ne		Le L	Ę	ō	on on	flu		A(ō n	1
										ene	Jap	Jap	the	Ę	ne	h,i	len		Ire		Ā	An	믭	E)	0Z		a,h	5	1
				Samplo		Sample	Sample			ja ja	۲ <u>۲</u>	۲ <u>۲</u>	hd	hd	e	(ð	Ę	ne	Ę		(a)	(a)	q	C, K	ğer	ane a)0	<u>,</u>	Total
Samplo		Gonoral		Location	Samplo	Depth	Elevation		Samplo	Pt -	eth	eth	na	na	ling	Z	ora	ore	na	ane	ZO	Z	σz	ZO		Asi	zne	ue Due	cPAHs
Location	Sample Identification	Location	Sample Type	Disposition	Composition	(foot) ¹		Zono	Dato	lap	2	Š,	çe	e ce	ht	en	Inc	Iuc	he	ž	en	en	en	en	ota	, E	ip	ğ	TEC ^{3,4}
		Allow	Derformence	Disposition	Coll	(1001)		Vadaaa	1/10/2010	2	-	2	٩	٩	٩		<u> </u>	<u> </u>	<u> </u>	<u> </u>	420	110	100	21	F	110		62	450
PH-12	PH-12-4.0-011919	Alley	Performance	Removed	Soli	4.0	21.0	Vadose	1/19/2019												120	110	100	31		110	9.9	10.0070	192
PH-13	PH-13-3.0-011219	Alley	Performance	Removed	Soli	3.0	20.0	Vadose	1/12/2019												< 0.0078	< 0.0078	< 0.0078	< 0.0078		< 0.0078	< 0.0078	< 0.0078	< 0.0059
1P-10-4	17-10-4	Alley	Periormance	Removed	3011	4.0	20.5	vauose	5/5/2006	< 0.03			< 0.05	< 0.05	< 0.03	0.1	0.21	0.04	< 0.03	0.33	0.10	0.17	0.25	0.30		0.29	< 0.03	< 0.03	0.24
A/A5-B	A/A5-B-17.5-031021	Alley	Performance	In Place	Soil		17.5	Vadose	3/10/2021												0.14	0.11	0.26	0.050		0.11	0.010	0.059	0.19
	A/A5-B-16.0-032421	Alley	Confirmation	In Place	Soil		16.0	Saturated	3/24/2021												< 0.0092	< 0.0092	< 0.0092	< 0.0092		< 0.0092	< 0.0092	< 0.0092	< 0.0069
	A/A5-B2-22.5-031021	Alley	Performance	Removed	Inside of Wood		22.5	Vadose	3/10/2021												0.16	0.13	0.20	0.049		0.17	0.018	0.10	0.21
A/A5-B2	A/A5-B2-20.0-031021	Alley	Performance	Removed	Peat		20.0	Vadose	3/10/2021												0.096	0.097	0.10	0.043		0.11	< 0.028	0.056	0.13
	A/A5-B2-17.5-031021	Alley	Confirmation	In Place	Soil		17.5	Vadose	3/10/2021												< 0.0087	< 0.0087	< 0.0087	< 0.0087		< 0.0087	< 0.0087	< 0.0087	< 0.0066
	A/A5-ESW-22.5-031821	Allev	Performance	In Place	Soil		22.5	Vadose	3/18/2021												1.1	1.0	1.0	0.30		0.92	0.11	0.60	1.4
A/A5-ESW	A/A5-ESW-20 0-031821	Alley	Performance	In Place	Soil		20.0	Vadose	3/18/2021												0.14	0.12	0 14	0.041		0.13	0.012	0.082	0.18
	A/A5 ESW/ 17 5 021921	Alloy	Confirmation	In Place	Soil		17.5	Vadaça	2/19/2021												< 0.0080	< 0.0090	< 0.0090	< 0.0090		< 0.0090	< 0.0020	< 0.002	< 0.0067
	A/A5-E3VV-17.5-031621	Alley	Continnation	In Place	5011		17.5	vauose	3/10/2021												< 0.0009	< 0.0089	< 0.0069	< 0.0089		< 0.0089	< 0.0089	< 0.0069	< 0.0007
	A/A5-SSW-22.5-031021	Alley	Performance	In Place	Inside of Wood		22.5	Vadose	3/10/2021												0.066	0.068	0.081	0.023		0.078	< 0.018	0.048	0.09
A/A5-SSW	A/A5-SSW-20.0-031821	Alley	Confirmation	In Place	Soil		20.0	Vadose	3/18/2021												< 0.0089	< 0.0089	< 0.0089	< 0.0089		< 0.0089	< 0.0089	< 0.0089	< 0.0067
	A/A5-SSW-17.5-032221	Alley	Confirmation	In Place	Soil		17.5	Vadose	3/22/2021												< 0.0087	< 0.0087	< 0.0087	< 0.0087		< 0.0087	< 0.0087	< 0.0087	< 0.0066
	C/A5-ESW-22-5-032221	Alley	Performance	In Place	Soil		22.5	Vadose	3/22/2021												1.2	1.0	1.3	0.37		1.1	0.15	0.77	1.6
C/A5-ESW	C/A5-ESW-20.0-032221	Alley	Performance	In Place	Soil		20.0	Vadose	3/22/2021												0.43	0.41	0.51	0.13		0.44	0.055	0.28	0.57
	C/A5-ESW-17.5-032221	Alley	Confirmation	In Place	Peat		17.5	Saturated	3/22/2021												< 0.012	< 0.012	< 0.012	< 0.012		< 0.012	< 0.012	< 0.012	< 0.0091
D/A5-B	D/A5-B-17 5-032221	Alley	Confirmation	In Place	Peat		17.5	Saturated	3/22/2021												< 0.023	< 0.023	< 0.023	< 0.023		< 0.023	< 0.023	< 0.023	< 0.017
E/A5-B	E/Δ5-B-17.5		Confirmation	In Place	Peat		17.5	Saturated	6/28/2021	1 2	0.19	0.38									0.87	0.82	0.78	0.30		0.71	0.095	0.52	11
E/A0-D		Alley	Confirmation	In Place	Deat		00.5	Vadaaa	5/4/2021	1.2	0.15	0.50									0.07	0.02	0.70	0.00		42	0.000	0.02	
	E/A5-ESVV-22.5-050421	Alley	Confirmation	In Place	Peat		22.5	vadose	5/4/2021	1.4	1.4	1.2									10	13	14	4.0		13	1.4	8.8	20
E/A5-ESW	E/A5-ESW-20.0-050421	Alley	Confirmation	In Place	Peat		20.0	Vadose	5/4/2021	1.3	0.16	0.24									0.038	0.049	0.080	< 0.021		0.069	< 0.021	0.047	0.058
-	E/A5-ESW-17.5-050421	Alley	Confirmation	In Place	Peat		17.5	Saturated	5/4/2021	0.073	< 0.025	< 0.025									0.036	< 0.025	< 0.025	< 0.025		< 0.025	< 0.025	< 0.025	0.042
F/A5-B	F/A5-B-17.5	Alley	Confirmation	Removed	Peat		17.5	Saturated	6/28/2021	< 0.029	< 0.029	< 0.029									0.034	< 0.029	0.032	< 0.029		< 0.029	< 0.029	< 0.029	0.043
	G/A5-ESW-22.5-070621	Alley	Confirmation	In Place	Soil		22.5	Vadose	7/6/2021	0.21	0.18	0.18									1.5	1.4	1.4	0.53		1.4	0.22	0.90	2.0
G/A5-ESW	G/A5-ESW-20.0-070621	Alley	Confirmation	In Place	Soil, Charcoal-Like		20.0	Vadose	7/6/2021	2.8	2.6	3.2									9.4	8.3	10	2.5		9.0	0.85	5.7	12
	G/A5-ESW-17.5-070621	Alley	Confirmation	In Place	Peat		17.5	Saturated	7/6/2021	0.30	0.053	0.092									0.51	0.42	0.58	0.15		0.48	0.059	0.33	0.67
H/A5-B	H/A5-B-17.5-070621	Alley	Confirmation	In Place	Peat		17.5	Saturated	7/6/2021	0.034	< 0.022	< 0.022									< 0.022	< 0.022	0.024	< 0.022		0.058	< 0.022	< 0.022	0.018
	H/A5-ESW-22 5-070621		Confirmation	In Place	Soil		22.5	Vadose	7/6/2021	0.011	0.018	0.020									0.062	0.070	0.081	0.024		0.15	0.023	0.040	0.087
H/A5 ESW/	H/A5 ESW/ 20.0.070621	Alloy	Confirmation	In Place	Soil Chargood Like		22.0	Vadose	7/6/2021	2.0	0.010	1.7									4.0	2.5	4.7	1.0		2.6	0.020	2.5	5.007
H/A3-E3W	H/A5-ESVV-20.0-070621	Alley	Continuation		Soli, Charcoal-Like		20.0	vauose	7/0/2021	2.9	0.98	1.7									4.0	3.5	4.7	1.0		3.0	0.41	2.5	3.2
	H/A5-ESVV-17.5-070621	Alley	Confirmation	In Place	Peat		17.5	Saturated	7/6/2021	0.19	0.060	0.13									< 0.023	< 0.023	< 0.023	< 0.023		< 0.023	< 0.023	< 0.023	< 0.017
I/A5-B	I/A5-B-17.5-070921	Alley	Confirmation	In Place	Peat		17.5	Saturated	7/9/2021	9.8	7.5	8.8									70	62	58	19		56	4.8	37	89
	I/A5-ESW-22.5-070921	Alley	Confirmation	In Place	Soil		22.5	Vadose	7/9/2021	0.11	0.084	0.097									2.0	1.6	2.0	0.51		1.6	0.19	1.2	2.6
I/A5-ESW	I/A5-ESW-20.0-070921	Alley	Confirmation	In Place	Peat		20.0	Vadose	7/9/2021	0.67	0.37	0.50									3.2	2.5	3.2	1.1		3.0	0.32	1.9	4.1
	I/A5-ESW-17.5-070921	Alley	Confirmation	In Place	Peat		17.5	Saturated	7/9/2021												120	91	120	24		110	9.1	69	150
	J/A5-ESW-22.5-070921	Alley	Confirmation	In Place	Soil		22.5	Vadose	7/9/2021												1.5	1.2	1.5	0.47		1.3	0.18	0.93	1.9
J/A5-ESW	J/A5-ESW-20.0-070921	Alley	Confirmation	In Place	Soil, Charcoal-Like		20.0	Vadose	7/9/2021												6.5	6.0	5.8	2.1		5.6	0.57	3.5	8.4
	J/A5-ESW-17.5-070921	Alley	Confirmation	In Place	Soil		17.5	Saturated	7/9/2021												0.87	0.66	0.74	0.24		0.68	0.067	0.47	1.1
1/A5-B	I /A5-B-22 0-071221	Alley	Confirmation	Removed	Soil		22.0	Vadose	7/12/2021												0.15	0.13	0.14	0.048		0.13	0.012	0.090	0.19
2,710 2	L/A5-ESW-25 0-071221		Confirmation	In Place	Soil		25.0	Vadose	7/12/2021												22	19	21	0.68		1.9	0.18	13	2.8
L/A5-ESW	L/A5 ESW/ 22 5 071221	Alloy	Confirmation	In Place	Soil		20.0	Vadose	7/12/2021												0.44	0.27	0.41	0.00		0.41	0.10	0.22	0.52
	L/AJ-E3W-22.J-071221	Alley	Confirmation		Soli Cail Channad Lilus		22.0	Vadose	7/12/2021												0.41	0.37	0.41	0.14		0.41	< 0.036	0.22	0.55
M/A5-ESW	M/A5-ESW-25.0-071521	Alley	Commation	In Place	Soli, Charcoal-Like		25.0	vauose	7/15/2021												0.23	0.19	0.22	0.063		0.20	0.015	0.13	0.29
	M/A5-ESW-22.5-071521	Alley	Confirmation	In Place	Soli		22.5	vadose	7/15/2021												< 0.0073	< 0.0073	< 0.0073	< 0.0073		< 0.0073	< 0.0073	< 0.0073	< 0.0055
N/A5-B	N/A5-B-25.0-072021	Alley	Confirmation	Removed	Soil		25.0	Vadose	7/20/2021												< 0.0073	< 0.0073	< 0.0073	< 0.0073		< 0.0073	< 0.0073	< 0.0073	< 0.0055
N/A5-NSW	N/A5-NSW-28.0-072021	Alley	Confirmation	In Place	Soil		28.0	Vadose	7/20/2021												0.41	0.33	0.38	0.15		0.36	0.048	0.25	0.53
	N/A5-NSW-26.0-072021	Alley	Confirmation	In Place	Soil		26.0	Vadose	7/20/2021												0.011	0.010	0.014	< 0.0074		0.013	< 0.0074	0.0075	0.015
	N/A5-ESW-28.0-072021	Alley	Confirmation	In Place	Soil		28.0	Vadose	7/20/2021												1.2	1.2	1.5	0.36		1.4	0.15	0.88	1.6
N/A0-2011	N/A5-ESW-26.0-072021	Alley	Confirmation	In Place	Soil		26.0	Vadose	7/20/2021												0.087	0.068	0.098	0.034		0.087	0.016	0.065	0.12
MTCA Methor	I B Direct Contact⁵	ž								1,600	34	320	4,800	NE	24,000	NE	3,200	3,200	NE	2,400	0.19	NE	NE	NE	NE	NE	NE	NE	0.19
Screening Le	vels for Soil Protective of	f Groundw	ater - Vadose 7	one ⁵						4.5	0.082	1.7	49	NE	1,100	NE	630	51	NE	330	3.9	NE	NE	NE	NE	NE	NE	NE	3.9
Screening Le	vals for Soil Protoctive of	f Groundw	ator - Saturated	Zone ⁵						0.24	0.0042	0.088	2.5	NE	57	NE	32	2.6	NE	16	0.19	NE	NE	NE	NE	NE	NE	NE	0.19
Laboratory D	actical Quartitation Limit	ite ⁶								0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	NA
	actical quantitation Lilli	ation Di-	Dealiminary C.	aaning Lauri	o (Vodoos and Cat					1 600	24	200	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.0007	0.40
Froposea rea	isionity study/cleanup Ad	cuon Piah	Freinnnary SC	eening Levels	s (vauose and Satt	urated)				1,000	- 34	320																	0.19

																		Analytical	Results (mi	lligrams pe	r kilogram)	2							
														Non-C	arcinogeni	ic PAHs								Car	cinogenic F	PAHs			
Sample Location	Sample Identification	General Location	Sample Type	Sample Location Disposition	Sample Composition	Sample Depth (feet) ¹	Sample Elevation (feet NAVD88) ¹	Zone	Sample Date	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,j)Perylene	Fluoranthene	Fluorene	Phenanthrene	Pyrene	Benzo(a)Pyrene	Benzo(a)Anthracene	Benzo(b)Fluoranthene	Benzo(j,k)Fluoranthene	Total Benzofluoranthenes	Chrysene	Dibenzo(a,h)Anthracene	Indeno(1,2,3-cd)Pyrene	Total cPAHs TEC ^{3,4}
												Block	38 East Pro	operty															
EX-19-W5	EX-19-W5 (EL20)	Block 38E	Confirmation	In Place	Soil	5.0	20.0	Vadose	7/3/2008	0.07			0.42	0.11	0.98	2.0	2.9	0.30	2.3	3.6	1.7	0.97	1.3	0.55		0.88	0.50	0.78	2.1
EX-20-W1.5	EX-20-W1.5 (EL19.5)	Block 38E	Confirmation	In Place	Soil	5.5	19.0	Vadose	7/3/2008	0.13			0.63	0.12	1.5	3.0	4.4	0.42	4.2	5.5	0.75	1.2	2.1	0.75		1.2	0.76	1.2	1.4
EX-38-EL23	EX-38-EL23	Block 38E	Confirmation	In Place	Soil	1.0	23.0	Vadose	7/18/2008	< 0.05			< 0.05	0.14	1.7	2.9	6.3	0.43	1.7	7.8	2.9	2.7	1.6	1.7		1.4	1.0	1.1	3.7
EX-39-EL23	EX-39-EL23	Block 38E	Confirmation	In Place	Soil	1.0	23.0	Vadose	7/18/2008	< 0.05			0.13	< 0.05	0.27	0.39	0.51	0.13	0.27	0.0	0.32	0.73	0.23	0.31		0.21	< 0.01	0.18	0.47
EX-40-EL22	EX-40-EL22	Block 38E	Confirmation	In Place	Soil	2.0	22.0	Vadose	7/18/2008	6	0.42 0.11 0.86 2.0 2.9 0.30 2.3 3.8 0.63 0.12 1.5 3.0 4.4 0.42 4.2 5.5 5 <0.05 0.14 1.7 2.9 6.3 0.43 1.7 7.8 5 0.13 <0.05 0.27 0.39 0.51 0.13 0.27 0.0 0.61 7.2 40 12 43 4.9 53 53 53 6 0.16 0.49 1.4 1.7 4.1 0.31 3.3 4.7 1 0.36 0.39 0.60 1.1 2.4 0.39 3.4 3.5 5<<<0.025 <0.025 0.047 <0.025 0.067 0.17 0.36 0.042 0.33 0.24 Block 37 Site											17	17	20		9.4	1.4	5.7	25
EX-41-EL22	EX-41-EL22	Block 38E	Confirmation	In Place	Soil	3.0	22.0	Vadose	7/18/2008	0.56			0.16	0.49	1.4	1.7	4.1	0.31	3.3	4.7	2.3	2.9	1.3	1.1		2.1	0.62	0.69	2.98
D 4	P-4-3.5	Block 38E	Performance	Removed	Soil/Wood	3.5	21.2	Vadose	6/12/2002	0.52	0.21	0.36	0.39	0.39	0.60	1.1	2.4	0.39	3.4	3.5	1.6	1.1	1.1	1.0		1.4	0.34	0.95	2.1
F-4	P-4-5.5	Block 38E	Performance	Removed	Soil/Wood	5.5	19.2	Vadose	6/12/2002	0.055	< 0.025	< 0.025	0.047	< 0.025	0.067	0.17	0.36	0.042	0.33	0.24	0.21	0.090	0.56	0.48		0.18	0.026	0.12	0.34
												B	lock 37 Site	e															
	MW-71-5	Block 37	Confirmation	In Place	Soil	5.0	25.4	Vadose	10/12/2005	< 0.0891																			
NAVA / 74	MW-71-10	Block 37	Confirmation	In Place	Soil	10.0	20.4	Vadose	10/12/2005	< 0.0861																			
	MW-71-15	Block 37	Confirmation	In Place	Soil	15.0	15.4	Saturated	10/12/2005	< 0.0910																			
	MW-71-20	Block 37	Confirmation	In Place	Soil	20.0	10.4	Saturated	10/12/2005	6.49																			
	MW-72-5	Block 37	Confirmation	In Place	Soil	5.0	25.3	Vadose	10/12/2005	< 0.0857																			
MM 72	MW-72-10	Block 37	Confirmation	In Place	Soil	10.0	20.3	Vadose	10/12/2005	< 0.0668																			
10100-72	MW-72-15	Block 37	Confirmation	In Place	Soil	15.0	15.3	Saturated	10/12/2005	< 0.702																			
	MW-72-20	Block 37	Confirmation	In Place	Soil	20.0	10.3	Saturated	10/12/2005	< 0.312																			
	MW-73-5	Block 37	Confirmation	In Place	Soil	5.0	25.1	Vadose	10/12/2005	< 0.0960																			
MW_73	MW-73-10	Block 37	Confirmation	In Place	Soil	10.0	20.1	Vadose	10/12/2005	< 0.0888																			
10100-75	MW-73-16	Block 37	Confirmation	In Place	Soil	15.0	15.1	Saturated	10/12/2005	< 0.443																			
	MW-73-20	Block 37	Confirmation	In Place	Soil	20.0	10.1	Saturated	10/12/2005	< 0.100																			
	MW-95-5	Block 37	Confirmation	In Place	Soil	5.0	27.0	Vadose	10/19/2005	< 0.102																			
MW-95	MW-95-10	Block 37	Confirmation	In Place	Soil	10.0	22.0	Vadose	10/19/2005	< 0.0923																			
	MW-95-15	Block 37	Confirmation	In Place	Soil	15.0	17.0	Saturated	10/19/2005	< 0.0985																			
MTCA Method	B Direct Contact ⁵									1,600	34	320	4,800	NE	24,000	NE	3,200	3,200	NE	2,400	0.19	NE	NE	NE	NE	NE	NE	NE	0.19
Screening Lev	els for Soil Protective o	f Groundw	ater - Vadose Z	Zone⁵						4.5	0.082	1.7	49	NE	1,100	NE	630	51	NE	330	3.9	NE	NE	NE	NE	NE	NE	NE	3.9
Screening Lev	els for Soil Protective o	f Groundw	ater - Saturate	d Zone ⁵						0.24	0.0042	0.088	2.5	NE	57	NE	32	2.6	NE	16	0.19	NE	NE	NE	NE	NE	NE	NE	0.19
Laboratory Pra	actical Quantitation Lim	its ⁶								0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	0.0067	NA
Proposed Feas	sibility Study/Cleanup A	ction Plan	Preliminary Sc	creening Levels	s (Vadose and Sa	turated) ⁷				1,600	34	320																	0.19
NOTES																													

Shading represents most stringent screening level or practical quantitation limit for vadose zone soil, or an exceedance in this zone.

Shading represents most stringent screening level or practical quantitation limit for saturated zone soil, or an exceedance in this zone. Shading represents most stringent screening level or practical quantitation limit for saturated zone soil, or an exceedance in this zone. Shading represents the proposed soil screening level for this chemical for the Feasibility Study/Cleanup Action Plan-phase of the project following completion of the Interim Action and empirical evidence from groundwater samples.

Grey Text Grey text indicates a sample location that was subsequently removed during Interim Action excavation activities.

Results in **bold** denote concentrations exceeding applicable screening levels; the shading indicates whether the exceedance is in the vadose or saturated zone as indicated to the right.

- denotes sample not analyzed or not applicable.

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Depth in feet below ground surface. Elevation in feet referenced to North American Vertical Datum of 1988 (NAVD88). ²Analyzed by U.S. Environmental Protection Agency Method 8270D/SIM, 8270E, or 8270E/SIM.

³Total cPAHs derived using the total toxicity equivalency method in Section 708(8) of Chapter 173-340 of the Washington Administrative Code.

⁴For concentrations reported at less than the laboratory reporting limit, half the reporting limit was used to calculate total. If all constituent concentrations are non-detect, calculated total is indicated non-detect. ⁵Washington State Cleanup Levels and Risk Calculations (CLARC) under Washington State Model Toxics Control Act Cleanup Regulation (MTCA), Method B direct contact cleanup levels and default soil concentrations protective of groundwater (leaching

pathway) from CLARC Master spreadsheet, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC

⁶Laboratory Practical Quantitation Limits (PQLs) from OnSite Environmental of Redmond, Washington. PQLs for individual samples may vary due to sample matrix interferences, dilutions, or moisture content. ⁷See Table 14 for proposed preliminary screening levels for the post-interim action Feasibility Study/Cleanup Action Plan phase of the project. cPAH TEC = Carcinogenic polycyclic aromatic hydrocarbon toxic equivalent concentration (cPAH TEC) calculated following the total toxicity equivalency method in Section 708(8) of Chapter 173-340 of the Washington Administrative Code.

6 of 6

Adapt Engineering = Adapt Engineering, Inc.

cPAHs = carcinogenic polycyclic aromatic hydrocarbons Enviros = Enviros Group, Ltd.

Farallon = Farallon Consulting, L.L.C.

GeoEngineers = GeoEngineers, Inc. H = sample analyzed outside of holding time

J = result is an estimate

NA = not applicable

ND = not detected and reporting limit is not available.

NE = not established PAHs = polycyclic aromatic hydrocarbons

TEC = toxic equivalent concentration

											Ana	lytical Results (mill	ligrams per kil	ogram) ²		
Sample Location	Sample Identification	General Location	Sample Type	Sample Location Disposition	Sample Depth (feet) ¹	Sample Elevation (feet NAVD88) ¹	Zone	Sample Date	PCE	TCE	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	Vinyl Chloride	1,2- Dibromoethane	1,2 Dichloroethane	Methyl Tertiary Butyl Ether (MTBE)
								Block 38 V	lest Property							
FB-02	FB-02-10.0-082018	Interior	Confirmation	Removed	10.0	15.1	Saturated	8/20/2018	< 0.0028	< 0.0028	< 0.0028	< 0.0028	< 0.0028			
1 D-02	FB-02-25.0-082018	Interior	Confirmation	Removed	25.0	0.1	Saturated	8/20/2018	< 0.00085	< 0.00085	< 0.00085	< 0.00085	< 0.00085			
FB-04	FB-04-20.0-082118	Interior	Confirmation	Removed	20.0	2.0	Saturated	8/21/2018	< 0.00093	< 0.00093	< 0.00093	< 0.00093	< 0.00093			
FB-05	FB-05-20.0-082218	Interior	Confirmation	Removed	20.0	5.5	Saturated	8/22/2018	< 0.00090	< 0.00090	< 0.00090	< 0.00090	< 0.00090			
FMW-135	FMW-135-50.0-082418	Interior	Confirmation	In Place	50.0	-24.4	Saturated	8/24/2018	< 0.00074	< 0.00074	< 0.00074	< 0.00074	< 0.00074			
EM\//_136	FMW-136-10.0-082218	Interior	Confirmation	Removed	10.0	15.1	Saturated	8/22/2018	< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015			
1 10100-100	FMW-136-20.0-082218	Interior	Confirmation	Removed	20.0	5.1	Saturated	8/22/2018	< 0.00094	< 0.00094	< 0.00094	< 0.00094	< 0.00094			
TP-7	TP-7-4.0	Interior	Confirmation	Removed	4.0	19.5	Vadose	12/23/2019	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044	< 0.0044
						Underg	round Stor	age Tank Inv	estigation and	Decommissio	ning					
M1-Tank	M1-TANK-24.5	Interior	Confirmation	Removed		24.5	Vadose	1/21/2020	0.0041	< 0.00082	< 0.00082	< 0.00082	< 0.00082	< 0.00082	< 0.00082	< 0.00082
UST01-B	UST01-B-17	Interior	Confirmation	Removed		17.0	Saturated	1/27/2020	< 0.00092	< 0.00092	< 0.00092	< 0.00092	< 0.00092	< 0.00092	< 0.00092	< 0.00092
UST01-N1	UST01-N1-19	Interior	Confirmation	Removed		19.0	Vadose	1/27/2020	< 0.00094	< 0.00094	< 0.00094	< 0.00094	< 0.00094			
UST01-E1	UST01-E1-19	Interior	Confirmation	Removed		19.0	Vadose	1/27/2020	< 0.00083	< 0.00083	< 0.00083	< 0.00083	< 0.00083			
UST01-S1	UST01-S1-19	Interior	Confirmation	Removed		19.0	Vadose	1/27/2020	< 0.00084	< 0.00084	< 0.00084	< 0.00084	< 0.00084			
UST01-W1	UST01-W1-19	Interior	Confirmation	Removed		19.0	Vadose	1/27/2020	< 0.00098	< 0.00098	< 0.00098	< 0.00098	< 0.00098			
								Block	37 Site							
	MW-71-5	Block 37	Confirmation	In Place	5.0	25.4	Vadose	10/12/2005								< 0.0891
	MW-71-10	Block 37	Confirmation	In Place	10.0	20.4	Vadose	10/12/2005								< 0.0861
	MW-71-15	Block 37	Confirmation	In Place	15.0	15.4	Saturated	10/12/2005								< 0.0910
	MW-71-20	Block 37	Confirmation	In Place	20.0	10.4	Saturated	10/12/2005								< 0.0623
	MW-72-5	Block 37	Confirmation	In Place	5.0	25.3	Vadose	10/12/2005								< 0.0857
M/A/ 72	MW-72-10	Block 37	Confirmation	In Place	10.0	20.3	Vadose	10/12/2005								< 0.0868
10100-72	MW-72-15	Block 37	Confirmation	In Place	15.0	15.3	Saturated	10/12/2005								< 0.0912
	MW-72-20	Block 37	Confirmation	In Place	20.0	10.3	Saturated	10/12/2005								< 0.0405
	MW-73-5	Block 37	Confirmation	In Place	5.0	25.1	Vadose	10/12/2005								< 0.0960
	MW-73-10	Block 37	Confirmation	In Place	10.0	20.1	Vadose	10/12/2005								< 0.0888
10100-73	MW-73-16	Block 37	Confirmation	In Place	15.0	15.1	Saturated	10/12/2005								< 0.0576
	MW-73-20	Block 37	Confirmation	In Place	20.0	10.1	Saturated	10/12/2005								< 0.100
	MW-95-5	Block 37	Confirmation	In Place	5.0	26.99	Vadose	10/19/2005								< 0.102
MW-95	MW-95-10	Block 37	Confirmation	In Place	10.0	21.99	Vadose	10/19/2005								< 0.0923
	MW-95-15	Block 37	Confirmation	In Place	15.0	16.99	Saturated	10/19/2005								< 0.0985
MTCA Metho	d B Direct Contact ³	-		•		•			480	12	160	1,600	0.67	0.5	11	560
Screening Le	evels for Soil Protective of	of Groundv	water - Vadose	e Zone ³					0.05	0.025	0.078	0.52	0.0017	0.00027	0.023	0.1
Screening Le	evels for Soil Protective of	of Groundv	water - Satura	ted Zone ³					0.0028	0.0015	0.0052	0.032	0.00009	0.000018	0.0016	0.0072
Laboratory P	ractical Quantitation Lim	nits ⁴							0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001

NOTES:

- denotes sample not analyzed.

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Depth in feet below ground surface. Elevation in feet referenced to North American Vertical Datum of 1988 (NAVD88).

²Analyzed by U.S. Environmental Protection Agency Method 8260C or 8260D.

³Washington State Cleanup Levels and Risk Calculations (CLARC) under Washington State Model Toxics Control Act Cleanup Regulation (MTCA), Method B direct contact cleanup levels and default soil concentrations protective of groundwater (leaching pathway) from CLARC Master spreadsheet, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC

⁶Laboratory Practical Quantitation Limits (PQLs) from OnSite Environmental of Redmond, Washington. PQLs for individual samples may vary due to

sample matrix interferences, dilutions, or moisture content.

Shading represents most stringent screening level or practical quantitation limit for vadose zone soil. Shading represents most stringent screening level or practical quantitation limit for saturated zone soil.

Grey Text Grey text indicates a sample location that was subsequently removed during Interim Action excavation activities.

CVOC = chlorinated volatile organic compound

											Analytica	al Results (m	nilligrams pe	er kilogram) ²	2	
Sample Location	Sample Identification	General Location	Sample Type	Sample Location Disposition	Sample Depth (feet) ¹	Sample Elevation (feet NAVD88) ¹	Zone	Sample Date	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Total PCBs ³
							Block 38 W	est Property								
TP-7	TP-7-4.0	Interior	Confirmation	Removed	4.0	19.5	Vadose	12/23/2019	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.53
	TP-7 TP-7-4.0 Interior Confirmation Removed 4.0 19.5 Vadose 12/23/2019 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.15 < 0.1															
M1-Tank	M1-TANK-24.5	Interior	Confirmation	Removed		24.5	Vadose	1/21/2020	< 0.062	< 0.062	< 0.062	< 0.062	< 0.062	< 0.062	< 0.062	< 0.217
UST01-B	UST01-B-17	Interior	Confirmation	Removed		17.0	Saturated	1/27/2020	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.055	< 0.193
UST02-N	UST-02-N	Interior	Confirmation	Removed		18.0	Saturated	2/5/2020	< 0.063	< 0.063	< 0.063	< 0.063	< 0.063	< 0.063	< 0.063	< 0.221
UST02-E	UST-02-E	Interior	Confirmation	Removed		18.0	Saturated	2/5/2020	< 0.087	< 0.087	< 0.087	< 0.087	< 0.087	< 0.087	< 0.087	< 0.305
MTCA Metho	d B Direct Contac	ct ⁴														1.0
Screening Le	vels for Soil Prot	ective of G	roundwater - V	adose Zone ⁴												0.34
Screening Le	vels for Soil Prot	ective of G	roundwater - S	aturated Zone	9 ⁴											0.017
Laboratory P	ractical Quantitat	tion Limits⁵														0.050

NOTES:

< denotes analyte not detected at or exceeding the reporting limit listed.

¹Depth in feet below ground surface. Elevation in feet referenced to North American Vertical Datum of 1988 (NAVD88).

²Analyzed by U.S. Environmental Protection Agency Method 8082A.

³For non-detected results, half the reporting limit was used to calculate total PCBs.

⁴Washington State Cleanup Levels and Risk Calculations (CLARC) under Washington State Model Toxics Control Act Cleanup Regulation (MTCA), Method B direct contact cleanup levels and default soil concentrations protective of groundwater (leaching pathway) from CLARC Master spreadsheet, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC

⁵Laboratory Practical Quantitation Limits (PQLs) from OnSite Environmental of Redmond, Washington. PQLs for individual samples may vary due to sample matrix interferences, dilutions, or moisture content.

Grey Text

Shading represents most stringent screening level or practical quantitation limit for vadose zone soil. Shading represents most stringent screening level or practical quantitation limit for saturated zone soil. Grey text indicates a sample location that was subsequently removed during Interim Action excavation activities.

1 of 1

PCB = polychlorinated biphenyl

				Sample	Sample	Sample					Analytical	Results (mill	igrams per	[•] kilogram) ²		
		General		Location	Depth	Elevation										
Sample Location	Sample Identification	Location	Sample Type	Disposition	(feet) '	(feet NAVD88) '	Zone	Sample Date	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
ED 04		luctor vice v	O a se firme a ti a s	Demession	45.0	BIOCK 38 V	Nest Prope	rτ y	1.10	440	10.01	00	10.1	10.40	1.10	110
FB-01	FB-01-15.0-082118	Interior	Confirmation	Removed	15.0	11.3	Saturated	8/21/2018	< 10	110	< 0.81	60	< 8.1	< 0.40	< 16	< 1.6
FB-02	FB-02-10.0-082018	Interior	Confirmation	Removed	10.0	15.1	Saturated	8/20/2018	< 12	190	< 1.2	36	24	1.2	< 12	< 2.5
FB-03	FB-03-10.0-082318	Interior	Confirmation	Removed	10.0	15.8	Saturated	8/23/2018	< 13	230	< 0.65	100	8.9	< 0.32	< 13	< 1.3
	FB-03-35.0-082318	Interior	Confirmation	In Place	35.0	-9.2	Saturated	8/23/2018	< 12	44	< 0.60	42	< 6.0	< 0.30	< 12	< 1.2
FB-04	FB-04-5.0-082118	Interior	Confirmation	Removed	5.0	17.0	Saturated	8/21/2018	< 11	290	< 1.1	53	56	< 0.55	< 11	< 2.2
FB-05	FB-05-35.0-082218	Interior	Confirmation	In Place	35.0	-9.5	Saturated	8/22/2018	< 12	58	< 0.62	38	< 6.2	< 0.31	< 12	< 1.2
FMW-133	FMW-133-10.0-082418	Interior	Confirmation	Removed	10.0	15.3	Saturated	8/24/2018	< 17	200	< 1.7	29	18	< 0.83	< 17	< 3.3
	FMW-133-20.0-082418	Interior	Confirmation	Removed	20.0	5.3	Saturated	8/24/2018	< 12	50	< 0.60	27	< 6.0	< 0.30	< 12	< 1.2
FMW-134	FMW-134-5.0-082318	Interior	Confirmation	Removed	5.0	20.4	Vadose	8/23/2018	< 17	110	< 1.7	19	< 17	< 0.83	< 17	< 3.3
	FMW-134-15.0-082318	Interior	Confirmation	Removed	15.0	10.4	Saturated	8/23/2018	< 12	48	< 0.61	42	< 6.1	< 0.30	< 12	< 1.2
	FMW-135-5.0-082418	Interior	Confirmation	Removed	5.0	20.6	Vadose	8/24/2018	< 12	120	< 0.61	48	16	< 0.31	< 12	< 1.2
FMW-135	FMW-135-25.0-082418	Interior	Confirmation	Removed	25.0	0.6	Saturated	8/24/2018	< 14	120	< 0.69	60	< 6.9	< 0.35	< 14	< 1.4
	FMW-135-30.0-082418	Interior	Confirmation	Removed	30.0	-4.4	Saturated	8/24/2018	< 12	66	< 0.62	44	< 6.2	< 0.31	< 12	< 1.2
FMW-136	FMW-136-20.0-082218	Interior	Confirmation	Removed	20.0	5.1	Saturated	8/22/2018	< 13	46	< 0.63	42	< 6.3	< 0.32	< 13	< 1.3
1 10100	FMW-136-30.0-082218	Interior	Confirmation	Removed	30.0	-4.9	Saturated	8/22/2018	< 12	45	< 0.59	41	< 5.9	< 0.30	< 12	< 1.2
M1-WSW	M1-WSW-17.0	Sidewall	Confirmation	In Place		17.0	Saturated	2/10/2020					18			
N1-WSW	N1-WSW-17.0	Interior	Confirmation	Removed		17.0	Saturated	2/10/2020					80			
TP-7	TP-7-4.0	Interior	Confirmation	Removed	4.0	19.5	Vadose	12/23/2019					33			
				U	nderground	d Storage Tank In	vestigation	and Decomm	issioning							
M1-Tank	M1-TANK-24.5	Interior	Confirmation	Removed		24.5	Vadose	1/21/2020					46			
UST01-B	UST01-B-17	Interior	Confirmation	Removed		17.0	Saturated	1/27/2020					13			
UST01-N1	UST01-N1-19	Interior	Confirmation	Removed		19.0	Vadose	1/27/2020					8.1			
UST01-E1	UST01-E1-19	Interior	Confirmation	Removed		19.0	Vadose	1/27/2020					25			
UST01-S1	UST01-S1-19	Interior	Confirmation	Removed		19.0	Vadose	1/27/2020					13			
UST01-W1	UST01-W1-19	Interior	Confirmation	Removed		19.0	Vadose	1/27/2020					14			
UST-01-line	UST-01-LINE-21.0	Sidewall	Confirmation	In Place		21.0	Vadose	1/31/2020					100			
				-			Alley									
FB-12	FB-12-21.5	Alley	Performance	Removed		21.5	Vadose	9/13/2020					25			
ED 42	FB-13-22.5	Alley	Performance	Removed		22.5	Vadose	9/12/2020	< 11	490	0.73	23	130	< 0.29	< 11	< 1.1
FB-13	FB-13-20.0	Alley	Confirmation	Removed		20.0	Vadose	9/12/2020			< 1.4		96			
	FB-14-22.5	Alley	Performance	Removed		22.5	Vadose	9/12/2020	13	68	< 0.55	17	31	< 0.27	< 11	< 1.1
FB-14	FB-14-20.0	Alley	Confirmation	Removed		20.0	Vadose	9/12/2020			< 0.58		50			
MTCA Method B Dire	ct Contact ³		•						0.67	16,000	80	120,000	250 ⁴	NE	400	400
Screening Levels for	Soil Protective of Groun	ndwater - Va	adose Zone ³						4.7	1,600	0.69	480,000	3,000	2.1	5.2	14
Screening Levels for	Soil Protective of Groun	ndwater - Sa	aturated Zone ³						0.23	83	0.035	24,000	150	0.1	0.26	0.69
Natural Background	Concentrations ⁵								7.3	NE	0.77	48	16.83	0.07	0.78	0.61
Laboratory Practical	Quantitation Limits ⁶								10	2.5	0.50	0.50	5.0	0.25	10	1.0
Proposed Feasibility	Study/Cleanup Action P	lan Prelimir	nary Screening	Levels (Vado	se and Sat	urated) ⁷				16,000				2.1		

				Sample	Sample	Sample			Analytical Results (milligrams per kilogram) ²							
		General		Location	Depth	Elevation					-					
Sample Location	Sample Identification	Location	Sample Type	Disposition	(feet) ¹	(feet NAVD88) ¹	Zone	Sample Date	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
	FB-15-22.5	Alley	Performance	Removed		22.5	Vadose	9/13/2020	< 11	81	< 0.54	15	120	< 0.27	< 11	< 1.1
FB-15	FB-15-20.0	Alley	Confirmation	Removed		20.0	Vadose	9/13/2020			< 0.59		56			
	FB-15-17.5	Alley	Confirmation	In Place		17.5	Saturated	9/13/2020			< 0.56		< 5.6			
TP-10-4	TP-10-4	Alley	Performance	Removed	4.0	20.5	Vadose	5/5/2008			2.4		1,900			
	G/A5-ESW-22.5-070621	Alley	Confirmation	In Place		22.5	Vadose	7/6/2021					47			
G/A5-ESW	G/A5-ESW-20.0-070621	Alley	Confirmation	In Place		20.0	Vadose	7/6/2021					21,000			
	G/A5-ESW-17.5-070621	Alley	Confirmation	In Place		17.5	Saturated	7/6/2021					240			
H/A5-B	H/A5-B-17.5-070621	Alley	Confirmation	In Place		17.5	Saturated	7/6/2021					210			
	H/A5-ESW-22.5-070621	Alley	Confirmation	In Place		22.5	Vadose	7/6/2021					22			
H/A5-ESW	H/A5-ESW-20.0-070621	Alley	Confirmation	In Place		20.0	Vadose	7/6/2021					1,300			
	H/A5-ESW-17.5-070621	Alley	Confirmation	In Place		17.5	Saturated	7/6/2021					96			
I/A5-B	I/A5-B-17.5-070921	Alley	Confirmation	In Place		17.5	Saturated	7/9/2021					130			
	I/A5-ESW-22.5-070921	Alley	Confirmation	In Place		22.5	Vadose	7/9/2021					260			
I/AD-EOW	I/A5-ESW-20.0-070921	Alley	Confirmation	In Place		20.0	Vadose	7/9/2021					2,600			
	J/A5-ESW-22.5-070921	Alley	Confirmation	In Place		22.5	Vadose	7/9/2021			0.64		260			
J/AD-ESVV	J/A5-ESW-20.0-070921	Alley	Confirmation	In Place		20.0	Vadose	7/9/2021			< 0.91		420			
			•			Block 38	East Prope	rty						•		
EX-19-W5 (EL20)	EX-19-W5 (EL20)	B38E	Confirmation	In Place	5.0	20.0	Vadose	7/3/2008			< 2.0		64			
EX-20-W1.5 (EL19.5)	EX-20-W1.5 (EL19.5)	B38E	Confirmation	In Place	5.5	19.5	Vadose	7/3/2008			< 2.0		120			
EX-39-EL23	EX-39-EL23	B38E	Confirmation	In Place	1.0	23.0	Vadose	7/18/2008			< 2.0		86			
EX-40-EL22	EX-40-EL22	B38E	Confirmation	In Place	2.0	22.0	Vadose	7/18/2008			< 2.0		1,800			
EX-41-EL22	EX-41-EL22	B38E	Confirmation	In Place	3.0	22.0	Vadose	7/18/2008			< 2.0		1,200			
D 4	P-4-3.5	B38E	Performance	Removed	3.5	21.2	Vadose	6/12/2002			2.1		1,500			
P-4	P-4-5.5	B38E	Performance	Removed	5.5	19.2	Vadose	6/12/2002			< 1.5		200			
W-3	W-3	B38E	Performance	Removed	10.0	10.5	Saturated	10/11/1993					18			
W-4	VV-4	B38E	Performance	Removed	11.0	9.5	Saturated	10/11/1993					2.4			
						Bloc	k 37 Site									
	MW-41-3	Block 37	Confirmation	In Place	7.5	19.5	Vadose	10/28/1991								
IMVV-41	MW-41-7	Block 37	Confirmation	In Place	17.5	9.5	Saturated	10/28/1991								
	MW-71-5	Block 37	Confirmation	In Place	5.0	25.4	Vadose	10/12/2005					2.73			
	MW-71-10	Block 37	Confirmation	In Place	10.0	20.4	Vadose	10/12/2005					5.39			
MVV-71	MW-71-15	Block 37	Confirmation	In Place	15.0	15.4	Saturated	10/12/2005					4.43			
	MW-71-20	Block 37	Confirmation	In Place	20.0	10.4	Saturated	10/12/2005					7.1			
MTCA Method B Direct Contact ³								0.67	16,000	80	120,000	250 ⁴	NE	400	400	
Screening Levels for Soil Protective of Groundwater - Vadose Zone ³								4.7	1,600	0.69	480,000	3,000	2.1	5.2	14	
Screening Levels for	Soil Protective of Groun	ndwater - Sa	aturated Zone ³						0.23	83	0.035	24,000	150	0.1	0.26	0.69
Natural Background	Concentrations⁵								7.3	NE	0.77	48	16.83	0.07	0.78	0.61
Laboratory Practical	Laboratory Practical Quantitation Limits ⁶								10	2.5	0.50	0.50	5.0	0.25	10	1.0
Proposed Feasibility Study/Cleanup Action Plan Preliminary Screening Levels (Vadose and Saturated) ⁷									16,000				2.1			

				Sample	Sample	Sample					Analytical	Results (mill	igrams per	kilogram) ²		
		General		Location	Depth	Elevation										
Sample Location	Sample Identification	Location	Sample Type	Disposition	(feet) ¹	(feet NAVD88)	Zone	Sample Date	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
	MW-72-5	Block 37	Confirmation	In Place	5.0	25.3	Vadose	10/12/2005					3.58			
M/M/ 72	MW-72-10	Block 37	Confirmation	In Place	10.0	20.3	Vadose	10/12/2005					5.42			
	MW-72-15	Block 37	Confirmation	In Place	15.0	15.3	Saturated	10/12/2005					124			
	MW-72-20	Block 37	Confirmation	In Place	20.0	10.3	Saturated	10/12/2005					20.9			
	MW-73-5	Block 37	Confirmation	In Place	5.0	25.1	Vadose	10/12/2005					5.62			
M/M/ 72	MW-73-10	Block 37	Confirmation	In Place	10.0	20.1	Vadose	10/12/2005					3.54			
10100-75	MW-73-16	Block 37	Confirmation	In Place	15.0	15.1	Saturated	10/12/2005					71.9			
	MW-73-20	Block 37	Confirmation	In Place	20.0	10.1	Saturated	10/12/2005					20.9			
	MW-95-5	Block 37	Confirmation	In Place	5.0	27.0	Vadose	10/19/2005					4.02			
MW-95	MW-95-10	Block 37	Confirmation	In Place	10.0	22.0	Vadose	10/19/2005					5.4			
	MW-95-15	Block 37	Confirmation	In Place	15.0	17.0	Saturated	10/19/2005					16.8			
MTCA Method B Dire	ct Contact ³								0.67	16,000	80	120,000	250 ⁴	NE	400	400
Screening Levels for	Soil Protective of Groun	dwater - Va	dose Zone ³						4.7	1,600	0.69	480,000	3,000	2.1	5.2	14
Screening Levels for	Soil Protective of Groun	dwater - Sa	nturated Zone ³						0.23	83	0.035	24,000	150	0.1	0.26	0.69
Natural Background Concentrations ⁵ 7.3						NE	0.77	48	16.83	0.07	0.78	0.61				
Laboratory Practical Quantitation Limits ⁶							10	2.5	0.50	0.50	5.0	0.25	10	1.0		
Proposed Feasibility	Study/Cleanup Action P	lan Prelimir	nary Screening	Levels (Vado	se and Sat	urated) ⁷				16,000				2.1		

NOTES:

Results in **bold** denote concentrations exceeding applicable screening levels; the shading indicates whether the exceedance is in the vadose or saturated zone as indicated to the right.

< denotes analyte not detected at or exceeding the laboratory reporting limit listed.

denotes sample not analyzed.

¹Depth in feet below ground surface. Elevation in feet referenced to North American Vertical Datum of 1988 (NAVD88).

²Analyzed by U.S. Environmental Protection Agency Methods 6010D/6020B/7471B.

Shading represents most stringent screening level, natural background concentration, or practical quantitation limit for vadose zone soil, or an exceedance of the selected value in a vadose zone soil sample.

Shading represents most stringent screening level, natural background concentration, or practical quantitation limit for saturated zone soil (or both vadose and saturated if they are the same value), or an exceedance of the selected value in a saturated zone soil sample. Shading represents the proposed soil screening level for this chemical for the Feasibility Study/Cleanup Action Plan-phase of the project following completion of the Interim Action and empirical evidence from groundwater samples.

Grey Text Grey text indicates a sample location that was subsequently removed during Interim Action excavation activities.

³Washington State Cleanup Levels and Risk Calculations (CLARC) under Washington State Model Toxics Control Act Cleanup Regulation (MTCA), Method B direct contact cleanup levels and default soil concentrations protective of groundwater (leaching pathway) from CLARC Master spreadsheet, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC unless otherwise noted.

⁴Value based on Method A as a surrogate for Method B as no Method B direct contact value for soil has been established.

⁵Natural background concentrations provided in Natural Background Soil Metals Concentrations in Washington State, Washington State Department of Ecology, Publication #94-115, October 1994.

⁶Laboratory Practical Quantitation Limits (PQLs) from OnSite Environmental of Redmond, Washington. PQLs for individual samples may vary due to sample matrix interferences, dilutions, or moisture content.

⁷See Table 14 for proposed preliminary screening levels for the post-interim action Feasibility Study/Cleanup Action Plan phase of the project.

NE = not established

				Top of Casing			Water Level
	Water Bearing	Screened Interval	Screened Interval	Elevation		Depth to Water	Elevation
Location ¹	Zone	(feet bgs) ²	(feet NAVD88) ³	(feet NAVD88) ³	Monitoring Date	(feet) ⁴	(feet NAVD88) ³
			Decommissioned	Monitoring Wells			
					8/30/2018	5.14	16.72
FMW-130	Intermediate	45.0 to 55.0	-22.8 to -32.8	21.86	12/28/2018	4.98	16.88
					3/26/2019	4.42	17.44
					8/30/2018	7.44	18.04
FMW-132	Shallow	5.0 to 10.0	20.7 to 15.7	25.48	12/28/2018	6.80	18.68
					3/26/2019	7.01	18.47
	<u> </u>	0 5 4 4 5		04.07	8/30/2018	6.86	18.01
FMW-133	Shallow	6.5 to 11.5	18.8 to 13.8	24.87	12/28/2018	6.21	18.66
					3/26/2019	6.41	18.46
	Challand	40.0 to 47.0	10 1 1- 0 1	04.00	8/30/2018	8.66	16.32
FIVIVV-134	Shallow	12.0 to 17.0	13.4 to 8.4	24.98	12/28/2018	7.80	17.18
					3/20/2019	7.01	17.47
EN/1/ 135	Shallow	7 0 to 12 0	18.6 to 13.6	25.20	0/30/2010	6.78	10.10
FIVIVV-133	Shallow	7.01012.0	10.0 10 13.0	25.29	3/26/2010	6.81	18.01
					8/30/2018	8 10	16.40
FMW-136	Intermediate	30.0 to 40.0	-4.9 to -14.9	24.79	12/28/2018	7.74	17.05
				•	3/26/2019	7.41	17.38
					12/23/2019	12.42	16.99
					12/26/2019	12.26	17.15
	Intermediate	29 0 to 12 0	9.0 to 13.0	20.41	12/30/2019	12.33	17.08
1 10100-144	Interneulate	30.0 10 43.0	-0.0 10 - 13.0	23.41	12/30/2019	12.34	17.07
					12/31/2019	12.44	16.97
					12/31/2019	12.27	17.14
					12/23/2019	5.58	17.32
					12/26/2019	5.65	17.25
					12/30/2019	5.80	17.10
FMVV-145	Intermediate	31.0 to 36.0	-8.0 to -13.0	22.90	12/30/2019	5.83	17.07
					12/31/2019	5.42	17.48
					12/31/2019	5.63	17.27

	Water Bearing	Screened Interval	Screened Interval	Top of Casing Elevation		Depth to Water	Water Level Elevation
Location ¹	Zone	(feet bgs) ²	(feet NAVD88) ³	(feet NAVD88) ³	Monitoring Date	(feet) ⁴	(feet NAVD88) ³
					12/23/2019	6.38	16.81
					12/26/2019	6.14	17.05
FMW-146	Intermediate	31.0 to 36.0	-8.0 to -13.0	23 19	12/30/2019	6.18	17.01
	Internediate	01.010000.0	0.010 10.0	20.10	12/30/2019	6.24	16.95
					12/31/2019	6.00	17.19
					12/31/2019	5.89	17.30
					12/23/2019	5.78	17.04
					12/26/2019	5.75	17.07
EM\\/_1/7	Intermediate	31.0 to 36.0	-8.0 to -13.0	22.82	12/30/2019	5.88	16.94
	Internediate	51.0 10 50.0	-0.0 10 - 10.0	22.02	12/30/2019	5.82	17.00
					12/31/2019	5.98	16.84
					12/31/2019	5.70	17.12
					12/23/2019	19.01	17.20
					12/26/2019	19.14	17.07
	Intermediate	44 0 to 40 0	8.0 to 13.0	36.21	12/30/2019	19.18	17.03
1 10100-149	Interneulate	44.0 10 49.0	-0.0 10 - 13.0	50.21	12/30/2019	19.13	17.08
					12/31/2019	18.94	to Water Elevation eet) ⁴ (feet NAVD88) ³ 3.38 16.81 3.14 17.05 3.18 17.01 3.24 16.95 3.00 17.19 5.89 17.30 5.78 17.04 5.75 17.07 5.88 16.94 5.82 17.00 5.98 16.84 5.70 17.12 9.01 17.20 9.14 17.03 9.13 17.08 8.94 17.27 8.92 17.29 2.05 0.00 1.45 -31.45 1.60 4.68 1.11 5.17 26.28 10.00 25.57 10.71 25.34 10.94 25.28 11.00
					12/31/2019	18.92	17.29
				22.05	1/15/2021	32.05	0.00
				32.05	1/19/2021	31.45	-31.45
					3/24/2021	31.60	4.68
					3/30/2021	31.60	4.68
					4/2/2021	31.11	5.17
OW-4	Intermediate	48.0 to 58.0	-11.7 to -21.7	26.29	4/10/2021	26.28	10.00
				30.28	4/13/2021	25.98	10.30
					4/19/2021	25.57	10.71
					4/21/2021	25.34	10.94
					4/23/2021	25.28	11.00
				39.23	7/26/2021	26.28	12.95

Location ¹	Water Bearing Zone	Screened Interval (feet bgs) ²	Screened Interval (feet NAVD88) ³	Top of Casing Elevation (feet NAVD88) ³	Monitoring Date	Depth to Water (feet) ⁴	Water Level Elevation (feet NAVD88) ³
			Existing Mor	nitoring Wells			_ ` ` <i>`</i>
					11/20/2018	13.02	17.07
					12/28/2018	12.74	17.35
					3/14/2019	12.56	17.53
					5/6/2019	12.08	18.01
FMW-137	Deep Outwash	72.0 to 85.0	-41.9 to -54.9	30.09	7/8/2019	12.25	17.84
	Aquilei				5/15/2023	11.69	18.40
					8/14/2023	12.29	17.80
					11/14/2023	12.62	17.47
					2/27/2024	12.29	17.80
					11/20/2018	24.50	15.94
					12/28/2018	24.38	16.06
					3/14/2019	24.14	16.30
	Deen Outwark				5/6/2019	23.80	16.64
FMW-138	Deep Outwasn	90.0 to 100.0	-49.96 to -59.96	40.44	7/8/2019	23.84	16.60
	Ачины				5/15/2023	23.44	Water Level Elevation (feet NAVD88) ³ 17.07 17.35 17.53 17.53 17.84 18.01 17.84 18.40 17.84 18.40 17.80 17.47 17.80 17.47 17.80 17.47 17.80 17.47 17.80 16.64 16.65 16.73 17.00 16.84 16.86 17.04 16.73 17.28 17.77 17.44 17.52 16.53 17.40 17.87 17.44 17.55 17.44
					8/14/2023	23.60	16.84
					11/14/2023	23.58	16.86
					2/27/2024	23.40	17.04
					2/14/2022	6.50	16.73
					5/16/2022	5.95	17.28
EM/0/_150	Intermediate	31 7 to 36 7	-8.5 to -13.5	23.23	5/15/2023	5.46	17.77
1 10100-150	Internetiate	51.7 10 50.7	-0.0 10 - 10.0	25.25	8/14/2023	5.79	17.44
					11/14/2023	5.79	17.44
					2/27/2024	5.71	17.52
					2/15/2022	7.21	16.53
					5/16/2022	6.34	17.40
EN/\/_151	Intermediate	33 1 to 38 1	-9.4 to -14.4	23.74	5/15/2023	5.87	17.87
1 1010 0-101	memediale	55.1 10 50.1	-3.4 10 - 14.4	20.14	8/14/2023	6.49	17.25
					11/14/2023	6.30	17.44
					2/27/2024	6.18	17.56

Location ¹	Water Bearing Zone	Screened Interval (feet bgs) ²	Screened Interval (feet NAVD88) ³	Top of Casing Elevation (feet NAVD88) ³	Monitoring Date	Depth to Water (feet) ⁴	Water Level Elevation (feet NAVD88) ³
					2/14/2022	5.76	17.07
					5/16/2022	5.15	17.68
	Intermediate	21.2 to 26.2	9 E to 12 E	22.02	5/15/2023	4.76	18.07
FIVIVV-152	Intermediate	31.3 10 30.3	-0.5 10 - 15.5	22.03	8/14/2023	5.29	17.54
					11/14/2023	5.25	17.58
					2/27/2024	5.14	17.69
					2/15/2022	8.50	16.22
					5/16/2022	7.55	17.17
	Intermediate	22 0 to 20 0	9 E to 12 E	04.70	5/15/2023	7.15	17.57
FIVIVV-153	Intermediate	33.2 10 38.2	-8.5 10 - 13.5	24.72	8/14/2023	7.30	17.42
						7.31	17.41
					2/27/2024	7.22	17.50
					2/14/2022	6.05	Water Level Elevation (feet NAVD88) ³ 17.07 17.68 17.68 17.54 17.54 17.58 17.69 16.22 17.17 17.57 17.42 17.50 16.75 17.31 17.55 17.42 17.50 17.51 17.55 17.42 17.51 17.55 17.50 17.51 17.50 17.51 17.51 17.50 17.51 17.50 17.51 17.50 17.51 17.50 17.51 17.51 17.51 17.51 17.51 17.51 17.56 17.71
					5/16/2022	5.49	
	Shallow	10.0 to 15.0	10.9 to 7.9	22.80	5/15/2023	5.05	
FIVIVV-104	Shallow	10.0 10 15.0	12.0 10 7.0	22.00	8/14/2023	5.38	
					11/14/2023	5.39	17.41
					2/27/2024	5.25	17.55
					2/14/2022	6.94	16.96
					5/16/2022	6.30	17.60
	Shallow	10.0 to 15.0	12.0 to 9.0	22.00	5/15/2023	5.92	17.98
FIVIVV-155	Shallow	10.0 10 15.0	13.9 10 6.9	23.90	8/14/2023	6.39	17.51
					11/14/2023	6.40	17.50
					2/27/2024	6.20	17.70
					2/14/2022	8.63	17.07
					5/16/2022	8.03	17.67
	Shallow	15.0 to 20.0	10 7 to 5 7	25 70	5/15/2023	7.62	18.08
FIVIVY-150	Shanow	10.0 10 20.0	10.7 to 5.7	25.70	8/14/2023	8.19	17.51
					11/14/2023	8.14	17.56
					2/27/2024	7.99	17.71

Location ¹	Water Bearing Zone	Screened Interval (feet bgs) ²	Screened Interval (feet NAVD88) ³	Top of Casing Elevation (feet NAVD88) ³	Monitoring Date	Depth to Water (feet) ⁴	Water Level Elevation (feet NAVD88) ³
					2/14/2022	5.87	20.08
					5/16/2022	8.28	17.67
	Intermediate	20.0 to 40.0	4.1 to 14.1	25.05	5/15/2023	7.90	18.05
FIVIVV-157	Internetiate	30.0 10 40.0	-4.1 10 - 14.1	20.90	8/14/2023	8.46	17.49
					11/14/2023	8.54	17.41
					2/27/2024	8.21	17.74
					5/15/2023	16.86	18.18
	Shallow	17.0 to 32.0	18 0 to 3 0	35.04	8/14/2023	16.04	19.00
1 10100-100	Granow	17.0 10 02.0	10.0 10 0.0	55.04	11/14/2023	17.32	17.72
					2/27/2024	17.13	17.91
					5/15/2023	18.12	18.03
	Intermediate	41.0 to 51.0	4.0 to 14.0	36 15	8/14/2023	18.51	17.64
FMW-159	Internetiate	41.0 10 51.0	-4.0 10 - 14.0	50.15	11/14/2023	18.48	17.67
					2/27/2024	18.36	17.79
					5/15/2023	21.04	17.91
	Shallow	20.0 to 35.0	19.0 to 4.0	38.95	8/14/2023	21.47	17.48
FIVIVV-100	Shallow				11/14/2023	21.42	17.53
					2/27/2024	21.44	17.51
					5/15/2023	21.14	18.72
	Shallow	20.0 to 25.0	10.0 to 1.0	20.96	8/14/2023	22.42	17.44
	Shallow	20.0 10 35.0	19.9 10 4.9	39.00	11/14/2023	22.36	17.50
					2/27/2024	22.24	17.62
					5/15/2023	22.40	17.69
	Intermediate	45 0 to 55 0	4.0 to 14.0	40.00	8/14/2023	22.54	17.55
F1V1VV-102	memediate	45.0 10 55.0	-4.9 10 - 14.9	40.09	11/14/2023	22.55	17.54
					2/27/2024	22.41	17.68
					5/15/2023	22.50	17.79
EN/\\/ 162	Shallow	20.0 to 25.0	20 3 to 5 3	40.20	8/14/2023	22.85	17.44
FIVIV-103	Shallow	20.0 to 35.0	20.3 to 5.3	40.29	11/14/2023	22.74	17.55
					2/27/2024	22.55	17.74

Location ¹	Water Bearing Zone	Screened Interval (feet bgs) ²	Screened Interval (feet NAVD88) ³	Top of Casing Elevation (feet NAVD88) ³	Monitoring Date	Depth to Water (feet) ⁴	Water Level Elevation (feet NAVD88) ³
					5/15/2023	22.51	17.67
	Intermediate	45 0 to 55 0	1 9 to 11 9	40.19	8/14/2023	22.77	17.41
FIVIV - 104	Internetiate	45.0 10 55.0	-4.8 10 - 14.8	40.16	11/14/2023	22.79	17.39
					2/27/2024	22.63	17.55
					5/15/2023	14.12	17.99
EMW 165	Deep Outwash	77.0 to 87.0	11 0 to 51 0	32.11	8/14/2023	14.70	17.41
1 10100-105	Aquifer	77.0 10 07.0	-44.9 10 -54.9	52.11	11/14/2023	14.63	17.48
					2/27/2024	14.45	17.66

	Water Bearing	Screened Interval	Screened Interval	Top of Casing Elevation		Depth to Water	Water Level Elevation
Location ¹	Zone	(feet bgs) ²	(feet NAVD88) ³	(feet NAVD88) ³	Monitoring Date	(feet) ⁴	(feet NAVD88) ³
					1/15/2021	18.48	5.69
					1/19/2021	18.30	5.87
					3/24/2021	18.22	5.95
					3/30/2021	14.89	9.28
					4/2/2021	14.25	9.92
					4/10/2021	13.22	10.95
					4/13/2021	12.99	11.18
					4/19/2021	12.58	11.59
					4/21/2021	12.41	11.76
					4/23/2021	12.29	11.88
					4/27/2021	12.17	12.00
					4/30/2021	11.97	12.20
					5/4/2021	11.84	12.33
					5/17/2021	11.35	12.82
					6/14/2021	10.74	13.43
					6/28/2021	10.33	13.84
OW-1	Intermediate	30.0 to 45.0	-5.8 to -20.8	24.17	7/12/2021	10.33	13.84
					7/26/2021	10.30	13.87
					8/9/2021	10.27	13.90
					9/22/2021	10.07	14.10
					10/13/2021	9.24	14.93
					10/26/2021	9.02	15.15
					12/1/2021	8.01	16.16
					12/13/2021	7.67	16.50
					1/7/2022	7.02	17.15
					1/13/2022	7.03	17.14
					1/27/2022	7.23	16.94
					2/8/2022	7.50	16.67
					2/14/2022	7.42	16.75
					5/15/2023	6.21	17.96
					8/14/2023	6.65	17.52
					11/14/2023	6.67	17.50
					2/27/2024	6.56	17.61

		Concerned Internet		Top of Casing		Dauth ta Watan	Water Level
· · · 1	Water Bearing		Screened Interval	Elevation		Depth to water	Elevation
Location	Zone	(feet bgs)	(feet NAVD88) ⁵	(feet NAVD88) ³	Monitoring Date	(feet)	(feet NAVD88)
					1/15/2021	20.32	2.59
					1/19/2021	20.07	2.84
					3/24/2021	20.81	2.10
					3/30/2021	14.99	7.92
					4/2/2021	14.24	8.67
					4/10/2021	13.16	9.75
					4/13/2021	12.86	10.05
					4/19/2021	12.42	10.49
					4/21/2021	12.22	10.69
					4/23/2021	12.12	10.79
					4/27/2021	11.99	10.92
					4/30/2021	11.75	11.16
					5/4/2021	11.71	11.20
					6/28/2021	9.97	12.94
					7/12/2021	9.88	13.03
OW-2	Intermediate	30.0 to 45.0	-7.1 to -22.1	22.91	7/26/2021	9.79	13.12
					8/9/2021	9.73	13.18
					9/22/2021	9.05	13.86
					10/13/2021	8.40	14.51
					10/26/2021	8.10	14.81
					12/1/2021	7.03	15.88
					12/13/2021	6.68	16.23
					1/7/2022	5.97	16.94
					1/13/2022	6.04	16.87
					1/27/2022	6.20	16.71
					2/8/2022	6.37	16.54
					2/14/2022	6.07	16.84
					5/15/2023	5.04	17.87
					8/14/2023	5.42	17.49
					11/14/2023	5.43	17.48
					2/27/2024	5.35	17.56

				Top of Casing			Water Level
1	Water Bearing	Screened Interval	Screened Interval	Elevation		Depth to Water	Elevation
Location	Zone	(feet bgs) ²	(feet NAVD88) ³	(feet NAVD88) [°]	Monitoring Date	(feet) ⁻	(feet NAVD88) [°]
					1/15/2021	36.11	2.66
					1/19/2021	38.44	0.33
					3/24/2021	35.83	2.94
				38.77	3/30/2021	31.35	7.42
					4/2/2021	27.31	11.46
					4/10/2021	29.92	8.85
					4/13/2021	29.66	9.11
					4/19/2021	29.35	9.56
					4/21/2021	29.18	9.73
					4/23/2021	29.04	9.87
					4/27/2021	28.95	9.96
					4/30/2021	28.61	10.30
					5/4/2021	28.66	10.25
					5/17/2021	27.99	10.92
					6/14/2021	27.23	11.68
0.01/2	Intermediate	19 0 to 62 0	0.2 to .24.2		6/28/2021	26.87	12.04
000-3	memediale	40.0 10 03.0	-9.2 10 -24.2		7/28/2021	26.61	12.30
					8/9/2021	26.29	Elevation (feet NAVD88) ³ 2.66 0.33 2.94 7.42 11.46 8.85 9.11 9.56 9.73 9.87 9.96 10.30 10.25 10.92 11.68 12.04 12.30 12.62 13.49 14.50 14.86 16.13 16.61 17.41 17.33 17.16 16.98 17.03 18.01 18.07
					9/22/2021	25.42	
				38.91	10/13/2021	24.41	14.50
					10/26/2021	24.05	14.86
					12/1/2021	22.78	16.13
					12/13/2021	22.30	16.61
					1/7/2022	21.50	17.41
					1/13/2022	21.58	17.33
					1/27/2022	21.75	17.16
					2/8/2022	21.93	16.98
					2/15/2022	21.88	17.03
					5/15/2023	20.60	18.31
					8/14/2023	20.88	18.03
					11/14/2023	20.84	18.07
					2/27/2024	20.84	18.07

Location ¹	Water Bearing Zone	Screened Interval (feet bgs) ²	Screened Interval (feet NAVD88) ³	Top of Casing Elevation (feet NAVD88) ³	Monitoring Date	Depth to Water (feet) ⁴	Water Level Elevation (feet NAVD88) ³
					1/15/2021	29.10	4.70
					1/19/2021	28.97	4.83
					3/24/2021	25.32	8.48
					ing n Monitoring Date Depth to Water (feet) ⁴ Water Level Elevation (feet NAVD88) ³ 1/15/2021 29.10 4.70 1/19/2021 28.97 4.83 3/24/2021 25.32 8.48 3/30/2021 23.05 10.75 4/2/2021 22.53 11.27 4/10/2021 21.52 12.28 4/13/2021 21.52 12.28 4/19/2021 21.16 12.64 4/21/2021 20.90 12.90 4/23/2021 20.90 12.90 4/23/2021 20.90 13.00 5/4/2021 20.18 13.62 6/14/2021 19.52 14.28 6/28/2021 19.13 14.67 7/12/2021 18.93 14.87 7/26/2021 19.03 14.77 9/22/2021 18.53 15.27 10/13/2021 14.57 15.68 10/26/2021 18.77 15.80 12/1/2021 17.57 17.00 12/13/2021		
					4/2/2021	22.53	11.27
					4/10/2021	21.72	12.08
					4/13/2021	21.52	12.28
					4/19/2021	21.16	12.64
					4/21/2021	21.00	12.80
				33.80	4/23/2021	20.90	12.90
				55.60	4/27/2021	20.98	12.82
					4/30/2021	20.80	13.00
					5/4/2021	20.73	13.07
0.0.5	Intermediate	11 8 to 51 8	-11 0 to -21 0		5/17/2021	20.18	Water Elevation (feet NAVD88) ³ 0 4.70 97 4.83 52 8.48 55 10.75 53 11.27 72 12.08 52 12.28 6 12.64 90 12.80 90 12.80 90 12.80 90 12.82 90 12.82 90 13.00 73 13.07 8 13.62 92 14.87 93 14.67 93 14.77 93 14.77 93 15.27 97 15.68 97 15.68 97 15.68 97 15.68 97 15.68 97 15.68 97 15.68 96 18.01 97 15.68 96 18.01 97 1
000-5	Internetiate	44.0 10 34.0	-11.0 10 -21.0		6/14/2021	19.52	
					6/28/2021	19.13	14.67
					7/12/2021	18.93	Water Level Elevation (feet NAVD88) ³ 4.70 4.83 8.48 10.75 11.27 12.08 12.28 12.64 12.80 12.90 12.82 13.00 13.07 13.62 14.28 14.67 14.87 14.79 14.77 15.27 15.68 15.80 17.00 17.26 18.01 18.10 17.56 17.20
					7/26/2021	19.01	14.79
					8/9/2021	19.03	th to WaterElevation (feet NAVD88)³29.104.7028.974.8325.328.4823.0510.7522.5311.2721.7212.0821.5212.2821.1612.6421.0012.8020.9012.9020.9812.8220.8013.0020.7313.6219.5214.2819.1314.6718.9314.8719.0114.7919.0314.7718.5315.2714.5715.6818.7715.8017.5717.0017.3117.2616.5618.0116.4718.1017.0117.5617.3717.20
					9/22/2021	Water Level Depth to Water Elevation 29.10 4.70 28.97 4.83 25.32 8.48 23.05 10.75 22.53 11.27 21.72 12.08 21.52 12.28 21.62 12.80 20.90 12.90 20.90 12.90 20.98 12.82 20.80 13.00 20.73 13.07 20.18 13.62 19.52 14.28 19.13 14.67 18.93 14.87 19.01 14.79 19.03 14.77 18.53 15.27 14.57 15.68 18.77 15.80 17.57 17.00 17.57 17.00 17.57 17.00 17.56 18.01 16.47 18.10 17.01 17.56 17.37 17.20	15.27
				30.25	10/13/2021	14.57	15.68
					10/26/2021	18.77	15.80
					12/1/2021	17.57	17.00
					12/13/2021	17.31	17.26
				34.57	1/7/2022	16.56	18.01
					1/13/2022	16.47	18.10
					1/27/2022	17.01	17.56
					2/8/2022	17.37	17.20

Location ¹	Water Bearing Zone	Screened Interval (feet bgs) ²	Screened Interval (feet NAVD88) ³	Top of Casing Elevation (feet NAVD88) ³	Monitoring Date	Depth to Water (feet) ⁴	Water Level Elevation (feet NAVD88) ³
OW-5 (continued)	Intermediate	44.8 to 54.8	11.0 to 21.0		2/14/2022	17.14	17.43
				24 57	5/8/2023	13.96	20.61
			-11.0 10 -21.0	54.57	8/10/2023	14.59	19.98
					2/27/2024	14.33	20.24

NOTES:

¹OW monitoring well series were used as observation wells during and post construction dewatering activites associated with redevelopment at the Block 38 West Property.

²Depth in feet below ground surface (bgs).

³In feet referenced to North American Vertical Datum of 1988 (NAVD88).

⁴In feet below top of well casing.

					Analytical Results (microgra				rams per liter)				
				Water	NWTPH-Dx ²			NWTPH-Dx ²	NWTPH-Gx⁴		EPA Method	8021B or 8260 ⁵	
			Screened Interval	Bearing			Total						
Sample Location	Sample Date	Sample Identification	(feet NAVD88) ¹	Zone	DRO	ORO	NWTPH-Dx ³	Kerosene	GRO	Benzene	Toluene	Ethylbenzene	Xylenes
					Block 38 We	est Property							
			•	Reconnais	sance Groundw	ater Samples f	rom Borings				•		•
FB-03	8/23/2018	FB-03-082318	8.8 to 3.8	Shallow	660	490	1,150		< 100	< 1.0	< 1.0	< 1.0	< 2.0
FB-05	8/22/2018	FB-05-082218	8.5 to 3.5	Shallow	< 260	< 410	< 410		< 100	< 1.0	< 1.0	< 1.0	< 2.0
FMW-130	7/21/2014	F-MW-130-GW1-072114	7.2 to 2.2	Shallow					2,100 ⊤	5.1	7.5	2.2	6.7
		-	1	D	ecommissioned	Monitoring W	ells	1			1	1	1
	7/24/2014	F-MW-130-072414		-					< 100	< 1.0	< 1.0	< 1.0	< 2.0
	7/3/2017	FMW-130-070317	-	-					< 100	< 0.20	< 1.0	< 0.20	< 0.60
FMW-130	8/30/2018	FMW-130-083018	-22.8 to -32.8	Intermediate	< 250	< 410	< 410		< 100	< 0.20	< 1.0	< 0.20	< 0.60
	12/28/2018	FMW130-122818		-	< 260	< 410	< 410		< 100	< 0.20	< 1.0	< 0.20	< 0.60
	3/26/2019	FMW-130-032619			< 250	< 400	< 400		< 100	< 1.0	< 1.0	< 1.0	< 2.0
	8/30/2018	FMW-132-083018			260	< 400	260		< 100	< 0.20	< 1.0	< 0.20	< 0.60
FMW-132	12/28/2018	FMW132-122818	20.7 to 15.7	Shallow	< 260	< 410	< 410		< 100	< 0.20	< 1.0	< 0.20	< 0.60
	3/26/2019	FMW-132-032619			< 250	< 400	< 400		< 100	< 1.0	< 1.0	< 1.0	< 2.0
	8/30/2018	FMW-133-083018	18.8 to 13.8	Shallow	270	< 410	270		< 100	< 0.20	< 1.0	< 0.20	< 0.60
FMW-133	12/28/2018	FMW133-122818			310	< 410	310		< 100	< 0.20	< 1.0	< 0.20	< 0.60
	3/26/2019	FMW-133-032619			280	< 400	280		< 100	< 1.0	< 1.0	< 1.0	< 2.0
	8/30/2018	FMW-134-083018			1,000 M	< 410	1,000		1,100 Z	< 1.0	< 5.0	< 1.0	< 3.0
	12/28/2018	FMW134-122818	13 / to 8 /	Shallow	560	< 410	560		< 100	< 0.20	< 1.0	< 0.20	< 0.60
1 10100-134	12/28/2018	FMW500-122818	13.4 10 0.4	Shallow	680	490	1,170		< 100	< 0.20	< 1.0	< 0.20	< 0.60
	3/26/2019	FMW-134-032619			540 M	< 400	540		140 Z	< 1.0	< 1.0	< 1.0	< 2.0
	8/30/2018	FMW-135-083018			< 260	< 410	< 410		< 100	< 0.20	< 1.0	< 0.20	< 0.60
FMW-135	12/28/2018	FMW135-122818	18.6 to 13.6	Shallow	370	< 410	370		< 100	< 0.20	< 1.0	< 0.20	< 0.60
	3/26/2019	FMW-135-032619			< 250	< 410	< 410		< 100	< 1.0	< 1.0	< 1.0	< 2.0
	8/30/2018	FMW-136-083018			< 250	< 400	< 400		< 100	< 0.20	< 1.0	< 0.20	< 0.60
FMW-136	12/28/2018	FMW136-122818	-4.9 to -14.9	Intermediate	< 260	< 410	< 410		< 100	< 0.20	< 1.0	< 0.20	< 0.60
	3/26/2019	FMW-136-032619	-	-	< 250	< 410	< 410		< 100	< 1.0	< 1.0	< 1.0	< 2.0
FMW-144	12/26/2019	FMW-144-122619	-8.6 to -13.6	Intermediate	< 200	< 200	< 200		< 100	< 1.0	< 1.0	< 1.0	< 2.0
FMW-145	12/26/2019	FMW-145-122619	-8.1 to -13.1	Intermediate	280	310	590		< 100	< 1.0	< 1.0	< 1.0	< 2.0
FMW-146	12/26/2019	FMW-146-122619	-7.8 to -12.8	Intermediate	1,100	650	1,750		170 T	< 1.0	< 1.0	< 1.0	< 2.0
FMW-147	12/26/2019	FMW-147-122619	-8.2 to -13.2	Intermediate	1,900	1,400	3,300		< 100	< 1.0	< 1.0	< 1.0	< 2.0
FMW-149	12/26/2019	FMW-149-122619	-7.8 to -12.8	Intermediate	< 210	< 210	< 210		< 100	< 1.0	< 1.0	< 1.0	< 2.0
Screening Level for Prote	ction of Groundwate	er as Drinking Water ⁶			50	07	500 ⁷	500 ⁷	800 ⁷	5.0 ⁸	640 ⁸	700 ⁸	1,600 ⁸
Screening Level for Prote	ction of Indoor Air ⁶				N	E	NE	NE	NE	2.4	15,000	2,800	320
Laboratory Practical Qua	ntitation Limit ⁹				50	0	500	500	100	0.20	1.0	0.20	0.60

					Analytical Results (micrograms per liter)								
				Water	NWTP	H-Dx ²		NWTPH-Dx ²	NWTPH-Gx ⁴		EPA Method	8021B or 8260 ⁵	
			Screened Interval	Bearing			Total						
Sample Location	Sample Date	Sample Identification	(feet NAVD88) ¹	Zone	DRO	ORO	NWTPH-Dx ³	Kerosene	GRO	Benzene	Toluene	Ethylbenzene	Xylenes
					Existing Mor	itoring Wells							
-	5/16/2023	FMW-150-051623	_		92.4	< 154	92.4						
FMW-150	8/15/2023	FMW-150-081523	-8 5 to -13 5	Intermediate	< 76.9	< 154	< 154						
-	11/15/2023	FMW-150-111523		internioulute	< 76.2	< 152	< 152						
	2/29/2024	FMW-150-022924					< 250 ^						
_	5/16/2023	FMW-151-051623	_		287	< 150	287						
FMW-151	8/15/2023	FMW-151-081523	-9.4 to -14.4	Intermediate	222	< 151	222						
	11/15/2023	FMW-151-111523		internieulute	263 F3	< 151	263						
	2/29/2024	FMW-151-022924					< 250 ^						
_	5/16/2023	FMW-152-051623	_		143	< 151	143						
FM\\/_152	8/15/2023	FMW-152-081523	-8.5 to -13.5	Intermediate	216	< 154	216						
110102	11/15/2023	FMW-152-111523	0.010 10.0	internieulute	269 F3	< 151	269						
	2/29/2024	FMW-152-022924					< 250 ^						
EMW_153	5/16/2023	FMW-153-051623		Intermediate	< 74.8	< 150	< 150						
	8/15/2023	FMW-153-081523			< 76.2	< 152	< 152						
1 1010 - 155	11/15/2023	FMW-153-111523	-0.0 10 - 10.0	internediate	< 76.9	< 154	< 154						
	2/29/2024	FMW-153-022924					< 250 ^						
	5/16/2023	FMW-154-051623	_		318	< 154	318		< 100	< 0.200	< 1.00	< 0.500	< 1.50
	9/1//2022	EMW 154 081423			514 [#]	< 152	514 [#]		~ 100	0 1 2 0 1	< 1.00	< 0.500	< 1.50
	0/14/2023	1 10100-154-081425	12.9 to 7.9	Shallow	< 76.2*	195*	195*		< 100	0.1203	< 1.00	< 0.500	< 1.50
FIVIVV-134	11/11/2022		12.0 10 7.0	Shallow	791 [#]	< 152	791 [#]		< 100	< 0.200	< 1.00	< 0.500	< 1.50
	11/14/2023	FIVIVV-104-111420			< 76.2*	< 152*	< 152*		< 100	< 0.200	< 1.00	< 0.500	< 1.50
	2/28/2024	FMW-154-022824					435^		< 100	< 0.200	< 1.00	< 0.500	< 1.50
	5/16/2023	FMW-155-051623			287	< 151	287		< 100	< 0.200	< 1.00	< 0.500	< 1.50
	0/11/2022				530 [#]	< 154	530 [#]		< 100	< 0.200	< 1.00	< 0.500	< 1.50
	0/14/2023	FIVIVV-155-001425			< 76.9*	< 154*	< 154*		< 100	< 0.200	< 1.00	< 0.500	< 1.50
FMW-155	11/11/2022		13.9 to 8.9	Shallow	943 [#]	< 152	943 [#]		< 100	< 0.200	< 1.00	< 0.500	< 1.50
	11/14/2023	FIVIVV-100-111423			< 76.2*	< 152*	< 152*		< 100	< 0.200	< 1.00	< 0.500	< 1.50
	2/27/2024						605 ^ #		< 100	< 0.200	< 1.00	< 0.500	< 1.50
	2/2//2024	FIVIVV-155-022724					< 250* ^		< 100	< 0.200	< 1.00	< 0.500	< 1.50
	5/16/2023	FMW-156-051623			170	< 154	170		< 100	< 0.200	< 1.00	< 0.500	< 1.50
	8/14/2023	FMW-156-081423	40.7 +- 5.7	Ohallerri	256	< 151	256		< 100	< 0.200	< 1.00	< 0.500	< 1.50
FIVIVV-156	11/15/2023	FMW-156-111523	10.7 to 5.7	Snallow	397	< 154	397		< 100	< 0.200	< 1.00	< 0.500	< 1.50
	2/27/2024	FMW-156-022724					< 250 ^		< 100	< 0.200	< 1.00	< 0.500	< 1.50
Screening Level for Protect	ction of Groundwate	r as Drinking Water ⁶	•	·	50	D ⁷	500 ⁷	500 ⁷	800 ⁷	5.0 ⁸	640 ⁸	700 ⁸	1,600 ⁸
Screening Level for Protect	ction of Indoor Air ⁶				N	E	NE	NE	NE	2.4	15,000	2,800	320
Laboratory Practical Quan	ntitation Limit ⁹				50	0	500	500	100	0.20	1.0	0.20	0.60

					Analytical Results (micrograms per liter)								
				Water	NWTP	H-Dx ²		NWTPH-Dx ²	NWTPH-Gx ⁴		EPA Method	8021B or 8260 ⁵	
			Screened Interval	Bearing			Total						
Sample Location	Sample Date	Sample Identification	(feet NAVD88) ¹	Zone	DRO	ORO	NWTPH-Dx ³	Kerosene	GRO	Benzene	Toluene	Ethylbenzene	Xylenes
	5/16/2023	FMW-157-051623	_		161	< 151	161					D21B or 8260 ⁵ Ethylbenzene Xyler <0.500	
EMW-157	8/15/2023	FMW-157-081523	4.1 to -14.1	Intermediate	173	< 155	173						
	11/15/2023	FMW-157-111523		internetic	283	< 152	283						
	2/28/2024	FMW-157-022824					< 250 ^					B021B or 8260 ⁵ Ethylbenzene < 0.500	
	5/15/2023	FMW-158-051523	_		149	< 151	149		< 100	< 0.200	< 1.00	< 0.500	< 1.50
	8/15/2023	FMW-158-081523			256	< 151	256		< 100	< 0.200	< 1.00	< 0.500	< 1.50
FMW-158	11/15/2023	FMW-158-111523	18.0 to 3.0	Shallow	398#	< 151	398 [#]		< 100	< 0.200	< 1.00	< 0.500	< 1.50
			_		< 75.5*	< 151*	< 151*						
	2/29/2024	FMW-158-022924					< 250 ^ # < 250* ^		< 100	< 0.200	< 1.00	< 0.500	< 1.50
	5/16/2023	FMW-159-051623		-	102	< 150	102						
	8/15/2023	FMW-159-081523	_		109	< 154	109						
	44/45/0000				249 [#]	< 151	249 [#]						
FMW-159	11/15/2023	FIMIN-159-111523	-4.9 to -14.9	Intermediate	< 75.5*	< 151*	< 151*						
	2/28/2024						< 250 ^ #						
	2/20/2024	FIVIVV-159-022024					< 250* ^					Ethylbenzene Xylen < 0.500	
	5/15/2023	FMW-160-051523	_		114	< 151	114		< 100	< 0.200	< 1.00	< 0.500	< 1.50
	9/14/2022				634 [#]	< 154	634 [#]		< 100	0.250	< 1.00	< 0.500	< 1.50
FMW-160	0/14/2023	FIVIVV-100-001423	19.0 to 4.0	Shallow	< 76.9*	< 154*	< 154*		< 100	0.250	< 1.00	< 0.500	< 1.50
	11/14/2023	FMW-160-111423			375	< 154	375		< 100	0.170 J	< 1.00	< 0.500	< 1.50
	2/27/2024	FMW-160-022724					< 250 ^		< 100	< 0.200	< 1.00	< 0.500	< 1.50
	5/15/2023	FMW-161-051523			211	< 151	211		< 100	0.120 J	< 1.00	< 0.500	< 1.50
	8/14/2023	FMW-161-081423	10.0 to 1.0	Shallow	202	< 154	202		< 100	< 0.200	< 1.00	< 0.500	< 1.50
	11/14/2023	FMW-161-111423	19.9 10 4.9	Shallow	423	< 151	423		< 100	< 0.200	< 1.00	< 0.500	< 1.50
	2/27/2024	FMW-161-022724					< 250 ^		< 100	< 0.200	< 1.00	< 0.500	< 1.50
	5/16/2023	FMW-162-051623			212 F3	< 150	212 F3						
	8/15/2023	FMW-162-081523	1.0 to 11.0	Intermediate	103	< 154	103						
FIVIVV-TOZ	11/15/2023	FMW-162-111523	-4.9 10 - 14.9	Intermediate	< 75.5	< 151	< 151						
	2/28/2024	FMW-162-022824					< 250 ^						
	5/15/2023	FMW-163-051523			181	< 154	181		< 100	1.16	< 1.00	< 0.500	< 1.50
	8/14/2023	FMW-163-081423	20.2 to 5.2	Challow	259	< 154	259		< 100	1.22	< 1.00	< 0.500	< 1.50
FIVIVV-103	11/15/2023	FMW-163-111523	20.3 10 5.3	Shallow	406	< 154	406		< 100	0.750	< 1.00	< 0.500	< 1.50
	2/27/2024	FMW-163-022724					< 250 ^		< 100	0.420	< 1.00	 < 0.500 < 0.500	< 1.50
Screening Level for Prote	ction of Groundwate	er as Drinking Water ⁶			50	07	500 ⁷	500 ⁷	< 100				
Screening Level for Prote	ction of Indoor Air ⁶				N	E	NE	NE	NE	2.4	15,000	2,800	320
Laboratory Practical Qua	ntitation Limit ⁹				50	0	500	500	100	0.20	1.0	0.20	0.60

					Analytical Results (micrograms per liter)									
				Water	NWTP	H-Dx ²		NWTPH-Dx ²	NWTPH-Gx ⁴	EPA Method 8021B or 8260 ⁵				
			Screened Interval	Bearing			Total							
Sample Location	Sample Date	Sample Identification	(feet NAVD88) ¹	Zone	DRO	ORO	NWTPH-Dx ³	Kerosene	GRO	Benzene	Toluene	Ethylbenzene	Xylenes	
	5/16/2023	FMW-164-051623			82.9	< 154	82.9							
EM\\/_164	8/15/2023	FMW-164-081523	-1 8 to -11 8	Intermediate	< 76.9	< 154	< 154							
1 10100-104	11/15/2023	FMW-164-111523	-4.0 10 - 14.0	Intermediate	< 75.5	< 151	< 151							
	2/29/2024	FMW-164-022924					< 250 ^							
OW-1	5/16/2023	OW-1-051623	-5.8 to -20.8	Intermediate	332	< 151	332							
	8/15/2023	OW-1-081523			385	< 154	385							
	11/15/2023	OW-1-111523			628 [#]	< 152	628 [#]							
					< 76.2*	< 152*	< 152*							
	2/28/2024	OW-1-022824					391 ^							
	5/16/2023	OW-2-051623			107	< 154	107							
$\cap M/2$	8/15/2023	OW-2-081523	7 1 to 22 1	Intermediate	< 78.4	< 157	< 157							
011-2	11/15/2023	OW-2-111523	-7.110-22.1	Internetiate	378	< 154	378							
	2/28/2024	OW-2-022824					< 250 ^							
	5/17/2023	OW-3-051723			84.8	< 150	84.8							
01/1/2	8/15/2023	OW-3-081523	0.2 to .24.2	Intermediate -	< 76.9	< 154	< 154							
077-3	11/15/2023	OW-3-111523	-9.2 10 -24.2		238	< 151	238							
	2/28/2024	OW-3-022824					< 250 ^					Ethylbenzene Xyl		
Screening Level for Prote	ction of Groundwate	er as Drinking Water ⁶			50	07	500 ⁷	500 ⁷	800 ⁷	5.0 ⁸	640 ⁸	700 ⁸	1,600 ⁸	
Screening Level for Prote	ction of Indoor Air ⁶				N	E	NE	NE	NE	2.4	15,000	2,800	320	
Laboratory Practical Quar	ntitation Limit ⁹				50	0	500	500	100	0.20	1.0	0.20	0.60	
	Sample Location Sample Date Sample Idention 11/5/1991 MW-41 12/29/1993 MW-41 7/14/1994 MW-41 10/25/1994 MW-41 3/8/1995 MW-41 6/6/1995 MW-41							Analytical	Results (microg	rams per liter)				
---------------------------	---	----------------------------------	---	-----------------	---------	-------------------	--------------------------------	-----------------------	-----------------------	------------------	------------------	----------------------------	--------------------	
				Water	NWTP	H-Dx ²		NWTPH-Dx ²	NWTPH-Gx ⁴		EPA Method	8021B or 8260 ⁵		
Sample Location	Sample Date	Sample Identification	Screened Interval (feet NAVD88) ¹	Bearing Zone	DRO	ORO	Total NWTPH-Dx ³	Kerosene	GRO	Benzene	Toluene	Ethylbenzene	Xylenes	
				Group	BIOCK	37 Site								
	44/5/4004			Groun					11.000		105	405	105	
	11/5/1991	MIVV-4 1	_		< 1,000		< 1,000		< 1,000	67	< 0.5	< 0.5	< 0.5	
	12/29/1993	MVV-41	_		< 250	< 750	< 750		< 100	4.6	< 0.5	< 0.5	< 0.5	
	//14/1994	MVV-41	_		< 250	< 750	< 750		< 100	10	< 0.5	< 0.5	< 0.5	
	10/25/1994	MVV-41	_		500	< 750	500		< 50	< 0.5	< 0.5	< 0.5	< 1.0	
	3/8/1995	MW-41	_		< 250	< 750	< 750		< 50	1.6	< 0.5	< 0.5	< 1.0	
	6/6/1995	MW-41	_		< 250	< 750	< 750		< 50	< 0.5	< 0.5	< 0.5	< 1.0	
	9/7/1995	MW-41	_		< 250	< 750	< 750		< 50	< 0.5	< 0.5	< 0.5	< 1.0	
	12/8/1995	MW-41			< 250	< 750	< 750		< 50	< 0.5	< 0.5	< 0.5	< 1.0	
NA\\A/_// 1	4/1/1996	MW-41	22.0 to 7.0	Shallow	< 250	< 750	< 750		< 50	< 0.5	< 0.5	< 0.5	< 1.0	
	6/25/1996	MW-41	22.0 10 7.0	Ghallow	< 250	< 750	< 750		< 50	< 0.5	< 0.5	< 0.5	< 1.00	
	9/27/1996	MW-41			< 250	< 750	< 750		< 50	< 0.5	< 0.5	< 0.5	< 1.00	
	6/2/2005	MW-41	_		< 237	< 474	< 474		< 100	< 1	< 1	< 1	< 2	
	7/26/2005	MW-41	_		258	977	1,235		< 50	< 0.2	< 0.2	< 0.2	< 0.50	
	11/2/2005	MW-41	_		< 238	< 476	< 476		< 50	< 0.5	< 0.5	< 0.5	< 3.00	
	2/23/2006	MW-41	_		< 250	< 500	< 500		< 50	< 0.5	< 0.5	< 0.5	< 3.00	
	5/9/2006	MW-41	_		< 253	< 505	< 505		< 50	< 0.5	< 0.5	< 0.5	< 3.00	
	8/30/2006	MW-41	_		< 240	< 481	< 481		< 80	< 0.5	< 0.5	< 0.5	< 3.00	
	12/12/2006	MW-41	_		< 243	< 485	< 485		< 50	< 0.5	< 0.5	< 0.5	< 3.00	
Screening Level for Prote	ction of Groundwate	r as Drinking Water ⁶	•		50	07	500 ⁷	500 ⁷	800 ⁷	5.0 ⁸	640 ⁸	700 ⁸	1,600 ⁸	
Screening Level for Prote	ction of Indoor Air ⁶				N	E	NE	NE	NE	2.4	15,000	2,800	320	
Laboratory Practical Qua	ntitation Limit ⁹				50	0	500	500	100	0.20	1.0	0.20	0.60	

								Analytical	Results (microg	rams per liter)			
				Water	NWTP	H-Dx ²		NWTPH-Dx ²	NWTPH-Gx ⁴		EPA Method	8021B or 8260 ⁵	
			Screened Interval	Bearing			Total						
Sample Location	Dele Location Sample Date Sample Identifiu 3/7/2007 MW-41 6/14/2007 MW-41 9/13/2007 MW-41 12/18/2007 MW-41 3/17/2008 MW-41 6/3/2008 MW-41 6/3/2008 MW-41 8/4/2008 MW-41 11/4/2008 MW-41 2/24/2009 MW-41 5/17/2009 MW-41 11/15/2009 MW-41 2/21/2010 MW-41 2/21/2010 MW-41 11/15/2010 MW-41 2/28/2011 MW-41 11/15/2010 MW-41 11/15/2010 MW-41 2/28/2011 MW-41 11/15/2012 MW-41 12/5/2011 MW-41 11/3/2005 MW-41 11/3/2005 MW-71 8/14/2012 MW-41 11/3/2006 MW-71 8/29/2006 MW-71 8/29/2006 MW-71 8/29/2006 MW-71 <td>(feet NAVD88)¹</td> <td>Zone</td> <td>DRO</td> <td>ORO</td> <td>NWTPH-Dx³</td> <td>Kerosene</td> <td>GRO</td> <td>Benzene</td> <td>Toluene</td> <td>Ethylbenzene</td> <td>Xylenes</td>		(feet NAVD88) ¹	Zone	DRO	ORO	NWTPH-Dx ³	Kerosene	GRO	Benzene	Toluene	Ethylbenzene	Xylenes
	Dele Location Sample Date Sample Identific 3/7/2007 MW-41 6/14/2007 MW-41 9/13/2007 MW-41 12/18/2007 MW-41 3/17/2008 MW-41 3/17/2008 MW-41 3/17/2008 MW-41 6/3/2008 MW-41 8/4/2008 MW-41 11/4/2008 MW-41 2/24/2009 MW-41 11/15/2009 MW-41 5/17/2009 MW-41 5/17/2009 MW-41 11/15/2019 MW-41 2/21/2010 MW-41 11/15/2019 MW-41 11/15/2010 MW-41 11/15/2010 MW-41 2/28/2011 MW-41 12/5/2011 MW-41 12/5/2012 MW-41 13/13/2005 MW-71 11/3/2005 MW-71 2/23/2006 MW-71 8/29/2006 MW-71 3/7/2007 MW-71 3/7/2007 MW-71 <td>_</td> <td></td> <td>< 263</td> <td>< 526</td> <td>< 526</td> <td></td> <td>< 50</td> <td>< 0.5</td> <td>< 0.5</td> <td>< 0.5</td> <td>< 3.00</td>		_		< 263	< 526	< 526		< 50	< 0.5	< 0.5	< 0.5	< 3.00
	Sample Date Sample Identific 3/7/2007 MW-41 6/14/2007 MW-41 9/13/2007 MW-41 12/18/2007 MW-41 3/17/2008 MW-41 3/17/2008 MW-41 3/17/2008 MW-41 3/17/2008 MW-41 6/3/2008 MW-41 8/4/2008 MW-41 11/4/2009 MW-41 2/24/2009 MW-41 5/17/2009 MW-41 11/15/2009 MW-41 2/21/2010 MW-41 11/15/2019 MW-41 11/15/2010 MW-41 2/28/2011 MW-41 11/15/2010 MW-41 2/28/2011 MW-41 12/5/2011 MW-41 12/5/2011 MW-41 8/14/2012 MW-41 11/3/2005 MW-71 8/14/2012 MW-71 8/29/2006 MW-71 8/29/2006 MW-71 8/29/2006 MW-71 8/29/20		_		< 236	< 472	< 472		79.2	< 0.5	< 0.5	< 0.5	< 3.00
	9/13/2007	MW-41			< 236	< 472	< 472		< 50	< 0.5	< 0.5	< 0.5	< 3.00
	12/18/2007	MW-41			< 236	< 472	< 472		< 50	< 1	< 1	< 1	< 3
	3/17/2008	MW-41			< 236	< 472	< 472	< 1	< 50	< 236	< 0.5	< 0.5	< 0.5
	6/3/2008	MW-41			< 236	< 472	< 472	< 236	< 50	< 0.5	< 0.5	< 0.5	< 3
	8/4/2008	MW-41			< 236	< 472	< 472	< 236	< 50	< 0.5	< 0.5	< 0.5	< 3
	11/4/2008	MW-41			< 245	< 490	< 490	< 245	< 50.0	< 0.500	< 0.500	< 0.500	< 3.00
	2/24/2009	MW-41			< 240	< 481	< 481	< 240	< 50.0	< 0.500	< 0.500	< 0.500	< 3.00
	5/17/2009	MW-41			< 250	< 500	< 500	< 250	< 50.0	< 0.500	< 0.500	< 0.500	< 3.00
MW-41	8/16/2009	MW-41	22.0 to 7.0	Shallow	470	< 480	470	< 240	< 50	< 0.50	< 0.50	< 0.50	< 2.0
(continued)	11/15/2009	MW-41	22.0 10 7.0	Onaliow	< 280	< 560	< 560	< 280	< 50	< 0.50	< 0.50	< 0.50	< 2.0
	2/21/2010	MW-41			98.4	< 379	98.4	< 75.8	< 50.0	< 1.0	< 1.0	< 1.0	< 3.0
	5/23/2010	MW-41			< 76.9	< 385	< 385	< 76.9	< 50.0	< 1.0	< 1.0	< 1.0	< 3.0
	11/15/2010	MW-41			< 77.7	< 388	< 388	< 77.7	< 50.0	< 1.0	1.8	< 1.0	< 3.0
	2/28/2011	MW-41			< 77.7	< 388	< 388	< 77.7	< 50.0	< 1.0	< 1.0	< 1.0	< 3.0
	6/14/2011	MW-41			< 82.5	< 412	< 412		< 50.0	< 1.0	< 1.0	< 1.0	< 3.0
	8/29/2011	MW-41			< 84.2	< 421	< 421	< 84.2	< 50.0	< 1.0	< 1.0	< 1.0	< 3.0
	12/5/2011	MW-41			< 85.1	< 426	< 426	< 85.1	< 50.0	< 1.0	< 1.0	< 1.0	< 3.0
	2/15/2012	MW-41			< 76.2	< 381	< 381	< 76.2	< 50.0	< 1.0	< 1.0	< 1.0	< 3.0
	5/16/2012	MW-41			< 81.6	< 408	< 408	< 81.6	< 50.0	< 1.0	< 1.0	< 1.0	< 3.0
	8/14/2012	MW-41	-		< 88.9	< 444	< 444	< 88.9	< 50.0	< 1.0	< 1.0	< 1.0	< 3.0
	11/3/2005	MW-71			5,880	< 472	5,880		18,100	240	59.3	925	1,750
	2/23/2006	MW-71			1,770	< 485	1,770		21,800	190	28	848	1,710
	5/10/2006	MW-71			733	< 495	733		25,100	195	< 20	803	1,338
	8/29/2006	MW-71			664	< 476	664		15,400	207	4.61	698	834
MW-71	12/12/2006	MW-71	25.42 to 10.42	Shallow	609	< 476	609		11,300	127	68.2	237	512
	3/7/2007	MW-71			567	< 490	567		22,100	211	< 20	836	1,220
	6/14/2007	MW-71			851	< 490	851		19,200	186	2.67	647	667
	9/14/2007	MW-71			901	< 485	901		7,230	128	2	329	122
	12/17/2007	MW-71			823	< 472	823		16,500	200	17	600	694
Screening Level for Prote	ction of Groundwate	er as Drinking Water ⁶			50	0 ⁷	500 ⁷	500 ⁷	800 ⁷	5.0 ⁸	640 ⁸	700 ⁸	1,600 ⁸
Screening Level for Prote	ction of Indoor Air ⁶				N	E	NE	NE	NE	2.4	15,000	2,800	320
Laboratory Practical Quar	ntitation Limit ⁹				50	0	500	500	100	0.20	1.0	0.20	0.60

								Analytical	Results (microg	rams per liter)			
				Water	NWTP	H-Dx ²		NWTPH-Dx ²	NWTPH-Gx ⁴		EPA Method	8021B or 8260⁵	
			Screened Interval	Bearing			Total						
Sample Location	Sample Date	Sample Identification	(feet NAVD88) ¹	Zone	DRO	ORO	NWTPH-Dx ³	Kerosene	GRO	Benzene	Toluene	Ethylbenzene	Xylenes
	3/17/2008	MW-71	_		1,070	< 472	1,070	< 1	15,900	5,710	124	2.7	454
	6/2/2008	MW-71	_		566	< 472	566	4,280	9,480	94	24.5	291	328
	8/4/2008	MW-71	_		550	< 472	550	1,860	4,140	31.7	1.06	103	62.3
	11/3/2008	MW-71			524	< 485	524	2,450	5,820	49.2	1.03	69	10.4
	2/23/2009	MW-71			828	< 481	828	4,340	11,600	136	2.3	358	213
MW-71	5/17/2009	MW-71	25.42 to 10.42	Shallow	1,380	< 481	1,380	5,820	13,400	104	2.38	260	201
(continued)	8/16/2009	MW-71	20.42 10 10.42	Onanow	660	< 480	660	1,700	2,300	37	< 0.50	56	14
	11/15/2009	MW-71			940	< 470	940	1,100	2,500	6.2	0.6	25	6.5
	2/21/2010	MW-71			3,990	4,500	8,490	4,980	6,390	97.1	1.9	403	101
	5/23/2010	MW-71			3,860	4,440	8,300	4,410	2,550	39.7	3.8	84	12.7
	8/15/2010	MW-71			912	729	1,641	2,710	5,130	99.1	< 1.0	148	12.1
	11/14/2010	MW-71			541	2,600	3,141	267	244	< 1.0	1.8	< 1.0	< 3.0
	11/3/2005	MW-72			< 236	< 472	< 472		71.3	0.98	< 0.5	< 0.500	2.32
	2/23/2006	MW-72			408	< 500	408		1,900	11	1.22	98.2	25.3
	5/10/2006	MW-72			< 250	< 500	< 500		1,540	8.2	1.12	70.4	< 6
	8/29/2006	MW-72			< 253	< 505	< 505		810	6.28	< 0.5	10.2	< 3
	12/12/2006	MW-72	_		< 250	< 500	< 500		970	3.29	< 0.5	1.95	< 3
	3/7/2007	MW-72	_		< 260	< 521	< 521		560	5.45	0.59	38.5	< 3
	6/14/2007	MW-72	_		< 255	< 510	< 510		1,140	5.29	< 0.5	2.72	< 3
	9/14/2007	MW-72	_		< 250	< 500	< 500		239	1.76	< 0.5	< 0.500	< 3
	12/17/2007	MW-72	-		< 238	< 476	< 476		489	1.8	< 1	< 1.00	< 2
	3/17/2008	MW-72	_		< 236	< 472	< 472	< 1	983	407	3.3	< 0.5	4.34
MW-72	6/2/2008	MW-72	25.32 to 10.32	Shallow	< 238	< 476	< 476	474	1,160	2.89	< 0.5	4.77	< 3
	8/4/2008	MW-72	-		< 236	< 472	< 472	247	330	0.81	< 0.5	< 0.5	< 3
	11/3/2008	MW-72	-		< 243	< 485	< 485	278	577	< 0.500	< 0.500	< 0.500	< 3.00
	2/23/2009	MW-72	-		< 243	< 485	< 485	3,130	780	< 0.500	< 0.500	< 0.500	< 3.00
	5/17/2009	MW-72	_		634	< 476	634	962	786	3.55	< 0.500	24.1	< 3.00
	8/16/2009	MW-72			< 240	< 490	< 490	< 240	170	< 0.50	< 0.50	0.82	< 2.0
	2/20/2003 MW-72 5/17/2009 MW-72 8/16/2009 MW-72 11/15/2009 MW-72				430	2,500	2,930	< 240	110	< 0.50	0.77	< 0.50	< 2.0
	2/21/2010	MW-72	_		1,810	1,720	3,530	803	258	< 1.0	1.7	< 1.0	< 3.0
	5/23/2010	MW-72	_		6,100	2,250	8,350	5,630	329	2.3	< 1.0	< 1.0	< 3.0
	8/15/2010	MW-72	_		641	3,460	4,101	236	330	1.4	< 1.0	3.1	< 3.0
	11/14/2010	MW-72	_		159	749	908	147	261	< 1.0	< 1.0	1.6	< 3.0
Screening Level for Prote	ction of Groundwate	r as Drinking Water ⁶	11		50	0 ⁷	500 ⁷	500 ⁷	800 ⁷	5.0 ⁸	640 ⁸	700 ⁸	1,600 ⁸
Screening Level for Prote	ction of Indoor Air ⁵	U U U			N	E	NE	NE	NE	2.4	15,000	2,800	320
Laboratory Practical Quar	ntitation Limit ⁹				50)0	500	500	100	0.20	1.0	0.20	0.60

								Analytical	Results (microg	rams per liter)			
				Water	NWTP	H-Dx ²		NWTPH-Dx ²	NWTPH-Gx ⁴		EPA Method	8021B or 8260 ⁵	
	ample Location Sample Date Sample Identific 11/3/2005 MW-73 2/23/2006 MW-73 4/10/2006 MW-73 4/10/2006 MW-73 8/29/2006 MW-73 12/12/2006 MW-73 3/7/2007 MW-73 6/14/2007 MW-73 9/14/2007 MW-73 12/17/2007 MW-73 12/17/2008 MW-73 3/17/2008 MW-73 11/3/2008 MW-73 11/3/2008 MW-73 11/3/2009 MW-73 2/23/2009 MW-73 11/15/2009 MW-73 2/23/2010 MW-73 8/16/2009 MW-73 8/16/2009 MW-73 11/15/2009 MW-73 11/15/2010 MW-73			Bearing			Total						
Sample Location	mple Location Sample Date Sample Identifica 11/3/2005 MW-73 2/23/2006 MW-73 4/10/2006 MW-73 8/29/2006 MW-73 12/12/2006 MW-73 12/12/2006 MW-73 3/7/2007 MW-73 6/14/2007 MW-73 9/14/2007 MW-73 12/17/2007 MW-73 3/17/2008 MW-73 3/17/2008 MW-73 11/3/2008 MW-73 2/23/2009 MW-73 11/3/2008 MW-73 2/23/2009 MW-73 2/23/2009 MW-73 11/3/2008 MW-73 2/23/2009 MW-73 2/23/2009 MW-73 11/15/2009 MW-73 8/16/2009 MW-73 3/17/2010 MW-73 11/14/2010 MW-73 11/14/2010 MW-73 11/14/2010 MW-73 11/14/2010 MW-73 11/14/2010 MW-73		(feet NAVD88) ¹	Zone	DRO	ORO	NWTPH-Dx ³	Kerosene	GRO	Benzene	Toluene	Ethylbenzene	Xylenes
	Sample Date Sample Identifica 11/3/2005 MW-73 2/23/2006 MW-73 4/10/2006 MW-73 8/29/2006 MW-73 12/12/2006 MW-73 12/12/2006 MW-73 3/7/2007 MW-73 6/14/2007 MW-73 9/14/2007 MW-73 12/17/2007 MW-73 3/17/2008 MW-73 12/17/2009 MW-73 12/17/2007 MW-73 12/17/2007 MW-73 12/17/2007 MW-73 12/17/2007 MW-73 12/17/2008 MW-73 11/3/2008 MW-73 11/3/2008 MW-73 11/3/2009 MW-73 11/15/2009 MW-73 11/15/2009 MW-73 11/15/2010 MW-73 11/14/2010 MW-73 11/14/2010 MW-73 11/14/2010 MW-73 11/14/2010 MW-73				249	< 472	249		1,070	23.1	1.74	3.58	4.74
	Sample Date Sample Identifica 11/3/2005 MW-73 2/23/2006 MW-73 4/10/2006 MW-73 4/10/2006 MW-73 8/29/2006 MW-73 12/12/2006 MW-73 12/12/2006 MW-73 12/12/2006 MW-73 12/12/2007 MW-73 6/14/2007 MW-73 9/14/2007 MW-73 12/17/2007 MW-73 3/17/2008 MW-73 12/17/2008 MW-73 3/17/2008 MW-73 11/3/2008 MW-73 11/3/2008 MW-73 2/23/2009 MW-73 11/3/2008 MW-73 2/23/2009 MW-73 2/23/2009 MW-73 11/15/2009 MW-73 2/21/2010 MW-73 3/15/2010 MW-73 3/15/2010 MW-73				731	< 500	731		2,420	13.2	2.13	4.52	< 3
	4/10/2006	MW-73			< 236	< 472	< 472		2,460	9.56	2.19	4.51	2.44
	8/29/2006	MW-73			< 236	< 472	< 472		1,130	12.6	2.4	1.89	< 3
	12/12/2006	MW-73			< 243	< 485	< 485		2,360	14.5	2.01	4.32	< 3
	3/7/2007	MW-73			< 236	< 472	< 472		2,260	17.5	1.47	2.72	3.11
	6/14/2007	MW-73	_		< 260	< 521	< 521		2,450	11.6	1.56	2.63	< 3
	9/14/2007	MW-73	_		< 236	< 472	< 472		1,380	12.1	1.88	0.65	< 3
	12/17/2007	MW-73	_		< 236	< 472	< 472		2,390	18	1.4	3.3	1.4
	3/17/2008	MW-73	_		< 238	< 476	< 476	1.17	2,670	707	10.1	1.35	2.16
MW-73	12/12/2006 MW-73 3/7/2007 MW-73 6/14/2007 MW-73 9/14/2007 MW-73 12/17/2007 MW-73 3/17/2008 MW-73 6/2/2008 MW-73 11/3/2008 MW-73 2/23/2009 MW-73 5/17/2009 MW-73 8/16/2009 MW-73			Shallow	< 236	< 472	< 472	767	2,260	15.8	0.76	1.14	< 3
	8/4/2008	MW-73	_		< 236	< 472	< 472	465	1,250	10.3	1.15	< 0.5	< 3
	11/3/2008	MW-73	_		< 243	< 485	< 485	466	1,790	21.3	1.38	< 0.500	< 3.00
	2/23/2009	MW-73	_		< 240	< 481	< 481	7,510	2,800	25.6	2.05	1.59	< 3.00
	5/17/2009	MW-73	_		< 243	< 485	< 485	430	1,510	9.97	1	0.73	< 3.00
	8/16/2009	MW-73	_		430	< 480	430	1,100	1,200	5	< 0.50	< 0.50	< 2.0
	11/15/2009	MW-73	_		1,100	< 480	1,100	1,500	2,700	26	2	3.8	< 2.0
	2/21/2010	MW-73	_		946	624	1,570	1,110	2,190	39	2.4	3.3	6.9
	5/23/2010	MW-73	_		1,030	659	1,689	1,670	2,260	31.2	2.2	2.1	< 3.0
	8/15/2010	MW-73	_		173	< 392	173	671	1,960	37.3	1.8	1.7	< 3.0
	11/14/2010	MW-73	_		407	1,670	2,077	733	1,410	26	3.4	< 1.0	< 3.0
Screening Level for Prote	ction of Groundwate	r as Drinking Water ⁶	·		50	0 ⁷	500 ⁷	500 ⁷	800 ⁷	5.0 ⁸	640 ⁸	700 ⁸	1,600 ⁸
Screening Level for Prote	ection of Indoor Air⁵				N	E	NE	NE	NE	2.4	15,000	2,800	320
Laboratory Practical Qua	ntitation Limit ⁹				50	0	500	500	100	0.20	1.0	0.20	0.60

								Analytical	Results (microg	rams per liter)			
				Water	NWTP	H-Dx ²		NWTPH-Dx ²	NWTPH-Gx⁴		EPA Method	8021B or 8260 ⁵	
			Screened Interval	Bearing			Total						
Sample Location	Sample Date	Sample Identification	(feet NAVD88) ¹	Zone	DRO	ORO	NWTPH-Dx ³	Kerosene	GRO	Benzene	Toluene	Ethylbenzene	Xylenes
	11/2/2005	MW-95			< 236	< 472	< 472		545	1.06	0.91	1.18	9.87
	2/23/2006	MW-95			240	< 481	240		278	9.67	5.57	7.88	19.2
	5/9/2006	MW-95			< 255	< 510	< 510		326	2.91	0.73	1.4	15.78
	8/30/2006	MW-95			< 248	< 495	< 495		94.3				
	12/12/2006	MW-95			< 243	< 485	< 485		1,330	52.9	14.5	32.9	119
	3/7/2007	MW-95			< 250	< 500	< 500		60.2	3.87	< 0.5	1.31	10.5
	6/14/2007	MW-95			< 236	< 472	< 472		215	4.12	< 0.5	1.6	41.7
	9/13/2007	MW-95			< 238	< 476	< 476		< 50.0	< 0.5	< 0.5	< 0.500	< 3
	12/18/2007	MW-95			< 238	< 476	< 476		< 50	< 1	< 1	< 1	< 3
	3/17/2008	MW-95			< 236	< 472	< 472	< 1	< 50	< 236	< 0.5	< 0.5	< 0.5
MW-95	6/3/2008	MW-95	Unknown	Shallow	< 236	< 472	< 472	< 236	< 50	< 0.5	< 0.5	< 0.5	< 3
	8/4/2008	MW-95			< 236	< 472	< 472	< 236	< 50	< 0.5	< 0.5	< 0.5	< 3
	11/4/2008	MW-95			< 248	< 495	< 495	< 248	< 50.0	< 0.500	< 0.500	< 0.500	< 3.00
	2/24/2009	MW-95			< 240	< 481	< 481	< 240	< 50.0	< 0.500	< 0.500	< 0.500	< 3.00
	5/17/2009	MW-95			< 240	< 481	< 481	< 240	< 50.0	< 0.500	< 0.500	< 0.500	< 3.00
	8/16/2009	MW-95			< 240	< 480	< 480	< 240	< 50	< 0.50	< 0.50	< 0.50	< 2.0
	11/15/2009	MW-95			< 240	< 480	< 480	< 240	110	< 0.50	< 0.50	< 0.50	< 2.0
	2/21/2010	MW-95			202	< 388	202	< 77.7	< 50.0	< 1.0	< 1.0	< 1.0	< 3.0
	5/23/2010	MW-95			80	< 392	80	83.2	< 50.0	< 1.0	< 1.0	< 1.0	< 3.0
	8/16/2010	MW-95			< 78.4	< 392	< 392	< 78.4	56.5	< 1.0	< 1.0	< 1.0	4.5
	11/15/2010	MW-95			< 77.7	< 388	< 388	97	85.7	< 1.0	< 1.0	< 1.0	23.7
Screening Level for Prote	ction of Groundwate	r as Drinking Water ⁶	<u> </u>		50	0 ⁷	500 ⁷	500 ⁷	800 ⁷	5.0 ⁸	640 ⁸	700 ⁸	1,600 ⁸
Screening Level for Prote	ction of Indoor Air⁵				N	E	NE	NE	NE	2.4	15,000	2,800	320
Laboratory Practical Quar	ntitation Limit ⁹				50	0	500	500	100	0.20	1.0	0.20	0.60

NOTES:

Results in **bold** and highlighted yellow denote concentrations exceeding applicable screening levels.

Results in **bold** denote results by Northwest Method NWTPH-Dx without silica gel cleanup that exceed the screening level but

analysis by NWTPH-Dx with silica gel cleanup indicate the presence of polar organics in these samples. See Table 12 for

calculation of petroleum hydrocarbons versus polar organics and applicable screening levels for these samples.

< denotes analyte not detected at or exceeding the reporting limit listed.

— denotes sample not analyzed.

¹In feet referenced to North American Vertical Datum of 1988 (NAVD88).

²Analyzed by Northwest Method NWTPH-Dx without silica gel cleanup unless otherwise noted.

³Total is the sum of the DRO and ORO results. Where both results are non-detect, the higher of the two reporting limits is reported as the Total NWTPH-Dx value.

⁴Analyzed by Northwest Method NWTPH-Gx.

⁵Analyzed by U.S. Environmental Protection Agency Method 8021B or 8260/8260D.

⁶Washington State Cleanup Levels and Risk Calculations (CLARC) under Washington State Model Toxics Control Act Cleanup Regulation (MTCA), Standard Method B Values for Groundwater and Vapor Intrusion Method B Table, Groundwater Screening Levels, from CLARC Master spreadsheet, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC, unless otherwise noted.

⁷MTCA Method A is used as a surrogate for Method B because no Method B groundwater value has been established for TPH gasoline-, diesel- and oil-range mixtures.

⁸Groundwater screening level adjusted or based on the Federal Maximum Contaminant Level (MCL), 40 Code of Federal Regulations (CFR) Part 141.

⁹Laboratory Practical Quantitation Limits (PQLs) from OnSite Environmental of Redmond, Washington. PQLs for individual samples may vary due to sample matrix interferences or dilutions.

BTEX = benzene, toluene, ethylbenzene, and xylenes DRO = total petroleum hydrocarbons (TPH) as diesel-range organics F3 = result is elevated due to discrete peaks in quantitation range not representative of fuel pattern GRO = TPH as gasoline-range organics J = result is an estimate M = hydrocarbons in the gasoline range are impacting the diesel-range result ORO = TPH as oil-range organics T = the sample chromatogram is not similar to a typical gas Z = the gasoline result is mainly attributed to a single peak (naphthalene) * = sample analyzed by Northwest Method NWTPH-Dx with silica gel cleanup # = sample result by Northwest Method NWTPH-Dx without silica gel cleanup; sample also analyzed by Northwest Method NWTPH-Dx with silica gel cleanup. See Table 12 for calculation of petroleum hydrocarbons versus polar organics and applicable screening levels for these samples.

Shading represents most stringent screening level for groundwater.

^ = lab-provided total NWTPH-Dx value covering C10-C40 carbon range

												Anal	ytical Res	ults (micro	grams per	r liter) ²							
									Non-Carci	nogenic P	AHs				• •				Carcinoge	enic PAHs			
						эс	эс				Je						Ð	ene	nene		Icene	rene	
						aleı	aleı		۵		yler						Icen	nth	antl		thra	Py (
					0	hth	hth	ne	len		Per	Ð		e		ene	thra	ora	uor)An	-cd	
					lene	nap	nap	Ithe	Ithy	ene	,h,i)	hen		hrei		Pyı)An)Flu	k)FI	Ð	(a,h	,2,3	
			Screened	Water	tha	thyl	thyl	aph	aph	race	o(<u>g</u>	ant	ene	ant	ЭГ	o(a)	o(a)	d)o	o(j,l	sen	JZO	1)ot	Total
Sample	Samala Data	Comple Identification		Bearing	aph	-We	-Me	cen	cen	nth	enz	Ion	Ion	hen	yrei	enz	enz	enz	enz	hry	ibeı	nder	
Location	Sample Date	Sample Identification	(feet NAVD88)	Zone	Z	÷	Й	۲	Block 38	Vost Pro	<u>n</u>	L L	L L	<u> </u>	<u>م</u>	8	B	<u>n</u>	8	U U		-	TEC
							Reco	onnaissan	ce Ground	west Flo	noles from	Borings											
FB-03	8/23/2018	FB-03-082318	8.8 to 3.8	Shallow	< 1.3																		
FMW-130	7/21/2014	F-MW-130-GW1-072114	7.2 to 2.2	Shallow	650 E																		
								Deco	ommissior	ed Monito	oring Wells	5	_					-		-			-
	8/30/2018	FMW-130-083018			< 0.097	< 0.097	< 0.097	< 0.097	< 0.097	< 0.097	< 0.0097	< 0.097	< 0.097	< 0.097	< 0.097	< 0.0097	< 0.0097	< 0.0097	< 0.0097	< 0.0097	< 0.0097	< 0.0097	< 0.0073
FMW-130	12/28/2018	FMW130-122818	-22.8 to -32.8	Intermediate	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.11	< 0.011	< 0.11	< 0.11	< 0.11	< 0.11	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.0083
	3/26/2019	FMW-130-032619														< 0.011	0.015	0.011	< 0.011	0.015	< 0.011	< 0.011	0.0099
	8/30/2018	FIVIVV-132-083018	20 7 to 15 7	Shallow	< 0.096	< 0.096	< 0.096	0.40	< 0.096	< 0.096	< 0.0096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0072
1 10100-132	3/26/2010	FIVIN 132-122010	20.7 10 13.7	Shallow	< 0.10	< 0.10	< 0.10	0.29	< 0.10	< 0.10	< 0.010	< 0.10	< 0.10	< 0.10	< 0.10	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.0076
	8/30/2018	FMW-132-032019			< 0.097	< 0.097	< 0.097	0.38	< 0.097	< 0.097	< 0.0097	< 0.097	0.008	< 0.097	< 0.097	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.0070
FMW-133	12/28/2018	FMW133-122818	18.8 to 13.8	Shallow	< 0.10	< 0.10	< 0.10	0.33	< 0.10	< 0.10	< 0.010	< 0.10	< 0.10	< 0.10	< 0.10	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.0076
	3/26/2019	FMW-133-032619														< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.0083
	8/30/2018	FMW-134-083018			290	10	12	8.3	0.12	< 0.099	< 0.0099	< 0.099	1.6	0.48	< 0.099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0075
	12/28/2018	FMW134-122818			23	0.67	0.77	0.71	< 0.11	< 0.11	< 0.011	< 0.11	< 0.11	< 0.11	< 0.11	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.0083
FMW-134	12/28/2018	FMW500-122818	13.4 to 8.4	Shallow	62	1.7	2.3	1.6	< 0.10	< 0.10	< 0.010	< 0.10	0.15	< 0.10	< 0.10	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.0076
	3/26/2019	FMW-134-032619														< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.0076
	8/30/2018	FMW-135-083018			0.35	0.68	0.29	0.39	< 0.096	< 0.096	< 0.0096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0072
FMW-135	12/28/2018	FMW135-122818	18.6 to 13.6	Shallow	< 0.099	0.45	0.11	0.33	< 0.099	< 0.099	< 0.0099	< 0.099	< 0.099	< 0.099	< 0.099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0099	< 0.0075
	3/26/2019	FMW-135-032619														< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.011	< 0.0083
	8/30/2018	FMW-136-083018			0.39	< 0.096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.0096	< 0.096	< 0.096	< 0.096	< 0.096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0096	< 0.0072
FMW-136	12/28/2018	FMW136-122818	-4.9 to -14.9	Intermediate	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.010	< 0.10	< 0.10	< 0.10	< 0.10	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.0076
	3/26/2019	FMW-136-032619														< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.0076
FMW-144	12/26/2019	FMW-144-122619	-8.6 to -13.6	Intermediate	< 0.094	< 0.094	< 0.094									< 0.0094	< 0.0094	< 0.0094	< 0.0094	< 0.0094	< 0.0094	< 0.0094	< 0.0071
FMW-145	12/26/2019	FMW-145-122619	-8.1 to -13.1	Intermediate	< 0.094	< 0.094	< 0.094									< 0.0094	< 0.0094	< 0.0094	< 0.0094	< 0.0094	< 0.0094	< 0.0094	< 0.0071
FMW-146	12/26/2019	FMW-146-122619	-7.8 to -12.8	Intermediate	15	9.2	13									< 0.0094	0.043	0.013	< 0.0094	0.036	< 0.0094	< 0.0094	0.012
FMW-147	12/26/2019	FMW-147-122619	-8.2 to -13.2	Intermediate	2.0	0.57	0.57									0.023	0.042	0.031	< 0.010	0.033	< 0.010	0.014	0.033
FMW-149	12/26/2019	FMW-149-122619	-7.8 to -12.8	Intermediate	0.15	< 0.094	< 0.094		 Eviating M							< 0.0094	< 0.0094	< 0.0094	< 0.0094	< 0.0094	< 0.0094	< 0.0094	< 0.0071
	E/16/2022				< 0.0755	< 0.0755	< 0.0755	1		ionitoring	wens	1	1	1	1	1		1	1	1			1
	8/15/2023	FIVIVY-100-001023			< 0.0750	< 0.0750	< 0.0760																
FMW-150	11/15/2023	FMW-150-001523	-8.5 to -13.5	Intermediate	< 0.0709	< 0.0709	< 0.0709																
	2/29/2024	FMW-150-022924			< 0.0303	< 0.0303	< 0.0303																
	5/16/2023	FMW-151-051623			< 0.0755	< 0.0755	< 0.0755																
	8/15/2023	FMW-151-081523			< 0.0769	< 0.0769	< 0.0769																
FMW-151	11/15/2023	FMW-151-111523	-9.4 to -14.4	Intermediate	< 0.0377	< 0.0377	< 0.0377																
	2/29/2024	FMW-151-022924			< 0.0377	< 0.0377	< 0.0377																
	5/16/2023	FMW-152-051623			< 0.0792	< 0.0792	< 0.0792																
	8/15/2023	FMW-152-081523	9 E to 10 E	Internet dist-	< 0.0800	< 0.0800	< 0.0800																
FIVIVV-152	11/15/2023	FMW-152-111523	-8.5 10 -13.5	intermediate	< 0.0408	< 0.0408	< 0.0408																
	2/29/2024	FMW-152-022924			< 0.0377	< 0.0377	< 0.0377																
Screening Leve	I for Protectio	on of Groundwater as Dri	inking Water⁵		160	1.5	32	480	NE	2,400	NE	640	320	NE	240	0.2 ⁶	NE	NE	NE	NE	NE	NE	0.2 ⁶
Screening Leve	I for Protectio	on of Indoor Air⁵			8.9	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
Laboratory Prac	ctical Quantita	ation Limit ⁷			0.10	0.10	0.10	0.10	0.10	0.10	0.010	0.10	0.10	0.10	0.10	0.010	0.010	0.010	0.010	0.010	0.010	0.010	NA
-																					i	i	

												Anal	ytical Resu	ults (micro	grams pe	r liter) ²							
									Non-Carci	nogenic P	PAHs								Carcinoge	enic PAHs			
					۵	ohthalene	ohthalene	ne	lene		IPerylene	a		Пе		rene	thracene	ioranthene	uoranthene)Anthracene	3-cd)Pyrene	
Sample	Sample Date	Sample Identification	Screened Interval	Water Bearing	laphthalen	-Methylnap	-Methylnap	cenaphthe	cenaphthy	nthracene	enzo(g,h,i)	luoranther	luorene	henanthre	yrene	enzo(a)Py	enzo(a)An	ienzo(b)Flu	enzo(j,k)Fl	hrysene	iibenzo(a,h	ndeno(1,2,3	Total cPAHs
Location	5/16/2023	EMW_153_051623	(IEEL NAVDOO)	Zone	Z < 0.0755	< 0.0755	N < 0.0755	•	<	<	<u> </u>	ш.	LL.		<u> </u>		<u> </u>	<u> </u>	<u> </u>	0		-	
FMW-153	8/15/2023	FMW-154-081523	-8.5 to -13.5	Intermediate	< 0.0777	< 0.0777	< 0.0777																
	11/15/2023	FMW-153-111523			< 0.0385	< 0.0385	< 0.0385																L
	2/29/2024	FMW-153-022924			< 0.0377	< 0.0377	< 0.0377																
	5/16/2023	FMW-154-051623			0.0678 J	< 0.0784	< 0.0784																
FMW-154	8/14/2023	FMW-154-081423	12.8 to 7.8	Shallow	2.14	1.29	< 0.0769																
	11/14/2023	FMW-154-111423			0.992	< 0.154	< 0.154																
	2/28/2024	FMW-154-022824			< 5.00"	< 0.151 UJ	< 0.151 UJ																
	3/10/2023	FIVIW-155-051623			< 0.0755	< 0.0755	< 0.0755																
FMW-155	W-155 8/14/2023 FMW-155-081423 13.9 to 8.9 \$ 11/14/2023 FMW-155-022724 13.9 to 8.9 \$ 2/27/2024 FMW-155-022724 10.7 to 5.7 \$ N-156 8/14/2023 FMW-156-051623 10.7 to 5.7 \$ 2/27/2024 FMW-156-022724 10.7 to 5.7 \$ 9/15/2023 FMW-156-022724 10.7 to 5.7 \$				< 0.0704	< 0.0764	< 0.0764																
	5/16/2023 FMW-155-051623 13.9 to 8.9 5 8/14/2023 FMW-155-081423 13.9 to 8.9 5 11/14/2023 FMW-155-011423 13.9 to 8.9 5 2/27/2024 FMW-155-022724 10.7 to 5.7 5 8/14/2023 FMW-156-081423 10.7 to 5.7 5 11/15/2023 FMW-156-022724 10.7 to 5.7 5 2/27/2024 FMW-156-022724 10.7 to 5.7 5 2/27/2024 FMW-156-022724 10.7 to 5.7 5 2/27/2024 FMW-157-051623 10.7 to 5.7 5 2/27/2024 FMW-157-051623 10.7 to 5.7 5 5/16/2023 FMW-157-051623 10.7 to 5.7 5 11/15/2023 FMW-157-051623 -4.1 to -14.1 Integet 2/28/2024 FMW-157-022824 -4.1 to -14.1 Integet 5/15/2023 FMW-158-051523 -4.1 to -14.1 Integet				< 5.00*	< 0.0377	< 0.0377																
	5/16/2023	FMW-156-051623				< 0.0377 03	< 0.0377 03																
	8/14/2023	FMW-156-081/23			< 0.0000	< 0.0000	< 0.0000																
FMW-156	11/15/2023	FMW-156-111523	10.7 to 5.7	Shallow	0.0234	< 0.0704	< 0.0704																
	2/27/2024	FMW-156-022724			< 5.00*	< 0.0400	< 0.0400																
	$V-155 = \begin{bmatrix} 3/10/2023 & FMW-135-031023 \\ 8/14/2023 & FMW-155-081423 \\ 11/14/2023 & FMW-155-021724 \\ \hline 11/14/2023 & FMW-155-022724 \\ \hline 2/27/2024 & FMW-156-051623 \\ 11/15/2023 & FMW-156-081423 \\ 11/15/2023 & FMW-156-022724 \\ \hline 5/16/2023 & FMW-156-022724 \\ \hline 5/16/2023 & FMW-157-051623 \\ 11/15/2023 & FMW-157-081523 \\ 11/15/2023 & FMW-157-021824 \\ \hline 2/28/2024 & FMW-158-051523 \\ 11/15/2023 & FMW-158-081523 \\ 11/15/2023 & FMW-159-081523 \\ 11/15/2023 & FMW-159$				< 0.00	< 0.0808	< 0.0301 00																
	8/15/2023	FMW-157-081523			< 0.0000	< 0.0800	< 0.0816																
FMW-157	11/15/2023	FMW-157-111523	-4.1 to -14.1	Intermediate	< 0.0010	< 0.0010	< 0.0010																
	$\begin{array}{c} \mbox{W-155} & \frac{8/14/2023}{11/14/2023} & \mbox{FMW-155-081423} \\ \hline 11/14/2023 & \mbox{FMW-155-022724} \\ \hline \\ \mbox{W-156} & \frac{5/16/2023}{8/14/2023} & \mbox{FMW-156-081423} \\ \hline 11/15/2023 & \mbox{FMW-156-081423} \\ \hline 11/15/2023 & \mbox{FMW-156-022724} \\ \hline \\ \mbox{W-157} & \frac{5/16/2023}{11/15/2023} & \mbox{FMW-157-051623} \\ \hline \\ \mbox{W-157} & \frac{5/16/2023}{11/15/2023} & \mbox{FMW-157-081523} \\ \hline \\ \mbox{W-157} & \frac{5/15/2023}{11/15/2023} & \mbox{FMW-157-02824} \\ \hline \\ \mbox{W-158} & \frac{5/15/2023}{11/15/2023} & \mbox{FMW-158-051523} \\ \hline \\ \mbox{W-158} & \frac{5/15/2023}{11/15/2023} & \mbox{FMW-158-081523} \\ \hline \\ \mbox{W-158} & \frac{5/16/2023}{11/15/2023} & \mbox{FMW-158-081523} \\ \hline \\ \mbox{W-159} & \frac{5/16/2023}{11/15/2023} & \mbox{FMW-158-081523} \\ \hline \\ \mbox{W-159} & \frac{5/16/2023}{11/15/2023} & \mbox{FMW-159-081523} \\ \hline \\ \mbox{W-159} & \frac{5/15/2023}{11/15/2023} & \mbox{FMW-159-02824} \\ \hline \\ \mbox{W-159} & \frac{5/15/2023}{11/15/2023} & \mbox{FMW-159-021824} \\ \hline \\ \mbox{W-160} & \frac{5/15/2023}{11/15/2023} & \\mbox{FMW-160-051523} \\ \hline \\ \mbox{W-160} & \frac{8/14/2023}{11/14/2023} & \\mbox{FMW-160-081423} \\ \hline \\ \mbox{W-160} & \frac{11/14/2023}{2/27/2024} & \\mbox{FMW-160-021724} \\ \hline \end{array}$				< 5 00* U.	< 0.0400	< 0.0377 U.I																
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.316	0.180	< 0.0762																
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.108	0.0902	< 0.0816																
FMW-158	$\frac{2/27/2024}{5/16/2023} \frac{\text{FMW-156-022724}}{\text{FMW-157-051623}} + 4.1 \text{ to } -14.1 \text{ Int} \\ \frac{5/16/2023}{11/15/2023} \frac{\text{FMW-157-081523}}{11/15/2023} + 4.1 \text{ to } -14.1 \text{ Int} \\ \frac{5/15/2023}{2/28/2024} \frac{\text{FMW-157-022824}}{\text{FMW-157-022824}} + 3.0 \text{ to } 3.0 \text{ s} \\ \frac{5/15/2023}{11/15/2023} \frac{\text{FMW-158-051523}}{\text{FMW-158-051523}} \\ \frac{8/15/2023}{2/27/2024} \frac{\text{FMW-158-111523}}{\text{FMW-158}} + 3.0 \text{ to } 3.0 \text{ s} \\ \frac{5/16/2023}{2/27/2024} \frac{\text{FMW-158-051623}}{\text{FMW-159}-051623} \\ \frac{8/15/2023}{11/15/2023} \frac{\text{FMW-159-051623}}{\text{FMW-159-081523}} + 4.9 \text{ to } -14.9 \text{ Inte} \\ \frac{2/28/2024}{2/28/2024} \frac{\text{FMW-159-021623}}{\text{FMW-159-022824}} + 4.9 \text{ to } -14.9 \text{ Inte} \\ \frac{3.0 \text{ to } -14.9}{2/28/2024} \frac{10.0 \text{ to } -14.9}{10.0 \text{ to } -14.9} \text{ Inte} \\ \frac{3.0 \text{ to } -14.9}{2/28/2024} \frac{10.0 \text{ to } -14.9}{10.0 \text{ to } -14.9} \text{ Inte} \\ \frac{3.0 \text{ to } -14.9}{2/28/2024} \frac{10.0 \text{ to } -14.9}{10.0 \text{ to } -14.9} \text{ Inte} \\ \frac{3.0 \text{ to } -14.9}{2/28/2024} \frac{10.0 \text{ to } -14.9}{10.0 \text{ to } -14.9} \text{ Inte} \\ \frac{3.0 \text{ to } -14.9}{2/28/2024} \frac{10.0 \text{ to } -14.9}{10.0 \text{ to } -14.9} \text{ Inte} \\ \frac{3.0 \text{ to } -14.9}{2/28/2024} \frac{10.0 \text{ to } -14.9}{10.0 \text{ to } -14.9} \text{ Inte} \\ \frac{3.0 \text{ to } -14.9}{2/28/2024} \frac{10.0 \text{ to } -14.9}{10.0 \text{ to } -14.9} \text{ to } -14.9 \text{ to } -14$				0.0458	0.0693	< 0.0400																
	W-158 8/15/2023 FMW-158-081523 18.0 to 3.0 S 2/27/2024 FMW-158 18.0 to 3.0 S				< 5.00*	< 0.0377 UJ	< 0.0377 UJ																
	5/16/2023	FMW-159-051623			< 0.0755	< 0.0755	< 0.0755																
	8/15/2023	FMW-159-081523	10 to 110	luste une e di ete	< 0.0769	< 0.0769	< 0.0769																
FIVIVV-159	11/15/2023	FMW-159-111523	-4.9 10 - 14.9	Intermediate	< 0.0408	< 0.0408	< 0.0408																
	2/28/2024	FMW-159-022824			< 5.00* UJ	l < 0.0400 UJ	< 0.0400 UJ																
	5/15/2023	FMW-160-051523			< 0.0755	< 0.0755	< 0.0755																
EMW_160	8/14/2023	FMW-160-081423	19.0 to 4.0	Shallow	< 0.0842	< 0.0842	< 0.0842																
1 10100-100	11/14/2023	FMW-160-111423	19.0 10 4.0	Shallow	< 0.0408	< 0.0408	< 0.0408							-							-		
	FMW-160 11/14/2023 FMW-160-111423 19.0 to 4.0 Sna 2/27/2024 FMW-160-022724				< 5.00*	< 0.0400 UJ	< 0.0400 UJ																
	2/27/2024 FMW-160-022724 5/15/2023 FMW-161-051523 2/44/2022 FMW-161-094422				0.206	< 0.0762	< 0.0762																
EMW-161	⁻ MW-161 8/14/2023 FMW-161-081423 19.9 to 4.9 Sha				0.0692 J	< 0.0769	< 0.0769																
	FMW-161 11/14/2023 FMW-161-111423 19.9 to 4.9 Sn 2/27/2024 FMW-161-022724					< 0.0377	< 0.0377																
	2/27/2024 FMW-161-022724 5/16/2023 FMW-162-051623					< 0.0430 UJ	< 0.0430 UJ																
	5/16/2023 FMW-162-051623 8/15/2023 FMW-162-081523					< 0.0755	< 0.0755																
FMW-162	-MW-162 8/15/2023 FMW-162-081523 -4.9 to -14.9 Intern				< 0.0769	< 0.0769	< 0.0769																
_	11/15/2023 FMW-162-111523 2/28/2024 FMW-162-022824					< 0.0400	< 0.0400																
2/28/2024 FMW-162-022824					< 5.00* UJ	I < 0.0377 UJ	< 0.0377 UJ																
Screening Level for Protection of Groundwater as Drinking Water ⁵					160	1.5	32	480	NE	2,400	NE	640	320	NE	240	0.2 ⁶	NE	NE	NE	NE	NE	NE	0.2 ⁶
Screening Level for Protection of Indoor Air⁵					8.9	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
Laboratory Prac	ctical Quantita	ation Limit ⁷			0.10	0.10	0.10	0.10	0.10	0.10	0.010	0.10	0.10	0.10	0.10	0.010	0.010	0.010	0.010	0.010	0.010	0.010	NA

												Anal	ytical Resu	ults (micro	grams pe	r liter) ²							
									Non-Carci	nogenic P	AHs								Carcinoge	enic PAHs			
Sample Location	Sample Date	Sample Identification	Screened Interval (feet NAVD88) ¹	Water Bearing Zone	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i)Perylene	Fluoranthene	Fluorene	Phenanthrene	Pyrene	Benzo(a)Pyrene	Benzo(a)Anthracene	Benzo(b)Fluoranthene	Benzo(j,k)Fluoranthene	Chrysene	Dibenzo(a,h)Anthracene	Indeno(1,2,3-cd)Pyrene	Total cPAHs TEC ^{3,4}
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				0.122	< 0.0762	< 0.0762																
EM\\/_163				Shallow	0.328	< 0.0889	< 0.0889																
1 10100-105	11/15/2023	FMW-163-111523	20.5 10 5.5	Ghallow	0.0755	< 0.0408	< 0.0408																
	2/27/2024	FMW-163-022724			< 5.00*	< 0.0417 UJ	< 0.0417 UJ																
	5/16/2023	FMW-164-051623			< 0.0755	< 0.0755	< 0.0755																
FMW-164	8/15/2023	FMW-164-081523	-4.8 to -14.8	Intermediate	< 0.0800	< 0.0800	< 0.0800																
	11/15/2023	FMW-164-111523			< 0.0377	< 0.0377	< 0.0377																
	2/29/2024	FMW-164-022924			< 0.0408	< 0.0408	< 0.0408																
	$ \begin{array}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				< 0.0755	< 0.0755	< 0.0755																
OW-1	ample ocation Interval Sample Date Interval Sample Identification Interval (feet NAVD88) ¹ 1W-163 5/15/2023 FMW-163-051523 (feet NAVD88) ¹ 1W-163 8/14/2023 FMW-163-051523 20.3 to 5.3 11/15/2023 FMW-163-022724 20.3 to 5.3 2/27/2024 FMW-163-022724 20.3 to 5.3 11/15/2023 FMW-164-051623 4.8 to -14.8 8/15/2023 FMW-164-081523 -4.8 to -14.8 11/15/2023 FMW-164-022924 -4.8 to -14.8 2/29/2024 FMW-164-022924 -5.8 to -20.8 2/29/2024 FMW-163-022824 -5.8 to -20.8 0W-1 8/15/2023 OW-1-021823 11/15/2023 OW-2-051623 8/15/2023 OW-2-081523 11/15/2023 OW-2-021824 0W-2 8/15/2023 OW-2-021824 0W-2 5/17/2023 OW-2-022824 0W-3 8/15/2023 OW-3-051723 8/15/2023 OW-3-051723 9/W-3 8/15/2023 OW-3-081523 11/15/2023				< 0.0808	< 0.0808	< 0.0808																
					< 0.0385	< 0.0385	< 0.0385																
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					< 0.0377 UJ	< 0.0377 UJ																
	5/16/2023	OW-2-051623			< 0.0769	< 0.0769	< 0.0769																
OW-2	8/15/2023	OW-2-081523	-7.1 to -22.1	Intermediate	< 0.0755	< 0.0755	< 0.0755																
	11/15/2023	OW-2-111523			0.387	0.0322 J	< 0.0385																
	OW-2 0/13/2023 OW-2-061323 -7.1 to -22.1 Inter 11/15/2023 OW-2-011523 2/28/2024 OW-2-022824 5/17/2023 OW-3-051723				< 0.0755	< 0.0377 UJ	< 0.0377 UJ																
	2/28/2024 OW-2-022824 5/17/2023 OW-3-051723 8/15/2023 OW-3-081523				< 0.0755	< 0.0755	< 0.0755																
OW-3	W-3 8/15/2023 OW-3-081523 11/15/2023 OW-3-081523 -9.2 to -24.2 Intern				< 0.0000	< 0.0808	< 0.0808																
	OW-3 O/10/2023 OW-3-001023 -9.2 to -24.2 Inte 11/15/2023 OW-3-022824 -9.2 to -24.2 Inte					< 0.0412	< 0.0412																
Screening Lev	2/28/2024 OW-3-022824 Pring Level for Protection of Groundwater as Drinking Water ⁵					1 5	32	180	NE	2 400	NE	640	320	NE	240	0.26	NF	NF	NF	NF	NF	NE	0.26
Screening Leve	ening Level for Protection of Groundwater as Drinking Water⁵ ∍ning Level for Protection of Indoor Air⁵					NE	JZ NE	NE		2,400		NE	NE		NE	NE	NE	NE	NE	NE	NE	NE	NE
Laboratory Pro	atory Practical Quantitation Limit ⁷					0.40			0.40	0.40				0.40	0.40	0.010	0.010	0.010	0.010	0.010	0.010	0.010	
	boratory Practical Quantitation Limit					0.10	0.10	0.10	0.10	0.10	0.010	0.10	0.10	0.10	0.10	0.010	0.010	0.010	0.010	0.010	0.010	0.010	

												Anal	vtical Resu	ults (micro	grams pe	r liter) ²							
									Non-Carci	nogenic F	PAHs				<u> </u>	, í			Carcinoge	enic PAHs			
Sample Location	Sample Date	Sample Identification	Screened Interval (feet NAVD88) ¹	Water Bearing Zone	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i)Perylene	Fluoranthene	Fluorene	Phenanthrene	Pyrene	Benzo(a)Pyrene	Benzo(a)Anthracene	Benzo(b)Fluoranthene	Benzo(j,k)Fluoranthene	Chrysene	Dibenzo(a,h)Anthracene	Indeno(1,2,3-cd)Pyrene	Total cPAHs TEC ^{3,4}
									Blo	ck 37 Site													
	T /00/0005		T	T			1	Groundwa	ater Samp	les from N	lonitoring	Wells	1	1	1	1	I	1	1	1	1		
	7/26/2005	MVV-41	-		< 0.5																		
	2/23/2006	IVIVV-41	-		< 1																		
	8/30/2006	M\\/_/1			< 5																		
	12/12/2006	M\\/_41	-		< 5																		
	3/7/2007	MW-41	-		< 5																		
	6/14/2007	MW-41	-		< 5																		
	9/13/2007	MW-41			< 5																		
	12/18/2007	MW-41	-		< 1																		
	3/17/2008	MW-41			< 1																		
	6/3/2008	MW-41			< 5																		
	8/4/2008	MW-41			< 5																		
M\\\/_41	11/4/2008	MW-41	22.0 to 7.0	Shallow	< 5.00																		
	2/24/2009	MW-41	22.0 10 7.0	Chanow	< 5.00																		
	5/17/2009	MW-41	-		< 5.00																		
	8/16/2009	MW-41	-		< 5.0																		
	11/15/2009	MW-41			< 5.0																		
	2/21/2010	MVV-41	-		< 1.0																		
	5/23/2010	IVIVV-41	-		< 1.0																		
	2/28/2011	M\\/_/1			< 1.0																		
	8/29/2011	M\\/_41	-		< 1.0																		
	12/5/2011	MW-41	-		< 10.0																		
	2/15/2012	MW-41			2																		
	5/16/2012	MW-41			< 1.0																		
	8/14/2012	MW-41	-		< 1.0																		
Screening Leve	el for Protectio	on of Groundwater as Di	rinking Water⁵	•	160	1.5	32	480	NE	2,400	NE	640	320	NE	240	0.2 ⁶	NE	NE	NE	NE	NE	NE	0.2 ⁶
Screening Leve	el for Protectio	on of Indoor Air⁵	-		8.9	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
Laboratory Pra	ctical Quantit	ation Limit ⁷			0.10	0.10	0.10	0.10	0.10	0.10	0.010	0.10	0.10	0.10	0.10	0.010	0.010	0.010	0.010	0.010	0.010	0.010	NA

												Anal	ytical Resu	ults (micro	ograms pe	r liter) ²							
									Non-Carci	nogenic P	PAHs								Carcinoge	enic PAHs		-	
			Screened	Water	halene	ıylnaphthalene	ıylnaphthalene	phthene	phthylene	acene	(g,h,i)Perylene	Inthene	eu	nthrene	Ø	(a)Pyrene	(a)Anthracene	(b)Fluoranthene	(j,k)Fluoranthene	ene	zo(a,h)Anthracene	o(1,2,3-cd)Pyrene	Total
Sample	Sample Date Sample Identification Screened Interval (feet NAVD88) ¹ 2/23/2006 MW-71 (feet NAVD88) ¹ 3/29/2006 MW-71 (feet NAVD88) ¹ 12/12/2006 MW-71 (feet NAVD88) ¹ 3/7/2007 MW-71 (feet NAVD88) ¹ 3/7/2008 MW-71 (feet NAVD88) ¹ 5/17/2008 MW-71 (feet NAVD88) ¹ 5/17/2009 MW-71 (feet NAVD88) ¹ 11/15/2009 MW-71 (feet NAVD88) ¹ 11/14/2010 MW-71 (feet NAVD88) ¹ 11/14/2006 MW-72 (feet NAVD88) ¹ 3/7/2007 MW-72 (feet NAVD88) ¹ 3/7/2007 MW-72 (feet NAVD88) ¹ 3/7/2007 MW-72		Bearing	pt	eth	leth	ena	ena	hra	OZI	ora	ore	ena	ene	ozu	ozu	ozi	ozi	, Ase	enz	enc	cPAHs	
Location	Sample Date	Sample Identification	(feet NAVD88) ¹	Zone	Nap	- N	2-M	Ace	Ace	Ant	Ber	Flu	Elu	Phe	Pyr	Ber	Ber	Ber	Ber	Chr	Dib	pd	TEC ^{3,4}
	2/23/2006	MW-71			341																		
	an Sample Date Sample Identification Screened Interval (feet NAVD88) ¹ 2/23/2006 MW-71 (feet NAVD88) ¹ 5/10/2006 MW-71 (feet NAVD88) ¹ 8/29/2006 MW-71 (feet NAVD88) ¹ 12/12/2006 MW-71 (feet NAVD88) ¹ 3/7/2007 MW-71 (feet NAVD88) ¹ 6/2/2008 MW-71 (feet NAVD88) ¹ 8/4/2007 MW-71 (feet NAVD88) ¹ 8/4/2008 MW-71 (feet NAVD88) ¹ 8/4/2008 MW-71 (feet NAVD88) ¹ 8/4/2008 MW-71 (feet NAVD88) ¹ 11/3/2009 MW-71 (feet NAVD88) ¹ 11/3/2009 MW-71 (feet NAVD88) ¹ 11/14/2010 MW-71 (feet NAVD88) ¹ 11/14/2010 MW-72 (feet NAVD88) ¹ 12/23/2006 MW-72 (feet NAVD88) ¹ 12/21/2006				410																		
	V-71 2/23/2006 MW-71 5/10/2006 MW-71 8/29/2006 MW-71 12/12/2006 MW-71 12/12/2006 MW-71 9/14/2007 MW-71 9/14/2007 MW-71 6/2/2008 MW-71 6/2/2008 MW-71 2/23/2009 MW-71 2/23/2009 MW-71 5/17/2009 MW-71 5/17/2009 MW-71 11/15/2009 MW-71 2/21/2010 MW-71 5/23/2010 MW-71 2/21/2010 MW-71 5/23/2010 MW-71 2/21/2010 MW-71 2/23/2006 MW-72 5/10/2006 MW-72 5/10/2006 MW-72 3/7/2007 MW-72 6/14/2007 MW-72 6/14/2007 MW-72 5/10/2006 MW-72 3/7/2007 MW-72 6/14/2007 MW-72 5/10/2006 MW-72 3/7/2007 MW-72 6/14/2007 MW-72 5/10/2006 MW-72 5/10/2006 MW-72 3/7/2007 MW-72 6/14/2007 MW-72 5/10/2006 MW-72 3/7/2007 MW-72 6/14/2007 MW-72 5/10/2006 MW-72 5/10/2006 MW-72 3/7/2007 MW-72 6/14/2007 MW-72 5/10/2007 5/10/2007 1/1 5/10/2007 1/1 1/				364																		
	V-71 5/10/2006 MW-71 8/29/2006 MW-71 12/12/2006 MW-71 12/12/2006 MW-71 3/17/2007 MW-71 6/14/2007 MW-71 9/14/2007 MW-71 6/2/2008 MW-71 6/2/2008 MW-71 2/23/2009 MW-71 2/23/2009 MW-71 11/15/2009 MW-71 11/15/2009 MW-71 2/21/2010 MW-71 11/15/2010 MW-71 2/21/2010 MW-71 2/23/2006 MW-71 2/23/2006 MW-72 5/10/2006 MW-72 5/10/2006 MW-72 12/12/2006 MW-72 12/12/2006 MW-72 12/12/2006 MW-72 3/7/2007 MW-72 6/14/2007 MW-72				151																		
	5/10/2006 MW-71 8/29/2006 MW-71 12/12/2006 MW-71 12/12/2006 MW-71 3/7/2007 MW-71 6/14/2007 MW-71 9/14/2007 MW-71 9/14/2007 MW-71 9/14/2007 MW-71 3/17/2008 MW-71 6/2/2008 MW-71 11/3/2008 MW-71 2/23/2009 MW-71 2/23/2009 MW-71 11/15/2009 MW-71 11/14/2010 MW-71 11/14/2010 MW-72 5/10/2006 MW-72 12/23/2006 MW-72 12/21/2006 MW-72 12/12/2006 MW-72 12/12/2006 MW-72 12/2006 MW-72 12/2006 <td>691</td> <td></td> <td> '</td> <td></td>				691																	'	
	B/1012006 MW-71 8/29/2006 MW-71 12/12/2006 MW-71 3/7/2007 MW-71 3/7/2007 MW-71 6/14/2007 MW-71 9/14/2007 MW-71 9/14/2007 MW-71 9/14/2008 MW-71 13/17/2008 MW-71 6/2/2008 MW-71 11/3/2008 MW-71 2/23/2009 MW-71 8/16/2009 MW-71 11/15/2009 MW-71 2/21/2010 MW-71 8/15/2010 MW-71 11/14/2010 MW-71 2/23/2006 MW-72 5/10/2006 MW-72 8/29/2006 MW-72 12/12/2006 MW-72				326																	'	
	V-71 8/29/2006 MW-71 12/12/2006 MW-71 3/7/2007 MW-71 6/14/2007 MW-71 9/14/2007 MW-71 9/14/2007 MW-71 3/17/2008 MW-71 6/2/2008 MW-71 2/23/2009 MW-71 2/23/2009 MW-71 11/15/2009 MW-71 11/15/2009 MW-71 11/15/2009 MW-71 2/21/2010 MW-71 2/21/2010 MW-71 2/23/2010 MW-71 2/23/2006 MW-72 5/10/2006 MW-72 5/10/2006 MW-72 3/7/2007 MW-72 6/14/2007 MW-72 5/10/2006 MW-72 3/7/2007 MW-72 6/14/2007 MW-72 5/10/2006 MW-72 3/7/2007 MW-72 6/14/2007 MW-72 6/14/2007 MW-72 6/14/2007 MW-72 5/10/2006 MW-72 5/10/2006 MW-72 5/10/2006 MW-72 5/10/2006 MW-72 5/10/2006 MW-72 5/10/2006 MW-72 3/7/2007 MW-72 5/10/2006 MW-72 3/7/2007 MW-72 5/10/2006 MW-72 5/10/2006 MW-72 3/7/2007 MW-72 5/10/2006 MW-72 3/7/2007 MW-72 5/10/2006 MW-72 3/7/2007 MW-72 5/10/2006 MW-72 3/7/2007 MW-72 5/10/2007 MW-72 5/10/2006 MW-72 3/7/2007 MW-72 5/10/2007 MW-72 5/10/2007 MW-72 5/10/2007 MW-72 5/10/2006 MW-72 3/7/2007 MW-72 5/10/2007 MW-72 5/10/2007 MW-72 5/10/2006 MW-72 3/7/2007 MW-72 5/10/2006 5/10/2007 5/10/2007 5/10/2007 5/10/2007 5/10/2007 5/10/2007 5/10/2007 5/10/2007 5/10/2007 5/10/2007 5/10/2007 5/10/2007 5/10/2007 5/10/2007 5/10/2007 5/10/2007 5/10/2007 5/10/2007 5				200																	'	
	2/23/2006 MW-71 5/10/2006 MW-71 8/29/2006 MW-71 12/12/2006 MW-71 3/7/2007 MW-71 3/7/2007 MW-71 6/14/2007 MW-71 9/14/2007 MW-71 9/14/2007 MW-71 3/17/2008 MW-71 6/2/2008 MW-71 2/23/2009 MW-71 2/23/2009 MW-71 5/17/2009 MW-71 8/16/2009 MW-71 11/1/15/2009 MW-71 8/16/2009 MW-71 11/15/2009 MW-71 11/11/5/2010 MW-71 11/11/2/2010 MW-71 11/14/2010 MW-71 2/23/2006 MW-72 5/10/2006 MW-72 8/29/2006 MW-72 3/7/2007 MW-72 3/17/2007 MW-72 9/14/2007 MW-72 6/2/2008 MW-72				< 1																		
	Prie Sample Date Sample Identification (feet NAVD88) ¹ 2/23/2006 MW-71 (feet NAVD88) ¹ 5/10/2006 MW-71 (feet NAVD88) ¹ 12/12/2006 MW-71 (feet NAVD88) ¹ 3/7/2007 MW-71 (feet NAVD88) ¹ 3/7/2007 MW-71 (feet NAVD88) ¹ 9/14/2007 MW-71 (feet NAVD88) ¹ 9/14/2007 MW-71 (feet NAVD88) ¹ 6/2/2008 MW-71 (feet NAVD88) ¹ 7/1 8/4/2007 MW-71 6/2/2008 MW-71 (feet NAVD88) ¹ 7/1 8/4/2007 MW-71 11/3/2008 MW-71 (feet NAVD88) ¹ 2/23/2009 MW-71 (feet NAVD88) ¹ 11/15/2009 MW-71 (feet NAVD88) ¹ 11/11/2009 MW-71 (feet NAVD88) ¹ 11/11/2010 MW-71 (feet NAVD88) ¹ 2/23/2006 MW-72 (feet NAVD88) ¹ 3/7/2007 MW-72 (feet NAVD88) ¹ 72 8/4/2008 MW-72 <td>156</td> <td></td> <td>'</td> <td></td>				156																	'	
MW-71	8/4/2008	MW-71	25.42 to 10.42	Shallow	89.4																	<u> </u>	
	11/3/2008	MW-71			68.7																		
	2/23/2009	MW-71			193																		
	5/17/2009	MW-71			151																		
	8/16/2009	MW-71			11																		
	11/15/2009	MVV-/1	_		6.2																		
	2/21/2010	MVV-/1	_		126																		
	5/23/2010	MVV-71	_		56.4																		
	8/15/2010		-		128																		
	-72 8/4/2006 MW-71 5/10/2006 MW-71 12/12/2006 MW-71 3/7/2007 MW-71 6/14/2007 MW-71 9/14/2007 MW-71 6/2/2008 MW-71 13/17/2008 MW-71 11/3/2008 MW-71 2/23/2009 MW-71 11/15/2009 MW-71 11/15/2009 MW-71 11/15/2009 MW-71 2/21/2010 MW-71 2/23/2006 MW-72 11/14/2010 MW-71 2/23/2006 MW-72 5/10/2006 MW-72 5/10/2006 MW-72 5/10/2006 MW-72 11/14/2010 MW-72 5/10/2006 MW-72 12/12/2006 MW-72 5/10/2006 MW-72 12/12/2006 MW-72 12/12/2006 MW-72 12/12/2006 MW-72 11/14/2017 MW-72 5/10/2008 MW-72 12/2/2008 MW-72 11/15/2009 MW-72 11/15/2009 MW-72 11/15/2009 MW-72 11/15/2009 MW-72 11/15/2009 MW-72 11/15/2009 MW-72 11/14/2010 MW-72 3/15/2010 MW-72 11/14/2010 MW-72 11/14/2				3.3																		
	12/12/2006 MW-71 3/7/2007 MW-71 9/14/2007 MW-71 9/14/2007 MW-71 3/17/2008 MW-71 3/17/2008 MW-71 6/2/2008 MW-71 11/3/2008 MW-71 2/23/2009 MW-71 2/23/2009 MW-71 11/3/2008 MW-71 2/21/2010 MW-71 11/15/2009 MW-71 2/21/2010 MW-71 11/15/2010 MW-71 11/14/2010 MW-71 2/23/2006 MW-72 5/10/2006 MW-72 5/10/2006 MW-72 3/7/2007 MW-72 3/17/2006 MW-72 3/17/2007 MW-72 9/14/2007 MW-72 3/17/2008 MW-72 11/3/2008 MW-72 2/2/3/2009 MW-72 11/3/2008 MW-72 2/2/3/2009 MW-72 3/16/2009 MW-72 3/16/2009				37.3																		
	0/11/2007 MW-71 6/14/2007 MW-71 9/14/2007 MW-71 9/14/2007 MW-71 3/17/2008 MW-71 6/2/2008 MW-71 6/2/2008 MW-71 11/3/2008 MW-71 2/23/2009 MW-71 2/23/2009 MW-71 11/15/2009 MW-71 11/15/2009 MW-71 2/21/2010 MW-71 11/15/2009 MW-71 11/15/2009 MW-71 11/14/2010 MW-71 11/14/2010 MW-71 11/14/2010 MW-72 5/10/2006 MW-72 12/12/2006 MW-72 12/12/2006 MW-72 3/17/2007 MW-72 9/14/2007 MW-72 9/14/2007 MW-72 11/3/2008 MW-72 2/23/2009 MW-72 11/3/2008 MW-72 11/15/2009 MW-72 11/15/2009 MW-72 11/15/2009 <td>40.9</td> <td></td> <td> </td> <td></td>				40.9																		
	6/2/2008 MW-71 25.42 to 10.42 11/3/2008 MW-71 25.42 to 10.42 11/3/2009 MW-71 25.42 to 10.42 11/3/2009 MW-71 25.42 to 10.42 2/23/2009 MW-71 25.42 to 10.42 11/3/2009 MW-71 25.42 to 10.42 8/16/2009 MW-71 11/15/2009 11/15/2009 MW-71 25/23/2010 11/15/2010 MW-71 8/15/2010 MW-71 11/14/2010 MW-71 2/23/2006 MW-72 5/10/2006 MW-72 8/29/2006 MW-72 8/29/2006 MW-72 3/7/2007 MW-72 9/14/2007 MW-72 9/14/2007 MW-72 6/2/2008 MW-72 2/23/2009 MW-72 2/11/3/2008 MW-72 2/23/2009 MW-72 8/16/2009 MW-72 8/16/2009 MW-72																						
	6/10/2003 MW-71 11/15/2009 MW-71 2/21/2010 MW-71 5/23/2010 MW-71 5/23/2010 MW-71 8/15/2010 MW-71 11/14/2010 MW-71 2/23/2006 MW-72 5/10/2006 MW-72 5/10/2006 MW-72 3/7/2007 MW-72 3/17/2007 MW-72 9/14/2007 MW-72 3/17/2008 MW-72 8/4/2008 MW-72																						
	5/10/2006 MW-72 8/29/2006 MW-72 12/12/2006 MW-72 3/7/2007 MW-72 6/14/2007 MW-72																						
	12/12/2006 MW-72 3/7/2007 MW-72 6/14/2007 MW-72 9/14/2007 MW-72																						
	3/17/2008	MW-72	_		< 1																		
	6/14/2007 MW-72 9/14/2007 MW-72 3/17/2008 MW-72 6/2/2008 MW-72																						
MW-72	9/14/2007 MW-72 3/17/2008 MW-72 6/2/2008 MW-72 8/4/2008 MW-72 25.32 to 10.32 Sł																						
	Sr 14/2007 INVERZ 3/17/2008 MW-72 6/2/2008 MW-72 8/4/2008 MW-72 11/3/2008 MW-72																						
	3/17/2008 MW-72 6/2/2008 MW-72 8/4/2008 MW-72 2/23/2009 MW-72																						
	6/2/2008 MW-72 25.32 to 10.32 Sh 11/3/2008 MW-72 2/23/2009 MW-72 Sh 5/17/2009 MW-72 8/16/2009 MW-72 Sh				8.92																		
	3/17/2008 MW-72 6/2/2008 MW-72 8/4/2008 MW-72 2/23/2009 MW-72 5/17/2009 MW-72 8/16/2009 MW-72 11/1/5/2009 MW-72 5/17/2009 MW-72 11/15/2009 MW-72 5/17/2009 MW-72 5/17/2009 MW-72 5/2/2010 MW-72				< 5.0																		
	9/14/2007 MW-72 3/17/2008 MW-72 6/2/2008 MW-72 6/2/2008 MW-72 11/3/2008 MW-72 2/23/2009 MW-72 5/17/2009 MW-72 8/16/2009 MW-72 11/1/15/2009 MW-72 11/15/2009 MW-72 11/15/2009 MW-72 11/15/2009 MW-72 11/15/2010 MW-72 11/14/2010 MW-72																						
	2/21/2010		2.3																	I			
	MW-72 8/4/2008 MW-72 25.32 to 10.32 11/3/2008 MW-72 2/23/2009 MW-72 2/23/2009 MW-72 3/16/2009 MW-72 5/17/2009 MW-72 3/16/2009 MW-72 11/15/2009 MW-72 3/16/2009 MW-72 2/21/2010 MW-72 3/15/2010 MW-72 5/23/2010 MW-72 3/15/2010 MW-72 11/14/2010 MW-72 11/14/2010 MW-72 Pning Level for Protection of Groundwater as Drinking Water ⁵ 1 1																					I	
	2/21/2010 MW-72 5/23/2010 MW-72 8/15/2010 MW-72 11/14/2010 MW-72 ening Level for Protection of Groundwater as Drinking Water ⁵																						
	8/15/2010 MW-72 11/14/2010 MW-72 tening Level for Protection of Groundwater as Drinking Water ⁵																						
Screening Leve	eening Level for Protection of Groundwater as Drinking Water ⁵					1.5	32	480	NE	2,400	NE	640	320	NE	240	0.2 ⁶	NE	NE	NE	NE	NE	NE	0.2 ⁶
Screening Leve	reening Level for Protection of Indoor Air ⁵					NF	NF	NF	NF	_,	NF	NF	NF	NE	NF	NE	NE	NE	NE	NE	NE	NE	NE
Laboratory Pra	eening Level for Protection of Indoor Air [®] oratory Practical Quantitation Limit ⁷				0.0	0.10	0.10	0.10	0.10	0.10	0.010	0.10	0 10	0.10	0.10	0.010	0.010	0.010	0.010	0.010	0.010	0.010	ΝΔ
					0.10	0.10	0.10	0.10	0.10	0.10	0.010	0.10	0.10	0.10	0.10		0.010	0.010	0.010	0.010	0.010	0.010	1 17

												Anal	ytical Resu	ults (micro	grams pe	r liter) ²							
									Non-Carci	nogenic P	AHs								Carcinoge	enic PAHs			
Sample Location	Sample Date	Sample Identification	Screened Interval (feet NAVD88) ¹	Water Bearing Zone	Naphthalene	1-Methylnaphthalene	2-Methyinaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i)Perylene	Fluoranthene	Fluorene	Phenanthrene	Pyrene	Benzo(a)Pyrene	Benzo(a)Anthracene	Benzo(b)Fluoranthene	Benzo(j,k)Fluoranthene	Chrysene	Dibenzo(a,h)Anthracene	Indeno(1,2,3-cd)Pyrene	Total cPAHs TEC ^{3,4}
	2/23/2006	nple Date Sample Identification Screened Interval (feet NAVD88) ¹ 23/2006 MW-73 10/2006 MW-73 10/2006 MW-73 12/2006 MW-73 12/2006 MW-73 12/2006 MW-73 14/2007 MW-73 14/2007 MW-73 14/2007 MW-73 14/2008 MW-73 17/2008 MW-73 13/2008 MW-73 13/2009 MW-73 15/2009 MW-73 15/2010 MW-73 15/2010 MW-73 15/2010 MW-73 15/2010 MW-73			< 1																		
	4/10/2006	MW-73			1.06																		
	8/29/2006	MW-73			< 5																	'	
	12/12/2006	MW-73			< 5																		
	3/7/2007	MW-73			< 5																	'	L
	6/14/2007	MW-73			< 5																	'	
	9/14/2007	MW-73			< 5																		
	3/17/2008	MW-73			< 1																		
104/70	6/2/2008	MW-73	05 44 4 40 44		< 5																		
IVIVV-73	8/4/2008	MW-73	25.11 to 10.11	Shallow	< 5																		
	nple tion Sample Date Sample Identification Screened Interval (feet NAVD88) ¹ 2/23/2006 MW-73 (feet NAVD88) ¹ 4/10/2006 MW-73 (feet NAVD88) ¹ 4/10/2006 MW-73 (feet NAVD88) ¹ 8/29/2006 MW-73 (feet NAVD88) ¹ 12/12/2006 MW-73 (feet NAVD88) ¹ 12/12/2006 MW-73 (feet NAVD88) ¹ 3/17/2007 MW-73 (feet NAVD88) ¹ 6/14/2007 MW-73 (feet NAVD88) ¹ 9/14/2007 MW-73 (feet NAVD88) ¹ 6/2/2008 MW-73 (feet NAVD88) ¹ 73 8/4/2008 MW-73 6/2/2008 MW-73 (feet NAVD88) ¹ 11/3/2008 MW-73 (feet NAVD8) ¹ 11/3/2008 MW-73 (feet NAVD8) ¹ 2/2/3/2009 MW-73 (feet NAVD8) ¹ 8/16/2009 MW-73 (feet NAVD8) ¹ 2/2/1/2010 MW-73 (feet NAVD8) ¹ 11/14/2010 MW-73 (feet NAVD8) ¹ 12/21/2010				< 5.00																		
	3/7/2007 MW-73 3/7/2007 MW-73 6/14/2007 MW-73 9/14/2007 MW-73 3/17/2008 MW-73 6/2/2008 MW-73 6/2/2008 MW-73 2/23/2009 MW-73 2/23/2009 MW-73 5/17/2009 MW-73 8/16/2009 MW-73 11/15/2009 MW-73 2/21/2010 MW-73				< 5.00																		
	W-73 8/4/2008 MW-73 25.11 to 10.11 11/3/2008 MW-73 2/23/2009 MW-73 5/17/2009 MW-73 2/(2)/2009 MW-73				< 5.00																		
	11/3/2008 MW-73 2/23/2009 MW-73 5/17/2009 MW-73 8/16/2009 MW-73 11/15/2009 MW-73			< 5.0																			
	5/17/2009 MW-73 8/16/2009 MW-73 11/15/2009 MW-73 2/21/2010 MW-73			24																			
	8/16/2009 MW-73 11/15/2009 MW-73 2/21/2010 MW-73 5/23/2010 MW-73			< 1.4																			
	5/10/2003 MW-73 11/15/2009 MW-73 2/21/2010 MW-73 5/23/2010 MW-73 8/15/2010 MW-73 11/14/2010 MW-73			33																			
	8/16/2009 MW-73 11/15/2009 MW-73 2/21/2010 MW-73 5/23/2010 MW-73 8/15/2010 MW-73 11/14/2010 MW-73 11 MW-73 11 MW-73 8/15/2010 MW-73 11/14/2010 MW-73 11 MW-73			< 1.0																			
Screening Leve	el for Protectio	n of Groundwater as Dr	inking Water⁵	1	160	1.5	32	480	NE	2.400	NE	640	320	NE	240	0.2 ⁶	NE	NE	NE	NE	NE	NE	0.2 ⁶
Screening Leve	11/14/2010 MW-73 ng Level for Protection of Groundwater as Drinking Water ⁵ ng Level for Protection of Indoor Air ⁵			8.9	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	
Laboratory Pra	ctical Quantita	ation Limit ⁷			0.10	0.10	0.10	0.10	0.10	0.10	0.010	0.10	0.10	0.10	0.10	0.010	0.010	0.010	0.010	0.010	0.010	0.010	NA

												Anal	ytical Resi	ults (micro	ograms pe	r liter) ²							
									Non-Carci	nogenic P	AHs			•					Carcinog	enic PAHs			
Sample Location	Sample Date	Sample Identification	Screened Interval (feet NAVD88) ¹	Water Bearing Zone	Naphthalene	1-Methylnaphthalene	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(g,h,i)Perylene	Fluoranthene	Fluorene	Phenanthrene	Pyrene	Benzo(a) Pyrene	Benzo(a)Anthracene	Benzo(b)Fluoranthene	Benzo(j,k)Fluoranthene	Chrysene	Dibenzo(a,h)Anthracene	Indeno(1,2,3-cd)Pyrene	Total cPAHs TEC ^{3,4}
	2/23/2006	MW-95			3.31																		
	5/9/2006	MW-95			5.56																		
	12/12/2006	MW-95			10.6																		
	3/7/2007	MW-95			< 5																		
	6/14/2007	MW-95	-		< 5																		
	9/13/2007	MW-95			< 5																		
	12/18/2007	MW-95			< 1																		
	3/17/2008	MW-95			< 1																		
	6/3/2008	MW-95			< 5																		
MW-95	8/4/2008	MW-95	Unknown	Shallow	< 5																		
	11/4/2008	MW-95			< 5.00																		
	2/24/2009	MW-95			< 5.00																		
	5/17/2009	MW-95			< 5.00																		
	-95 8/4/2008 MW-95 Unknown 11/4/2008 MW-95 2/24/2009 MW-95 5/17/2009 MW-95 8/16/2009 MW-95 11/4/5/2020 MW-95			< 5.0																	'		
	2/24/2009 MW-95 5/17/2009 MW-95 8/16/2009 MW-95 11/15/2009 MW-95 2/21/2010 MW-95			< 5.0																			
	5/17/2009 MW-95 8/16/2009 MW-95 11/15/2009 MW-95 2/21/2010 MW-95 5/23/2010 MW-95			< 1.0																			
	5/23/2010	MW-95	-		< 1.0																	'	
	8/16/2010	MW-95	-		< 1.0																	'	
	11/15/2010	MW-95			< 1.0																		
Screening Leve	el for Protectio	on of Groundwater as Dr	rinking Water⁵		160	1.5	32	480	NE	2,400	NE	640	320	NE	240	0.2 ⁶	NE	NE	NE	NE	NE	NE	0.2 ⁶
Screening Leve	el for Protectio	on of Indoor Air⁵			8.9	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
Laboratory Pra	ctical Quantita	ation Limit ⁷			0.10	0.10	0.10	0.10	0.10	0.10	0.010	0.10	0.10	0.10	0.10	0.010	0.010	0.010	0.010	0.010	0.010	0.010	NA

Shading represents most stringent screening level for groundwater.

NOTES:

Results in **bold** and highlighted yellow denote concentrations exceeding applicable screening levels.

< denotes analyte not detected at or exceeding the reporting limit listed.</p>

denotes sample not analyzed.

¹In feet referenced to North American Vertical Datum of 1988 (NAVD88).

²Analyzed by U.S. Environmental Protection Agency (EPA) Method 8270D/SIM or 8270E/SIM. FB-03, FMW-130, and Potable Well samples analyzed by EPA Method 8260C. Naphthalene results from February 2024 with a * next to the result analyzed by EPA Method 8260D.

³Total cPAHs derived using the total toxicity equivalency method in Section 708(8) of Chapter 173-340 of the Washington Administrative Code.

⁴For concentrations reported at less than the laboratory reporting limit, half the reporting limit was used to calculate total. If all constituent concentrations are non-detect, calculated total is indicated non-detect.

⁵Washington State Cleanup Levels and Risk Calculations (CLARC) under Washington State Model Toxics Control Act Cleanup Regulation (MTCA), Standard Method B Values for Groundwater and Vapor Intrusion Method B Table, Groundwater Screening

Levels, from CLARC Master spreadsheet, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC, unless otherwise noted.

⁶Groundwater screening level based on the Federal Maximum Contaminant Level (MCL), 40 Code of Federal Regulations (CFR) Part 141.

⁷Laboratory Practical Quantitation Limits (PQLs) from OnSite Environmental of Redmond, Washington. PQLs for individual samples may vary due to sample matrix interferences or dilutions.

⁸ MTCA Method B vapor intrusion groundwater screening level is applicable for the Shallow Water-Bearing Zone and the Method B screening level for drinking water is applicable for the deeper Intermediate Water-Bearing Zone.

* denotes the result is from analysis by EPA Method 8260D instead of EPA Method 8270.

cPAHs = carcinogenic polycyclic aromatic hydrocarbons

E = result exceeded instrument quantitation range and is an estimate

J = result is an estimate

NA = not applicable

NE = not established

PAHs = polycyclic aromatic hydrocarbons

TEC = toxic equivalent concentration

UJ = analyte not detected and reporting limit is an estimate

									nalytical Results (n	nicrograms per lite	er) ²			
														Methyl Tertiary
Sample	Comula Data	Comple Identification	Screened Interval	Water Bearing	DCE	TOF	cis-1,2-	trans-1,2-	Vinul Chlorida	1,1,1-	Asstans	Bromodichloromothono	Chloroform	Butyl Ether
Location	Sample Date	Sample Identification	(feet NAVD88)	Zone	PGE		Dichloroethene	Dichloroethene	vinyi Chioride	Trichloroethane	Acetone	Bromodicilioromethane	Chioroform	
						Reconnaissance	Groundwater Samp	les from Borings						
EB-03	8/23/2018	FB-03-082318	8 8 to 3 8	Shallow	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	7.4	< 0.20	< 0.20	
EB-05	8/22/2018	FB-05-082218	8.5 to 3.5	Shallow	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20		< 0.20	< 0.20	
EMW-130	7/21/2014	F-MW-130-GW1-072114	7 2 to 2 2	Shallow	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20		< 0.20	< 0.20	
			1.2 to 2.2	onalion	0.20	Decom	missioned Monitorin	a Wells	0.20	0.20		0.20	0.20	
	7/24/2014	F-MW-130-072414			< 0.20	< 0.20	0.51	< 0.20	< 0.20	0.26		< 0.20	0.91	
	7/3/2017	FMW-130-070317			< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 5.0	< 0.20	< 0.20	
FMW-130	8/30/2018	FMW-130-083018	-22.8 to -32.8	Intermediate	< 0.20	< 0.20	0.27	< 0.20	< 0.20	< 0.20		< 0.20	< 0.20	
	12/28/2018	FMW130-122818			< 0.20	< 0.20	0.22	< 0.20	< 0.20	< 0.20			< 0.20	
EN 1111 (100	8/30/2018	FMW-132-083018		<u>.</u>	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20		< 0.20	< 0.20	
FMW-132	12/28/2018	FMW132-122818	20.7 to 15.7	Shallow	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20			< 0.20	
EN 114 400	8/30/2018	FMW-133-083018	40.01.40.0	01 11	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20		< 0.20	< 0.20	
FIMIVV-133	12/28/2018	FMW133-122818	18.8 to 13.8	Shallow	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20			< 0.20	
	8/30/2018	FMW-134-083018			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	
FMW-134	12/28/2018	FMW134-122818	13.4 to 8.4	Shallow	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	
	12/28/2018	FMW500-122818			< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20			< 0.20	
	8/30/2018	FMW-135-083018	10 C to 12 C	Challaur	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20		< 0.20	0.41	
FIVIV-135	12/28/2018	FMW135-122818	18.0 10 13.0	Shallow	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20			< 0.20	
	8/30/2018	FMW-136-083018	1.0 to 11.0	Intermediate	< 0.20	< 0.20	0.36	< 0.20	< 0.20	< 0.20		< 0.20	2.7	
FIVIV-130	12/28/2018	FMW136-122818	-4.9 10 - 14.9	Internetiate	< 0.20	< 0.20	0.35	< 0.20	< 0.20	< 0.20			< 0.20	
FMW-144	12/26/2019	FMW-144-122619	-8.6 to -13.6	Intermediate	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20					
FMW-145	12/26/2019	FMW-145-122619	-8.1 to -13.1	Intermediate	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20					
FMW-146	12/26/2019	FMW-146-122619	-7.8 to -12.8	Intermediate	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20					
FMW-147	12/26/2019	FMW-147-122619	-8.2 to -13.2	Intermediate	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20					
FMW-149	12/26/2019	FMW-149-122619	-7.8 to -12.8	Intermediate	< 0.20	< 0.20	0.21	< 0.20	< 0.20					
						Ex	isitng Monitoring We	ells						
	11/20/2018	FMW-137-112018	_		< 0.20	< 0.20	1.2	< 0.20	< 0.20					
	12/28/2018	FMW137-122818		Deep Outwash	< 0.20	< 0.20	1.1	< 0.20	< 0.20					
FMW-137	5/6/2019	FMW-137-050619	-41.9 to -54.9	Aquifer	< 0.20	< 0.20	1.3	< 0.20	< 0.20					
	7/8/2019	FMW-137-070819		, idamoi	< 0.20	< 0.20	1.3	< 0.20	< 0.20					
	5/16/2023	FMW-137-051623			< 0.400	< 0.400	20.3	< 0.400	0.320 J					
	11/20/2018	FMW-138-112018			< 0.20	< 0.20	0.29	< 0.20	< 0.20					
	12/28/2018	Deep Outwash	< 0.20	< 0.20	0.34	< 0.20	< 0.20							
FMW-138	W-138 5/6/2019 FMW-138-050619 -45.96 to -55.96 Aq				< 0.20	< 0.20	0.38	< 0.20	< 0.20					
	7/8/2019 FMW-138-070819				< 0.20	< 0.20	0.34	< 0.20	< 0.20					
	5/16/2023	FMW-138-051623			< 0.400	< 0.400	< 0.400	< 0.400	< 0.400					
FMW-165	5/17/2023	FMW-165-051723	-44.9 to -54.9	Deep Outwash Aquifer	< 0.400 V	< 0.400 V	4.46 V	< 0.400 V	0.880 V					
Screening Level	for Protection of G	roundwater as Drinking W	ater ³		5.0 ⁴	4.0	16	100	0.29	200 ⁴	7,200	7.1	14 ⁴	24
Screening Level	for Protection of In	ndoor Air ³			25	1.4	180	77	0.33	5,400	NE	1.4	1.2	800
Laboratory Prac	tical Quantitation L	imit⁵			0.20	0.20	0.20	0.20	0.20	0.20	5.0	0.20	0.20	0.20

								A	Analytical Results (m	nicrograms per lite	r) ²			
											/			Methyl Tertiary
Sample			Screened Interval	Water Bearing	505	705	cis-1,2-	trans-1,2-		1,1,1-	• •			Butyl Ether
Location	Sample Date	Sample Identification	(feet NAVD88)	Zone	PCE	ICE	Dichloroethene	Dichloroethene	Vinyl Chloride	Trichloroethane	Acetone	Bromodichioromethane	Chloroform	(MIBE)
	6/2/2005	N/\\/ / 1		1	1	1	BIOCK 37 Site						1	<u> </u>
	7/26/2005	M\\\/_4 1	_											<1
	11/2/2005	M/W-41	-											< 1
	2/23/2006	MW-41	-											< 1
	5/9/2006	MW-41	_											<1
	8/30/2006	MW-41	-											<1
	12/12/2006	MW-41	-											< 1
	3/7/2007	MW-41	-											< 1
	6/14/2007	MW-41	00.0 to 7.0	Challaur										< 1
10100-41	9/13/2007	MW-41	- 22.0 10 7.0	Shallow										< 1
	12/18/2007	MW-41												< 1
	3/17/2008	MW-41												< 3
	6/3/2008	MW-41	_											< 1
	8/4/2008	MW-41	_					< 0.102						< 1
	11/4/2008	MW-41												< 1.00
	5/17/2009	MW-41											< 1.00	
	5/17/2009 MW-41 8/16/2009 MW-41 11/15/2009 MW-41													< 1.0
	11/15/2009	MW-41												< 1.0
	11/3/2005	MVV-71	_											< 20
	2/23/2006	MVV-71	_											< 20
	5/10/2006	MVV-71	_											< 40
	8/29/2006	MVV-71	_											<1
	2/7/2007		_											< 10
	6/14/2007		-											< 40
	0/14/2007		_											<1
MW-71	12/17/2007	M_71	25.42 to 10.42	Shallow										< 1
	3/17/2008	M\\/-71	-											259
	6/2/2008 MW-71													< 1
	8/4/2008 MW-71													< 1
	11/3/2008 MW-71													< 1.00
	5/17/2009	MW-71	-											< 1.00
	8/16/2009	MW-71	-											< 1.0
	11/15/2009	MW-71												< 1.0
Screening Level	for Protection of G	roundwater as Drinking W	ater ³	•	5.0 ⁴	4.0	16	100	0.29	200 ⁴	7,200	7.1	14 ⁴	24
Screening Level	for Protection of In	door Air ³			25	1.4	180	77	0.33	5,400	NE	1.4	1.2	800
Laboratory Prac	tical Quantitation L	imit⁵			0.20	0.20	0.20	0.20	0.20	0.20	5.0	0.20	0.20	0.20

								A	Analvtical Results (m	icrograms per lite	r) ²			
Sample Location	Sample Date	Sample Identification	Screened Interval (feet NAVD88) ¹	Water Bearing Zone	PCE	тсе	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	Vinyl Chloride	1,1,1- Trichloroethane	Acetone	Bromodichloromethane	Chloroform	Methyl Tertiary Butyl Ether (MTBE)
	11/3/2005	MW-72												< 2
	2/23/2006	MW-72												< 2
	5/10/2006	MW-72												< 2
	8/29/2006	MW-72												< 1
	12/12/2006	MW-72												< 1
	3/7/2007	MW-72												< 1
	6/14/2007	MW-72												< 1
M\\\/_72	9/14/2007	MW-72	25 32 to 10 32	Shallow										< 1
	12/17/2007	MW-72	20.02 10 10.02	Onanow										< 1
	3/17/2008	MW-72												< 3
	6/2/2008	MW-72	_											< 1
	8/4/2008	MW-72	_											< 1
	11/3/2008	MW-72	_											< 1.00
	5/17/2009 MW-72 8/16/2009 MW-72 11/15/2009 MW-72													< 1.00
	8/16/2009 MW-72 11/15/2009 MW-72												< 1.0	
	11/15/2009	MW-72												< 1.0
	11/3/2005	MW-73	_											< 2
	2/23/2006	MW-73	_											< 1
	4/10/2006	MW-73	_											< 1
	8/29/2006	MW-73	_											< 1
	12/12/2006	MW-73	_											< 1
	3/7/2007	MW-73												< 1
	6/14/2007	MW-73												< 1
MW-73	9/14/2007	MW-73	25.11 to 10.11	Shallow										< 1
	12/17/2007	MW-73	20.11 10 10.11	onalion										< 1
	12/17/2007 MW-73 3/17/2008 MW-73													< 3
	3/11/2008 WW-73 6/2/2008 MW-73												< 1	
	8/4/2008 MW-73												< 1	
	11/3/2008 MW-73													< 1.00
	5/17/2009 MW-73 8/16/2009 MW-73												< 1.00	
	8/16/2009 MW-73 11/15/2009 MW-73													< 1.0
	11/15/2009	MW-73												< 1.0
Screening Level	for Protection of G	roundwater as Drinking Wa	ater		5.0 ⁴	4.0	16	100	0.29	200 ⁴	7,200	7.1	14 ⁴	24
Screening Level	for Protection of In	door Air ³			25	1.4	180	77	0.33	5,400	NE	1.4	1.2	800
Laboratory Pract	tical Quantitation Li	mit [°]			0.20	0.20	0.20	0.20	0.20	0.20	5.0	0.20	0.20	0.20

								Α	nalytical Results (m	icrograms per lite	r) ²			
Sample Location	Sample Date	Sample Identification	Screened Interval (feet NAVD88) ¹	Water Bearing Zone	PCE	TCE	cis-1,2- Dichloroethene	trans-1,2- Dichloroethene	Vinyl Chloride	1,1,1- Trichloroethane	Acetone	Bromodichloromethane	Chloroform	Methyl Tertiary Butyl Ether (MTBE)
	11/2/2005	MW-95												< 1
	2/23/2006	MW-95												< 1
	5/9/2006	MW-95												< 1
	12/12/2006	MW-95												< 1
	3/7/2007	MW-95												< 1
	6/14/2007	MW-95												< 1
	9/13/2007	MW-95												< 1
MW-95	12/18/2007	MW-95	Unknown	Shallow										< 1
	3/17/2008	MW-95												< 3
	6/3/2008	MW-95												< 1
	8/4/2008	MW-95												< 1
	11/4/2008	MW-95												< 1.00
	5/17/2009	MW-95												< 1.00
	8/16/2009	MW-95												< 1.0
	11/15/2009	MW-95												< 1.0
Screening Level	for Protection of Gr	roundwater as Drinking Wa	ater ³		5.0 ⁴	4.0	16	100	0.29	200 ⁴	7,200	7.1	14 ⁴	24
Screening Level	for Protection of In	door Air ³			25	1.4	180	77	0.33	5,400	NE	1.4	1.2	800
Laboratory Prac	tical Quantitation Li	mit⁵			0.20	0.20	0.20	0.20	0.20	0.20	5.0	0.20	0.20	0.20

NOTES:

Results in **bold** and highlighted <u>vellow</u> denote concentrations exceeding applicable screening levels.

Shading represents most stringent screening level for groundwater.

< denotes analyte not detected at or exceeding the reporting limit listed.

- denotes sample not analyzed.

¹In feet referenced to North American Vertical Datum of 1988 (NAVD88).

²Analyzed by U.S. Environmental Protection Agency Method 8260C or 8260D. Only detected and select VOCs shown; see laboratory report for full list of

analytes.

³Washington State Cleanup Levels and Risk Calculations (CLARC) under Washington State Model Toxics Control Act Cleanup Regulation (MTCA), Standard Method B Values for Groundwater and Vapor Intrusion Method B Table,

Groundwater Screening Levels, from CLARC Master spreadsheet, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC, unless otherwise noted.

⁴Groundwater screening level adjusted or based on the Federal Maximum Contaminant Level (MCL), 40 Code of Federal Regulations (CFR) Part 141.

⁵Laboratory Practical Quantitation Limits (PQLs) from OnSite Environmental of Redmond, Washington. PQLs for individual samples may vary due to sample matrix interferences or dilutions.

ESP = elevation survey pending

NE = not established

V = sample taken from VOA vial with headspace (air bubble over 6 mm in diameter)

VOCs = volatile organic compounds

							Analytic	al Results (n	nicrograms p	er liter) ²				
Sample		Sample	Screened Interval	Water Bearing	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor	Aroclor			
Location	Sample Date	Identification	(feet NAVD88) ¹	Zone	1016	1221	1232	1242	1248	1254	1260	Total PCBs ³		
					Block 38 Wes	st								
				Decommis	sioned Monit	oring Wells								
FMW-144 12/26/2019 FMW-144-122619 -8.6 to -13.6 Intermediate < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 <														
FMW-144 12/26/2019 FMW-145-122619 -8.1 to -13.1 Intermediate < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 < 0.047 <														
FMW-146	12/26/2019	FMW-146-122619	-7.8 to -12.8	Intermediate	< 0.048	< 0.048	< 0.048	< 0.048	< 0.048	< 0.048	< 0.048	< 0.17		
FMW-147	12/26/2019	FMW-147-122619	-8.2 to -13.2	Intermediate	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.16		
FMW-149	12/26/2019	FMW-149-122619	-7.8 to -12.8	Intermediate	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.047	< 0.16		
Screening Level	for Protection of	of Groundwater as Dri	nking Water ⁴									0.22		
Screening Level	for Protection of	of Indoor Air ⁴										NE		
Laboratory Prac	tical Quantitatio	n Limit⁵										0.050		

NOTES:

< denotes analyte not detected at or exceeding the reporting limit listed.

Shading represents most stringent screening level for groundwater.

NE = not established PCB = polychlorinated biphenyl

¹In feet referenced to North American Vertical Datum of 1988 (NAVD88). ²Analyzed by U.S. Environmental Protection Agency Method 8082A.

³Where all Aroclors were non-detect in a specific sample, half the reporting limit for each Aroclor was used to calculate total PCBs.

⁴South Lake Union Preliminary Cleanup Level Workbook, dated February 2023, prepared by the Washington State Department of Ecology.

⁵Laboratory Practical Quantitation Limits (PQLs) from OnSite Environmental of Redmond, Washington. PQLs for individual samples may vary due to sample matrix interferences or dilutions.

			Screened		Analyt	ical Results (n	nicrograms p	er liter) ²
Sample Location	Sample Date	Sample Identification	Interval (feet NAVD88) ¹	Water Bearing Zone	Total Barium	Dissolved Barium	Total Mercury	Dissolved Mercury
			Exis	sting Wells				
FMW-154	5/16/2023	FMW-154-051623	12.8 to 7.8	Shallow	95.5	91.1		
FMW-155	5/16/2023	FMW-155-051623	13.9 to 8.9	Shallow	87.7	89.4	< 0.0800	< 0.0800
FMW-156	5/16/2023	FMW-156-051623	10.7 to 5.7	Shallow	44.5	44.2		
FMW-158	5/15/2023	FMW-158-051523	18.0 to 3.0	Shallow	84.7	82.0		
MTCA Cleanu	up Levels for G	Froundwater ³			3,2	200 ⁴		2

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or exceeding the reporting limit listed.

¹In feet referenced to North American Vertical Datum of 1988 (NAVD88).

²Analyzed by U.S. Environmental Protection Agency Method 6020B.

³Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013, unless otherwise noted.

⁴Washington State Cleanup Levels and Risk Calculations (CLARC) under Washington State MTCA, Standard Method B Formula Values for Groundwater from CLARC Master spreadsheet, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contaminationclean-up-tools/CLARC

Table 12Groundwater Analytical Results for DRO and ORO with and without Silica Gel CleanupBlock 38 West PropertySeattle, WashingtonFarallon PN: 397-019

								Analytical F	Results (micr	ograms per liter	.)			Analytical Results (milligrams per liter)
						NWTPH-	Dx ²	NWTPH-D	Dx with Silica	a Gel Cleanup ³				
Sample Location	Sample Date	Sample Identification	Screened Interval (feet NAVD88) ¹	Water Bearing Zone	DRO	ORO	Total Petroleum + Polar Organics	DRO	ORO	Total Petroleum	Total Polar Organics⁴	Background Polar Organics ⁴	Adjusted Polar Organics (Metabolites) ⁵	Total Organic Carbon ⁶
			, ,			Ē	Block 38 West Prope	rty		•			,	
						Bac	kground Monitoring	Wells						
	5/15/2023	FMW-158-051523			149	< 151	149				149	149		
	8/15/2023	FMW-158-081523	18.0 to 3.0	Shallow	256	< 151	256				256	256 ⁷		
1 10100-130	11/15/2023	FMW-158-111523	10.0 10 5.0	Shallow	398	< 151	398	< 75.5	< 151	< 151	398	398		
	2/29/2024	FMW-158-022924					< 250 ^			< 250 ^	< 250	< 250		8.80
	5/16/2023	FMW-159-051623			102	< 150	102				102	102		
FM\\/_159	8/15/2023	FMW-159-081523	-4 9 to -14 9	Intermediate	109	< 154	109				109	109		
1 1010 0-100	11/15/2023	FMW-159-111523	-4.0 10 - 14.0	internediate	249	< 151	249	< 75.5	< 151	< 151	249	249		
	2/28/2024	FMW-159-022824					< 250 ^			< 250 ^	< 250	< 250		4.20
			1	•	1	E	xisting Monitoring W	lells	T					
	5/16/2023	FMW-154-051623	-		318	< 154	318							
FMW-154	8/14/2023	FMW-154-081423	12.8 to 7.8	Shallow	514	< 152	514	< 76.2	195 ⁸	195 ⁸	319	256	63	
	11/14/2023	FMW-154-111423	1210 10 110	Chanon	791	< 152	791	< 76.2	< 152	< 152	791	398	393	
	2/28/2024	FMW-154-022824					435 ^							
	5/16/2023	FMW-155-051623	-		287	< 151	287							
FMW-155	8/14/2023	FMW-155-081423	13.9 to 8.9	Shallow	530	< 154	530	< 76.9	< 154	< 154	530	256	274	
	11/14/2023	FMW-155-111423			943	< 152	943	< 76.2	< 152	< 152	943	398	545	
	2/27/2024	FMW-155-022724					605 ^			< 250 ^	605	< 250	605	
	5/15/2023	FMW-160-051523	-		114	< 151	114							
FMW-160	8/14/2023	FMW-160-081423	19.0 to 4.0	Shallow	634	< 154	634	< 76.9	< 154	< 154	634	256	378	
	11/14/2023	FMW-160-111423			375	< 154	375							
	2/27/2024	FMW-160-022724					< 250 ^							
Screening Le	vel for Protectio	on of Groundwater as D	rinking Water ⁹		5	00	500	5	00	500	500	NA	NE	NA
Screening Le	vel for Protectio	on of Indoor Air ¹⁰		44	N	NE	NE	N	NE	NE	NE	NA	NE	NA
Screening Le	vel for Sites with	h No Detectable Petrole	eum Hydrocarbor	เร่	N	NE	NE	N	NE	NE	NE	NA	700	NA
Laboratory P	ractical Quantita	ation Limit ¹²			5	00	500	5	00	500	500	NA	500	NA

Table 12 Groundwater Analytical Results for DRO and ORO with and without Silica Gel Cleanup **Block 38 West Property** Seattle, Washington Farallon PN: 397-019

								Analytical F	Results (mic	rograms per liter	·)			Analytical Results (milligrams per liter)
						NWTPH-	Dx ²	NWTPH-D	Dx with Silica	a Gel Cleanup ³				
Sample Location	Sample Date	Sample Identification	Screened Interval (feet NAVD88) ¹	Water Bearing Zone	DRO	ORO	Total Petroleum + Polar Organics	DRO	ORO	Total Petroleum	Total Polar Organics⁴	Background Polar Organics ⁴	Adjusted Polar Organics (Metabolites) ⁵	Total Organic Carbon ⁶
	5/16/2023	OW-1-051623			332	< 151	332							
0\\/ 1	8/15/2023	OW-1-081523	5.8 to 20.8	Intermediate	385	< 154	385							
000-1	11/15/2023	OW-1-111523	-5.6 10 -20.6	Interneulate	628	< 152	628	< 76.2	< 152	< 152	628	249	379	
	2/28/2024	OW-1-022824					391 ^							
Screening Le	vel for Protectio	n of Groundwater as D	rinking Water ⁹		5	00	500	5	00	500	500	NA	NE	NA
Screening Le	vel for Protectio	on of Indoor Air ¹⁰		-	NE	NE	Ν	NE	NE	NE	NA	NE	NA	
Screening Le	vel for Sites with	h No Detectable Petrole	15 ¹¹	l	NE	NE	Ν	NE	NE	NE	NA	700	NA	
Laboratory P	ractical Quantita	ation Limit ¹²			5	500	500	5	00	500	500	NA	500	NA

NOTES:

Results in **bold** denote concentrations exceeding applicable screening levels.

Shading represents selected screening level for groundwater.

< denotes analyte not detected at or exceeding the reporting limit listed. --- denotes sample not analyzed or not applicable.

¹In feet referenced to North American Vertical Datum of 1988 (NAVD88).

²Analyzed by Northwest Method NWTPH-Dx. Total Petroleum + Polar Organics is the sum of DRO and ORO results.

³Analyzed by Northwest Method NWTPH-Dx using sample extract treated with silica gel cleanup procedure. Total Petroleum is the sum of DRO and ORO results. Where both results are non-detect, the higher of the two reporting limits is reported as the Total NWTPH-Dx value.

⁴Total Polar Organics is calculated by subtracting Total Petroleum from Total Petroleum + Polar Organics. Background Polar Organics represents values from selected background wells.

⁵Polar Organics (polar metabolites) concentration is calculated by subtracting "Total Petroleum" from "Total Petroleum + Polar Organics", and then subtracting "Background Polar Organics". ⁶Analyzed by Standard Method 5310C.

⁷Washington State Department of Ecology approved the use of the August 2023 FMW-158 NWTPH-Dx result as a background polar organic concentration in a January 8, 2024 email.

⁸This detection may be attributed to sediment interference in the silica gel cleanup analysis and is less than the November 2023 silica gel reporting limit of 250 micrograms per liter.

⁹Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Cleanup Levels for Groundwater, Table 720-1 of Section 900

of Chapter 173-340 of the Washington Administrative Code, as amended 2013. MTCA Method A is used as a surrogate for Method B because no

Method B groundwater value has been established for TPH diesel- and oil-range mixtures.

¹⁰Washington State Cleanup Levels and Risk Calculations (CLARC) under Washington State MTCA from CLARC Master spreadsheet.

<https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC>.

¹¹Washington State Department of Ecology, *Guidance for Silica Gel Cleanup in Washington State*, Publication

No. 22-09-059, revised November 2023.

¹²Laboratory Practical Quantitation Limits (PQLs) from OnSite Environmental of Redmond, Washington. PQLs for individual samples may vary due to sample matrix interferences or dilutions.

J = result is an estimate NA = not applicable

NE = not established

ORO = TPH as oil-range organics

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

^ = laboratory-provided total NWTPH-Dx value covering C10-C40 carbon range

Table 13Remedial Investigation Work Plan Preliminary Screening LevelsBlock 38 West SiteSeattle, WashingtonFarallon PN: 397-019

						Soil Screer	ning Levels							Gr	oundwater Scre	ening Levels				
	Mothod P	Pro	otection of	Groundwate	er	Adjustme	nt Factors	Brono	ad Sail						Adjustme	ent Factors				Chemical
	Direct	Vadaaa	7000	Coturata	d Zana		Ducation	Screeni	ng Level	Maximum			Groundwater	Protection of		Dresties	Proposed	Maximum		Retained as
	Contact	vadose	e zone	Saturate	a zone	Natural	Quantitation	(mg	j/kg)	Detected at Site	Retained			Indoor Air	Natural	Quantitation	Screening	Detected at	Retained as	(based on Soil
	Level	Level		Level		Background	Limits	Vadose	Saturated	Vadose Saturated	as Soil	Level		Level	Background	Limits	Level	Site	Groundwate	or
Chemical	(mg/kg)	(mg/kg)	Basis	(mg/kg)	Basis	(mg/kg)	(mg/kg)	Zone	Zone	(mg/kg)	COPC	(µg/l)	Basis	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	r COPC	Groundwater)
	1 1				1	1		1	1	Petroleum Hydro	carbons		1	I	I			I	1	
TPH, diesel- and oil-range organics		2,000	Method A#	2,000	Method A#		75	2,000	2,000	30,400 23,800	Yes	500	Method A			500	500	3,300	Yes	Yes
TPH, gasoline-range organics, benzene present	1,500*	30	Method A#	30	Method A#		5	30	30	2,100 83	Yes	800	Method A			100	800	2,100 ¹	Yes	Yes
TPH, gasoline-range organics, no detectable benzene	1,500*	100	Method A#	100	Method A#		5	100	100	2,100 83	Yes	1,000	Method A			100	1,000	2,100 ¹	Yes	Yes
										Volatile Organic C	ompounds				•			<u>.</u>		
Acetone	72,000	29	Leach	2.1	Leach		0.005	29	2.1	Not Analyzed		7,200	Method B			5.0	7,200	7.4	No	No
Benzene	18	0.027	Leach	0.0017	Leach		0.001	0.027	0.0017	0.12 0.0033	Yes	5.0	MCL	2.4		0.20	2.4	5.1 ²	Yes	Yes
Chloroform	32	0.074	Leach	0.0048	Leach		0.001	0.074	0.0048	Not Analyzed		14	Method B/Adjusted MCL	1.2		0.20	1.2	2.7	No ³	No ³
cis-1,2-Dichloroethene	160	0.078	Leach	0.0052	Leach		0.001	0.078	0.0052	Not Detected ⁶	No	16	Method B	180		0.20	16	1.3	No	No ³
Ethylbenzene	8,000	5.9	Leach	0.34	Leach		0.001	5.9	0.34	0.13 0.0075	No	700	MCL	2,800		0.20	700	2.2	No	No
Tetrachloroethene	480	0.05	Leach	0.0028	Leach		0.001	0.05	0.0028	0.0041 ND	No	5.0	MCL	25		0.20	5.0	Not Detected	No	No
Toluene	6,400	4.5	Leach	0.27	Leach		0.005	4.5	0.27	0.49 0.018	No	640	Method B/Adjusted MCL	15,000		1.0	640	7.5	No	No
1,1,1-Trichloroethane	160,000	1.5	Leach	0.084	Leach		0.001	1.5	0.084	Not Analyzed		200	MCL	5,400		0.20	200	0.26	No	No
Xylenes	16,000	14	Leach	0.83	Leach		0.003	14	0.83	0.94 0.048	No	1,600	Method B/Adjusted MCL	320		0.60	320	6.7	No	No
							•	•	Poly	cyclic Aromatic Hydr	ocarbons (F	PAHs)			•				•	
Naphthalene	1,600	4.5	Leach	0.24	Leach		0.0067	4.5	0.24	22 9.8	Yes	160	Method B	8.9**		0.10	8.9**	650	Yes	Yes
1-Methylnaphthalene	34	0.082	Leach	0.0042	Leach		0.0067	0.082	0.0067	14 7.5	Yes	1.5	Method B			0.10	1.5	10	Yes	Yes
2-Methylnaphthalene	320	1.7	Leach	0.088	Leach		0.0067	1.7	0.088	15 8.8	Yes	32	Method B			0.10	32	13	No	Yes
Acenaphthene	4,800	49	Leach	2.5	Leach		0.0067	49	2.5	1.5 0.049	No	480	Method B			0.10	480	8.3	No	No
Acenaphthylene							0.0067			0.45 0.045	No					0.10		0.12	No	No
Anthracene	24,000	1,100	Leach	57	Leach		0.0067	1,100	57	3.3 0.29	No	2,400	Method B			0.10	2,400	Not Detected	No	No
Benzo(g,h,i)Perylene							0.0067			8.5 0.21	No					0.010		Not Detected	No	No
Fluoranthene	3,200	630	Leach	32	Leach		0.0067	630	32	18 0.97	No	640	Method B			0.10	640	Not Detected	No	No
Fluorene	3,200	51	Leach	2.6	Leach		0.0067	51	2.6	1.3 0.22	No	320	Method B			0.10	320	1.6	No	No
Phenanthrene							0.0067			18 1.0	No					0.10		0.48	No	No
Pyrene	2,400	330	Leach	16	Leach		0.0067	330	16	27 1.1	No	240	Method B			0.10	240	Not Detected	No	No
									•	Carcinogenic	PAHs							-	-	
Benzo(a)Pyrene	0.19	3.9	Leach	0.19	Leach		0.0067	0.19	0.19	120 120	Yes	0.2	MCL			0.010	0.2	0.023	No	Yes
Benzo(a)Anthracene	cPAH TEC	cPAH TEC	Leach	cPAH TEC	Leach		0.0067	cPAH TEC	cPAH TEC	110 91	Yes	cPAH TEC	cPAH TEC			0.010	cPAH TEC	0.043	No	Yes
Benzo(b)Fluoranthene	cPAH TEC	cPAH TEC	Leach	cPAH TEC	Leach		0.0067	cPAH TEC	cPAH TEC	100 120	Yes	cPAH TEC	cPAH TEC			0.010	cPAH TEC	0.031	No	Yes
Benzo(j,k)Fluoranthene	cPAH TEC	cPAH TEC	Leach	cPAH TEC	Leach		0.0067	cPAH TEC	cPAH TEC	31 24	Yes	cPAH TEC	cPAH TEC			0.010	cPAH TEC	Not Detected	No	Yes
Chrysene	cPAH TEC	cPAH TEC	Leach	cPAH TEC	Leach		0.0067	cPAH TEC	cPAH TEC	110 110	Yes	cPAH TEC	cPAH TEC			0.010	cPAH TEC	0.036	No	Yes
Dibenzo(a,h)Anthracene	cPAH TEC	cPAH TEC	Leach	cPAH TEC	Leach		0.0067	cPAH TEC	cPAH TEC	9.9 9.1	Yes	cPAH TEC	cPAH TEC			0.010	cPAH TEC	Not Detected	No	Yes
Indeno(1,2,3-cd)Pyrene	cPAH TEC	cPAH TEC	Leach	cPAH TEC	Leach		0.0067	cPAH TEC	cPAH TEC	63 69	Yes	cPAH TEC	cPAH TEC			0.010	cPAH TEC	0.014	No	Yes
cPAH TEC	0.19	3.9	Leach	0.19	Leach		NA	0.19	0.19	152 150	Yes	0.2	MCL			NA	0.2	0.033	No	Yes

Table 13 **Remedial Investigation Work Plan Preliminary Screening Levels Block 38 West Site** Seattle, Washington Farallon PN: 397-019

						Soil Screen	ing Levels							Gro	undwater Scre	ening Levels				
	Method B	Pro	otection of	Groundwate	ər	Adjustme	nt Factors	Propos	sed Soil						Adjustme	ent Factors				Chemical
	Direct Contact	Vadose	Zone	Saturate	d Zone	Natural	Practical Quantitation	Screenii (mg	ng Level j/kg)	Maximum Concentration Detected at Site	Retained		Groundwater	Protection of Indoor Air	Natural	Practical Quantitation	Proposed Groundwater Screening	Maximum Concentration Detected at	Retained as	Retained as COPC (based on Soil
	Level	Level		Level		Background	Limits Vadose Saturated Vadose Saturated as Soil Level (mg/kg) Zone Zone (mg/kg) COPC (µg/l) Basis			Level	Background	Limits	Level	Site	Groundwate	or				
Chemical	(mg/kg)	(mg/kg)	Basis	(mg/kg)	Basis	(mg/kg)	(mg/kg)	Zone	Zone	(mg/kg)	COPC	(µg/l)	Basis	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	r COPC	Groundwater)
										Metals										
Arsenic	0.67	4.7	Leach	0.23	Leach	7.3	5	7.3	7.3	13 ND	No ³	0.58	Method B/Adjusted MCL		8.0 ⁵	3.3	8.0	Not Analyzed	No ³	No ³
Barium	16,000	1,600	Leach	83	Leach		2.5	1,600	83	490 290	Yes	2,000	MCL			28	2,000	Not Analyzed	Yes	Yes
Cadmium	80	0.69	Leach	0.035	Leach	0.774	0.50	0.77 ⁴	0.77 ⁴	2.4 ND	No ³	5.0	MCL			4.4	5.0	Not Analyzed	No ³	No ³
Chromium ⁷	120,000	480,000	Leach	24,000	Leach	48	0.50	120,000	24,000	48 100	No	100	MCL			2.0	100	Not Analyzed	No	No
Lead	250 ⁸	3,000	Leach	150	Leach	16.83	5.0	250	150	21,000 240	No ³	15	MCL			1.1	15	Not Analyzed	No ³	No ³
Mercury		2.1	Leach	0.1	Leach	0.07	0.25	2.1	0.25	ND 1.2	Yes	2.0	MCL	1.1		0.50	1.1	Not Analyzed	Yes	Yes
NOTES:	•				•											•	•	•		

Shading represents most stringent screening level, natural background concentration, or practical quanititaiton limit for vadose zone soil.

Shading represents most stringent screening level, natural background concentration, or practical quanititation limit for saturated zone soil.

Shading represents most stringent screening level or natural background concentration for groundwater

Bold Maximum concentration detected at the site exceeds proposed screening level.

--- denotes no screening level established for this parameter.

COPC = contaminant of potential concern

cPAH TEC = Carcinogenic polycyclic aromatic hydrocarbon toxic equivalent concentration (cPAH TEC) calculated following the total toxicity equivalency method in Section 708(8) of Chapter 173-340 of the Washington Administrative Code.

Leach = Washington State Cleanup Levels and Risk Calculations (CLARC) under Washington State Model Toxics Control Act Cleanup Regulation (MTCA),

default soil concentrations protective of groundwater from CLARC Master spreadsheet, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-

assistance/Contamination-clean-up-tools/CLARC

MCL = Federal Maximum Contaminant Level (MCL), 40 Code of Federal Regulations (CFR) Part 141.

Method A = MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

Method B = Washington State CLARC under Washington State MTCA, Standard Method B Formula Values from CLARC Master spreadsheet, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC

NA = not applicable

¹ Result was derived from a reconnaissance groundwater sample. Analysis of reconnaissance groundwater samples can result in potentially biased data due to turbidity of the sample and greater presence of suspended solids that

hazardous substances can sorb onto. This detection in groundwater was flagged by the laboratory because the sample chromatogram was not similar to a typical gas.

² Result was derived from a reconnaissance groundwater sample. Analysis of reconnaissance groundwater samples can result in potentially biased data due to turbidity of the sample and greater presence of suspended solids that hazardous substances can sorb onto.

³ Section 6.4 of the Agency Review Draft-Remedial Investigation Work Plan provides additional information as to why the COPC was not retained for further evaluation for the Block 38 West Site. Arsenic, cadmium and lead are not retained as COPCs for Block 38 West Site and the source is likely associated with the adjacent Rosen Property Site. ⁴ Arsenic and cadmium screening levels adjusted for natural background concentrations provided in Natural Background Soil Metals Concentrations in Washington State, Washington State Department of Ecology, Publication #94-115, October 1994.

⁵ Puget Sound Lowland natural background concentration from Natural Background Groundwater Arsenic Concentrations in Washington State, Study Results, Washington State Department of Ecology, Publication No. 14-09-044, dated January 2022.

⁶ Reporting limits for cis-1,2-dichloroethene in soil ranged from 0.00074 mg/kg to 0.0044 mg/kg.

⁷ Values based on trivalent chromium risk-based values for soil SLs (120,000 mg/kg for direct contract, 480,000 mg/kg vadose leaching, 24,000 saturated leaching) since there is no known source of hexavalent chromium used on the Block 38 West Property. Background levels are based on total chromium. Total chromium groundwater screening level of 100 µg/L based on the MCL. ⁸ Value based on Method A as a surrogate for Method B as no Method B direct contact value for soil has been established.

⁸ Reporting limits for mercury in soil ranged from 0.27 mg/kg to 0.83 mg/kg.

* Source of this value is the generic TPH cleanup level from Model Remedies for Sites with Petroleum Contaminated Soils, Washington State Department of Ecology, Publication No. 15-09-043, Revised: December 2017.

** MTCA Method B vapor intrusion groundwater screening level for naphthalene is applicable for the Shallow Water-Bearing Zone and the Method B screening level for drinking water is applicable for the deeper Intermediate Water-Bearing Zone.

Method A is used as a surrogate for Method B because no Method B vadose or saturated leaching value has been established for TPH gasoline-, diesel- and oil-range mixtures.

µg/l = micrograms per liter mg/kg = milligrams per kilogram ND = not detected TPH = total petroleum hydrocarbons (V) = result from sample collected in vadose zone (S) = result from sample collected in saturated zone

Table 14 Post Interim Action Proposed Cleanup Levels Block 38 West Site Seattle, Washington Farallon PN: 397-019

						So	il Screening L	evels								Ground	water Screenin	g Levels				Chemical
	Method B	Pr	otection of	Groundwa	ter	Adjustme	ent Factors	Proposed	ES/CAP Soil	Maximum		Retained as				Adjustm	ent Factors				Retained as	Retained as
	Direct	Vados	o 7000	Saturat	od Zono		Practical	Cleanu	ip Level	Concentration	Retained	Proposed		Groundwater	Protection	Natural	Practical	Proposed	Maximum Concentration	Potoinod ac	Proposed	Proposed
	Contact	Vauos		Oaturat		Natural	Quantitation	(៣ը	j/kg)	Vadose	COPC for	FS/CAP (post		T	of Indoor Air	Backgroun	Quantitation	Screening	Detected at	Groundwater	COC for	(based on
	Level	Level		Level		Background	Limits	Vadose	Saturated	Saturated	RI Work	Interim	Level		Level	d	Limits	Level	Site	COPC for RI	FS/CAP (post	Soil or
Chemical	(mg/kg)	(mg/kg)	Basis	(mg/kg)	Basis	(mg/kg)	(mg/kg)	Zone	Zone	(mg/kg)	Plan	Action)	(µg/l)	Basis	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	Work Plan	Interim Action)	Groundwater)
TPH_diesel_ and oil_range					Method			[1		Petroleum	Hydrocarbons										[
organics		2,000	Method A#	2,000	A#		75	2,000	2,000	30,400 23,800	Yes	Yes	500	Method A			500	500	3,300	Yes	No	Yes
TPH, gasoline-range organics, benzene present	1,500*	30	Method A#	30	Method A#		5	30	30	2,100 83	Yes	No	800	Method A			100	800	2,100 ¹	Yes	No	No
TPH, gasoline-range organics, no detectable benzene	1,500*	100	Method A#	100	Method A#		5	100	100	2,100 83	Yes	No	1,000	Method A			100	1,000	2,100 ¹	Yes	No	No
	-				-				-	v	olatile Orga	anic Compound	s							-		
Acetone	72,000	29	Leach	2.1	Leach		0.005	29	2.1	Not Analyzed			7,200	Method B			5.0	7,200	7.4	No	No	No
Benzene	18	0.027	Leach	0.0017	Leach		0.001	0.027	0.0017	0.12 0.0033	Yes	No	5.0	MCL	2.4		0.20	2.4	5.1 ²	Yes	No	No
Chloroform	32	0.074	Leach	0.0048	Leach		0.001	0.074	0.0048	Not Analyzed			14	Method B/Adjusted MCL	1.2		0.20	1.2	2.7	No ³	No ³	No ³
cis-1,2-Dichloroethene	160	0.078	Leach	0.0052	Leach		0.001	0.078	0.0052	Not Detected ⁶	No	No	16	Method B	180		0.20	16	1.3	No	No	No ³
Ethylbenzene	8,000	5.9	Leach	0.34	Leach		0.001	5.9	0.34	0.13 0.0075	No	No	700	MCL	2,800		0.20	700	2.2	No	No	No
Tetrachloroethene	480	0.05	Leach	0.0028	Leach		0.001	0.05	0.0028	0.0041 ND	No	No	5.0	MCL	25		0.20	5.0	Not Detected	No	No	No
Toluene	6,400	4.5	Leach	0.27	Leach		0.005	4.5	0.27	0.49 0.018	No	No	640	Method B/Adjusted MCL	15,000		1.0	640	7.5	No	No	No
1,1,1-Trichloroethane	160,000	1.5	Leach	0.084	Leach		0.001	1.5	0.084	Not Analyzed			200	MCL	5,400		0.20	200	0.26	No	No	No
Xylenes	16,000	14	Leach	0.83	Leach		0.003	14	0.83	0.94 0.048	No No	No	1,600	Method B/Adjusted MCL	320		0.60	320	6.7	No	No	No
Nankthalana	1 000	4.5	Laash	0.04	Laash		0.0007	4 000 9	4 000 9			C Hydrocarbons	(PARS)	Mathad D	o o**		0.10	0.0**	650	Vee	Nia	Nie
Naprinaiene	1,000	4.5	Leach	0.24	Leach		0.0067	1,600 ⁻	1,600 -	22 9.8	Yes	No	160	Method B	8.9		0.10	8.9 ^m	10	Yes	No	No
	34	0.002	Leach	0.0042	Leach		0.0067	34 9	34 ⁹	14 7.3	Yee	No	1.0	Method B			0.10	1.5	10	fes	No	No
	320	1.7	Leach	0.000	Leach		0.0067	320	320	15 0.0	No	No	32	Method B			0.10	32	83	No	No	No
	4,000	43	Leach	2.5	Leach		0.0007	43	2.0	0.4510.045	No	No	400				0.10	400	0.12	No	No	No
	24.000	1 100	Leach	57	Leach		0.0007	1 100	57	331029	No	No	2 400	Method B			0.10	2 400	Not Detected	No	No	No
Benzo(a h i)Pervlene							0.0067			851021	No	No	2,400				0.010		Not Detected	No	No	No
Eluoranthene	3 200	630	Leach	32	Leach		0.0067	630	32	18 0.97	No	No	640	Method B			0.10	640	Not Detected	No	No	No
Fluorene	3 200	51	Leach	2.6	Leach		0.0067	51	2.6	13 022	No	No	320	Method B			0.10	320	16	No	No	No
Phenanthrene							0.0067			18 1.0	No	No					0.10		0.48	No	No	No
Pyrene	2,400	330	Leach	16	Leach		0.0067	330	16	27 1.1	No	No	240	Method B			0.10	240	Not Detected	No	No	No
	,										Carcino	genic PAHs										
Benzo(a)Pyrene	0.19	3.9	Leach	0.19	Leach		0.0067	0.19	0.19	120 120	Yes	Yes	0.2	MCL			0.010	0.2	0.023	No	No	Yes
Benzo(a)Anthracene	cPAH TEC	cPAH TEC	Leach	cPAH TEC	Leach		0.0067	cPAH TEC	cPAH TEC	110 91	Yes	Yes	cPAH TEC	cPAH TEC			0.010	cPAH TEC	0.043	No	No	Yes
Benzo(b)Fluoranthene	cPAH TEC	cPAH TEC	Leach	cPAH TEC	Leach		0.0067	cPAH TEC	cPAH TEC	100 120	Yes	Yes	cPAH TEC	cPAH TEC			0.010	cPAH TEC	0.031	No	No	Yes
Benzo(j,k)Fluoranthene	cPAH TEC	cPAH TEC	Leach	cPAH TEC	Leach		0.0067	cPAH TEC	cPAH TEC	31 24	Yes	Yes	cPAH TEC	cPAH TEC			0.010	cPAH TEC	Not Detected	No	No	Yes
Chrysene	cPAH TEC	cPAH TEC	Leach	cPAH TEC	Leach		0.0067	cPAH TEC	cPAH TEC	110 110	Yes	Yes	cPAH TEC	cPAH TEC			0.010	cPAH TEC	0.036	No	No	Yes
Dibenzo(a,h)Anthracene	cPAH TEC	cPAH TEC	Leach	cPAH TEC	Leach		0.0067	cPAH TEC	cPAH TEC	9.9 9.1	Yes	Yes	cPAH TEC	cPAH TEC			0.010	cPAH TEC	Not Detected	No	No	Yes
Indeno(1,2,3-cd)Pyrene	cPAH TEC	cPAH TEC	Leach	cPAH TEC	Leach		0.0067	cPAH TEC	cPAH TEC	63 69	Yes	Yes	cPAH TEC	cPAH TEC			0.010	cPAH TEC	0.014	No	No	Yes
cPAH TEC	0.19	3.9	Leach	0.19	Leach		NA	0.19	0.19	152 150	Yes	Yes	0.2	MCL			NA	0.2	0.033	No	No	Yes

Table 14 **Post Interim Action Proposed Cleanup Levels Block 38 West Site** Seattle, Washington **Farallon PN: 397-019**

						So	il Screening L	evels								Groundv	vater Screeni	ng Levels				Chemical
	Method B	Pro	otection of	Groundwa	ter	Adjustme	nt Factors	Proposed P	S/CAP Soil	Maximum		Retained as				Adjustme	ent Factors	_			Retained as	Retained as
	Direct Contact	Vados	e Zone	Saturat	ed Zone	Natural	Practical	Cleanu (mg	p Level /kg)	Concentration Detected at Site	Retained as Soil	Proposed Soil COC for ES/CAP (post		Groundwater	Protection of Indoor Air	Natural	Practical	Proposed Groundwater	Maximum Concentration	Retained as Groundwater	Proposed Groundwater	Proposed COC (based on
	Level	Level		Level		Background	Limits	Vadose	Saturated	Saturated	RI Work	Interim	Level		Level	d	Limits	Level	Site	COPC for RI	FS/CAP (post	Soil or
Chemical	(mg/kg)	(mg/kg)	Basis	(mg/kg)	Basis	(mg/kg)	(mg/kg)	Zone	Zone	(mg/kg)	Plan	Action)	(µg/l)	Basis	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	Work Plan	Interim Action)	Groundwater)
											N	letals										
Arsenic	0.67	4.7	Leach	0.23	Leach	7.3	5	7.3	7.3	13 ND	No ³	No ³	0.58	Method B/Adjusted MCL		8.0 ⁵	3.3	8.0	Not Analyzed	No ³	No ³	No ³
Barium	16,000	1,600	Leach	83	Leach		2.5	16,000 ⁹	16,000 ⁹	490 290	Yes	No	2,000	MCL			28	2,000	Not Analyzed	Yes	No	No
Cadmium	80	0.69	Leach	0.035	Leach	0.77 4	0.50	0.77 4	0.77 4	2.4 ND	No ³	No ³	5.0	MCL			4.4	5.0	Not Analyzed	No ³	No ³	No ³
Chromium ⁷	120,000	480,000	Leach	24,000	Leach	48	0.50	120,000	24,000	48 100	No	No	100	MCL			2.0	100	Not Analyzed	No	No	No
Lead	250 ⁸	3,000	Leach	150	Leach	16.83	5.0	250	150	21,000 240	No ³	No ³	15	MCL			1.1	15	Not Analyzed	No ³	No ³	No ³
Mercury		2.1	Leach	0.1	Leach	0.07	0.25	2.1	2.1 ⁹	ND 1.2	Yes	No	2.0	MCL	1.1		0.50	1.1	Not Analyzed	Yes	No	No
NOTES																						

NOTES:

Shading represents most stringent screening level, natural background concentration, or practical quanititaiton limit for vadose zone soil.

Shading represents most stringent screening level, natural background concentration, or practical quanititation limit for saturated zone soil.

Shading indicates the chemical or specific matrix is not a COPC for the FS/CAP after completion of the Remedial Investigation.

Shading indicates a change from information provided in the RI Work Plan screening level table (Table 13).

--- denotes no screening level established for this parameter.

cPAH TEC = Carcinogenic polycyclic aromatic hydrocarbon toxic equivalent concentration (cPAH TEC) calculated following the total toxicity equivalency method in Section 708(8) of Chapter 173-340 of the Washington Administrative Code. Leach = Washington State Cleanup Levels and Risk Calculations (CLARC) under Washington State Model Toxics Control Act Cleanup Regulation (MTCA), default soil concentrations protective of groundwater from CLARC Master spreadsheet, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC

MCL = Federal Maximum Contaminant Level (MCL), 40 Code of Federal Regulations (CFR) Part 141.

Method A = MTCA Method A Soil Cleanup Levels for Unrestricted Land Uses, Table 740-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013.

Method B = Washington State CLARC under Washington State MTCA, Standard Method B Formula Values from CLARC Master spreadsheet, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC

¹ Result was derived from a reconnaissance groundwater sample. Analysis of reconnaissance groundwater samples can result in potentially biased data due to turbidity of the sample and greater presence of suspended

solids that hazardous substances can sorb onto. This detection in groundwater was flagged by the laboratory because the sample chromatogram was not similar to a typical gas.

² Result was derived from a reconnaissance groundwater sample. Analysis of reconnaissance groundwater samples can result in potentially biased data due to turbidity of the sample and greater presence of suspended solids that hazardous substances can sorb onto.

³ Section 6.4 of the Agency Review Draft-Remedial Investigation Work Plan provides additional information as to why the COPC was not retained for further evaluation for the Block 38 West Site. Arsenic, cadmium and lead are not retained as COPCs for Block 38 West based on historical data indicating that the source is likely associated with the adjacent Rosen Property Site.

⁴ Arsenic and cadmium screening levels adjusted for natural background concentrations provided in Natural Background Soil Metals Concentrations in Washington State, Washington State Department of Ecology, Publication #94-115, October 1994. ⁵ Puget Sound Lowland natural background concentration from Natural Background Groundwater Arsenic Concentrations in Washington State, Study Results, Washington State Department of Ecology, Publication No. 14-09-044, dated January 2022.

⁶ Reporting limits for cis-1,2-dichloroethene in soil ranged from 0.00074 mg/kg to 0.0044 mg/kg.

⁷ Values based on trivalent chromium risk-based values for soil SLs (120,000 mg/kg for direct contract, 480,000 mg/kg vadose leaching, 24,000 saturated leaching) since there is no known source of hexavalent chromium used on the Block 38 West Property. Background levels are based on total chromium. Total chromium groundwater screening level of 100 µg/L based on the MCL. ⁸ Value based on Method A as a surrogate for Method B as no Method B direct contact value for soil has been established.

⁹ Ecology approved the use of the direct contact soil screening level for this chemical.

* Source of this value is the generic TPH cleanup level from Model Remedies for Sites with Petroleum Contaminated Soils, Washington State Department of Ecology, Publication No. 15-09-043, Revised: December 2017.

** MTCA Method B vapor intrusion groundwater screening level for naphthalene is applicable for the Shallow Water-Bearing Zone and the Method B screening level for drinking water is applicable for the deeper Intermediate Water-Bearing Zone

Method A is used as a surrogate for Method B because no Method B vadose or saturated leaching value has been established for TPH gasoline-, diesel- and oil-range mixtures.

CAP = Cleanup Action Plan COC = contaminant of concern COPC = contaminant of potential concern FS = Feasibility Study µg/I = micrograms per liter mg/kg = milligrams per kilogram NA = not applicable ND = not detected TPH = total petroleum hydrocarbons

Standard, Requirement, or Limitation ¹	Applicability
Location-Specific ARARs ²	
State Environmental Policy Act (RCW 43.21C; WAC 197-11 and WAC 173-802)	SEPA review is required for MTCA cleanup actions; Ecology will be the lead agency for this effort.
Native American Graves Protection and Repatriation Act (25 USC 3001 through 3013; 43 CFR 10) Washington's Indian Graves and Records Law (RCW 27.44)	These statutes prohibit the destruction or removal of Native American cultural items and require written notification of inadvertent discovery to the appropriate agencies and Native American tribe. These programs are applicable to the cleanup action if cultural items are found. The activities must cease in the area of the discovery; a reasonable effort must be made to protect the items discovered; and notice must be provided.
Archaeological Resources Protection Act(16 USC 470aa et seq.; 43 CFR 7)	This program sets forth requirements that are triggered when archaeological resources are discovered. These requirements only apply if archaeological items are discovered during implementation of the selected remedy.
National Historic Preservation Act (16 USC 470 et seq.; 36 CFR parts 60, 63, and 800)	This program sets forth a national policy of historic preservation and provides a process that must be followed to ensure that impacts of actions on archaeological, historic, and other cultural resources are protected.
ESA [16 USC §§ 1531-1544] and Implementing Regulations	The ESA protects species of fish, wildlife, and plants that are listed as threatened or endangered with extinction. It also protects designated critical habitat for listed species. The ESA outlines procedures for federal agencies to follow, including consultation with resource agencies, when taking actions that may jeopardize listed species. No threatened or endangered species or habitat areas are expected to be impacted by the planned cleanup action.

Standard, Requirement, or Limitation ¹	Applicability
U.S. Archaeological and Historic Preservation Act [16 USC § 469, 470 et seq.; 36 CFR Parts 65 and 800] Washington Archaeological Sites and Resources [RCW 27.44, 27.48, and 27.53; Chapter 25-48 WAC]	Actions must be taken to preserve and recover significant artifacts, preserve historic and archaeological properties and resources, and minimize harm to national landmarks. There are no known historic or archaeological sites in the vicinity of the Site, but these regulations may be applicable if archaeological resources are discovered during construction.
Clarification of SEPA Historic Preservation Policy for Potential Archaeologically Significant Sites and Requirements for Archaeological Assessments (Director's Rule 2-98; SMC Chapter 25.05.675 H)	Provides guidance for the identification, protection, and treatment of archaeological sites on the City of Seattle's shorelines. The archaeological significance of a project site must be assessed for any proposed project involving excavation within 200 feet of the U.S. Government Meander line which approximates the historical shoreline. The Site is within 200 feet of the historical shoreline of Lake Union.
Shoreline Management Act of 1971 [RCW 90.58] and Implementing Regulations	Actions are prohibited within 200 feet of shorelines of statewide significance unless permitted. The Site is not within 200 feet of the current shoreline of Lake Union.
Shoreline Management Act of 1971 [RCW 90.58] and Implementing Regulations	The construction or management of property in wetlands is required to minimize potential harm, avoid adverse effects, and preserve and enhance wetlands. The Site is not within a wetland.

Standard, Requirement, or Limitation ¹	Applicability
Action-Specific ARARs ³	
State Environmental Policy Act (RCW 43.21C, WAC 197-11 and WAC 173-802)	Establishes the state's policy for protection and preservation of the natural environment. Applies to cleanup actions conducted under MTCA. A SEPA review is required for local permitting pursuant to MTCA and was completed for the interim actions.
Resource Conservation and Recovery Act (42 USC 6921- 6949a; 40 CFR Part 268, Subtitles C and D)	Establishes requirements for the identification, handling, and disposal of hazardous and nonhazardous waste. These regulations establish guidelines and criteria from which states develop solid waste regulations. Subtitle C of RCRA pertains to the management of hazardous waste. These requirements are applicable for the interim actions completed and planned cleanup action since it involves off-Site disposal of impacted soil, groundwater, treatment media, and/or wastewater designated as hazardous waste. Subtitle D of RCRA establishes a framework for management of nonhazardous solid waste. These requirements are applicable for the interim actions completed and planned cleanup action since it involves off-Site disposal of impacted soil and/or groundwater designated as nonhazardous waste.
Dangerous Waste Regulations (RCW 70.105; WAC 173-303)	Establishes regulations that are the state equivalent of RCRA requirements for determining whether a solid waste is a state dangerous waste. This regulation also provides requirements for the management of dangerous wastes. These requirements are applicable for the interim actions completed and planned cleanup action since it involves off-Site disposal of impacted soil, groundwater, treatment media, and/or wastewater designated as hazardous waste.
Solid Waste Disposal Act (42 USC Sec. 6901-6992; 40 CFR 257-258) Federal Land Disposal Requirements (40 CFR 268)	Protects health and the environment and promotes conservation of valuable material and energy resources. The Solid Waste Disposal Act establishes a framework for regulation of solid waste disposal. Federal land disposal requirements promulgated under the authority of the Solid Waste Disposal Act set minimum safety requirements for landfills including limitations on storage and land disposal for hazardous substances.

Standard, Requirement, or Limitation ¹	Applicability
Action-Specific ARARs ³ (cont.)	
Department of Transportation Hazardous Materials Regulations (49 CFR 172)	Regulates the safe and secure transportation of hazardous materials, including documentation and handling requirements for shipping. These requirements are applicable for the interim actions completed and planned cleanup action since it involves off-Site disposal of impacted soil, groundwater, treatment media, and/or wastewater designated as hazardous waste.
Washington Minimum Functional Standards for Solid Waste Handling (WAC 173-304)	Sets minimum functional standards for the proper handling of all solid waste materials originating from residences, commercial, agricultural, and industrial operations, as well as other sources.
Washington Solid Waste Handling Standards (RCW 70.95 and WAC 173-351 and 173-304)	Establishes minimum standards for handling and disposal of solid waste. Solid waste includes wastes that are likely to be generated as a result of site remediation, including contaminated soils, construction and demolition wastes, and garbage.
Noise Control Act of 1974 (RCW 70.107, WAC 173-60, SMC Chapter 25.08)	Establishes maximum noise levels.Construction activities will be limited to normal working hours, to the extent possible, to minimize noise impacts.
Accreditation of Environmental Laboratories (RCW 43.21A.230 and WAC 173-50)	Required persons or organizations submitting analytical data under the purview of Ecology, Department of Health, and other entities, to use environmental laboratories which are accredited.
City of Seattle Traffic Code (SMC 11.1)	The City of Seattle code regulates construction use and permitting in the right-of-way. Guidelines for grading activities, applicable since the interim actions completed and planned cleanup action involves an excavation and filling volume greater than 500 cubic yards.
City of Seattle Construction Codes for Grading (SMC 22.170)	Required for the excavation or addition of material within an Environmentally Critical Area, movement of more than 500 cubic yards of material, and in-place modification of the ground (soil remediation).
Seattle of Seattle Construction Codes for Demolition (Seattle Building Code Chapter 33)	Regulates the demolition of any structures within an Environmentally Critical Area or greater than 120 square feet in size.

Standard, Requirement, or Limitation ¹	Applicability
National Electrical Code (NFPA 70) and the Seattle Electric Code Supplement for Class 1 Division 2 Environments.	Establishes restrictions and guidelines for temporary and/or permanent electrical installations.
King County Industrial Waste Program	The King County Industrial Waste Program monitors discharge of liquid waste to the wastewater (sanitary sewer) system. Any discharges during construction to the wastewater system must be approved by King County prior to discharge. The King County Industrial Waste Program monitors volume and water quality of liquid waste discharged to the system. Guidelines for erosion control and construction stormwater management. These regulations are applicable since the completed interim actions and planned cleanup action involves construction requiring dewatering and stormwater management.
U.S. Federal Water Pollution Control ActNPDES [CWA; 33 USC § 1342, Section 402] and Implementing Regulations Washington Waste Discharge General Permit Program [RCW 90.48; Chapter 173-226 WAC]	The NPDES program establishes requirements for point source discharges, including stormwater runoff. These requirements are applicable to the planned cleanup action since the interim actions involved point source discharge of stormwater during construction or following cleanup.

Standard, Requirement, or Limitation ¹	Applicability
Action-Specific ARARs ³ (cont.)	
Federal, State, and Local Air Quality Protection Programs State Implementation of Ambient Air Quality Standards Regional Standards for Fugitive Dust Emissions Toxic Air Pollutants	Regulations promulgated under the federal Clean Air Act (42 USC 7401) and the Washington State Clean Air Act (RCW 70.94) govern the release of airborne contaminants from point and non-point sources. Local air pollution control authorities such as PSCAA have also set forth regulations for implementing these air quality requirements. These requirements may be applicable to the Site for the purposes of demolition or dust control. PSCAA requires notification prior to demolition of any building with asbestos-containing material. Both PSCAA (under Regulation III) and WAC 173-460 establish ambient source impact levels for arsenic.
Clean Air Act and Implementing Regulations [RCW 70A.15; Chapter 173-400 WAC]	These regulations require the owner or operator of a source of fugitive dust to take reasonable precautions to prevent fugitive dust from becoming airborne and to maintain and operate the source to minimize emissions primarily during construction. These regulations are applicable for interim actions completed and the planned cleanup action due to active construction.
Regional Emission Standards for Toxic Air Pollutants [PSCAA Regulations I and III]	A source of toxic air contaminant requires a notice of construction. This is applicable for interim actions completed and the planned cleanup action due to active construction and construction dewatering treatment system.
U.S. OSHA [29 CFR Parts 1904, 1910, and 1926] WISHA [RCW 49.17; Title 296 WAC]	Site worker and visitor health and safety requirements established by OSHA/WISHA were met during implementation of the interim actions completed and are applicable to the planned cleanup action.
Minimum Standards for Construction and Maintenance of Wells [RCW 18.104; Chapter 173-160 WAC]	Washington State has developed minimum standards for constructing water and monitoring wells, and for the decommissioning of wells. These regulations are applicable since the planned cleanup action involves drilling or decommissioning wells.

Standard, Requirement, or Limitation ¹	Applicability	
Chemical-Specific ARARs ⁴		
Model Toxics Control Act (RCW 70A.305 and WAC 173-340)	Establishes Washington administrative processes and standards to identify, investigate, and clean up facilities where hazardous substances have come to be located.	
Drinking Water Standards—State MCLs (WAC 246-290-310)	Establishes standards for contaminant levels in drinking water for water system purveyors.	
Water Quality Standards for Groundwaters of the State of Washington (WAC 173-200)	Implements the Water Pollution Control Act and the Water Resources Act of 1971 (90.54 RCW).	
National Recommended Water Quality Standards (40 CFR 131) Washington Maximum Contaminant Levels (WAC 246- 290-310)	These water quality standards define the water quality goals of the water body by designating the use or uses to be made of the water and by setting criteria necessary to protect the uses. States adopt water quality standards from 40 CFR 131 to protect public health or welfare, enhance the quality of water, and serve the purposes of the CWA. Washington water quality standards (MCLs) are presented in WAC.	
MTCA [RCW 70A.305; Chapter 173- 340 WAC]	The MTCA soil cleanup levels are applicable.	
MTCA [RCW 70A.305; Chapter 173- 340 WAC]	The MTCA groundwater cleanup levels are applicable.	

NOTES:

¹ Projects conducted under an agreed order or consent decree are exempt from the procedural requirements of most state and local permits (RCW 70.305D.090); however, the remedial actions must still comply with the substantive requirements of the exempt permits. Therefore, for exempt permits, the statutory review timelines do not apply; actual timelines will be based on negotiations with the jurisdiction or agency, which should result in an expedited review timeline.

² Location-specific ARARs are requirements that are applicable to the specific area where the Site is located, and can restrict the performance of activities, including cleanup actions, solely because they occur in specific locations.

³ Action-specific ARARs are requirements that are applicable to certain types of activities that occur or technologies that are used during the implementation of cleanup actions.

⁴ Chemical-specific ARARs are applicable to the types of contaminants present at the Site. The cleanup of contaminated media at the Site must meet the CULs developed under MTCA; these CULs are considered chemical-specific ARARs.

ABBREVIATIONS:

CFR = Code of Federal Regulations CWA = Clean Water Act Ecology = Washington State Department of Ecology ESA = Endangered Species Act MCL Maximum Contaminant Level MTCA = Model Toxics Control Act Cleanup Regulation NFPA = National Fire Protection Association NPDES = National Pollutant Discharge Elimination System OSHA = Occupational Safety and Health Act PSCAA = Puget Sound Clean Air Agency RCRA = Resource Conservation and Recovery Act RCW = Revised Code of Washington SEPA = State Environmental Policy Act SMC = Seattle Municipal Code USC = U.S. Code WAC = Washington Administrative Code WISHA = Washington Industrial Safety and Health Act