

## REMEDIAL INVESTIGATION/FOCUSED FEASIBILITY STUDY

### BLOCK 38 WEST SITE 500 THROUGH 536 WESTLAKE AVENUE NORTH SEATTLE, WASHINGTON

Agreed Order No. DE 17963
Facility Site Identification No. 62773
Cleanup Site Identification No. 15008

Farallon PN: 397-019

December 20, 2024

Prepared by:

Greg Peters
Project Scientist

Yusuf Pehlivan, L.G. Associate Geologist

Yusuf Pehlivan

Reviewed by:

Suzy Stumpf, P.E. Principal Engineer

For:

City Investors IX LLC 505 5<sup>th</sup> Avenue South Seattle, Washington 98104 Submitted by:
Farallon Consulting, L.L.C.
13555 Southeast 36<sup>th</sup> Street, Suite 320
Bellevue, Washington 98006



#### **TABLE OF CONTENTS**

| 1.0 | INTRO  | DUCTION                                                        | 1-1  |
|-----|--------|----------------------------------------------------------------|------|
|     | 1.1    | PURPOSE AND OBJECTIVE                                          | 1-3  |
|     | 1.2    | REPORT ORGANIZATION                                            | 1-3  |
| 0.0 | DI 001 | V OO WEGT CITE DECODIDION AND DACKOROLING                      | 0.4  |
| 2.0 |        | K 38 WEST SITE DESCRIPTION AND BACKGROUND                      |      |
|     | 2.1    | BLOCK 38 WEST PROPERTY DESCRIPTION                             |      |
|     | 2.2    | BLOCK 38 WEST PROPERTY HISTORY                                 |      |
|     | 2.3    | BLOCK 38 WEST PROPERTY CURRENT LAND USE                        |      |
|     | 2.4    | ADJACENT AND SURROUNDING LAND USES                             |      |
|     |        | 2.4.1 North – Block 37 Property                                |      |
|     |        | 2.4.2 East – Block 38 East Property                            | 2-4  |
|     |        | 2.4.3 South – 428 Westlake LLC and Firestone Tire & Rubber Co. |      |
|     |        | Properties                                                     |      |
|     |        | 2.4.4 West – Amazon VI Property                                | 2-6  |
|     |        | 2.4.5 Former American Linen Supply Co – Former American Linen  |      |
|     |        | Property                                                       | 2-1  |
|     | 2.5    | REGULATORY HISTORY                                             |      |
|     | 2.6    | GEOLOGY AND HYDROGEOLOGY                                       | _    |
|     | 2.7    | VULNERABLE POPULATIONS AND OVERBURDENED COMMUNITIES            |      |
|     | 2.8    | CLIMATE CHANGE                                                 |      |
|     |        | 2.8.1 Sea Level Rise                                           |      |
|     |        | 2.8.2 Flooding                                                 |      |
|     |        | 2.8.3 Wildfires                                                |      |
|     |        | 2.8.4 Landslides and Erosion                                   |      |
|     |        | 2.8.5 Drought                                                  | 2-18 |
| 3.0 | SUMM   | MARY OF PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIONS           | 3-1  |
| 0.0 | 3.1    | PHASE II SOIL INVESTIGATION - DAMES & MOORE, 1994              |      |
|     | 3.2    | GEOTECHNICAL INVESTIGATION – GEOENGINEERS, 2018                |      |
|     | 3.3    | SUBSURFACE INVESTIGATIONS                                      |      |
|     | 3.4    | SUPPORTING DATA FROM ADJACENT PROPERTY INVESTIGATIONS          |      |
|     | 5.7    | 3.4.1 North - Block 37 Property                                |      |
|     |        | 3.4.2 East – Block 38 East Property                            |      |
|     |        | 3.4.3 Former American Linen Property                           |      |
|     |        | • •                                                            |      |
| 4.0 | INDEF  | PENDENT INTERIM ACTION                                         | 4-1  |
|     | 4.1    | INDEPENDENT INTERIM ACTION OBJECTIVES                          |      |
|     | 4.2    | CONSTRUCTION DEWATERING AND TREATMENT                          | 4-2  |
|     | 4.3    | MONITORING WELL DECOMMISSIONING                                |      |
|     | 4.4    | EXCAVATION AND OFF-PROPERTY DISPOSAL OF CONTAMINATED SOIL.     | 4-5  |
|     | 4.5    | UTILITY DECOMMISSIONING - SIDE SEWER LINE                      | 4-6  |
|     | 4.6    | UST DECOMMISSIONING                                            | 4-7  |
|     |        | 4.6.1 UST01                                                    | 4-9  |
|     |        | 4.6.2 Fuel Product Line                                        | 4-10 |



|     | 4.7 | 4.6.3 UST02VAPOR BARRIER INSTALLATION AND WATERPROOF FOUNDATION |      |
|-----|-----|-----------------------------------------------------------------|------|
|     |     |                                                                 |      |
| 5.0 |     | AREA INTERIM ACTION                                             | 5-1  |
|     | 5.1 | EXCAVATION AND OFF-PROPERTY DISPOSAL OF CONTAMINATED SOIL       |      |
|     | 5.2 | UTILITY AND STRUCTURAL IMPROVEMENTS                             | 5-2  |
| 6.0 |     | DIAL INVESTIGATION                                              |      |
|     | 6.1 | PRELIMINARY CLEANUP LEVEL DEVELOPMENT                           |      |
|     | 6.2 | CONSTITUENTS OF POTENTIAL CONCERN                               |      |
|     | 6.3 | 2023 TO 2024 REMEDIAL INVESTIGATION OBJECTIVES                  |      |
|     |     | 6.3.1 Soil                                                      |      |
|     |     | 6.3.2 Groundwater                                               |      |
|     | 6.4 | REMEDIAL INVESTIGATION FIELD PROGRAM                            |      |
|     |     | 6.4.1 Permitting                                                |      |
|     |     | 6.4.2 Subsurface Utility Location                               |      |
|     |     | 6.4.3 Boring Advancement and Soil Sampling                      |      |
|     |     | 6.4.4 Monitoring Well Installation                              |      |
|     |     | 6.4.5 Groundwater Monitoring                                    |      |
|     |     | 6.4.6 Laboratory Analysis                                       |      |
|     | 6.5 | REMEDIAL INVESTIGATION RESULTS                                  |      |
|     |     | 6.5.1 Groundwater Elevations and Flow                           |      |
|     |     | 6.5.2 Soil Analytical Results                                   |      |
|     | 0.0 | 6.5.3 Groundwater Analytical Results                            |      |
|     | 6.6 | DATA VALIDATION                                                 | 6-21 |
| 7.0 |     | RE AND EXTENT OF CONTAMINATION                                  |      |
|     | 7.1 | SOIL                                                            |      |
|     |     | 7.1.1 Gasoline-Range Organics                                   |      |
|     |     | 7.1.2 Benzene                                                   |      |
|     |     | 7.1.3 Total DRO+ORO                                             |      |
|     |     | 7.1.4 Naphthalenes                                              |      |
|     |     | 7.1.5 Carcinogenic Polycyclic Aromatic Hydrocarbons             |      |
|     |     | 7.1.6 Barium and Mercury                                        |      |
|     | 7.2 | GROUNDWATER                                                     |      |
|     |     | 7.2.1 Gasoline-Range Organics                                   |      |
|     |     | 7.2.2 Benzene                                                   |      |
|     |     | 7.2.3 Total DRO+ORO                                             |      |
|     |     | 7.2.4 Naphthalenes                                              |      |
|     |     | 7.2.5 Barium and Mercury                                        | 7-9  |
| 8.0 |     | EPTUAL SITE MODEL                                               |      |
|     | 8.1 | CONFIRMED AND SUSPECTED SOURCES OF CONTAMINATION                |      |
|     | 8.2 | MEDIA OF CONCERN                                                |      |
|     | 8.3 | TRANSPORT PATHWAYS                                              |      |
|     | 8.4 | POTENTIAL RECEPTORS AND EXPOSURE PATHWAYS                       |      |
|     |     | 8.4.1 Soil Direct Contact                                       |      |
|     |     | 8.4.2 Groundwater Ingestion/Drinking Water Beneficial Use       | 8-5  |



|           | 8.5<br>8.6 | 8.4.3 Vapor Inhalation                                         | 8-6<br>8-6<br>8-7 |
|-----------|------------|----------------------------------------------------------------|-------------------|
| 9.0       | FOCL       | JSED FEASIBILITY STUDY                                         | 9-1               |
|           | 9.1        | SUMMARY OF REMAINING CONTAMINATION AND APPLICABLE CLEANUP      | 0.4               |
|           | 9.2        | STANDARDSCLEANUP ACTION REQUIREMENTS AND GOALS                 |                   |
|           | 9.3        | TECHNOLOGY SCREENING AND ASSESSMENT OF INTERIM REMEDIAL        |                   |
|           | 9.4        | ACTIONSSELECTED CLEANUP ACTION                                 |                   |
|           | 9.5        | EVALUATION OF SELECTED CLEANUP ACTION                          |                   |
| 10.0      | REFE       | RENCES                                                         | 10-1              |
|           |            |                                                                |                   |
| 11.0      | 11.1       | FATIONSGENERAL LIMITATIONS                                     |                   |
|           | 11.2       |                                                                |                   |
|           |            |                                                                |                   |
|           |            | FIGURES                                                        |                   |
| Figure    | 1          | Vicinity Map                                                   |                   |
| Figure    |            | Site Plan with Historical Features                             |                   |
| Figure    |            | Site Plan with Sample Locations                                |                   |
| Figure    |            | Soil Analytical Results for GRO                                |                   |
| Ū         |            | Soil Analytical Results for Benzene                            |                   |
| Figure    |            | •                                                              |                   |
| Figure    |            | Soil Analytical Results for DRO                                |                   |
| Figure    |            | Soil Analytical Results for ORO                                |                   |
| Figure    |            | Soil Analytical Results for DRO + ORO                          |                   |
| Figure    | 9          | Soil Analytical Results for Naphthalenes                       |                   |
| Figure    | 10         | Soil Analytical Results for cPAH TEC                           |                   |
| Figure    | 11A        | Groundwater Elevation Contours Shallow Water-Bearing Zone      |                   |
| Figure    | 11B        | Groundwater Elevation Contours Intermediate Water-Bearing Zone |                   |
| Figure    | 11C        | Groundwater Elevation Contours Deep Outwash Aquifer            |                   |
| Figure    | 12         | Groundwater Analytical Results for GRO                         |                   |
| Figure 13 |            | Groundwater Analytical Results for Benzene                     |                   |



| Figure 14 | Groundwater Analytical Results for DRO + ORO                                          |
|-----------|---------------------------------------------------------------------------------------|
| Figure 15 | Groundwater Analytical Results for Naphthalenes                                       |
| Figure 16 | Groundwater Analytical Results for cPAH TEC                                           |
| Figure 17 | Cross Section A-A'                                                                    |
| Figure 18 | Cross Section B-B'                                                                    |
| Figure 19 | Cross Section C-C'                                                                    |
| Figure 20 | Cross Section D-D'                                                                    |
| Figure 21 | Cross Section E-E'                                                                    |
| Figure 22 | Soil Analytical Results for UST Decommissioning                                       |
| Figure 23 | Extent of Vapor Barrier                                                               |
| Figure 24 | Post Interim Action Soil Analytical Results for DRO+ORO                               |
| Figure 25 | Post Interim Action Soil Analytical Results for cPAHs                                 |
| Figure 26 | Post Interim Action Cross Section A-A'                                                |
| Figure 27 | Post Interim Action Cross Section B-B'                                                |
| Figure 28 | Post Interim Action Cross Section E-E'                                                |
| Figure 29 | Exposure Pathway Analysis                                                             |
|           | TABLES                                                                                |
| Table 1   | Soil Analytical Results for TPH and BTEX                                              |
| Table 2   | Soil Analytical Results for PAHs                                                      |
| Table 3   | Soil Analytical Results for Select CVOCs                                              |
| Table 4   | Soil Analytical Results for PCBs                                                      |
| Table 5   | Soil Analytical Results for Metals                                                    |
| Table 6   | Groundwater Elevations                                                                |
| Table 7   | Groundwater Analytical Results for TPH and BTEX                                       |
| Table 8   | Groundwater Analytical Results for PAHs                                               |
| Table 9   | Groundwater Analytical Results for Select CVOCs                                       |
| Table 10  | Groundwater Analytical Results for Select PCBs                                        |
| Table 11  | Groundwater Analytical Results for Metals                                             |
| Table 12  | Groundwater Analytical Results for DRO and ORO with and without Silica Gel<br>Cleanup |



Table 13 Remedial Investigation Work Plan Preliminary Screening Levels
 Table 14 Post Interim Action Proposed Cleanup Levels
 Table 15 Applicable Local, State, and Federal Laws


#### **APPENDICES**

| Appendix A | Boring Logs                                                 |
|------------|-------------------------------------------------------------|
| Appendix B | EJ Screening Tool and EHD Map Community Reports             |
| Appendix C | Analytical Laboratory Results                               |
| Appendix D | ATC Cleanup Action Summary                                  |
| Appendix E | GeoEngineers Cleanup Action Summary                         |
| Appendix F | Deep Outwash Aquifer Monitoring                             |
| Appendix G | Middour Consulting LLC Groundwater Control Design           |
| Appendix H | WaterTectonics Water Treatment System Design                |
| Appendix I | UST01 and UST02 Decommissioning Records                     |
| Appendix J | Vapor Barrier Specifications                                |
| Appendix K | Remedial Investigation Sampling and Analysis Summary Tables |
| Appendix L | Well Survey Report                                          |
| Appendix M | Data Validation Report                                      |
| Appendix N | Terrestrial Ecological Evaluation                           |

## APPENDIX A BORING LOGS

REMEDIAL INVESTIGATION/FOCUSED FEASIBILITY STUDY
Block 38 West Site
500 through 536 Westlake Avenue North
Seattle, Washington

Farallon PN: 397-019





(mdd)

Page 1 of 3

Washington Builders LLC Client:

Project: Block 43

Location: Block 38, Seattle, WA

**Farallon PN: 397-010** 

Logged By: Dincer Kayhan

Date/Time Started: 7/21/14 @ 0945 7/22/14 @

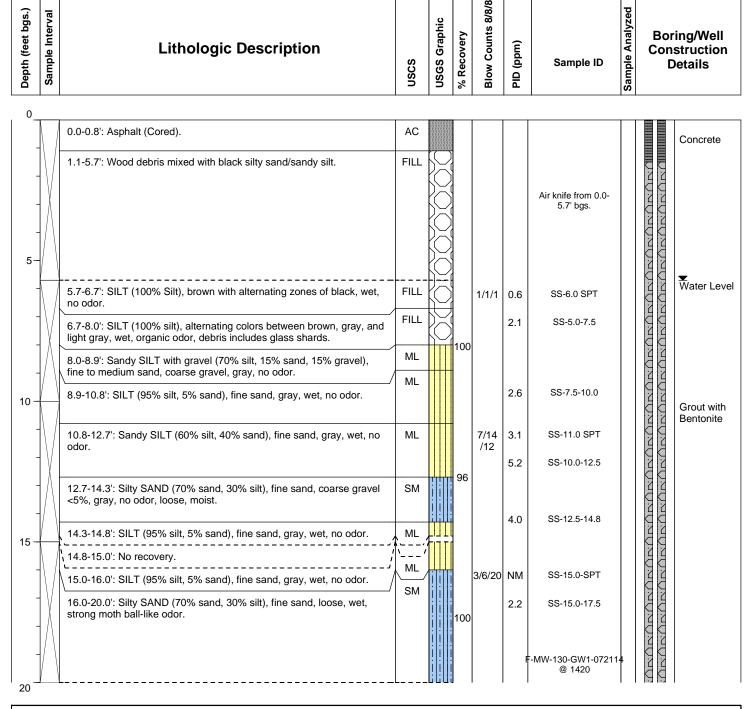
Date/Time Completed: Equipment: Spider 1576

**Drilling Company:** Cascade Drilling **Drilling Foreman:** Zane Huckins

**Drilling Method:** 

Sampler Type: PE Bags

Sample ID


Drive Hammer (lbs.): Auto Depth of Water ATD (ft bgs): 5.7 Total Boring Depth (ft bgs): 60.0

Total Well Depth (ft bgs): 55

**Lithologic Description** 

Sonic

Boring/Well Construction **Details** 



Monument Type: Flush Mount Casing Diameter (inches): Screen Slot Size (inches): 0.010 Screened Interval (ft bgs): 45.0-55.0 **Well Construction Information** 

Filter Pack: 10/20 Sand Surface Seal: Concrete **Annular Seal: Bentonite Boring Abandonment:** 

**Ground Surface Elevation (ft):** Top of Casing Elevation (ft): Surveyed Location:

X:NA Y: NA 23

NA



Page 2 of 3

Client: Washington Builders LLC

Project: Block 43

Location: Block 38, Seattle, WA

**Farallon PN:** 397-010

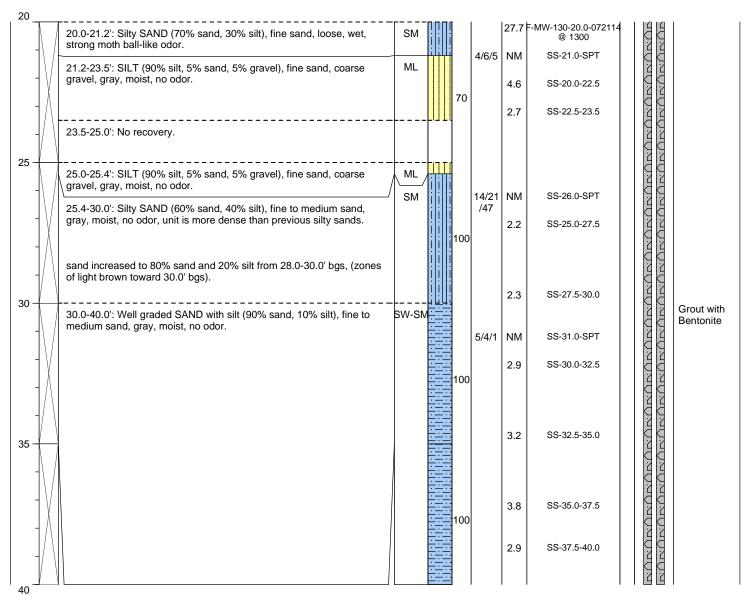
Logged By: Dincer Kayhan

**Date/Time Started:** 7/21/14 @ 0945 **Date/Time Completed:** 7/22/14 @

Equipment:
Drilling Company:

Drilling Company:Cascade DrillingDrilling Foreman:Zane Huckins

Drilling Method: Sonic


Spider 1576

Sampler Type: PE Bags

Drive Hammer (lbs.):AutoDepth of Water ATD (ft bgs):5.7Total Boring Depth (ft bgs):60.0

Total Well Depth (ft bgs): 55

# Sample Interval Note to be a construction Sample Interval Note to be a construction of the construction



Monument Type: Flush Mount
Casing Diameter (inches): 2
Screen Slot Size (inches): 0.010
Screened Interval (ft bgs): 45.0-55.0

Well Construction Information

Filter Pack: 10/20 Sand Surface Seal: Concrete Annular Seal: Bentonite Boring Abandonment: NA

Ground Surface Elevation (ft): 23

Top of Casing Elevation (ft): NA

Surveyed Location: X:NA

Y: NA



Page 3 of 3

Client: Washington Builders LLC

Project: Block 43

Location: Block 38, Seattle, WA

**Farallon PN:** 397-010

Logged By: Dincer Kayhan

**Date/Time Started:** 7/21/14 @ 0945

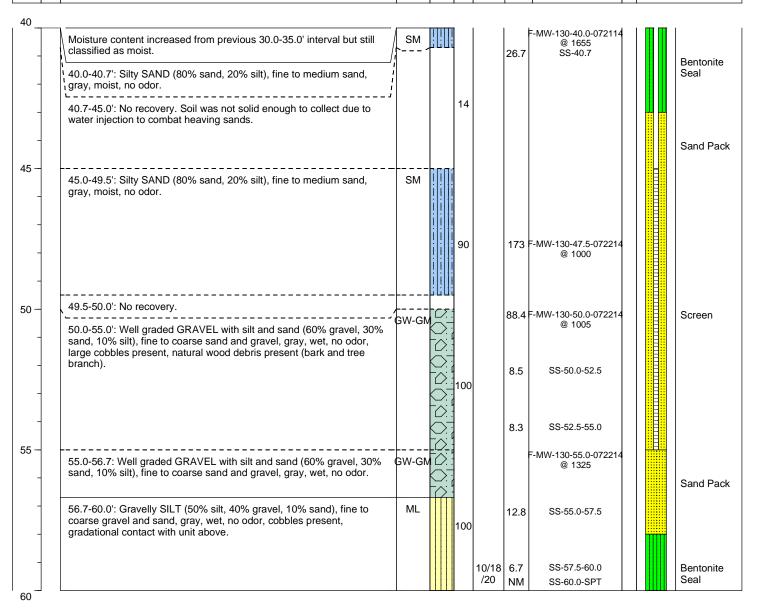
**Date/Time Completed:** 7/22/14 @ **Equipment:** Spider 1576

Drilling Company: Cascade Drilling
Drilling Foreman: Zane Huckins

Drilling Method: Sonic

Sampler Type: PE Bags

Drive Hammer (lbs.): Auto
Depth of Water ATD (ft bgs): 5.7
Total Boring Depth (ft bgs): 60.0


Total Well Depth (ft bgs): 55

Sample Interval

NSCS

USCS

U



Monument Type: Flush Mount
Casing Diameter (inches): 2
Screen Slot Size (inches): 0.010
Screened Interval (ft bgs): 45.0-55.0

Well Construction Information

Filter Pack: 10/20 Sand Surface Seal: Concrete Annular Seal: Bentonite Boring Abandonment: NA

Ground Surface Elevation (ft):
Top of Casing Elevation (ft):
Surveyed Location: y.NA

ation: **X:** NA **Y:** NA 23

NA





Page 1 of 2

41.5

City Investors IX LLC Client: Project: Block 38 West Property

Location: Seattle, WA

Farallon PN: 397-019

Logged By: Greg Peters

Date/Time Started: 08/21/2018 @ 1126 Sampler Type: 1.5 Split Spoon

08/21/2018 @ 1540 Drive Hammer (lbs.): **Date/Time Completed:** 

MiniTrack

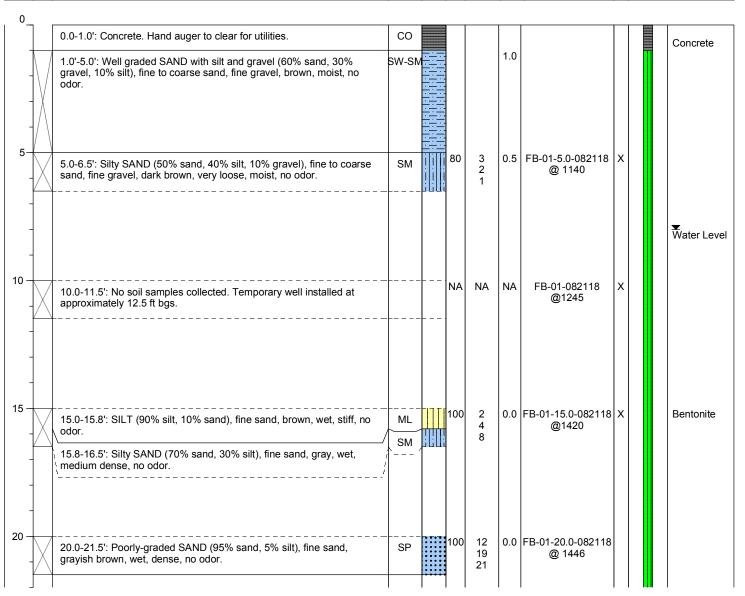
Geologic Drilling

Blaine Gibson

140 8.0

Depth of Water ATD (ft bgs): Total Boring Depth (ft bgs):

Total Well Depth (ft bgs): NA


**Drilling Method:** Hollow Stem Auger

Sample Analyzed Depth (feet bgs.) Sample Interval **USCS Graphic** Counts Recovery Boring/Well (mdd) **Lithologic Description** Construction Sample ID **Details** <u></u>8 吕

**Equipment:** 

**Drilling Company:** 

**Drilling Foreman:** 



**Well Construction Information** Ground Surface Elevation (ft): NA Monument Type: NA Filter Pack: NA Top of Casing Elevation (ft): NA Casing Diameter (inches): NA Surface Seal: Concrete Surveyed Location: Screen Slot Size (inches): NA **Annular Seal:** X:NA NA Screened Interval (ft bgs): NA **Boring Abandonment: Bentonite** Y: NA



Page 2 of 2

City Investors IX LLC Client: Project: Block 38 West Property

Location: Seattle, WA

Farallon PN: 397-019

Logged By: Greg Peters

Date/Time Started:

Equipment:

**Drilling Company:** 

**Drilling Foreman:** 

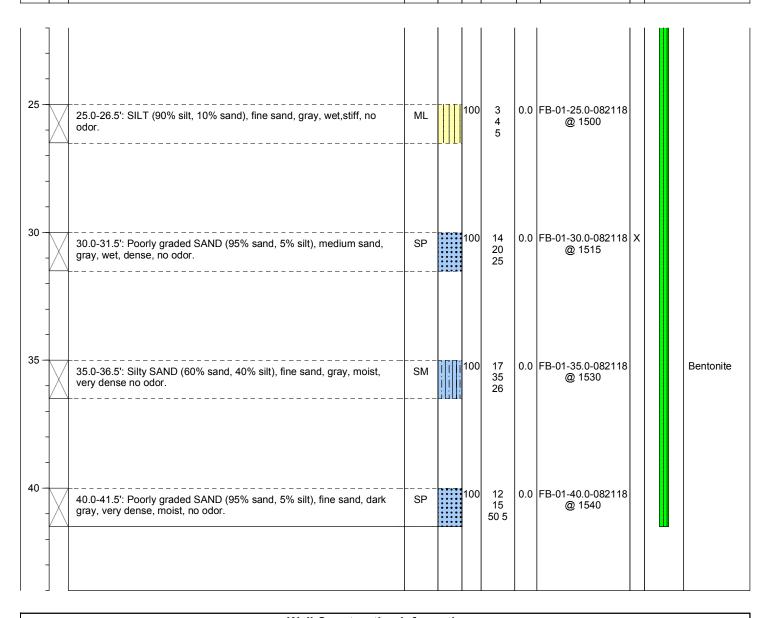
**Drilling Method:** 

08/21/2018 @ 1540 Drive Hammer (lbs.): Date/Time Completed:

MiniTrack

Geologic Drilling

Blaine Gibson


Depth of Water ATD (ft bgs): 8.0 Total Boring Depth (ft bgs): 41.5

08/21/2018 @ 1126 Sampler Type: 1.5 Split Spoon

Total Well Depth (ft bgs): NA

Hollow Stem Auger

| Depth (feet bgs.) |  | Lithologic Description | nscs | USCS Graphic | % Recovery | Blow Counts 8/8/8 | PID (ppm) | Sample ID | Sample Analyzed | Boring/Well<br>Construction<br>Details |
|-------------------|--|------------------------|------|--------------|------------|-------------------|-----------|-----------|-----------------|----------------------------------------|
|-------------------|--|------------------------|------|--------------|------------|-------------------|-----------|-----------|-----------------|----------------------------------------|



|                              |    | Well Construct      | tion Information | Ground Surface Elevation (ft): | NA |
|------------------------------|----|---------------------|------------------|--------------------------------|----|
| Monument Type: NA            |    | Filter Pack:        | NA               | Ground Surface Elevation (it). |    |
| Casing Diameter (inches): NA |    | Surface Seal:       | Concrete         | Top of Casing Elevation (ft):  | NA |
| Screen Slot Size (inches):   | NA | Annular Seal:       | NA               | Surveyed Location: X:NA        |    |
| Screened Interval (ft bgs):  | NA | Boring Abandonment: | Bentonite        | Y: NA                          |    |



Page 1 of 2

City Investors IX LLC Client: Project: Block 38 West Property

Location: Seattle, WA

Farallon PN: 397-019

Logged By: Greg Peters

Date/Time Started: Date/Time Completed:

Equipment:

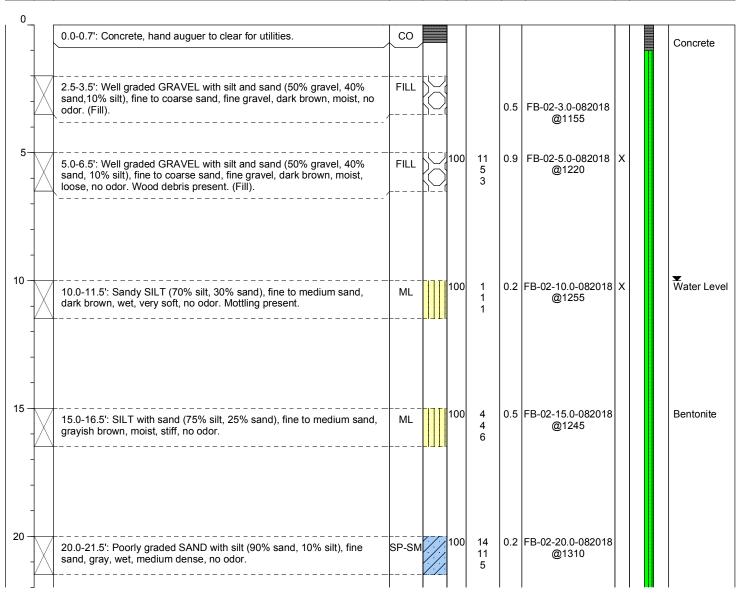
**Drilling Company:** 

**Drilling Foreman:** 

**Drilling Method:** 

08/20/2018 @ 1045 Sampler Type: 1.5 Split Spoon

08/20/2018 @ 1545 Drive Hammer (lbs.):


140 Depth of Water ATD (ft bgs): 10.0

Mini-track Total Boring Depth (ft bgs): Geologic Drilling 41.5

Total Well Depth (ft bgs): Blaine Gibson NA

Hollow Stem Auger

| Depth (feet bgs.) | Sample Interval | Lithologic Description | nscs | USCS Graphic | % Recovery | Blow Counts 8/8/8 | PID (ppm) | Sample ID | Sample Analyzed | Boring/Well<br>Construction<br>Details |
|-------------------|-----------------|------------------------|------|--------------|------------|-------------------|-----------|-----------|-----------------|----------------------------------------|
|-------------------|-----------------|------------------------|------|--------------|------------|-------------------|-----------|-----------|-----------------|----------------------------------------|



|                             |    | Well Construc      | tion Information | O                              |    |
|-----------------------------|----|--------------------|------------------|--------------------------------|----|
| Monument Type: NA           |    | Filter Pack:       | NA               | Ground Surface Elevation (ft): | NA |
| Casing Diameter (inches):   | NA | Surface Seal:      | Concrete         | Top of Casing Elevation (ft):  | NA |
| Screen Slot Size (inches):  | NA | Annular Seal:      | NA               | Surveyed Location: X:NA        |    |
| Screened Interval (ft has): | NA | Roring Abandonment | Rentonite        | <b>V</b> · NA                  |    |



Page 2 of 2

City Investors IX LLC Client: Project: Block 38 West Property

Location: Seattle, WA

Farallon PN: 397-019

Logged By: Greg Peters

Date/Time Started: Date/Time Completed:

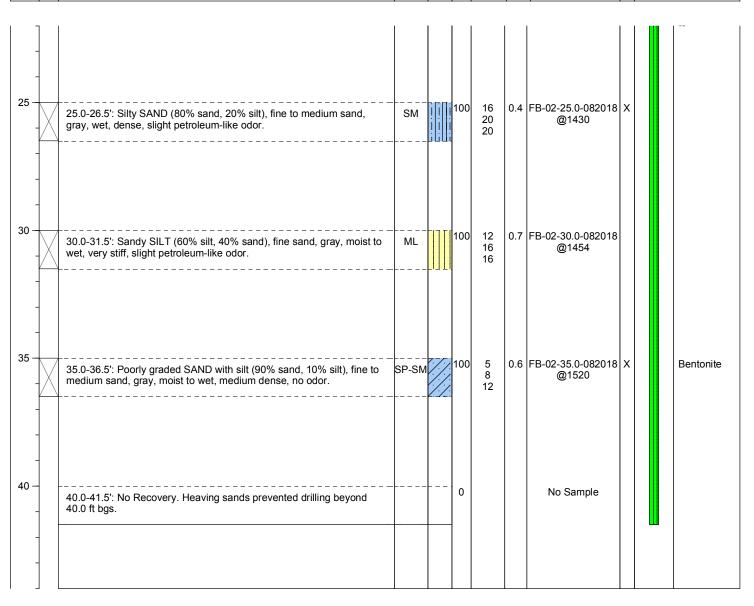
**Drilling Foreman:** 

08/20/2018 @ 1045 Sampler Type: 1.5 Split Spoon

08/20/2018 @ 1545 Drive Hammer (lbs.):

140 Depth of Water ATD (ft bgs): 10.0

Equipment: Mini-track **Drilling Company:** 


Geologic Drilling Blaine Gibson

Total Boring Depth (ft bgs): 41.5

Total Well Depth (ft bgs):

NA

**Drilling Method:** Hollow Stem Auger



**Well Construction Information** Ground Surface Elevation (ft): NA Monument Type: NA Filter Pack: NA Top of Casing Elevation (ft): NA Casing Diameter (inches): NA Surface Seal: Concrete Surveyed Location: Screen Slot Size (inches): NA Annular Seal: X:NA NA Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite Y: NA



Page 1 of 2

140

NA

City Investors IX LLC Client: Project: Block 38 West Property

Location: Seattle, WA

**Farallon PN**: 397-019

Logged By: Greg Peters

Date/Time Started: Date/Time Completed:

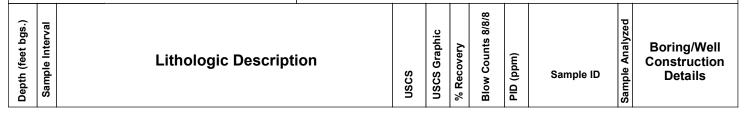
**Drilling Company:** 

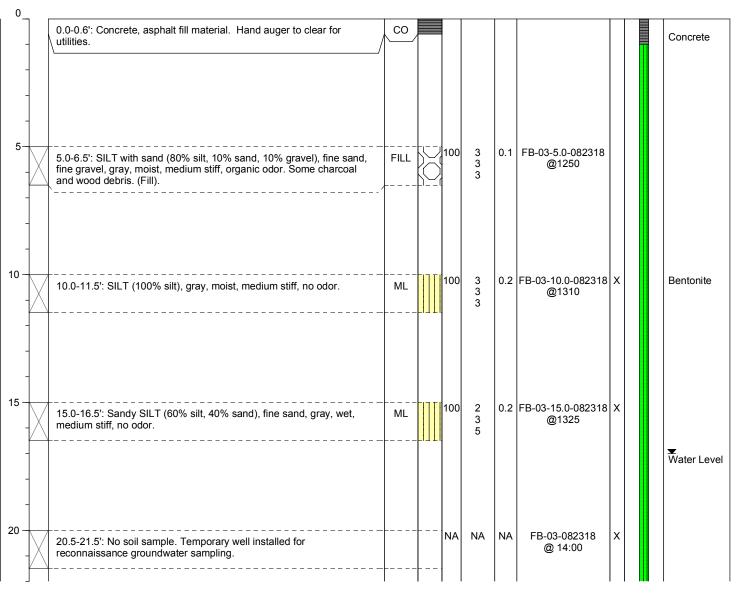
**Drilling Foreman:** 

**Drilling Method:** 

08/23/2018 @ 1200 Sampler Type: 1.5 Split Spoon

08/23/2018 @ 1540 Drive Hammer (lbs.):


Equipment: Mini-track


Geologic Drilling

Depth of Water ATD (ft bgs): 17.0 Total Boring Depth (ft bgs): 41.5

Total Well Depth (ft bgs): Blaine Gibson

Hollow Stem Auger





| ALCO DE LA SECULIA DE LA SECUL |    | Well Construc       | tion Information | Ground Surface Eleva  | NA    |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------|------------------|-----------------------|-------|--|
| Monument Type: NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | Filter Pack:        | NA               |                       |       |  |
| Casing Diameter (inches): NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | Surface Seal:       | Concrete         | Top of Casing Elevati | NA    |  |
| Screen Slot Size (inches):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA | Annular Seal:       | NA               | Surveyed Location:    | X:NA  |  |
| Screened Interval (ft bgs):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA | Boring Abandonment: | Bentonite        |                       | Y: NA |  |



Page 2 of 2

17.0

**Details** 

City Investors IX LLC Client: Project: Block 38 West Property

Location: Seattle, WA

Farallon PN: 397-019

Logged By: Greg Peters

Date/Time Started: **Date/Time Completed:** 

08/23/2018 @ 1540 Drive Hammer (lbs.):

08/23/2018 @ 1200 Sampler Type: 1.5 Split Spoon 140

**Equipment:** 

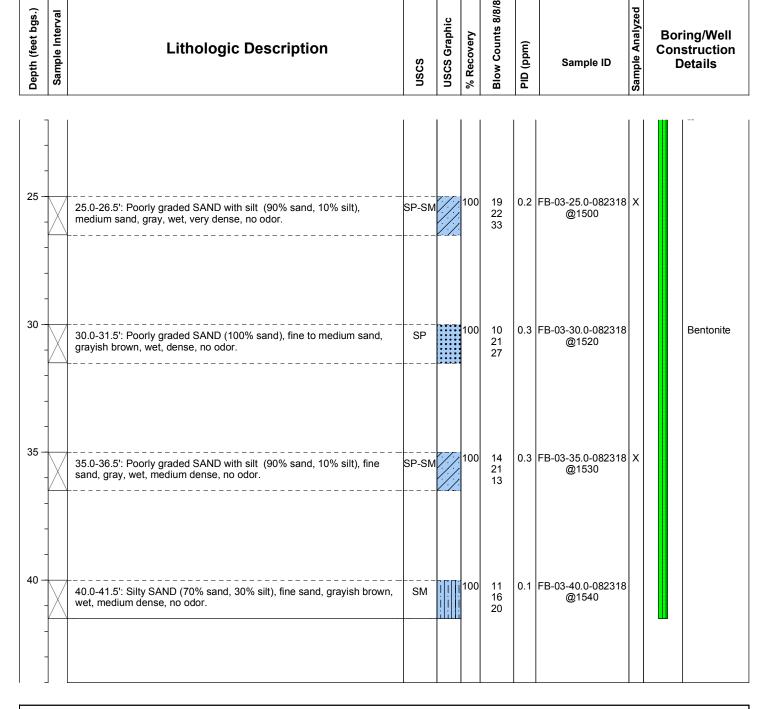
Mini-track

Depth of Water ATD (ft bgs):

Sample ID

**Drilling Company: Drilling Foreman:** 

**Drilling Method:** 


**Lithologic Description** 

Geologic Drilling Blaine Gibson

Total Boring Depth (ft bgs): 41.5 Total Well Depth (ft bgs): NA

Hollow Stem Auger

Sample Analyzed Boring/Well Construction



**Well Construction Information** Ground Surface Elevation (ft): NA Monument Type: NA Filter Pack: NA Casing Diameter (inches): Top of Casing Elevation (ft): NA NA Surface Seal: Concrete Surveyed Location: Screen Slot Size (inches): NA Annular Seal: X:NA NA Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite Y: NA



Page 1 of 1

NA

City Investors IX LLC Client: Project: Block 38 West Property

Location: Seattle, WA

Farallon PN: 397-019

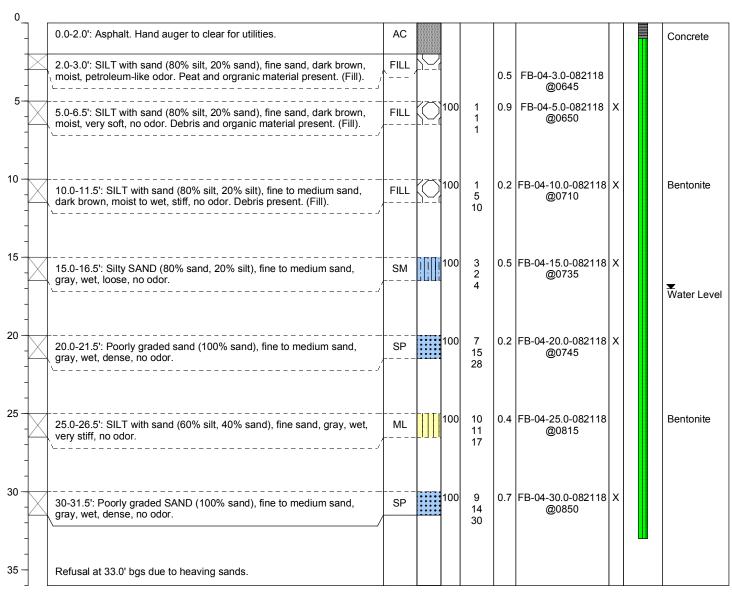
Logged By: Greg Peters

Date/Time Started:

08/21/2018 @ 0900 Drive Hammer (lbs.):

08/21/2018 @ 0645 Sampler Type: 1.5 Split Spoon

Total Well Depth (ft bgs):


140

**Date/Time Completed:** Mini-track Equipment:

Depth of Water ATD (ft bgs): 17.0 Total Boring Depth (ft bgs): 33.0

**Drilling Company:** Geologic Drilling Blaine Gibson **Drilling Foreman:** 

**Drilling Method:** Hollow Stem Auger



**Well Construction Information** Ground Surface Elevation (ft): NA Monument Type: NA Filter Pack: NA Top of Casing Elevation (ft): NA NA Casing Diameter (inches): Surface Seal: Concrete Surveyed Location: Screen Slot Size (inches): NA **Annular Seal:** X:NA NA Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite Y: NA



Page 1 of 2

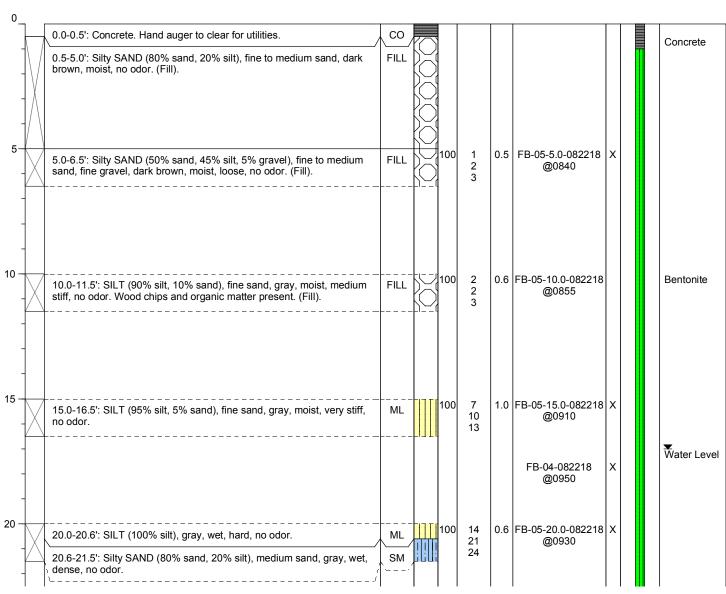
City Investors IX LLC Client: Project: Block 38 West Property

Location: Seattle, WA

Farallon PN: 397-019

Logged By: Greg Peters

08/22/2018 @ 0815 Sampler Type: 1.5 Split Spoon Date/Time Started:


08/22/2018 @ 1140 Drive Hammer (lbs.): **Date/Time Completed:** 

140 Depth of Water ATD (ft bgs): Mini-track 17.0 **Equipment:** Total Boring Depth (ft bgs):

**Drilling Company:** Geologic Drilling 41.5 Total Well Depth (ft bgs): Blaine Gibson **Drilling Foreman:** NA

**Drilling Method:** Hollow Stem Auger

| Sam   Sam | SCS | ō   δ | _ | PID (ppm) | Sample ID | Sample Analyzed | Boring/Well<br>Construction<br>Details |
|-----------|-----|-------|---|-----------|-----------|-----------------|----------------------------------------|
|-----------|-----|-------|---|-----------|-----------|-----------------|----------------------------------------|



**Well Construction Information** Ground Surface Elevation (ft): NA Monument Type: NA Filter Pack: NA Top of Casing Elevation (ft): NA NA Casing Diameter (inches): Surface Seal: Concrete Surveyed Location: Screen Slot Size (inches): NA **Annular Seal:** X:NA NA Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite Y: NA



Page 2 of 2

17.0

City Investors IX LLC Client: Project: Block 38 West Property

Location: Seattle, WA

Farallon PN: 397-019

Logged By: Greg Peters

Date/Time Started: Date/Time Completed:

08/22/2018 @ 1140 Drive Hammer (lbs.):

08/22/2018 @ 0815 Sampler Type: 1.5 Split Spoon

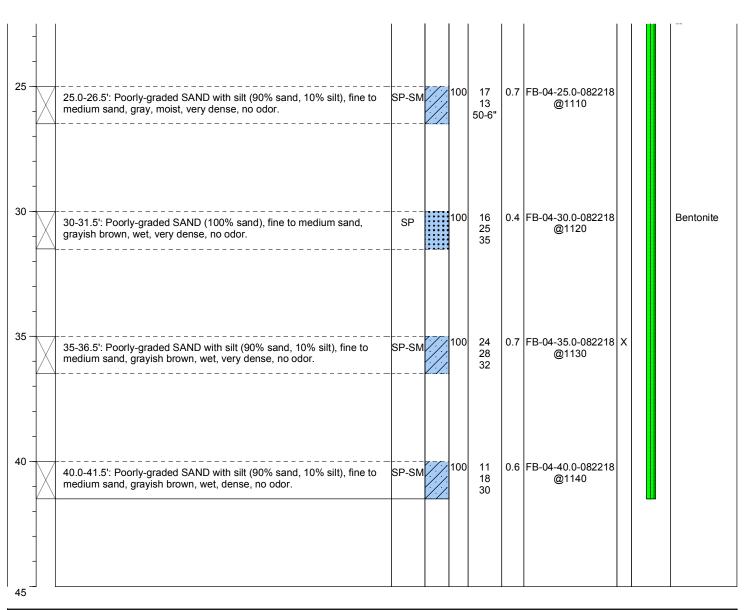
140

Equipment:

Mini-track

Depth of Water ATD (ft bgs):

**Drilling Company: Drilling Foreman:** 


**Drilling Method:** 

Geologic Drilling Blaine Gibson

Total Boring Depth (ft bgs): 41.5 Total Well Depth (ft bgs): NA

Hollow Stem Auger

| Sample Interval  Control (feet bgs.)  Control (feet bgs.)  Lithologic Description | USCS USCS Graphic USCS Graphic USCS Graphic USCS Graphic OI Blow Counts 8/8/8 Boring/Well Construction Details |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|



**Well Construction Information** Ground Surface Elevation (ft): NA Monument Type: NA Filter Pack: NA Top of Casing Elevation (ft): NA Casing Diameter (inches): NA Surface Seal: Concrete Surveyed Location: Screen Slot Size (inches): NA Annular Seal: X:NA NA Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite Y: NA



Page 1 of 1

City Investors IX LLC Client: Project: Block 38 West Property

Location: Seattle, WA

Farallon PN: 397-019

Logged By: Greg Peters

Date/Time Started: **Date/Time Completed:** 

**Equipment:** 

**Drilling Company:** 

**Drilling Foreman:** 

**Drilling Method:** 

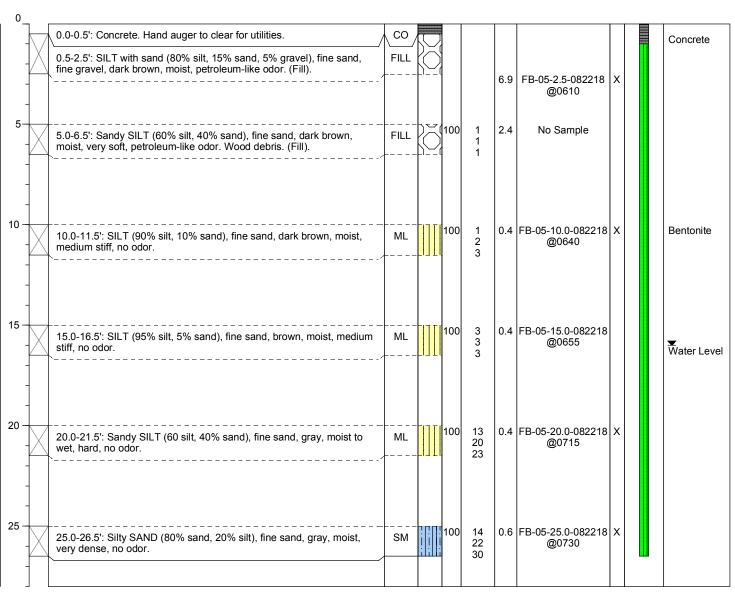
08/22/2018 @ 0610 Sampler Type: 1.5 Split Spoon

140

08/22/2018 @ 0730 Drive Hammer (lbs.):

Depth of Water ATD (ft bgs): 16.0 26.5

Geologic Drilling


Total Boring Depth (ft bgs):

Total Well Depth (ft bgs): NA

Blaine Gibson Hollow Stem Auger

Mini-track

Sample Analyzed Depth (feet bgs.) Sample Interval **USCS Graphic** Counts Boring/Well Recovery (mdd) **Lithologic Description** Construction Sample ID **Details** <u></u>8 吕



**Well Construction Information** Ground Surface Elevation (ft): NA Monument Type: NA Filter Pack: NA Top of Casing Elevation (ft): NA Casing Diameter (inches): NA Surface Seal: Concrete Surveyed Location: Screen Slot Size (inches): NA **Annular Seal:** X:NA NA Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite Y: NA



Page 1 of 1

10.0

City Investors IX LLC Client: Project: Block 38 West Property

Location: Seattle, WA

Farallon PN: 397-019

Logged By: Greg Peters

Date/Time Started: **Date/Time Completed:** 

**Equipment:** 

**Drilling Foreman:** 

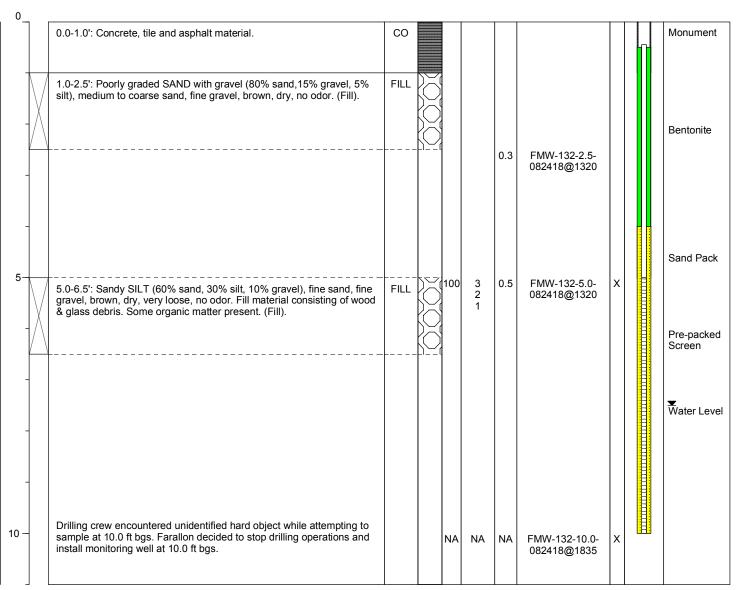
**Drilling Method:** 

08/24/2018 @ 1330 Sampler Type: 1.5 Split spoon

08/24/2018 @ 1530 Drive Hammer (lbs.):

140

Mini-track **Drilling Company:** 


Geologic Drilling Blaine Gibson

Depth of Water ATD (ft bgs): 7.5 Total Boring Depth (ft bgs):

Total Well Depth (ft bgs): 10.0

Hollow Stem Auger

| Depth (feet bgs.) Sample Interval |  | Lithologic Description | nscs | USCS Graphic | % Recovery | Blow Counts 8/8/8 | PID (ppm) | Sample ID | Sample Analyzed | Boring/Well<br>Construction<br>Details |
|-----------------------------------|--|------------------------|------|--------------|------------|-------------------|-----------|-----------|-----------------|----------------------------------------|
|-----------------------------------|--|------------------------|------|--------------|------------|-------------------|-----------|-----------|-----------------|----------------------------------------|



Monument Type: Flush Mount Casing Diameter (inches): 10 Screen Slot Size (inches): 0.010 Screened Interval (ft bgs): 5.0-10.0

**Well Construction Information** Filter Pack:

Silica/Sand Surface Seal: Grout/Concrete **Annular Seal:** Bentonite/Grout

**Boring Abandonment:** 

Ground Surface Elevation (ft): Top of Casing Elevation (ft): Surveyed Location: X:NA

Y: NA

NA

NA



Page 1 of 1

City Investors IX LLC Client: Project: Block 38 West Property

Location: Seattle, WA

Farallon PN: 397-019

Logged By: Greg Peters

Date/Time Started: **Date/Time Completed:** 

08/24/2018 @ 1745 Sampler Type: 1.5 Split Spoon

08/24/2018 @ 1902 Drive Hammer (lbs.):

140 9.0

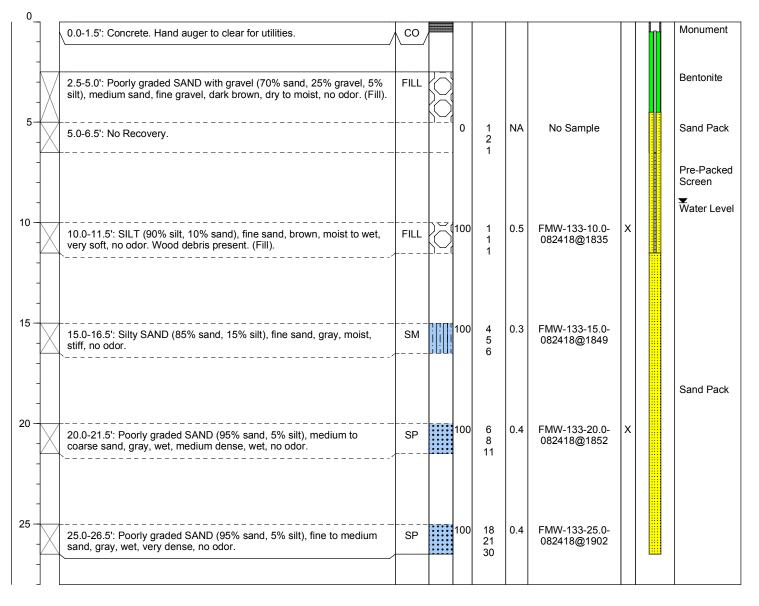
**Equipment: Drilling Company:** 

**Drilling Method:** 

Mini-track

Depth of Water ATD (ft bgs): Total Boring Depth (ft bgs):

**Drilling Foreman:** 


Geologic Drilling Blaine Gibson

Total Well Depth (ft bgs): 11.5

Hollow Stem Auger

26.5

Sample Analyzed Depth (feet bgs.) Sample Interval **USCS Graphic** Counts **Boring/Well** Recovery (mdd) **Lithologic Description** Construction Sample ID **Details** <u></u>8 吕



Monument Type: Flush Mount Casing Diameter (inches): 10 Screen Slot Size (inches): 0.01 Screened Interval (ft bgs): 6.5 - 11.5 **Well Construction Information** 

Filter Pack: Silica/Sand Surface Seal: Grout/Concrete

**Annular Seal:** NΑ **Boring Abandonment:** NA

Ground Surface Elevation (ft): Top of Casing Elevation (ft):

Surveyed Location: X:NA Y: NA NA NA



Page 1 of 1

City Investors IX LLC Client: Project: Block 38 West Property

Location: Seattle, WA

Farallon PN: 397-019

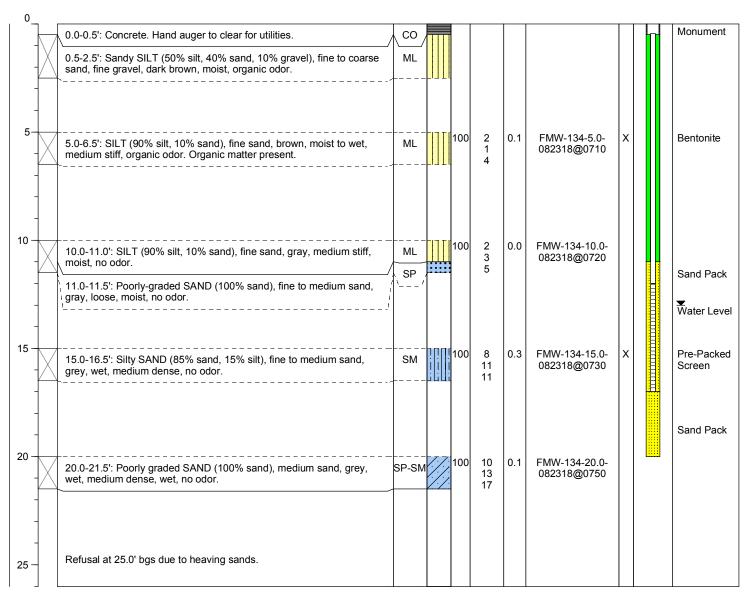
Logged By: Greg Peters

08/24/2018 @ 0700 Sampler Type: 1.5 Split Spoon Date/Time Started:

**Date/Time Completed:** 08/24/2018 @ 1030 Drive Hammer (lbs.):

Mini-track **Equipment: Drilling Company:** Geologic Drilling

**Drilling Foreman:** Blaine Gibson


**Drilling Method:** Hollow Stem Auger

140

Depth of Water ATD (ft bgs): 13.0 Total Boring Depth (ft bgs): 20.0

Total Well Depth (ft bgs): 17.0

Sample Analyzed Depth (feet bgs.) Sample Interval **USCS Graphic** Counts **Boring/Well** Recovery (mdd) **Lithologic Description** Construction Sample ID **Details** <u></u>8 吕



Monument Type: Flush Mount Casing Diameter (inches): 10 Screen Slot Size (inches): 0.010 Screened Interval (ft bgs): 12.0-17.0

**Well Construction Information** Filter Pack: Silica/Sand

Surface Seal: Grout/Concrete Annular Seal: Bentonite/Grout

**Boring Abandonment:** 

Ground Surface Elevation (ft): Top of Casing Elevation (ft): Surveyed Location: X:NA

Y: NA

NA

NA



Page 1 of 2

City Investors IX LLC Client: Project: Block 38 West Property

Location: Seattle, WA

Farallon PN: 397-019

Logged By: Greg Peters

08/24/2018 @ 0700 Sampler Type: 1.5 Split Spoon Date/Time Started:

**Date/Time Completed:** 

08/24/2018 @ 0950 Drive Hammer (lbs.):

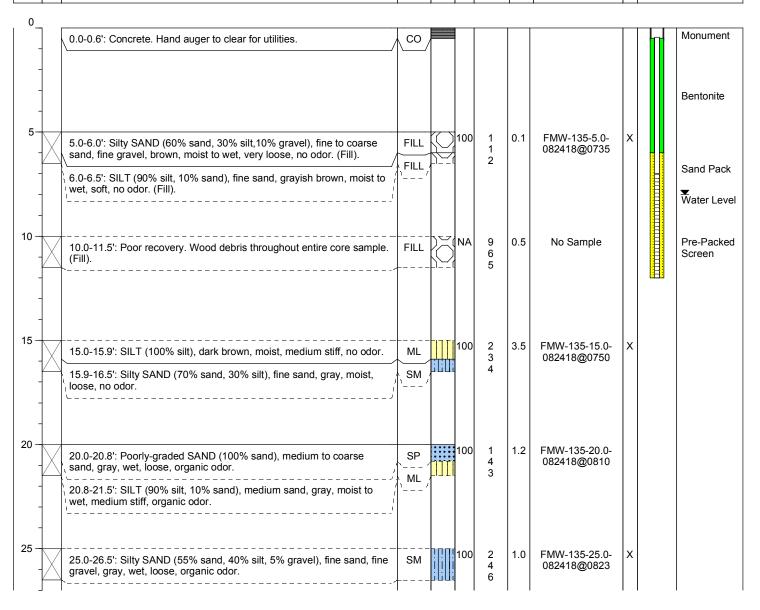
140

Equipment:

Mini-track

Depth of Water ATD (ft bgs): 8.0 Total Boring Depth (ft bgs):

**Drilling Company: Drilling Foreman:** 


**Drilling Method:** 

Geologic Drilling Blaine Gibson

51.5 Total Well Depth (ft bgs): 12.0

Hollow Stem Auger

Sample Analyzed Depth (feet bgs.) Sample Interval **USCS Graphic** Counts **Boring/Well** Recovery (mdd) **Lithologic Description** Construction Sample ID **Details** <u></u>8 吕



Monument Type: Flush Mount Casing Diameter (inches): 10 Screen Slot Size (inches): 0.010 Screened Interval (ft bgs): 7.0-12.0 **Well Construction Information** 

Filter Pack: Silica/Sand Surface Seal: Grout/Concrete Annular Seal: Bentonite/Grout **Boring Abandonment:** 

Top of Casing Elevation (ft): Surveyed Location: X:NA Y: NA

Ground Surface Elevation (ft):

NA

NA



Page 2 of 2

12.0

City Investors IX LLC Client: Project: Block 38 West Property

Location: Seattle, WA

Farallon PN: 397-019

Logged By: Greg Peters

Date/Time Started: **Date/Time Completed:** 

**Equipment:** 

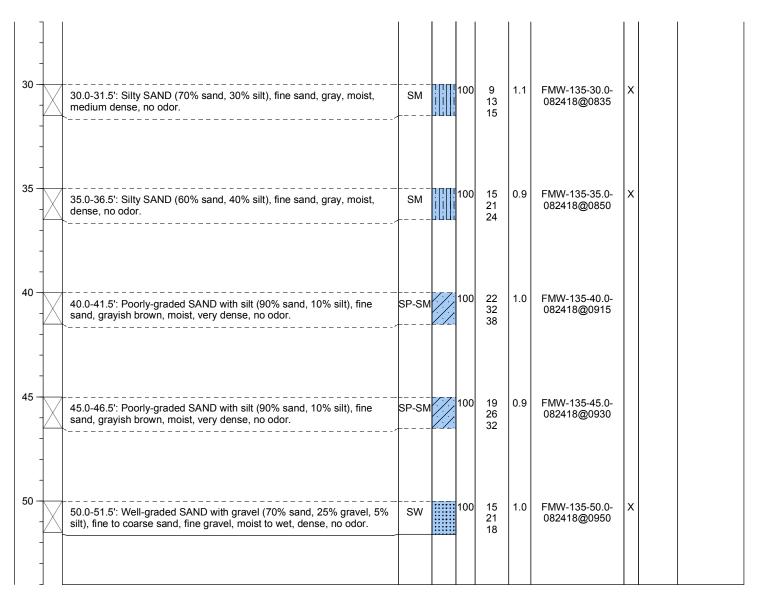
**Drilling Company:** 

**Drilling Foreman:** 

**Drilling Method:** 

Mini-track

08/24/2018 @ 0700 Sampler Type: 1.5 Split Spoon


08/24/2018 @ 0950 Drive Hammer (lbs.): 140

> Depth of Water ATD (ft bgs): 8.0 Total Boring Depth (ft bgs): 51.5

Total Well Depth (ft bgs): Blaine Gibson

Hollow Stem Auger

Geologic Drilling



Monument Type: Flush Mount Casing Diameter (inches): 10 Screen Slot Size (inches): 0.010 Screened Interval (ft bgs): 7.0-12.0 **Well Construction Information** 

Filter Pack: Silica/Sand Surface Seal: Grout/Concrete Annular Seal: Bentonite/Grout **Boring Abandonment:** 

Ground Surface Elevation (ft): Top of Casing Elevation (ft): Surveyed Location: X:NA

Y: NA

NA NA



Page 1 of 1

NA

City Investors IX LLC Client: Project: Block 38 West Property

Location: Seattle, WA

Farallon PN: 397-019

Depth (feet bgs.) Sample Interval

Logged By: Greg Peters

Date/Time Started: 08/22/2018 @ 1310 Sampler Type: 1.5 Split Spoon

**Date/Time Completed:** 

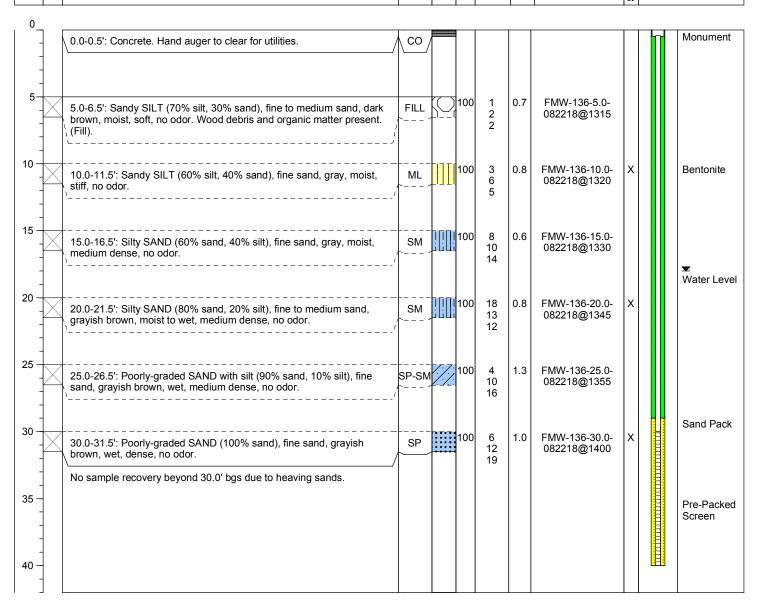
08/22/2018 @ 1400 Drive Hammer (lbs.):

140

Mini-track Equipment:

Geologic Drilling

Depth of Water ATD (ft bgs): 18.0 Total Boring Depth (ft bgs): 40.0


Total Well Depth (ft bgs):

**Drilling Company: Drilling Foreman:** Blaine Gibson

**Drilling Method:** 

Hollow Stem Auger

Sample Analyzed **USCS Graphic** Counts Boring/Well Recovery (mdd) **Lithologic Description** Construction Sample ID **Details** <u></u>8 吕



Monument Type: Flush Mount Casing Diameter (inches): 10 Screen Slot Size (inches): 0.010 Screened Interval (ft bgs): 30.0-40.0

**Well Construction Information** Filter Pack: Silica/Sand

Surface Seal: Grout/Concrete Annular Seal: Bentonite/Grout

**Boring Abandonment:** 

Ground Surface Elevation (ft): Top of Casing Elevation (ft): Surveyed Location:

X:NA Y: NA NA

NA



Page 1 of 5

85.0

City Investors LLC Client:

**Project:** Block 38 West Property

Location: Seattle, Washington

Farallon PN: 397-061

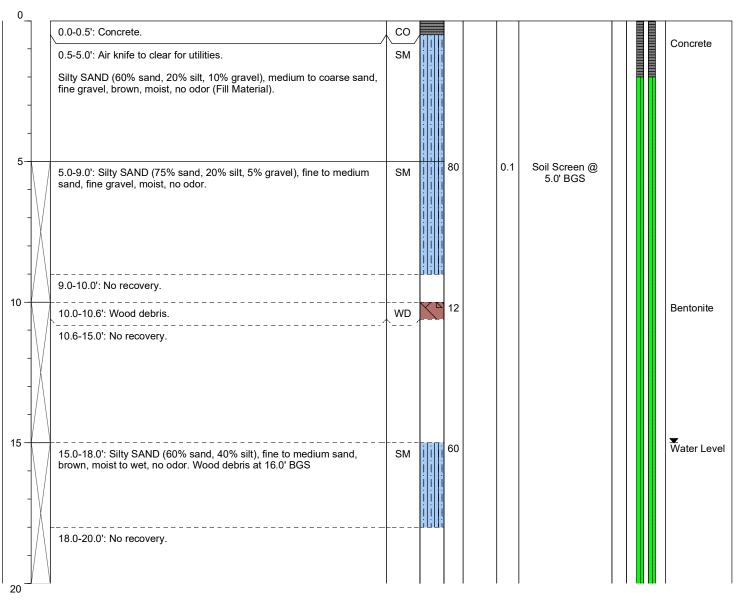
Logged By: Greg Peters

Date/Time Started: 11/3/18 @ 1145 **Date/Time Completed:** 

11/17/18 @ 1400 Sonic/Geoprobe

**Equipment: Drilling Company:** Holocene Zach Bailey **Drilling Foreman:** 

**Drilling Method:** 


Sampler Type: PE Bag

NA Drive Hammer (lbs.):

Depth of Water ATD (ft bgs): 15.0 Total Boring Depth (ft bgs): 90.0 Total Well Depth (ft bgs):

Sonic

#### Blow Counts 8/8/8 Sample Analyzed Depth (feet bgs.) Sample Interval **USCS Graphic** Boring/Well (mdd) **Lithologic Description** Construction Sample ID **Details** 吕



Monument Type: Flush Casing Diameter (inches): 2.0 Screen Slot Size (inches): 0.010 Screened Interval (ft bgs): 72.0-85.0 **Well Construction Information** 

Filter Pack: 12/20 Sand Surface Seal: Concrete Annular Seal: Bentonite **Boring Abandonment:** 

NA Ground Surface Elevation (ft): Top of Casing Elevation (ft): NA Y:NA Surveyed Location: X:NA **Unique Well ID:** 



Page 2 of 5

City Investors LLC Client:

**Project:** Block 38 West Property

Location: Seattle, Washington

Farallon PN: 397-061

Logged By: Greg Peters

Date/Time Started: 11/3/18 @ 1145 11/17/18 @ 1400 **Date/Time Completed:** 

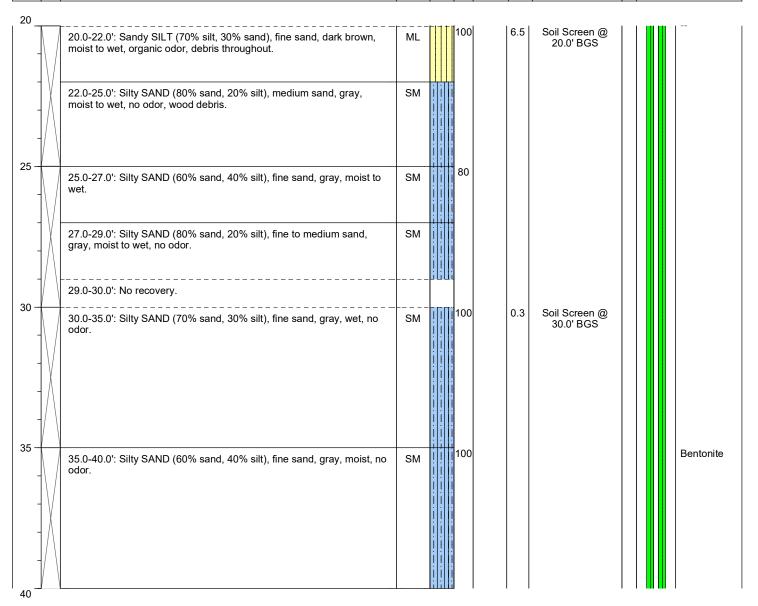
**Equipment: Drilling Company: Drilling Foreman:** 

**Drilling Method:** 

Sonic/Geoprobe Holocene

Zach Bailey

Sonic


Sampler Type: PE Bag

NA Drive Hammer (lbs.): Depth of Water ATD (ft bgs): 15.0 Total Boring Depth (ft bgs): 90.0

Total Well Depth (ft bgs):

85.0

Blow Counts 8/8/8 Sample Analyzed Depth (feet bgs.) Sample Interval **USCS Graphic** Recovery Boring/Well (mdd) **Lithologic Description** Construction Sample ID **Details** 吕



Monument Type: Flush 2.0 Casing Diameter (inches): Screen Slot Size (inches): 0.010 Screened Interval (ft bgs): 72.0-85.0 **Well Construction Information** 

Filter Pack: 12/20 Sand Surface Seal: Concrete Annular Seal: Bentonite **Boring Abandonment:** 

NA Ground Surface Elevation (ft): Top of Casing Elevation (ft): NA Y:NA Surveyed Location: X:NA **Unique Well ID:** 



Page 3 of 5

Client: City Investors LLC

**Project:** Block 38 West Property

Location: Seattle, Washington

**Farallon PN**: 397-061

Logged By: Greg Peters

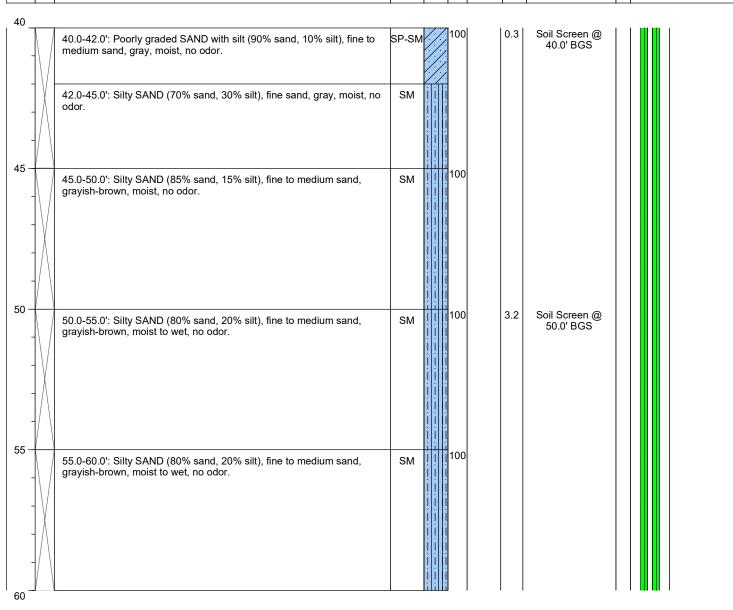
**Date/Time Started:** 11/3/18 @ 1145 **Date/Time Completed:** 11/17/18 @ 1400

Equipment: Sonic/Geoprobe
Drilling Company: Holocene

**Drilling Foreman:** Zach Bailey

Drilling Method: Sonic

Sampler Type: PE Bag


Drive Hammer (lbs.): NA

Depth of Water ATD (ft bgs): 15.0

Total Boring Depth (ft bgs): 90.0

Total Well Depth (ft bgs): 85.0

| Depth (feet bgs.) | Litholog | ic Description | nscs | USCS Graphic | % Recovery | Blow Counts 8/8/8 | PID (ppm) | Sample ID | Sample Analyzed | Boring/Well<br>Construction<br>Details |
|-------------------|----------|----------------|------|--------------|------------|-------------------|-----------|-----------|-----------------|----------------------------------------|
|-------------------|----------|----------------|------|--------------|------------|-------------------|-----------|-----------|-----------------|----------------------------------------|



Monument Type: Flush
Casing Diameter (inches): 2.0
Screen Slot Size (inches): 0.010
Screened Interval (ft bgs): 72.0-85.0

Well Construction Information

Filter Pack: 12/20 Sand
Surface Seal: Concrete
Annular Seal: Bentonite
Boring Abandonment: NA

Ground Surface Elevation (ft): NA
Top of Casing Elevation (ft): NA
Surveyed Location: X:NA Y:NA



Page 4 of 5

Client: City Investors LLC

**Project:** Block 38 West Property

Location: Seattle, Washington

Farallon PN: 397-061

**Logged By:** Greg Peters

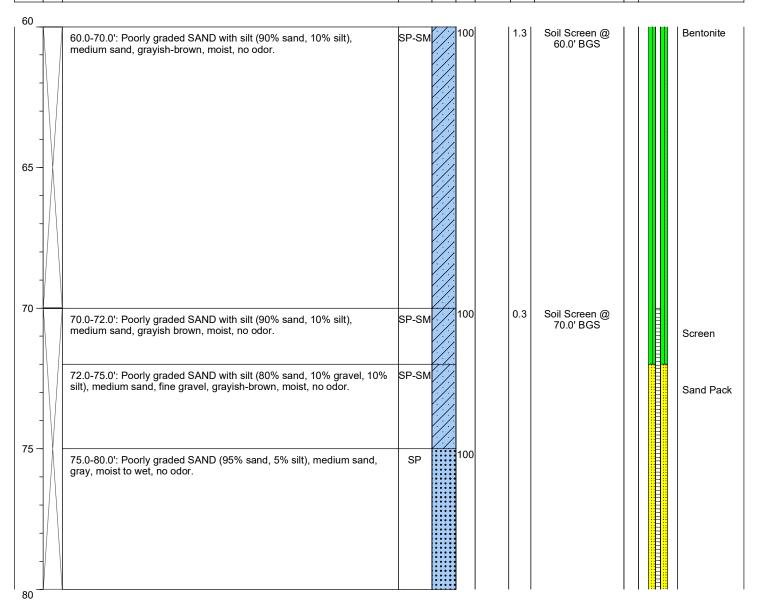
**Date/Time Started:** 11/3/18 @ 1145

**Date/Time Completed:** 11/17/18 @ 1400 **Equipment:** Sonic/Geoprobe

Drilling Company: Holocene
Drilling Foreman: Zach Bailey

Drilling Method: Sonic

Sampler Type: PE Bag


Drive Hammer (lbs.): NA
Depth of Water ATD (ft bgs): 15.0
Total Boring Depth (ft bgs): 90.0

Total Well Depth (ft bgs): 85.0

Sample Interval

USCS
USCS Graphic

W Recovery
Blow Counts 8/8/8
Box Counts 8/8/8
Blow Counts 8/8/8



Monument Type: Flush
Casing Diameter (inches): 2.0
Screen Slot Size (inches): 0.010
Screened Interval (ft bgs): 72.0-85.0

Well Construction Information

Filter Pack: 12/20 Sand Surface Seal: Concrete Annular Seal: Bentonite Boring Abandonment: NA

Ground Surface Elevation (ft): NA
Top of Casing Elevation (ft): NA
Surveyed Location: X:NA
Unique Well ID:



Page 5 of 5

Client: City Investors LLC

**Project:** Block 38 West Property

Location: Seattle, Washington

**Farallon PN**: 397-061

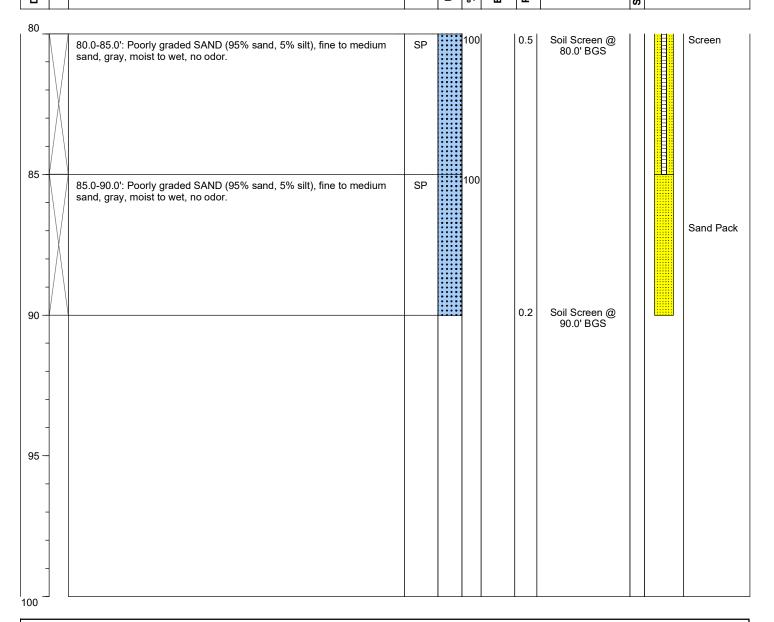
Logged By: Greg Peters

Date/Time Started: 11/3/18 @ 1145

**Date/Time Completed:** 11/17/18 @ 1400 **Equipment:** Sonic/Geoprobe

Drilling Company: Holocene
Drilling Foreman: Zach Bailey

Drilling Method: Sonic


Sampler Type: PE Bag

Drive Hammer (lbs.): NA

Depth of Water ATD (ft bgs): 15.0

Total Boring Depth (ft bgs): 90.0
Total Well Depth (ft bgs): 85.0

Sample Interval
USCS Graphic
USCS Graphic
Blow Counts 8/8/8
Box Counts 8/8/8



Monument Type: Flush
Casing Diameter (inches): 2.0
Screen Slot Size (inches): 0.010
Screened Interval (ft bgs): 72.0-85.0

Well Construction Information
Filter Pack: 12/20 Sand
Surface Seal: Concrete
Annular Seal: Bentonite
Boring Abandonment: NA

Ground Surface Elevation (ft): NA
Top of Casing Elevation (ft): NA
Surveyed Location: X:NA Y:NA



Page 1 of 5

City Investors LLC Client:

**Project:** Block 38 West Property

Location: Seattle, Washington

Farallon PN: 397-061

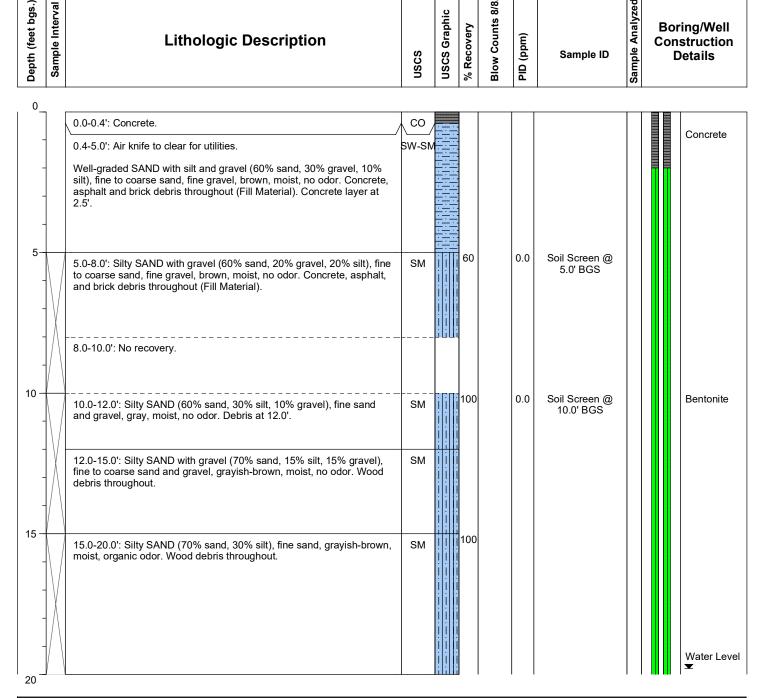
Sample Interval

Logged By: Greg Peters

Date/Time Started: 11/3/18 @ 0900 **Date/Time Completed:** 11/4/18 @ 0900

Sonic/Geoprobe **Equipment: Drilling Company:** Holocene

**Drilling Foreman:** 


**Drilling Method:** Sonic Sampler Type: PE Bag

NA Drive Hammer (lbs.): Depth of Water ATD (ft bgs): 20.0

Total Boring Depth (ft bgs): 100.0

Total Well Depth (ft bgs): Zach Bailey 100.0

low Counts 8/8/8 Sample Analyzed **USCS Graphic** Boring/Well Recovery (mdd) **Lithologic Description** Construction Sample ID **Details** 吕



Monument Type: Flush Casing Diameter (inches): 20 Screen Slot Size (inches): 0.010 Screened Interval (ft bgs): 90.0-100.0

**Well Construction Information** Filter Pack: 12/20 Sand

Surface Seal: Concrete Annular Seal: Bentonite **Boring Abandonment:** 

NA Ground Surface Elevation (ft): Top of Casing Elevation (ft): NA Surveyed Location: X:NA Y:NA



Page 2 of 5

City Investors LLC Client:

**Project:** Block 38 West Property

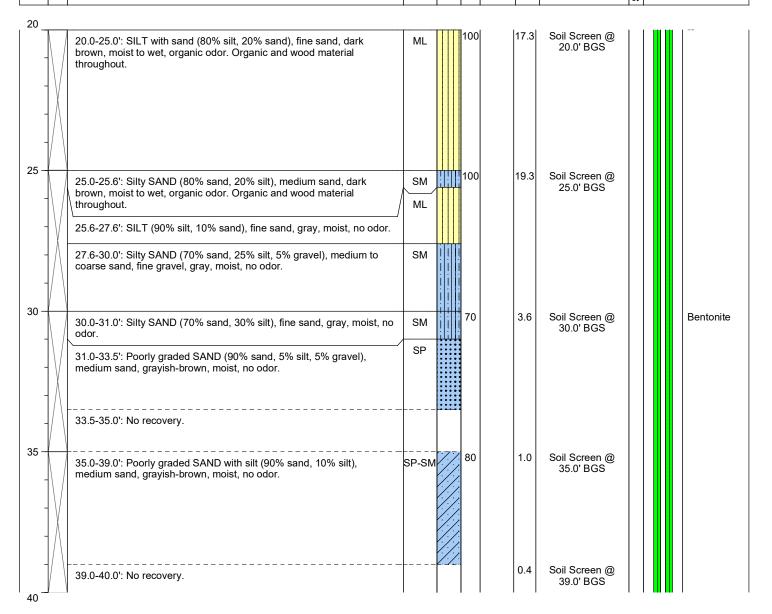
Location: Seattle, Washington

Farallon PN: 397-061

Logged By: Greg Peters

Date/Time Started: 11/3/18 @ 0900 **Date/Time Completed:** 11/4/18 @ 0900

Sonic/Geoprobe Equipment:


**Drilling Company:** Holocene Zach Bailey **Drilling Foreman:** 

**Drilling Method:** Sonic Sampler Type: PE Bag

NA Drive Hammer (lbs.): Depth of Water ATD (ft bgs): 20.0

Total Boring Depth (ft bgs): 100.0 Total Well Depth (ft bgs): 100.0

Blow Counts 8/8/8 Sample Analyzed Depth (feet bgs.) Sample Interval **USCS Graphic** Recovery Boring/Well (mdd) **Lithologic Description** Construction Sample ID **Details** 吕



Monument Type: Flush Casing Diameter (inches): 20 Screen Slot Size (inches): 0.010 Screened Interval (ft bgs): 90.0-100.0 **Well Construction Information** 

Filter Pack: 12/20 Sand Surface Seal: Concrete Annular Seal: Bentonite **Boring Abandonment:** 

Ground Surface Elevation (ft): NA Top of Casing Elevation (ft): NA Surveyed Location: X:NA Y:NA



Page 3 of 5

Client: City Investors LLC

**Project:** Block 38 West Property

**Location:** Seattle, Washington

**Farallon PN**: 397-061

**Logged By:** Greg Peters

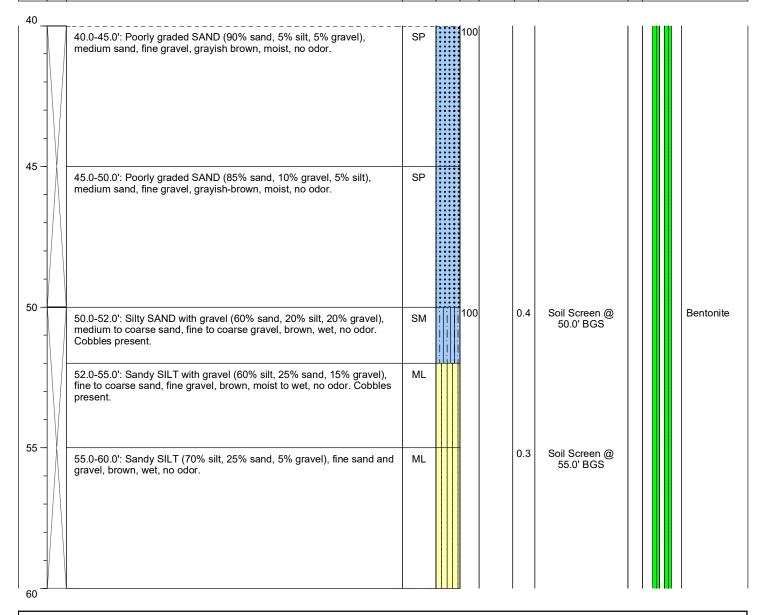
**Date/Time Started:** 11/3/18 @ 0900 **Date/Time Completed:** 11/4/18 @ 0900

Equipment: Sonic/Geoprobe

Drilling Company: Holocene
Drilling Foreman: Zach Bailey

Drilling Method: Sonic

Sampler Type: PE Bag


Drive Hammer (lbs.): NA
Depth of Water ATD (ft bgs): 20.0
Total Boring Depth (ft bgs): 100.0

Total Well Depth (ft bgs): 100.0

Sample Interval

Construction

Sample Analyzed



Monument Type: Flush
Casing Diameter (inches): 2.0
Screen Slot Size (inches): 0.010
Screened Interval (ft bgs): 90.0-100.0

Well Construction Information
Filter Pack: 12/20 Sand
Surface Seal: Concrete

Surface Seal: Concrete
Annular Seal: Bentonite
Boring Abandonment: NA

Ground Surface Elevation (ft): NA
Top of Casing Elevation (ft): NA
Surveyed Location: X:NA Y:NA



**Lithologic Description** 

#### Log of Boring: FMW-138

(mdd)

Page 4 of 5

City Investors LLC Client:

**Project:** Block 38 West Property

Location: Seattle, Washington Farallon PN: 397-061

Logged By: Greg Peters

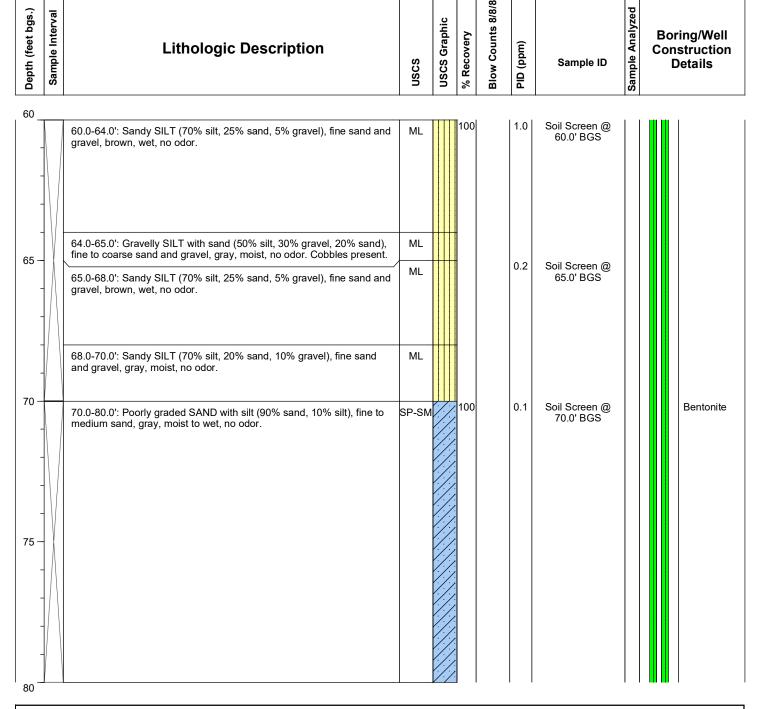
Date/Time Started: 11/3/18 @ 0900 **Date/Time Completed:** 11/4/18 @ 0900

**Equipment: Drilling Company:** 

Holocene Zach Bailey **Drilling Foreman:** 

**Drilling Method:** 

Sampler Type: PE Bag


Sample ID

NA Drive Hammer (lbs.): Depth of Water ATD (ft bgs): 20.0 Total Boring Depth (ft bgs): 100.0 Total Well Depth (ft bgs): 100.0

Sonic

Sonic/Geoprobe

| ì |              |  |
|---|--------------|--|
|   | Boring/Well  |  |
|   | Construction |  |
|   | Details      |  |
|   |              |  |



Monument Type: Flush 2.0 Casing Diameter (inches): Screen Slot Size (inches): 0.010 Screened Interval (ft bgs): 90.0-100.0 **Well Construction Information** 

Filter Pack: 12/20 Sand Surface Seal: Concrete Annular Seal: Bentonite **Boring Abandonment:** 

NA Ground Surface Elevation (ft): Top of Casing Elevation (ft): NA Y:NA Surveyed Location: X:NA

**Unique Well ID:** 



Page 5 of 5

Client: City Investors LLC

**Project:** Block 38 West Property

Location: Seattle, Washington

Farallon PN: 397-061

Logged By: Greg Peters

**Date/Time Started:** 11/3/18 @ 0900

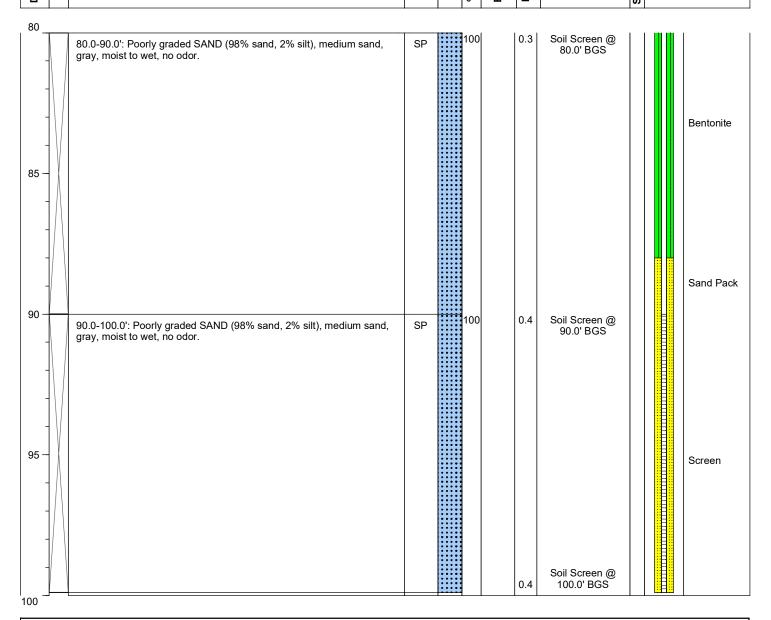
Date/Time Completed: 11/4/18 @ 0900

Zach Bailey

Equipment: Sonic/Geoprobe

Drilling Company: Holocene

Drilling Method: Sonic


**Drilling Foreman:** 

Sampler Type: PE Bag

Drive Hammer (lbs.):NADepth of Water ATD (ft bgs):20.0Total Boring Depth (ft bgs):100.0

Total Well Depth (ft bgs): 100.0

Sample Interval Sample Analyzed Sample Sample



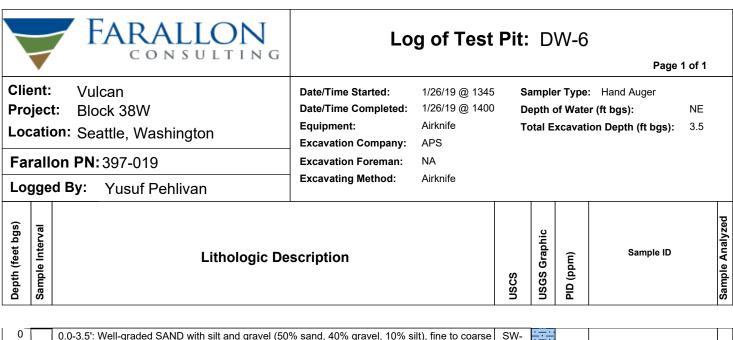
Monument Type: Flush
Casing Diameter (inches): 2.0
Screen Slot Size (inches): 0.010
Screened Interval (ft bgs): 90.0-100.0

Well Construction Information
Filter Pack: 12/20 Sand
Surface Seal: Concrete
Annular Seal: Bentonite
Boring Abandonment: NA

Ground Surface Elevation (ft): NA
Top of Casing Elevation (ft): NA
Surveyed Location: X:NA
Unique Well ID:






| Depth (feet bgs) Sample Interval | Lithologic Description | nscs | USGS Graphic | PID (ppm) | Sample ID | Sample Analyzed |  |
|----------------------------------|------------------------|------|--------------|-----------|-----------|-----------------|--|
|----------------------------------|------------------------|------|--------------|-----------|-----------|-----------------|--|

Page 1 of 1

2.9

3.2

| 0  | 0.0-0.8': Concrete.                                                                                                                                                                                          | СО        |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|
|    |                                                                                                                                                                                                              |           |  |  |
|    |                                                                                                                                                                                                              |           |  |  |
| -  | 0.8-3.2': Well graded SAND with silt and gravel, fine to coarse sand, fine and coarse gravel, brown, moist, wet at 2.9' bgs, no odor. Railroad tie and woody debris found at 3.2' bgs. Water fills test pit. | SW-<br>SM |  |  |
|    |                                                                                                                                                                                                              |           |  |  |
|    |                                                                                                                                                                                                              |           |  |  |
| -  |                                                                                                                                                                                                              |           |  |  |
|    |                                                                                                                                                                                                              |           |  |  |
|    |                                                                                                                                                                                                              |           |  |  |
| -  |                                                                                                                                                                                                              |           |  |  |
|    |                                                                                                                                                                                                              |           |  |  |
|    |                                                                                                                                                                                                              |           |  |  |
|    |                                                                                                                                                                                                              |           |  |  |
|    |                                                                                                                                                                                                              |           |  |  |
|    |                                                                                                                                                                                                              |           |  |  |
| 5_ |                                                                                                                                                                                                              |           |  |  |



| -  | 0.0-3.5": Well-graded SAND with silt and gravel (50% sand, 40% gravel, 10% silt), fine to coarse sand, fine and coarse gravel, dark brown, moist, no odor, trace rock, brick, metal and wood debris. 3.5' bgs old metal pope encountered, unable to advance further. | SW-<br>SM |  |  |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|
| 5_ |                                                                                                                                                                                                                                                                      |           |  |  |  |



Page 1 of 2

Client: City Investors IX LLC

Project: Block 38 West

Location: Seattle, Washington

**Farallon PN: 397-019** 

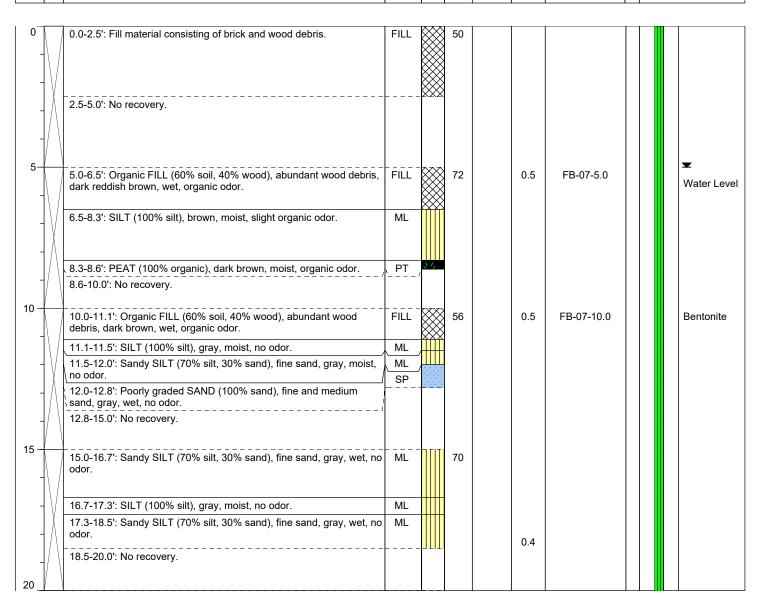
Logged By: Y. Pehlivan

Date/Time Started: 12/21/19 1335 Date/Time Completed: 12/21/19 1435

**Equipment:** Geoprobe 7822DT

**Drilling Company:** AEC

Chris Mainard **Drilling Foreman: Drilling Method:** 


Direct Push

Sampler Type: 5' Macrocore Auto Drive Hammer (lbs.):

Depth of Water ATD (ft bgs): 5.0 Total Boring Depth (ft bgs): 32.5

Total Well Depth (ft bgs): NA

Blow Counts 8/8/8 Sample Analyzed Depth (feet bgs.) Sample Interval **USCS Graphic** Boring/Well Recovery **Lithologic Description** PID (ppm) Construction Sample ID **Details** 



#### **Well Construction Information**

Monument Type: NA Filter Pack: NA Casing Diameter (inches): Surface Seal: NA NA NA Screen Slot Size (inches): NA Annular Seal: Screened Interval (ft bgs): NA Boring Abandonment: Bentonite Ground Surface Elevation (ft): NM Top of Casing Elevation (ft): NA Surveyed Location: X: NA

Y: NA

Unique Well ID: NA



Page 2 of 2

Client: City Investors IX LLC

**Project:** Block 38 West

Location: Seattle, Washington

**Farallon PN: 397-019** 

Logged By: Y. Pehlivan

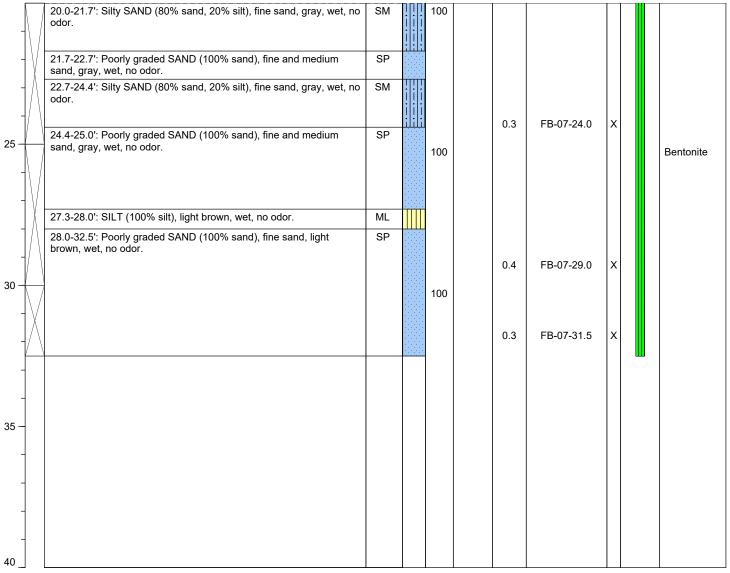
Date/Time Started: 12/21/19 1335 Date/Time Completed: 12/21/19 1435

Equipment: Geoprobe 7822DT

**Drilling Company:** AEC

**Drilling Foreman:** Chris Mainard

**Drilling Method:** Direct Push


Sampler Type: 5' Macrocore Auto Drive Hammer (lbs.):

Depth of Water ATD (ft bgs): 5.0

Total Boring Depth (ft bgs): 32.5

Total Well Depth (ft bgs): NA

| Depth (feet bgs.) | Sample Interval | Lithologic Description | nscs | USCS Graphic | % Recovery | Blow Counts 8/8/8 | PID (ppm) | Sample ID | Sample Analyzed | Boring/Well<br>Construction<br>Details |
|-------------------|-----------------|------------------------|------|--------------|------------|-------------------|-----------|-----------|-----------------|----------------------------------------|
| 1                 |                 |                        |      | 555          | 100        |                   |           |           |                 |                                        |



#### **Well Construction Information**

Monument Type: NA Filter Pack: NA Ground Surface Elevation (ft): Casing Diameter (inches): NA Surface Seal: NA Screen Slot Size (inches): NA NA Annular Seal: Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite

Top of Casing Elevation (ft): NA Surveyed Location: X: NA

Unique Well ID: NA

Y: NA

NM



Page 1 of 2

Client: City Investors IX LLC

Project: Block 38 West

Location: Seattle, Washington

**Farallon PN:** 397-019

Logged By: Y. Pehlivan

**Date/Time Started:** 12/21/19 1115

**Date/Time Completed:** 12/21/19 1215 **Equipment:** Geoprobe 7822DT

Drilling Company: AEC

**Drilling Foreman:** Chris Mainard

**Drilling Method:** Direct Push

Sampler Type: 5' Macrocore

Drive Hammer (lbs.): Auto
Depth of Water ATD (ft bgs): 5.0
Total Boring Depth (ft bgs): 31.5

NM

NA

Y: NA

Total Well Depth (ft bgs): NA

| Depth (feet bgs.)<br>Sample Interval | Lithologic Description | nscs | USCS Graphic | % Recovery | Blow Counts 8/8/8 | PID (ppm) |  | Sample Analyzed | Boring/Well<br>Construction<br>Details |
|--------------------------------------|------------------------|------|--------------|------------|-------------------|-----------|--|-----------------|----------------------------------------|
|--------------------------------------|------------------------|------|--------------|------------|-------------------|-----------|--|-----------------|----------------------------------------|

| 0    | . /           | 0.0-0.5': Pea gravel fill.                                                                                                                   | FILL | $\bowtie$                    | 50  |     |            |   |             |
|------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------|-----|-----|------------|---|-------------|
|      | $\setminus /$ | 0.5-1.6': Fill material consisting of brick, rocks, sand, and silt (40% sand, 40% gravel, 20% silt), fine to coarse sand and gravel, reddish | FILL |                              |     |     |            |   |             |
|      | \/            | brown, wet, no odor.                                                                                                                         | FILL |                              |     |     |            |   |             |
|      | V             | 1.6-2.5': Silty GRAVEL (60% gravel, 40% silt), fine gravel, black, wet, no odor. (Fill)                                                      |      | <u> </u>                     |     |     |            |   |             |
| -    | Λ             | 2.5-5.0': No recovery.                                                                                                                       |      |                              |     | 0.2 | FB-08-2.5  | X |             |
|      | $/ \setminus$ | 2.5-5.0 . No recovery.                                                                                                                       |      |                              |     |     |            |   |             |
| -    | / \           |                                                                                                                                              |      |                              |     |     |            |   |             |
|      | \             |                                                                                                                                              |      |                              |     |     |            |   |             |
| 5-   |               | 5.0-7.0': Well graded GRAVEL with sand (50% gravel, 45% sand,                                                                                | FILL | $\bowtie$                    | 86  |     |            |   | -           |
|      | \ /           | 5% silt), fine to coarse sand and gravel, brown, wet, no odor. (Fill)                                                                        |      | $\bowtie$                    |     |     |            |   | Water Level |
|      | \ /           |                                                                                                                                              |      | $\bowtie$                    |     |     |            |   |             |
|      | \/            |                                                                                                                                              |      | $\bowtie$                    |     |     |            |   |             |
|      | V             | 7.0-8.0': Sandy SILT (60% silt, 40% sand), fine and medium sand,                                                                             | FILL | $\bowtie$                    |     |     |            |   |             |
| -    | Λ             | gray, wet, no odor. (Fill)                                                                                                                   |      | $\bowtie$                    |     |     |            |   |             |
|      | $/ \setminus$ | 8.0-8.3': Wood debris, reddish brown. (Fill)                                                                                                 | FILL |                              |     | 0.2 | FB-08-8.0  | X |             |
| -    | / \           | 8.3-8.8': Wood debris, grayish brown. (Fill)                                                                                                 | FILL |                              |     |     |            |   |             |
| 10 - |               | 8.8-9.3': Organic FILL (60% soil, 40% wood), abundant wood/mulch, reddish brown, moist, organic odor.                                        | FILL |                              |     |     |            |   |             |
|      | /             | 9.3-10.0': No recovery.                                                                                                                      | FILL | $\otimes$                    | 100 |     |            |   | Bentonite   |
| -    | \ /           | 10.0-12.0': Wood debris, grayish brown. (Fill)                                                                                               |      | $\bowtie$                    |     |     |            |   |             |
|      | \ /           |                                                                                                                                              |      | $\bowtie$                    |     |     |            |   |             |
| -    | V             | 12.0-12.9': Organic FILL (50% soil, 50% wood), abundant                                                                                      | FILL | $\bowtie$                    |     |     |            |   |             |
|      | Å             | wood/mulch, dark brown, organic odor.                                                                                                        |      | $\bowtie$                    |     |     |            |   |             |
| 1    | /             | 12.9-13.6': Poorly graded SAND (100% sand), fine and medium                                                                                  | FILL | $\bowtie$                    |     | 0.5 | FB-08-13.0 | x |             |
|      | / \           | sand, gray, wet, no odor. (Fill)                                                                                                             | FILL | $\bowtie$                    |     |     |            |   |             |
|      | / \           | 13.6-14.3': Organic FILL (70% soil, 30% wood), some wood/mulch,                                                                              | SP   | $\times\!\!\times\!\!\times$ |     |     |            |   |             |
| 15 - |               | reddish brown, moist, organic odor.                                                                                                          |      |                              |     |     |            |   |             |
| 1    | /             | 14.3-15.0': Poorly graded SAND (100% sand), fine and medium sand, grayish brown, wet, no odor.                                               | SP   |                              | 70  |     |            |   |             |
| -    | \ /           | 15.0-15.9': Poorly graded SAND (95% sand, 5% silt), fine and                                                                                 | ML   |                              |     |     |            |   |             |
|      | \ /           | medium sand, grayish brown, wet, no odor.                                                                                                    |      |                              |     |     |            |   |             |
| -    | V             | 15.9-16.7': SILT (100% silt), gray, wet, no odor.                                                                                            | ML   | Щ                            |     |     |            |   |             |
|      | Å             | 16.7-17.2': Sandy SILT (70% silt, 30% sand), fine sand, gray, wet, no                                                                        | SP   |                              |     |     |            |   |             |
| 1    | $\Lambda$     | odor.                                                                                                                                        |      |                              |     | 0.4 | FB-08-18.0 | x |             |
|      | /\            | 17.2-18.5': Poorly graded SAND (100% sand), fine and medium                                                                                  |      |                              |     |     |            |   |             |
| ] ]  | / \           | sand, gray, wet, no odor.                                                                                                                    |      |                              |     |     |            |   |             |
| 20 _ |               | 18.5-20.0': No recovery.                                                                                                                     |      | <u> </u>                     |     |     |            |   |             |

#### Well Construction Information

Monument Type:NAFilter Pack:NAGround Surface Elevation (ft):Casing Diameter (inches):NASurface Seal:NATop of Casing Elevation (ft):Screen Slot Size (inches):NAAnnular Seal:NASurveyed Location:X: NA

Screened Interval (ft bgs): NA Boring Abandonment: Bentonite Unique Well ID: NA



Page 2 of 2

Client: City Investors IX LLC

Project: Block 38 West

Location: Seattle, Washington

**Farallon PN**: 397-019

Logged By: Y. Pehlivan

**Date/Time Started:** 12/21/19 1115

Date/Time Completed: 12/21/19 1215

Equipment: Geoprobe 7822DT

Drilling Company: AEC

**Drilling Foreman:** Chris Mainard

**Drilling Method:** Direct Push

Sampler Type: 5' Macrocore

Drive Hammer (lbs.): Auto
Depth of Water ATD (ft bgs): 5.0

Total Boring Depth (ft bgs): 31.5

Total Well Depth (ft bgs): NA

Sample Interval
USCS
USCS Graphic
USCS Graphic
Nample Analyzed
Sample Analyzed

20.0-21.0': Poorly graded SAND (100% sand), fine and medium SP 100 sand, gray, wet, no odor. ML 21.0-22.0': Sandy SILT (70% silt, 30% sand), fine and medium sand, gray, wet, no odor. ML 22.0-25.0': Sandy SILT (60% silt, 40% sand), fine and medium sand, gray, wet, no odor. 0.4 FB-08-23.0 25 25.0-27.0': Poorly graded SAND (95% sand, 5% silt), fine and SP 100 Bentonite medium sand, gray, wet, no odor. 27.0-28.0': Poorly graded SAND with silt (90% sand, 10% silt), fine SPsand, gray, wet, no odor. SM 28.0-30.0': Poorly graded SAND (95% sand, 5% silt), fine and SP 0.5 medium sand, gray, wet, no odor. 30 30.0-31.5': Sandy SILT (50% silt, 50% sand), fine sand, gray, wet, no 100 odor. 0.2 FB-08-30.5 X 35

Well Construction Information

Monument Type: NA Filter Pack: NA
Casing Diameter (inches): NA Surface Seal: NA
Screen Slot Size (inches): NA Annular Seal: NA

Screened Interval (ft bgs): NA Boring Abandonment: Bentonite Unique Well ID: NA

Ground Surface Elevation (ft): NM
Top of Casing Elevation (ft): NA
Surveyed Location: X: NA

Y: NA



Page 1 of 2

Client: City Investors IX LLC

Project: Block 38 West

Location: Seattle, Washington

**Farallon PN:** 397-019

Logged By: Y. Pehlivan

**Date/Time Started:** 12/21/19 0945

**Date/Time Completed:** 12/21/19 1050 **Equipment:** Geoprobe 7822DT

Drilling Company: AEC

Drilling Foreman: Chris Mainard

**Drilling Method:** Direct Push

Sampler Type: 5' Macrocore

NM

NA

Y: NA

Drive Hammer (lbs.): Auto

Depth of Water ATD (ft bgs): 3.0

Total Boring Depth (ft bgs): 33.0

Total Well Depth (ft bgs): NA

| Depth (feet bgs.) | Sample Interval | Lithologic Descriptio                                                                                   | n sosn            | USCS Graphic | % Recovery | Blow Counts 8/8/8 | PID (ppm) | Sample Analyzed | Со | oring/Well<br>nstruction<br>Details |
|-------------------|-----------------|---------------------------------------------------------------------------------------------------------|-------------------|--------------|------------|-------------------|-----------|-----------------|----|-------------------------------------|
| 0                 | 1               | 0.0-0.5': Pea gravel fill.                                                                              | FILL              | $\bowtie$    | 60         |                   |           |                 |    |                                     |
| -                 | 1 /             | 0.5-1.0': Silty SAND (70% sand, 30% silt), fine and abundant wood debris, brown, moist, no odor. (Fill) | medium sand, FILL | $\bowtie$    |            |                   |           |                 |    |                                     |

|      |                |                                                                                                                                       |      |           |    |     |            |   | <br>         |
|------|----------------|---------------------------------------------------------------------------------------------------------------------------------------|------|-----------|----|-----|------------|---|--------------|
| 0    |                | 0.0-0.5': Pea gravel fill.                                                                                                            | FILL | $\bowtie$ | 60 |     |            |   |              |
|      | \ /            | 0.5-1.0': Silty SAND (70% sand, 30% silt), fine and medium sand,                                                                      | FILL | $\bowtie$ |    |     |            |   |              |
|      | \ /            | abundant wood debris, brown, moist, no odor. (Fill)                                                                                   | FILL | $\bowtie$ |    |     |            |   |              |
| -    | $\bigvee$      | 1.0-2.3': Well graded SAND with gravel (70% sand, 30% gravel), fine and coarse sand, fine gravel, interbedded brown, gray, and black, |      | $\bowtie$ |    |     |            |   |              |
|      | Å              | dry, no odor. (Fill)                                                                                                                  | FILL | $\bowtie$ |    |     |            |   | _            |
| 1    | $\Lambda$      | 2.3-3.0': Silty SAND (70% sand, 30% silt), fine and medium sand,                                                                      |      |           |    |     |            |   | Water Level  |
|      | / \            | abundant wood debris, reddish brown, moist, no odor. (Fill)  3.0-5.0': No recovery.                                                   |      |           |    |     |            |   | vvaler Lever |
|      | 1              | 3.0-3.0 . No recovery.                                                                                                                |      |           |    |     |            |   |              |
| 5-   |                | 5.0-7.0': Well graded SAND with silt and gravel (70% sand, 20%                                                                        | FILL | $\otimes$ | 60 |     |            |   |              |
|      | \ /            | gravel, 10% silt), fine to coarse sand, fine gravel, reddish brown, wet,                                                              |      | $\bowtie$ |    |     |            |   |              |
|      | \ /            | no odor. (Fill)                                                                                                                       |      | $\bowtie$ |    |     |            |   |              |
| -    | $\bigvee$      | 7.0.9.01. Owneria FILL (COV) anil 400/ used a human turned dehair                                                                     | FILL | $\bowtie$ |    |     |            |   |              |
|      | X              | 7.0-8.0': Organic FILL (60% soil, 40% wood), abundant wood debris, dark brown, moist, organic odor.                                   | FILL |           |    |     |            |   |              |
|      | $\Lambda$      | 8.0-10.0': No recovery.                                                                                                               |      |           |    | 0.3 |            |   |              |
|      | $/ \setminus$  |                                                                                                                                       |      |           |    |     |            |   |              |
|      | / \            |                                                                                                                                       |      |           |    |     |            |   |              |
| 10 - |                | 10.0-11.0': Wood debris (70% wood, 30% silt), grayish brown, wet,                                                                     | FILL |           | 66 |     |            |   | Bentonite    |
|      | \ /            | organic odor. (Fill)                                                                                                                  |      | $\bowtie$ | 00 |     |            |   | Bentonite    |
| 1    | \ /            | 11.0-13.3': Organic FILL (60% soil, 40% wood), abundant wood                                                                          | FILL |           |    | 0.4 | FB-09-11.0 | x |              |
| _    | $\bigvee$      | debris, dark reddish brown, moist, organic odor.                                                                                      |      |           |    |     |            |   |              |
|      | X              |                                                                                                                                       |      | $\bowtie$ |    |     |            |   |              |
| -    | $\Lambda$      |                                                                                                                                       |      |           |    |     |            |   |              |
|      | $/ \setminus$  | 13.3-15.0': No recovery.                                                                                                              |      |           |    |     |            |   |              |
| 1 7  | / \            |                                                                                                                                       |      |           |    |     |            |   |              |
| 15 - |                | 45.0.40.41.0                                                                                                                          |      |           |    |     | 5D 00 45 0 |   |              |
|      | . /            | 15.0-16.4': Organic FILL (60% soil, 40% wood), abundant wood debris, dark reddish brown, moist, organic odor.                         | FILL | $\bowtie$ | 88 | 0.4 | FB-09-15.0 |   |              |
| -    | \ /            |                                                                                                                                       |      | $\bowtie$ |    |     |            |   |              |
|      | $\backslash /$ | 16.4-19.4': Silty SAND (60% sand, 40% silt), fine and medium sand,                                                                    | SM   |           |    |     |            |   |              |
| 1    | V              | grayish brown and browinsh gray, wet, no odor.                                                                                        |      |           |    | 0.3 |            |   |              |
|      | $\Lambda$      |                                                                                                                                       |      | ilili     |    |     |            |   |              |
|      | $/ \setminus$  |                                                                                                                                       |      |           |    |     |            |   |              |
| -    | / \            |                                                                                                                                       | L    |           |    |     |            |   |              |
| 20   |                | 19.4-20.0': No recovery.                                                                                                              |      |           |    |     |            |   |              |

|                               | Well Constru  | ction Information | า                              |
|-------------------------------|---------------|-------------------|--------------------------------|
| Monument Type: NA             | Filter Pack:  | NA                | Ground Surface Elevation (ft): |
| Casing Diameter (inches): NA  | Surface Seal: | NA                | Top of Casing Elevation (ft):  |
| Screen Slot Size (inches): NA | Annular Seal: | NA                | Surveyed Location: X: NA       |

Screened Interval (ft bgs): NA Boring Abandonment: Bentonite Unique Well ID: NA



Page 2 of 2

Client: City Investors IX LLC

**Project:** Block 38 West

Location: Seattle, Washington

**Farallon PN: 397-019** 

Logged By: Y. Pehlivan Date/Time Started: 12/21/19 0945 Date/Time Completed: 12/21/19 1050

Equipment: Geoprobe 7822DT

**Drilling Company:** AEC

Chris Mainard **Drilling Foreman: Drilling Method:** Direct Push

Sampler Type: 5' Macrocore

Auto Drive Hammer (lbs.): Depth of Water ATD (ft bgs): 3.0 Total Boring Depth (ft bgs): 33.0

Total Well Depth (ft bgs): NA

20.0-20.8': Silty SAND (70% sand, 30% silt), fine and medium sand, SM grayish brown, wet, no odor. SW-20.8-23.0': Well-graded SAND with silt (90% sand, 10% silt), fine to SM coarse sand, grayish brown, wet, no odor. 0.9 23.0-25.0': No recovery. 25 25.0-26.0': Poorly graded SAND (100% sand), fine and medium SP 100 Bentonite sand, gray, wet, no odor. 26.0-28.5': SILT (100% silt), gray, wet, no odor. ML 28.5-29.0': SILT with sand (75% silt, 15% sand, 10% gravel), fine ML and medium sand, fine gravel, gray, wet, no odor. 0.4 SP 29.0-30.0': Poorly graded SAND (100% sand), fine sand, gray, wet, 30 SP 100 30.0-31.4': Poorly graded SAND (100% sand), fine and medium sand, gray, wet, no odor. 31.4-33.0': Sandy SILT (70% silt, 30% sand), fine sand, gray, wet, no ML odor. FB-09-33.0 0.4 Χ 35

**Well Construction Information** 

Bentonite

Monument Type: NA Filter Pack: NA Casing Diameter (inches): NA Surface Seal: NA Screen Slot Size (inches): NA NA Annular Seal: Surveyed Location: X: NA Screened Interval (ft bgs):

**Boring Abandonment:** 

NA

Ground Surface Elevation (ft): NM Top of Casing Elevation (ft): NA

Y: NA Unique Well ID: NA



Page 1 of 2

Client: City Investors IX LLC

Project: Block 38 West

Location: Seattle, Washington

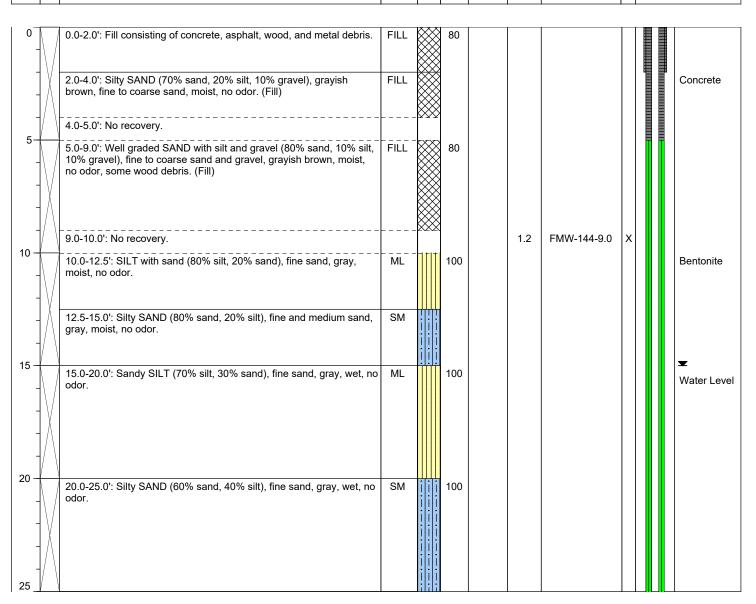
**Farallon PN**: 397-019

Logged By: G. Peters

**Date/Time Started:** 12/20/19 0910

Date/Time Completed: 12/20/19 1230
Equipment: TSi 150
Drilling Company: AEC

Drilling Foreman: Andrew Flagan


Drilling Method: Sonic

Sampler Type: 10' Core Barrel

Drive Hammer (lbs.): Auto
Depth of Water ATD (ft bgs): 15.0

Total Boring Depth (ft bgs): 33.0 Total Well Depth (ft bgs): 43.0

|                   |                 | -                      |           |     |                                 |           |           |                 |                                        |
|-------------------|-----------------|------------------------|-----------|-----|---------------------------------|-----------|-----------|-----------------|----------------------------------------|
| Depth (feet bgs.) | Sample Interval | Lithologic Description | n<br>Nscs | m I | % Recovery<br>Blow Counts 8/8/8 | PID (ppm) | Sample ID | Sample Analyzed | Boring/Well<br>Construction<br>Details |



Well Construction Information

12/20 Silica Sand 29.70 Monument Type: Flush Filter Pack: Ground Surface Elevation (ft): Casing Diameter (inches): 2.0 Surface Seal: Concrete Top of Casing Elevation (ft): NM Screen Slot Size (inches): Bentonite Y: NM 0.010 Annular Seal: Surveyed Location: X: NM

Screened Interval (ft bgs): 38.0-43.0 Boring Abandonment: NA Unique Well ID: BLY 301



Page 2 of 2

Client: City Investors IX LLC

Project: Block 38 West

Location: Seattle, Washington

**Farallon PN**: 397-019

Logged By: G. Peters

**Date/Time Started:** 12/20/19 0910

Date/Time Completed: 12/20/19 1230
Equipment: TSi 150
Drilling Company: AEC

Drilling Foreman: Andrew Flagan

Drilling Method: Sonic

Sampler Type: 10' Core Barrel

Drive Hammer (lbs.): Auto
Depth of Water ATD (ft bgs): 15.0
Total Boring Depth (ft bgs): 33.0

Total Well Depth (ft bgs): 43.0

| Depth (feet bgs.) | Sample Interval | Lithologic Description | SS | USCS Graphic | % Recovery | Blow Counts 8/8/8 | PID (ppm) | Sample Analyzed | Boring/Well<br>Construction<br>Details |
|-------------------|-----------------|------------------------|----|--------------|------------|-------------------|-----------|-----------------|----------------------------------------|



Well Construction Information

Monument Type:FlushFilter Pack:12/20 Silica SandGround Surface Elevation (ft):29.70Casing Diameter (inches):2.0Surface Seal:ConcreteTop of Casing Elevation (ft):NM

Screen Slot Size (inches):0.010Annular Seal:BentoniteSurveyed Location:X: NMY: NMScreened Interval (ft bgs):38.0-43.0Boring Abandonment:NAUnique Well ID:BLY 301



Page 1 of 2

Client: City Investors IX LLC

Project: Block 38 West

Location: Seattle, Washington

**Farallon PN**: 397-019

Logged By: G. Peters

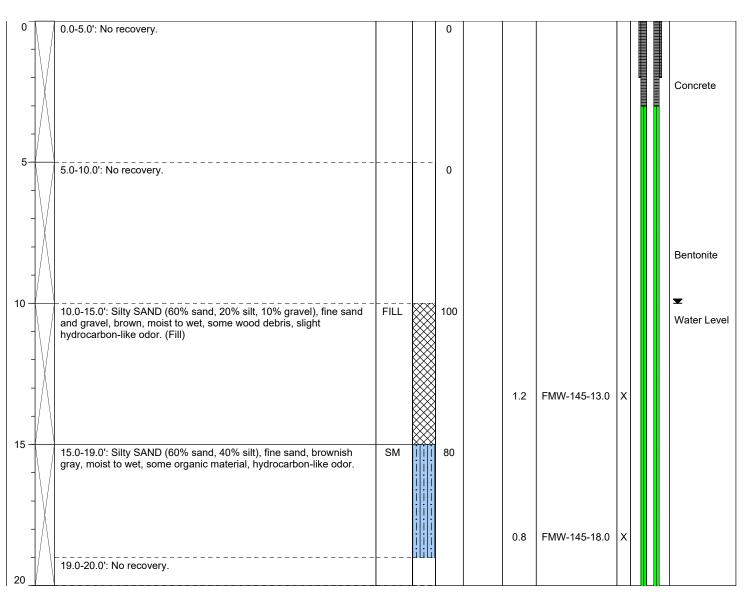
**Date/Time Started:** 12/20/19 1245

Date/Time Completed: 12/20/19 1600
Equipment: TSi 150
Drilling Company: AEC

**Drilling Foreman:** Andrew Flagan

Drilling Method: Sonic

Sampler Type: 10' Core Barrel


Drive Hammer (lbs.): Auto
Depth of Water ATD (ft bgs): 10.0
Total Boring Depth (ft bgs): 36.0

Total Well Depth (ft bgs): 36.0

Sample Interval

USCS
USCS
USCS
Blow Counts 8/8/8

Box Counts 8/8/8



Well Construction Information

Monument Type: Flush
Casing Diameter (inches): 2.0
Screen Slot Size (inches): 0.010
Screened Interval (ft bgs): 31.0-36.0

Filter Pack: 12/20 Silica Sand
Surface Seal: Concrete
Annular Seal: Bentonite
Boring Abandonment: NA

Ground Surface Elevation (ft): 23.0
Top of Casing Elevation (ft): NM
Surveyed Location: X: NM

Unique Well ID: BLY 302

NM Y: NM



Page 2 of 2

Client: City Investors IX LLC

Project: Block 38 West

Location: Seattle, Washington

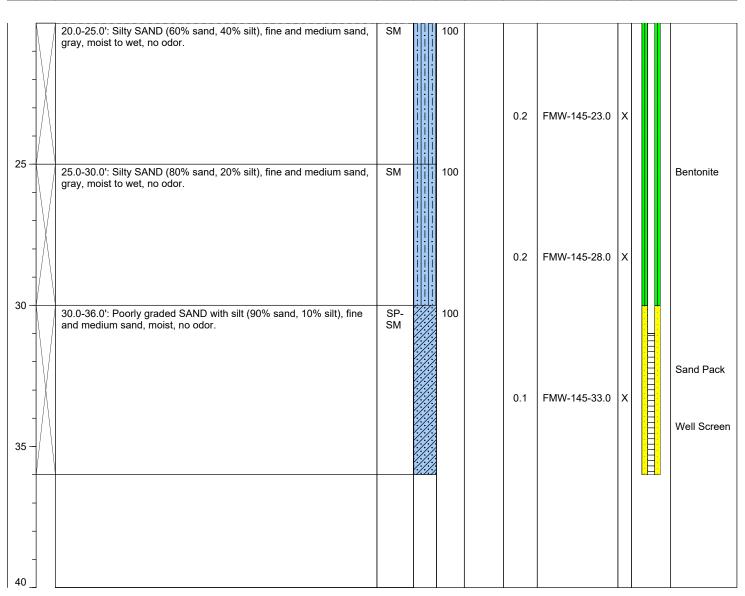
**Farallon PN**: 397-019

Logged By: G. Peters

**Date/Time Started:** 12/20/19 1245

Date/Time Completed: 12/20/19 1600
Equipment: TSi 150
Drilling Company: AEC

Drilling Foreman: Andrew Flagan


Drilling Method: Sonic

Sampler Type: 10' Core Barrel

Drive Hammer (lbs.): Auto
Depth of Water ATD (ft bgs): 10.0
Total Boring Depth (ft bgs): 36.0

Total Well Depth (ft bgs): 36.0

| eet bç | Lithologic Description | USCS<br>USCS Graphic | Recovery | Blow Counts 8/8/8 | PID (ppm) | Sample ID | Sample Analyzed | Boring/Well<br>Construction<br>Details |
|--------|------------------------|----------------------|----------|-------------------|-----------|-----------|-----------------|----------------------------------------|
|--------|------------------------|----------------------|----------|-------------------|-----------|-----------|-----------------|----------------------------------------|



Well Construction Information

NA

**Boring Abandonment:** 

Monument Type:FlushFilter Pack:12/20 Silica SandCasing Diameter (inches):2.0Surface Seal:ConcreteScreen Slot Size (inches):0.010Annular Seal:Bentonite

31.0-36.0

Screened Interval (ft bgs):

Ground Surface Elevation (ft): 23.0
Top of Casing Elevation (ft): NM
Surveyed Location: X: NM

Unique Well ID: BLY 302

Y: NM



Page 1 of 2

Client: City Investors IX LLC

Project: Block 38 West

Location: Seattle, Washington

**Farallon PN**: 397-019

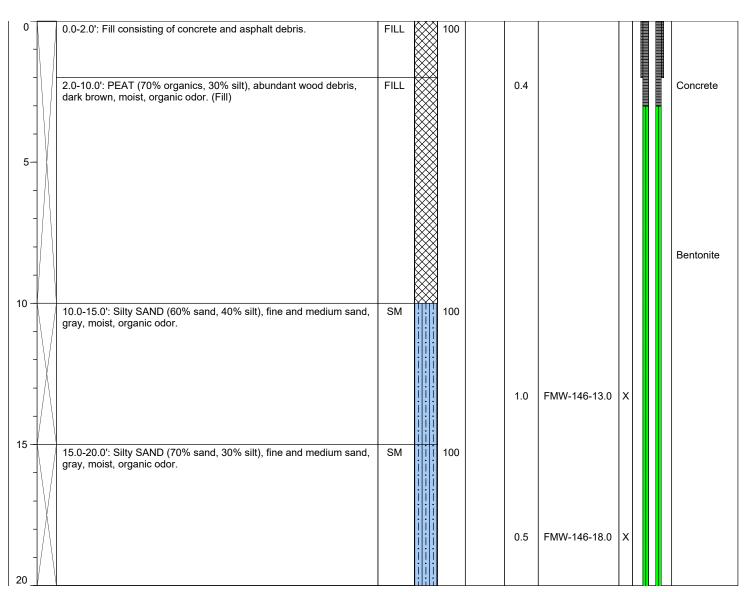
Logged By: G. Peters

**Date/Time Started:** 12/21/19 0945 **Date/Time Completed:** 12/21/19 1145

Equipment: TSi 150

Drilling Company: AEC
Drilling Foreman: Andrew Flagan

Drilling Method: Sonic


Sampler Type: 10' Core Barrel

Drive Hammer (lbs.): Auto

Depth of Water ATD (ft bgs): 25 Total Boring Depth (ft bgs): 36.0

Total Well Depth (ft bgs): 36.0

|                   | _               |                        |      |              |            |                   |           | ı         |                 |                                        |
|-------------------|-----------------|------------------------|------|--------------|------------|-------------------|-----------|-----------|-----------------|----------------------------------------|
| Depth (feet bgs.) | Sample Interval | Lithologic Description | nscs | USCS Graphic | % Recovery | Blow Counts 8/8/8 | PID (ppm) | Sample ID | Sample Analyzed | Boring/Well<br>Construction<br>Details |



Well Construction Information

Monument Type: Flush Filter Pack: 12/20 Silica Sand Ground Surface Elevation (ft): 23.65

Casing Diameter (inches): 2.0 Surface Seal: Concrete Top of Casing Elevation (ft): NM

Screen Slot Size (inches): 0.010 Annular Seal: Bentonite Surveyed Location: X: NM Y: NM

Screen Slot Size (inches):0.010Annular Seal:BentoniteSurveyed Location:X: NMScreened Interval (ft bgs):31.0-36.0Boring Abandonment:NAUnique Well ID:BLY 303



Page 2 of 2

Client: City Investors IX LLC

Project: Block 38 West

Location: Seattle, Washington

**Farallon PN**: 397-019

Logged By: G. Peters

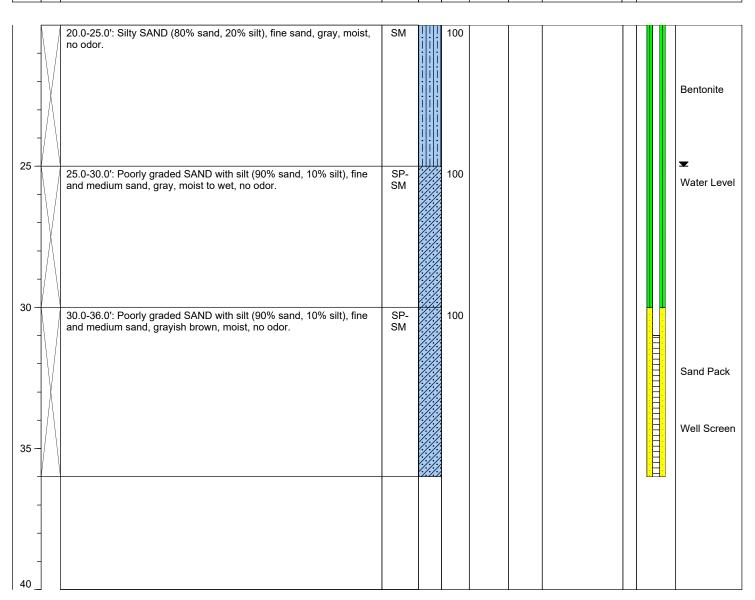
**Date/Time Started:** 12/21/19 0945

**Date/Time Completed:** 12/21/19 1145 **Equipment:** TSi 150

**Drilling Company:** AEC

**Drilling Foreman:** Andrew Flagan

Drilling Method: Sonic


Sampler Type: 10' Core Barrel

Drive Hammer (lbs.): Auto

Depth of Water ATD (ft bgs): 25
Total Boring Depth (ft bgs): 36.0

Total Well Depth (ft bgs): 36.0

| Depth (feet bgs.) | Sample Interval | Lithologic Description | SCS | JSCS Graphic | % Recovery | Slow Counts 8/8/8 | ID (ppm) | Sample ID | sample Analyzed | Boring/Well<br>Construction<br>Details |
|-------------------|-----------------|------------------------|-----|--------------|------------|-------------------|----------|-----------|-----------------|----------------------------------------|
| ă                 | တိ              |                        | 🖺   | ۱ű           | %          | Ē                 | <b>=</b> |           | Sa              |                                        |



Well Construction Information

Monument Type:FlushFilter Pack:12/20 Silica SandGround Surface Elevation (ft):23.65Casing Diameter (inches):2.0Surface Seal:ConcreteTop of Casing Elevation (ft):NM

Screen Slot Size (inches):0.010Annular Seal:BentoniteSurveyed Location:X: NMY: NMScreened Interval (ft bgs):31.0-36.0Boring Abandonment:NAUnique Well ID:BLY 303



Page 1 of 2

Client: City Investors IX LLC

Project: Block 38 West

Location: Seattle, Washington

**Farallon PN**: 397-019

Logged By: G. Peters

**Date/Time Started:** 12/21/19 1328

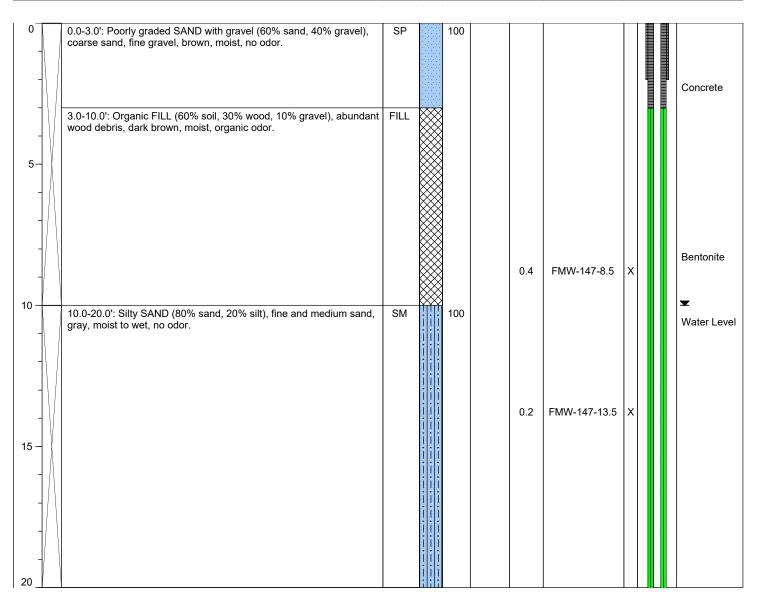
**Date/Time Completed:** 12/21/19 1600 **Equipment:** TSi 150

**Drilling Foreman:** Andrew Flagan

AEC

Drilling Method: Sonic

**Drilling Company:** 


Sampler Type: 10' Core Barrel

Depth of Water ATD (ft bgs): 10.0

Total Boring Depth (ft bgs): 36.0

Total Well Depth (ft bgs): 36.0

Pample Interval
Sample Interval
Construction
Details



Well Construction Information

12/20 Silica Sand 23.50 Monument Type: Flush Filter Pack: Ground Surface Elevation (ft): Casing Diameter (inches): 2.0 Surface Seal: Concrete Top of Casing Elevation (ft): NM Screen Slot Size (inches): 0.010 Bentonite Annular Seal: Surveyed Location: X: NM Y: NM

Screened Interval (ft bgs): 31.0-36.0 Boring Abandonment: NA Unique Well ID: BLY 304



Page 2 of 2

Client: City Investors IX LLC

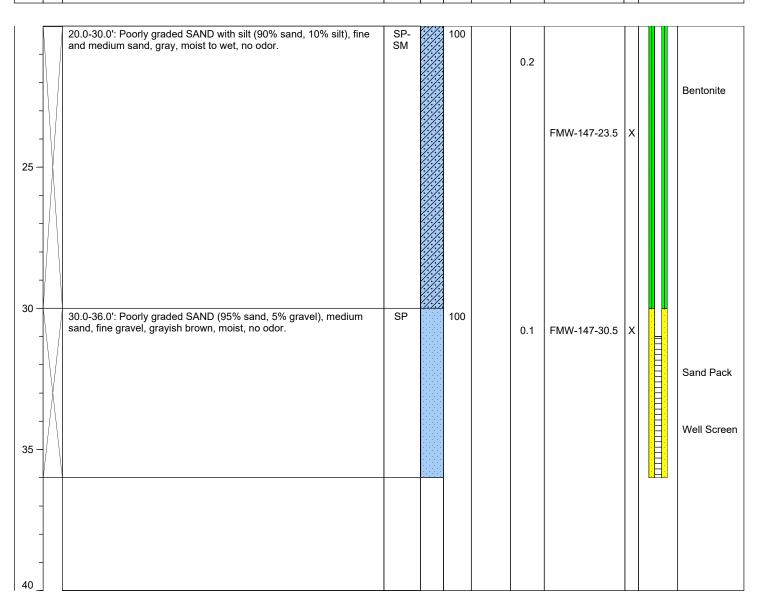
**Project:** Block 38 West

Location: Seattle, Washington

**Farallon PN: 397-019** 

Logged By: G. Peters Date/Time Started: 12/21/19 1328 Date/Time Completed: 12/21/19 1600

Equipment: TSi 150 **Drilling Company:** AEC


Andrew Flagan **Drilling Foreman:** 

**Drilling Method:** Sonic Sampler Type: 10' Core Barrel

Auto Drive Hammer (lbs.): Depth of Water ATD (ft bgs): 10.0

Total Boring Depth (ft bgs): 36.0 Total Well Depth (ft bgs): 36.0

Blow Counts 8/8/8 Sample Analyzed Depth (feet bgs.) Sample Interval **USCS Graphic** Boring/Well Recovery **Lithologic Description** PID (ppm) Construction Sample ID **USCS Details** 



#### **Well Construction Information**

12/20 Silica Sand Monument Type: Flush Filter Pack: Ground Surface Elevation (ft): Casing Diameter (inches): 2.0 Surface Seal: Concrete Top of Casing Elevation (ft): Screen Slot Size (inches): 0.010 Bentonite Annular Seal:

Screened Interval (ft bgs): 31.0-36.0 **Boring Abandonment:** NA Unique Well ID: BLY 304

Surveyed Location: X: NM

Y: NM

23.50

NM



Page 1 of 2

Client: City Investors IX LLC

Project: Block 38 West

Location: Seattle, Washington

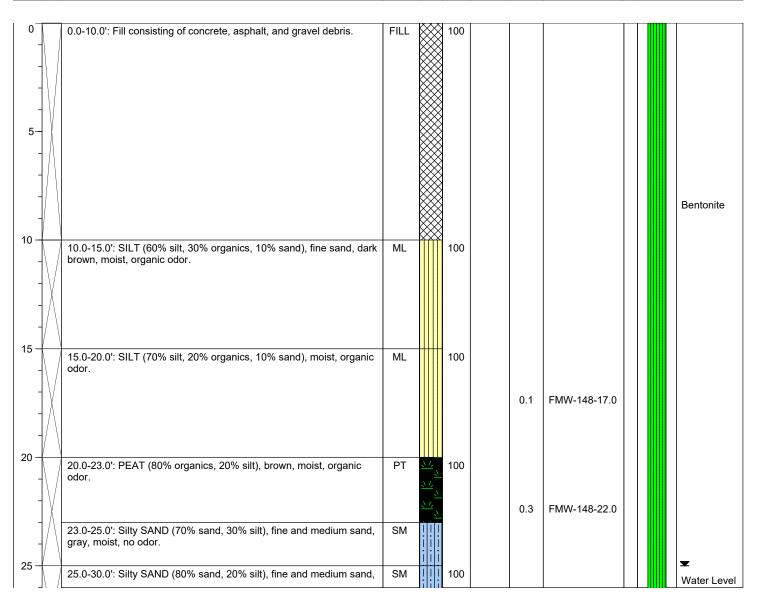
**Farallon PN**: 397-019

Logged By: G. Peters

**Date/Time Started:** 12/22/19 1300

Date/Time Completed: 12/22/19 1600
Equipment: TSi 150
Drilling Company: AEC

Drilling Foreman: Andrew Flagan


Drilling Method: Sonic

Sampler Type: 10' Core Barrel

Drive Hammer (lbs.): Auto
Depth of Water ATD (ft bgs): 25.0
Total Boring Depth (ft bgs): 50.0

Total Well Depth (ft bgs): NA

Pample Interval
Sample Interval
Construction
Details



Well Construction Information

Monument Type:NAFilter Pack:NACasing Diameter (inches):NASurface Seal:NAScreen Slot Size (inches):NAAnnular Seal:NA

Ground Surface Elevation (ft): 37.43 Top of Casing Elevation (ft): NA

Surveyed Location: X: NM Y: NM

Screened Interval (ft bgs): NA Boring Abandonment: Bentonite Unique Well ID: NA



Page 2 of 2

Client: City Investors IX LLC

**Project:** Block 38 West

Location: Seattle, Washington

**Farallon PN: 397-019** 

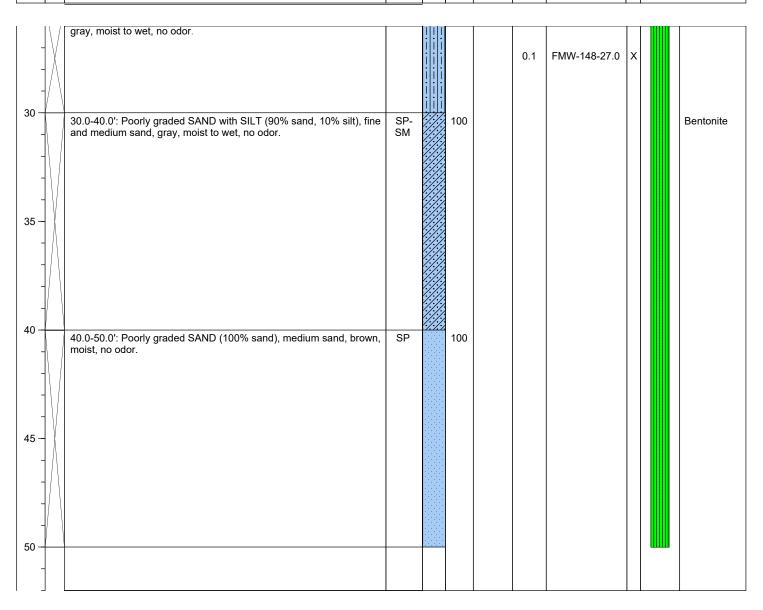
Logged By: G. Peters Date/Time Started: 12/22/19 1300 Date/Time Completed: 12/22/19 1600

Equipment: TSi 150

**Drilling Foreman:** Andrew Flagan

AEC

**Drilling Method:** Sonic


**Drilling Company:** 

Sampler Type: 10' Core Barrel

Auto Drive Hammer (lbs.): Depth of Water ATD (ft bgs): 25.0

Total Boring Depth (ft bgs): 50.0 Total Well Depth (ft bgs): NA

| eet bg | Sample Interval | Lithologic Description | USCS Graphic | % Recovery | Blow Counts 8/8/8 | PID (ppm) | Sample ID | Sample Analyzed | Boring/Well<br>Construction<br>Details |
|--------|-----------------|------------------------|--------------|------------|-------------------|-----------|-----------|-----------------|----------------------------------------|



**Well Construction Information** 

Monument Type: NA Filter Pack: NA NA Casing Diameter (inches): NA Surface Seal: Screen Slot Size (inches): NA NA Annular Seal: NA **Boring Abandonment:** Bentonite

37.43 Ground Surface Elevation (ft): Top of Casing Elevation (ft): Surveyed Location: X: NM

Y: NM

Screened Interval (ft bgs):

Unique Well ID: NA



Page 1 of 2

Client: City Investors IX LLC

**Project:** Block 38 West

Location: Seattle, Washington

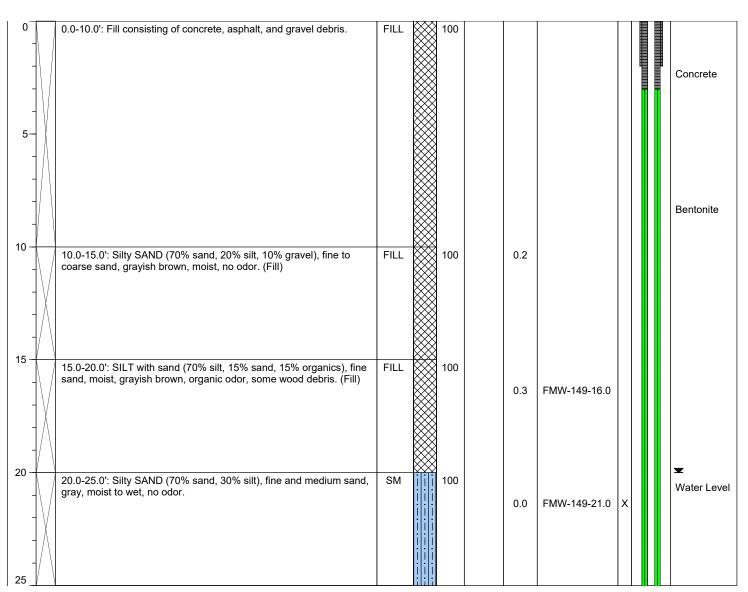
**Farallon PN**: 397-019

Logged By: G. Peters Date/Time Started: 12/21/19 1600

Date/Time Completed: 12/22/19 1215 Equipment: TSi 150

**Drilling Company:** AEC

Andrew Flagan **Drilling Foreman:** 


**Drilling Method:** Sonic Sampler Type: 10' Core Barrel

Auto Drive Hammer (lbs.): Depth of Water ATD (ft bgs): 20.0

Total Boring Depth (ft bgs): 49.0

Total Well Depth (ft bgs): 49.0

| oth (feet bgs.) | nple Interval | Lithologic Descriptio | σ    | CS Graphic | Recovery | w Counts 8/8/8 | (mdd)   | Sample ID | nple Analyzed | Boring/Well<br>Construction<br>Details |
|-----------------|---------------|-----------------------|------|------------|----------|----------------|---------|-----------|---------------|----------------------------------------|
| Depth           | Sample        |                       | nscs | nscs       | % Rec    | Blow C         | PID (pp |           | Sample        |                                        |



**Well Construction Information** 

NA

**Boring Abandonment:** 

Monument Type: Flush Filter Pack: Concrete Casing Diameter (inches): 2.0 Surface Seal: Screen Slot Size (inches): 0.010 Bentonite Annular Seal: Screened Interval (ft bgs):

44.0-49.0

12/20 Silica Sand Ground Surface Elevation (ft): Top of Casing Elevation (ft): Surveyed Location: X: NM

Unique Well ID: BLY 305

NM

36.00

Y: NM



Page 2 of 2

Client: City Investors IX LLC

Project: Block 38 West

Location: Seattle, Washington

**Farallon PN**: 397-019

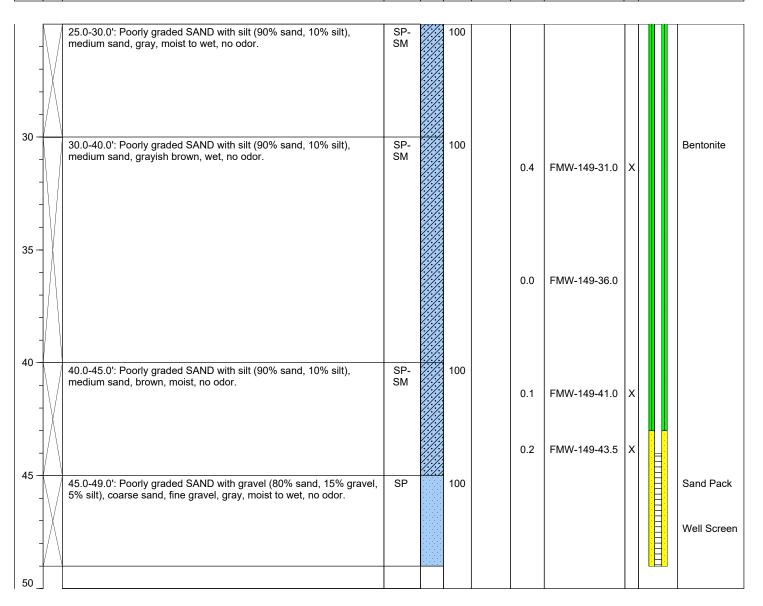
Logged By: G. Peters

**Date/Time Started:** 12/21/19 1600 **Date/Time Completed:** 12/22/19 1215

Equipment: TSi 150

Drilling Company: AEC

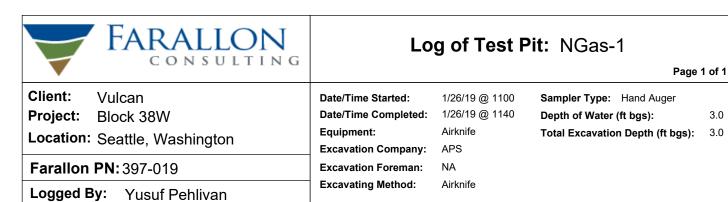
**Drilling Foreman:** Andrew Flagan


Drilling Method: Sonic

Sampler Type: 10' Core Barrel

Drive Hammer (lbs.): Auto
Depth of Water ATD (ft bgs): 20.0

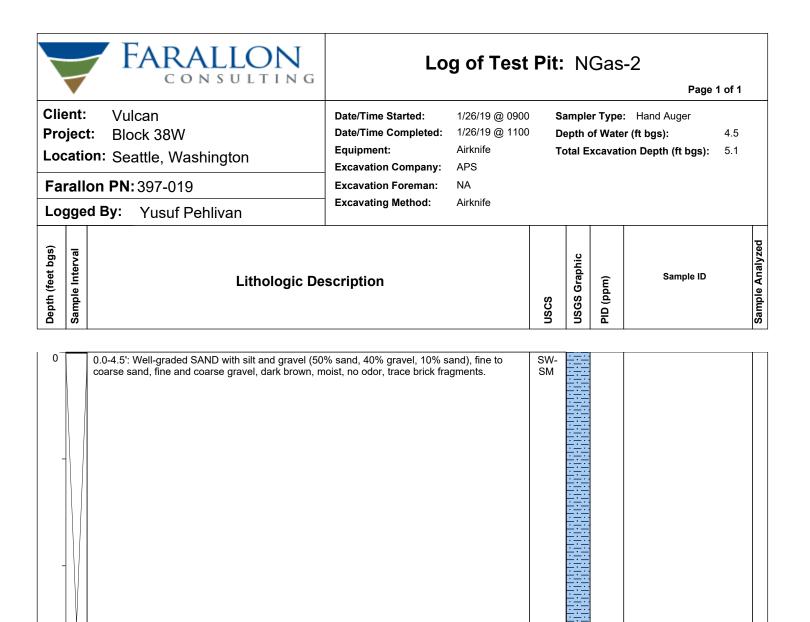
Total Boring Depth (ft bgs): 49.0 Total Well Depth (ft bgs): 49.0


| Depth (feet bgs.) | Lithologic Descriptio | n<br>SCS | ISCS Gr | % Recovery Blow Counts 8/8/8 | PID (ppm) | Sample ID | Sample Analyzed | Boring/Well<br>Construction<br>Details |
|-------------------|-----------------------|----------|---------|------------------------------|-----------|-----------|-----------------|----------------------------------------|
|-------------------|-----------------------|----------|---------|------------------------------|-----------|-----------|-----------------|----------------------------------------|



Well Construction Information

12/20 Silica Sand 36.00 Monument Type: Flush Filter Pack: Ground Surface Elevation (ft): Casing Diameter (inches): 2.0 Surface Seal: Concrete Top of Casing Elevation (ft): NM Screen Slot Size (inches): 0.010 Bentonite Annular Seal: Surveyed Location: X: NM Y: NM


Screened Interval (ft bgs): 44.0-49.0 Boring Abandonment: NA Unique Well ID: BLY 305



3.0

3.0

| 0  | 0.0-0.7': Concrete.                                                                                                                                                                             | СО        |   |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---|--|
|    |                                                                                                                                                                                                 |           |   |  |
| _  | 0.7-1.8': Well-graded SAND with silt and gravel (60% sand, 30% gravel, 10% silt), fine to coarse sand, fine gravel, brown, moist, no odor. Geotextile fabric at 1.5' bgs.                       | SW-<br>SM |   |  |
|    |                                                                                                                                                                                                 |           |   |  |
|    | 1.8-3.0': Silty SAND with gravel (60% sand, 25% silt, 15% gravel), fine to coarse sand, fine gravel, dark brown, moist, wet at 3.0' bgs, no odor. Gas line encountered at 3.0' bgs. Water fills | SM        | 薑 |  |
| _  | gravel, dark brown, moist, wet at 3.0' bgs, no odor. Gas line encountered at 3.0' bgs. Water fills test pit.                                                                                    |           |   |  |
|    |                                                                                                                                                                                                 |           |   |  |
| _  |                                                                                                                                                                                                 |           |   |  |
|    |                                                                                                                                                                                                 |           |   |  |
|    |                                                                                                                                                                                                 |           |   |  |
| -  |                                                                                                                                                                                                 |           |   |  |
|    |                                                                                                                                                                                                 |           |   |  |
|    |                                                                                                                                                                                                 |           |   |  |
| 5_ |                                                                                                                                                                                                 |           |   |  |



GP

WD

4.5-5.0': Poorly graded gravel (100% gravel), fine fravel, gray, wet, utilities backfill.

5.0-5.1': Rotting wood. Water fills testpit.

5



# Log of Test Pit: PH-1

Page 1 of 1

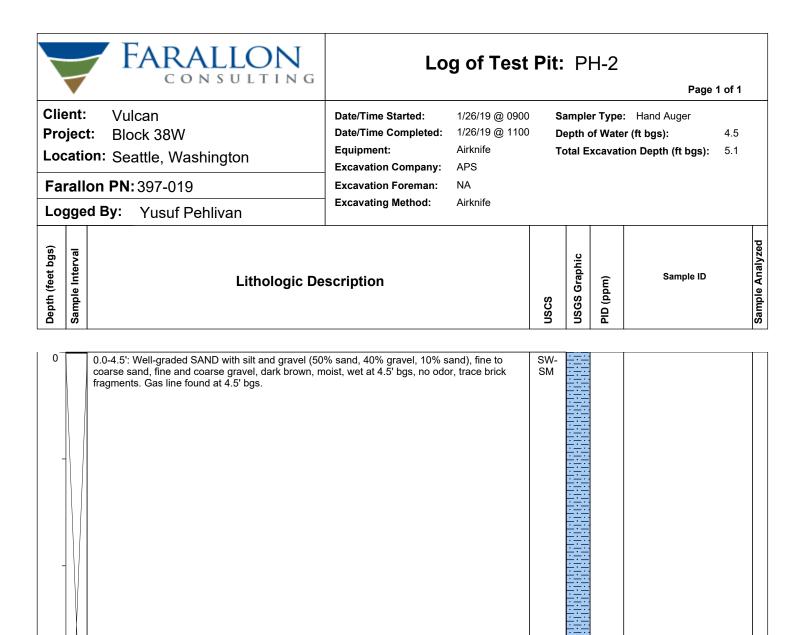
Location: Seattle, Washington

**Farallon PN**: 397-019

Logged By: Yusuf Pehlivan

**Date/Time Started:** 1/26/19 @ 0925 **Date/Time Completed:** 1/26/19 @ 1000

Equipment: Airknife


Excavation Company: APS
Excavation Foreman: NA
Excavating Method: Airknife

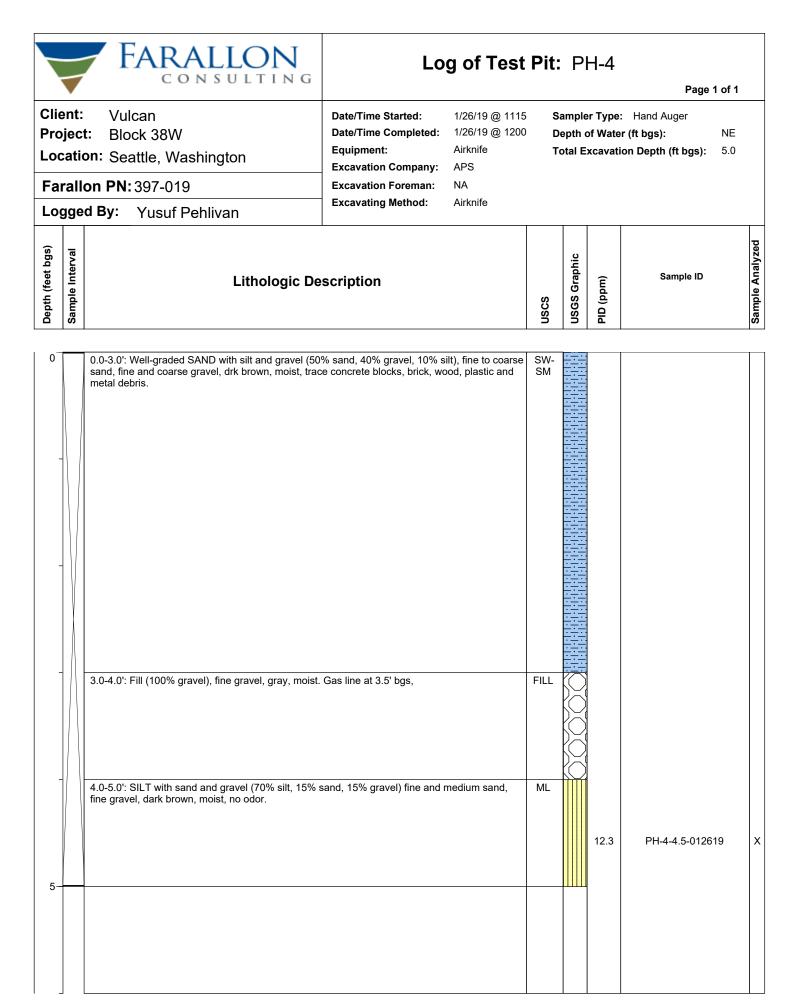
Sampler Type: Hand Auger

Depth of Water (ft bgs): 3.5

Total Excavation Depth (ft bgs): 4.0

| 0  | 0.0-0.6': Concrete.                                                                                                                                                                     | СО |     |                 |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|-----------------|--|
|    |                                                                                                                                                                                         |    |     |                 |  |
| -  | 0.6-4.0': Poorly graded SAND (95% sand, 5% gravel), fine and medium sand, fine gravel, grayish brown, moist, wet at 3.5' bgs, no odor. Water fills test pit, unable to log below water. | SP |     |                 |  |
|    |                                                                                                                                                                                         |    |     |                 |  |
|    |                                                                                                                                                                                         |    | 0.0 | PH-1-4.0-012619 |  |
|    |                                                                                                                                                                                         |    |     |                 |  |
|    |                                                                                                                                                                                         |    |     |                 |  |
| 5_ |                                                                                                                                                                                         |    |     |                 |  |




GP

WD

4.5-5.0': Poorly graded GRAVEL (100% gravel), fine gravel, gray, wet, utility backfill.

5-

5.0-5.1': Rotting wood.





| LO               | gge             | и Бу. | Yusuf Penlivan |           |      |              |           |           |                 |
|------------------|-----------------|-------|----------------|-----------|------|--------------|-----------|-----------|-----------------|
| Depth (feet bgs) | Sample Interval |       | Lithologic De  | scription | nscs | USGS Graphic | PID (ppm) | Sample ID | Sample Analyzed |

Page 1 of 1

4.2

4.2

| 0  | 0.0-0.9': Concrete.                                                                                                                                                                           | СО        |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|
|    | 0.9-3.8': Well-graded SAND with silt and gravel (60% sand, 30% gravel, 10% silt), fine to coarse sand, fine and coarse gravel, dark brown, moist, trace rocks, brick, wood, and metal debris. | SW-<br>SM |  |  |
| _  | 3.7-4.2': Utility Conduits.                                                                                                                                                                   |           |  |  |
|    | 4.2-4.4': Wood, wet. Unable to advance further.                                                                                                                                               | WD        |  |  |
| 5_ |                                                                                                                                                                                               |           |  |  |



| eet bc | Sample Interval | Lithologic Description | nscs | USGS Graphic | PID (ppm) | Sample ID | Sample Analyzed |
|--------|-----------------|------------------------|------|--------------|-----------|-----------|-----------------|
|--------|-----------------|------------------------|------|--------------|-----------|-----------|-----------------|

Page 1 of 1

4.5

4.5

| 0  |   | 0.0-4.0': Silty SAND with gravel (50% sand, 35% silt, 15% gravel), fine and medium sand, fine gravel, dark brown, moist, no odor. | SM |     |                   |   |
|----|---|-----------------------------------------------------------------------------------------------------------------------------------|----|-----|-------------------|---|
|    |   |                                                                                                                                   |    |     |                   |   |
|    |   |                                                                                                                                   |    |     |                   |   |
|    |   |                                                                                                                                   |    |     |                   |   |
|    |   |                                                                                                                                   |    |     |                   |   |
| -  |   |                                                                                                                                   |    |     |                   |   |
|    |   |                                                                                                                                   |    |     |                   |   |
|    |   |                                                                                                                                   |    |     |                   |   |
|    |   |                                                                                                                                   |    |     |                   |   |
|    |   |                                                                                                                                   |    |     |                   |   |
| -  |   |                                                                                                                                   |    |     |                   |   |
|    |   |                                                                                                                                   |    |     |                   |   |
|    |   |                                                                                                                                   |    |     |                   |   |
|    |   |                                                                                                                                   |    |     |                   |   |
|    |   |                                                                                                                                   |    |     |                   |   |
| _  |   |                                                                                                                                   |    |     |                   |   |
|    |   |                                                                                                                                   |    |     |                   |   |
|    |   |                                                                                                                                   |    |     |                   |   |
|    |   |                                                                                                                                   |    |     |                   |   |
|    |   |                                                                                                                                   |    |     |                   |   |
|    |   |                                                                                                                                   |    |     |                   |   |
| -  |   | 4.0-4.5': Sandy SILT (60% silt, 40% sand), fill, wood fragements, dark brown, wet, no odor.                                       | ML | 4.1 | PH-11A-4.0-091919 | x |
|    |   |                                                                                                                                   |    |     |                   |   |
|    |   |                                                                                                                                   |    |     |                   |   |
|    |   |                                                                                                                                   |    |     |                   |   |
| _  |   |                                                                                                                                   |    |     |                   |   |
| 5_ | J |                                                                                                                                   | ļ  |     |                   |   |



# Log of Test Pit: PH-12

Page 1 of 1

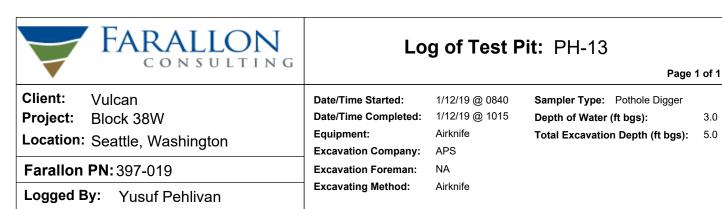
4.0

Date/Time Started: 1/19/19 @ 0930

1/19/19 @ 1015

Sampler Type: Hand Auger Depth of Water (ft bgs):

Airknife


APS **Excavation Company: Excavation Foreman:** NA **Excavating Method:** Airknife Total Excavation Depth (ft bgs): 4.0

**Farallon PN:** 397-019

Logged By: Yusuf Pehlivan

| pth (feet bgs | Sample Interval | Lithologic Description | uscs | USGS Graphic | PID (ppm) | Sample ID | Sample Analyzed |  |
|---------------|-----------------|------------------------|------|--------------|-----------|-----------|-----------------|--|
|---------------|-----------------|------------------------|------|--------------|-----------|-----------|-----------------|--|

| 0  | 0.0-0.9': Concrete.                                                                                                                                                                   | со        |     |       |                  |   |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|-------|------------------|---|
| -  | 0.9-1.5': Well-graded GRAVEL with silt and sand (70% gravel, 20% sand, 10% silt), fine to coarse sand, fine and coarse gravel, brown, dry, no odor. Geotextile fabric at 1.5' bgs.    | GW-<br>GM |     |       |                  |   |
| -  | 1.5-3.0': Concrete/rock blocks.                                                                                                                                                       | СО        | 0.5 |       |                  |   |
| -  | 3.0-4.0': Sandy SILT (60% silt, 40% sand), fine and medium sand, dark brown, moist, wet at 4.0 bgs, petroleum-like odor, trace organic plant matter. Water fills pothole at 4.0' bgs. | ML        |     |       |                  |   |
| 5_ |                                                                                                                                                                                       |           |     | 127.5 | PH-12-4.0-011919 | X |



3.0

5.0

| 0  | 0.0-0.7': Concrete.                                                                                                                                                                                                | СО   |     |                  |   |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|------------------|---|
|    | 0.7-1.5': Fill (70% sand, 30% gravel), fine and medium sand, fine and coarse gravel, grayish brown, dry to moist, no odor.                                                                                         | FILL |     |                  |   |
|    | 1.5-4.0': Poorly graded SAND (90% sand, 10% gravel), fine and medium sand, fine gravel, dry, wet at 3.0' bgs, no odor, well cemented. Well-graded gravel in hole to 3.0'bgs. 4.0-5.0' bgs not logged due to water. | SP   |     |                  |   |
|    |                                                                                                                                                                                                                    |      |     |                  |   |
|    |                                                                                                                                                                                                                    |      | 0.0 | PH-13-3.0-011218 | × |
|    |                                                                                                                                                                                                                    |      |     |                  |   |
| 5_ |                                                                                                                                                                                                                    |      |     |                  |   |



Logged By:

Depth (feet bgs)
Sample Interval

Yusuf Pehlivan

| an            | Excavation Company: Excavation Foreman: Excavating Method: | APS<br>NA<br>Airknife |      |              |           |           |                 |  |
|---------------|------------------------------------------------------------|-----------------------|------|--------------|-----------|-----------|-----------------|--|
| Lithologic De | scription                                                  |                       | nscs | USGS Graphic | PID (ppm) | Sample ID | Sample Analyzed |  |

Page 1 of 1

3.5

3.5

|   |                                                                                                                                                                                               | -         | <u>'</u>                 |  |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------|--|
| 0 | 0.0-0.9': Concrete.                                                                                                                                                                           | СО        |                          |  |
| - | 0.9-1.3': Well-graded GRAVEL with silt and sand (75% gravel, 15% sand, 10% silt), fine to coarse sand, fine and coarse gravel, brown, dry, no odor, road base. Geotextile fabric at 1.3' bgs. | GW-<br>GM | > a<br>> -<br>> a<br>> - |  |
| - | 1.3-3.5': Poorly graded SAND with gravel (85% sand, 15% gravel), medium and coarse sand, fine gravel. (Airknife operator says CDF). 3.0-5.0' bgs water fills test pit.                        | SP        |                          |  |
|   |                                                                                                                                                                                               |           |                          |  |
| _ |                                                                                                                                                                                               |           |                          |  |
| - |                                                                                                                                                                                               |           |                          |  |
| 5 |                                                                                                                                                                                               |           |                          |  |



### Log of Test Pit: TP-1

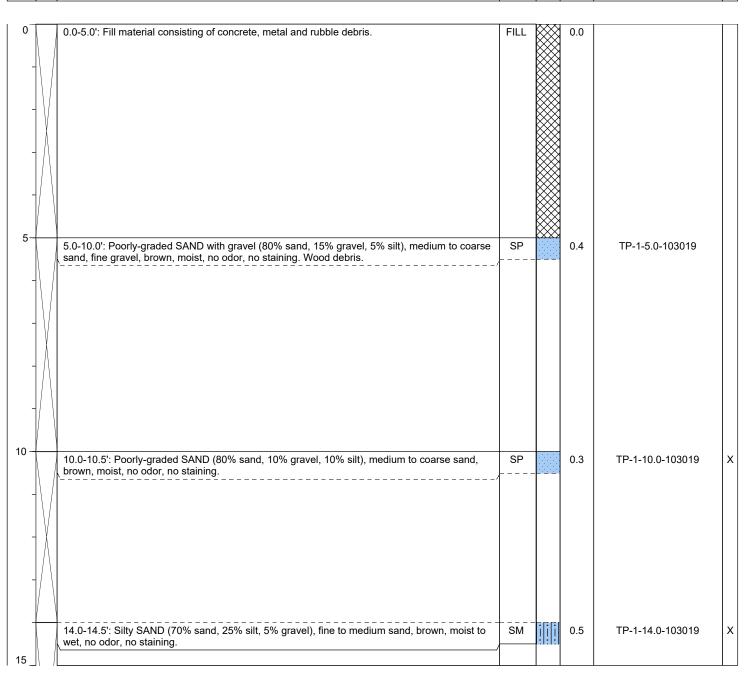
Page 1 of 1

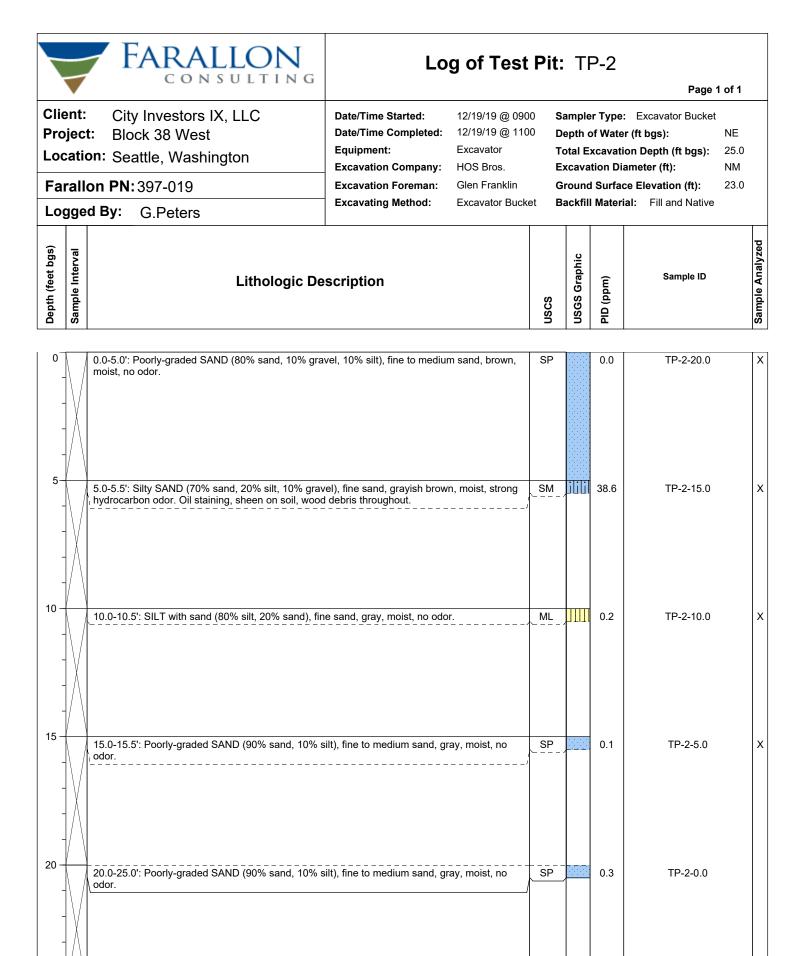
City Investors IX, LLC

Project: Block 38 West

Location: Seattle, Washington

**Farallon PN:** 397-019


Logged By: **G.Peters**  Date/Time Started: 10/30/19 @ 0800 10/30/19 @ 1145 Date/Time Completed:


**Equipment:** Excavator **Excavation Company:** HOS Bros. **Excavation Foreman:** Glen Franklin

**Excavating Method: Excavator Bucket**  Sampler Type: Excavator Bucket

ΝE Depth of Water (ft bgs): 14.0 Total Excavation Depth (ft bgs): **Excavation Diameter (ft):** NM NMGround Surface Elevation (ft):

Backfill Material: Fill







# Log of Test Pit: TP-3

Page 1 of 1

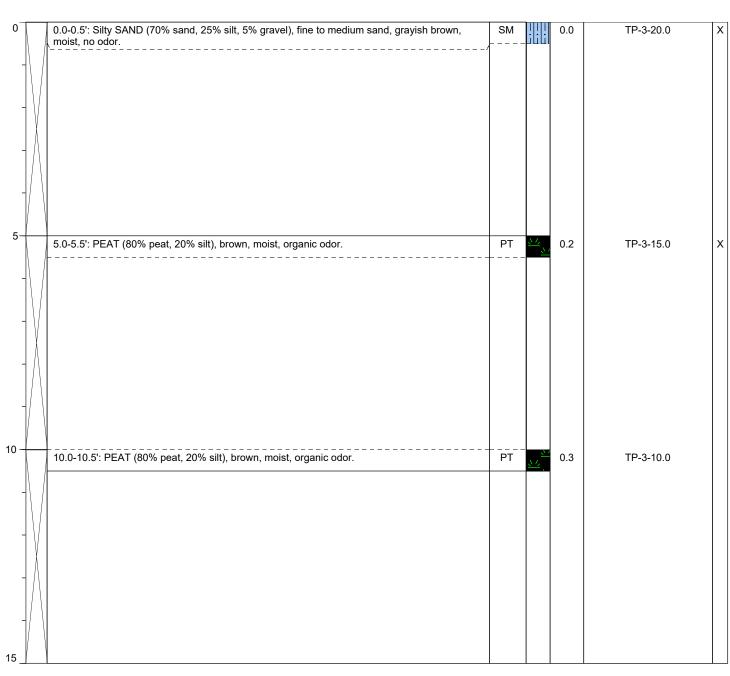
Client: City Investors IX, LLC

Project: Block 38 West

Location: Seattle, Washington

**Farallon PN:** 397-019

Logged By: **G.Peters**  Date/Time Started: 12/19/19 @ 0900 12/19/19 @ 1100 Date/Time Completed:


Excavator

Equipment: **Excavation Company:** HOS Bros. Glen Franklin **Excavation Foreman:** 

**Excavating Method: Excavator Bucket**  Sampler Type: Excavator Bucket

ΝE Depth of Water (ft bgs): Total Excavation Depth (ft bgs): 25.0 **Excavation Diameter (ft):** NM 20.0 Ground Surface Elevation (ft):

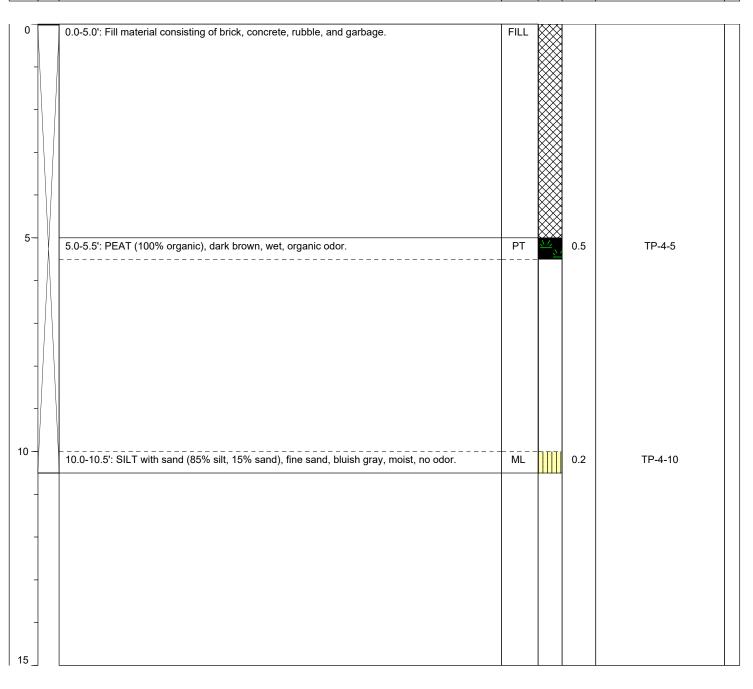
Backfill Material: Native





Page 1 of 1

Location: Seattle, Washington


**Farallon PN: 397-019** 

Logged By: A. Burns Date/Time Started: 12/21/19 1250 12/21/19 1315 Date/Time Completed:

Equipment: Excavator **Excavation Company:** Hos Bros. Glen **Excavation Foreman:** 

**Excavating Method:** Excavator Sampler Type: Excavator Bucket

Depth of Water (ft bgs): 5.0 Total Excavation Depth (ft bgs): 10.5 **Excavation Diameter (ft):** NM Ground Surface Elevation (ft): NM





Page 1 of 1

Location: Seattle, Washington

**Farallon PN**: 397-019

Logged By: A. Burns

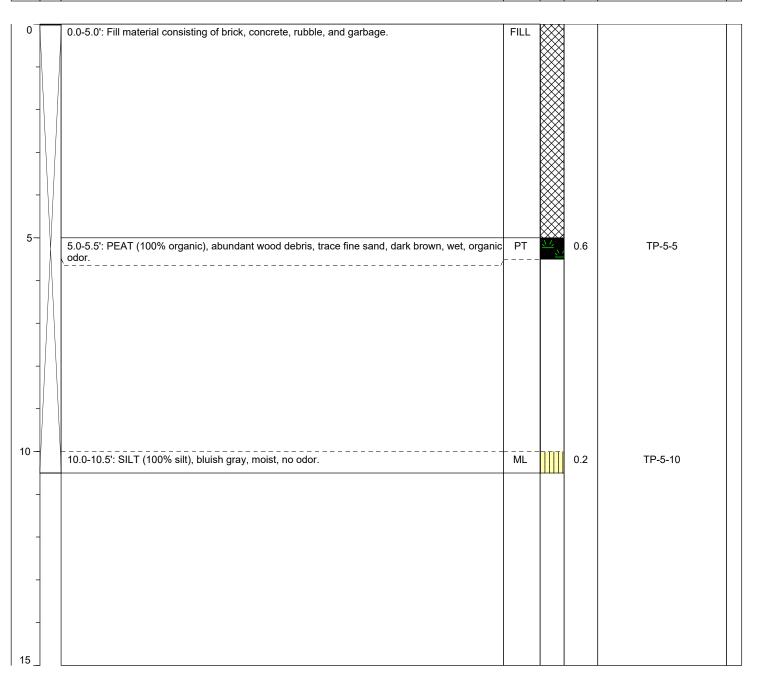
 Date/Time Started:
 12/21/19 1210

 Date/Time Completed:
 12/21/19 1230

 Equipment:
 Excavator

Equipment: Excavator
Excavation Company: Hos Bros.
Excavation Foreman: Glen

**Excavating Method:** Excavator


Sampler Type: Excavator Bucket

Depth of Water (ft bgs): 5.0

Total Excavation Depth (ft bgs): 10.5

Excavation Diameter (ft): NM

Ground Surface Elevation (ft): NM





Page 1 of 1

Location: Seattle, Washington

**Farallon PN:** 397-019

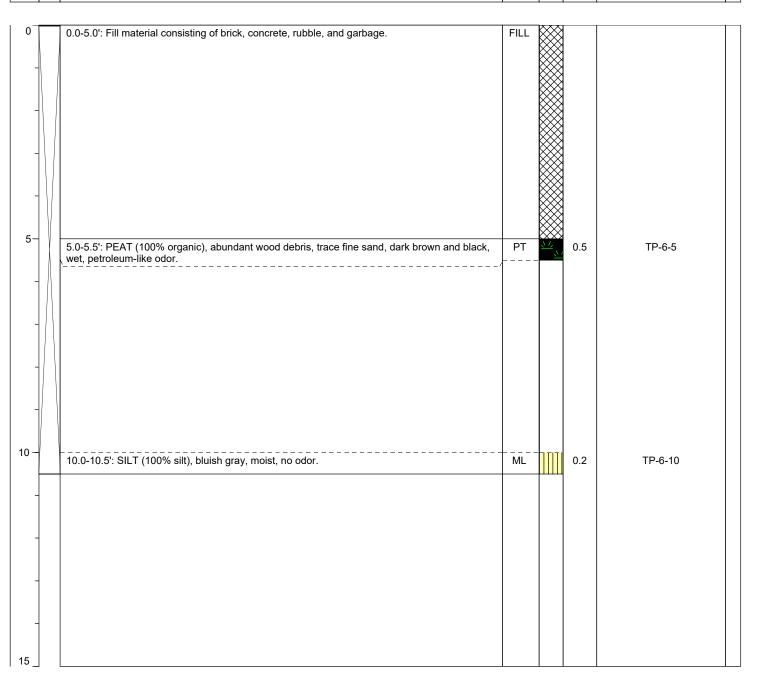
Logged By: A. Burns

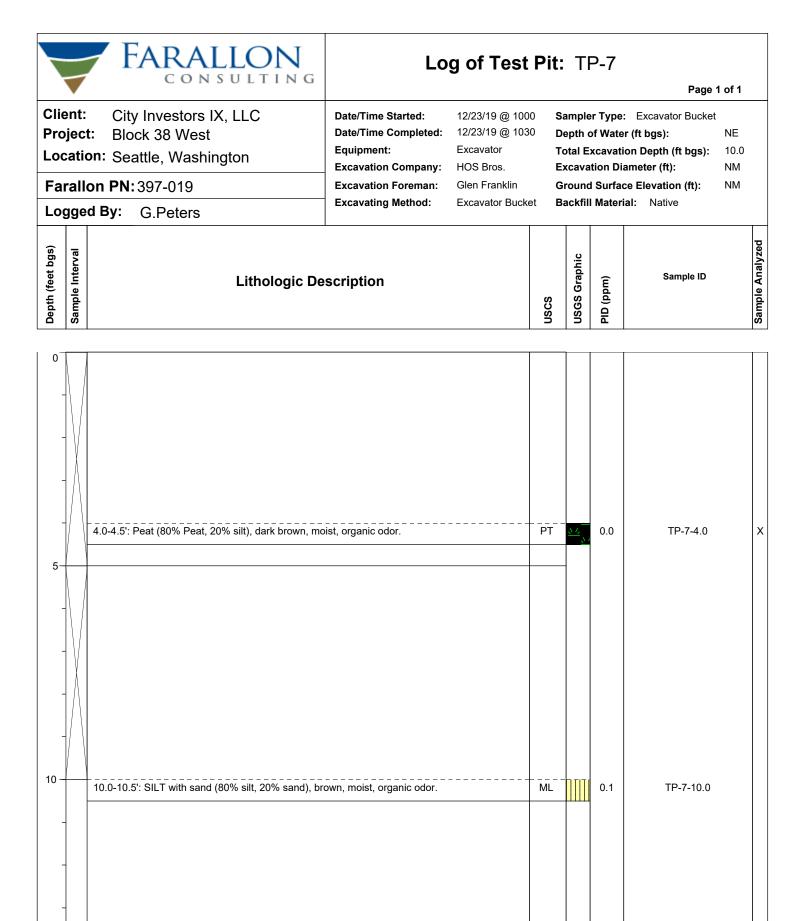
 Date/Time Started:
 12/21/19 1232

 Date/Time Completed:
 12/21/19 1250

Equipment:ExcavatorExcavation Company:Hos Bros.Excavation Foreman:Glen

**Excavating Method:** Excavator


Sampler Type: Excavator Bucket


Depth of Water (ft bgs): 5.0

Total Excavation Depth (ft bgs): 10.5

Excavation Diameter (ft): NM

Ground Surface Elevation (ft): NM









Page 1 of 1

Client: City Investors IX

Project: Block 38 West Property

Location: Seattle, Washington

**Farallon PN**: 397-019

Logged By: G.Peters

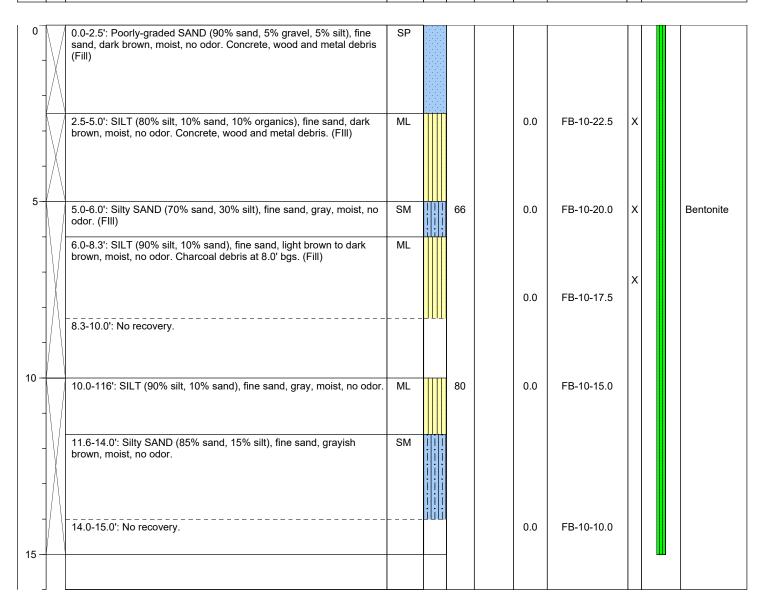
**Date/Time Started:** 9/12/20 @ 1015

Date/Time Completed: 9/12/20 @ 1230

Equipment: Geoprobe

Drilling Company: AEC

Drilling Foreman: Levi


Drilling Method: Direct Push

Drive Hammer (lbs.): Auto

Sampler Type: 5' Macrocore

Depth of Water ATD (ft bgs): NE Total Boring Depth (ft bgs): 15.0

Total Well Depth (ft bgs): NA



### Well Construction Information

 Monument Type:
 NA
 Filter Pack:
 NA

 Casing Diameter (inches):
 NA
 Surface Seal:
 Concrete

 Screen Slot Size (inches):
 NA
 Annular Seal:
 NA

 Screened Interval (ft bgs):
 NA
 Boring Abandonment:
 Bentonite

Ground Surface Elevation (ft): 24.86
Top of Casing Elevation (ft): NA

Surveyed Location: X: NA
Unique Well ID: NA



Page 1 of 1

Client: City Investors IX

**Project: Block 38 West Property** 

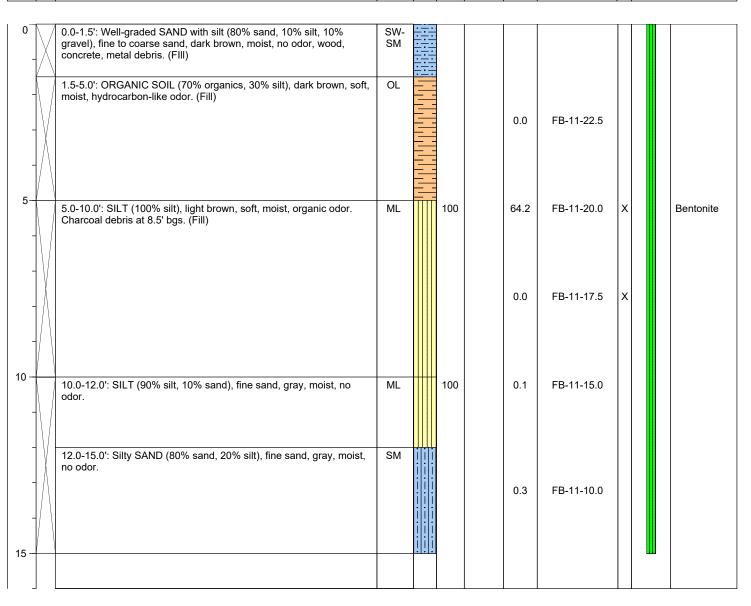
Location: Seattle, Washington

**Farallon PN: 397-019** 

Logged By: **G.Peters**  Date/Time Started: 9/12/20 @ 1240

Date/Time Completed: 9/12/20 @ 1430

Geoprobe


Equipment: **Drilling Company:** AEC **Drilling Foreman:** Levi

**Drilling Method:** Direct Push Sampler Type: 5' Macrocore

Auto Drive Hammer (lbs.): Depth of Water ATD (ft bgs): NE Total Boring Depth (ft bgs): 15.0

Total Well Depth (ft bgs): NA

Blow Counts 8/8/8 Sample Analyzed Depth (feet bgs.) Sample Interval **USCS Graphic** Recovery Boring/Well **Lithologic Description** PID (ppm) Construction Sample ID **Details** 



### **Well Construction Information**

Monument Type: NA Filter Pack: NA Casing Diameter (inches): NA Surface Seal: Concrete NA NA Screen Slot Size (inches): Annular Seal: Screened Interval (ft bgs): NA **Boring Abandonment:** Bentonite

23.88 Ground Surface Elevation (ft): Top of Casing Elevation (ft): NA

Surveyed Location: X: NA Y: NA Unique Well ID: NA



Page 1 of 1

Client: City Investors IX

Project: Block 38 West Property

Location: Seattle, Washington

**Farallon PN**: 397-019

Logged By: G.Peters

**Date/Time Started:** 9/13/20 @ 0930

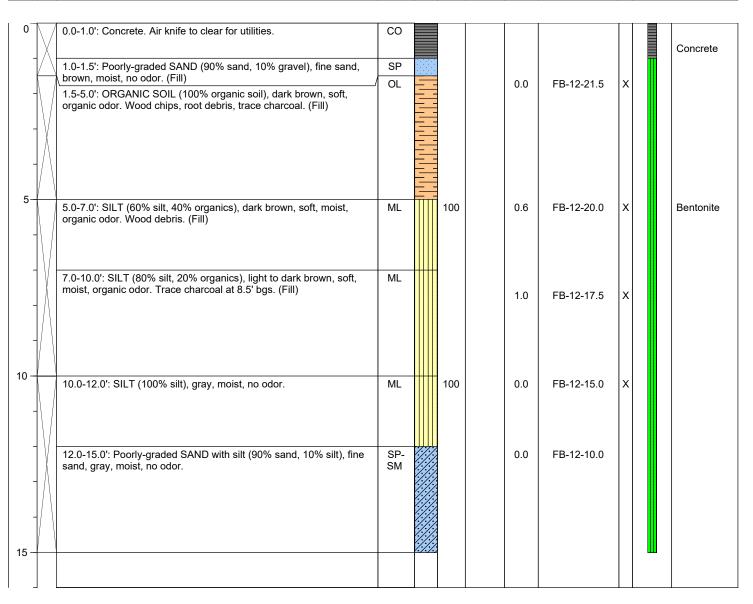
Date/Time Completed: 9/13/20 @ 1030

Levi

Equipment: Geoprobe

Drilling Company: AEC

**Drilling Foreman:** 


**Drilling Method:** Direct Push

Sampler Type: 5' Macrocore

Drive Hammer (lbs.): Auto
Depth of Water ATD (ft bgs): NE
Total Boring Depth (ft bgs): 15.0

Total Well Depth (ft bgs): NA

Sample Interval Inter



Well Construction Information

 Monument Type:
 NA
 Filter Pack:
 NA

 Casing Diameter (inches):
 NA
 Surface Seal:
 Concrete

 Screen Slot Size (inches):
 NA
 Annular Seal:
 NA

 Screened Interval (ft bgs):
 NA
 Boring Abandonment:
 Bentonite

Ground Surface Elevation (ft): 22.79
Top of Casing Elevation (ft): NA
Surveyed Location: X: NA
Y

Unique Well ID: NA



Page 1 of 1

Client: City Investors IX

Project: Block 38 West Property

Location: Seattle, Washington

**Farallon PN**: 397-019

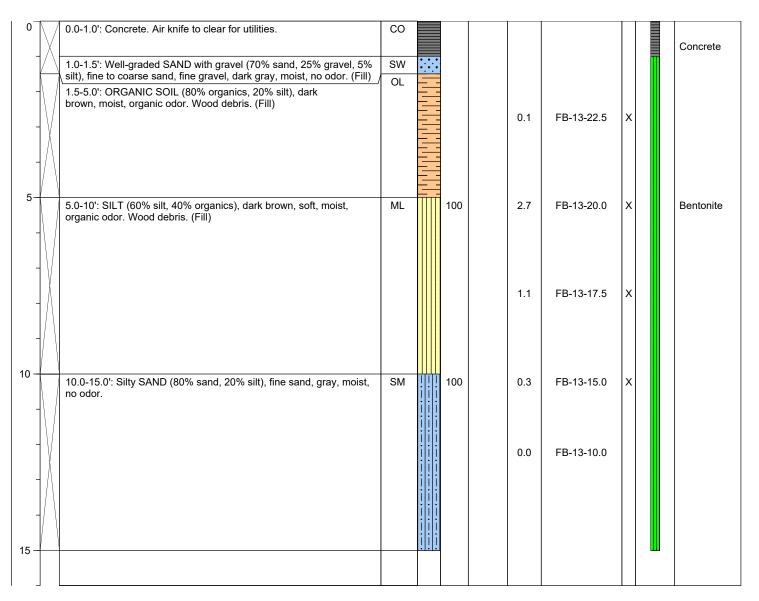
Logged By: G.Peters

**Date/Time Started:** 9/12/20 @ 1220

**Date/Time Completed:** 9/12/20 @ 1600 **Equipment:** Geoprobe

Drilling Company: AEC
Drilling Foreman: Levi

Drilling Method: Direct Push


Sampler Type: 5' Macrocore

Drive Hammer (lbs.): Auto

Depth of Water ATD (ft bgs): NE Total Boring Depth (ft bgs): 15.0

Total Well Depth (ft bgs): NA

|                   | _               |                        |      |              |            |                   |           | ı         |                 |                                        |
|-------------------|-----------------|------------------------|------|--------------|------------|-------------------|-----------|-----------|-----------------|----------------------------------------|
| Depth (feet bgs.) | Sample Interval | Lithologic Description | nscs | USCS Graphic | % Recovery | Blow Counts 8/8/8 | PID (ppm) | Sample ID | Sample Analyzed | Boring/Well<br>Construction<br>Details |



### Well Construction Information

 Monument Type:
 NA
 Filter Pack:
 NA

 Casing Diameter (inches):
 NA
 Surface Seal:
 Concrete

 Screen Slot Size (inches):
 NA
 Annular Seal:
 NA

 Screened Interval (ft bgs):
 NA
 Boring Abandonment:
 Bentonite

Ground Surface Elevation (ft): 23.00
Top of Casing Elevation (ft): NA
Surveyed Location: X: NA
Y

Unique Well ID: NA



Page 1 of 1

Client: City Investors IX

Project: Block 38 West Property

Location: Seattle, Washington

**Farallon PN**: 397-019

Logged By: G.Peters

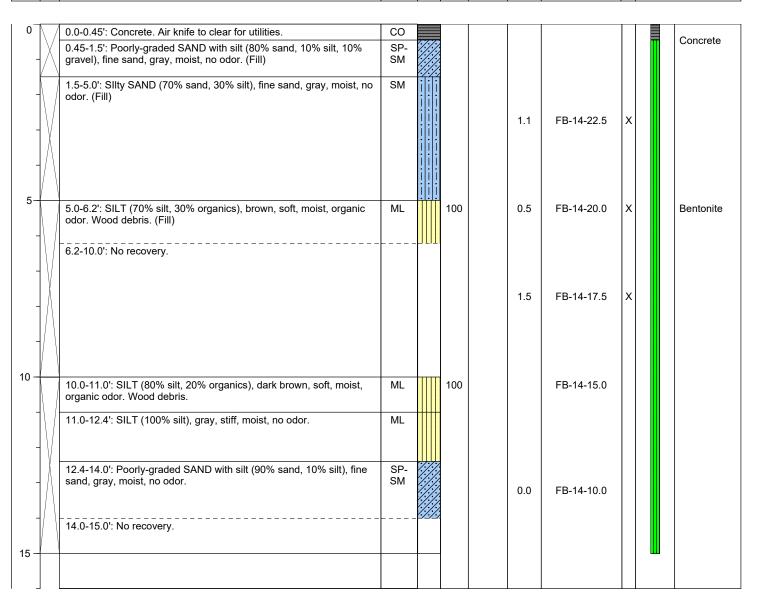
**Date/Time Started:** 9/12/20 @ 1500 **Date/Time Completed:** 9/13/20 @ 1045

Equipment: Geoprobe

Drilling Company: AEC

Drilling Company: AEC
Drilling Foreman: Levi

**Drilling Method:** Direct Push


Sampler Type: 5' Macrocore

Drive Hammer (lbs.): Auto

Depth of Water ATD (ft bgs): NE Total Boring Depth (ft bgs): 15.0

Total Well Depth (ft bgs): NA

| Depth (feet bgs.)<br>Sample Interval | Lithologic Descriptio | n scs | ∞ | % Recovery | Blow Counts 8/8/8 | PID (ppm) | Sample ID | Sample Analyzed | Boring/Well<br>Construction<br>Details |
|--------------------------------------|-----------------------|-------|---|------------|-------------------|-----------|-----------|-----------------|----------------------------------------|
|--------------------------------------|-----------------------|-------|---|------------|-------------------|-----------|-----------|-----------------|----------------------------------------|



### Well Construction Information

 Monument Type:
 NA
 Filter Pack:
 NA

 Casing Diameter (inches):
 NA
 Surface Seal:
 Concrete

 Screen Slot Size (inches):
 NA
 Annular Seal:
 NA

 Screened Interval (ft bgs):
 NA
 Boring Abandonment:
 Bentonite

Ground Surface Elevation (ft): 23.81
Top of Casing Elevation (ft): NA
Surveyed Location: X: NA
Y

Unique Well ID: NA



Page 1 of 1

Client: City Investors IX

Project: Block 38 West Property

Location: Seattle, Washington

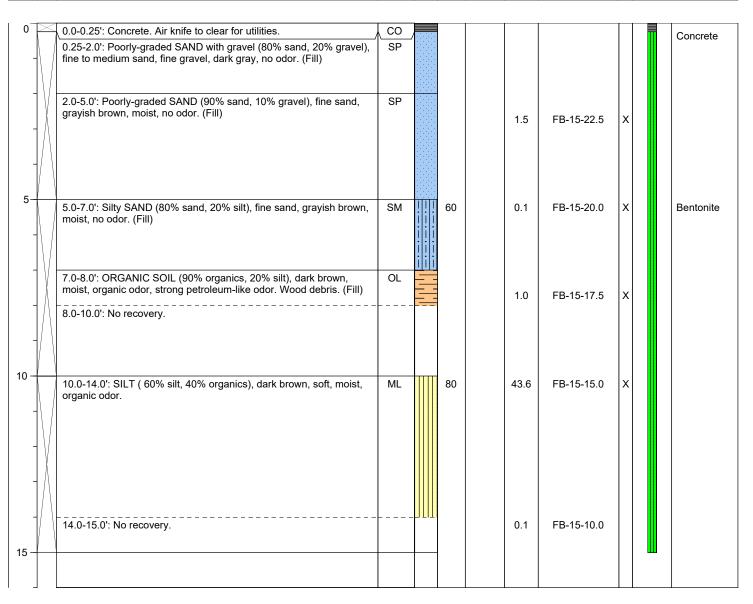
**Farallon PN**: 397-019

Logged By: G.Peters

**Date/Time Started:** 9/13/20 @ 1045 **Date/Time Completed:** 9/13/20 @ 1105

Equipment: Geoprobe

Drilling Company: AEC
Drilling Foreman: Levi


**Drilling Method:** Direct Push

Sampler Type: 5' Macrocore

Drive Hammer (lbs.): Auto
Depth of Water ATD (ft bgs): NE
Total Boring Depth (ft bgs): 15.0

Total Well Depth (ft bgs): NA

Sample Interval Inter



Well Construction Information

 Monument Type:
 NA
 Filter Pack:
 NA

 Casing Diameter (inches):
 NA
 Surface Seal:
 Concrete

 Screen Slot Size (inches):
 NA
 Annular Seal:
 NA

 Screened Interval (ft bgs):
 NA
 Boring Abandonment:
 Bentonite

Ground Surface Elevation (ft): 24.91
Top of Casing Elevation (ft): NA

Surveyed Location: X: NA Y: NA

Unique Well ID: NA



Page 1 of 1

Client: City Investors IX

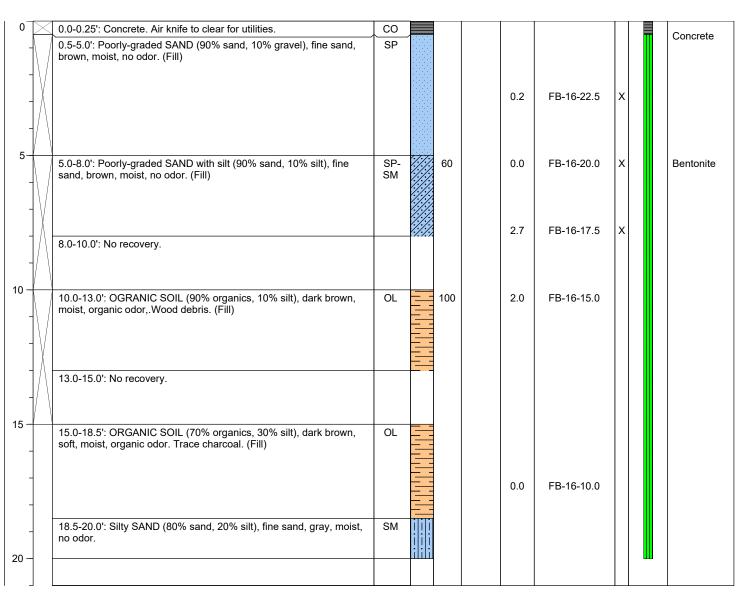
**Project: Block 38 West Property** 

Location: Seattle, Washington

**Farallon PN: 397-019** 

**G.Peters** Logged By:

Date/Time Started: 9/13/20 @ 1120 Date/Time Completed: 9/13/20 @ 1150


Equipment: Geoprobe

**Drilling Company:** AEC **Drilling Foreman:** Levi **Drilling Method:** Direct Push Sampler Type: 5' Macrocore

Auto Drive Hammer (lbs.): Depth of Water ATD (ft bgs): NE Total Boring Depth (ft bgs): 20.0

Total Well Depth (ft bgs): NA

Blow Counts 8/8/8 Sample Analyzed Depth (feet bgs.) Sample Interval **USCS Graphic** Recovery Boring/Well **Lithologic Description** PID (ppm) Construction Sample ID **Details** 



### **Well Construction Information**

Monument Type: NA Filter Pack: NA Casing Diameter (inches): Surface Seal: Concrete NA NA Screen Slot Size (inches): NA Annular Seal: Screened Interval (ft bgs): NA Boring Abandonment: Bentonite

Ground Surface Elevation (ft): 27 50 Top of Casing Elevation (ft): Surveyed Location: X: NA Y: NA

Unique Well ID: NA



Page 1 of 1

Client: City Investors IX LLC

Project: Block 38 West Property

Location: Seattle, Washington

**Farallon PN:** 397-019

Logged By: Greg Peters

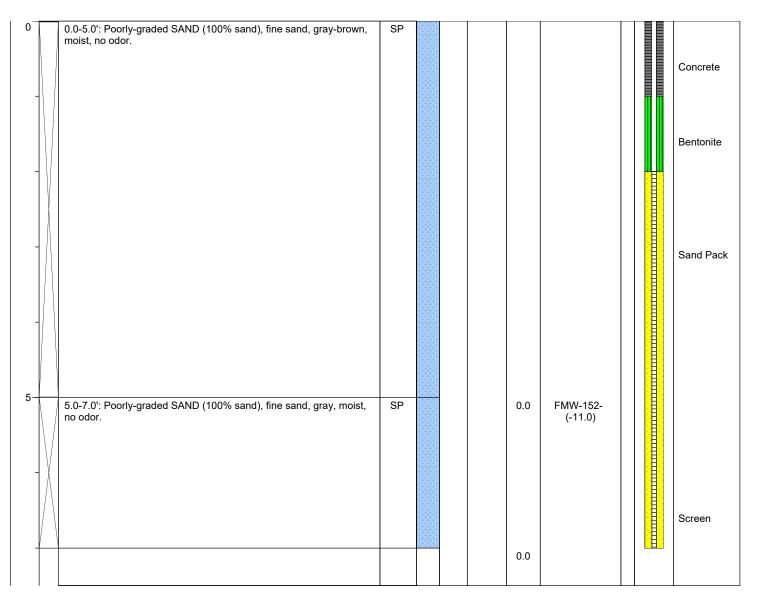
**Date/Time Started:** 7/7/20 @ 0720

Date/Time Completed: 7/7/20 @ 0800

Equipment: FA130

Drilling Company: Malcom Drilling

Drilling Foreman: Chris Hansen


**Drilling Method:** Air Rotary

Sampler Type: NA

Drive Hammer (lbs.): NA
Depth of Water ATD (ft bgs): NE
Total Boring Depth (ft bgs): 7.0

Total Well Depth (ft bgs): 7.0

| <b>—</b>          | 1               |                       |        |              |            |                   |           |           | П               |                                        |
|-------------------|-----------------|-----------------------|--------|--------------|------------|-------------------|-----------|-----------|-----------------|----------------------------------------|
| Depth (feet bgs.) | Sample Interval | Lithologic Descriptio | n sosn | USCS Graphic | % Recovery | Blow Counts 8/8/8 | PID (ppm) | Sample ID | Sample Analyzed | Boring/Well<br>Construction<br>Details |



Well Construction Information

Monument Type: NA
Casing Diameter (inches): 2.0
Screen Slot Size (inches): 0.01
Screened Interval (ft bgs): -8.0 - (-13.0)

Filter Pack: 12/20 sand Surface Seal: Concrete Annular Seal: Concrete Boring Abandonment: NA

Ground Surface Elevation (ft): 6.0
Top of Casing Elevation (ft): NA
Surveyed Location: X: NA
Unique Well ID: NA



Page 1 of 1

Client: City Investors IX LLC

Project: Block 38 West Property

Location: Seattle, Washington

**Farallon PN:** 397-019

**Logged By:** Greg Peters

**Date/Time Started:** 6/29/20 @ 0800

Date/Time Completed: 6/29/20 @ 1230

Equipment: FA130

Drilling Company: Malcom Drilling

Drilling Foreman: Chris Hansen

Drilling Method: Air Rotary

Sampler Type: NA

Drive Hammer (lbs.): NA
Depth of Water ATD (ft bgs): NE
Total Boring Depth (ft bgs): 7.0

Total Well Depth (ft bgs): 7.0

| gs.)          | /al          |                       |        | Ö          |            | 8/8/8       |           | /zed         |                                        |
|---------------|--------------|-----------------------|--------|------------|------------|-------------|-----------|--------------|----------------------------------------|
| Depth (feet b | Sample Inter | Lithologic Descriptio | n sosn | USCS Graph | % Recovery | Blow Counts | PID (ppm) | Sample Analy | Boring/Well<br>Construction<br>Details |

| 0  |                              | 0.0-5.0': Well-graded SAND (100% sand), fine to mediumsand, brown, moist, no odor. | SW |  |     |                     | Concrete  |
|----|------------------------------|------------------------------------------------------------------------------------|----|--|-----|---------------------|-----------|
| _  |                              |                                                                                    |    |  |     |                     | Bentonite |
| _  |                              |                                                                                    |    |  |     |                     | Sand Pack |
| 5- |                              | 5.0-7.0': Well-graded SAND (100% sand), fine to mediumsand, brown, moist, no odor. | sw |  | 0.0 | FMW-151-<br>(-11.0) |           |
| -  | $\left\langle \right\rangle$ |                                                                                    |    |  |     |                     | Screen    |
|    |                              |                                                                                    |    |  | 0.0 |                     |           |

Well Construction Information

Monument Type: NA
Casing Diameter (inches): 2.0
Screen Slot Size (inches): 0.01
Screened Interval (ft bgs): -9.0 - (-14.0)

Filter Pack: 12/20 sand
Surface Seal: Concrete
Annular Seal: Concrete
Boring Abandonment: NA

Ground Surface Elevation (ft): 7.0
Top of Casing Elevation (ft): NA
Surveyed Location: X: NA
Unique Well ID: NA



Page 1 of 1

Client: City Investors IX LLC **Project: Block 38 West Property** 

Location: Seattle, Washington

**Farallon PN: 397-019** 

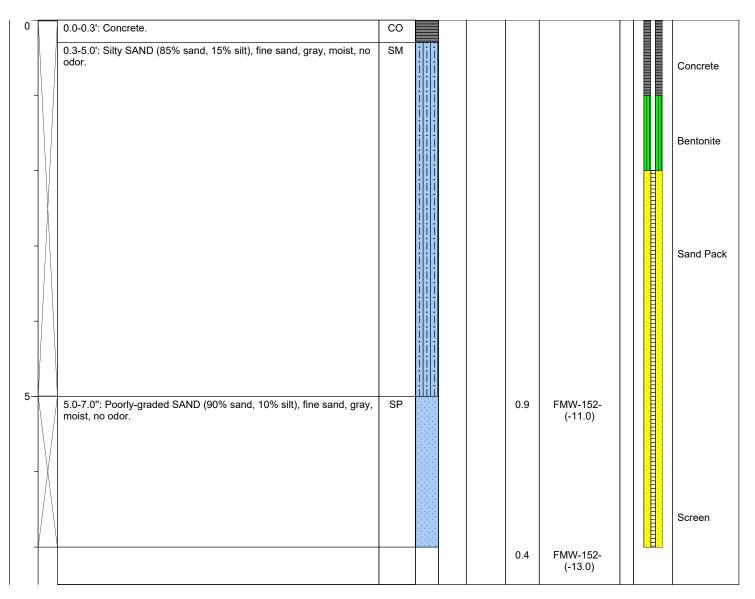
Logged By: **Greg Peters**  Date/Time Started: 6/25/20 @ 1030

Date/Time Completed: 6/25/20 @ 1200

Equipment: FA130 **Drilling Company:** Malcom Drilling

Chris Hansen

**Drilling Method:** Air Rotary


**Drilling Foreman:** 

Sampler Type: NA

NA Drive Hammer (lbs.): Depth of Water ATD (ft bgs): NE Total Boring Depth (ft bgs): 7.0

Total Well Depth (ft bgs): 7.0

| Depth (feet bgs.) | Sample Interval | Lithologic Description | n<br>SSS | <b>USCS</b> Graphic | % Recovery | Blow Counts 8/8/8 | PID (ppm) | Sample ID | Sample Analyzed | Boring/Well<br>Construction<br>Details |
|-------------------|-----------------|------------------------|----------|---------------------|------------|-------------------|-----------|-----------|-----------------|----------------------------------------|



**Well Construction Information** 

Monument Type: NA Casing Diameter (inches): 2.0 Screen Slot Size (inches): 0.01 Screened Interval (ft bgs): -8.0 - (-13.0)

Filter Pack: 12/20 sand Concrete Surface Seal: Concrete Annular Seal: Boring Abandonment: NA

6.0 Ground Surface Elevation (ft): Top of Casing Elevation (ft): NA Surveyed Location: X: NA Unique Well ID: NA



Page 1 of 1

Client: City Investors IX LLC

Project: Block 38 West Property

Location: Seattle, Washington

Farallon PN: 397-019

Logged By: Greg Peters

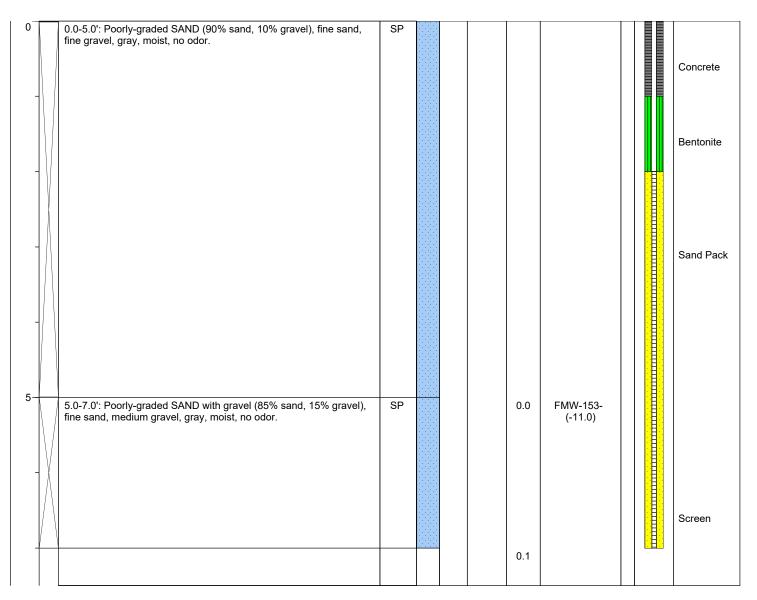
**Date/Time Started:** 7/7/20 @ 0830

Date/Time Completed: 7/7/20 @ 0900

Equipment: FA130

Drilling Company: Malcom Drilling

Drilling Foreman: Chris Hansen


**Drilling Method:** Air Rotary

Sampler Type: NA

Drive Hammer (lbs.): NA
Depth of Water ATD (ft bgs): NE
Total Boring Depth (ft bgs): 7.0

Total Well Depth (ft bgs): 7.0

| <b>—</b>          | 1               |                       |        |              |            |                   |           |           | П               |                                        |
|-------------------|-----------------|-----------------------|--------|--------------|------------|-------------------|-----------|-----------|-----------------|----------------------------------------|
| Depth (feet bgs.) | Sample Interval | Lithologic Descriptio | n sosn | USCS Graphic | % Recovery | Blow Counts 8/8/8 | PID (ppm) | Sample ID | Sample Analyzed | Boring/Well<br>Construction<br>Details |



Well Construction Information

Monument Type: NA
Casing Diameter (inches): 2.0
Screen Slot Size (inches): 0.01
Screened Interval (ft bgs): -8.0 - (-13.0)

Filter Pack: 12/20 sand
Surface Seal: Concrete
Annular Seal: Concrete
Boring Abandonment: NA

Ground Surface Elevation (ft): 6.0
Top of Casing Elevation (ft): NA
Surveyed Location: X: NA
Unique Well ID: NA

` Υ: ΝΑ

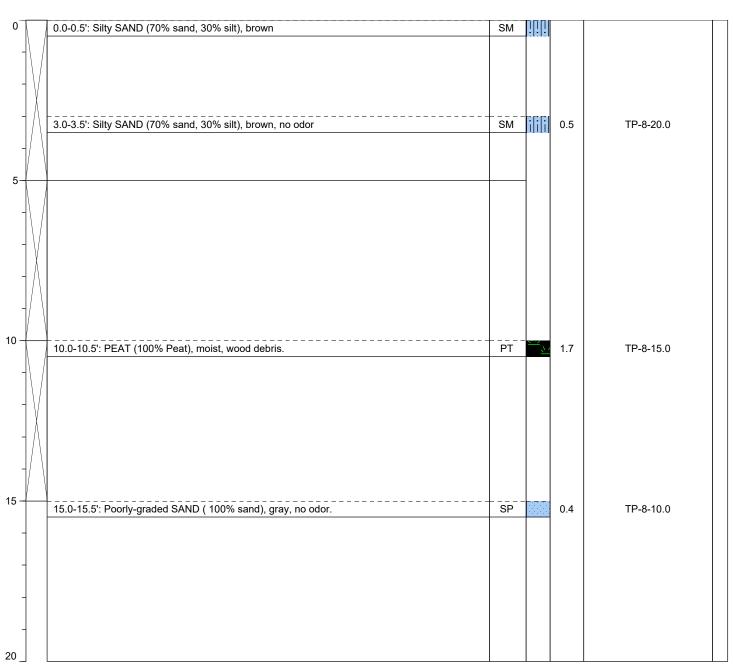


Page 1 of 1

Block 38 West

Location: Seattle, Washington

**Farallon PN:** 397-019


Logged By: **G.Peters**  Date/Time Started: 1/27/20 @ 1342 1/27/20 @ 1357 Date/Time Completed: Equipment: Excavator

**Excavation Company:** HOS Bros. Glen Franklin **Excavation Foreman:** 

**Excavating Method: Excavator Bucket**  Sampler Type: Excavator Bucket

ΝE Depth of Water (ft bgs): Total Excavation Depth (ft bgs): 14.0 **Excavation Diameter (ft):** NMNM Ground Surface Elevation (ft):

| Depth (feet bgs) Sample Interval | Lithologic Description | nscs | USGS Graphic | PID (ppm) | Sample ID | Sample Analyzed |
|----------------------------------|------------------------|------|--------------|-----------|-----------|-----------------|
|----------------------------------|------------------------|------|--------------|-----------|-----------|-----------------|





Page 1 of 1

Project: Block 38 West

Location: Seattle, Washington

**Farallon PN:** 397-019

Logged By: G.Peters

 Date/Time Started:
 1/27/20 @ 1400

 Date/Time Completed:
 1/27/20 @ 1430

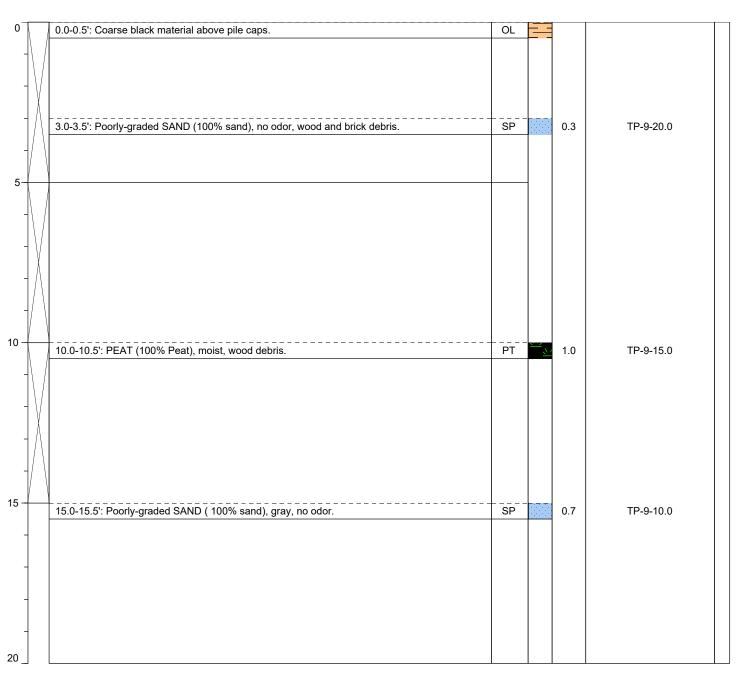
Equipment: Excavator

Excavation Company: HOS Bros.

Excavation Foreman: Glen Franklin

**Excavating Method:** Excavator Bucket

Sampler Type: Excavator Bucket


Depth of Water (ft bgs): NE

Total Excavation Depth (ft bgs): 12.0

Excavation Diameter (ft): NM

Ground Surface Elevation (ft): NM

| Depth (feet bgs) Sample Interval | Lithologic Description | nscs | USGS Graphic | PID (ppm) | Cumple 15 | Sample Analyzed |
|----------------------------------|------------------------|------|--------------|-----------|-----------|-----------------|
|----------------------------------|------------------------|------|--------------|-----------|-----------|-----------------|





Page 1 of 1

Client: City Investors IX, LLC

Project: Block 38 West

Location: Seattle, Washington

**Farallon PN:** 397-019

Logged By: G.Peters

 Date/Time Started:
 2/11/20 @ 0840

 Date/Time Completed:
 2/11/20 @ 0850

 Equipment:
 Excavator

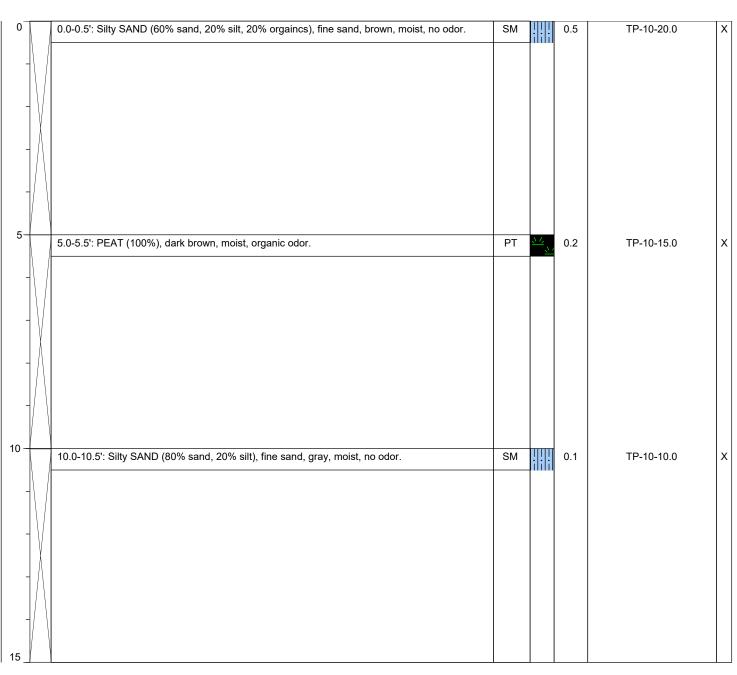
Excavation Company: Excavation Foreman:

Excavating Method: Excavator Bucket

HOS Bros.

Glen Franklin

Sampler Type: Excavator Bucket


Depth of Water (ft bgs): NE

Total Excavation Depth (ft bgs): 15.0

Excavation Diameter (ft): NM

Ground Surface Elevation (ft): NM

| Depth (feet bgs) Sample Interval | Lithologic Description | nscs | USGS Graphic | PID (ppm) | Sample ID | Sample Analyzed |  |
|----------------------------------|------------------------|------|--------------|-----------|-----------|-----------------|--|
|----------------------------------|------------------------|------|--------------|-----------|-----------|-----------------|--|





Page 1 of 1

Client: City Investors IX, LLC

Project: Block 38 West

Location: Seattle, Washington

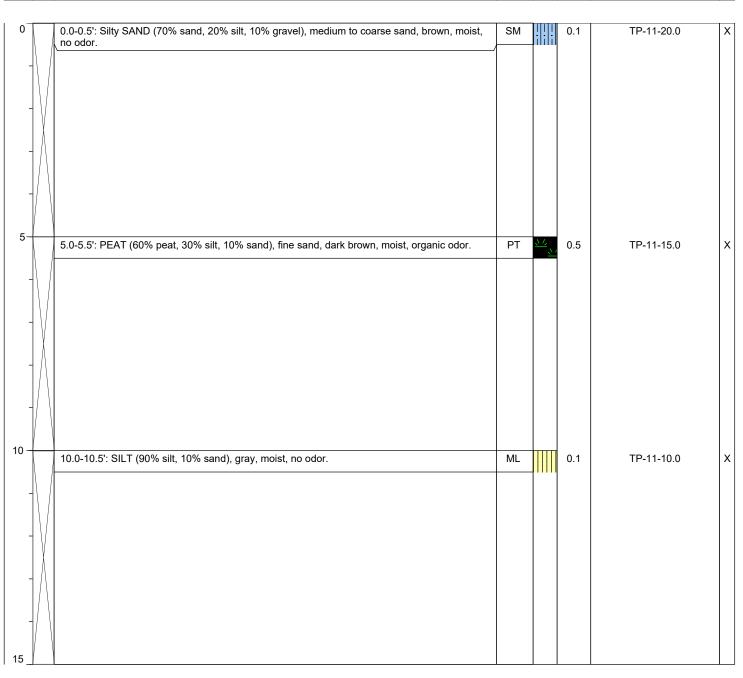
**Farallon PN**: 397-019

Logged By: G.Peters

 Date/Time Started:
 2/4/20 @ 0920

 Date/Time Completed:
 2/11/20 @ 0945

**Equipment:** Excavator **Excavation Company:** HOS Bros.


**Excavation Foreman:** Glen Franklin **Excavating Method:** Excavator Bucket

Sampler Type: Excavator Bucket

Depth of Water (ft bgs): NE
Total Excavation Depth (ft bgs): 15.0
Excavation Diameter (ft): NM

Ground Surface Elevation (ft): NM

| Depth (feet bgs) Sample Interval | Lithologic Description | nscs | USGS Graphic | PID (ppm) | Sample ID | Sample Analyzed |
|----------------------------------|------------------------|------|--------------|-----------|-----------|-----------------|
|----------------------------------|------------------------|------|--------------|-----------|-----------|-----------------|





Page 1 of 1

ΝE

15.0

Client: City Investors IX, LLC

Project: Block 38 West

Location: Seattle, Washington

**Farallon PN**: 397-019

Logged By: G.Peters

Date/Time Started:
Date/Time Completed:

**Excavation Company:** 

**Excavation Foreman:** 

**Excavating Method:** 

Equipment:

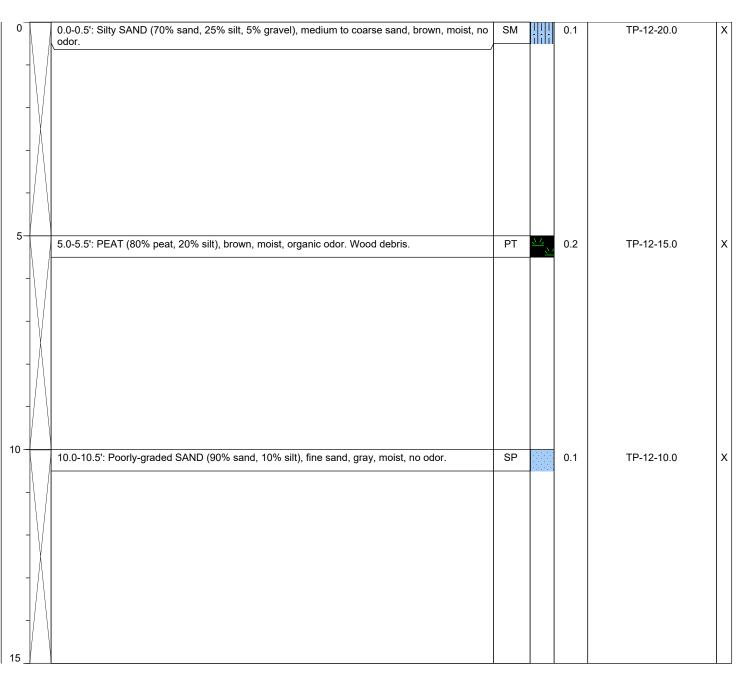
2/7/20 @ 1000 2/7/20 @ 1020 Excavator

Glen Franklin

**Excavator Bucket** 

HOS Bros.

Depth of Water (ft bgs):


Total Excavation Depth (ft bgs):

Excavation Diameter (ft):

Sampler Type: Excavator Bucket

Excavation Diameter (ft): NM
Ground Surface Elevation (ft): NM

| Depth (feet bgs) Sample Interval | Lithologic Description | nscs | USGS Graphic | PID (ppm) | Cumple 15 | Sample Analyzed |
|----------------------------------|------------------------|------|--------------|-----------|-----------|-----------------|
|----------------------------------|------------------------|------|--------------|-----------|-----------|-----------------|





Page 1 of 1

NM

Location: Seattle, Washington

**Farallon PN: 397-019** 

Logged By: **G.Peters** 

Date/Time Started: Date/Time Completed:

2/7/20 @ 1050 Equipment: Excavator **Excavation Company:** HOS Bros.

**Excavation Foreman:** Glen Franklin **Excavating Method: Excavator Bucket** 

2/7/20 @ 1030 Sampler Type: Excavator Bucket

> Depth of Water (ft bgs): NE Total Excavation Depth (ft bgs): 15.0 **Excavation Diameter (ft):** NM

Ground Surface Elevation (ft):

| Depth (feet bgs) Sample Interval | Lithologic Description | nscs | USGS Graphic | PID (ppm) | Cumple 15 | Sample Analyzed |
|----------------------------------|------------------------|------|--------------|-----------|-----------|-----------------|
|----------------------------------|------------------------|------|--------------|-----------|-----------|-----------------|

| 0           |  | 0.0-0.5': Silty SAND (60% sand, 40% silt), fine sand, brown, moist, strong organic odor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SM |          | 4.8      | TP-13-23.0 |   |
|-------------|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------|----------|------------|---|
| -           |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |          |          |            |   |
| -           |  | 3.0-3.5': Silty SAND (80% sand, 20% silt), fine sand, gray, moist, no odor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SM | ilili    | 0.2      | TP-13-20.0 | x |
| _           |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |          | 0.2      | 11 10 25.0 |   |
| 5-          |  | 5.0-5.5': PEAT (60% peat, 40% silt), gay-brown, moist, organic odor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PT | <u> </u> | 0.4      | TP-13-15.0 | x |
| -           |  | 10.0-10.5': Silty SAND (80% sand, 20% silt), fine sand, gray, moist, no odor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SP | 434(404) | 2.2      | TP-13-10.0 |   |
| -<br>-<br>- |  | 15.5 15.5 15.5 15.4 (50.7) Saind, 25.7) Sind, file Saind, gray, file Sain, file Sain, gray, file Sain, file Sa |    |          | <b>1</b> | 11 10 10.0 |   |



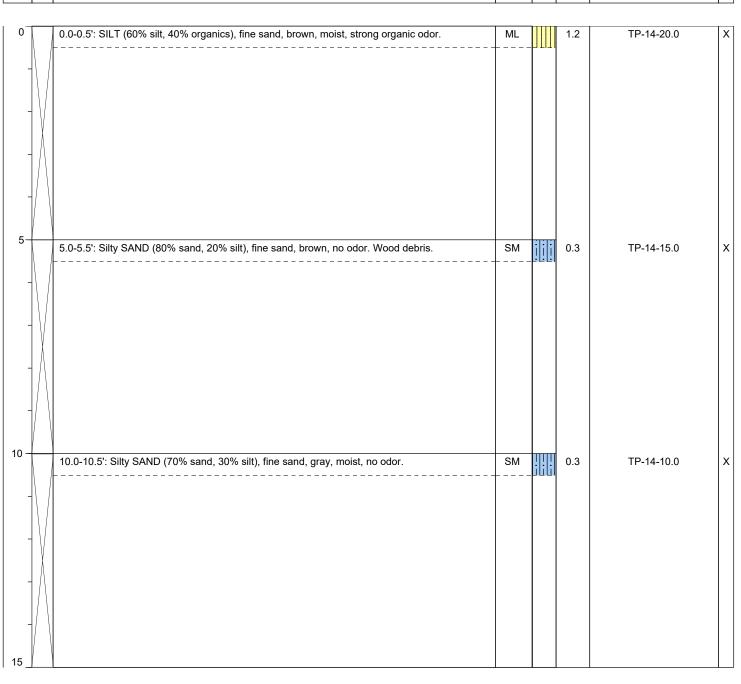
Page 1 of 1

**Farallon PN:** 397-019

Logged By: **G.Peters**  Date/Time Started: 2/14/20 @ 1100 2/14/20 @ 1120 Date/Time Completed:

**Excavation Foreman:** 

Equipment:


Excavator **Excavation Company:** HOS Bros.

Glen Franklin

**Excavating Method: Excavator Bucket**  Sampler Type: Excavator Bucket

ΝE Depth of Water (ft bgs): Total Excavation Depth (ft bgs): 19.0

**Excavation Diameter (ft):** NMNM Ground Surface Elevation (ft):





Page 1 of 1

Client: City Investors IX, LLC

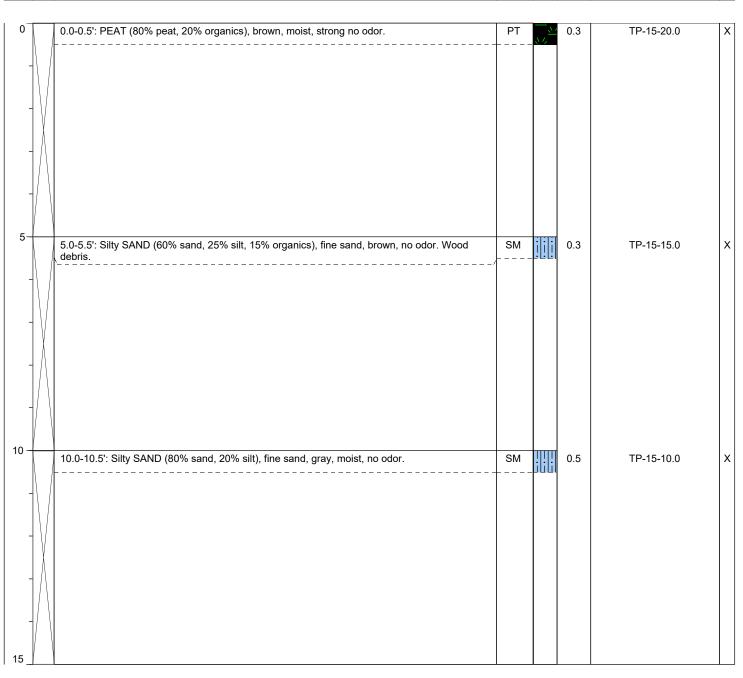
Project: Block 38 West

Location: Seattle, Washington

**Farallon PN:** 397-019

Logged By: **G.Peters**  Date/Time Started: 2/14/20 @ 1100 2/14/20 @ 1120 Date/Time Completed:

Equipment: Excavator **Excavation Company:** HOS Bros. Glen Franklin


**Excavating Method: Excavator Bucket**  Sampler Type: Excavator Bucket

ΝE Depth of Water (ft bgs): Total Excavation Depth (ft bgs): 19.0 **Excavation Diameter (ft):** NM NMGround Surface Elevation (ft):

Backfill Material: Native

| Depth (feet bgs) Sample Interval | Lithologic Description | nscs | USGS Graphic | PID (ppm) | Sample ID | Sample Analyzed |
|----------------------------------|------------------------|------|--------------|-----------|-----------|-----------------|
|----------------------------------|------------------------|------|--------------|-----------|-----------|-----------------|

**Excavation Foreman:** 





Page 1 of 1

Client: City Investors IX, LLC

Project: Block 38 West

Location: Seattle, Washington

**Farallon PN**: 397-019

Logged By: G.Peters

 Date/Time Started:
 2/14/20 @ 1135

 Date/Time Completed:
 2/14/20 @ 1145

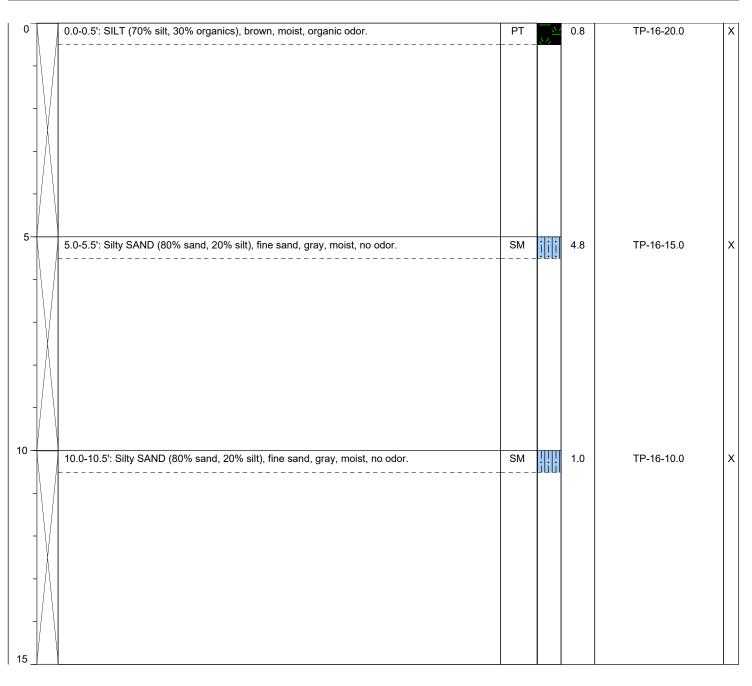
 Equipment:
 Excavator

Equipment: Excavator
Excavation Company: HOS Bros.
Excavation Foreman: Glen Frank

**Excavating Method:** 

Glen Franklin
Excavator Bucket

Sampler Type: Excavator Bucket


Depth of Water (ft bgs): NE

Total Excavation Depth (ft bgs): 19.0

Excavation Diameter (ft): NM

Ground Surface Elevation (ft): NM

| Depth (feet bgs) Sample Interval | Lithologic Description | nscs | USGS Graphic | PID (ppm) | Sample ID | Sample Analyzed |
|----------------------------------|------------------------|------|--------------|-----------|-----------|-----------------|
|----------------------------------|------------------------|------|--------------|-----------|-----------|-----------------|





Page 1 of 1

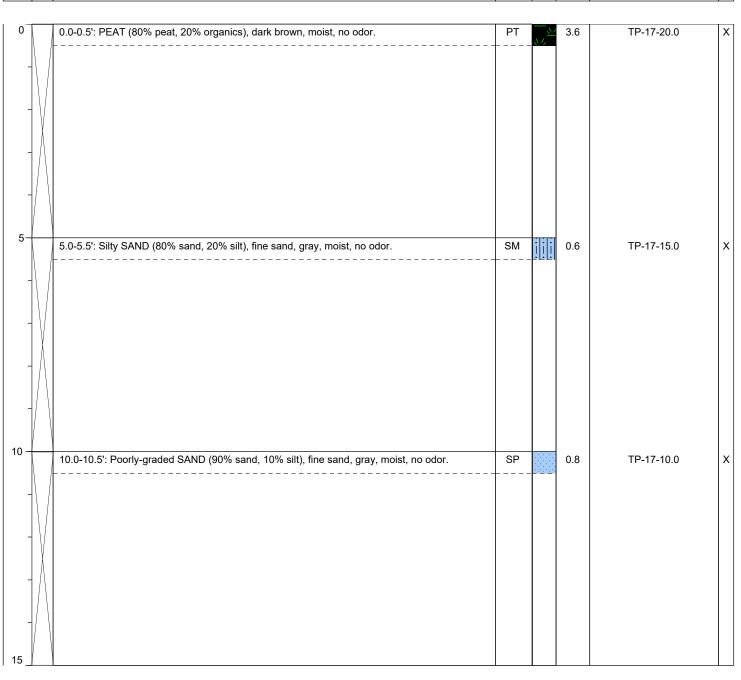
Client: City Investors IX, LLC

Project: Block 38 West

Location: Seattle, Washington

**Farallon PN:** 397-019

Logged By: **G.Peters**  Date/Time Started: 2/18/20 @ 1400 2/25/20 @ 1500 Date/Time Completed:


Equipment: Excavator **Excavation Company:** HOS Bros.

**Excavation Foreman: Excavating Method: Excavator Bucket** 

Glen Franklin

Sampler Type: Excavator Bucket

Depth of Water (ft bgs): ΝE Total Excavation Depth (ft bgs): 15.0 **Excavation Diameter (ft):** NM NM Ground Surface Elevation (ft):





Page 1 of 1

NM

Client: City Investors IX, LLC

Project: Block 38 West

Location: Seattle, Washington

**Farallon PN:** 397-019

Logged By: G.Peters

 Date/Time Started:
 2/19/20 @ 1330

 Date/Time Completed:
 2/19/20 @ 1350

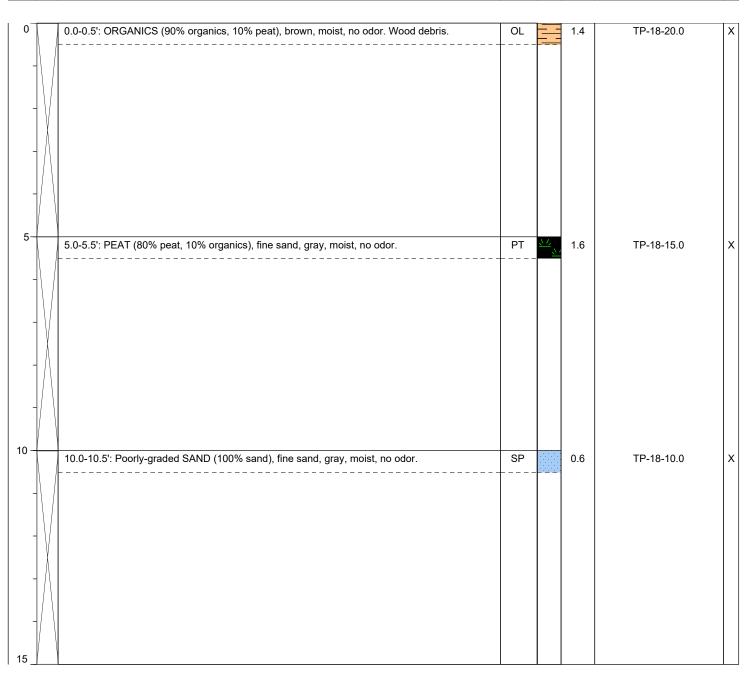
 Equipment:
 Excavator

Excavation Company: Excavation Foreman:

**Excavating Method:** 

Glen Franklin Excavator Bucket

HOS Bros.


Sampler Type: Excavator Bucket

Depth of Water (ft bgs):NETotal Excavation Depth (ft bgs):15.0Excavation Diameter (ft):NM

Backfill Material: Native

Ground Surface Elevation (ft):

| Depth (feet bgs) Sample Interval | Lithologic Description | nscs | USGS Graphic | PID (ppm) | Sample ID | Sample Analyzed |
|----------------------------------|------------------------|------|--------------|-----------|-----------|-----------------|
|----------------------------------|------------------------|------|--------------|-----------|-----------|-----------------|







Page 1 of 1

Client: City Investors IX LLC
Project: Block 38 West Property

Location: Seattle, Washington

**Farallon PN**: 397-019

Logged By: G.Peters

**Date/Time Started:** 11/24/21 @ 1030 **Date/Time Completed:** 11/24/21 @ 1100

Equipment: Geoprobe

Drilling Company: Holt Services

Drilling Foreman: Mike Runnings
Drilling Method: Direct Push

Sampler Type: 5' Macrocore

Drive Hammer (lbs.):AutoDepth of Water ATD (ft bgs):NETotal Boring Depth (ft bgs):25.0

Total Well Depth (ft bgs): NA

| Details Sample ID Scale ID Sca |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

0.0-5.0': Silty SAND ((80% sand, 15% silt, 5% gravel), fine sand, brown, moist, no odor, grayish black staining. Brick debris. SM Gravel 0.0 5.0-8.0': Silty SAND (70% sand, 30% silt), fine sand, brown, moist, 0.0 no odor, no staining. 8.0-10.0': No recovery. 10 10.0-12.5': Poorly-graded SAND with silt (90% sand, 10% silt), fine SP-50 0.0 sand, brown, moist, no odor. SM 12.5-15.0': No recovery. Bentonite 15 15.0-16.0': Poorly-graded SAND (100% sand), fine to medium sand, 100 SP 0.7 FB-18-20.0 Χ brown, moist to wet, no odor. PT 16.0-20.0': Peat (80% peat, 20% sand), fine sand, brown, moist, organic odor. Wood debris. 20 20.0-22.5': Peat (95% peat, 5% sand), fine sand, soft, brown, moist, РΤ 100 0.9 FB-18-15.0 X organic odor. Wood debris. 22.5-25.0': SILT (90% silt, 10% sand), gray, stiff, moist, slight ML organic odor. Some wood debris. 25 8.0 FB-18-10.0

Well Construction Information

 Monument Type:
 NA
 Filter Pack:
 NA

 Casing Diameter (inches):
 NA
 Surface Seal:
 Gravel

 Screen Slot Size (inches):
 NA
 Annular Seal:
 NA

 Screened Interval (ft bgs):
 NA
 Boring Abandonment:
 Bentonite

Ground Surface Elevation (ft): NA
Top of Casing Elevation (ft): NA
Surveyed Location: X: NA

Unique Well ID: NA



Page 1 of 1

Client: City Investors IX LLC

Project: Block 38 West Property

Location: Seattle, Washington

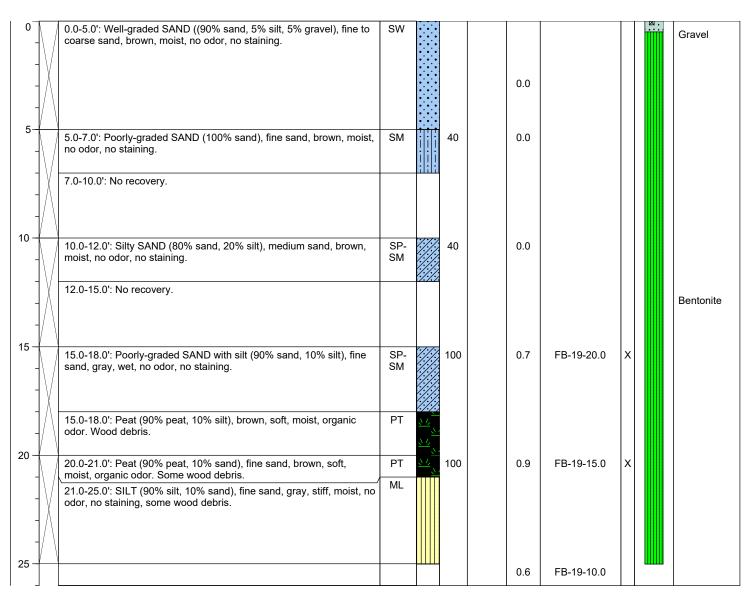
**Farallon PN**: 397-019

Logged By: G.Peters

**Date/Time Started:** 11/24/21 @ 1100 **Date/Time Completed:** 11/24/21 @ 1215

Equipment: Geoprobe

Drilling Company: Holt Services


Drilling Foreman: Mike Runnings
Drilling Method: Direct Push

Sampler Type: 5' Macrocore

Drive Hammer (lbs.):AutoDepth of Water ATD (ft bgs):NETotal Boring Depth (ft bgs):25.0

Total Well Depth (ft bgs): NA

| Depth (feet bgs.)<br>Sample Interval | Lithologic Description | uscs | USCS Graphic | % Recovery | Blow Counts 8/8/8 | PID (ppm) | Sample ID | Sample Analyzed | Boring/Well<br>Construction<br>Details |
|--------------------------------------|------------------------|------|--------------|------------|-------------------|-----------|-----------|-----------------|----------------------------------------|
|--------------------------------------|------------------------|------|--------------|------------|-------------------|-----------|-----------|-----------------|----------------------------------------|



### Well Construction Information

Monument Type: NA
Casing Diameter (inches): NA
Screen Slot Size (inches): NA
Screened Interval (ft bgs): NA

Filter Pack: NA
Surface Seal: Gravel
Annular Seal: NA
Boring Abandonment: Bentonite

Ground Surface Elevation (ft):
Top of Casing Elevation (ft):
Surveyed Location: X: NA
Unique Well ID: NA

NA Y: NA

NA





Page 1 of 1

Client: City Investors IX LLC

**Project: Block 38 West Property** 

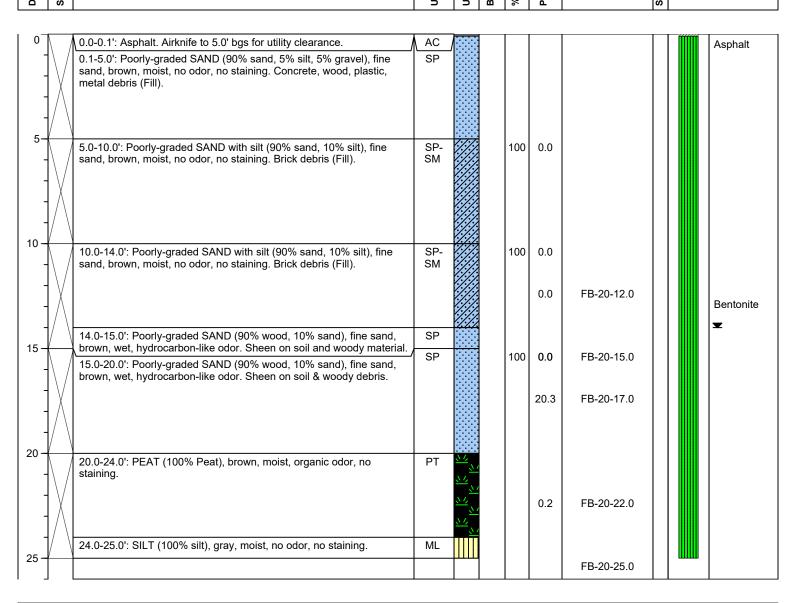
Location: Seattle, Washington

**Farallon PN:** 397-019

Logged By: G.Peters

Reviewed By: Suzy Stumpf

Date/Time Started: 2/5/2022 @ 900 **Date/Time Completed: 2/5/2022 @ 1020** 


**Drilling Company:** Cascade Drilling **Drilling Method:** Sonic Drilling

**Drilling Equipment:** Terrasonic **Drilling Operator:** Rico Rodriguez 5' PE Bags Sampler Type:

Drive Hammer (lbs): NA

Depth to Water ATD (ft bgs): 14.0 8.0 Boring Diameter (in): Total Boring Depth (ft bgs): 25.0 Constructed Well Depth (ft bgs):

Sample Analyzed Sample Interval **JSCS Graphic** Boring/Well Depth (ft bgs) **Blow Counts** % Recovery **Lithologic Description** PID (ppmv) Sample ID Construction **Details** 



#### **Well Construction Information**

NA **Monument Type:** NA Filter Pack: Ground Surface Elevation (ft): NA **Surface Seal:** Asphalt Casing Diameter (in): Screen Slot Size (in): NA **Annular Seal:** NA NA Screened Interval (ft bgs): Bentonite Unique Well ID: NA Boring Abandonment:

NA Top of Casing Elevation (ft): Surveyed Location: X: NA Y: NA



**Lithologic Description** 

## Log of Boring: FB-21

Page 1 of 1

NA

Client: City Investors IX LLC

Project: Block 38 West Property

Location: Seattle, Washington

**Farallon PN**: 397-019

Sample Interval

Depth (ft bgs)

**Logged By:** G.Peters

Reviewed By: Suzy Stumpf

**Date/Time Started:** 2/5/2022 @ 1030 **Date/Time Completed:** 2/5/2022 @ 1115

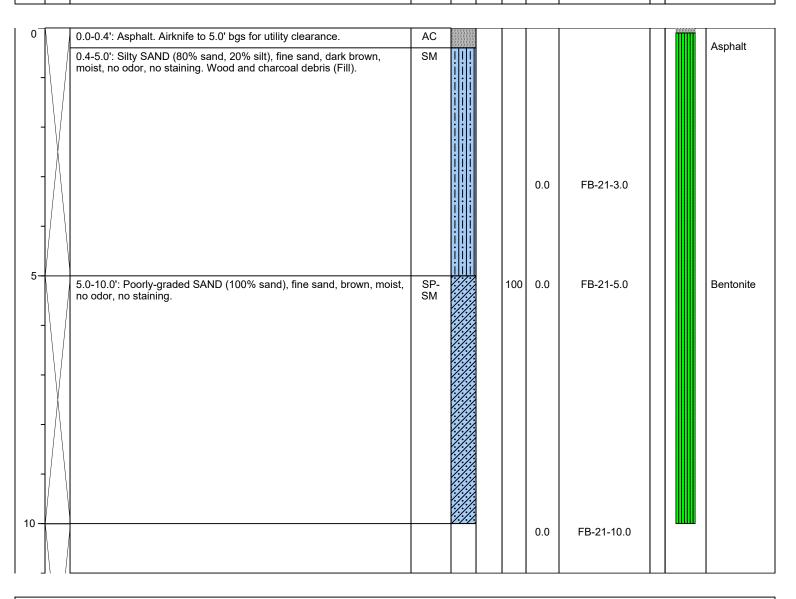
Drilling Company: Cascade Drilling
Drilling Method: Sonic Drilling

Drilling Equipment:TerrasonicDrilling Operator:Rico RodriguezSampler Type:5' PE Bags

**USCS Graphic** 

Blow Counts
% Recovery

PID (ppmv)


Sample ID

Drive Hammer (lbs): NA

Depth to Water ATD (ft bgs): NE
Boring Diameter (in): 8.0
Total Boring Depth (ft bgs): 10.0

Constructed Well Depth (ft bgs):

Boring/Well
Construction
Details

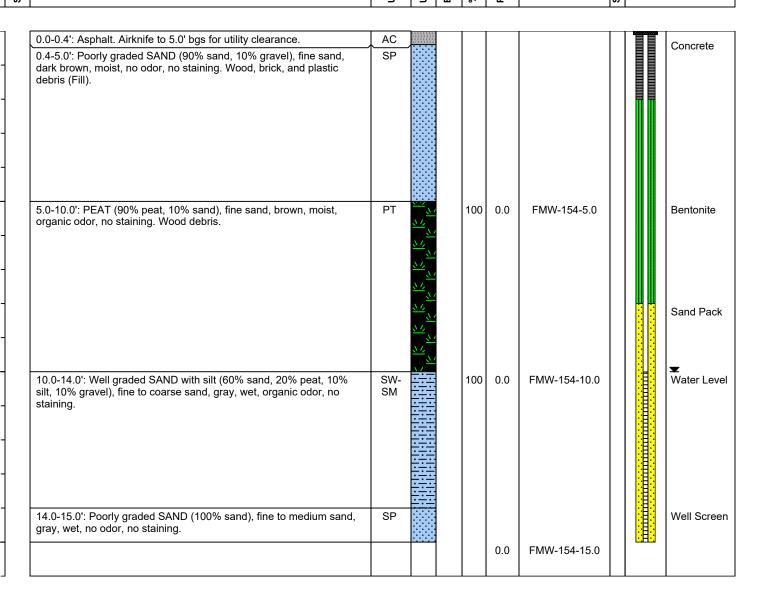


#### **Well Construction Information**

Monument Type: NA
Casing Diameter (in): NA
Screen Slot Size (in): NA
Screened Interval (ft bgs): NA

Filter Pack: NA
Surface Seal: Asphalt
Annular Seal: NA
Boring Abandonment: Bentonite

Ground Surface Elevation (ft): NA
Top of Casing Elevation (ft): NA
Surveyed Location: X: NA
Unique Well ID: NA




| Depth to Water ATD (ft bgs):     | 10.0 |
|----------------------------------|------|
| Boring Diameter (in):            | 8.0  |
| Total Boring Depth (ft bgs):     | 15.0 |
| Constructed Well Depth (ft bgs): | 15.0 |

Page 1 of 1

NA

Drive Hammer (lbs):



### **Well Construction Information**

**Monument Type:** Flush Mount Casing Diameter (in): 2.0 Screen Slot Size (in): 0.010 10.0-15.0 Screened Interval (ft bgs):

Reviewed By: S. Stumpf

5.

10

15

Filter Pack: Sand pack **Surface Seal:** Concrete **Annular Seal:** Concrete **Boring Abandonment:** 

Ground Surface Elevation (ft): Top of Casing Elevation (ft): 22.80 Surveyed Location: X: 1269430.17 Y: 231126.54

23.22

Unique Well ID: BNW-075



Page 1 of 1

Client: City Investors IX LLC

**Project:** Block 38 West Property

Location: Seattle, Washington

**Farallon PN**: 397-019

**Logged By:** G.Peters

Reviewed By: S. Stumpf

Sample Interval

Depth (ft bgs)

**Date/Time Started:** 2/5/2022 @ 1255 **Date/Time Completed:** 2/5/2022 @ 1320

Drilling Company: Cascade Drilling

Drilling Method: Sonic Drilling

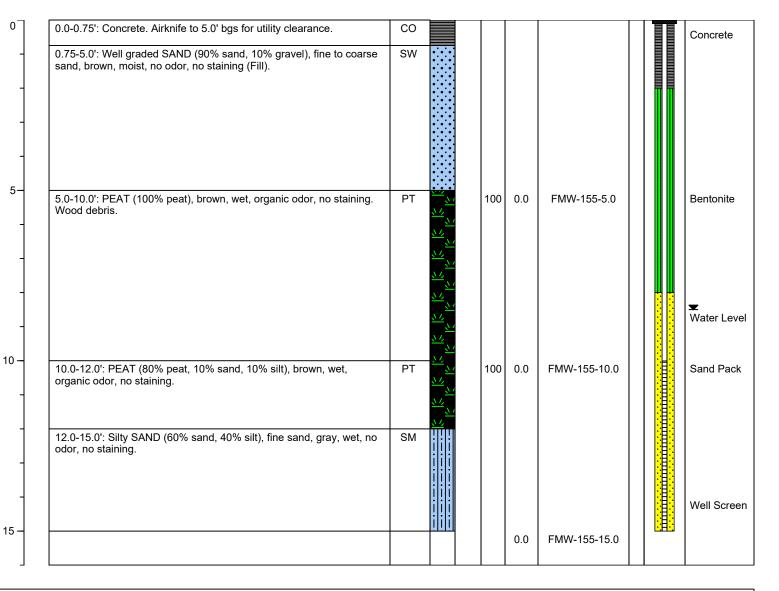
Drilling Equipment: Terrasonic

Drilling Operator: Rico Rodriguez

Sampler Type: 5' PE Bags

Drive Hammer (lbs): NA

Depth to Water ATD (ft bgs): 8.5


Boring Diameter (in): 8.0

Total Boring Depth (ft bgs): 15.0

Constructed Well Depth (ft bgs): 15.0

Lithologic Description

| Sample | Analyzed | Analyzed



**Well Construction Information** 

Monument Type:Flush MountCasing Diameter (in):2.0Screen Slot Size (in):0.010Screened Interval (ft bgs):10.0-15.0

Filter Pack: Sand pack
Surface Seal: Concrete
Annular Seal: Concrete
Boring Abandonment: NA

Ground Surface Elevation (ft): 24.28
Top of Casing Elevation (ft): 23.90

Y: 231262.97

Surveyed Location: X: 1269433.30

Unique Well ID: BNW-074



Page 1 of 1

Client: City Investors IX LLC

**Block 38 West Property Project:** 

Location: Seattle, Washington

**Farallon PN:** 397-019

Logged By: G.Peters

Sample Interval

Depth (ft bgs)

5

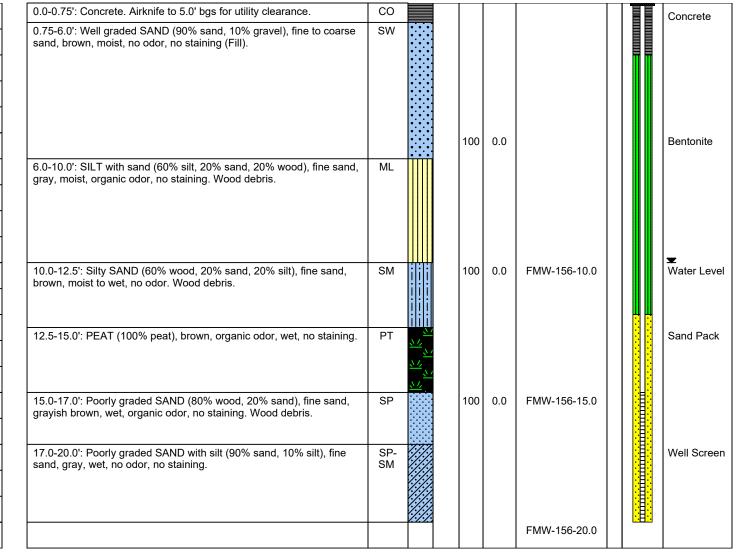
10

15 -

20

Reviewed By: S. Stumpf

Date/Time Started: 2/5/2022 @ 1340 **Date/Time Completed: 2/5/2022 @ 1415** 


**Drilling Company:** Cascade Drilling **Drilling Method:** Sonic Drilling

**Drilling Equipment:** Terrasonic **Drilling Operator:** Rico Rodriguez 5' PE Bags Sampler Type:

Drive Hammer (lbs): NA Depth to Water ATD (ft bgs): 10.0 8.0 Boring Diameter (in): Total Boring Depth (ft bgs): 20.0 Constructed Well Depth (ft bgs): 20.0

훘

| Lithologic Description | sosn | USCS Graphic | Blow Counts | % Recovery | PID (ppmv) | Sample ID | Sample Analyz | Boring/Well<br>Construction<br>Details |
|------------------------|------|--------------|-------------|------------|------------|-----------|---------------|----------------------------------------|
|                        |      |              |             |            |            |           |               |                                        |



**Well Construction Information** 

**Monument Type:** Flush Mount Casing Diameter (in): 2.0 Screen Slot Size (in): 0.010 15.0-20.0 Screened Interval (ft bgs):

Filter Pack: Sand pack **Surface Seal:** Concrete **Annular Seal:** Concrete **Boring Abandonment:** 

Ground Surface Elevation (ft): 26.01 Top of Casing Elevation (ft): 25.70

Surveyed Location: X: 1269436.89 Y: 231342.09

Unique Well ID: BNW-073



**Lithologic Description** 

### Log of Boring: FMW-157

PID (ppmv)

Sample ID

Page 1 of 1

Client: City Investors IX LLC

Project: Block 38 West Property

Location: Seattle, Washington

**Farallon PN**: 397-019

**Logged By:** G.Peters

Reviewed By: S. Stumpf

Sample Interval

Depth (ft bgs)

0

5-

10

15

20

25

30

35

40

**Date/Time Started:** 2/5/2022 @ 1420 **Date/Time Completed:** 2/5/2022 @ 1530

Drilling Company: Cascade Drilling

Drilling Method: Sonic Drilling

Drilling Equipment: Terrasonic

Drilling Operator: Rico Rodriguez

Sampler Type: 5' PE Bags

**JSCS Graphic** 

Blow Counts % Recovery

Drive Hammer (lbs): NA

Depth to Water ATD (ft bgs): 9.0

Boring Diameter (in): 8.0

Total Boring Depth (ft bgs): 40.0

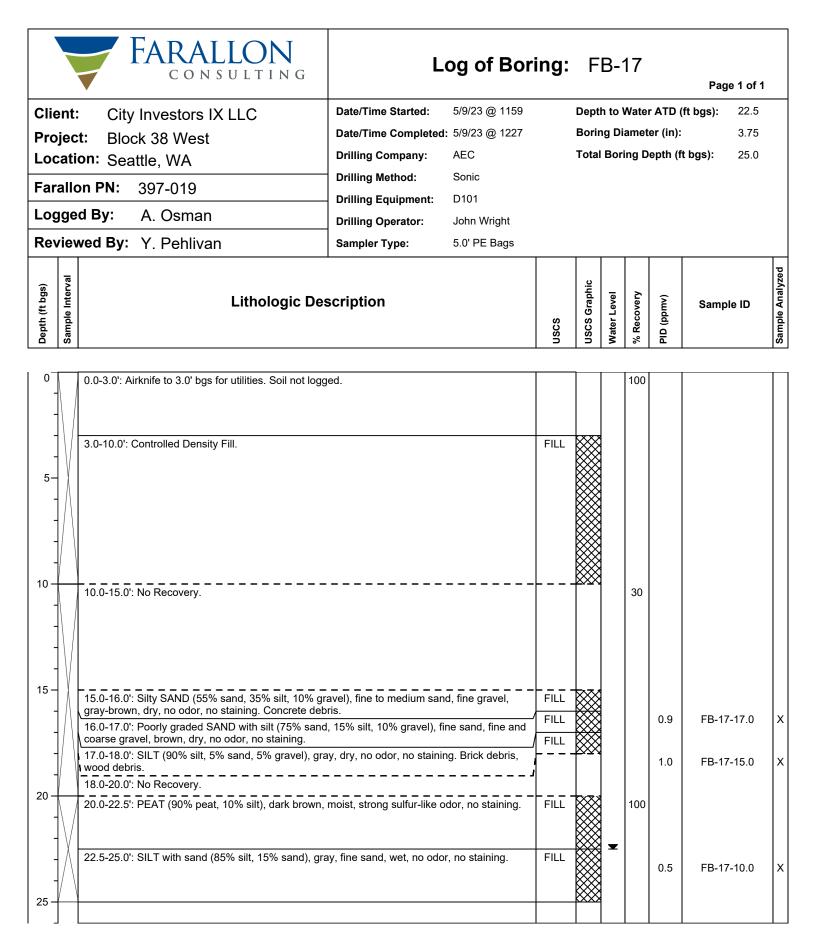
Constructed Well Depth (ft bgs): 40.0

Boring/Well
Construction
Details

#### 0.0-0.75': Concrete. Airknife to 5.0' bgs for utility clearance. CO Concrete 0.75-5.0': Well graded SAND (90% sand, 10% gravel), fine to coarse SW sand, brown, moist, no odor, no staining (Fill). 5.0-10.0': Sandy SILT (60% silt, 40% sand), fine sand, brown, moist, ML 100 0.0 Bentonite nodor, no staining. Water Level РТ 10.0-15.0': PEAT (100% peat), brown, moist, organic odor, no 100 0.0 staining 15.0-20.0': Silty SAND (80% sand, 20% silt), fine sand, grayish SM 100 0.0 brown, moist, no odor, no staining. 20.0-25.0': No recovery. 0 **Bentonite** 25.0-30.0': Poorly graded SAND (100% sand), fine sand, gray, wet, SP 100 0.0 no odor, no staining. Sand Pack 30.0-35.0': Poorly graded SAND (100% sand), fine sand, grayish SP 100 0.0 FMW-157-30.0 brown, wet, no odor, no staining. 35.0-40.0': Poorly graded SAND with silt (90% sand, 10% silt), fine SP-100 0.0 FMW-157-35.0 Well Screen sand, gray, wet, no odor, no staining. SM FMW-157-40.0

#### **Well Construction Information**

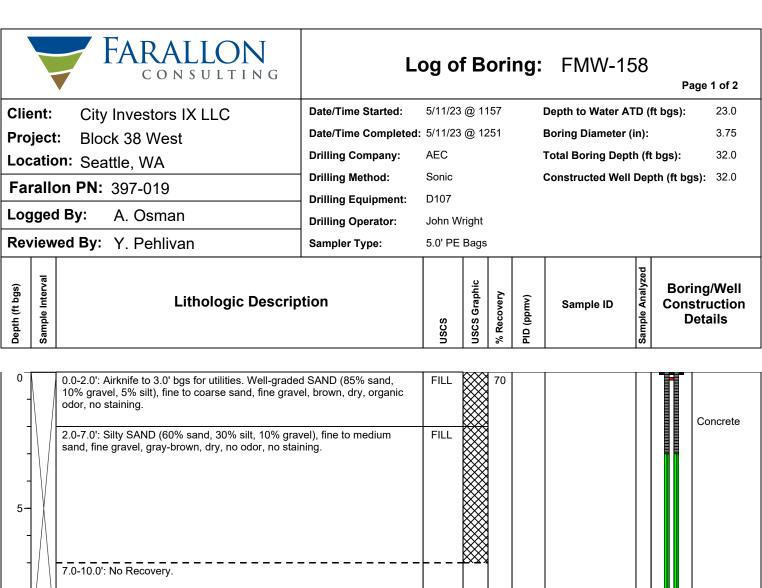
Monument Type:Flush MountCasing Diameter (in):2.0Screen Slot Size (in):0.010Screened Interval (ft bgs):30.0-40.0

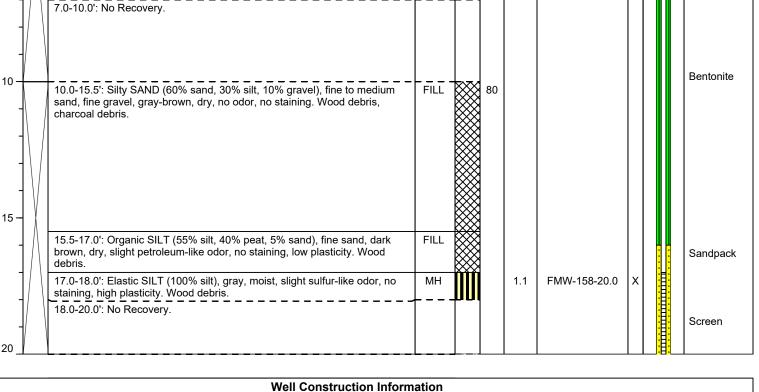

Filter Pack: Sand pack
Surface Seal: Concrete
Annular Seal: Concrete
Boring Abandonment: NA

Ground Surface Elevation (ft): 26.20 Top of Casing Elevation (ft): 25.95

**Surveyed Location: X:** 1269437.13 **Y:** 231346.24

Unique Well ID: BNW-072




Completion Information

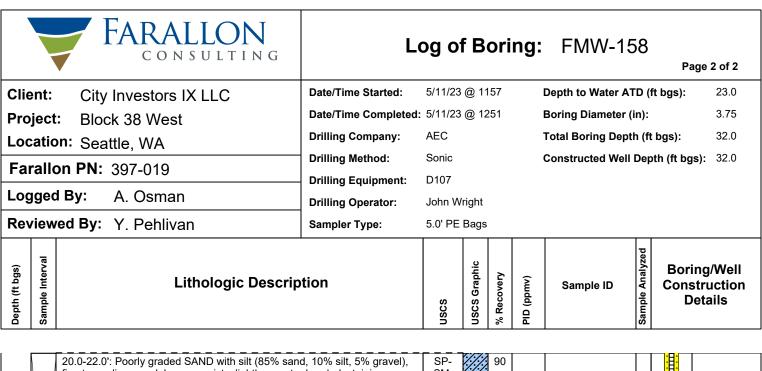
Temporary Well Casing Diameter (in): NA Surface Seal: NA
Temporary Well Screened Interval (ft bgs): NA Ground Surface Elevation (ft): 32.43

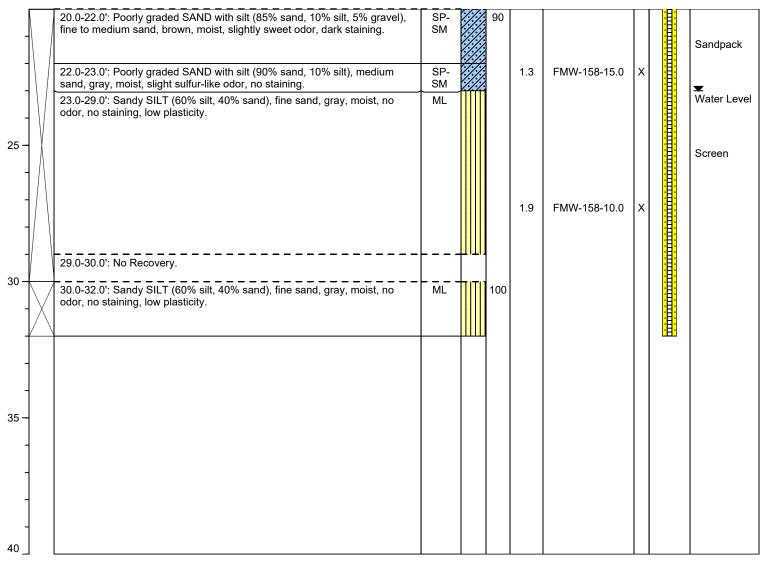
Boring Abandonment: NA Surveyed Location: X: 1269316.42 Y: 231376.97





Monument Type:FlushCasing Diameter (in):2.0Screen Slot Size (in):0.010Screened Interval (ft bgs):17.0-32.0


Filter Pack: Surface Seal: Annular Seal:


Boring Abandonment:

10/20 Silica Sand Concrete Bentonite Ground Surface Elevation (ft):
Top of Casing Elevation (ft):

35.51 35.04

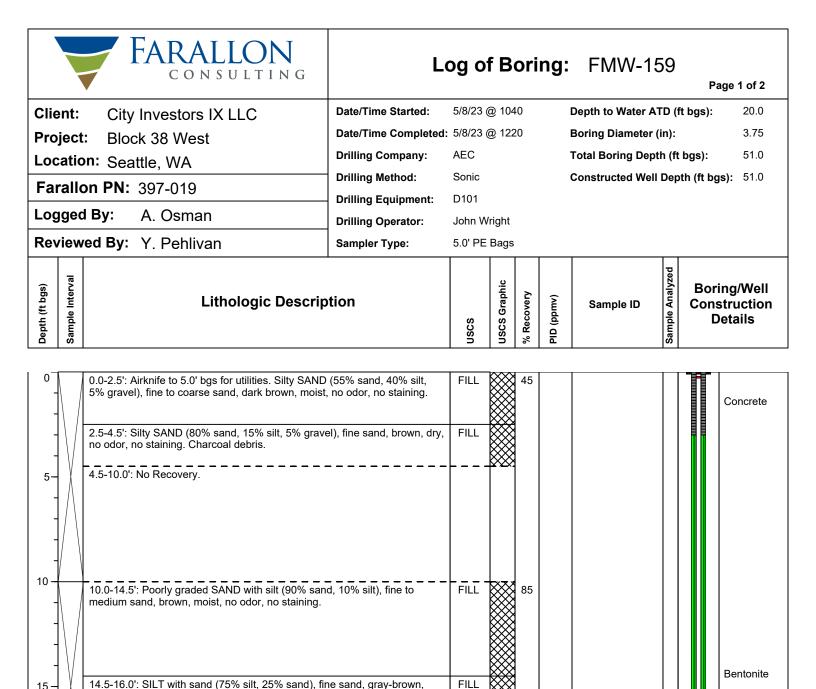
Surveyed Location: X: 1269311.57 Y: 231219.18





**Monument Type:** Flush Casing Diameter (in): 2.0 Screen Slot Size (in): 0.010 17.0-32.0 Screened Interval (ft bgs):

Filter Pack: **Surface Seal: Annular Seal:** 


Boring Abandonment:

10/20 Silica Sand Concrete

Bentonite

Ground Surface Elevation (ft): 35.51 Top of Casing Elevation (ft):

Surveyed Location: X: 1269311.57 Y: 231219.18



**FILL** 

**FILL** 

90

0.9

2.1

Monument Type:FlushCasing Diameter (in):2.0Screen Slot Size (in):0.010Screened Interval (ft bgs):41.0-51.0

Wood debris.

slight petroleum-like odor, no staining.

sulfur-like odor, no staining. Wood debris.

staining. Wood debris.

18.5-20.0': No Recovery.

20

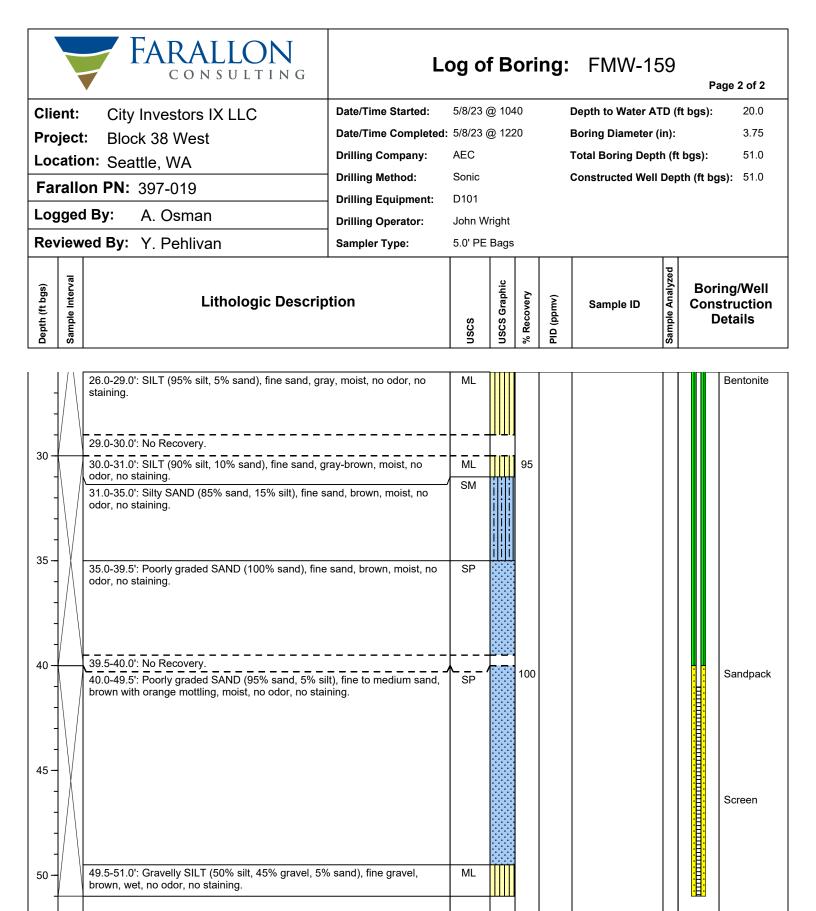
16.0-18.5': PEAT (100% peat), dark brown, moist, slight sulfur-like odor, no

20.0-23.0': SILT with sand (80% silt, 20% sand), fine sand, gray, wet, slight

23.0-26.0': SILT (100% silt), gray, moist, slight sulfur-like odor, no staining.

Filter Pack: 10/20 Silica Sand
Surface Seal: Concrete
Annular Seal: Bentonite

Boring Abandonment:


Ground Surface Elevation (ft): 36.48
Top of Casing Elevation (ft): 36.15

FMW-159-15.0

FMW-159-20.0

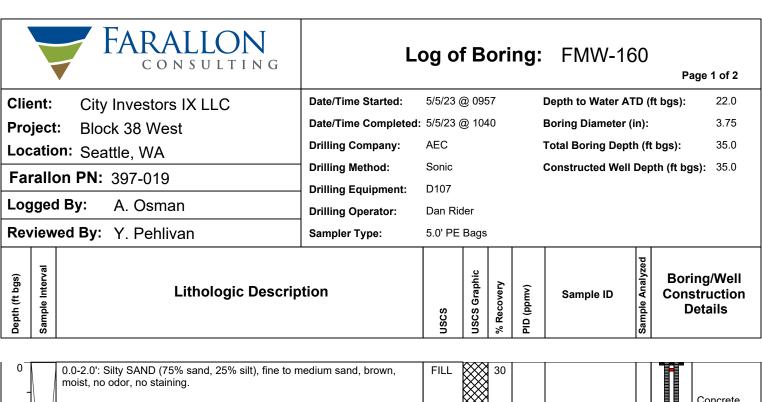
Water Level

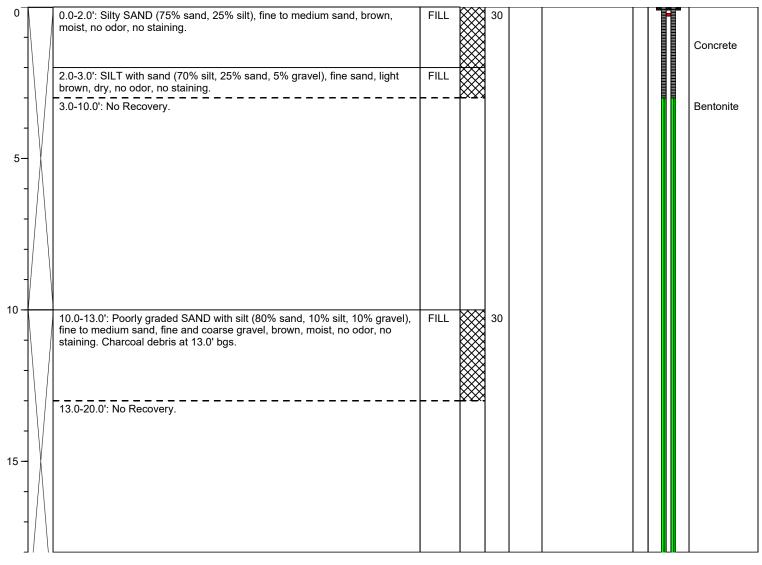
**Surveyed Location: X:** 1269311.66 **Y:** 231170.14



**Monument Type:** Flush Casing Diameter (in): 2.0 Screen Slot Size (in): 0.010 41.0-51.0 Screened Interval (ft bgs):

10/20 Silica Sand Filter Pack: **Surface Seal:** Concrete **Annular Seal:** Bentonite


Boring Abandonment:


Ground Surface Elevation (ft): Top of Casing Elevation (ft):

Unique Well ID: BPE-808

Surveyed Location: X: 1269311.66 Y: 231170.14

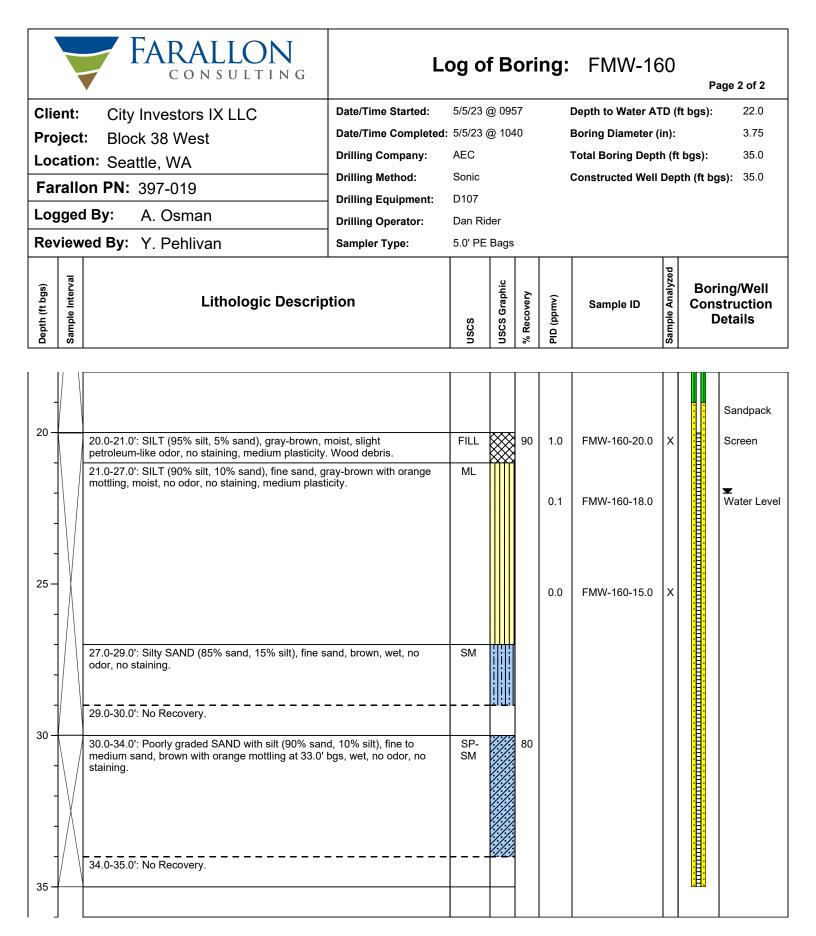
36.48





Monument Type:FlushCasing Diameter (in):2.0Screen Slot Size (in):0.010Screened Interval (ft bgs):20.0-35.0

Filter Pack: 10/20 Colorado Silica
Surface Seal: Concrete
Annular Seal: Bentonite


**Boring Abandonment:** 

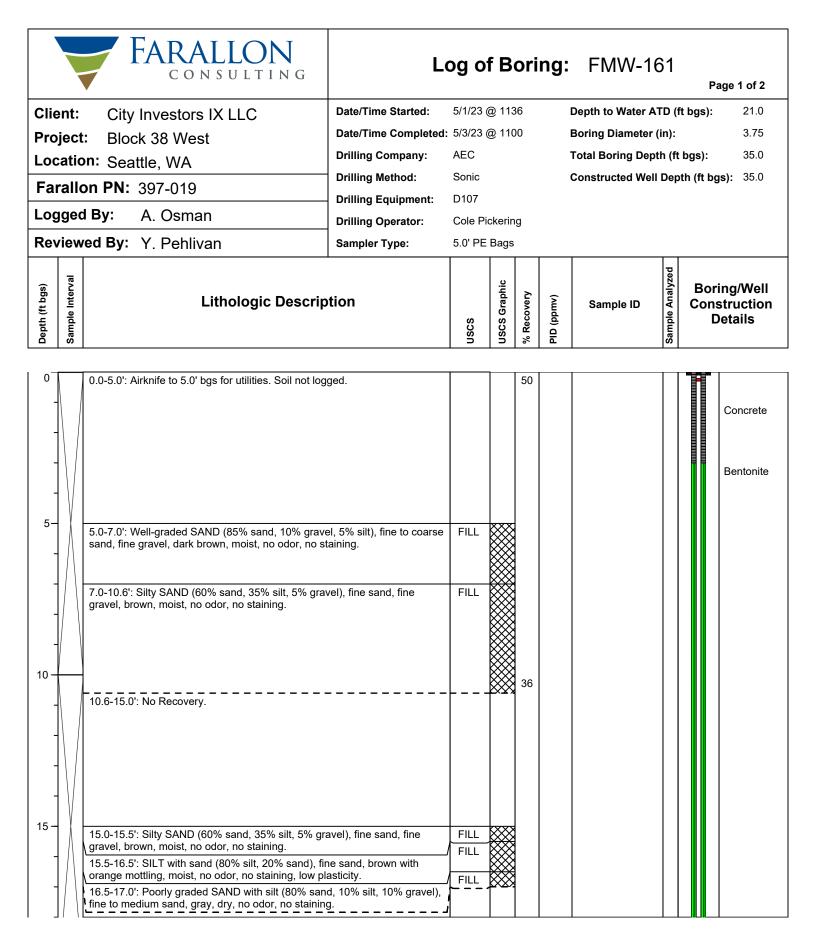
Ground Surface Elevation (ft): 39.23

Top of Casing Elevation (ft): 38.95

Unique Well ID: BPA-239

Surveyed Location: X: 1269305.99 Y: 231030.33

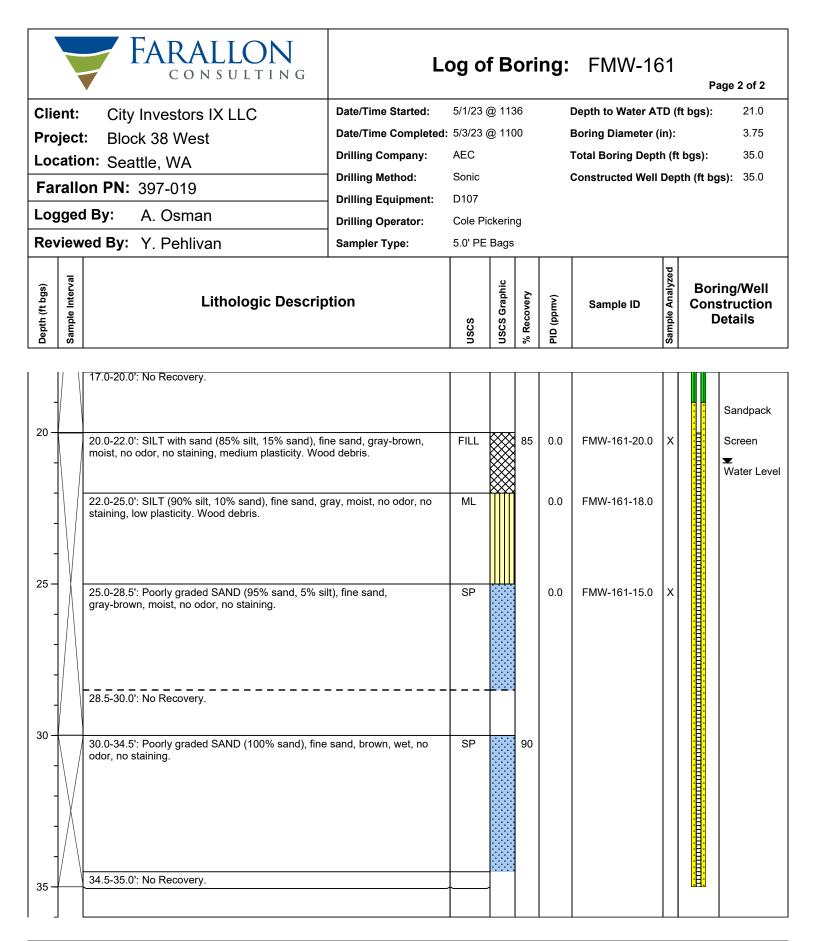



**Monument Type:** Flush Casing Diameter (in): 2.0 Screen Slot Size (in): 0.010 20.0-35.0 Screened Interval (ft bgs):

10/20 Colorado Silica Filter Pack: **Surface Seal:** Concrete **Annular Seal:** Bentonite

Boring Abandonment:

Ground Surface Elevation (ft): 39.23 Top of Casing Elevation (ft):


Surveyed Location: X: 1269305.99 Y: 231030.33



Monument Type:FlushFilter Pack:10/20 Colorado SilicaGround Surface Elevation (ft):40.24Casing Diameter (in):2.0Surface Seal:ConcreteTop of Casing Elevation (ft):39.86

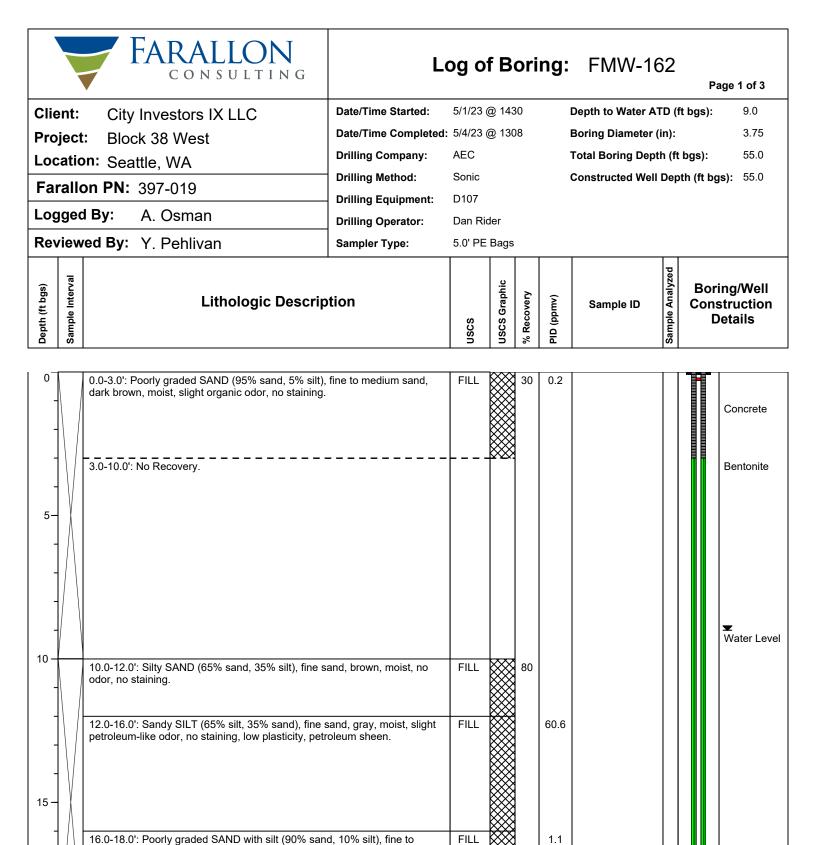
Screen Slot Size (in): 0.010 Annular Seal: Bentonite Surveyed Location: X: 1269329.97 Y: 230983.90

Screened Interval (ft bgs): 20.0-35.0 Boring Abandonment: NA Unique Well ID: BPA-237



**Monument Type:** Flush Casing Diameter (in): 2.0 Screen Slot Size (in): 0.010 20.0-35.0 Screened Interval (ft bgs):

10/20 Colorado Silica Filter Pack: **Surface Seal:** Concrete **Annular Seal:** Bentonite


Boring Abandonment:

**Ground Surface Elevation (ft):** Top of Casing Elevation (ft):

Unique Well ID: BPA-237

Surveyed Location: X: 1269329.97 Y: 230983.90

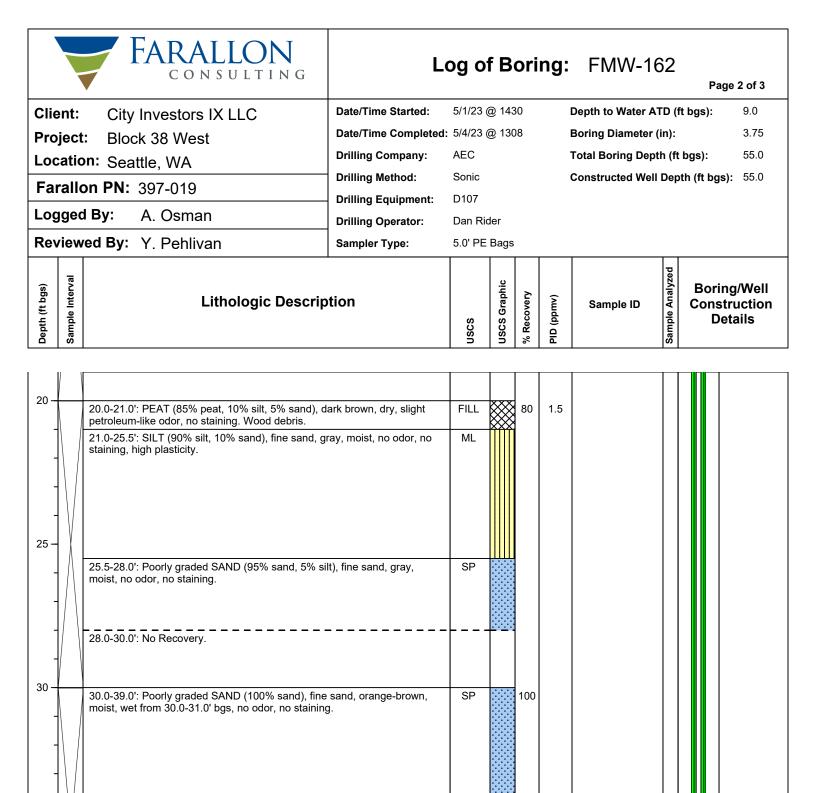
40.24



Monument Type:FlushCasing Diameter (in):2.0Screen Slot Size (in):0.010Screened Interval (ft bgs):45.0-55.0

18.0-20.0': No Recovery.

debris.


Filter Pack: Surface Seal: Annular Seal:

Boring Abandonment:

medium sand, gray-brown, dry, slight petroleum odor, no staining. Wood

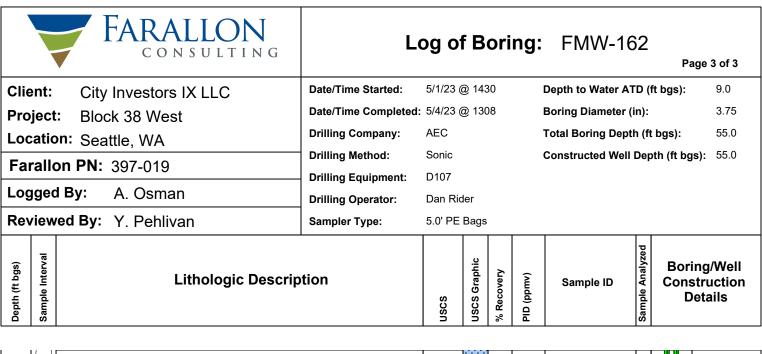
10/20 Colorado Silica Concrete Bentonite Ground Surface Elevation (ft): 40.35 Top of Casing Elevation (ft): 40.09

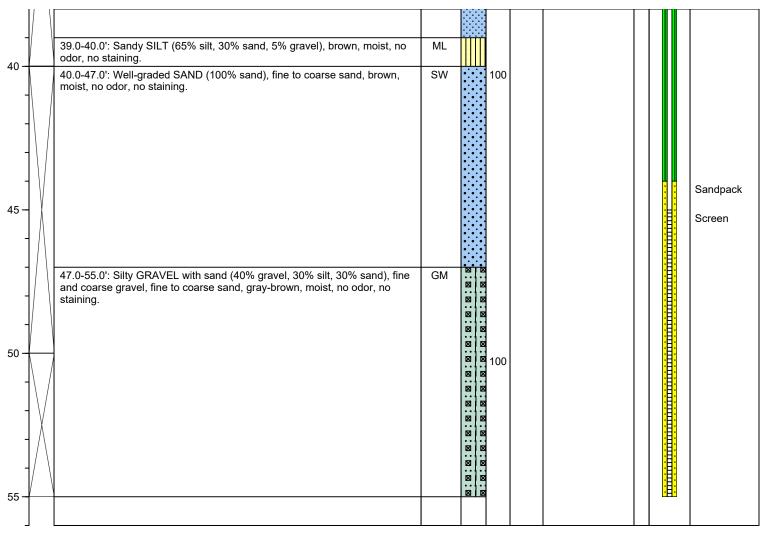
Surveyed Location: X: 1269335.12 Y: 230981.28



Monument Type:FlushCasing Diameter (in):2.0Screen Slot Size (in):0.010Screened Interval (ft bgs):45.0-55.0

35


Filter Pack: 10/20 Colorado Silica
Surface Seal: Concrete
Annular Seal: Bentonite


**Boring Abandonment:** 

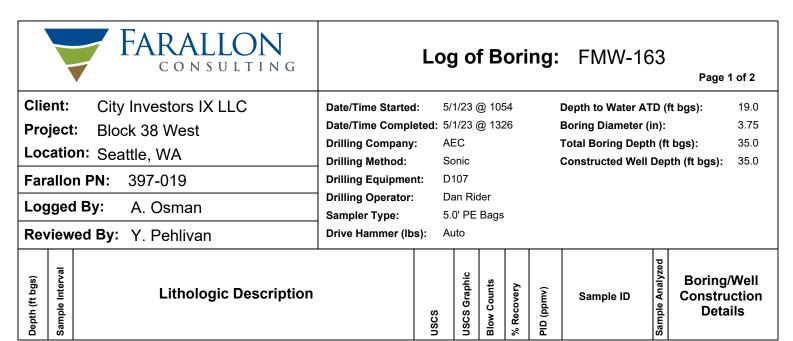
Ground Surface Elevation (ft): 40.35
Top of Casing Elevation (ft): 40.09

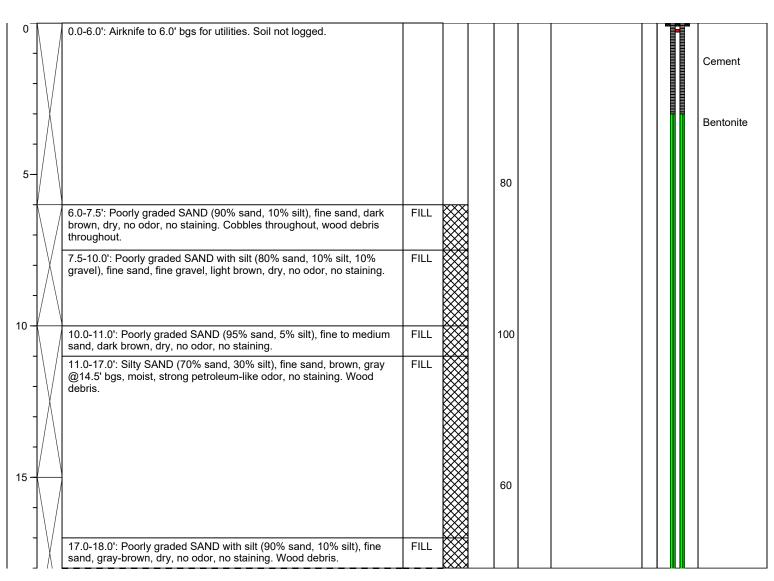
Unique Well ID: BPA-238

**Surveyed Location: X:** 1269335.12 **Y:** 230981.28






Monument Type:FlushCasing Diameter (in):2.0Screen Slot Size (in):0.010Screened Interval (ft bgs):45.0-55.0


Filter Pack: Surface Seal: Annular Seal:

**Boring Abandonment:** 

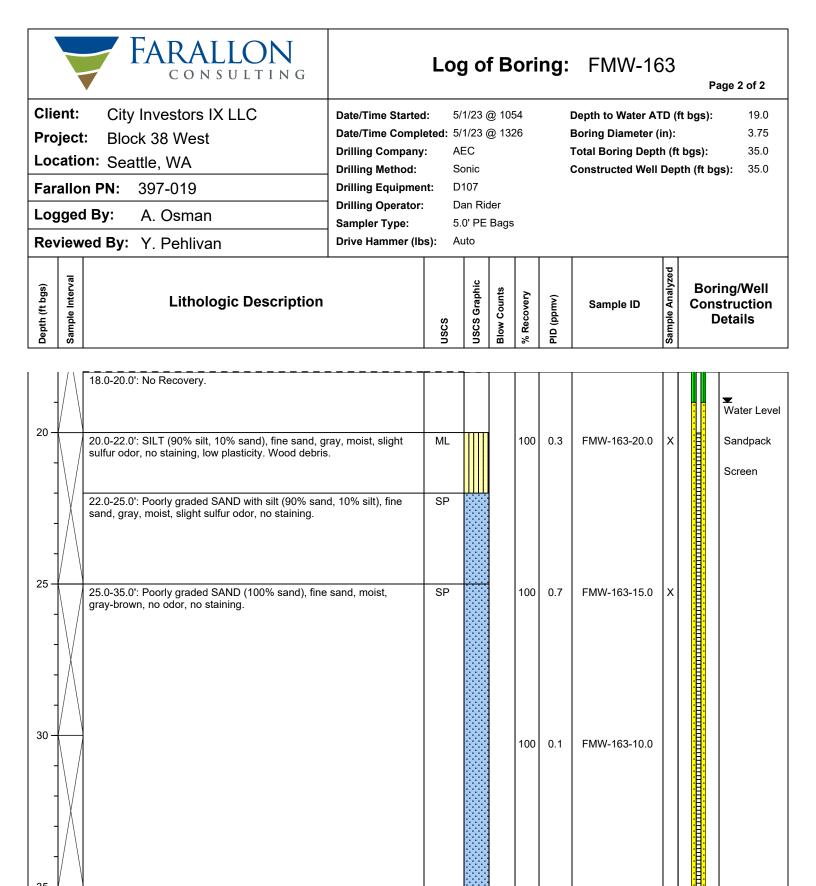
10/20 Colorado Silica Concrete Bentonite Ground Surface Elevation (ft): 40.35
Top of Casing Elevation (ft): 40.09

Surveyed Location: X: 1269335.12 Y: 230981.28





Monument Type:FlushCasing Diameter (in):2.0Screen Slot Size (in):0.010Screened Interval (ft bgs):20.0-35.0


Filter Pack: Surface Seal: Annular Seal:

**Boring Abandonment:** 

10/20 Colorado Silica Concrete

Concrete Bentonite Ground Surface Elevation (ft): 40.66 Top of Casing Elevation (ft): 40.29

Surveyed Location: X: 1269369.25 Y: 230979.55

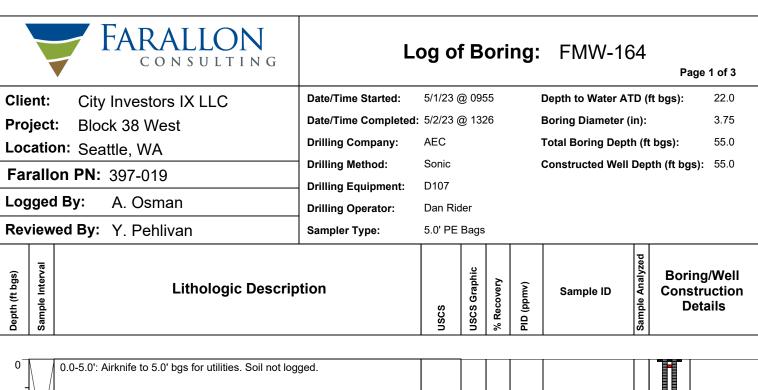


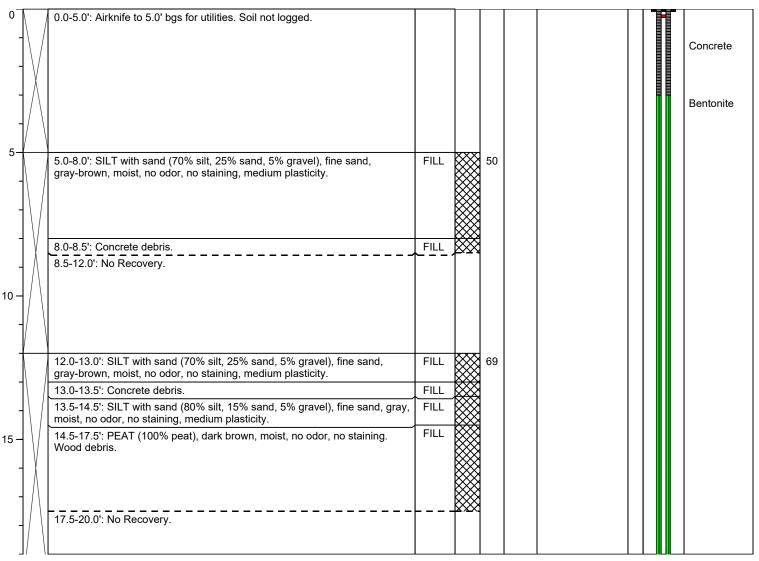
Monument Type:FlushCasing Diameter (in):2.0Screen Slot Size (in):0.010Screened Interval (ft bgs):20.0-35.0

Filter Pack: Surface Seal: Annular Seal:

**Boring Abandonment:** 

10/20 Colorado Silica Concrete Bentonite Ground Surface Elevation (ft): 40 Top of Casing Elevation (ft): 40 Surveyed Location: X: 1269369.25


FMW-163-5.0


): 40.29 39369.25 **Y:** 230979.55

40.66

NA Unique Well ID: BPA-235

0.1

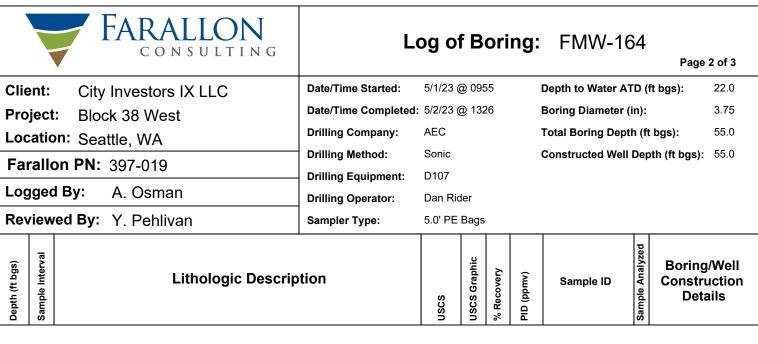


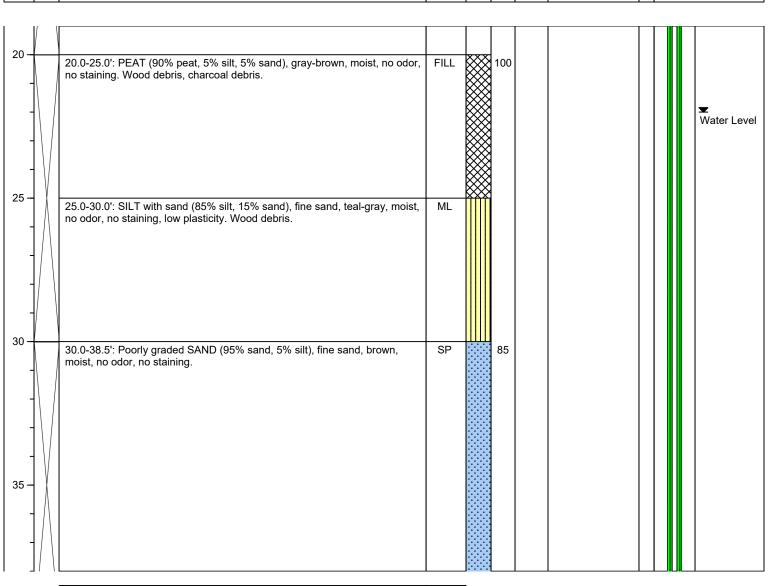


Concrete

Bentonite

**Monument Type:** Flush Casing Diameter (in): 2.0 Screen Slot Size (in): 0.010 45.0-55.0 Screened Interval (ft bgs):


Filter Pack: **Surface Seal: Annular Seal:** 


Boring Abandonment:

10/20 Colorado Silica **Ground Surface Elevation (ft):** 40.53 Top of Casing Elevation (ft):

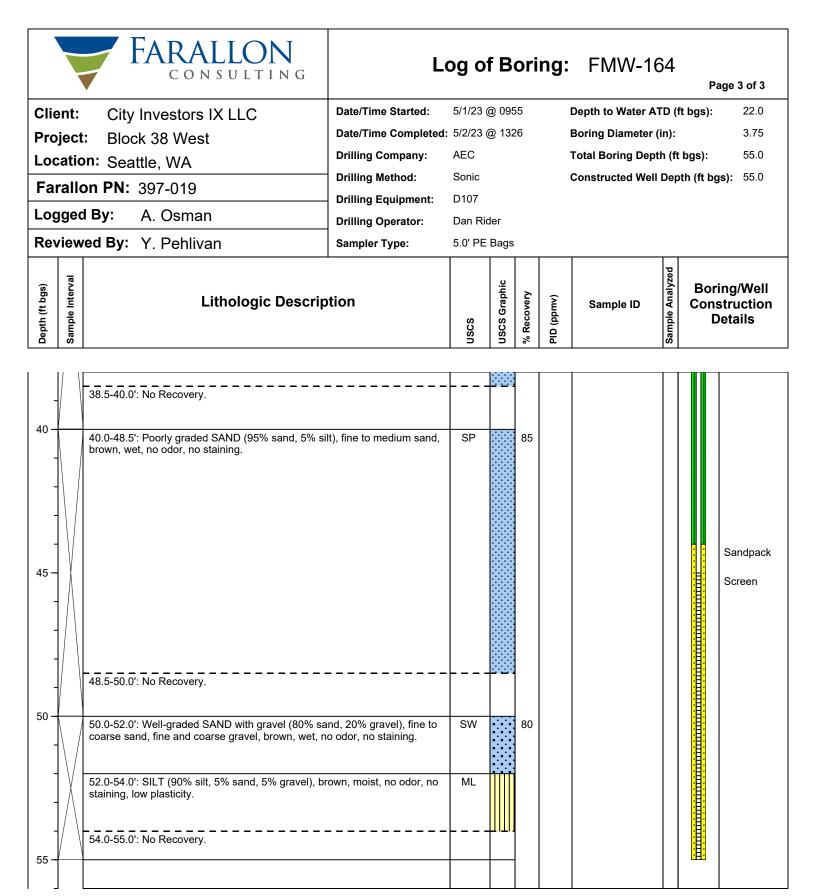
Unique Well ID: BPA-236

Surveyed Location: X: 1269410.55 Y: 230978.04





Monument Type:FlushCasing Diameter (in):2.0Screen Slot Size (in):0.010Screened Interval (ft bgs):45.0-55.0


Filter Pack: 10/20 Colorado Silica
Surface Seal: Concrete
Annular Seal: Bentonite

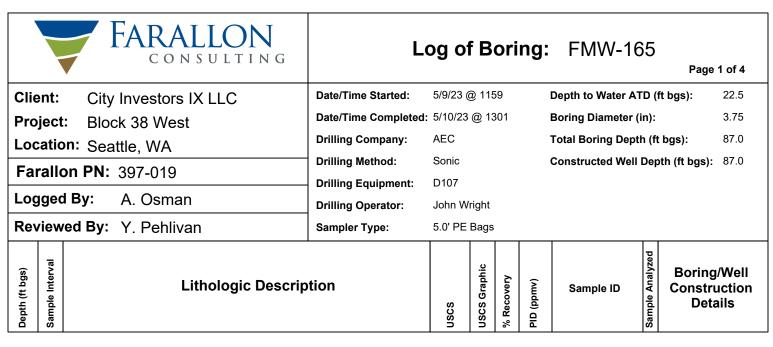
**Boring Abandonment:** 

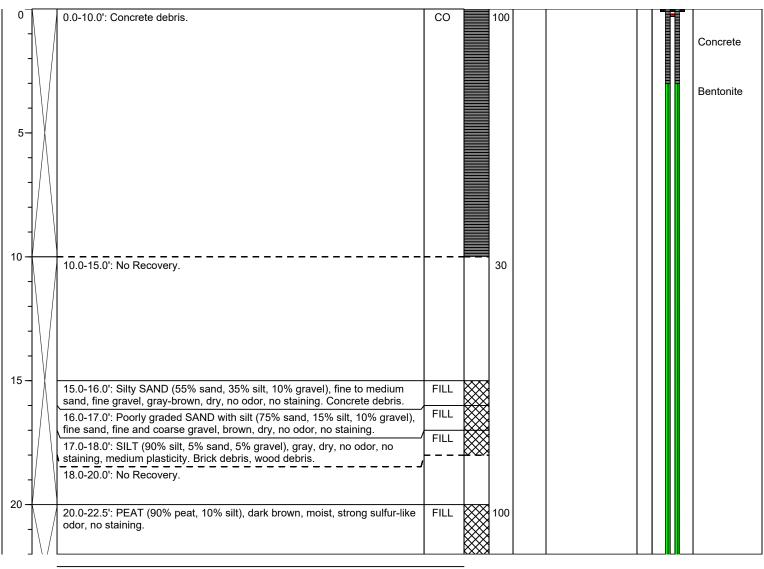
Ground Surface Elevation (ft): 40.53 Top of Casing Elevation (ft): 40.18

Unique Well ID: BPA-236

Surveyed Location: X: 1269410.55 Y: 230978.04




Monument Type:FlushCasing Diameter (in):2.0Screen Slot Size (in):0.010Screened Interval (ft bgs):45.0-55.0


Filter Pack: Surface Seal: Annular Seal:

Boring Abandonment:

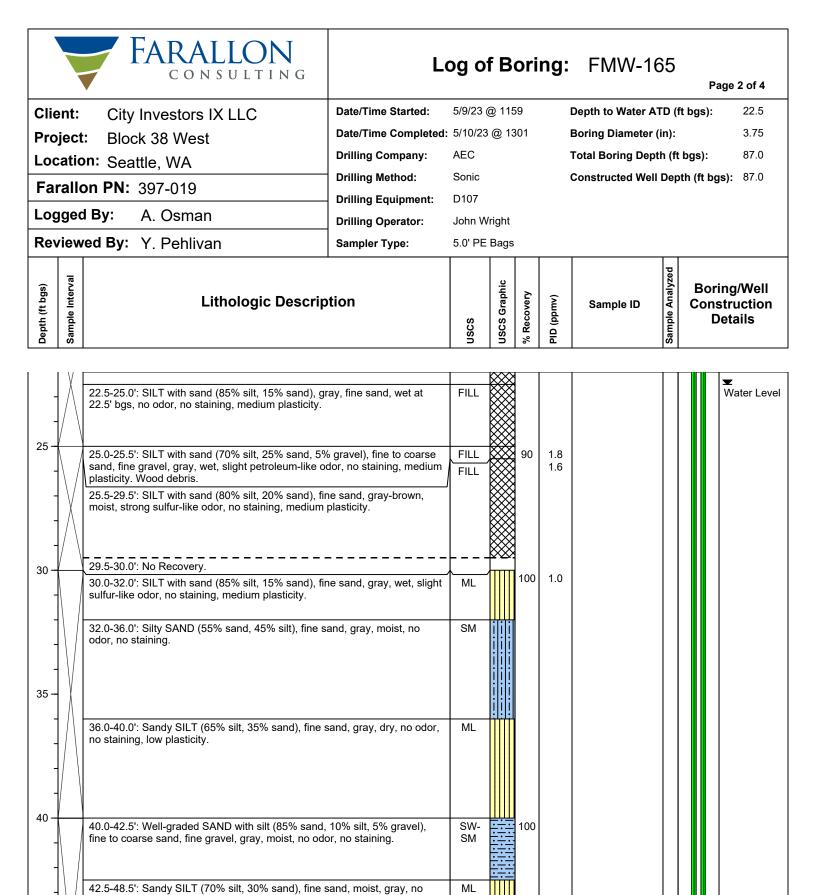
10/20 Colorado Silica Concrete Bentonite Ground Surface Elevation (ft): 40.53 Top of Casing Elevation (ft): 40.18

Surveyed Location: X: 1269410.55 Y: 230978.04





Monument Type: Flush
Casing Diameter (in): 2.0
Screen Slot Size (in): 0.010
Screened Interval (ft bgs): 77.0-87.0


Filter Pack: 10/20 Colorado Silica
Surface Seal: Concrete
Annular Seal: Bentonite

Boring Abandonment:

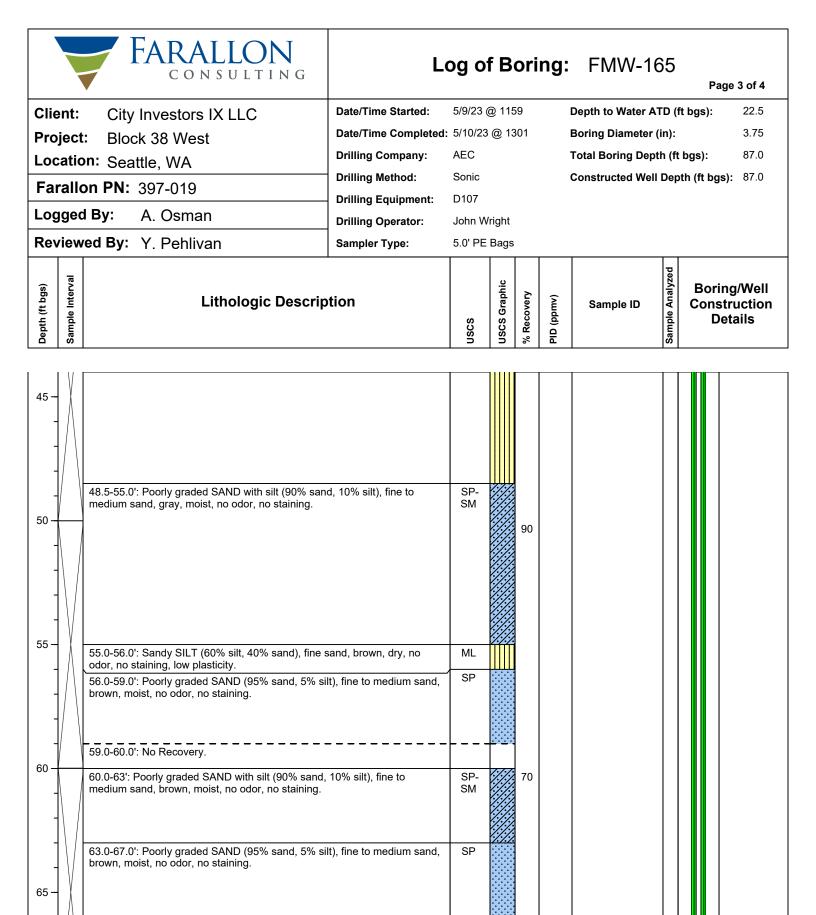
Ground Surface Elevation (ft): 32.43
Top of Casing Elevation (ft): 32.11

Unique Well ID: BPE-809

**Surveyed Location: X:** 1269316.42 **Y:** 231376.97



Monument Type:FlushCasing Diameter (in):2.0Screen Slot Size (in):0.010Screened Interval (ft bgs):77.0-87.0


odor, no staining, low plasticity.

Filter Pack: Surface Seal: Annular Seal:

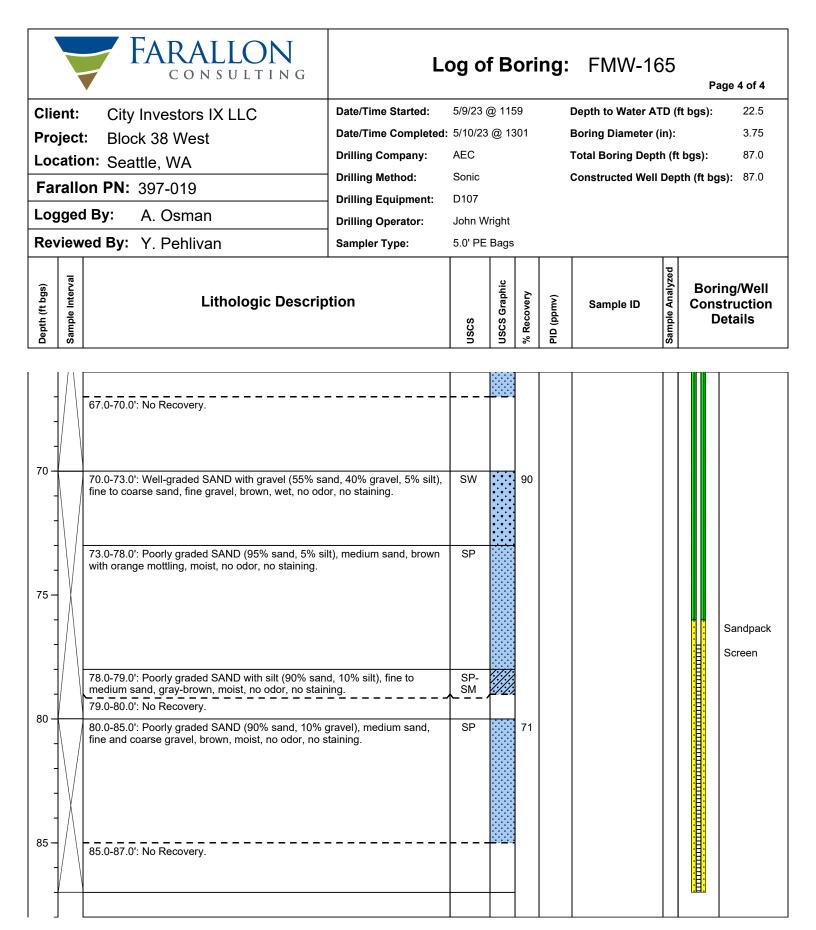
Boring Abandonment:

10/20 Colorado Silica Concrete Bentonite Ground Surface Elevation (ft): 32.43 Top of Casing Elevation (ft): 32.11

Surveyed Location: X: 1269316.42 Y: 231376.97



**Monument Type:** Flush Casing Diameter (in): 2.0 Screen Slot Size (in): 0.010 77.0-87.0 Screened Interval (ft bgs):


Filter Pack: 10/20 Colorado Silica **Surface Seal:** Concrete **Annular Seal:** 

Boring Abandonment:

Bentonite

**Ground Surface Elevation (ft):** 32.43 Top of Casing Elevation (ft):

Surveyed Location: X: 1269316.42 Y: 231376.97



Monument Type:FlushCasing Diameter (in):2.0Screen Slot Size (in):0.010Screened Interval (ft bgs):77.0-87.0

Filter Pack: 10/20 Col Surface Seal: Concrete Annular Seal: Bentonite

**Boring Abandonment:** 

10/20 Colorado Silica Concrete Ground Surface Elevation (ft): 32.43 Top of Casing Elevation (ft): 32.11

Surveyed Location: X: 1269316.42 Y: 231376.97

# APPENDIX B EJ SCREENING TOOL AND EHD MAP COMMUNITY REPORTS

REMEDIAL INVESTIGATION/FOCUSED FEASIBILITY STUDY
Block 38 West Site
500 through 536 Westlake Avenue North
Seattle, Washington

Farallon PN: 397-019

### **\$EPA**

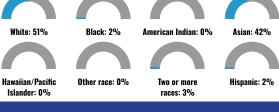
# **EJScreen Community Report**

This report provides environmental and socioeconomic information for user-defined areas, and combines that data into environmental justice and supplemental indexes.

# Seattle, WA



Tract: 53033007303
Population: 2,700
Area in square miles: 0.12


#### COMMUNITY INFORMATION



#### **LANGUAGES SPOKEN AT HOME**

| LANGUAGE                                | PERCENT |
|-----------------------------------------|---------|
| English                                 | 61%     |
| Spanish                                 | 3%      |
| German or other West Germanic           | 2%      |
| Russian, Polish, or Other Slavic        | 1%      |
| Other Indo-European                     | 8%      |
| Korean                                  | 1%      |
| Chinese (including Mandarin, Cantonese) | 15%     |
| Other Asian and Pacific Island          | 8%      |
| Other and Unspecified                   | 1%      |
| Total Non-English                       | 39%     |

#### **BREAKDOWN BY RACE**



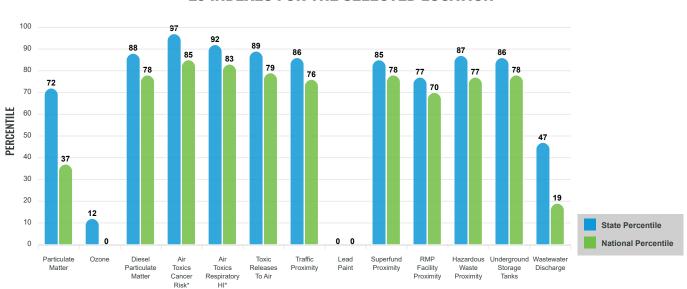
#### **BREAKDOWN BY AGE**

| From Ages 1 to 4    | 1%  |
|---------------------|-----|
| From Ages 1 to 18   | 5%  |
| From Ages 18 and up | 95% |
| From Ages 65 and up | 19% |

#### LIMITED ENGLISH SPEAKING BREAKDOWN



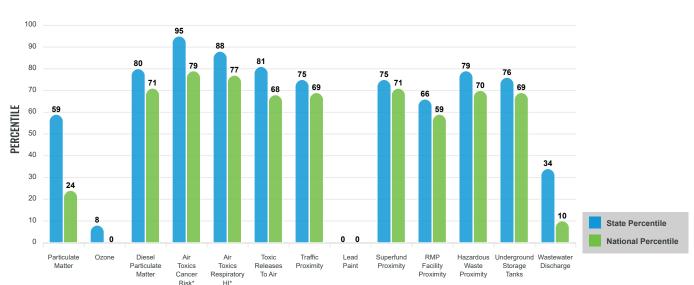
Notes: Numbers may not sum to totals due to rounding. Hispanic population can be of any race. Source: U.S. Census Bureau, American Community Survey (ACS) 2017-2021. Life expectancy data comes from the Centers for Disease Control.


### **Environmental Justice & Supplemental Indexes**

The environmental justice and supplemental indexes are a combination of environmental and socioeconomic information. There are thirteen EJ indexes and supplemental indexes in EJScreen reflecting the 13 environmental indicators. The indexes for a selected area are compared to those for all other locations in the state or nation. For more information and calculation details on the EJ and supplemental indexes, please visit the EJScreen website.

#### **EJ INDEXES**

The EJ indexes help users screen for potential EJ concerns. To do this, the EJ index combines data on low income and people of color populations with a single environmental indicator.


#### **EJ INDEXES FOR THE SELECTED LOCATION**



#### SUPPLEMENTAL INDEXES

The supplemental indexes offer a different perspective on community-level vulnerability. They combine data on percent low-income, percent linguistically isolated, percent less than high school education, percent unemployed, and low life expectancy with a single environmental indicator.

#### SUPPLEMENTAL INDEXES FOR THE SELECTED LOCATION



These percentiles provide perspective on how the selected block group or buffer area compares to the entire state or nation.

Report for Tract: 53033007303

 $\equiv$ 

 $\equiv$ 

## **EJScreen Environmental and Socioeconomic Indicators Data**

| SELECTED VARIABLES                                                | VALUE | STATE<br>AVERAGE | PERCENTILE<br>IN STATE | USA AVERAGE | PERCENTILE<br>IN USA |
|-------------------------------------------------------------------|-------|------------------|------------------------|-------------|----------------------|
| POLLUTION AND SOURCES                                             |       |                  |                        |             |                      |
| Particulate Matter (µg/m³)                                        | 7.2   | 7.02             | 61                     | 8.08        | 25                   |
| Ozone (ppb)                                                       | 45.4  | 49.8             | 7                      | 61.6        | 0                    |
| Diesel Particulate Matter (µg/m³)                                 | 1.74  | 0.355            | 99                     | 0.261       | 99                   |
| Air Toxics Cancer Risk* (lifetime risk per million)               | 50    | 27               | 97                     | 25          | 94                   |
| Air Toxics Respiratory HI*                                        | 0.9   | 0.39             | 98                     | 0.31        | 92                   |
| Toxic Releases to Air                                             | 8,100 | 1,800            | 96                     | 4,600       | 91                   |
| Traffic Proximity (daily traffic count/distance to road)          | 1,900 | 190              | 98                     | 210         | 98                   |
| Lead Paint (% Pre-1960 Housing)                                   | 0     | 0.23             | 0                      | 0.3         | 0                    |
| Superfund Proximity (site count/km distance)                      | 0.53  | 0.18             | 92                     | 0.13        | 95                   |
| RMP Facility Proximity (facility count/km distance)               | 0.48  | 0.4              | 77                     | 0.43        | 75                   |
| Hazardous Waste Proximity (facility count/km distance)            | 20    | 1.6              | 99                     | 1.9         | 99                   |
| Underground Storage Tanks (count/km²)                             | 120   | 6.3              | 99                     | 3.9         | 99                   |
| Wastewater Discharge (toxicity-weighted concentration/m distance) |       | 0.024            | 30                     | 22          | 11                   |
| SOCIOECONOMIC INDICATORS                                          |       |                  |                        |             |                      |
| Demographic Index                                                 | 32%   | 28%              | 66                     | 35%         | 54                   |
| Supplemental Demographic Index                                    | 9%    | 12%              | 40                     | 14%         | 30                   |
| People of Color                                                   | 49%   | 32%              | 79                     | 39%         | 65                   |
| Low Income                                                        | 15%   | 24%              | 36                     | 31%         | 27                   |
| Unemployment Rate                                                 | 5%    | 5%               | 61                     | 6%          | 60                   |
| Limited English Speaking Households                               | 8%    | 4%               | 84                     | 5%          | 82                   |
| Less Than High School Education                                   | 0%    | 8%               | 0                      | 12%         | 0                    |
| Under Age 5                                                       | 1%    | 6%               | 12                     | 6%          | 16                   |
| Over Age 64                                                       | 19%   | 16%              | 65                     | 17%         | 62                   |
| Low Life Expectancy                                               | 17%   | 18%              | 30                     | 20%         | 22                   |

\*Diesel particulate matter, air toxics cancer risk, and air toxics respiratory hazard index are from the EPA's Air Toxics Data Update, which is the Agency's ongoing, comprehensive evaluation of air toxics in the United States. This effort aims to prioritize air toxics, emission sources, and locations of interest for turner study. It is important to remember that the air toxics data presented here provide broad estimate of health risks over geographic areas of the country, not definitive risks to specific individuals or locations. Cancer risks and hazard indices from the Air Toxics Data Update are reported to one significant figure and any additional significant figures here are due to rounding. More information on the Air Toxics Data Update are found at: <a href="https://www.epa.gov/haps/air-toxics-data-update">https://www.epa.gov/haps/air-toxics-data-update</a>.

#### Sites reporting to EPA within defined area:

| Superfund                                                    | 0 |
|--------------------------------------------------------------|---|
| Hazardous Waste, Treatment, Storage, and Disposal Facilities | 1 |
| Water Dischargers                                            | 1 |
| Air Pollution                                                | 2 |
| Brownfields                                                  | 0 |
| Toxic Release Inventory                                      | 0 |

#### Other community features within defined area:

| Schools 0         |  |
|-------------------|--|
| Hospitals         |  |
| Places of Worship |  |

#### Other environmental data:

| Air Non-attainment | No |
|--------------------|----|
| Impaired Waters    | No |

| Selected location contains American Indian Reservation Lands*            | No  |
|--------------------------------------------------------------------------|-----|
| Selected location contains a "Justice40 (CEJST)" disadvantaged community | No  |
| Selected location contains an EPA IRA disadvantaged community            | Yes |

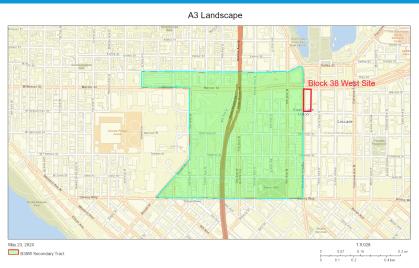
Report for Tract: 53033007303

# **EJScreen Environmental and Socioeconomic Indicators Data**

| HEALTH INDICATORS                                                       |       |       |    |       |    |  |  |  |
|-------------------------------------------------------------------------|-------|-------|----|-------|----|--|--|--|
| INDICATOR VALUE STATE AVERAGE STATE PERCENTILE US AVERAGE US PERCENTILE |       |       |    |       |    |  |  |  |
| Low Life Expectancy                                                     | 17%   | 18%   | 30 | 20%   | 22 |  |  |  |
| Heart Disease                                                           | 3.5   | 5.3   | 11 | 6.1   | 7  |  |  |  |
| Asthma                                                                  | 8.9   | 10.5  | 8  | 10    | 22 |  |  |  |
| Cancer                                                                  | 4.8   | 6.3   | 15 | 6.1   | 22 |  |  |  |
| Persons with Disabilities                                               | 16.5% | 13.1% | 74 | 13.4% | 73 |  |  |  |

| CLIMATE INDICATORS                                                      |     |     |    |     |    |  |  |  |
|-------------------------------------------------------------------------|-----|-----|----|-----|----|--|--|--|
| INDICATOR VALUE STATE AVERAGE STATE PERCENTILE US AVERAGE US PERCENTILE |     |     |    |     |    |  |  |  |
| Flood Risk                                                              | 13% | 11% | 75 | 12% | 74 |  |  |  |
| Wildfire Risk                                                           | 0%  | 12% | 0  | 14% | 0  |  |  |  |

| CRITICAL SERVICE GAPS                                                   |    |     |     |     |     |  |  |  |
|-------------------------------------------------------------------------|----|-----|-----|-----|-----|--|--|--|
| INDICATOR VALUE STATE AVERAGE STATE PERCENTILE US AVERAGE US PERCENTILE |    |     |     |     |     |  |  |  |
| Broadband Internet                                                      | 2% | 9%  | 23  | 14% | 16  |  |  |  |
| Lack of Health Insurance                                                | 0% | 6%  | 0   | 9%  | 0   |  |  |  |
| Housing Burden                                                          | No | N/A | N/A | N/A | N/A |  |  |  |
| Transportation Access                                                   | No | N/A | N/A | N/A | N/A |  |  |  |
| Food Desert                                                             | No | N/A | N/A | N/A | N/A |  |  |  |


Report for Tract: 53033007303

### **\$EPA**

# **EJScreen Community Report**

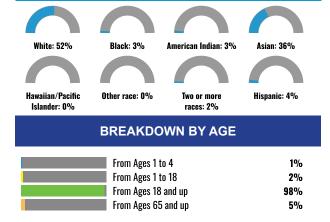
This report provides environmental and socioeconomic information for user-defined areas, and combines that data into environmental justice and supplemental indexes.

# Seattle, WA



Esri Community Maps Contributors, City of Seattle, King Courty, WA, State Parks GIS, ® OpenStreetMap Morosot, Eur. Tomiforn, Gommin. SafeCopin Geo'stichnologies, Inc. METHASA, USGS, Bureau o Land Management. EPA, NPS, US Cennus Burolu.

#### LANGUAGES SPOKEN AT HOME


| LANGUAGE                                | PERCENT |
|-----------------------------------------|---------|
| English                                 | 64%     |
| Spanish                                 | 1%      |
| Russian, Polish, or Other Slavic        | 10%     |
| Other Indo-European                     | 7%      |
| Chinese (including Mandarin, Cantonese) | 8%      |
| Vietnamese                              | 1%      |
| Other Asian and Pacific Island          | 9%      |
| Total Non-English                       | 36%     |

Tract: 53033007203
Population: 2,920
Area in square miles: 0.22

#### COMMUNITY INFORMATION



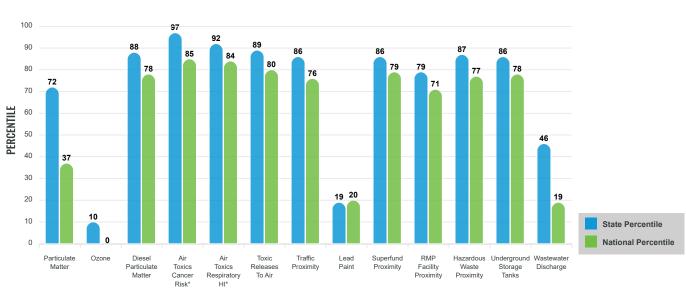
#### **BREAKDOWN BY RACE**



#### LIMITED ENGLISH SPEAKING BREAKDOWN



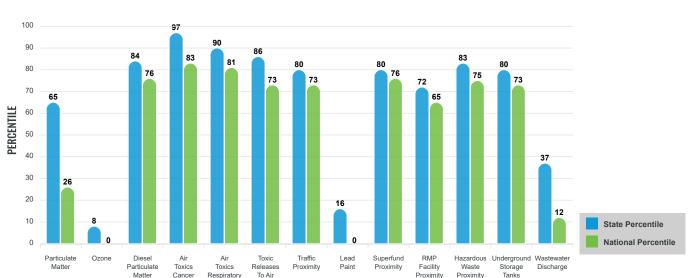
Notes: Numbers may not sum to totals due to rounding. Hispanic population can be of any race. Source: U.S. Census Bureau, American Community Survey (ACS) 2017-2021. Life expectancy data comes from the Centers for Disease Control.


### **Environmental Justice & Supplemental Indexes**

The environmental justice and supplemental indexes are a combination of environmental and socioeconomic information. There are thirteen EJ indexes and supplemental indexes in EJScreen reflecting the 13 environmental indicators. The indexes for a selected area are compared to those for all other locations in the state or nation. For more information and calculation details on the EJ and supplemental indexes, please visit the EJScreen website.

#### **EJ INDEXES**

The EJ indexes help users screen for potential EJ concerns. To do this, the EJ index combines data on low income and people of colo populations with a single environmental indicator.


#### **EJ INDEXES FOR THE SELECTED LOCATION**



#### **SUPPLEMENTAL INDEXES**

The supplemental indexes offer a different perspective on community-level vulnerability. They combine data on percent low-income, percent linguistically isolated, percent less than high





These percentiles provide perspective on how the selected block group or buffer area compares to the entire state or nation.

Report for Tract: 53033007203

 $\equiv$ 

# **EJScreen Environmental and Socioeconomic Indicators Data**

| SELECTED VARIABLES                                                | VALUE   | STATE<br>AVERAGE | PERCENTILE<br>IN STATE | USA AVERAGE | PERCENTILE<br>IN USA |
|-------------------------------------------------------------------|---------|------------------|------------------------|-------------|----------------------|
| POLLUTION AND SOURCES                                             |         |                  |                        |             |                      |
| Particulate Matter (µg/m³)                                        | 7.2     | 7.02             | 61                     | 8.08        | 25                   |
| Ozone (ppb)                                                       | 45.3    | 49.8             | 6                      | 61.6        | 0                    |
| Diesel Particulate Matter (µg/m³)                                 | 1.83    | 0.355            | 99                     | 0.261       | 99                   |
| Air Toxics Cancer Risk* (lifetime risk per million)               | 50      | 27               | 97                     | 25          | 94                   |
| Air Toxics Respiratory HI*                                        | 0.9     | 0.39             | 98                     | 0.31        | 92                   |
| Toxic Releases to Air                                             | 9,100   | 1,800            | 96                     | 4,600       | 92                   |
| Traffic Proximity (daily traffic count/distance to road)          | 1,700   | 190              | 98                     | 210         | 98                   |
| Lead Paint (% Pre-1960 Housing)                                   | 0.012   | 0.23             | 16                     | 0.3         | 16                   |
| Superfund Proximity (site count/km distance)                      | 0.64    | 0.18             | 94                     | 0.13        | 96                   |
| RMP Facility Proximity (facility count/km distance)               | 0.57    | 0.4              | 80                     | 0.43        | 79                   |
| Hazardous Waste Proximity (facility count/km distance)            | 24      | 1.6              | 99                     | 1.9         | 99                   |
| Underground Storage Tanks (count/km²)                             | 93      | 6.3              | 99                     | 3.9         | 99                   |
| Wastewater Discharge (toxicity-weighted concentration/m distance) | 2.3E-06 | 0.024            | 30                     | 22          | 11                   |
| SOCIOECONOMIC INDICATORS                                          |         |                  |                        |             |                      |
| Demographic Index                                                 | 32%     | 28%              | 66                     | 35%         | 54                   |
| Supplemental Demographic Index                                    | 10%     | 12%              | 50                     | 14%         | 37                   |
| People of Color                                                   | 48%     | 32%              | 78                     | 39%         | 65                   |
| Low Income                                                        | 16%     | 24%              | 39                     | 31%         | 29                   |
| Unemployment Rate                                                 | 0%      | 5%               | 0                      | 6%          | 0                    |
| Limited English Speaking Households                               | 10%     | 4%               | 87                     | 5%          | 85                   |
| Less Than High School Education                                   | 5%      | 8%               | 49                     | 12%         | 38                   |
| Under Age 5                                                       | 1%      | 6%               | 13                     | 6%          | 16                   |
| Over Age 64                                                       | 5%      | 16%              | 9                      | 17%         | 8                    |
| Low Life Expectancy                                               | 21%     | 18%              | 80                     | 20%         | 64                   |

\*Diesel particulate matter, air toxics cancer risk, and air toxics respiratory hazard index are from the EPA's Air Toxics Data Update, which is the Agency's origing, comprehensive evaluation of air toxics in the United Scates. This effort aims to prioritize air toxics emission sources, and locations of interest for further study. It is important to remember that the air toxics data presented here revolutioned in the summary of the control of the provide for the provide for a first provided in the provided

#### Sites reporting to EPA within defined area:

| Superfund                                                    | 0 |
|--------------------------------------------------------------|---|
| Hazardous Waste, Treatment, Storage, and Disposal Facilities | 2 |
| Water Dischargers                                            | 1 |
| Air Pollution                                                | 0 |
| Brownfields                                                  | 0 |
| Toxic Release Inventory                                      | 1 |

#### Other community features within defined area:

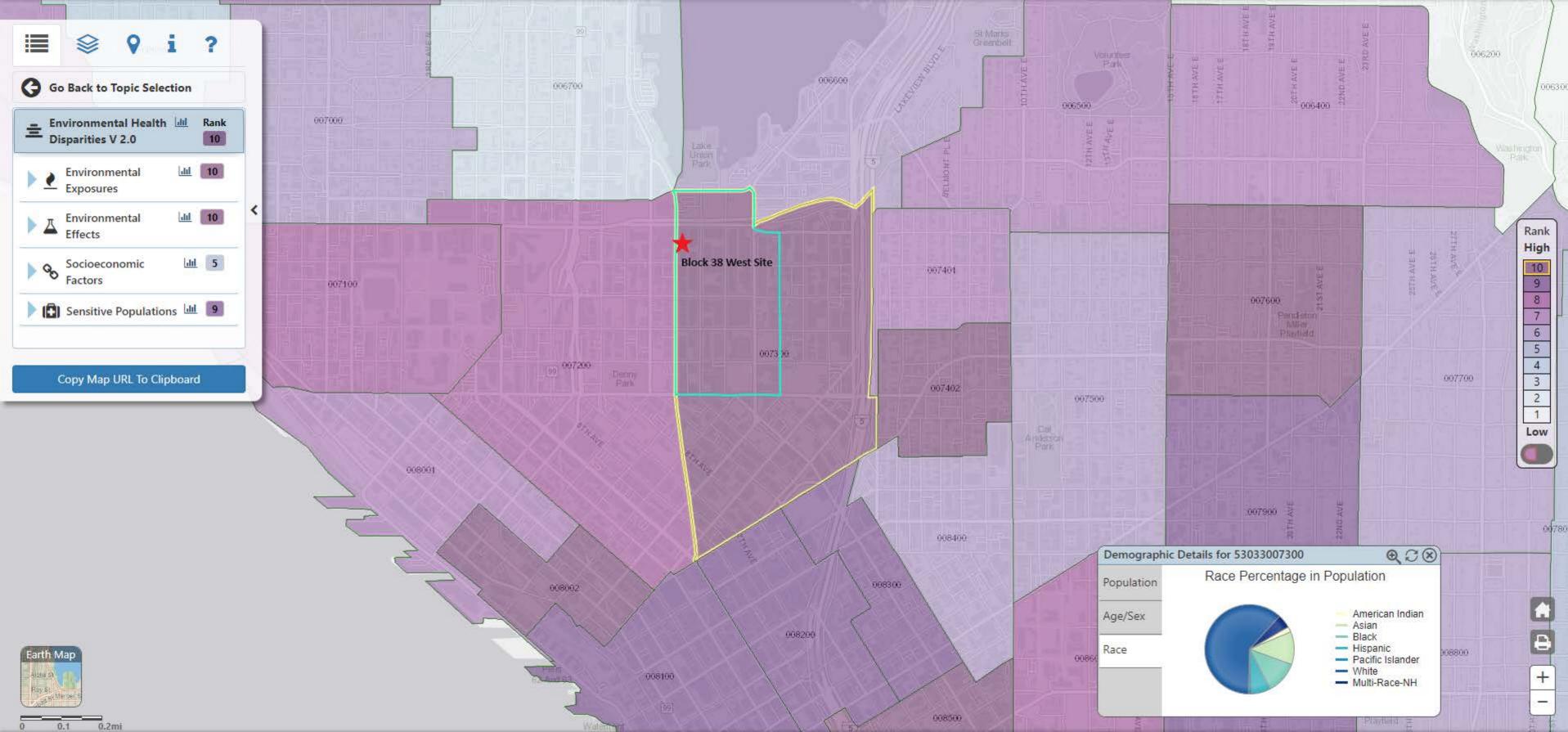
| Schools 0         |  |
|-------------------|--|
| Hospitals 0       |  |
| Places of Worship |  |

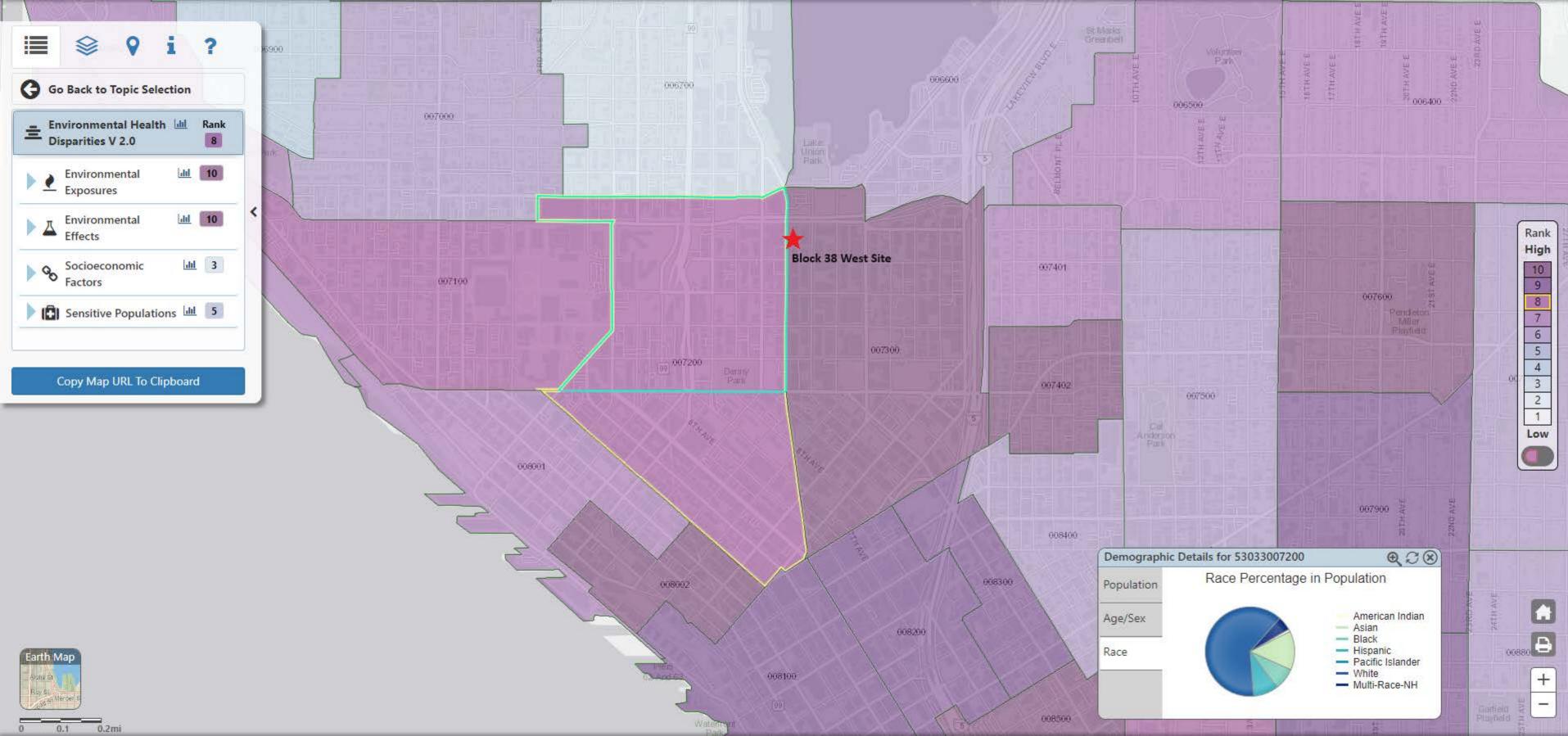
#### Other environmental data:

| Air Non-attainment | No |
|--------------------|----|
| Impaired Waters    | No |

| Selected location contains American Indian Reservation Lands*            | No  |
|--------------------------------------------------------------------------|-----|
| Selected location contains a "Justice40 (CEJST)" disadvantaged community | No  |
| Selected location contains an EPA IRA disadvantaged community            | Yes |

Report for Tract: 53033007203


# **EJScreen Environmental and Socioeconomic Indicators Data**


| HEALTH INDICATORS         |       |               |                  |            |               |
|---------------------------|-------|---------------|------------------|------------|---------------|
| INDICATOR                 | VALUE | STATE AVERAGE | STATE PERCENTILE | US AVERAGE | US PERCENTILE |
| Low Life Expectancy       | 21%   | 18%           | 80               | 20%        | 64            |
| Heart Disease             | 2.1   | 5.3           | 1                | 6.1        | 0             |
| Asthma                    | 8.9   | 10.5          | 8                | 10         | 22            |
| Cancer                    | 3.3   | 6.3           | 2                | 6.1        | 4             |
| Persons with Disabilities | 8%    | 13.1%         | 18               | 13.4%      | 18            |

| CLIMATE INDICATORS |    |               |                  |            |               |  |  |
|--------------------|----|---------------|------------------|------------|---------------|--|--|
| INDICATOR VALUE    |    | STATE AVERAGE | STATE PERCENTILE | US AVERAGE | US PERCENTILE |  |  |
| Flood Risk         | 3% | 11%           | 33               | 12%        | 26            |  |  |
| Wildfire Risk      | 0% | 12%           | 0                | 14%        | 0             |  |  |

| CRITICAL SERVICE GAPS    |       |               |                  |            |               |
|--------------------------|-------|---------------|------------------|------------|---------------|
| INDICATOR                | VALUE | STATE AVERAGE | STATE PERCENTILE | US AVERAGE | US PERCENTILE |
| Broadband Internet       | 2%    | 9%            | 21               | 14%        | 14            |
| Lack of Health Insurance | 6%    | 6%            | 58               | 9%         | 45            |
| Housing Burden           | No    | N/A           | N/A              | N/A        | N/A           |
| Transportation Access    | No    | N/A           | N/A              | N/A        | N/A           |
| Food Desert              | No    | N/A           | N/A              | N/A        | N/A           |

Report for Tract: 53033007203





### APPENDIX C ANALYTICAL LABORATORY RESULTS

REMEDIAL INVESTIGATION/FOCUSED FEASIBILITY STUDY
Block 38 West Site
500 through 536 Westlake Avenue North
Seattle, Washington

Farallon PN: 397-019





14648 NE 95<sup>th</sup> Street, Redmond, WA 98052 • (425) 883-3881

September 16, 2020

Suzy Stumpf Farallon Consulting 1809 7th Avenue, Suite 1111 Seattle, WA 98101

Re: Analytical Data for Project 397-019

Laboratory Reference No. 2009-116

Dear Suzy:

Enclosed are the analytical results and associated quality control data for samples submitted on September 14, 2020.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

**Enclosures** 

Laboratory Reference: 2009-116

Project: 397-019

#### **Case Narrative**

Samples were collected on September 12 and 13, 2020 and received by the laboratory on September 14, 2020. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

## **NWTPH-Gx/BTEX Analysis**

The MTCA Method A cleanup level of 0.030 ppm for Benzene and the MTCA Method A cleanup level of 30.0 ppm for fresh gasoline are not achievable for samples FB-13-20.0, FB-13-17.5, FB-12-20.0 and FB-12-17.5 due to the low dry weight of the samples in addition to the low sample weight in the provided VOA vials

Any other QA/QC issues associated with this extraction and analysis will be indicated with a footnote reference and discussed in detail on the Data Qualifier page.

Laboratory Reference: 2009-116

Project: 397-019

# GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil

| ome. mg/ng (ppm) |                  |                |           | Date     | Date     |       |
|------------------|------------------|----------------|-----------|----------|----------|-------|
| Analyte          | Result           | PQL            | Method    | Prepared | Analyzed | Flags |
| Client ID:       | FB-13-20.0       |                |           |          |          |       |
| Laboratory ID:   | 09-116-07        |                |           |          |          |       |
| Benzene          | ND               | 0.070          | EPA 8021B | 9-15-20  | 9-15-20  |       |
| Toluene          | ND               | 0.35           | EPA 8021B | 9-15-20  | 9-15-20  |       |
| Ethyl Benzene    | ND               | 0.35           | EPA 8021B | 9-15-20  | 9-15-20  |       |
| m,p-Xylene       | ND               | 0.35           | EPA 8021B | 9-15-20  | 9-15-20  |       |
| o-Xylene         | ND               | 0.35           | EPA 8021B | 9-15-20  | 9-15-20  |       |
| Gasoline         | ND               | 35             | NWTPH-Gx  | 9-15-20  | 9-15-20  |       |
| Surrogate:       | Percent Recovery | Control Limits |           |          |          |       |
| Fluorobenzene    | 97               | 58-129         |           |          |          |       |
| Client ID:       | FB-13-17.5       |                |           |          |          |       |
| Laboratory ID:   | 09-116-08        |                |           |          |          |       |
| Benzene          | ND               | 0.10           | EPA 8021B | 9-15-20  | 9-15-20  |       |
| Toluene          | ND               | 0.51           | EPA 8021B | 9-15-20  | 9-15-20  |       |
| Ethyl Benzene    | ND               | 0.51           | EPA 8021B | 9-15-20  | 9-15-20  |       |
| m,p-Xylene       | ND               | 0.51           | EPA 8021B | 9-15-20  | 9-15-20  |       |
| o-Xylene         | ND               | 0.51           | EPA 8021B | 9-15-20  | 9-15-20  |       |
| Gasoline         | ND               | 51             | NWTPH-Gx  | 9-15-20  | 9-15-20  |       |
| Surrogate:       | Percent Recovery | Control Limits |           |          |          |       |
| Fluorobenzene    | 97               | 58-129         |           |          |          |       |
| Client ID:       | FB-12-20.0       |                |           |          |          |       |
| Laboratory ID:   | 09-116-19        |                |           |          |          |       |
| Benzene          | ND               | 0.083          | EPA 8021B | 9-15-20  | 9-15-20  |       |
| Toluene          | ND               | 0.41           | EPA 8021B | 9-15-20  | 9-15-20  |       |
| Ethyl Benzene    | ND               | 0.41           | EPA 8021B | 9-15-20  | 9-15-20  |       |
| m,p-Xylene       | ND               | 0.41           | EPA 8021B | 9-15-20  | 9-15-20  |       |
| o-Xylene         | ND               | 0.41           | EPA 8021B | 9-15-20  | 9-15-20  |       |
| Gasoline         | ND               | 41             | NWTPH-Gx  | 9-15-20  | 9-15-20  |       |
| Surrogate:       | Percent Recovery | Control Limits |           |          |          |       |
| Fluorobenzene    | 99               | 58-129         |           |          |          |       |

Laboratory Reference: 2009-116

Project: 397-019

# GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B

Matrix: Soil

Units: mg/kg (ppm)

|                |            |       |           | Date     | Date     |       |
|----------------|------------|-------|-----------|----------|----------|-------|
| Analyte        | Result     | PQL   | Method    | Prepared | Analyzed | Flags |
| Client ID:     | FB-12-17.5 |       |           |          |          |       |
| Laboratory ID: | 09-116-20  |       |           |          |          |       |
| Benzene        | ND         | 0.075 | EPA 8021B | 9-15-20  | 9-15-20  |       |
| Toluene        | ND         | 0.38  | EPA 8021B | 9-15-20  | 9-15-20  |       |
| Ethyl Benzene  | ND         | 0.38  | EPA 8021B | 9-15-20  | 9-15-20  |       |
| m,p-Xylene     | ND         | 0.38  | EPA 8021B | 9-15-20  | 9-15-20  |       |
| o-Xylene       | ND         | 0.38  | EPA 8021B | 9-15-20  | 9-15-20  |       |
| Gasoline       | ND         | 38    | NWTPH-Gx  | 9-15-20  | 9-15-20  |       |

Surrogate: Percent Recovery Control Limits Fluorobenzene 106 58-129

Laboratory Reference: 2009-116

Project: 397-019

## GASOLINE RANGE ORGANICS/BTEX NWTPH-Gx/EPA 8021B QUALITY CONTROL

Matrix: Soil

Units: mg/kg (ppm)

|                |                  |                |           | Date     | Date     |       |
|----------------|------------------|----------------|-----------|----------|----------|-------|
| Analyte        | Result           | PQL            | Method    | Prepared | Analyzed | Flags |
| METHOD BLANK   |                  |                |           |          |          |       |
| Laboratory ID: | MB0915S1         |                |           |          |          |       |
| Benzene        | ND               | 0.020          | EPA 8021B | 9-15-20  | 9-15-20  |       |
| Toluene        | ND               | 0.050          | EPA 8021B | 9-15-20  | 9-15-20  |       |
| Ethyl Benzene  | ND               | 0.050          | EPA 8021B | 9-15-20  | 9-15-20  |       |
| m,p-Xylene     | ND               | 0.050          | EPA 8021B | 9-15-20  | 9-15-20  |       |
| o-Xylene       | ND               | 0.050          | EPA 8021B | 9-15-20  | 9-15-20  |       |
| Gasoline       | ND               | 5.0            | NWTPH-Gx  | 9-15-20  | 9-15-20  |       |
| Surrogate:     | Percent Recovery | Control Limits |           |          | •        |       |

Surrogate: Percent Recovery Control Limits Fluorobenzene 99 58-129

|                |       |       |       |       | Source | Percent  | Recovery |     | RPD   |       |
|----------------|-------|-------|-------|-------|--------|----------|----------|-----|-------|-------|
| Analyte        | Res   | sult  | Spike | Level | Result | Recovery | Limits   | RPD | Limit | Flags |
| DUPLICATE      |       |       |       |       |        |          |          |     |       |       |
| Laboratory ID: | 09-11 | 16-07 |       |       |        |          |          |     |       |       |
|                | ORIG  | DUP   |       |       |        |          |          |     |       |       |
| Benzene        | ND    | ND    | NA    | NA    |        | NA       | NA       | NA  | 30    |       |
| Toluene        | ND    | ND    | NA    | NA    |        | NA       | NA       | NA  | 30    |       |
| Ethyl Benzene  | ND    | ND    | NA    | NA    |        | NA       | NA       | NA  | 30    |       |
| m,p-Xylene     | ND    | ND    | NA    | NA    |        | NA       | NA       | NA  | 30    |       |
| o-Xylene       | ND    | ND    | NA    | NA    |        | NA       | NA       | NA  | 30    |       |
| Gasoline       | ND    | ND    | NA    | NA    |        | NA       | NA       | NA  | 30    |       |
| Surrogate:     |       |       |       |       |        |          |          |     |       |       |
| Fluorobenzene  |       |       |       |       |        | 97 95    | 58-129   |     |       |       |
| SPIKE BLANKS   |       |       |       |       |        |          |          |     |       |       |
| Laboratory ID: | SB09  | 15S1  |       |       |        |          |          |     |       |       |

| Laboratory ID: | SB09  | 915S1 |      |      |    |     |        |   |    |  |
|----------------|-------|-------|------|------|----|-----|--------|---|----|--|
|                | SB    | SBD   | SB   | SBD  | SB | SBD |        |   |    |  |
| Benzene        | 0.823 | 0.830 | 1.00 | 1.00 | 82 | 83  | 68-112 | 1 | 10 |  |
| Toluene        | 0.863 | 0.873 | 1.00 | 1.00 | 86 | 87  | 70-114 | 1 | 10 |  |
| Ethyl Benzene  | 0.866 | 0.881 | 1.00 | 1.00 | 87 | 88  | 70-115 | 2 | 10 |  |
| m,p-Xylene     | 0.866 | 0.877 | 1.00 | 1.00 | 87 | 88  | 69-117 | 1 | 11 |  |
| o-Xylene       | 0.884 | 0.893 | 1.00 | 1.00 | 88 | 89  | 71-115 | 1 | 11 |  |
| o-Xylene       | 0.884 | 0.893 | 1.00 | 1.00 | 88 | 89  | /1-115 | 1 | 11 |  |

Surrogate:
Fluorobenzene 100 100 58-129

Laboratory Reference: 2009-116

Project: 397-019

# DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil

|                                               |                  |                |                      | Date               | Date               |       |
|-----------------------------------------------|------------------|----------------|----------------------|--------------------|--------------------|-------|
| Analyte                                       | Result           | PQL            | Method               | Prepared           | Analyzed           | Flags |
| Client ID:                                    | FB-13-20.0       |                |                      |                    |                    |       |
| Laboratory ID:                                | 09-116-07        |                |                      |                    |                    |       |
| Diesel Range Organics                         | 86               | 70             | NWTPH-Dx             | 9-15-20            | 9-15-20            | N     |
| Lube Oil Range Organics                       | 1400             | 140            | NWTPH-Dx             | 9-15-20            | 9-15-20            |       |
| Surrogate:                                    | Percent Recovery | Control Limits |                      |                    |                    |       |
| o-Terphenyl                                   | 55               | 50-150         |                      |                    |                    |       |
|                                               |                  |                |                      |                    |                    |       |
|                                               |                  |                |                      |                    |                    |       |
| Client ID:                                    | FB-13-17.5       |                |                      |                    |                    |       |
| Laboratory ID:                                | 09-116-08        |                |                      |                    |                    |       |
| Diesel Range Organics                         | 160              | 100            | NWTPH-Dx             | 9-15-20            | 9-15-20            | N     |
| Lube Oil Range Organics                       | 2700             | 200            | NWTPH-Dx             | 9-15-20            | 9-15-20            |       |
| Surrogate:                                    | Percent Recovery | Control Limits |                      |                    |                    |       |
| o-Terphenyl                                   | 52               | 50-150         |                      |                    |                    |       |
|                                               |                  |                |                      |                    |                    |       |
| Ol' - LID                                     | ED 44 00 0       |                |                      |                    |                    |       |
| Client ID:                                    | FB-11-20.0       |                |                      |                    |                    |       |
| Laboratory ID:                                | 09-116-10        |                | NIIA/TDI I D         | 0.45.00            | 0.45.00            |       |
| Diesel Range Organics                         | 72               | 45             | NWTPH-Dx             | 9-15-20            | 9-15-20            | N     |
| Lube Oil Range Organics                       | 470              | 91             | NWTPH-Dx             | 9-15-20            | 9-15-20            |       |
| Surrogate:                                    | Percent Recovery | Control Limits |                      |                    |                    |       |
| o-Terphenyl                                   | <i>7</i> 5       | 50-150         |                      |                    |                    |       |
|                                               |                  |                |                      |                    |                    |       |
| Client ID:                                    | ED 44 47 E       |                |                      |                    |                    |       |
| Client ID:                                    | FB-11-17.5       |                |                      |                    |                    |       |
| Laboratory ID:                                | 09-116-11        | 50             | NW/TDLL Dec          | 0.45.00            | 0.45.00            |       |
| Diesel Range Organics                         | ND<br>ND         | 59             | NWTPH-Dx             | 9-15-20            | 9-15-20            |       |
| Lube Oil Range Organics                       | ND               | 120            | NWTPH-Dx             | 9-15-20            | 9-15-20            |       |
| Surrogate:                                    | Percent Recovery | Control Limits |                      |                    |                    |       |
| o-Terphenyl                                   | 72               | 50-150         |                      |                    |                    |       |
|                                               |                  |                |                      |                    |                    |       |
| Client ID:                                    | FB-14-20.0       |                |                      |                    |                    |       |
| Laboratory ID:                                | 09-116-17        |                |                      |                    |                    |       |
| ·                                             | 32               | 29             | NWTPH-Dx             | 9-15-20            | 9-15-20            | N     |
| Diesel Range Organics Lube Oil Range Organics | 32<br>150        | 29<br>58       | NWTPH-DX<br>NWTPH-Dx | 9-15-20<br>9-15-20 | 9-15-20<br>9-15-20 | IN    |
|                                               | Percent Recovery | Control Limits | INVVICEDX            | 3-13-20            | 3-10-20            |       |
| Surrogate:                                    | 75               | 50-150         |                      |                    |                    |       |
| o-Terphenyl                                   | 70               | 30-130         |                      |                    |                    |       |
|                                               |                  |                |                      |                    |                    |       |
| Client ID:                                    | FB-12-20.0       |                |                      |                    |                    |       |
| Laboratory ID:                                | 09-116-19        |                |                      |                    |                    |       |
| Diesel Range Organics                         | 170              | 93             | NWTPH-Dx             | 9-15-20            | 9-15-20            | N     |
| Lube Oil Range Organics                       | 1600             | 190            | NWTPH-Dx             | 9-15-20            | 9-15-20            | IN    |
| Surrogate:                                    | Percent Recovery | Control Limits | INVVIIII-DA          | 3 10-20            | J 10-20            |       |
| o-Terphenyl                                   | 60               | 50-150         |                      |                    |                    |       |
| o- i ei pi iei iyi                            | 00               | 30-130         |                      |                    |                    |       |

Laboratory Reference: 2009-116

Project: 397-019

# DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil

| Analyte                 | Result           | PQL            | Method         | Date<br>Prepared | Date<br>Analyzed | Flags |
|-------------------------|------------------|----------------|----------------|------------------|------------------|-------|
| Client ID:              | FB-12-17.5       |                |                |                  | •                |       |
| Laboratory ID:          | 09-116-20        |                |                |                  |                  |       |
| Diesel Range Organics   | ND               | 94             | NWTPH-Dx       | 9-15-20          | 9-15-20          |       |
| Lube Oil Range Organics | 1300             | 190            | NWTPH-Dx       | 9-15-20          | 9-15-20          |       |
| Surrogate:              | Percent Recovery | Control Limits |                |                  |                  |       |
| o-Terphenyl             | 68               | 50-150         |                |                  |                  |       |
| Client ID:              | FB-14-17.5       |                |                |                  |                  |       |
| Laboratory ID:          | 09-116-23        |                |                |                  |                  |       |
| Diesel Range Organics   | ND               | 65             | NWTPH-Dx       | 9-15-20          | 9-15-20          |       |
| Lube Oil Range Organics | 510              | 130            | NWTPH-Dx       | 9-15-20          | 9-15-20          |       |
| Surrogate:              | Percent Recovery | Control Limits |                |                  |                  |       |
| o-Terphenyl             | 70               | 50-150         |                |                  |                  |       |
|                         |                  |                |                |                  |                  |       |
|                         |                  |                |                |                  |                  |       |
| Client ID:              | FB-15-22.5       |                |                |                  |                  |       |
| Laboratory ID:          | 09-116-25        |                |                |                  |                  |       |
| Diesel Range Organics   | ND               | 140            | NWTPH-Dx       | 9-15-20          | 9-15-20          |       |
| Lube Oil Range Organics | 1500             | 270            | NWTPH-Dx       | 9-15-20          | 9-15-20          |       |
| Surrogate:              | Percent Recovery | Control Limits |                |                  |                  |       |
| o-Terphenyl             | 78               | 50-150         |                |                  |                  |       |
|                         |                  |                |                |                  |                  |       |
| Client ID:              | FB-15-20.0       |                |                |                  |                  |       |
| Laboratory ID:          | 09-116-26        |                |                |                  |                  |       |
| Diesel Range Organics   | ND               | 30             | NWTPH-Dx       | 9-15-20          | 9-15-20          |       |
| Lube Oil Range Organics | 160              | 59             | NWTPH-Dx       | 9-15-20          | 9-15-20          |       |
| Surrogate:              | Percent Recovery | Control Limits |                |                  |                  |       |
| o-Terphenyl             | 77               | 50-150         |                |                  |                  |       |
| , ,                     |                  |                |                |                  |                  |       |
|                         |                  |                |                |                  |                  |       |
| Client ID:              | FB-15-17.5       |                |                |                  |                  |       |
| Laboratory ID:          | 09-116-27        |                |                |                  |                  |       |
| Diesel Range Organics   | ND               | 28             | NWTPH-Dx       | 9-15-20          | 9-15-20          |       |
| Lube Oil Range Organics | ND               | 56             | NWTPH-Dx       | 9-15-20          | 9-15-20          |       |
| Surrogate:              | Percent Recovery | Control Limits |                |                  |                  |       |
| o-Terphenyl             | 74               | 50-150         |                |                  |                  |       |
| Client ID:              | FB-16-22.5       |                |                |                  |                  |       |
| Laboratory ID:          | 09-116-30        |                |                |                  |                  |       |
| Diesel Range Organics   | ND               | 28             | NWTPH-Dx       | 9-15-20          | 9-15-20          |       |
| Lube Oil Range Organics | 110              | 57             | NWTPH-Dx       | 9-15-20          | 9-15-20          |       |
| Surrogate:              | Percent Recovery | Control Limits | . TVV II II DX | 0 10 20          | 0 10 20          |       |
| o-Terphenyl             | 74               | 50-150         |                |                  |                  |       |
| o respiretly:           | , ,              | 00 100         |                |                  |                  |       |

Laboratory Reference: 2009-116

Project: 397-019

# DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil

|                         |                  |                |          | Date     | Date     |       |
|-------------------------|------------------|----------------|----------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method   | Prepared | Analyzed | Flags |
| Client ID:              | FB-16-20.0       |                |          |          |          |       |
| Laboratory ID:          | 09-116-31        |                |          |          |          |       |
| Diesel Range Organics   | ND               | 28             | NWTPH-Dx | 9-15-20  | 9-15-20  |       |
| Lube Oil Range Organics | ND               | 56             | NWTPH-Dx | 9-15-20  | 9-15-20  |       |
| Surrogate:              | Percent Recovery | Control Limits |          |          |          |       |
| o-Terphenyl             | 74               | 50-150         |          |          |          |       |
| Client ID:              | FB-16-17.5       |                |          |          |          |       |
| Laboratory ID:          | 09-116-32        |                |          |          |          |       |
| Diesel Range Organics   | 130              | 110            | NWTPH-Dx | 9-15-20  | 9-15-20  | N     |
| Lube Oil Range Organics | 1000             | 210            | NWTPH-Dx | 9-15-20  | 9-15-20  |       |
| Surrogate:              | Percent Recovery | Control Limits |          |          | •        |       |
| o-Terphenyl             | 52               | 50-150         |          |          |          |       |
|                         |                  |                |          |          |          |       |

Laboratory Reference: 2009-116

Project: 397-019

## DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil

| Analyte                 | Result           | PQL            | Method   | Date<br>Prepared | Date<br>Analyzed | Flags |
|-------------------------|------------------|----------------|----------|------------------|------------------|-------|
| METHOD BLANK            |                  |                |          | •                |                  |       |
| Laboratory ID:          | MB0915S1         |                |          |                  |                  |       |
| Diesel Range Organics   | ND               | 25             | NWTPH-Dx | 9-15-20          | 9-15-20          |       |
| Lube Oil Range Organics | ND               | 50             | NWTPH-Dx | 9-15-20          | 9-15-20          |       |
| Surrogate:              | Percent Recovery | Control Limits |          |                  |                  |       |
| o-Terphenyl             | 90               | 50-150         |          |                  |                  |       |

|                           |      |       |       |       | Source | Perd | cent | Recovery |     | RPD   |       |
|---------------------------|------|-------|-------|-------|--------|------|------|----------|-----|-------|-------|
| Analyte                   | Res  | sult  | Spike | Level | Result | Reco | very | Limits   | RPD | Limit | Flags |
| DUPLICATE                 |      |       |       |       |        |      |      |          |     |       |       |
| Laboratory ID:            | 09-1 | 16-31 |       |       |        |      |      |          |     |       |       |
|                           | ORIG | DUP   |       |       |        |      |      |          |     |       |       |
| Diesel Range              | ND   | ND    | NA    | NA    |        | N    | A    | NA       | NA  | NA    |       |
| Lube Oil Range            | ND   | ND    | NA    | NA    |        | N    | Α    | NA       | NA  | NA    |       |
| Surrogate:                |      |       |       |       |        |      |      |          |     |       |       |
| o-Terphenyl               |      |       |       |       |        | 74   | 73   | 50-150   |     |       |       |
| Laboratory ID:            | SB09 | 15S1  |       |       |        |      |      |          |     |       |       |
| '                         | ORIG | DUP   |       |       |        |      |      |          |     |       |       |
| Diesel Fuel #2            | 94.2 | 92.6  | NA    | NA    |        | N    | A    | NA       | 2   | NA    |       |
| Lube Oil Range            | ND   | ND    | NA    | NA    |        | N    | Α    | NA       | NA  | NA    |       |
| Surrogate:<br>o-Terphenyl |      |       |       |       |        | 88   | 87   | 50-150   |     |       |       |

Laboratory Reference: 2009-116

Project: 397-019

## PAHs EPA 8270E/SIM

|                         |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:              | FB-10-22.5       |                |               |          |          |       |
| Laboratory ID:          | 09-116-01        |                |               |          |          |       |
| Benzo[a]anthracene      | 0.58             | 0.045          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Chrysene                | 0.68             | 0.045          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Benzo[b]fluoranthene    | 0.71             | 0.045          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Benzo(j,k)fluoranthene  | 0.17             | 0.045          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Benzo[a]pyrene          | 0.61             | 0.045          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Indeno(1,2,3-c,d)pyrene | 0.37             | 0.045          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Dibenz[a,h]anthracene   | 0.065            | 0.045          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 78               | 46 - 113       |               |          |          |       |
| Pyrene-d10              | 83               | 45 - 114       |               |          |          |       |
| Terphenyl-d14           | 86               | 49 - 121       |               |          |          |       |

Laboratory Reference: 2009-116

Project: 397-019

## PAHs EPA 8270E/SIM

|                         |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:              | FB-10-20.0       |                |               |          |          |       |
| Laboratory ID:          | 09-116-02        |                |               |          |          |       |
| Benzo[a]anthracene      | ND               | 0.0097         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Chrysene                | ND               | 0.0097         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo[b]fluoranthene    | ND               | 0.0097         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo(j,k)fluoranthene  | ND               | 0.0097         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo[a]pyrene          | ND               | 0.0097         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Indeno(1,2,3-c,d)pyrene | ND               | 0.0097         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Dibenz[a,h]anthracene   | ND               | 0.0097         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 71               | 46 - 113       |               |          |          |       |
| Pyrene-d10              | 67               | 45 - 114       |               |          |          |       |
| Terphenyl-d14           | 67               | 49 - 121       |               |          |          |       |

Laboratory Reference: 2009-116

Project: 397-019

## PAHs EPA 8270E/SIM

|                         |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:              | FB-10-17.5       |                |               |          |          |       |
| Laboratory ID:          | 09-116-03        |                |               |          |          |       |
| Benzo[a]anthracene      | ND               | 0.016          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Chrysene                | ND               | 0.016          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo[b]fluoranthene    | ND               | 0.016          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo(j,k)fluoranthene  | ND               | 0.016          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo[a]pyrene          | ND               | 0.016          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Indeno(1,2,3-c,d)pyrene | ND               | 0.016          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Dibenz[a,h]anthracene   | ND               | 0.016          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 47               | 46 - 113       |               |          |          |       |
| Pyrene-d10              | 46               | 45 - 114       |               |          |          |       |
| Terphenyl-d14           | 49               | 49 - 121       |               |          |          |       |

Laboratory Reference: 2009-116

Project: 397-019

## **SEMIVOLATILE ORGANICS EPA 8270E/SIM**

|                     |                  |                |               | Date     | Date     |       |
|---------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte             | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:          | FB-13-22.5       |                |               |          |          |       |
| Laboratory ID:      | 09-116-06        |                |               |          |          |       |
| Naphthalene         | 4.1              | 0.077          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| 2-Methylnaphthalene | 4.1              | 0.077          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| 1-Methylnaphthalene | 3.4              | 0.077          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Surrogate:          | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl    | 63               | 46 - 113       |               |          |          |       |
| Pyrene-d10          | 72               | 45 - 114       |               |          |          |       |
| Terphenyl-d14       | 76               | 49 - 121       |               |          |          |       |

Laboratory Reference: 2009-116

Project: 397-019

## PAHs EPA 8270E/SIM

|                  |                                                                                                  |                                                                                                                                                                                                                                                                                                                                        | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Result           | PQL                                                                                              | Method                                                                                                                                                                                                                                                                                                                                 | Prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Flags                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| FB-13-20.0       |                                                                                                  |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 09-116-07        |                                                                                                  |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.40             | 0.019                                                                                            | EPA 8270E/SIM                                                                                                                                                                                                                                                                                                                          | 9-15-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9-15-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.11             | 0.019                                                                                            | EPA 8270E/SIM                                                                                                                                                                                                                                                                                                                          | 9-15-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9-15-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.084            | 0.019                                                                                            | EPA 8270E/SIM                                                                                                                                                                                                                                                                                                                          | 9-15-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9-15-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.55             | 0.019                                                                                            | EPA 8270E/SIM                                                                                                                                                                                                                                                                                                                          | 9-15-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9-15-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.50             | 0.019                                                                                            | EPA 8270E/SIM                                                                                                                                                                                                                                                                                                                          | 9-15-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9-15-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.53             | 0.019                                                                                            | EPA 8270E/SIM                                                                                                                                                                                                                                                                                                                          | 9-15-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9-15-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.16             | 0.019                                                                                            | EPA 8270E/SIM                                                                                                                                                                                                                                                                                                                          | 9-15-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9-15-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.55             | 0.019                                                                                            | EPA 8270E/SIM                                                                                                                                                                                                                                                                                                                          | 9-15-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9-15-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.30             | 0.019                                                                                            | EPA 8270E/SIM                                                                                                                                                                                                                                                                                                                          | 9-15-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9-15-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.046            | 0.019                                                                                            | EPA 8270E/SIM                                                                                                                                                                                                                                                                                                                          | 9-15-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9-15-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Percent Recovery | Control Limits                                                                                   |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 64               | 46 - 113                                                                                         |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 59               | 45 - 114                                                                                         |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 55               | 49 - 121                                                                                         |                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  | FB-13-20.0 09-116-07 0.40 0.11 0.084 0.55 0.50 0.53 0.16 0.55 0.30 0.046  Percent Recovery 64 59 | FB-13-20.0         09-116-07       0.40       0.019         0.11       0.019         0.084       0.019         0.55       0.019         0.53       0.019         0.16       0.019         0.30       0.019         0.046       0.019         Percent Recovery       Control Limits         64       46 - 113         59       45 - 114 | FB-13-20.0         09-116-07         0.40       0.019       EPA 8270E/SIM         0.11       0.019       EPA 8270E/SIM         0.084       0.019       EPA 8270E/SIM         0.55       0.019       EPA 8270E/SIM         0.50       0.019       EPA 8270E/SIM         0.53       0.019       EPA 8270E/SIM         0.16       0.019       EPA 8270E/SIM         0.55       0.019       EPA 8270E/SIM         0.30       0.019       EPA 8270E/SIM         0.046       0.019       EPA 8270E/SIM         Percent Recovery       Control Limits         64       46 - 113         59       45 - 114 | Result         PQL         Method         Prepared           FB-13-20.0           09-116-07         9-116-07           0.40         0.019         EPA 8270E/SIM         9-15-20           0.11         0.019         EPA 8270E/SIM         9-15-20           0.084         0.019         EPA 8270E/SIM         9-15-20           0.55         0.019         EPA 8270E/SIM         9-15-20           0.50         0.019         EPA 8270E/SIM         9-15-20           0.53         0.019         EPA 8270E/SIM         9-15-20           0.16         0.019         EPA 8270E/SIM         9-15-20           0.55         0.019         EPA 8270E/SIM         9-15-20           0.30         0.019         EPA 8270E/SIM         9-15-20           0.046         0.019         EPA 8270E/SIM         9-15-20           Percent Recovery         Control Limits           64         46 - 113         45 - 114 | Result         PQL         Method         Prepared         Analyzed           FB-13-20.0           09-116-07         0.40         0.019         EPA 8270E/SIM         9-15-20         9-15-20           0.11         0.019         EPA 8270E/SIM         9-15-20         9-15-20           0.084         0.019         EPA 8270E/SIM         9-15-20         9-15-20           0.55         0.019         EPA 8270E/SIM         9-15-20         9-15-20           0.50         0.019         EPA 8270E/SIM         9-15-20         9-15-20           0.53         0.019         EPA 8270E/SIM         9-15-20         9-15-20           0.16         0.019         EPA 8270E/SIM         9-15-20         9-15-20           0.55         0.019         EPA 8270E/SIM         9-15-20         9-15-20           0.30         0.019         EPA 8270E/SIM         9-15-20         9-15-20           Percent Recovery         Control Li |

Laboratory Reference: 2009-116

Project: 397-019

## PAHs EPA 8270E/SIM

|                         |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:              | FB-13-17.5       |                |               |          |          |       |
| Laboratory ID:          | 09-116-08        |                |               |          |          |       |
| Benzo[a]anthracene      | 1.9              | 0.027          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Chrysene                | 1.6              | 0.027          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Benzo[b]fluoranthene    | 1.8              | 0.027          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Benzo(j,k)fluoranthene  | 0.46             | 0.027          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Benzo[a]pyrene          | 1.8              | 0.027          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Indeno(1,2,3-c,d)pyrene | 1.0              | 0.027          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Dibenz[a,h]anthracene   | 0.15             | 0.027          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 70               | 46 - 113       |               |          |          |       |
| Pyrene-d10              | 65               | 45 - 114       |               |          |          |       |
| Terphenyl-d14           | 62               | 49 - 121       |               |          |          |       |

Laboratory Reference: 2009-116

Project: 397-019

## PAHs EPA 8270E/SIM

|                         |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:              | FB-11-20.0       |                |               |          |          |       |
| Laboratory ID:          | 09-116-10        |                |               |          |          |       |
| Benzo[a]anthracene      | 0.50             | 0.012          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Chrysene                | 0.52             | 0.012          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo[b]fluoranthene    | 0.62             | 0.012          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo(j,k)fluoranthene  | 0.17             | 0.012          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo[a]pyrene          | 0.54             | 0.012          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Indeno(1,2,3-c,d)pyrene | 0.37             | 0.012          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Dibenz[a,h]anthracene   | 0.058            | 0.012          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 57               | 46 - 113       |               |          |          |       |
| Pyrene-d10              | 58               | 45 - 114       |               |          |          |       |
| Terphenyl-d14           | 53               | 49 - 121       |               |          |          |       |

Laboratory Reference: 2009-116

Project: 397-019

## PAHs EPA 8270E/SIM

| 0 0                     |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:              | FB-11-17.5       |                |               |          |          |       |
| Laboratory ID:          | 09-116-11        |                |               |          |          |       |
| Benzo[a]anthracene      | ND               | 0.016          | EPA 8270E/SIM | 9-16-20  | 9-16-20  |       |
| Chrysene                | ND               | 0.016          | EPA 8270E/SIM | 9-16-20  | 9-16-20  |       |
| Benzo[b]fluoranthene    | ND               | 0.016          | EPA 8270E/SIM | 9-16-20  | 9-16-20  |       |
| Benzo(j,k)fluoranthene  | ND               | 0.016          | EPA 8270E/SIM | 9-16-20  | 9-16-20  |       |
| Benzo[a]pyrene          | ND               | 0.016          | EPA 8270E/SIM | 9-16-20  | 9-16-20  |       |
| Indeno(1,2,3-c,d)pyrene | ND               | 0.016          | EPA 8270E/SIM | 9-16-20  | 9-16-20  |       |
| Dibenz[a,h]anthracene   | ND               | 0.016          | EPA 8270E/SIM | 9-16-20  | 9-16-20  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 69               | 46 - 113       |               |          |          |       |
| Pyrene-d10              | 67               | 45 - 114       |               |          |          |       |
| Terphenyl-d14           | 72               | 49 - 121       |               |          |          |       |

Laboratory Reference: 2009-116

Project: 397-019

## PAHs EPA 8270E/SIM

|                         |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:              | FB-14-22.5       |                |               |          |          | _     |
| Laboratory ID:          | 09-116-16        |                |               |          |          |       |
| Naphthalene             | 0.18             | 0.073          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| 2-Methylnaphthalene     | 0.21             | 0.073          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| 1-Methylnaphthalene     | 0.15             | 0.073          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Benzo[a]anthracene      | 2.8              | 0.073          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Chrysene                | 2.6              | 0.073          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Benzo[b]fluoranthene    | 2.4              | 0.073          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Benzo(j,k)fluoranthene  | 0.78             | 0.073          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Benzo[a]pyrene          | 2.4              | 0.073          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Indeno(1,2,3-c,d)pyrene | 1.4              | 0.073          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Dibenz[a,h]anthracene   | 0.24             | 0.073          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 76               | 46 - 113       |               |          |          |       |
| Pyrene-d10              | 93               | 45 - 114       |               |          |          |       |
| Terphenyl-d14           | 100              | 49 - 121       |               |          |          |       |

Laboratory Reference: 2009-116

Project: 397-019

## PAHs EPA 8270E/SIM

|                         |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:              | FB-14-20.0       |                |               |          |          |       |
| Laboratory ID:          | 09-116-17        |                |               |          |          |       |
| Naphthalene             | 0.14             | 0.039          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| 2-Methylnaphthalene     | 0.14             | 0.039          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| 1-Methylnaphthalene     | 0.13             | 0.039          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Benzo[a]anthracene      | 1.7              | 0.039          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Chrysene                | 1.6              | 0.039          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Benzo[b]fluoranthene    | 1.6              | 0.039          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Benzo(j,k)fluoranthene  | 0.47             | 0.039          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Benzo[a]pyrene          | 1.8              | 0.039          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Indeno(1,2,3-c,d)pyrene | 0.97             | 0.039          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Dibenz[a,h]anthracene   | 0.16             | 0.039          | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 66               | 46 - 113       |               |          |          |       |
| Pyrene-d10              | 72               | 45 - 114       |               |          |          |       |
| Terphenyl-d14           | 80               | 49 - 121       |               |          |          |       |

Laboratory Reference: 2009-116

Project: 397-019

## **SEMIVOLATILE ORGANICS EPA 8270E/SIM**

|                     |                  |                |               | Date     | Date     |       |
|---------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte             | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:          | FB-12-21.5       |                |               |          |          |       |
| Laboratory ID:      | 09-116-18        |                |               |          |          |       |
| Naphthalene         | ND               | 0.15           | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| 2-Methylnaphthalene | ND               | 0.15           | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| 1-Methylnaphthalene | ND               | 0.15           | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Surrogate:          | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl    | 62               | 46 - 113       |               |          |          |       |
| Pyrene-d10          | 80               | 45 - 114       |               |          |          |       |
| Terphenyl-d14       | 76               | 49 - 121       |               |          |          |       |

Laboratory Reference: 2009-116

Project: 397-019

## PAHs EPA 8270E/SIM

|                         |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:              | FB-12-20.0       |                |               |          |          |       |
| Laboratory ID:          | 09-116-19        |                |               |          |          |       |
| Benzo[a]anthracene      | 0.084            | 0.025          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Chrysene                | 0.085            | 0.025          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo[b]fluoranthene    | 0.089            | 0.025          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo(j,k)fluoranthene  | ND               | 0.025          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo[a]pyrene          | 0.081            | 0.025          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Indeno(1,2,3-c,d)pyrene | 0.058            | 0.025          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Dibenz[a,h]anthracene   | ND               | 0.025          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 71               | 46 - 113       |               |          |          |       |
| Pyrene-d10              | 70               | 45 - 114       |               |          |          |       |
| Terphenyl-d14           | 60               | 49 - 121       |               |          |          |       |

Laboratory Reference: 2009-116

Project: 397-019

## PAHs EPA 8270E/SIM

|                         |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:              | FB-12-17.5       |                |               |          |          |       |
| Laboratory ID:          | 09-116-20        |                |               |          |          |       |
| Benzo[a]anthracene      | 0.21             | 0.025          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Chrysene                | 0.19             | 0.025          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo[b]fluoranthene    | 0.22             | 0.025          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo(j,k)fluoranthene  | 0.083            | 0.025          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo[a]pyrene          | 0.25             | 0.025          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Indeno(1,2,3-c,d)pyrene | 0.16             | 0.025          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Dibenz[a,h]anthracene   | ND               | 0.025          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 76               | 46 - 113       |               |          |          |       |
| Pyrene-d10              | 80               | 45 - 114       |               |          |          |       |
| Terphenyl-d14           | <i>7</i> 5       | 49 - 121       |               |          |          |       |

Laboratory Reference: 2009-116

Project: 397-019

## PAHs EPA 8270E/SIM

| 0 0                     |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:              | FB-14-17.5       |                |               |          |          |       |
| Laboratory ID:          | 09-116-23        |                |               |          |          |       |
| Benzo[a]anthracene      | ND               | 0.017          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Chrysene                | ND               | 0.017          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo[b]fluoranthene    | ND               | 0.017          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo(j,k)fluoranthene  | ND               | 0.017          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo[a]pyrene          | ND               | 0.017          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Indeno(1,2,3-c,d)pyrene | ND               | 0.017          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Dibenz[a,h]anthracene   | ND               | 0.017          | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 54               | 46 - 113       |               |          |          |       |
| Pyrene-d10              | 56               | 45 - 114       |               |          |          |       |
| Terphenyl-d14           | 50               | 49 - 121       |               |          |          |       |

Laboratory Reference: 2009-116

Project: 397-019

## PAHs EPA 8270E/SIM

|                         |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:              | FB-15-22.5       |                |               |          |          |       |
| Laboratory ID:          | 09-116-25        |                |               |          |          |       |
| Naphthalene             | 0.40             | 0.15           | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| 2-Methylnaphthalene     | 0.32             | 0.15           | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| 1-Methylnaphthalene     | 0.26             | 0.15           | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Benzo[a]anthracene      | 2.4              | 0.15           | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Chrysene                | 2.0              | 0.15           | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Benzo[b]fluoranthene    | 2.2              | 0.15           | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Benzo(j,k)fluoranthene  | 0.78             | 0.15           | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Benzo[a]pyrene          | 2.3              | 0.15           | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Indeno(1,2,3-c,d)pyrene | 1.3              | 0.15           | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Dibenz[a,h]anthracene   | 0.24             | 0.15           | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 60               | 46 - 113       |               |          |          |       |
| Pyrene-d10              | 73               | 45 - 114       |               |          |          |       |
| Terphenyl-d14           | 72               | 49 - 121       |               |          |          |       |

Laboratory Reference: 2009-116

Project: 397-019

## PAHs EPA 8270E/SIM

|                         |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:              | FB-15-20.0       |                |               |          |          |       |
| Laboratory ID:          | 09-116-26        |                |               |          |          |       |
| Naphthalene             | 0.25             | 0.0079         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| 2-Methylnaphthalene     | 0.34             | 0.0079         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| 1-Methylnaphthalene     | 0.29             | 0.0079         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo[a]anthracene      | 0.21             | 0.0079         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Chrysene                | 0.20             | 0.0079         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo[b]fluoranthene    | 0.20             | 0.0079         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo(j,k)fluoranthene  | 0.064            | 0.0079         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo[a]pyrene          | 0.20             | 0.0079         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Indeno(1,2,3-c,d)pyrene | 0.11             | 0.0079         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Dibenz[a,h]anthracene   | 0.020            | 0.0079         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 67               | 46 - 113       |               |          |          |       |
| Pyrene-d10              | 64               | 45 - 114       |               |          |          |       |
| Terphenyl-d14           | 65               | 49 - 121       |               |          |          |       |

Laboratory Reference: 2009-116

Project: 397-019

## PAHs EPA 8270E/SIM

|                         |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:              | FB-15-17.5       |                |               |          |          |       |
| Laboratory ID:          | 09-116-27        |                |               |          |          |       |
| Naphthalene             | 0.10             | 0.0074         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| 2-Methylnaphthalene     | 0.040            | 0.0074         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| 1-Methylnaphthalene     | 0.033            | 0.0074         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo[a]anthracene      | 0.26             | 0.0074         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Chrysene                | 0.25             | 0.0074         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo[b]fluoranthene    | 0.27             | 0.0074         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo(j,k)fluoranthene  | 0.098            | 0.0074         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo[a]pyrene          | 0.31             | 0.0074         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Indeno(1,2,3-c,d)pyrene | 0.18             | 0.0074         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Dibenz[a,h]anthracene   | 0.025            | 0.0074         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 79               | 46 - 113       |               |          |          |       |
| Pyrene-d10              | 86               | 45 - 114       |               |          |          |       |
| Terphenyl-d14           | 83               | 49 - 121       |               |          |          |       |

Laboratory Reference: 2009-116

Project: 397-019

## PAHs EPA 8270E/SIM

|                         |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:              | FB-16-22.5       |                |               |          |          |       |
| Laboratory ID:          | 09-116-30        |                |               |          |          |       |
| Benzo[a]anthracene      | 0.45             | 0.0075         | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Chrysene                | 0.45             | 0.0075         | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Benzo[b]fluoranthene    | 0.47             | 0.0075         | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Benzo(j,k)fluoranthene  | 0.13             | 0.0075         | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Benzo[a]pyrene          | 0.49             | 0.0075         | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Indeno(1,2,3-c,d)pyrene | 0.29             | 0.0075         | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Dibenz[a,h]anthracene   | 0.051            | 0.0075         | EPA 8270E/SIM | 9-15-20  | 9-16-20  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 72               | 46 - 113       |               |          |          |       |
| Pyrene-d10              | 84               | 45 - 114       |               |          |          |       |
| Terphenyl-d14           | 81               | 49 - 121       |               |          |          |       |

Laboratory Reference: 2009-116

Project: 397-019

## PAHs EPA 8270E/SIM

|                         |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:              | FB-16-20.0       |                |               |          |          |       |
| Laboratory ID:          | 09-116-31        |                |               |          |          |       |
| Benzo[a]anthracene      | ND               | 0.0074         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Chrysene                | ND               | 0.0074         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo[b]fluoranthene    | ND               | 0.0074         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo(j,k)fluoranthene  | ND               | 0.0074         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo[a]pyrene          | ND               | 0.0074         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Indeno(1,2,3-c,d)pyrene | ND               | 0.0074         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Dibenz[a,h]anthracene   | ND               | 0.0074         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 74               | 46 - 113       |               |          |          |       |
| Pyrene-d10              | 78               | 45 - 114       |               |          |          |       |
| Terphenyl-d14           | 80               | 49 - 121       |               |          |          |       |

Laboratory Reference: 2009-116

Project: 397-019

## PAHs EPA 8270E/SIM

| 0 0                     |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:              | FB-16-17.5       |                |               |          |          |       |
| Laboratory ID:          | 09-116-32        |                |               |          |          |       |
| Benzo[a]anthracene      | 0.032            | 0.029          | EPA 8270E/SIM | 9-16-20  | 9-16-20  |       |
| Chrysene                | 0.055            | 0.029          | EPA 8270E/SIM | 9-16-20  | 9-16-20  |       |
| Benzo[b]fluoranthene    | 0.029            | 0.029          | EPA 8270E/SIM | 9-16-20  | 9-16-20  |       |
| Benzo(j,k)fluoranthene  | ND               | 0.029          | EPA 8270E/SIM | 9-16-20  | 9-16-20  |       |
| Benzo[a]pyrene          | ND               | 0.029          | EPA 8270E/SIM | 9-16-20  | 9-16-20  |       |
| Indeno(1,2,3-c,d)pyrene | ND               | 0.029          | EPA 8270E/SIM | 9-16-20  | 9-16-20  |       |
| Dibenz[a,h]anthracene   | ND               | 0.029          | EPA 8270E/SIM | 9-16-20  | 9-16-20  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 77               | 46 - 113       |               |          |          |       |
| Pyrene-d10              | 81               | 45 - 114       |               |          |          |       |
| Terphenyl-d14           | <i>7</i> 5       | 49 - 121       |               |          |          |       |

Laboratory Reference: 2009-116

Project: 397-019

# SEMIVOLATILE ORGANICS EPA 8270E/SIM QUALITY CONTROL

|                         |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| METHOD BLANK            |                  |                |               |          |          | ·     |
| Laboratory ID:          | MB0915S1         |                |               |          |          |       |
| Naphthalene             | ND               | 0.0067         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| 2-Methylnaphthalene     | ND               | 0.0067         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| 1-Methylnaphthalene     | ND               | 0.0067         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo[a]anthracene      | ND               | 0.0067         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Chrysene                | ND               | 0.0067         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo[b]fluoranthene    | ND               | 0.0067         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo(j,k)fluoranthene  | ND               | 0.0067         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo[a]pyrene          | ND               | 0.0067         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Indeno(1,2,3-c,d)pyrene | ND               | 0.0067         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Dibenz[a,h]anthracene   | ND               | 0.0067         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 78               | 46 - 113       |               |          |          |       |
| Pyrene-d10              | 88               | 45 - 114       |               |          |          |       |
| Terphenyl-d14           | 92               | 49 - 121       |               |          |          |       |

Laboratory Reference: 2009-116

Project: 397-019

# SEMIVOLATILE ORGANICS EPA 8270E/SIM QUALITY CONTROL

|                         |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| METHOD BLANK            |                  |                |               |          |          |       |
| Laboratory ID:          | MB0916S1         |                |               |          |          |       |
| Naphthalene             | ND               | 0.0067         | EPA 8270E/SIM | 9-16-20  | 9-16-20  |       |
| 2-Methylnaphthalene     | ND               | 0.0067         | EPA 8270E/SIM | 9-16-20  | 9-16-20  |       |
| 1-Methylnaphthalene     | ND               | 0.0067         | EPA 8270E/SIM | 9-16-20  | 9-16-20  |       |
| Benzo[a]anthracene      | ND               | 0.0067         | EPA 8270E/SIM | 9-16-20  | 9-16-20  |       |
| Chrysene                | ND               | 0.0067         | EPA 8270E/SIM | 9-16-20  | 9-16-20  |       |
| Benzo[b]fluoranthene    | ND               | 0.0067         | EPA 8270E/SIM | 9-16-20  | 9-16-20  |       |
| Benzo(j,k)fluoranthene  | ND               | 0.0067         | EPA 8270E/SIM | 9-16-20  | 9-16-20  |       |
| Benzo[a]pyrene          | ND               | 0.0067         | EPA 8270E/SIM | 9-16-20  | 9-16-20  |       |
| Indeno(1,2,3-c,d)pyrene | ND               | 0.0067         | EPA 8270E/SIM | 9-16-20  | 9-16-20  |       |
| Dibenz[a,h]anthracene   | ND               | 0.0067         | EPA 8270E/SIM | 9-16-20  | 9-16-20  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 86               | 46 - 113       |               |          |          |       |
| Pyrene-d10              | 87               | 45 - 114       |               |          |          |       |
| Terphenyl-d14           | 91               | 49 - 121       |               |          |          |       |

Laboratory Reference: 2009-116

Project: 397-019

# SEMIVOLATILE ORGANICS EPA 8270E/SIM QUALITY CONTROL

|                         |        |        |        |        | F  | erce | ent  | Recovery |     | RPD   |       |
|-------------------------|--------|--------|--------|--------|----|------|------|----------|-----|-------|-------|
| Analyte                 | Res    | sult   | Spike  | Level  | Re | ecov | ery/ | Limits   | RPD | Limit | Flags |
| SPIKE BLANKS            |        |        |        |        |    |      |      |          |     |       |       |
| Laboratory ID:          | SB09   | 15S1   |        |        |    |      |      |          |     |       |       |
|                         | SB     | SBD    | SB     | SBD    | SI | 3    | SBD  |          |     |       |       |
| Naphthalene             | 0.0675 | 0.0646 | 0.0833 | 0.0833 | 8  | 1    | 78   | 60 - 116 | 4   | 16    |       |
| Acenaphthylene          | 0.0674 | 0.0694 | 0.0833 | 0.0833 | 8  | 1    | 83   | 60 - 125 | 3   | 15    |       |
| Acenaphthene            | 0.0703 | 0.0724 | 0.0833 | 0.0833 | 84 | 1    | 87   | 60 - 121 | 3   | 15    |       |
| Fluorene                | 0.0684 | 0.0724 | 0.0833 | 0.0833 | 82 | 2    | 87   | 65 - 126 | 6   | 15    |       |
| Phenanthrene            | 0.0700 | 0.0736 | 0.0833 | 0.0833 | 84 | 1    | 88   | 65 - 120 | 5   | 15    |       |
| Anthracene              | 0.0711 | 0.0748 | 0.0833 | 0.0833 | 8  | 5    | 90   | 67 - 125 | 5   | 15    |       |
| Fluoranthene            | 0.0714 | 0.0784 | 0.0833 | 0.0833 | 86 | 3    | 94   | 66 - 125 | 9   | 15    |       |
| Pyrene                  | 0.0755 | 0.0799 | 0.0833 | 0.0833 | 9  | 1    | 96   | 62 - 125 | 6   | 15    |       |
| Benzo[a]anthracene      | 0.0790 | 0.0847 | 0.0833 | 0.0833 | 98 | 5    | 102  | 72 - 129 | 7   | 15    |       |
| Chrysene                | 0.0764 | 0.0786 | 0.0833 | 0.0833 | 92 | 2    | 94   | 66 - 123 | 3   | 15    |       |
| Benzo[b]fluoranthene    | 0.0744 | 0.0816 | 0.0833 | 0.0833 | 89 | 9    | 98   | 68 - 128 | 9   | 15    |       |
| Benzo(j,k)fluoranthene  | 0.0718 | 0.0763 | 0.0833 | 0.0833 | 86 | 3    | 92   | 63 - 128 | 6   | 16    |       |
| Benzo[a]pyrene          | 0.0772 | 0.0809 | 0.0833 | 0.0833 | 93 | 3    | 97   | 66 - 130 | 5   | 15    |       |
| Indeno(1,2,3-c,d)pyrene | 0.0685 | 0.0751 | 0.0833 | 0.0833 | 82 | 2    | 90   | 63 - 135 | 9   | 15    |       |
| Dibenz[a,h]anthracene   | 0.0710 | 0.0803 | 0.0833 | 0.0833 | 8  | 5    | 96   | 65 - 130 | 12  | 15    |       |
| Benzo[g,h,i]perylene    | 0.0708 | 0.0798 | 0.0833 | 0.0833 | 8  | 5    | 96   | 66 - 127 | 12  | 15    |       |
| Surrogate:              |        |        |        |        |    |      |      |          |     |       |       |
| 2-Fluorobiphenyl        |        |        |        |        | 78 | 8    | 82   | 46 - 113 |     |       |       |
| Pyrene-d10              |        |        |        |        | 8  | 5    | 89   | 45 - 114 |     |       |       |
| Terphenyl-d14           |        |        |        |        | 8  | 6    | 90   | 49 - 121 |     |       |       |

Laboratory Reference: 2009-116

Project: 397-019

# SEMIVOLATILE ORGANICS EPA 8270E/SIM QUALITY CONTROL

|                         |        |        |        |        | Per | cent  | Recovery |     | RPD   |       |
|-------------------------|--------|--------|--------|--------|-----|-------|----------|-----|-------|-------|
| Analyte                 | Res    | sult   | Spike  | Level  | Rec | overy | Limits   | RPD | Limit | Flags |
| SPIKE BLANKS            |        |        |        |        |     |       |          |     |       |       |
| Laboratory ID:          | SB09   | 16S1   |        |        |     |       |          |     |       |       |
|                         | SB     | SBD    | SB     | SBD    | SB  | SBD   |          |     |       |       |
| Naphthalene             | 0.0720 | 0.0689 | 0.0833 | 0.0833 | 86  | 83    | 60 - 116 | 4   | 16    |       |
| Acenaphthylene          | 0.0751 | 0.0731 | 0.0833 | 0.0833 | 90  | 88    | 60 - 125 | 3   | 15    |       |
| Acenaphthene            | 0.0771 | 0.0752 | 0.0833 | 0.0833 | 93  | 90    | 60 - 121 | 2   | 15    |       |
| Fluorene                | 0.0725 | 0.0706 | 0.0833 | 0.0833 | 87  | 85    | 65 - 126 | 3   | 15    |       |
| Phenanthrene            | 0.0735 | 0.0691 | 0.0833 | 0.0833 | 88  | 83    | 65 - 120 | 6   | 15    |       |
| Anthracene              | 0.0741 | 0.0718 | 0.0833 | 0.0833 | 89  | 86    | 67 - 125 | 3   | 15    |       |
| Fluoranthene            | 0.0704 | 0.0767 | 0.0833 | 0.0833 | 85  | 92    | 66 - 125 | 9   | 15    |       |
| Pyrene                  | 0.0751 | 0.0781 | 0.0833 | 0.0833 | 90  | 94    | 62 - 125 | 4   | 15    |       |
| Benzo[a]anthracene      | 0.0789 | 0.0738 | 0.0833 | 0.0833 | 95  | 89    | 72 - 129 | 7   | 15    |       |
| Chrysene                | 0.0740 | 0.0717 | 0.0833 | 0.0833 | 89  | 86    | 66 - 123 | 3   | 15    |       |
| Benzo[b]fluoranthene    | 0.0767 | 0.0690 | 0.0833 | 0.0833 | 92  | 83    | 68 - 128 | 11  | 15    |       |
| Benzo(j,k)fluoranthene  | 0.0722 | 0.0702 | 0.0833 | 0.0833 | 87  | 84    | 63 - 128 | 3   | 16    |       |
| Benzo[a]pyrene          | 0.0768 | 0.0731 | 0.0833 | 0.0833 | 92  | 88    | 66 - 130 | 5   | 15    |       |
| Indeno(1,2,3-c,d)pyrene | 0.0749 | 0.0716 | 0.0833 | 0.0833 | 90  | 86    | 63 - 135 | 5   | 15    |       |
| Dibenz[a,h]anthracene   | 0.0765 | 0.0726 | 0.0833 | 0.0833 | 92  | 87    | 65 - 130 | 5   | 15    |       |
| Benzo[g,h,i]perylene    | 0.0759 | 0.0723 | 0.0833 | 0.0833 | 91  | 87    | 66 - 127 | 5   | 15    |       |
| Surrogate:              |        |        |        |        |     |       |          |     |       |       |
| 2-Fluorobiphenyl        |        |        |        |        | 85  | 84    | 46 - 113 |     |       |       |
| Pyrene-d10              |        |        |        |        | 85  | 84    | 45 - 114 |     |       |       |
| Terphenyl-d14           |        |        |        |        | 88  | 83    | 49 - 121 |     |       |       |
|                         |        |        |        |        |     |       |          |     |       |       |

Laboratory Reference: 2009-116

Project: 397-019

## TOTAL METALS EPA 6010D/7471B

Matrix: Soil

| 3 3 (1 )       |            |      |           | Date     | Date     |       |
|----------------|------------|------|-----------|----------|----------|-------|
| Analyte        | Result     | PQL  | Method    | Prepared | Analyzed | Flags |
| Client ID:     | FB-13-22.5 |      |           |          |          | _     |
| Laboratory ID: | 09-116-06  |      |           |          |          |       |
| Arsenic        | ND         | 11   | EPA 6010D | 9-16-20  | 9-16-20  |       |
| Barium         | 490        | 2.9  | EPA 6010D | 9-16-20  | 9-16-20  |       |
| Cadmium        | 0.73       | 0.57 | EPA 6010D | 9-16-20  | 9-16-20  |       |
| Chromium       | 23         | 0.57 | EPA 6010D | 9-16-20  | 9-16-20  |       |
| Lead           | 130        | 5.7  | EPA 6010D | 9-16-20  | 9-16-20  |       |
| Mercury        | ND         | 0.29 | EPA 7471B | 9-16-20  | 9-16-20  |       |
| Selenium       | ND         | 11   | EPA 6010D | 9-16-20  | 9-16-20  |       |
| Silver         | ND         | 1.1  | EPA 6010D | 9-16-20  | 9-16-20  |       |
|                |            |      |           |          |          |       |
| Client ID:     | FB-13-20.0 |      |           |          |          |       |
| Laboratory ID: | 09-116-07  |      |           |          |          |       |
| Cadmium        | ND         | 1.4  | EPA 6010D | 9-16-20  | 9-16-20  |       |
| Lead           | 96         | 14   | EPA 6010D | 9-16-20  | 9-16-20  |       |
|                |            |      |           |          |          |       |
| Client ID:     | FB-14-22.5 |      |           |          |          |       |
| Laboratory ID: | 09-116-16  |      |           |          |          |       |
| Arsenic        | 13         | 11   | EPA 6010D | 9-16-20  | 9-16-20  |       |
| Barium         | 68         | 2.7  | EPA 6010D | 9-16-20  | 9-16-20  |       |
| Cadmium        | ND         | 0.55 | EPA 6010D | 9-16-20  | 9-16-20  |       |
| Chromium       | 17         | 0.55 | EPA 6010D | 9-16-20  | 9-16-20  |       |
| Lead           | 31         | 5.5  | EPA 6010D | 9-16-20  | 9-16-20  |       |
| Mercury        | ND         | 0.27 | EPA 7471B | 9-16-20  | 9-16-20  |       |
| Selenium       | ND         | 11   | EPA 6010D | 9-16-20  | 9-16-20  |       |
| Silver         | ND         | 1.1  | EPA 6010D | 9-16-20  | 9-16-20  |       |
|                |            |      |           |          |          |       |
| Client ID:     | FB-14-20.0 |      |           |          |          |       |
| Laboratory ID: | 09-116-17  |      |           |          |          |       |
| Cadmium        | ND         | 0.58 | EPA 6010D | 9-16-20  | 9-16-20  |       |
| Lead           | 50         | 5.8  | EPA 6010D | 9-16-20  | 9-16-20  |       |
|                | -          | -    |           |          | · -      |       |
| Client ID:     | FB-12-21.5 |      |           |          |          |       |
| Laboratory ID: | 09-116-18  |      |           |          |          |       |
| Lead           | 25         | 5.6  | EPA 6010D | 9-16-20  | 9-16-20  |       |
|                |            |      |           |          |          |       |

Laboratory Reference: 2009-116

Project: 397-019

## TOTAL METALS EPA 6010D/7471B

Matrix: Soil

|                |            |      |           | Date     | Date     |       |
|----------------|------------|------|-----------|----------|----------|-------|
| Analyte        | Result     | PQL  | Method    | Prepared | Analyzed | Flags |
| Client ID:     | FB-15-22.5 |      |           |          |          |       |
| Laboratory ID: | 09-116-25  |      |           |          |          |       |
| Arsenic        | ND         | 11   | EPA 6010D | 9-16-20  | 9-16-20  |       |
| Barium         | 81         | 2.7  | EPA 6010D | 9-16-20  | 9-16-20  |       |
| Cadmium        | ND         | 0.54 | EPA 6010D | 9-16-20  | 9-16-20  |       |
| Chromium       | 15         | 0.54 | EPA 6010D | 9-16-20  | 9-16-20  |       |
| Lead           | 120        | 5.4  | EPA 6010D | 9-16-20  | 9-16-20  |       |
| Mercury        | ND         | 0.27 | EPA 7471B | 9-16-20  | 9-16-20  |       |
| Selenium       | ND         | 11   | EPA 6010D | 9-16-20  | 9-16-20  |       |
| Silver         | ND         | 1.1  | EPA 6010D | 9-16-20  | 9-16-20  |       |
|                |            |      |           |          |          |       |
|                |            |      |           |          |          |       |
| Client ID:     | FB-15-20.0 |      |           |          |          |       |
| Laboratory ID: | 09-116-26  |      |           |          |          |       |
| Cadmium        | ND         | 0.59 | EPA 6010D | 9-16-20  | 9-16-20  |       |
| Lead           | 56         | 5.9  | EPA 6010D | 9-16-20  | 9-16-20  |       |
|                |            |      |           |          |          |       |
|                |            |      |           |          |          |       |
| Client ID:     | FB-15-17.5 |      |           |          |          |       |
| Laboratory ID: | 09-116-27  |      |           |          |          |       |
| Cadmium        | ND         | 0.56 | EPA 6010D | 9-16-20  | 9-16-20  |       |
| Lead           | ND         | 5.6  | EPA 6010D | 9-16-20  | 9-16-20  |       |

Laboratory Reference: 2009-116

Project: 397-019

## TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil

| Analyte        | Result    | PQL  | Method    | Date<br>Prepared | Date<br>Analyzed | Flags |
|----------------|-----------|------|-----------|------------------|------------------|-------|
|                |           |      |           |                  |                  |       |
| Laboratory ID: | MB0916SM1 |      |           |                  |                  |       |
| Arsenic        | ND        | 10   | EPA 6010D | 9-16-20          | 9-16-20          |       |
| Cadmium        | ND        | 0.50 | EPA 6010D | 9-16-20          | 9-16-20          |       |
| Lead           | ND        | 5.0  | EPA 6010D | 9-16-20          | 9-16-20          |       |
| Selenium       | ND        | 10   | EPA 6010D | 9-16-20          | 9-16-20          |       |
| Silver         | ND        | 1.0  | EPA 6010D | 9-16-20          | 9-16-20          |       |
| Laboratory ID: | MB0916S1  |      |           |                  |                  |       |
| Mercury        | ND        | 0.25 | EPA 7471B | 9-16-20          | 9-16-20          |       |
| Laboratory ID: | MB0916SM2 |      |           |                  |                  |       |
| Barium         | ND        | 2.5  | EPA 6010D | 9-16-20          | 9-16-20          |       |
| Chromium       | ND        | 0.50 | EPA 6010D | 9-16-20          | 9-16-20          |       |

Date of Report: September 16, 2020 Samples Submitted: September 14, 2020

Laboratory Reference: 2009-116

Project: 397-019

### TOTAL METALS EPA 6010D/7471B QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

| отте: т.у.ту (рр | ,             |       |       |       | Source | Per       | cent  | Recovery         |     | RPD   |       |
|------------------|---------------|-------|-------|-------|--------|-----------|-------|------------------|-----|-------|-------|
| Analyte          | Res           | sult  | Spike | Level | Result | Rec       | overy | Limits           | RPD | Limit | Flags |
| DUPLICATE        |               |       |       |       |        |           |       |                  |     |       |       |
| Laboratory ID:   | 09-11         | 16-18 |       |       |        |           |       |                  |     |       |       |
|                  | ORIG          | DUP   |       |       |        |           |       |                  |     |       |       |
| Arsenic          | ND            | ND    | NA    | NA    |        | ١         | ۱A    | NA               | NA  | 20    |       |
| Cadmium          | ND            | ND    | NA    | NA    |        | ١         | ۱A    | NA               | NA  | 20    |       |
| Lead             | 21.9          | 22.5  | NA    | NA    |        | ١         | ۱A    | NA               | 3   | 20    |       |
| Selenium         | ND            | ND    | NA    | NA    |        | ١         | ۱A    | NA               | NA  | 20    |       |
| Silver           | ND            | ND    | NA    | NA    |        |           | NA    | NA               | NA  | 20    |       |
| Laboratory ID:   | 09-1          | 16-16 |       |       |        |           |       |                  |     |       |       |
| Mercury          | ND            | ND    | NA    | NA    |        | ١         | ۱A    | NA               | NA  | 20    |       |
| Laboratory ID:   | 09-1          | 16-18 |       |       |        |           |       |                  |     |       |       |
| Laboratory 1D.   | ORIG          | DUP   |       |       |        |           |       |                  |     |       |       |
| Barium           | 69.2          | 62.4  | NA    | NA    |        | ١         | ۱A    | NA               | 10  | 20    |       |
| Chromium         | 20.5          | 24.2  | NA    | NA    |        | ١         | NA.   | NA               | 17  | 20    |       |
| MATRIX SPIKES    |               |       |       |       |        |           |       |                  |     |       |       |
| Laboratory ID:   | 09-1          | 16-18 |       |       |        |           |       |                  |     |       |       |
|                  | MS            | MSD   | MS    | MSD   |        | MS        | MSD   |                  |     |       |       |
| Arsenic          | 94.7          | 94.6  | 100   | 100   | ND     | 95        | 95    | 75-125           | 0   | 20    |       |
| Cadmium          | 40.0          | 40.7  | 50.0  | 50.0  | ND     | 80        | 81    | 75-125           | 2   | 20    |       |
| Lead             | 234           | 233   | 250   | 250   | 21.9   | 85        | 84    | 75-125           | 1   | 20    |       |
| Selenium         | 85.9          | 85.7  | 100   | 100   | ND     | 86        | 86    | 75-125           | 0   | 20    |       |
| Silver           | 20.0          | 20.2  | 25.0  | 25.0  | ND     | 80        | 81    | 75-125           | 1   | 20    |       |
| Laboratory ID:   | 09-1          | 16-16 |       |       |        |           |       |                  |     |       |       |
| Mercury          | 0.596         | 0.612 | 0.500 | 0.500 | 0.0673 | 106       | 109   | 80-120           | 3   | 20    |       |
| Laboratory ID:   | ∩Q_1 <i>^</i> | 16-18 |       |       |        |           |       |                  |     |       |       |
| Laboratory ID.   | MS            | MSD   | MS    | MSD   |        | MS        | MSD   |                  |     |       |       |
| Barium           | 146           | 144   | 100   | 100   | 69.2   | <b>77</b> | 75    | 75-125           | 1   | 20    |       |
| Chromium         | 104           | 103   | 100   | 100   | 20.5   | 84        | 83    | 75-125<br>75-125 | 1   | 20    |       |
| Ontonium         | 104           | 103   | 100   | 100   | 20.0   | 04        | UJ    | 10-120           | ı   | 20    |       |

Date of Report: September 16, 2020 Samples Submitted: September 14, 2020

Laboratory Reference: 2009-116

Project: 397-019

### % MOISTURE

| Client ID  | Lab ID    | % Moisture | Date<br>Analyzed |
|------------|-----------|------------|------------------|
| FB-10-22.5 | 09-116-01 | 25         | 9-15-20          |
| FB-10-20.0 | 09-116-02 | 31         | 9-15-20          |
| FB-10-17.5 | 09-116-03 | 58         | 9-15-20          |
| FB-13-22.5 | 09-116-06 | 13         | 9-15-20          |
| FB-13-20.0 | 09-116-07 | 64         | 9-15-20          |
| FB-13-17.5 | 09-116-08 | 75         | 9-15-20          |
| FB-11-20.0 | 09-116-10 | 45         | 9-15-20          |
| FB-11-17.5 | 09-116-11 | 58         | 9-15-20          |
| FB-14-22.5 | 09-116-16 | 9          | 9-15-20          |
| FB-14-20.0 | 09-116-17 | 14         | 9-15-20          |
| FB-12-21.5 | 09-116-18 | 11         | 9-15-20          |
| FB-12-20.0 | 09-116-19 | 73         | 9-15-20          |
| FB-12-17.5 | 09-116-20 | 73         | 9-15-20          |
| FB-14-17.5 | 09-116-23 | 61         | 9-15-20          |
| FB-15-22.5 | 09-116-25 | 8          | 9-15-20          |
| FB-15-20.0 | 09-116-26 | 16         | 9-15-20          |
| FB-15-17.5 | 09-116-27 | 10         | 9-15-20          |
| FB-16-22.5 | 09-116-30 | 12         | 9-15-20          |
| FB-16-20.0 | 09-116-31 | 10         | 9-15-20          |
| FB-16-17.5 | 09-116-32 | 77         | 9-15-20          |



### **Data Qualifiers and Abbreviations**

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical \_\_\_\_\_.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference



|                                      | Analytical Laboratory Testing Services | Environmen | CHAIN OUNIE |  |
|--------------------------------------|----------------------------------------|------------|-------------|--|
| 14648 NE 95th Street • Redmond WA 98 | atory Testing Service                  |            |             |  |
| ind, WA 9                            | es                                     | 3          |             |  |

|  | - 0 | 0   |   |
|--|-----|-----|---|
|  | 200 | O O |   |
|  |     |     | - |

| Reviewed/Date                                                         | Received                                      | Relinquished | Received                     | Relinquished C& Contact | Received 326 376           | Relinquished                | Signature                     | 10 FB-11-20.0 | 9 13-11-22-5 | 8 FB-13-17.5 | 7 FB-13-20.0 | 6 FB-13-22-5 | 5 13-10-18-0 | 4 FB-10-150 | 3 FB-10-17-5 | 2 FB-10-20-0 | 1 FB-10-22.5       | Lab ID Sample Identification                      | Sampled by: (See) Refes                                                                       | Project Manager: Thry Stump                            | Project Name: Block 38 West                                            | 1397-019        | Project Number   | Phone: (425) 883-3881 • www.onsite-env.com | Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 |
|-----------------------------------------------------------------------|-----------------------------------------------|--------------|------------------------------|-------------------------|----------------------------|-----------------------------|-------------------------------|---------------|--------------|--------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------|-----------------|------------------|--------------------------------------------|---------------------------------------------------------------------------------|
| Reviewed/Date                                                         |                                               | (            | 08/2                         | Speely                  | Speedy                     | Favalle                     | Company                       | A 1405 A      | 1350         | 1250         | 1240         | 1230         | 1215         | 1210        | 1154         | 1 1127       | 9/14/20 020 Soil 5 | Date Time Sampled Sampled Sampled Matrix          | (other)                                                                                       | ontaine                                                | Standard (7 Days)                                                      | 2 Days 3 Days   | Same Day X 1 Day | (Check One)                                | Turnaround Request<br>(in working days)                                         |
|                                                                       |                                               |              | 3/14/20 1108                 | 8011 02-11-3            | 9-14-20 1030               | 9/13/10 1420                | Date Time                     | *             |              | ×            | ×            |              |              |             |              |              |                    | NWTF NWTF Volatil Halog                           | les 8260<br>jenated<br>EPA 801                                                                | Acid OC Volatile                                       | / SG Closs 8260C                                                       | )               |                  |                                            | Laboratory Number:                                                              |
| Chromatograms with final report   Electronic Data Deliverables (EDDs) | Data Package: Standard   Level III   Level IV | Ţ            | Time. 7-15-20 VI (1 day TAT) | The street of the       | The analyses and transcome | Roject Manager will Confirm | Comments/Special Instructions | ×             |              | ×            | XX           | X            |              |             | ×            | ×            | ×                  | PAHs PCBs Organ Organ Chlori Total I Total I TCLP | 8270D/<br>8082A<br>nochlorin<br>nophosp<br>inated A<br>RCRA M<br>MTCA M<br>Metals<br>(oil and | SIM (lor<br>ne Pest<br>shorus F<br>acid Her<br>fletals | /SIM N()<br>w-level)<br>w-level)<br>icides 8<br>Pesticides<br>rbicides | 081B<br>es 8270 | DD/SIM           |                                            | 09-116                                                                          |



Page 2 of 4

|                                                                       |                                                 | _            | _        | _            |          |              | _                             | _         | -          |              |          |           |               |               |              |              |                   |                                                      |                                                  |             |                                                 |                       |                 |                                            |                                    |
|-----------------------------------------------------------------------|-------------------------------------------------|--------------|----------|--------------|----------|--------------|-------------------------------|-----------|------------|--------------|----------|-----------|---------------|---------------|--------------|--------------|-------------------|------------------------------------------------------|--------------------------------------------------|-------------|-------------------------------------------------|-----------------------|-----------------|--------------------------------------------|------------------------------------|
| Reviewed/Date                                                         | Received                                        | Relinquished | Received | Relinquished | Received | Relinquished |                               | 20 FB-12- | 19 FB-12-3 | 18 13-12-2   | 17 B-14- | 16 73-14- | 15 FB-12-10.0 | 14 88-13-15.0 | 13 FB-11-100 | 12 FB-11-150 | 11 83-11-         | Lab ID                                               | Sampled by:                                      | ager:       |                                                 | 5                     | Company: Found  |                                            | 14648 NE                           |
|                                                                       |                                                 | -            |          | 175 Both     | 128 (SC) |              | Signature                     | 17.5      | 12-10-0    | 21.5         | 20.0     | 2.5       | 10.0          | 15.0          | 10.0         | 15.0         | 7.5               | Sample Identification                                | is feters                                        | Sury Shingt | Black 38 West                                   | 397-019               | ellon           | Phone: (425) 883-3881 • www.onsite-env.com | NE 95th Street • Redmond, WA 98052 |
| Reviewed/Date                                                         |                                                 | (            |          | Speak        | Speedy   | Foundly      | Company                       | 1 101     | 6937       | 9/13/20 8430 | 1600     | /555      | 1600          | 0555          | 1430         | 1420         | glietro 1415 Soil | Date Time<br>Sampled Sampled Matrix                  | (other)                                          |             | Standard (7 Days)                               |                       | Same Day X1 Day | (Check One)                                | (in working days)                  |
|                                                                       |                                                 |              | 9//      | 41-5         | 2-4-6    | - g/13/20    | Date                          | X         | ×          |              |          |           |               |               |              | _            | n                 | NWTP                                                 | H-HCII<br>H-Gx/E                                 | ontaine     |                                                 | <del>360</del>        |                 |                                            | Laboratory N                       |
|                                                                       |                                                 |              | 4161108  | 3011 08      | 050 02   | 10 1430      | Time                          | *         | X          |              | ~        |           |               |               |              |              | ×                 | Volatili<br>Haloge                                   | es 8260<br>enated<br>EPA 801                     | Volatiles   | s 8260C                                         |                       |                 |                                            | ory Number:                        |
| Chromatograms with final report   Electronic Data Deliverables (EDDs) | Data Package: Standard ☐ Level III ☐ Level IV ☐ |              |          |              | See 18:1 |              | Comments/Special Instructions | ×         | ×          | × ×          | X        | ×         |               |               |              |              | ×                 | PAHs PCBs Organ Organ Chlorin Total Total Total TCLP | 8270D/<br>8082A<br>ochloric<br>ophosp<br>nated A | Antala      | v-level) cides 8i destricides bicides 2.4 1664A | 081B<br>081B<br>8151A | Hs              | 25                                         | 09-116                             |
| (EDDs)                                                                |                                                 |              |          |              |          |              |                               | ×         | ×          | X            | X        | X         |               |               |              |              | ~                 | % Moi:                                               | sture                                            |             |                                                 |                       |                 |                                            |                                    |



| Page       |
|------------|
| W          |
| <u>o</u> , |
| 2          |
|            |

| Standard   Package: Standard   Poor   Patternaments/Special Instructions   P | Reviewed/Date                                                         | Received                        | Relinquished | Received   | Comment     | Relinquished > | Received       | Relinquished | Signature                     | 30 18/6-22-5 | A FB-15-10-0 | JR 1B-15-15.0 | 27/18-15-17.5 | No FB-15-20.0 | 25 FB-18-22-5 | 24 FB-14-10.0 | 23 FB14-17.5 | 22 FB-12-10-0 | 21 1-8-12-15.0 | Lab ID Sample Identification                                              | Sampled by: Les Kts                                                       | Project Manager: Sury Stumpf                                         | Project Name: Block 38 West                  | 347019                        | torroller humber | Company: (425) 883-3881 • www.onsite-env.com | Analytical Laboratory Testing Services  14648 NE 95th Street • Redmond, WA 98052 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------|--------------|------------|-------------|----------------|----------------|--------------|-------------------------------|--------------|--------------|---------------|---------------|---------------|---------------|---------------|--------------|---------------|----------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------|-------------------------------|------------------|----------------------------------------------|----------------------------------------------------------------------------------|
| Chromatograms with final report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Reviewed/Date                                                         |                                 |              |            | Speek Speek |                | Special Speedy | Lowelle      | Company                       | 1 1125       | 1106         | 165           | 1103          | 1100          | 1050          | loys          | 1038         | 1 1030        | 9/13/20/020 \$ | Time<br>Sampled                                                           | (other)                                                                   | ]                                                                    | Standard (7 Days)                            | П                             |                  | (Check One)                                  | Turnaround Request (in working days)                                             |
| Chromatograms with final report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       |                                 |              | 9/14/20/10 | 3           | 629            |                |              |                               | ×            |              |               | ×             | ×             | ~             |               | ×            |               | N              | NWTP NWTP NWTP Volatil                                                    | PH-HCID PH-Gx/B PH-Gx PH-Gx PH-Dx ([                                      | TEX •                                                                | / SG CIE                                     | 960                           |                  |                                              | Laboratory Num                                                                   |
| ab les (EDD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chromatograms with final report   Electronic Data Deliverables (EDDs) | Standard   Level III   Level IV |              | 80         | o o         | 1              |                | 0            | Comments/Special Instructions | × -          |              |               | X             | XXX           | X             |               | ×            |               |                | EDB E Semiv (with le PAHs : PCBs Organ Organ Chlorir Total F Total T TCLP | PA 801  colatiles ow-leve 8270D/S 8082A  ochlorin ophospi nated Ai RCRA M | 1 (Wate<br>8270D/I PAHs)<br>SIM (Iow<br>horus P<br>cid Herl<br>etals | rs Only)  SIM (v-level)  cides 8( resticides | 2Ph<br>2Ph<br>081B<br>98 8270 | D/SIM            |                                              | umber: 09 - 1 16                                                                 |



| 9 | Page        |
|---|-------------|
|   | 1           |
|   | 이<br>이<br>이 |
| • | 7           |

| Reviewed/Date                                                           | Received                                        | Relinquished | Received     | Relinquished (12 Carl | Received     | Relinquished | Signature                     |  |  | 34 FB-16-10.0 | 33 FB-16-15.0 | 32 FB-16-17.5 | 31 56-16-2000 | Lab ID Sample Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Project Manager: Stry Stumpf Sampled by:                                | Project Name: Bock 38 West              | 10 From 397-019        | Company: Found More | Analytical Laboratory lesting Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com |
|-------------------------------------------------------------------------|-------------------------------------------------|--------------|--------------|-----------------------|--------------|--------------|-------------------------------|--|--|---------------|---------------|---------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------|------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------|
| Reviewed/Date                                                           |                                                 |              | 780          | 5000/2                | o Speedy     | famelle      | Company                       |  |  | 1 1150 1      | 1140          | 1 1135        | _             | Oate Time Barrix Sampled Sampled Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         | Standard (7 Days) (TPH analysis 5 Days) |                        | ☐ Same Day 📈 1 Day  | (in working days) (Check One)                                                                                              |
|                                                                         |                                                 |              | 9/14/26 1100 | DI 2-11-6             | 9-14-20 1030 | 9(13/20 1430 | Date Time                     |  |  |               |               | ×             | ×             | NWTPH-HC NWTPH-Gx NWTPH-Gx Volatiles 82 Halogenate EDB EPA 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /BTEX<br>(☐ Acid                                                        | s 8260C                                 | ean-up)                |                     | Laboratory Number:                                                                                                         |
| Chromatograms with final report ☐ Electronic Data Deliverables (EDDs) ☐ | Data Package: Standard ☐ Level III ☐ Level IV ☐ |              |              |                       | Geo Pail     |              | Comments/Special Instructions |  |  |               |               | X             | X             | Semivolatile (with low-le PAHs 8270I PCBs 8082I Organochlo Organophos Chlorinated Total RCRA Total MTCA TCLP Metal HEM (oil and MEM) (oil and | vel PAHs) 0/SIM (lov A rine Pesti sphorus F Acid Her Metals Metals 4 CC | v-level)  cides 80  Pesticides  bicides | CP/<br>081B<br>es 8270 | halen<br>4 Hs       | -                                                                                                                          |



14648 NE 95<sup>th</sup> Street, Redmond, WA 98052 • (425) 883-3881

September 29, 2020

Suzy Stumpf Farallon Consulting 1809 7th Avenue, Suite 1111 Seattle, WA 98101

Re: Analytical Data for Project 397-019

Laboratory Reference No. 2009-116B

Dear Suzy:

Enclosed are the analytical results and associated quality control data for samples submitted on September 14, 2020.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

**Enclosures** 

Project: 397-019

### **Case Narrative**

Samples were collected on September 12 and 13, 2020 and received by the laboratory on September 14, 2020. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 397-019

### DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil

Units: mg/Kg (ppm)

|                         |                  |                |          | Date     | Date     |       |
|-------------------------|------------------|----------------|----------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method   | Prepared | Analyzed | Flags |
| Client ID:              | FB-13-15.0       |                |          |          |          |       |
| Laboratory ID:          | 09-116-14        |                |          |          |          |       |
| Diesel Range Organics   | ND               | 130            | NWTPH-Dx | 9-21-20  | 9-21-20  |       |
| Lube Oil Range Organics | 1200             | 260            | NWTPH-Dx | 9-21-20  | 9-21-20  |       |
| Surrogate:              | Percent Recovery | Control Limits |          |          |          |       |
| o-Terphenyl             | 82               | 50-150         |          |          |          |       |

Project: 397-019

### DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL

Matrix: Soil

Units: mg/Kg (ppm)

|                         |                  |                |          | Date     | Date     |       |
|-------------------------|------------------|----------------|----------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method   | Prepared | Analyzed | Flags |
| METHOD BLANK            |                  |                |          |          |          |       |
| Laboratory ID:          | MB0921S1         |                |          |          |          |       |
| Diesel Range Organics   | ND               | 25             | NWTPH-Dx | 9-21-20  | 9-21-20  |       |
| Lube Oil Range Organics | ND               | 50             | NWTPH-Dx | 9-21-20  | 9-21-20  |       |
| Surrogate:              | Percent Recovery | Control Limits |          |          |          |       |
| o-Terphenyl             | 101              | 50-150         |          |          |          |       |

|                |      |      |       |       | Source | Perce | nt  | Recovery |     | RPD   |       |
|----------------|------|------|-------|-------|--------|-------|-----|----------|-----|-------|-------|
| Analyte        | Res  | sult | Spike | Level | Result | Recov | ery | Limits   | RPD | Limit | Flags |
| DUPLICATE      |      |      |       |       |        |       |     |          |     |       |       |
| Laboratory ID: | SB09 | 21S1 |       |       |        |       |     |          |     |       |       |
|                | ORIG | DUP  |       |       |        |       |     |          |     |       |       |
| Diesel Fuel #2 | 90.3 | 88.6 | NA    | NA    |        | NA    |     | NA       | 2   | NA    |       |
| Surrogate:     |      |      |       |       |        |       |     |          |     |       |       |
| o-Terphenyl    |      |      |       |       |        | 86    | 85  | 50-150   |     |       |       |

Project: 397-019

### PAHs EPA 8270E/SIM

|                         |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:              | FB-13-15.0       |                |               |          |          |       |
| Laboratory ID:          | 09-116-14        |                |               |          |          |       |
| Benzo[a]anthracene      | ND               | 0.035          | EPA 8270E/SIM | 9-21-20  | 9-21-20  |       |
| Chrysene                | ND               | 0.035          | EPA 8270E/SIM | 9-21-20  | 9-21-20  |       |
| Benzo[b]fluoranthene    | ND               | 0.035          | EPA 8270E/SIM | 9-21-20  | 9-21-20  |       |
| Benzo(j,k)fluoranthene  | ND               | 0.035          | EPA 8270E/SIM | 9-21-20  | 9-21-20  |       |
| Benzo[a]pyrene          | ND               | 0.035          | EPA 8270E/SIM | 9-21-20  | 9-21-20  |       |
| Indeno(1,2,3-c,d)pyrene | ND               | 0.035          | EPA 8270E/SIM | 9-21-20  | 9-21-20  |       |
| Dibenz[a,h]anthracene   | ND               | 0.035          | EPA 8270E/SIM | 9-21-20  | 9-21-20  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 59               | 46 - 113       |               |          |          |       |
| Pyrene-d10              | 63               | 45 - 114       |               |          |          |       |
| Terphenyl-d14           | 71               | 49 - 121       |               |          |          |       |
|                         |                  |                |               |          |          |       |

Project: 397-019

### PAHs EPA 8270E/SIM

|                         |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:              | FB-12-15.0       |                |               |          |          |       |
| Laboratory ID:          | 09-116-21        |                |               |          |          |       |
| Benzo[a]anthracene      | ND               | 0.022          | EPA 8270E/SIM | 9-21-20  | 9-21-20  |       |
| Chrysene                | ND               | 0.022          | EPA 8270E/SIM | 9-21-20  | 9-21-20  |       |
| Benzo[b]fluoranthene    | ND               | 0.022          | EPA 8270E/SIM | 9-21-20  | 9-21-20  |       |
| Benzo(j,k)fluoranthene  | ND               | 0.022          | EPA 8270E/SIM | 9-21-20  | 9-21-20  |       |
| Benzo[a]pyrene          | ND               | 0.022          | EPA 8270E/SIM | 9-21-20  | 9-21-20  |       |
| Indeno(1,2,3-c,d)pyrene | ND               | 0.022          | EPA 8270E/SIM | 9-21-20  | 9-21-20  |       |
| Dibenz[a,h]anthracene   | ND               | 0.022          | EPA 8270E/SIM | 9-21-20  | 9-21-20  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 62               | 46 - 113       |               |          |          |       |
| Pyrene-d10              | 67               | 45 - 114       |               |          |          |       |
| Terphenyl-d14           | 65               | 49 - 121       |               |          |          |       |

Project: 397-019

### PAHs EPA 8270E/SIM

|                         |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:              | FB-15-15.0       |                |               |          |          |       |
| Laboratory ID:          | 09-116-28        |                |               |          |          |       |
| Benzo[a]anthracene      | ND               | 0.022          | EPA 8270E/SIM | 9-21-20  | 9-21-20  |       |
| Chrysene                | ND               | 0.022          | EPA 8270E/SIM | 9-21-20  | 9-21-20  |       |
| Benzo[b]fluoranthene    | ND               | 0.022          | EPA 8270E/SIM | 9-21-20  | 9-21-20  |       |
| Benzo(j,k)fluoranthene  | ND               | 0.022          | EPA 8270E/SIM | 9-21-20  | 9-21-20  |       |
| Benzo[a]pyrene          | ND               | 0.022          | EPA 8270E/SIM | 9-21-20  | 9-21-20  |       |
| Indeno(1,2,3-c,d)pyrene | ND               | 0.022          | EPA 8270E/SIM | 9-21-20  | 9-21-20  |       |
| Dibenz[a,h]anthracene   | ND               | 0.022          | EPA 8270E/SIM | 9-21-20  | 9-21-20  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 70               | 46 - 113       |               |          |          |       |
| Pyrene-d10              | 69               | 45 - 114       |               |          |          |       |
| Terphenyl-d14           | 65               | 49 - 121       |               |          |          |       |

Project: 397-019

### PAHs EPA 8270E/SIM **QUALITY CONTROL**

|                         |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| METHOD BLANK            |                  |                |               |          |          |       |
| Laboratory ID:          | MB0921S1         |                |               |          |          |       |
| Benzo[a]anthracene      | ND               | 0.0067         | EPA 8270E/SIM | 9-21-20  | 9-21-20  |       |
| Chrysene                | ND               | 0.0067         | EPA 8270E/SIM | 9-21-20  | 9-21-20  |       |
| Benzo[b]fluoranthene    | ND               | 0.0067         | EPA 8270E/SIM | 9-21-20  | 9-21-20  |       |
| Benzo(j,k)fluoranthene  | ND               | 0.0067         | EPA 8270E/SIM | 9-21-20  | 9-21-20  |       |
| Benzo[a]pyrene          | ND               | 0.0067         | EPA 8270E/SIM | 9-21-20  | 9-21-20  |       |
| Indeno(1,2,3-c,d)pyrene | ND               | 0.0067         | EPA 8270E/SIM | 9-21-20  | 9-21-20  |       |
| Dibenz[a,h]anthracene   | ND               | 0.0067         | EPA 8270E/SIM | 9-21-20  | 9-21-20  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 77               | 46 - 113       |               |          |          |       |
| Pyrene-d10              | 83               | 45 - 114       |               |          |          |       |
| Terphenyl-d14           | 91               | 49 - 121       |               |          |          |       |

Project: 397-019

### PAHs EPA 8270E/SIM **QUALITY CONTROL**

|                         |        |        |        |        | Per | cent  | Recovery |     | RPD   |       |
|-------------------------|--------|--------|--------|--------|-----|-------|----------|-----|-------|-------|
| Analyte                 | Res    | sult   | Spike  | Level  | Rec | overy | Limits   | RPD | Limit | Flags |
| SPIKE BLANKS            |        |        |        |        |     |       |          |     |       |       |
| Laboratory ID:          | SB09   | 21S1   |        |        |     |       |          |     |       |       |
|                         | SB     | SBD    | SB     | SBD    | SB  | SBD   |          |     |       |       |
| Benzo[a]anthracene      | 0.0670 | 0.0707 | 0.0833 | 0.0833 | 80  | 85    | 72 - 129 | 5   | 15    |       |
| Chrysene                | 0.0663 | 0.0714 | 0.0833 | 0.0833 | 80  | 86    | 66 - 123 | 7   | 15    |       |
| Benzo[b]fluoranthene    | 0.0674 | 0.0692 | 0.0833 | 0.0833 | 81  | 83    | 68 - 128 | 3   | 15    |       |
| Benzo(j,k)fluoranthene  | 0.0662 | 0.0701 | 0.0833 | 0.0833 | 79  | 84    | 63 - 128 | 6   | 16    |       |
| Benzo[a]pyrene          | 0.0644 | 0.0691 | 0.0833 | 0.0833 | 77  | 83    | 66 - 130 | 7   | 15    |       |
| Indeno(1,2,3-c,d)pyrene | 0.0620 | 0.0661 | 0.0833 | 0.0833 | 74  | 79    | 63 - 135 | 6   | 15    |       |
| Dibenz[a,h]anthracene   | 0.0589 | 0.0622 | 0.0833 | 0.0833 | 71  | 75    | 65 - 130 | 5   | 15    |       |
| Surrogate:              |        |        |        |        |     |       |          |     |       |       |
| 2-Fluorobiphenyl        |        |        |        |        | 73  | 71    | 46 - 113 |     |       |       |
| Pyrene-d10              |        |        |        |        | 82  | 85    | 45 - 114 |     |       |       |
| Terphenyl-d14           |        |        |        |        | 81  | 85    | 49 - 121 |     |       |       |

Project: 397-019

### PAHs EPA 8270E/SIM

|                         |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:              | FB-13-22.5       |                |               |          |          |       |
| Laboratory ID:          | 09-116-06        |                |               |          |          |       |
| Benzo[a]anthracene      | 24               | 0.77           | EPA 8270E/SIM | 9-15-20  | 9-21-20  |       |
| Chrysene                | 24               | 0.77           | EPA 8270E/SIM | 9-15-20  | 9-21-20  |       |
| Benzo[b]fluoranthene    | 24               | 0.77           | EPA 8270E/SIM | 9-15-20  | 9-21-20  |       |
| Benzo(j,k)fluoranthene  | 7.7              | 0.77           | EPA 8270E/SIM | 9-15-20  | 9-21-20  |       |
| Benzo[a]pyrene          | 25               | 0.77           | EPA 8270E/SIM | 9-15-20  | 9-21-20  |       |
| Indeno(1,2,3-c,d)pyrene | 12               | 0.77           | EPA 8270E/SIM | 9-15-20  | 9-21-20  |       |
| Dibenz[a,h]anthracene   | 2.1              | 0.77           | EPA 8270E/SIM | 9-15-20  | 9-21-20  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 63               | 46 - 113       |               |          |          |       |
| Pyrene-d10              | 72               | 45 - 114       |               |          |          |       |
| Terphenyl-d14           | 76               | 49 - 121       |               |          |          |       |

Project: 397-019

### PAHs EPA 8270E/SIM **QUALITY CONTROL**

|                         |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| METHOD BLANK            |                  |                |               |          |          |       |
| Laboratory ID:          | MB0915S1         |                |               |          |          |       |
| Benzo[a]anthracene      | ND               | 0.0067         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Chrysene                | ND               | 0.0067         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo[b]fluoranthene    | ND               | 0.0067         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo(j,k)fluoranthene  | ND               | 0.0067         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Benzo[a]pyrene          | ND               | 0.0067         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Indeno(1,2,3-c,d)pyrene | ND               | 0.0067         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Dibenz[a,h]anthracene   | ND               | 0.0067         | EPA 8270E/SIM | 9-15-20  | 9-15-20  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 78               | 46 - 113       |               |          |          |       |
| Pyrene-d10              | 88               | 45 - 114       |               |          |          |       |
| Terphenyl-d14           | 92               | 49 - 121       |               |          |          |       |

Project: 397-019

### PAHs EPA 8270E/SIM **QUALITY CONTROL**

| 3 3                     |        |        |        |        | Pe  | rcent | Recovery |     | RPD   |       |
|-------------------------|--------|--------|--------|--------|-----|-------|----------|-----|-------|-------|
| Analyte                 | Res    | sult   | Spike  | Level  | Rec | overy | Limits   | RPD | Limit | Flags |
| SPIKE BLANKS            |        |        |        |        |     |       |          |     |       |       |
| Laboratory ID:          | SB09   | 15S1   |        |        |     |       |          |     |       |       |
|                         | SB     | SBD    | SB     | SBD    | SB  | SBD   |          |     |       |       |
| Naphthalene             | 0.0675 | 0.0646 | 0.0833 | 0.0833 | 81  | 78    | 60 - 116 | 4   | 16    |       |
| Acenaphthylene          | 0.0674 | 0.0694 | 0.0833 | 0.0833 | 81  | 83    | 60 - 125 | 3   | 15    |       |
| Acenaphthene            | 0.0703 | 0.0724 | 0.0833 | 0.0833 | 84  | 87    | 60 - 121 | 3   | 15    |       |
| Fluorene                | 0.0684 | 0.0724 | 0.0833 | 0.0833 | 82  | 87    | 65 - 126 | 6   | 15    |       |
| Phenanthrene            | 0.0700 | 0.0736 | 0.0833 | 0.0833 | 84  | 88    | 65 - 120 | 5   | 15    |       |
| Anthracene              | 0.0711 | 0.0748 | 0.0833 | 0.0833 | 85  | 90    | 67 - 125 | 5   | 15    |       |
| Fluoranthene            | 0.0714 | 0.0784 | 0.0833 | 0.0833 | 86  | 94    | 66 - 125 | 9   | 15    |       |
| Pyrene                  | 0.0755 | 0.0799 | 0.0833 | 0.0833 | 91  | 96    | 62 - 125 | 6   | 15    |       |
| Benzo[a]anthracene      | 0.0790 | 0.0847 | 0.0833 | 0.0833 | 95  | 102   | 72 - 129 | 7   | 15    |       |
| Chrysene                | 0.0764 | 0.0786 | 0.0833 | 0.0833 | 92  | 94    | 66 - 123 | 3   | 15    |       |
| Benzo[b]fluoranthene    | 0.0744 | 0.0816 | 0.0833 | 0.0833 | 89  | 98    | 68 - 128 | 9   | 15    |       |
| Benzo(j,k)fluoranthene  | 0.0718 | 0.0763 | 0.0833 | 0.0833 | 86  | 92    | 63 - 128 | 6   | 16    |       |
| Benzo[a]pyrene          | 0.0772 | 0.0809 | 0.0833 | 0.0833 | 93  | 97    | 66 - 130 | 5   | 15    |       |
| Indeno(1,2,3-c,d)pyrene | 0.0685 | 0.0751 | 0.0833 | 0.0833 | 82  | 90    | 63 - 135 | 9   | 15    |       |
| Dibenz[a,h]anthracene   | 0.0710 | 0.0803 | 0.0833 | 0.0833 | 85  | 96    | 65 - 130 | 12  | 15    |       |
| Benzo[g,h,i]perylene    | 0.0708 | 0.0798 | 0.0833 | 0.0833 | 85  | 96    | 66 - 127 | 12  | 15    |       |
| Surrogate:              |        |        |        |        |     |       |          |     |       |       |
| 2-Fluorobiphenyl        |        |        |        |        | 78  | 82    | 46 - 113 |     |       |       |
| Pyrene-d10              |        |        |        |        | 85  | 89    | 45 - 114 |     |       |       |
| Terphenyl-d14           |        |        |        |        | 86  | 90    | 49 - 121 |     |       |       |

Project: 397-019

### TCLP LEAD EPA 1311/6010D

Matrix: TCLP Extract Units: mg/L (ppm)

|                |            |      |           | Date     | Date     |       |
|----------------|------------|------|-----------|----------|----------|-------|
| Analyte        | Result     | PQL  | Method    | Prepared | Analyzed | Flags |
| Client ID:     | FB-13-22.5 |      |           |          |          |       |
| Laboratory ID: | 09-116-06  |      |           |          |          |       |
| Lead           | ND         | 0.20 | EPA 6010D | 9-24-20  | 9-24-20  |       |
| Client ID:     | FB-15-22.5 |      |           |          |          |       |
| Laboratory ID: | 09-116-25  |      |           |          |          |       |
| Lead           | 0.41       | 0.20 | EPA 6010D | 9-24-20  | 9-24-20  | •     |

Date of Report: September 29, 2020 Samples Submitted: September 14, 2020

Laboratory Reference: 2009-116B

Project: 397-019

### **TCLP LEAD** EPA 1311/6010D **QUALITY CONTROL**

Matrix: TCLP Extract Units: mg/L (ppm)

|                |           |      |           | Date     | Date     |       |
|----------------|-----------|------|-----------|----------|----------|-------|
| Analyte        | Result    | PQL  | Method    | Prepared | Analyzed | Flags |
| METHOD BLANK   |           |      |           |          |          |       |
| Laboratory ID: | MB0924TM1 |      |           |          |          |       |
| Lead           | ND        | 0.20 | EPA 6010D | 9-24-20  | 9-24-20  |       |

| Analyte        | Re    | sult     | Spike | Level | Source<br>Result |    | rcent       | Recovery<br>Limits | RPD | RPD<br>Limit | Flags |
|----------------|-------|----------|-------|-------|------------------|----|-------------|--------------------|-----|--------------|-------|
| DUPLICATE      | 110   | <u> </u> | Орико |       | recuit           |    | , o . o . y |                    |     |              | 90    |
| Laboratory ID: | 09-1  | 16-25    |       |       |                  |    |             |                    |     |              |       |
| •              | ORIG  | DUP      |       |       |                  |    |             |                    |     |              |       |
| Lead           | 0.414 | 0.402    | NA    | NA    |                  |    | NA          | NA                 | 3   | 20           |       |
| MATRIX SPIKES  |       |          |       |       |                  |    |             |                    |     |              |       |
| Laboratory ID: | 09-1  | 16-25    |       |       |                  |    |             |                    |     |              |       |
|                | MS    | MSD      | MS    | MSD   |                  | MS | MSD         |                    |     |              |       |
| Lead           | 9.44  | 9.38     | 10.0  | 10.0  | 0.414            | 90 | 90          | 75-125             | 1   | 20           |       |

### % MOISTURE

|            |           |            | Date     |
|------------|-----------|------------|----------|
| Client ID  | Lab ID    | % Moisture | Analyzed |
| FB-13-15.0 | 09-116-14 | 81         | 9-18-20  |
| FB-12-15.0 | 09-116-21 | 70         | 9-18-20  |
| FB-15-15.0 | 09-116-28 | 70         | 9-18-20  |



### **Data Qualifiers and Abbreviations**

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical \_\_\_\_\_.
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.

7 -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

RPD - Relative Percent Difference





| ) |      |
|---|------|
|   |      |
| > |      |
|   |      |
|   |      |
|   | Page |
|   | -    |
|   | of_  |
|   | 4    |
|   |      |

| Reviewed/Date                                                         | Received                                         | Relinquished                 | Received     | Helinquished (SCO (Section) | 250 mg                      | Received S 1 | Relinquished             | Signature ,                   | 10 FB-11- 20.0 | 9 13-11-22-5 | 8 FB-13-17:5 | 7 FB-13-20.0 | 6 FB-13-22-5 | 5 FB-10 - 10.0 | 4 FB-10-150 | 3 FB-10-17.5 | 2 FB-10-20-0 | 1 FB-10-22.5    | Lab ID Sample Identification                  | Sampled by: Geg Refes                                              | Project Manager: Zury Stump | Project Name: Block 38 West          | 397019          | Project Number   | Company:    | Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 |
|-----------------------------------------------------------------------|--------------------------------------------------|------------------------------|--------------|-----------------------------|-----------------------------|--------------|--------------------------|-------------------------------|----------------|--------------|--------------|--------------|--------------|----------------|-------------|--------------|--------------|-----------------|-----------------------------------------------|--------------------------------------------------------------------|-----------------------------|--------------------------------------|-----------------|------------------|-------------|---------------------------------------------------------------------------------|
| Reviewed/Date                                                         |                                                  | (                            | 000          | Speely                      | hosed                       | 0 1          | tovalle                  | Company                       | 1405 B         | 1350         | 1250         | 1240         | 1230         | 1215           | 1210        | 1154         | 1 1127       | 9/w/w 1000 Soc) | Date Time<br>Sampled Sampled Matrix           | (other)                                                            |                             | Standard (7 Days)                    | 2 Days 3 Days   | Same Day X 1 Day | (Check One) | Turnaround Request (in working days)                                            |
|                                                                       |                                                  |                              | 3/14/20 /108 | 8011 Oct 11-3               | 4-14-00 1020                |              | 9/13/20 1450             | Date Time                     | *              |              | ×            | ×            |              |                |             |              |              | W               | NWTF NWTF NWTF Volati Halog                   | PH-HCIE PH-Gx/E PH-Gx PH-Gx PH-Dx ([ les 8260 genated by EPA 801   | Acid OC Volatiles           | / SG Cli                             | ;               |                  |             | Laboratory Number:                                                              |
| Chromatograms with final report   Electronic Data Deliverables (EDDs) | Data Package: Ashbacked Contagn (2) Land IV 157A | X-0,0000 1.5 00 Pt (100) 10. | 9-15-20 VI   | * 1                         | counte analyses and troncom | - 67         | Somet Warrager will from | Comments/Special Instructions | ×              |              | ×            | XX           | × 0          |                |             | X            | X            | ×               | PAHs PCBs Organ Organ Chlori Total Total TCLP | volatiles low-leve 8270D/s 8082A nochlorin nophosp inated A RCRA M | SIM (Ion                    | w-level) icides 8 Pesticides bicides | 081B<br>es 8270 | DD/SIM           |             | 09-116                                                                          |



| Page_      |
|------------|
| 4          |
| <u>으</u> , |
| 2          |

| Reviewed/Date                                                         | Received                                      | Relinquished | Received   | Relinquished 6th Boths | Received (200 Dotte | Relinquished | Signature                     | 20 FB-12-17-5 | 19 FB-12-20-0 | 18 16-12-21.5 | 17 18-14-20-0 | 16 73-14-22-5 | 15 FB-12-10-0 | 14 88-13-15.0 | 13 FB-11-10.0 | 12 FB-11-150 | 11 FB-11-17.5     | Lab ID Sample Identification       | Sampled by: Sing feters                                                          | Project Manager: Sury Shungt | Project Name: Block 38 West                | Project Number: 397-019  | Company: towallow |             | Analytical Laboratory Testing Services  14648 NE 95th Street • Redmond, WA 98052 |
|-----------------------------------------------------------------------|-----------------------------------------------|--------------|------------|------------------------|---------------------|--------------|-------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|-------------------|------------------------------------|----------------------------------------------------------------------------------|------------------------------|--------------------------------------------|--------------------------|-------------------|-------------|----------------------------------------------------------------------------------|
| Reviewed/Date                                                         |                                               | ()           | N C        | Spe                    | Speed               | found        | Company                       | 101           | 6937          | 9/15/20 0930  | 1600          | 1555          | 1600          | USS           | 0441          | 1420         | 9/10/20 1415 5011 | Date Time<br>Sampled Sampled M     | (other)                                                                          |                              | Standard (7 Days)                          |                          | Same Day X1 Day   | (Check One) | Turnaround Request (in working days)                                             |
|                                                                       |                                               |              | 6 3        | 1-5 Apr                | · K                 | ellis .      | Date                          | ×             | ×             |               |               |               |               |               |               |              | 200               | NWTF                               | PH-HCII<br>PH-Gx/E                                                               | ontaine                      |                                            | 3 Days                   | Day               |             | Labor                                                                            |
|                                                                       |                                               |              | 1/4/201108 | 8011 084               | 050 DE-11-6         | 9/13/20 1430 | Time                          | ×             | X             |               | ×             |               |               | 8             |               |              | ×                 | Volatil<br>Halog                   | PH-Dx (<br>les 8260<br>enated<br>EPA 801                                         | Volatiles                    | / SG Closs 8260C                           |                          |                   |             | Laboratory Number:                                                               |
| Chromatograms with final report   Electronic Data Deliverables (EDDs) | Data Package: Standard   Level III   Level IV |              |            |                        | See P31             |              | Comments/Special Instructions | X             | X             | ×             | X             | XXX           |               | 8             |               |              | ×                 | PAHs PCBs Organ Organ Chlori Total | 8270D/<br>8082A<br>nochlori<br>nophosp<br>inated /<br>NOTA N<br>MTOA N<br>Metals | 'SIM (lov                    | v-level) icides 8 Pesticides rbicides Cadw | 081B<br>es 8270<br>8151A | Hs                | 8           | 09 - 1 16                                                                        |



| ( | Page    |
|---|---------|
|   | h       |
|   | <u></u> |
| • | 2       |

| Data Package: Standard                                                         |                             | Reviewed/Date                        | Reviewed/Date                                                                      |
|--------------------------------------------------------------------------------|-----------------------------|--------------------------------------|------------------------------------------------------------------------------------|
|                                                                                |                             |                                      | Relinquished                                                                       |
|                                                                                | 8011 02/1/16                | o XX                                 | Received                                                                           |
| 7                                                                              | 8011 024.6                  | Speedy                               | Relinquished 25 Company                                                            |
| 1.6.0 0.0                                                                      | 050 ac-41-6                 | Speedy                               | Received 3808                                                                      |
|                                                                                | 9/13/20 1450                | Lowelle                              | Relinquished                                                                       |
| Comments/Special Instructions                                                  | Date Time                   | Company                              | Signature )                                                                        |
| ×                                                                              | ×                           | 1125 1                               | 30 FB-16-22-5                                                                      |
|                                                                                |                             | 1106                                 | R FB-15-10-0                                                                       |
| 8                                                                              |                             | 165                                  | JR 1B-15-15.0                                                                      |
| ×                                                                              | ×                           | 1103                                 | 27 FB-15-17.5                                                                      |
| XX                                                                             | ×                           | 7100                                 | No FB-15-20-0                                                                      |
| X X X 0                                                                        | ~                           | 1050                                 | 25 PB-15-22-5                                                                      |
|                                                                                |                             | loys                                 | 24 FB-14-10-0                                                                      |
| ~                                                                              | ×                           | 20%                                  | 23 FB-14-17-5                                                                      |
|                                                                                |                             | 1030                                 | 22 FB-12-10-0                                                                      |
| 8                                                                              |                             | 9/13/20/020 \$ 5                     | 21 1-13-12-15.0                                                                    |
| PAHs PCBs Organ Organ Chlori Total F Total F TCLP                              | NWTF NWTF NWTF Volatil      |                                      | Lab ID Sample Identification                                                       |
| 8270D/<br>8082A<br>lochlori<br>ophosp<br>nated A<br>RCRA M<br>WTCA M<br>Metals | PH-Dx (<br>es 826<br>enated |                                      | Sampled by: Jes Ktis                                                               |
| re Pest chorus I Acid He Metals Vetals                                         | BTEX Acid                   | Contain                              | Froject Manager: Suzy Stumpt                                                       |
| /SIM Now-level) w-level) w-level) Pesticides rbicides                          | / SG Cliss 8260C            | Standard (7 Days)                    | Project Name: Block 38 West                                                        |
| c P/<br>081B<br>es 8270<br>8151A                                               |                             | 2 Days 3 Days                        | 10 Jest Mullipel. 347-019                                                          |
| DD/SIM                                                                         |                             | Same Day 21 Day                      | Company: towallin                                                                  |
|                                                                                |                             | (Check One)                          |                                                                                    |
| 09 - 1 16                                                                      | Laboratory Number:          | Turnaround Request (in working days) | Analytical Laboratory Testing Services<br>14648 NE 95th Street • Redmond, WA 98052 |



| Data Package: Standard  Leve |
|------------------------------|
| 6                            |
| 1030                         |
| 430                          |
|                              |
| EDB EPA 8011 (Water          |
| rs Only)                     |
| Laboratory Number:           |





February 18, 2022

Suzy Stumpf Farallon Consulting 1809 7th Avenue, Suite 1111 Seattle, WA 98101

Re: Analytical Data for Project 397-019 Laboratory Reference No. 2202-076B

Dear Suzy:

Enclosed are the analytical results and associated quality control data for samples submitted on February 7, 2022.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

**Enclosures** 

Date of Report: February 18, 2022 Samples Submitted: February 7, 2022 Laboratory Reference: 2202-076B

Project: 397-019

### **Case Narrative**

Samples were collected on February 5, 2022 and received by the laboratory on February 7, 2022. They were maintained at the laboratory at a temperature of  $2^{\circ}$ C to  $6^{\circ}$ C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Date of Report: February 18, 2022 Samples Submitted: February 7, 2022 Laboratory Reference: 2202-076B Project: 397-019

### **SEMIVOLATILE ORGANICS EPA 8270E/SIM**

|                         |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:              | FB-21-5.0        |                |               |          |          |       |
| Laboratory ID:          | 02-076-07        |                |               |          |          |       |
| Benzo[a]anthracene      | ND               | 0.0077         | EPA 8270E/SIM | 2-17-22  | 2-18-22  |       |
| Chrysene                | ND               | 0.0077         | EPA 8270E/SIM | 2-17-22  | 2-18-22  |       |
| Benzo[b]fluoranthene    | ND               | 0.0077         | EPA 8270E/SIM | 2-17-22  | 2-18-22  |       |
| Benzo(j,k)fluoranthene  | ND               | 0.0077         | EPA 8270E/SIM | 2-17-22  | 2-18-22  |       |
| Benzo[a]pyrene          | ND               | 0.0077         | EPA 8270E/SIM | 2-17-22  | 2-18-22  |       |
| Indeno(1,2,3-c,d)pyrene | ND               | 0.0077         | EPA 8270E/SIM | 2-17-22  | 2-18-22  |       |
| Dibenz[a,h]anthracene   | ND               | 0.0077         | EPA 8270E/SIM | 2-17-22  | 2-18-22  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 79               | 41 - 114       |               |          |          |       |
| Pyrene-d10              | 94               | 39 - 115       |               |          |          |       |
| Terphenyl-d14           | 94               | 44 - 125       |               |          |          |       |

Date of Report: February 18, 2022 Samples Submitted: February 7, 2022 Laboratory Reference: 2202-076B Project: 397-019

### **SEMIVOLATILE ORGANICS EPA 8270E/SIM QUALITY CONTROL**

|                         |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| METHOD BLANK            |                  |                |               |          |          |       |
| Laboratory ID:          | MB0217S1         |                |               |          |          |       |
| Benzo[a]anthracene      | ND               | 0.0067         | EPA 8270E/SIM | 2-17-22  | 2-17-22  |       |
| Chrysene                | ND               | 0.0067         | EPA 8270E/SIM | 2-17-22  | 2-17-22  |       |
| Benzo[b]fluoranthene    | ND               | 0.0067         | EPA 8270E/SIM | 2-17-22  | 2-17-22  |       |
| Benzo(j,k)fluoranthene  | ND               | 0.0067         | EPA 8270E/SIM | 2-17-22  | 2-17-22  |       |
| Benzo[a]pyrene          | ND               | 0.0067         | EPA 8270E/SIM | 2-17-22  | 2-17-22  |       |
| Indeno(1,2,3-c,d)pyrene | ND               | 0.0067         | EPA 8270E/SIM | 2-17-22  | 2-17-22  |       |
| Dibenz[a,h]anthracene   | ND               | 0.0067         | EPA 8270E/SIM | 2-17-22  | 2-17-22  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 84               | 41 - 114       |               |          |          |       |
| Pyrene-d10              | 97               | 39 - 115       |               |          |          |       |
| Terphenyl-d14           | 95               | 44 - 125       |               |          |          |       |
|                         |                  |                |               |          |          |       |

|                         |        |        |        |        | Per | cent  | Recovery |     | RPD   |       |
|-------------------------|--------|--------|--------|--------|-----|-------|----------|-----|-------|-------|
| Analyte                 | Res    | sult   | Spike  | Level  | Rec | overy | Limits   | RPD | Limit | Flags |
| SPIKE BLANKS            |        |        |        |        |     |       |          |     |       |       |
| Laboratory ID:          | SB02   | 217S1  |        |        |     |       |          |     |       |       |
|                         | SB     | SBD    | SB     | SBD    | SB  | SBD   |          |     |       |       |
| Benzo[a]anthracene      | 0.0986 | 0.0954 | 0.0833 | 0.0833 | 118 | 115   | 64 - 138 | 3   | 15    |       |
| Chrysene                | 0.0962 | 0.0962 | 0.0833 | 0.0833 | 115 | 115   | 63 - 128 | 0   | 15    |       |
| Benzo[b]fluoranthene    | 0.0918 | 0.0881 | 0.0833 | 0.0833 | 110 | 106   | 62 - 129 | 4   | 15    |       |
| Benzo(j,k)fluoranthene  | 0.0882 | 0.0882 | 0.0833 | 0.0833 | 106 | 106   | 59 - 134 | 0   | 16    |       |
| Benzo[a]pyrene          | 0.0918 | 0.0890 | 0.0833 | 0.0833 | 110 | 107   | 63 - 132 | 3   | 15    |       |
| Indeno(1,2,3-c,d)pyrene | 0.0832 | 0.0802 | 0.0833 | 0.0833 | 100 | 96    | 58 - 132 | 4   | 15    |       |
| Dibenz[a,h]anthracene   | 0.0888 | 0.0864 | 0.0833 | 0.0833 | 107 | 104   | 60 - 130 | 3   | 15    |       |
| Surrogate:              |        |        |        |        |     |       |          |     |       |       |
| 2-Fluorobiphenyl        |        |        |        |        | 83  | 80    | 41 - 114 |     |       |       |
| Pyrene-d10              |        |        |        |        | 99  | 96    | 39 - 115 |     |       |       |
| Terphenyl-d14           |        |        |        |        | 100 | 98    | 44 - 125 |     |       |       |

Date of Report: February 18, 2022 Samples Submitted: February 7, 2022 Laboratory Reference: 2202-076B Project: 397-019

### **% MOISTURE**

|           |           |            | Date     |
|-----------|-----------|------------|----------|
| Client ID | Lab ID    | % Moisture | Analyzed |
| FB-21-5.0 | 02-076-07 | 13         | 2-17-22  |



### **Data Qualifiers and Abbreviations**

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical .
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Z -

ND - Not Detected at PQL PQL - Practical Quantitation Limit

RPD - Relative Percent Difference



# Environmental Inc. Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 9806

|   | Pag  |
|---|------|
|   | e ~  |
|   | of . |
| - | N    |

| Reviewed/Date                                  | Received                        | Relinquished | Received \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Relinquished                          | Received | Relinquished      | Signature                     | 10 FMW-154-10.0 | C.5-451 -MM7 D | 8 73-21-100 | 7 FB-21 - 500 | 6 形 到 - 30 | 5 75-25-0 | 4 BW-200       | 3 1820-170 | 2 16-20-15.0 | 1 PB-20-12-0 | Lab ID Sample Identification         | Sampled by: S. L. L.                     | Project Manager: Sapy Stupp,                 | Project Name: Block 38 West | Project Number: 367-019 | Company: towalber | Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3861 • www.onsite-env.com |
|------------------------------------------------|---------------------------------|--------------|-----------------------------------------------|---------------------------------------|----------|-------------------|-------------------------------|-----------------|----------------|-------------|---------------|------------|-----------|----------------|------------|--------------|--------------|--------------------------------------|------------------------------------------|----------------------------------------------|-----------------------------|-------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------|
| Reviewed/Date                                  |                                 |              | 100 Oct                                       | Nam sp                                | You Spi  | havad             | Company                       | 0531            | 021            | 1/05        | 1000          | 1045       | 940       | 930            | 925        | 976          | 2/4/2 910    | Date Time<br>Sampled Sampled         | (other)                                  | 7                                            | Standard (7 Days)           | 2 Days                  | Same Day          | , WA 98052 (in working days) site-env.com (Check One)                                                                      |
| te                                             |                                 |              | 27                                            | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2/7/     | lon 2/6/          | Date                          | R.              | C/             |             |               | -          | N.        | U <sub>i</sub> | V          | ~            | 5011 5       | NWTF                                 | PH-HCII<br>PH-Gx/E                       |                                              | 021 82                      | 3 Days                  | 1 Day             | Laboratory N                                                                                                               |
| Chr                                            | Data                            |              | 22 1015                                       | 1/22 1015                             | 122 0837 | 2 15%             | Time Co                       |                 |                |             |               |            |           |                | ×          | ×            | ×            | NWTP Volatil Halogo EDB E            | PH-Dx (des 8260 enated EPA 801 volatiles | )<br>Volatile:                               | ers Only)                   |                         |                   | atory Number:                                                                                                              |
| Chromatograms with final report [] Electroning | Package: Standard 🗆 Level III 🗆 |              |                                               |                                       |          | 25/41/2 Pabled X) | Comments/Special Instructions |                 |                |             |               |            |           |                |            |              |              | PAHS PCBS Organ Organ Chlori Total F | 8270/S<br>8082<br>ochlorii<br>ophosp     | IM (low-<br>ne Pesti<br>phorus F<br>acid Her |                             | es 8270/                | /SIM              | 12-076                                                                                                                     |
| Electronic Data Deliverables (EDDs)            | Level IV                        |              |                                               |                                       |          | D3 (57A)          |                               | X               | X              | ×s          | <b>X</b>      | ×          | ×         | ×              | ×××        | × ×          | ×            | Hol                                  | ld<br>945<br>Hade                        | grease)                                      | 1664                        |                         |                   |                                                                                                                            |



Page 2 of 2

| Reviewed/Date Reviewed/Date                                           | Received                                        | Relinquished | Received    | Relinquished | Received San San                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Relinquished | Signature () Company          | 20 mm 157 400 | 19 Fmv- 157 - 35.0 1450 | 18 FMW- 157 - 75-0 july 81 | 17 FMW - 186 - 200 1410 | 16 pmw 166 - 1500 1405 | 15 FMW 156 - 10.0 1400 | 14 Form-135-15.0 1395 | 13 AMV-185-1000 1310 | 12 FMW-155- 500 1300 | 11 FBMW-1540 2/5/22 1240 | Lab ID Sample Identification Sampled Sampled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sampled by: 6-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X                   | Project Mariager: Sway Stumpt | Project Name: Work 38 West A Standard (7 Days) | 397019  | Same Day |
|-----------------------------------------------------------------------|-------------------------------------------------|--------------|-------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------|---------------|-------------------------|----------------------------|-------------------------|------------------------|------------------------|-----------------------|----------------------|----------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------|------------------------------------------------|---------|----------|
| te                                                                    |                                                 |              |             | 1            | and the same of th | Mar          | 3                             | F             |                         |                            |                         |                        |                        |                       |                      |                      | Soil 5                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       | ontaine                       | ers                                            | 3 Days  | 1 Day    |
|                                                                       |                                                 |              | 2/1/22 1015 | 27/22 1015   | 2/122 0837                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2/6/20 1220  | Date Time                     |               |                         |                            |                         |                        |                        |                       |                      |                      |                          | NWTP NWTP Volatile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H-Gx/E<br>H-Gx<br>H-Dx (,<br>es 8260<br>enated                        | Acid / S                      | G Clear s 8260                                 | ı-up 🗌) |          |
| Chromatograms with final report   Electronic Data Deliverables (EDDs) | Data Package: Standard ☐ Level III ☐ Level IV ☐ |              |             |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Comments/Special Instructions | 15            |                         |                            |                         |                        |                        |                       |                      |                      | ×                        | (with lot PAHs and PA | ow-leves 3270/S 8082  ochlorii ophosp anated A ITCA M Wetals bill and | horus F<br>cid Her            | cides 80<br>Pesticides                         | s 8270/ | SIM      |



February 18, 2022

Suzy Stumpf Farallon Consulting 1809 7th Avenue, Suite 1111 Seattle, WA 98101

Re: Analytical Data for Project 397-019 Laboratory Reference No. 2202-076B

Dear Suzy:

Enclosed are the analytical results and associated quality control data for samples submitted on February 7, 2022.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

**Enclosures** 

Project: 397-019

#### **Case Narrative**

Samples were collected on February 5, 2022 and received by the laboratory on February 7, 2022. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 397-019

#### **SEMIVOLATILE ORGANICS EPA 8270E/SIM**

|                         |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:              | FB-21-5.0        |                |               |          |          |       |
| Laboratory ID:          | 02-076-07        |                |               |          |          |       |
| Naphthalene             | ND               | 0.0077         | EPA 8270E/SIM | 2-17-22  | 2-18-22  |       |
| 2-Methylnaphthalene     | ND               | 0.0077         | EPA 8270E/SIM | 2-17-22  | 2-18-22  |       |
| 1-Methylnaphthalene     | ND               | 0.0077         | EPA 8270E/SIM | 2-17-22  | 2-18-22  |       |
| Benzo[a]anthracene      | ND               | 0.0077         | EPA 8270E/SIM | 2-17-22  | 2-18-22  |       |
| Chrysene                | ND               | 0.0077         | EPA 8270E/SIM | 2-17-22  | 2-18-22  |       |
| Benzo[b]fluoranthene    | ND               | 0.0077         | EPA 8270E/SIM | 2-17-22  | 2-18-22  |       |
| Benzo(j,k)fluoranthene  | ND               | 0.0077         | EPA 8270E/SIM | 2-17-22  | 2-18-22  |       |
| Benzo[a]pyrene          | ND               | 0.0077         | EPA 8270E/SIM | 2-17-22  | 2-18-22  |       |
| Indeno(1,2,3-c,d)pyrene | ND               | 0.0077         | EPA 8270E/SIM | 2-17-22  | 2-18-22  |       |
| Dibenz[a,h]anthracene   | ND               | 0.0077         | EPA 8270E/SIM | 2-17-22  | 2-18-22  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 79               | 42 - 116       |               |          |          |       |
| Pyrene-d10              | 94               | 41 - 116       |               |          |          |       |
| Terphenyl-d14           | 94               | 49 - 130       |               |          |          |       |

Project: 397-019

# SEMIVOLATILE ORGANICS EPA 8270E/SIM QUALITY CONTROL

|                         |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| METHOD BLANK            |                  |                |               |          |          | _     |
| Laboratory ID:          | MB0217S1         |                |               |          |          |       |
| Naphthalene             | ND               | 0.0067         | EPA 8270E/SIM | 2-17-22  | 2-17-22  |       |
| 2-Methylnaphthalene     | ND               | 0.0067         | EPA 8270E/SIM | 2-17-22  | 2-17-22  |       |
| 1-Methylnaphthalene     | ND               | 0.0067         | EPA 8270E/SIM | 2-17-22  | 2-17-22  |       |
| Benzo[a]anthracene      | ND               | 0.0067         | EPA 8270E/SIM | 2-17-22  | 2-17-22  |       |
| Chrysene                | ND               | 0.0067         | EPA 8270E/SIM | 2-17-22  | 2-17-22  |       |
| Benzo[b]fluoranthene    | ND               | 0.0067         | EPA 8270E/SIM | 2-17-22  | 2-17-22  |       |
| Benzo(j,k)fluoranthene  | ND               | 0.0067         | EPA 8270E/SIM | 2-17-22  | 2-17-22  |       |
| Benzo[a]pyrene          | ND               | 0.0067         | EPA 8270E/SIM | 2-17-22  | 2-17-22  |       |
| Indeno(1,2,3-c,d)pyrene | ND               | 0.0067         | EPA 8270E/SIM | 2-17-22  | 2-17-22  |       |
| Dibenz[a,h]anthracene   | ND               | 0.0067         | EPA 8270E/SIM | 2-17-22  | 2-17-22  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 84               | 42 - 116       |               |          |          |       |
| Pyrene-d10              | 97               | 41 - 116       |               |          |          |       |
| Terphenyl-d14           | 95               | 49 - 130       |               |          |          |       |
|                         |                  |                |               |          |          |       |

|                         |        |        |        |        | Per | cent  | Recovery |     | RPD   |       |
|-------------------------|--------|--------|--------|--------|-----|-------|----------|-----|-------|-------|
| Analyte                 | Re     | sult   | Spike  | Level  | Rec | overy | Limits   | RPD | Limit | Flags |
| SPIKE BLANKS            |        |        |        |        |     |       |          |     |       |       |
| Laboratory ID:          | SB02   | 217S1  |        |        |     |       |          |     |       |       |
|                         | SB     | SBD    | SB     | SBD    | SB  | SBD   |          |     |       |       |
| Naphthalene             | 0.0917 | 0.0849 | 0.0833 | 0.0833 | 110 | 102   | 60 - 117 | 8   | 19    |       |
| Acenaphthylene          | 0.0938 | 0.0893 | 0.0833 | 0.0833 | 113 | 107   | 68 - 129 | 5   | 15    |       |
| Acenaphthene            | 0.0965 | 0.0900 | 0.0833 | 0.0833 | 116 | 108   | 67 - 127 | 7   | 15    |       |
| Fluorene                | 0.0876 | 0.0846 | 0.0833 | 0.0833 | 105 | 102   | 69 - 128 | 3   | 15    |       |
| Phenanthrene            | 0.0805 | 0.0748 | 0.0833 | 0.0833 | 97  | 90    | 70 - 126 | 7   | 15    |       |
| Anthracene              | 0.0877 | 0.0855 | 0.0833 | 0.0833 | 105 | 103   | 72 - 130 | 3   | 15    |       |
| Fluoranthene            | 0.0920 | 0.0885 | 0.0833 | 0.0833 | 110 | 106   | 70 - 135 | 4   | 15    |       |
| Pyrene                  | 0.0931 | 0.0915 | 0.0833 | 0.0833 | 112 | 110   | 62 - 134 | 2   | 15    |       |
| Benzo[a]anthracene      | 0.0986 | 0.0954 | 0.0833 | 0.0833 | 118 | 115   | 73 - 128 | 3   | 15    |       |
| Chrysene                | 0.0962 | 0.0962 | 0.0833 | 0.0833 | 115 | 115   | 73 - 131 | 0   | 15    |       |
| Benzo[b]fluoranthene    | 0.0918 | 0.0881 | 0.0833 | 0.0833 | 110 | 106   | 72 - 134 | 4   | 15    |       |
| Benzo(j,k)fluoranthene  | 0.0882 | 0.0882 | 0.0833 | 0.0833 | 106 | 106   | 59 - 140 | 0   | 16    |       |
| Benzo[a]pyrene          | 0.0918 | 0.0890 | 0.0833 | 0.0833 | 110 | 107   | 70 - 135 | 3   | 15    |       |
| Indeno(1,2,3-c,d)pyrene | 0.0832 | 0.0802 | 0.0833 | 0.0833 | 100 | 96    | 70 - 132 | 4   | 15    |       |
| Dibenz[a,h]anthracene   | 0.0888 | 0.0864 | 0.0833 | 0.0833 | 107 | 104   | 70 - 132 | 3   | 15    |       |
| Benzo[g,h,i]perylene    | 0.0880 | 0.0885 | 0.0833 | 0.0833 | 106 | 106   | 70 - 131 | 1   | 15    |       |
| Surrogate:              |        |        |        |        |     |       |          |     |       |       |
| 2-Fluorobiphenyl        |        |        |        |        | 83  | 80    | 42 - 116 |     |       |       |
| Pyrene-d10              |        |        |        |        | 99  | 96    | 41 - 116 |     |       |       |
| Terphenyl-d14           |        |        |        |        | 100 | 98    | 49 - 130 |     |       |       |



## **% MOISTURE**

|           |           |            | Date     |
|-----------|-----------|------------|----------|
| Client ID | Lab ID    | % Moisture | Analyzed |
| FB-21-5.0 | 02-076-07 | 13         | 2-17-22  |



#### **Data Qualifiers and Abbreviations**

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical .
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit RPD - Relative Percent Difference





14648 NE 95<sup>th</sup> Street, Redmond, WA 98052 • (425) 883-3881

February 17, 2022

Suzy Stumpf Farallon Consulting 1809 7th Avenue, Suite 1111 Seattle, WA 98101

Re: Analytical Data for Project 397-019

Laboratory Reference No. 2202-076

Dear Suzy:

Enclosed are the analytical results and associated quality control data for samples submitted on February 7, 2022.

The standard policy of OnSite Environmental, Inc. is to store your samples for 30 days from the date of receipt. If you require longer storage, please contact the laboratory.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning the data, or need additional information, please feel free to call me.

Sincerely,

David Baumeister Project Manager

**Enclosures** 



Project: 397-019

#### **Case Narrative**

Samples were collected on February 5, 2022 and received by the laboratory on February 7, 2022. They were maintained at the laboratory at a temperature of 2°C to 6°C.

Please note that any and all soil sample results are reported on a dry-weight basis, unless otherwise noted below.

General QA/QC issues associated with the analytical data enclosed in this laboratory report will be indicated with a reference to a comment or explanation on the Data Qualifier page. More complex and involved QA/QC issues will be discussed in detail below.

Project: 397-019

# DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx

Matrix: Soil

Units: mg/Kg (ppm)

|                  |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Result           | PQL                                                                                                                                             | Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Flags                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| FB-20-12-0       |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 02-076-01        |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND               | 28                                                                                                                                              | NWTPH-Dx                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2-9-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-14-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND               | 56                                                                                                                                              | NWTPH-Dx                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2-9-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-14-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Percent Recovery | Control Limits                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 92               | 50-150                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ED 00 45 0       |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 02-076-02        |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND               | 29                                                                                                                                              | NWTPH-Dx                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2-9-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-14-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 83               | 58                                                                                                                                              | NWTPH-Dx                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2-9-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-14-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Percent Recovery | Control Limits                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 103              | 50-150                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ED 20 47 0       |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 02-076-03        |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 59               | 33                                                                                                                                              | NWTPH-Dx                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2-9-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-14-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 210              | 66                                                                                                                                              | NWTPH-Dx                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2-9-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2-14-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Percent Recovery | Control Limits                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 102              | 50-150                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  | FB-20-12-0 02-076-01 ND ND Percent Recovery 92  FB-20-15.0 02-076-02 ND 83  Percent Recovery 103  FB-20-17.0 02-076-03 59 210  Percent Recovery | FB-20-12-0           02-076-01         28           ND         56           Percent Recovery 92         Control Limits 50-150           FB-20-15.0 02-076-02         29           ND         29           83         58           Percent Recovery 103         Control Limits 50-150           FB-20-17.0 02-076-03         33           59         33           210         66           Percent Recovery         Control Limits           Control Limits         Control Limits | FB-20-12-0           02-076-01         28         NWTPH-Dx           ND         56         NWTPH-Dx           Percent Recovery 92         Control Limits 50-150         NWTPH-Dx           FB-20-15.0 02-076-02         29         NWTPH-Dx           ND 83         58         NWTPH-Dx           Percent Recovery 103         Control Limits 50-150         NWTPH-Dx           FB-20-17.0 02-076-03         NWTPH-Dx         NWTPH-Dx           210         66         NWTPH-Dx           Percent Recovery 210         Control Limits         NWTPH-Dx           Control Limits         Control Limits         NWTPH-Dx | FB-20-12-0           02-076-01         28         NWTPH-Dx         2-9-22           ND         56         NWTPH-Dx         2-9-22           Percent Recovery 92         Control Limits 50-150           FB-20-15.0 02-076-02         102-076-02         NWTPH-Dx         2-9-22           ND         29         NWTPH-Dx         2-9-22           Percent Recovery 103         Control Limits 50-150         103         50-150           FB-20-17.0 02-076-03         02-076-03         NWTPH-Dx         2-9-22           Percent Recovery 210         66         NWTPH-Dx         2-9-22           Percent Recovery 210         Control Limits         103         103 | Result         PQL         Method         Prepared         Analyzed           FB-20-12-0<br>02-076-01         Second Seco |

Project: 397-019

#### **DIESEL AND HEAVY OIL RANGE ORGANICS NWTPH-Dx QUALITY CONTROL**

Matrix: Soil

Units: mg/Kg (ppm)

|                         |                  |                |          | Date     | Date     |       |
|-------------------------|------------------|----------------|----------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method   | Prepared | Analyzed | Flags |
| METHOD BLANK            |                  |                |          |          |          | _     |
| Laboratory ID:          | MB0209S1         |                |          |          |          |       |
| Diesel Range Organics   | ND               | 25             | NWTPH-Dx | 2-9-22   | 2-9-22   |       |
| Lube Oil Range Organics | ND               | 50             | NWTPH-Dx | 2-9-22   | 2-9-22   |       |
| Surrogate:              | Percent Recovery | Control Limits |          |          |          |       |
| o-Terphenyl             | 101              | 50-150         |          |          |          |       |

|                |      |       |       |       | Source | Percent  | Recovery |     | RPD   |       |
|----------------|------|-------|-------|-------|--------|----------|----------|-----|-------|-------|
| Analyte        | Res  | sult  | Spike | Level | Result | Recovery | Limits   | RPD | Limit | Flags |
| DUPLICATE      |      |       |       |       |        |          |          |     |       |       |
| Laboratory ID: | SB02 | .09S1 |       |       |        |          |          |     |       |       |
|                | ORIG | DUP   |       |       |        |          |          |     |       |       |
| Diesel Fuel #2 | 80.1 | 78.1  | NA    | NA    |        | NA       | NA       | 3   | NA    |       |
| Surrogate:     |      |       |       |       |        |          |          |     |       |       |
| o-Terphenyl    |      |       |       |       |        | 96 93    | 50-150   |     |       |       |

Project: 397-019

## **SEMIVOLATILE ORGANICS EPA 8270E/SIM**

|                         |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:              | FB-20-12-0       |                |               |          |          |       |
| Laboratory ID:          | 02-076-01        |                |               |          |          |       |
| Naphthalene             | 0.019            | 0.0075         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| 2-Methylnaphthalene     | 0.0081           | 0.0075         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| 1-Methylnaphthalene     | ND               | 0.0075         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| Benzo[a]anthracene      | 0.046            | 0.0075         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| Chrysene                | 0.039            | 0.0075         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| Benzo[b]fluoranthene    | 0.038            | 0.0075         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| Benzo(j,k)fluoranthene  | 0.015            | 0.0075         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| Benzo[a]pyrene          | 0.048            | 0.0075         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| Indeno(1,2,3-c,d)pyrene | 0.025            | 0.0075         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| Dibenz[a,h]anthracene   | ND               | 0.0075         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 84               | 41 - 114       |               |          |          |       |
| Pyrene-d10              | 87               | 39 - 115       |               |          |          |       |
| Terphenyl-d14           | 81               | 44 - 125       |               |          |          |       |
| Client ID:              | FB-20-15.0       |                |               |          |          |       |
| Laboratory ID:          | 02-076-02        |                |               |          |          |       |
| Naphthalene             | 0.014            | 0.0077         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| 2-Methylnaphthalene     | ND               | 0.0077         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| 1-Methylnaphthalene     | ND               | 0.0077         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| Benzo[a]anthracene      | ND               | 0.0077         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| Chrysene                | ND               | 0.0077         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| Benzo[b]fluoranthene    | ND               | 0.0077         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| Benzo(j,k)fluoranthene  | ND               | 0.0077         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| Benzo[a]pyrene          | ND               | 0.0077         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| Indeno(1,2,3-c,d)pyrene | ND               | 0.0077         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| Dibenz[a,h]anthracene   | ND               | 0.0077         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 85               | 41 - 114       |               |          |          |       |
| Pyrene-d10              | 86               | 39 - 115       |               |          |          |       |
| Terphenyl-d14           | 88               | 44 - 125       |               |          |          |       |

Project: 397-019

## **SEMIVOLATILE ORGANICS EPA 8270E/SIM**

|                         |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| Client ID:              | FB-20-17.0       |                |               |          |          |       |
| Laboratory ID:          | 02-076-03        |                |               |          |          |       |
| Naphthalene             | 0.16             | 0.0088         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| 2-Methylnaphthalene     | 0.036            | 0.0088         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| 1-Methylnaphthalene     | 0.060            | 0.0088         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| Benzo[a]anthracene      | 0.017            | 0.0088         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| Chrysene                | 0.026            | 0.0088         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| Benzo[b]fluoranthene    | 0.019            | 0.0088         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| Benzo(j,k)fluoranthene  | ND               | 0.0088         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| Benzo[a]pyrene          | 0.022            | 0.0088         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| Indeno(1,2,3-c,d)pyrene | 0.012            | 0.0088         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| Dibenz[a,h]anthracene   | ND               | 0.0088         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 77               | 41 - 114       |               |          |          |       |
| Pyrene-d10              | 71               | 39 - 115       |               |          |          |       |
| Terphenyl-d14           | 79               | 44 - 125       |               |          |          |       |
|                         |                  |                |               |          |          |       |
| Client ID:              | FB-21-3.0        |                |               |          |          |       |
| Laboratory ID:          | 02-076-06        |                |               |          |          |       |
| Benzo[a]anthracene      | 0.23             | 0.0082         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| Chrysene                | 0.23             | 0.0082         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| Benzo[b]fluoranthene    | 0.26             | 0.041          | EPA 8270E/SIM | 2-14-22  | 2-15-22  |       |
| Benzo(j,k)fluoranthene  | 0.057            | 0.041          | EPA 8270E/SIM | 2-14-22  | 2-15-22  |       |
| Benzo[a]pyrene          | 0.17             | 0.041          | EPA 8270E/SIM | 2-14-22  | 2-15-22  |       |
| Indeno(1,2,3-c,d)pyrene | 0.095            | 0.041          | EPA 8270E/SIM | 2-14-22  | 2-15-22  |       |
| Dibenz[a,h]anthracene   | ND               | 0.041          | EPA 8270E/SIM | 2-14-22  | 2-15-22  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 89               | 41 - 114       |               |          |          |       |
| Pyrene-d10              | 71               | 39 - 115       |               |          |          |       |
| Terphenyl-d14           | 79               | 44 - 125       |               |          |          |       |

Project: 397-019

# SEMIVOLATILE ORGANICS EPA 8270E/SIM QUALITY CONTROL

|                         |                  |                |               | Date     | Date     |       |
|-------------------------|------------------|----------------|---------------|----------|----------|-------|
| Analyte                 | Result           | PQL            | Method        | Prepared | Analyzed | Flags |
| METHOD BLANK            |                  |                |               |          |          |       |
| Laboratory ID:          | MB0214S1         |                |               |          |          |       |
| Naphthalene             | ND               | 0.0067         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| 2-Methylnaphthalene     | ND               | 0.0067         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| 1-Methylnaphthalene     | ND               | 0.0067         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| Benzo[a]anthracene      | ND               | 0.0067         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| Chrysene                | ND               | 0.0067         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| Benzo[b]fluoranthene    | ND               | 0.0067         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| Benzo(j,k)fluoranthene  | ND               | 0.0067         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| Benzo[a]pyrene          | ND               | 0.0067         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| Indeno(1,2,3-c,d)pyrene | ND               | 0.0067         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| Dibenz[a,h]anthracene   | ND               | 0.0067         | EPA 8270E/SIM | 2-14-22  | 2-14-22  |       |
| Surrogate:              | Percent Recovery | Control Limits |               |          |          |       |
| 2-Fluorobiphenyl        | 92               | 41 - 114       |               |          |          |       |
| Pyrene-d10              | 99               | 39 - 115       |               |          |          |       |
| Terphenyl-d14           | 94               | 44 - 125       |               |          |          |       |
|                         |                  |                |               |          |          |       |

|                         |        |        |        |        | Per | cent  | Recovery |     | RPD   |       |
|-------------------------|--------|--------|--------|--------|-----|-------|----------|-----|-------|-------|
| Analyte                 | Res    | sult   | Spike  | Level  | Rec | overy | Limits   | RPD | Limit | Flags |
| SPIKE BLANKS            |        |        |        |        |     |       |          |     |       |       |
| Laboratory ID:          | SB02   | 214S1  |        |        |     |       |          |     |       |       |
|                         | SB     | SBD    | SB     | SBD    | SB  | SBD   |          |     |       |       |
| Naphthalene             | 0.0899 | 0.0867 | 0.0833 | 0.0833 | 108 | 104   | 57 - 117 | 4   | 16    |       |
| Acenaphthylene          | 0.0958 | 0.0943 | 0.0833 | 0.0833 | 115 | 113   | 58 - 126 | 2   | 15    |       |
| Acenaphthene            | 0.0976 | 0.0959 | 0.0833 | 0.0833 | 117 | 115   | 61 - 122 | 2   | 15    |       |
| Fluorene                | 0.0996 | 0.0954 | 0.0833 | 0.0833 | 120 | 115   | 59 - 127 | 4   | 15    |       |
| Phenanthrene            | 0.0968 | 0.0921 | 0.0833 | 0.0833 | 116 | 111   | 58 - 124 | 5   | 15    |       |
| Anthracene              | 0.0973 | 0.0910 | 0.0833 | 0.0833 | 117 | 109   | 64 - 128 | 7   | 15    |       |
| Fluoranthene            | 0.104  | 0.0907 | 0.0833 | 0.0833 | 125 | 109   | 63 - 128 | 14  | 15    |       |
| Pyrene                  | 0.101  | 0.0961 | 0.0833 | 0.0833 | 121 | 115   | 62 - 129 | 5   | 15    |       |
| Benzo[a]anthracene      | 0.100  | 0.0977 | 0.0833 | 0.0833 | 120 | 117   | 64 - 138 | 2   | 15    |       |
| Chrysene                | 0.0976 | 0.0920 | 0.0833 | 0.0833 | 117 | 110   | 63 - 128 | 6   | 15    |       |
| Benzo[b]fluoranthene    | 0.0957 | 0.0958 | 0.0833 | 0.0833 | 115 | 115   | 62 - 129 | 0   | 15    |       |
| Benzo(j,k)fluoranthene  | 0.0970 | 0.0859 | 0.0833 | 0.0833 | 116 | 103   | 59 - 134 | 12  | 16    |       |
| Benzo[a]pyrene          | 0.0991 | 0.0944 | 0.0833 | 0.0833 | 119 | 113   | 63 - 132 | 5   | 15    |       |
| Indeno(1,2,3-c,d)pyrene | 0.101  | 0.0923 | 0.0833 | 0.0833 | 121 | 111   | 58 - 132 | 9   | 15    |       |
| Dibenz[a,h]anthracene   | 0.0975 | 0.0925 | 0.0833 | 0.0833 | 117 | 111   | 60 - 130 | 5   | 15    |       |
| Benzo[g,h,i]perylene    | 0.0958 | 0.0919 | 0.0833 | 0.0833 | 115 | 110   | 61 - 129 | 4   | 15    |       |
| Surrogate:              |        |        |        |        |     |       |          |     |       |       |
| 2-Fluorobiphenyl        |        |        |        |        | 91  | 92    | 41 - 114 |     |       |       |
| Pyrene-d10              |        |        |        |        | 105 | 93    | 39 - 115 |     |       |       |
| Terphenyl-d14           |        |        |        |        | 95  | 91    | 44 - 125 |     |       |       |



## **% MOISTURE**

|            |           |            | Date     |
|------------|-----------|------------|----------|
| Client ID  | Lab ID    | % Moisture | Analyzed |
| FB-20-12-0 | 02-076-01 | 11         | 2-9-22   |
| FB-20-15.0 | 02-076-02 | 14         | 2-9-22   |
| FB-20-17.0 | 02-076-03 | 25         | 2-9-22   |
| FB-21-3.0  | 02-076-06 | 18         | 2-9-22   |



#### **Data Qualifiers and Abbreviations**

- A Due to a high sample concentration, the amount spiked is insufficient for meaningful MS/MSD recovery data.
- B The analyte indicated was also found in the blank sample.
- C The duplicate RPD is outside control limits due to high result variability when analyte concentrations are within five times the quantitation limit.
- E The value reported exceeds the quantitation range and is an estimate.
- F Surrogate recovery data is not available due to the high concentration of coeluting target compounds.
- H The analyte indicated is a common laboratory solvent and may have been introduced during sample preparation, and be impacting the sample result.
- I Compound recovery is outside of the control limits.
- J The value reported was below the practical quantitation limit. The value is an estimate.
- K Sample duplicate RPD is outside control limits due to sample inhomogeneity. The sample was re-extracted and re-analyzed with similar results.
- L The RPD is outside of the control limits.
- M Hydrocarbons in the gasoline range are impacting the diesel range result.
- M1 Hydrocarbons in the gasoline range (toluene-naphthalene) are present in the sample.
- N Hydrocarbons in the lube oil range are impacting the diesel range result.
- N1 Hydrocarbons in diesel range are impacting lube oil range results.
- O Hydrocarbons indicative of heavier fuels are present in the sample and are impacting the gasoline result.
- P The RPD of the detected concentrations between the two columns is greater than 40.
- Q Surrogate recovery is outside of the control limits.
- S Surrogate recovery data is not available due to the necessary dilution of the sample.
- T The sample chromatogram is not similar to a typical .
- U The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- U1 The practical quantitation limit is elevated due to interferences present in the sample.
- V Matrix Spike/Matrix Spike Duplicate recoveries are outside control limits due to matrix effects.
- W Matrix Spike/Matrix Spike Duplicate RPD are outside control limits due to matrix effects.
- X Sample extract treated with a mercury cleanup procedure.
- X1- Sample extract treated with a sulfuric acid/silica gel cleanup procedure.
- Y The calibration verification for this analyte exceeded the 20% drift specified in methods 8260 & 8270, and therefore the reported result should be considered an estimate. The overall performance of the calibration verification standard met the acceptance criteria of the method.
- Y1 Negative effects of the matrix from this sample on the instrument caused values for this analyte in the bracketing continuing calibration verification standard (CCVs) to be outside of 20% acceptance criteria. Because of this, quantitation limits and sample concentrations should be considered estimates.

Z -

ND - Not Detected at PQL

PQL - Practical Quantitation Limit

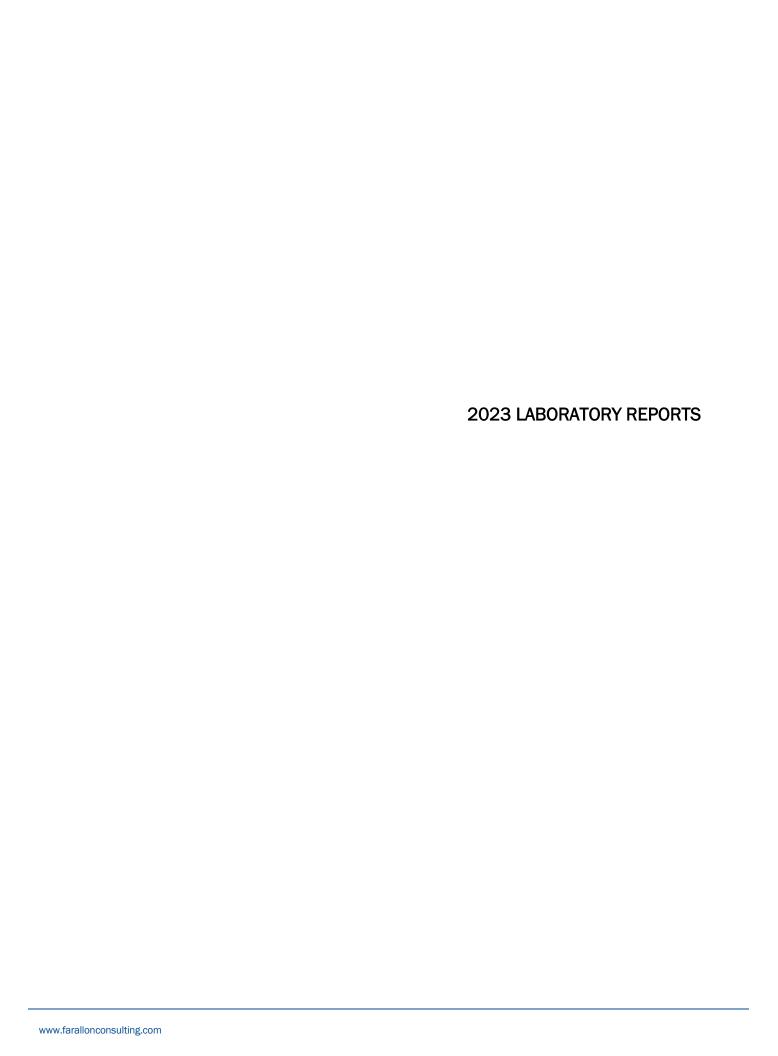
RPD - Relative Percent Difference





# **Chain of Custody**

Page / of 2


| Reviewed/Date                                                         | Received                                      | Relinquished | Received DI Culling | Relinquished | Received   | Relinquished | Signature                     | 10 FMW-154-10.0 | 9 FMW-154-50 | 8 73-21-100 | 7 76-21 - 500 | 6 B31-30 | 5 12-10-250 | 4 BW-20 | 3 Br 20-170 | 2 16-20-15-0 | 1 78-20-12-0 | Lab ID Sample Identification                                                 | Sampled by: S. Les                                                             | Project Manager: L. L.                               | Project Name: 37 -019 | Company: Twalker. | Analytical Laboratory Testing Services 14648 NE 95th Street • Redmond, WA 98052 Phone: (425) 883-3881 • www.onsite-env.com |
|-----------------------------------------------------------------------|-----------------------------------------------|--------------|---------------------|--------------|------------|--------------|-------------------------------|-----------------|--------------|-------------|---------------|----------|-------------|---------|-------------|--------------|--------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------|-----------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------|
| Reviewed/Date                                                         |                                               |              |                     | Nam sp       | ow Spl     | tavall       | Company                       | D 1270          | 0001         | 1/05        | 100           | 1045     | 940         | 930     | 925         | 970          | 2/4/2 910    | Date Time<br>Sampled Sampled                                                 | (other)                                                                        | K Standard (7 Days)                                  | 2 Days                | Same Day          | Turr<br>(in                                                                                                                |
|                                                                       |                                               |              | 80                  | 7            | 2          | 2            | D,                            | 2               | C.           |             |               | _        | N           | Vi      | N           | ~            | 5 (105       | NWTP                                                                         | er of Conta                                                                    |                                                      | 3 Days                | ] 1 Day           |                                                                                                                            |
|                                                                       |                                               |              | 17/22 1015          | 17/22/1015   | 17/22 0837 | 16/22 15%    | Date Time                     |                 |              |             |               |          |             |         | ×           | ×            | ×            | NWTP<br>NWTP<br>Volatil                                                      | H-Gx H-Dx (Acid es 8260 enated Vola                                            | / SG Cle                                             | an-up ☐               | ).                | Laboratory Number:                                                                                                         |
| Chromatograms with final report   Electronic Data Deliverables (EDDs) | Data Package: Standard   Level III   Level IV |              |                     |              |            |              | Comments/Special Instructions | X               | X            | ×           | × .           | ×        | ×           | ×       | ××          |              |              | Semiv (with la PAHs and PCBs Organ Chlorin Total F Total N TCLP HEM (a PAHs) | ochlorine Prophosphorumated Acid II RCRA Metal MTCA Metal Metals bill and grea | 0/SIM Hs) ow-level) esticides us Pestic Herbicides s | 8081<br>des 8270      | D/SIM             | er: 02-076                                                                                                                 |



# **Chain of Custody**

Page 0 of V

| Reviewed/Date                             | Received       | Relinquished | Received | Relinquished | Received | Relinquished | Signature                     | 20 mw 157- 400 | 19 Frust 157 - 35.0 | 18 mu 157 - 20-0 | 17 Mur 186 - 200 | 16 FMW 156 - 15.0 | 15 FMW- 156 - 10.0 | 14 Fm-135-150 | 13 FMV-185-100 | 12 FMW-155- 5:0 | 11 FBNW-184-1500 | Lab ID Sample Identification | Sampled by: 6-Refers | Project Manager: Sway Stumpt | Project Name: Block 38 West | Project Number: 397019 | Company: Foresther | Analytical Laboratory Testing Services  14648 NE 95th Street • Redmond, WA 98052  Phone: (425) 883-3881 • www.onsite-env.com |
|-------------------------------------------|----------------|--------------|----------|--------------|----------|--------------|-------------------------------|----------------|---------------------|------------------|------------------|-------------------|--------------------|---------------|----------------|-----------------|------------------|------------------------------|----------------------|------------------------------|-----------------------------|------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------|
|                                           |                |              |          | Ì            |          |              | 0                             | +              |                     |                  |                  |                   |                    |               |                |                 | 2/5/22           | Date<br>Sampled              |                      |                              | X Sta                       | 2 Days                 | Sar                |                                                                                                                              |
| Reviewed/Date                             |                | (            | 8        | OI_          | S        | terra        | Company                       | cast           | 1450                | ehh              | 1410             | 1403              | 1400               | 136           | 1310           | 1300            | 1240             | Time<br>Sampled              | (other)              |                              | X Standard (7 Days)         | ays                    | Same Day           | (in working days)                                                                                                            |
| ate                                       |                |              |          | 1            |          | Man          |                               | +              |                     |                  |                  |                   |                    |               |                | _               | Soil             | Matrix                       |                      |                              |                             | 3 Days                 | 1 Day              | quest<br>ays)                                                                                                                |
|                                           |                |              |          | 1            |          |              |                               |                |                     |                  |                  |                   |                    |               |                |                 | N                |                              |                      | ontaine                      | rs                          |                        |                    |                                                                                                                              |
|                                           |                | -            | 2        | 2)           | 2        | N            | Date                          |                |                     |                  |                  |                   |                    |               |                |                 |                  |                              | H-HCIE<br>H-Gx/B     | TEX (80                      | )21∏ 82                     | 260 🗆 )                |                    | Lab                                                                                                                          |
|                                           |                | 7            | 7/2      | 7            | 7        | 16/2         | te                            |                |                     |                  |                  |                   |                    |               |                |                 |                  | NWTP                         |                      |                              |                             |                        |                    | Laboratory N                                                                                                                 |
|                                           |                |              | 3        | 25           | 4        | 12           |                               |                |                     |                  |                  |                   |                    |               |                |                 |                  | NWTP                         | H-Dx (A              | Acid / S0                    | G Clean                     | -up [])                |                    | topy                                                                                                                         |
|                                           |                |              | <u> </u> |              | 0        | 72           | Time                          |                |                     |                  |                  |                   |                    |               |                |                 |                  | Volatile                     | es 8260              |                              |                             |                        |                    | N                                                                                                                            |
|                                           |                | 9            | 7        | 2            | 83       | 022          |                               |                |                     |                  |                  |                   |                    |               |                |                 |                  | Haloge                       | enated \             | /olatiles                    | 8260                        |                        |                    | umber:                                                                                                                       |
| _                                         |                |              |          |              | 1        |              |                               |                |                     |                  |                  |                   |                    |               |                |                 |                  |                              |                      | 1 (Water                     |                             |                        |                    | er:                                                                                                                          |
| Chron                                     | Data F         |              |          |              |          |              | Comn                          |                |                     |                  |                  |                   |                    |               |                |                 |                  | (with lo                     | w-leve               |                              |                             |                        |                    | 00                                                                                                                           |
| natogr                                    | Data Package:  |              |          |              |          |              | nents/                        |                |                     |                  |                  |                   |                    |               |                |                 |                  | PCBs (                       |                      | M (low-l                     | level)                      |                        |                    | I                                                                                                                            |
| ams v                                     |                |              |          |              |          |              | Speci                         |                |                     |                  |                  |                   |                    |               |                |                 |                  |                              |                      | e Pestic                     | cides 80                    | 81                     |                    | 0                                                                                                                            |
| Chromatograms with final report ☐         | Standard       |              |          |              |          |              | Comments/Special Instructions |                |                     |                  |                  |                   |                    |               |                |                 |                  | Organo                       | phosph               | norus Pe                     | esticide                    | s 8270/                | SIM                | 6                                                                                                                            |
| nal rep                                   | urd            |              |          |              |          |              | ructio                        |                |                     |                  |                  |                   |                    |               |                |                 |                  | Chlorin                      | nated Ad             | cid Herb                     | oicides 8                   | 3151                   |                    |                                                                                                                              |
| ğ                                         |                |              |          |              |          |              | ns                            |                |                     |                  |                  |                   |                    |               |                |                 |                  | Total R                      | CRA M                | etals                        |                             |                        |                    |                                                                                                                              |
| Πl                                        | Lev            |              |          |              |          |              |                               |                |                     |                  |                  |                   |                    |               |                |                 |                  | Total M                      | ITCA M               | etals                        |                             |                        |                    |                                                                                                                              |
|                                           | Level III      |              |          |              |          |              |                               |                |                     | -                | _                |                   | _                  |               |                |                 |                  |                              |                      |                              |                             |                        |                    |                                                                                                                              |
|                                           |                |              |          |              |          |              |                               |                |                     |                  |                  |                   |                    |               |                |                 |                  | TCLP N                       | 02-14-1401           |                              |                             |                        |                    |                                                                                                                              |
|                                           |                |              |          |              |          |              |                               | 15-            |                     |                  |                  |                   |                    |               |                |                 | _                | HEM (c                       | oil and g            | grease) 1                    | 1664                        |                        |                    |                                                                                                                              |
|                                           | =              |              |          |              |          |              |                               | 1              |                     |                  |                  |                   |                    |               |                |                 | ×                |                              | oil and g            | grease) 1                    | 1664                        |                        |                    |                                                                                                                              |
|                                           | III   Level IV |              |          |              |          |              |                               | 1              |                     |                  |                  |                   |                    |               |                |                 | ×                | HEM (c                       | oil and g            | grease) 1                    | 1664                        |                        |                    |                                                                                                                              |
| t 🗌 Electronic Data Deliverables (EDDs) 🗌 | III   Level IV |              |          |              |          |              |                               | 15             |                     |                  |                  |                   |                    |               |                |                 | ×                | HEM (c                       | oil and g            | grease) 1                    | 1664                        |                        |                    |                                                                                                                              |





#### **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Thursday, May 25, 2023 Suzy Stumpf Farallon-Seattle 1809 7th Ave Suite 1111 Seattle, WA 98101

RE: A3E1048 - 397-019 Block 38 West - 397-019

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A3E1048, which was received by the laboratory on 5/4/2023 at 10:58:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: mpoquiz@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Default Cooler 3.2 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.





Apex Laboratories



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1048 - 05 25 23 1102

## ANALYTICAL REPORT FOR SAMPLES

|                  | SAMPLE INFO   | RMATION |                |                |
|------------------|---------------|---------|----------------|----------------|
| Client Sample ID | Laboratory ID | Matrix  | Date Sampled   | Date Received  |
| FMW-163-20.0     | A3E1048-01    | Soil    | 05/01/23 12:40 | 05/04/23 10:58 |
| FMW-163-15.0     | A3E1048-02    | Soil    | 05/01/23 12:50 | 05/04/23 10:58 |
| FMW-161-20.0     | A3E1048-05    | Soil    | 05/03/23 10:40 | 05/04/23 10:58 |
| FMW-161-15.0     | A3E1048-06    | Soil    | 05/03/23 10:47 | 05/04/23 10:58 |

Apex Laboratories



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1048 - 05 25 23 1102

# ANALYTICAL SAMPLE RESULTS

|                               | Die              | esel and/or O      | il Hydrocar        | bons by NWTPI    | H-Dx     |                  |             |       |
|-------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|-------------|-------|
| Analyte                       | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| FMW-163-20.0 (A3E1048-01)     |                  |                    |                    | Matrix: Soil     |          | Batch:           | 23E0443     |       |
| Diesel                        | ND               | 11.6               | 23.1               | mg/kg dry        | 1        | 05/10/23 21:15   | NWTPH-Dx    |       |
| Oil                           | ND               | 23.1               | 46.2               | mg/kg dry        | 1        | 05/10/23 21:15   | NWTPH-Dx    |       |
| Surrogate: o-Terphenyl (Surr) |                  | Reco               | very: 79 %         | Limits: 50-150 % | 1        | 05/10/23 21:15   | NWTPH-Dx    |       |
| FMW-163-15.0 (A3E1048-02)     |                  |                    |                    | Matrix: Soil     |          | Batch:           | 23E0443     |       |
| Diesel                        | ND               | 12.1               | 24.1               | mg/kg dry        | 1        | 05/10/23 21:55   | NWTPH-Dx    |       |
| Oil                           | ND               | 24.1               | 48.3               | mg/kg dry        | 1        | 05/10/23 21:55   | NWTPH-Dx    |       |
| Surrogate: o-Terphenyl (Surr) |                  | Reco               | very: 82 %         | Limits: 50-150 % | 1        | 05/10/23 21:55   | NWTPH-Dx    |       |
| FMW-161-20.0 (A3E1048-05)     |                  |                    |                    | Matrix: Soil     |          | Batch:           | 23E0443     |       |
| Diesel                        | ND               | 13.3               | 26.6               | mg/kg dry        | 1        | 05/10/23 22:15   | NWTPH-Dx    |       |
| Oil                           | 71.6             | 26.6               | 53.3               | mg/kg dry        | 1        | 05/10/23 22:15   | NWTPH-Dx    | F-13  |
| Surrogate: o-Terphenyl (Surr) |                  | Reco               | very: 85 %         | Limits: 50-150 % | 1        | 05/10/23 22:15   | NWTPH-Dx    |       |
| FMW-161-15.0 (A3E1048-06)     |                  |                    |                    | Matrix: Soil     |          | Batch:           | 23E0443     |       |
| Diesel                        | ND               | 12.0               | 24.0               | mg/kg dry        | 1        | 05/10/23 22:56   | NWTPH-Dx    |       |
| Oil                           | ND               | 24.0               | 48.1               | mg/kg dry        | 1        | 05/10/23 22:56   | NWTPH-Dx    |       |
| Surrogate: o-Terphenyl (Surr) |                  | Reco               | very: 93 %         | Limits: 50-150 % | 1        | 05/10/23 22:56   | NWTPH-Dx    |       |

Apex Laboratories



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1048 - 05 25 23 1102

# ANALYTICAL SAMPLE RESULTS

|                                   | Selected | Semivolatile O | rganic C  | ompounds by E    | PA 8270  | E              |             |         |
|-----------------------------------|----------|----------------|-----------|------------------|----------|----------------|-------------|---------|
|                                   | Sample   |                | Reporting |                  |          | Date           |             |         |
| Analyte                           | Result   | Limit          | Limit     | Units            | Dilution | Analyzed       | Method Ref. | Notes   |
| FMW-163-20.0 (A3E1048-01RE2)      |          |                |           | Matrix: Soil     |          | Batch:         | 23E0546     |         |
| Benz(a)anthracene                 | ND       | 0.00154        | 0.00309   | mg/kg dry        | 1        | 05/15/23 15:00 | EPA 8270E   |         |
| Benzo(a)pyrene                    | ND       | 0.00231        | 0.00462   | mg/kg dry        | 1        | 05/15/23 15:00 | EPA 8270E   |         |
| Benzofluoranthenes (Total)        | ND       | 0.00693        | 0.0139    | mg/kg dry        | 1        | 05/15/23 15:00 | EPA 8270E   |         |
| Chrysene                          | ND       | 0.00154        | 0.00309   | mg/kg dry        | 1        | 05/15/23 15:00 | EPA 8270E   |         |
| Dibenz(a,h)anthracene             | ND       | 0.00154        | 0.00309   | mg/kg dry        | 1        | 05/15/23 15:00 | EPA 8270E   |         |
| Indeno(1,2,3-cd)pyrene            | ND       | 0.00154        | 0.00309   | mg/kg dry        | 1        | 05/15/23 15:00 | EPA 8270E   |         |
| 1-Methylnaphthalene               | ND       | 0.00309        | 0.00616   | mg/kg dry        | 1        | 05/15/23 15:00 | EPA 8270E   |         |
| 2-Methylnaphthalene               | ND       | 0.00309        | 0.00616   | mg/kg dry        | 1        | 05/15/23 15:00 | EPA 8270E   |         |
| Naphthalene                       | 0.00552  | 0.00309        | 0.00616   | mg/kg dry        | 1        | 05/15/23 15:00 | EPA 8270E   | J, Q-37 |
| Surrogate: Nitrobenzene-d5 (Surr) |          | Recovery       | : 96 %    | Limits: 37-122 % | 1        | 05/15/23 15:00 | EPA 8270E   |         |
| 2-Fluorobiphenyl (Surr)           |          |                | 87 %      | 44-120 %         | 1        | 05/15/23 15:00 | EPA 8270E   |         |
| Phenol-d6 (Surr)                  |          |                | 113 %     | 33-122 %         | 1        | 05/15/23 15:00 | EPA 8270E   |         |
| p-Terphenyl-d14 (Surr)            |          |                | 99 %      | 54-127 %         | 1        | 05/15/23 15:00 | EPA 8270E   |         |
| 2-Fluorophenol (Surr)             |          |                | 99 %      | 35-120 %         | 1        | 05/15/23 15:00 | EPA 8270E   |         |
| 2,4,6-Tribromophenol (Surr)       |          |                | 98 %      | 39-132 %         | 1        | 05/15/23 15:00 | EPA 8270E   |         |
| FMW-163-15.0 (A3E1048-02RE1)      |          |                |           | Matrix: Soil     |          | Batch:         | 23E0546     |         |
| Benz(a)anthracene                 | ND       | 0.00158        | 0.00318   | mg/kg dry        | 1        | 05/15/23 16:11 | EPA 8270E   |         |
| Benzo(a)pyrene                    | ND       | 0.00238        | 0.00477   | mg/kg dry        | 1        | 05/15/23 16:11 | EPA 8270E   |         |
| Benzofluoranthenes (Total)        | ND       | 0.00715        | 0.0143    | mg/kg dry        | 1        | 05/15/23 16:11 | EPA 8270E   |         |
| Chrysene                          | ND       | 0.00158        | 0.00318   | mg/kg dry        | 1        | 05/15/23 16:11 | EPA 8270E   |         |
| Dibenz(a,h)anthracene             | ND       | 0.00158        | 0.00318   | mg/kg dry        | 1        | 05/15/23 16:11 | EPA 8270E   |         |
| Indeno(1,2,3-cd)pyrene            | ND       | 0.00158        | 0.00318   | mg/kg dry        | 1        | 05/15/23 16:11 | EPA 8270E   |         |
| 1-Methylnaphthalene               | 0.00789  | 0.00318        | 0.00635   | mg/kg dry        | 1        | 05/15/23 16:11 | EPA 8270E   |         |
| 2-Methylnaphthalene               | 0.00857  | 0.00318        | 0.00635   | mg/kg dry        | 1        | 05/15/23 16:11 | EPA 8270E   |         |
| Naphthalene                       | 0.340    | 0.00318        | 0.00635   | mg/kg dry        | 1        | 05/15/23 16:11 | EPA 8270E   |         |
| Surrogate: Nitrobenzene-d5 (Surr) |          | Recovery       | r: 76 %   | Limits: 37-122 % | 1        | 05/15/23 16:11 | EPA 8270E   |         |
| 2-Fluorobiphenyl (Surr)           |          |                | 65 %      | 44-120 %         | 1        | 05/15/23 16:11 | EPA 8270E   |         |
| Phenol-d6 (Surr)                  |          |                | 94 %      | 33-122 %         | 1        | 05/15/23 16:11 | EPA 8270E   |         |
| p-Terphenyl-d14 (Surr)            |          |                | 71 %      | 54-127 %         | 1        | 05/15/23 16:11 | EPA 8270E   |         |
| 2-Fluorophenol (Surr)             |          |                | 88 %      | 35-120 %         | 1        | 05/15/23 16:11 | EPA 8270E   |         |
| 2,4,6-Tribromophenol (Surr)       |          |                | 71 %      | 39-132 %         | 1        | 05/15/23 16:11 | EPA 8270E   |         |
| FMW-161-20.0 (A3E1048-05RE2)      |          |                |           | Matrix: Soil     |          | Batch:         | 23E0546     |         |
| Benz(a)anthracene                 | 0.00917  | 0.00173        | 0.00348   | mg/kg dry        | 1        | 05/15/23 18:35 | EPA 8270E   |         |

Apex Laboratories



Farallon-Seattle

## ANALYTICAL REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1048 - 05 25 23 1102

# ANALYTICAL SAMPLE RESULTS

|                                   | Selected | Semivolatile O | rganic C  | ompounds by E    | PA 8270  | <u> </u>       |             |       |
|-----------------------------------|----------|----------------|-----------|------------------|----------|----------------|-------------|-------|
|                                   | Sample   |                | Reporting |                  |          | Date           |             |       |
| Analyte                           | Result   | Limit          | Limit     | Units            | Dilution | Analyzed       | Method Ref. | Notes |
| FMW-161-20.0 (A3E1048-05RE2)      |          |                |           | Matrix: Soil     |          | Batch:         | 23E0546     |       |
| Benzo(a)pyrene                    | 0.00987  | 0.00261        | 0.00521   | mg/kg dry        | 1        | 05/15/23 18:35 | EPA 8270E   |       |
| Benzofluoranthenes (Total)        | 0.0165   | 0.00782        | 0.0156    | mg/kg dry        | 1        | 05/15/23 18:35 | EPA 8270E   |       |
| Chrysene                          | 0.0125   | 0.00173        | 0.00348   | mg/kg dry        | 1        | 05/15/23 18:35 | EPA 8270E   |       |
| Dibenz(a,h)anthracene             | 0.00199  | 0.00173        | 0.00348   | mg/kg dry        | 1        | 05/15/23 18:35 | EPA 8270E   | J     |
| Indeno(1,2,3-cd)pyrene            | 0.00884  | 0.00173        | 0.00348   | mg/kg dry        | 1        | 05/15/23 18:35 | EPA 8270E   |       |
| 1-Methylnaphthalene               | ND       | 0.00348        | 0.00695   | mg/kg dry        | 1        | 05/15/23 18:35 | EPA 8270E   |       |
| 2-Methylnaphthalene               | ND       | 0.00348        | 0.00695   | mg/kg dry        | 1        | 05/15/23 18:35 | EPA 8270E   |       |
| Naphthalene                       | 0.0113   | 0.00348        | 0.00695   | mg/kg dry        | 1        | 05/15/23 18:35 | EPA 8270E   |       |
| Surrogate: Nitrobenzene-d5 (Surr) |          | Recovery       | v: 86 %   | Limits: 37-122 % | 1        | 05/15/23 18:35 | EPA 8270E   |       |
| 2-Fluorobiphenyl (Surr)           |          |                | 81 %      | 44-120 %         | 1        | 05/15/23 18:35 | EPA 8270E   |       |
| Phenol-d6 (Surr)                  |          |                | 102 %     | 33-122 %         | 1        | 05/15/23 18:35 | EPA 8270E   |       |
| p-Terphenyl-d14 (Surr)            |          |                | 91 %      | 54-127 %         | 1        | 05/15/23 18:35 | EPA 8270E   |       |
| 2-Fluorophenol (Surr)             |          |                | 93 %      | 35-120 %         | 1        | 05/15/23 18:35 | EPA 8270E   |       |
| 2,4,6-Tribromophenol (Surr)       |          |                | 81 %      | 39-132 %         | I        | 05/15/23 18:35 | EPA 8270E   |       |
| FMW-161-15.0 (A3E1048-06RE2)      |          |                |           | Matrix: Soil     |          | Batch: 2       | 23E0546     |       |
| Benz(a)anthracene                 | ND       | 0.00155        | 0.00311   | mg/kg dry        | 1        | 05/15/23 17:23 | EPA 8270E   |       |
| Benzo(a)pyrene                    | ND       | 0.00233        | 0.00466   | mg/kg dry        | 1        | 05/15/23 17:23 | EPA 8270E   |       |
| Benzofluoranthenes (Total)        | ND       | 0.00700        | 0.0140    | mg/kg dry        | 1        | 05/15/23 17:23 | EPA 8270E   |       |
| Chrysene                          | ND       | 0.00155        | 0.00311   | mg/kg dry        | 1        | 05/15/23 17:23 | EPA 8270E   |       |
| Dibenz(a,h)anthracene             | ND       | 0.00155        | 0.00311   | mg/kg dry        | 1        | 05/15/23 17:23 | EPA 8270E   |       |
| Indeno(1,2,3-cd)pyrene            | ND       | 0.00155        | 0.00311   | mg/kg dry        | 1        | 05/15/23 17:23 | EPA 8270E   |       |
| 1-Methylnaphthalene               | ND       | 0.00311        | 0.00621   | mg/kg dry        | 1        | 05/15/23 17:23 | EPA 8270E   |       |
| 2-Methylnaphthalene               | ND       | 0.00311        | 0.00621   | mg/kg dry        | 1        | 05/15/23 17:23 | EPA 8270E   |       |
| Naphthalene                       | 0.0336   | 0.00311        | 0.00621   | mg/kg dry        | 1        | 05/15/23 17:23 | EPA 8270E   |       |
| Surrogate: Nitrobenzene-d5 (Surr) |          | Recovery       | v: 88 %   | Limits: 37-122 % | 1        | 05/15/23 17:23 | EPA 8270E   |       |
| 2-Fluorobiphenyl (Surr)           |          |                | 83 %      | 44-120 %         | 1        | 05/15/23 17:23 | EPA 8270E   |       |
| Phenol-d6 (Surr)                  |          |                | 96 %      | 33-122 %         | 1        | 05/15/23 17:23 | EPA 8270E   |       |
| p-Terphenyl-d14 (Surr)            |          |                | 88 %      | 54-127 %         | 1        | 05/15/23 17:23 | EPA 8270E   |       |
| 2-Fluorophenol (Surr)             |          |                | 90 %      | 35-120 %         | 1        | 05/15/23 17:23 | EPA 8270E   |       |
| 2,4,6-Tribromophenol (Surr)       |          |                | 96 %      | 39-132 %         | 1        | 05/15/23 17:23 | EPA 8270E   |       |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(milale fog



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1048 - 05 25 23 1102

# ANALYTICAL SAMPLE RESULTS

| Percent Dry Weight        |                  |                    |                    |            |          |                  |                |       |  |  |  |  |  |
|---------------------------|------------------|--------------------|--------------------|------------|----------|------------------|----------------|-------|--|--|--|--|--|
| Analyte                   | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution | Date<br>Analyzed | Method Ref.    | Notes |  |  |  |  |  |
| FMW-163-20.0 (A3E1048-01) |                  |                    |                    | Matrix: So | oil      | Batch:           | 23E0260        |       |  |  |  |  |  |
| % Solids                  | 85.5             | 1.00               | 1.00               | %          | 1        | 05/06/23 14:50   | EPA 8000D      |       |  |  |  |  |  |
| FMW-163-15.0 (A3E1048-02) |                  |                    |                    | Matrix: So | oil      | Batch:           | 23E0260        |       |  |  |  |  |  |
| % Solids                  | 82.5             | 1.00               | 1.00               | %          | 1        | 05/06/23 14:50   | EPA 8000D      |       |  |  |  |  |  |
| FMW-161-20.0 (A3E1048-05) |                  |                    |                    | Matrix: So | oil      | Batch:           | 23E0260        |       |  |  |  |  |  |
| % Solids                  | 74.7             | 1.00               | 1.00               | %          | 1        | 05/06/23 14:50   | EPA 8000D      |       |  |  |  |  |  |
| FMW-161-15.0 (A3E1048-06) |                  |                    |                    | Matrix: So | oil      | Batch:           | Batch: 23E0260 |       |  |  |  |  |  |
| % Solids                  | 82.8             | 1.00               | 1.00               | %          | 1        | 05/06/23 14:50   | EPA 8000D      |       |  |  |  |  |  |

Apex Laboratories



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1048 - 05 25 23 1102

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                               |            | Di                   | iesel and/d        | or Oil Hydr   | ocarbor  | s by NW         | TPH-Dx           |       |                 |     |              |       |
|-------------------------------|------------|----------------------|--------------------|---------------|----------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                       | Result     | Detection L<br>Limit | Reporting<br>Limit | Units         | Dilution | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 23E0443 - EPA 3546 (F   | uels)      |                      |                    |               |          |                 | So               | il    |                 |     |              |       |
| Blank (23E0443-BLK1)          |            |                      | Prepared           | d: 05/10/23 0 | 8:45 Ana | lyzed: 05/10    | /23 20:34        |       |                 |     |              |       |
| NWTPH-Dx                      |            |                      |                    |               |          |                 |                  |       |                 |     |              |       |
| Diesel                        | ND         | 10.0                 | 20.0               | mg/kg we      | t 1      |                 |                  |       |                 |     |              |       |
| Oil                           | ND         | 20.0                 | 40.0               | mg/kg we      | t 1      |                 |                  |       |                 |     |              |       |
| Surr: o-Terphenyl (Surr)      |            | Recov                | very: 100 %        | Limits: 50-   | 150 %    | Dil             | ution: 1x        |       |                 |     |              | _     |
| LCS (23E0443-BS1)             |            |                      | Prepared           | d: 05/10/23 0 | 8:45 Ana | lyzed: 05/10    | /23 20:54        |       |                 |     |              |       |
| NWTPH-Dx                      |            |                      |                    |               |          |                 |                  |       |                 |     |              |       |
| Diesel                        | 104        | 10.0                 | 20.0               | mg/kg we      | t 1      | 125             |                  | 83    | 38-132%         |     |              |       |
| Surr: o-Terphenyl (Surr)      |            | Reco                 | very: 97%          | Limits: 50-   | 150 %    | Dil             | ution: 1x        |       |                 |     |              | _     |
| Duplicate (23E0443-DUP1)      |            |                      | Prepared           | d: 05/10/23 0 | 8:45 Ana | lyzed: 05/10    | /23 21:35        |       |                 |     |              |       |
| QC Source Sample: FMW-163-20  | .0 (A3E104 | 8-01)                |                    |               |          |                 |                  |       |                 |     |              |       |
| NWTPH-Dx                      |            |                      |                    |               |          |                 |                  |       |                 |     |              |       |
| Diesel                        | ND         | 11.6                 | 23.3               | mg/kg dry     | / 1      |                 | ND               |       |                 |     | 30%          |       |
| Oil                           | ND         | 23.3                 | 46.6               | mg/kg dry     | / 1      |                 | ND               |       |                 |     | 30%          |       |
| Surr: o-Terphenyl (Surr)      |            | Reco                 | very: 88 %         | Limits: 50-   | 150 %    | Dil             | ution: 1x        |       |                 |     |              |       |
| Duplicate (23E0443-DUP2)      |            |                      | Prepared           | d: 05/10/23 1 | 8:01 Ana | lyzed: 05/10    | 0/23 23:57       |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A3 | BE1252-02) |                      |                    |               |          |                 |                  |       |                 |     |              |       |
| Diesel                        | ND         | 10.8                 | 21.6               | mg/kg dr      | / 1      |                 | ND               |       |                 |     | 30%          |       |
| Oil                           | ND         | 21.6                 | 43.3               | mg/kg dr      | / 1      |                 | ND               |       |                 |     | 30%          |       |
| Surr: o-Terphenyl (Surr)      |            | Reco                 | very: 64 %         | Limits: 50-   | 150 %    | Dil             | ution: 1x        |       |                 |     |              |       |

Apex Laboratories



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1048 - 05 25 23 1102

# QUALITY CONTROL (QC) SAMPLE RESULTS

| Analyte                      | Result | Detection L<br>Limit | Reporting<br>Limit | Units        | Dilution | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes  |
|------------------------------|--------|----------------------|--------------------|--------------|----------|-----------------|------------------|-------|-----------------|-----|--------------|--------|
|                              | Toball | Lillit               | 2                  |              |          | · ··········    |                  |       | 2               | D   |              | 110103 |
| Batch 23E0546 - EPA 3546     |        |                      |                    |              |          |                 | Soi              | 1     |                 |     |              |        |
| Blank (23E0546-BLK1)         |        |                      | Prepared           | : 05/12/23 0 | 8:03 Ana | lyzed: 05/12/   | /23 18:23        |       |                 |     |              |        |
| EPA 8270E                    |        |                      |                    |              |          |                 |                  |       |                 |     |              |        |
| Benz(a)anthracene            | ND     | 0.00133              | 0.00267            | mg/kg we     |          |                 |                  |       |                 |     |              |        |
| Benzo(a)pyrene               | ND     | 0.00200              | 0.00400            | mg/kg we     |          |                 |                  |       |                 |     |              |        |
| Benzofluoranthenes (Total)   | ND     | 0.00600              | 0.0120             | mg/kg we     |          |                 |                  |       |                 |     |              |        |
| Chrysene                     | ND     | 0.00133              | 0.00267            | mg/kg we     |          |                 |                  |       |                 |     |              |        |
| Dibenz(a,h)anthracene        | ND     | 0.00133              | 0.00267            | mg/kg we     |          |                 |                  |       |                 |     |              |        |
| Indeno(1,2,3-cd)pyrene       | ND     | 0.00133              | 0.00267            | mg/kg we     |          |                 |                  |       |                 |     |              |        |
| 1-Methylnaphthalene          | ND     | 0.00267              | 0.00533            | mg/kg we     |          |                 |                  |       |                 |     |              |        |
| 2-Methylnaphthalene          | ND     | 0.00267              | 0.00533            | mg/kg we     |          |                 |                  |       |                 |     |              |        |
| Naphthalene                  | ND     | 0.00267              | 0.00533            | mg/kg we     | et 1     |                 |                  |       |                 |     |              |        |
| Surr: Nitrobenzene-d5 (Surr) |        | Reco                 | very: 82 %         | Limits: 37-  | 122 %    | Dilı            | ution: 1x        |       |                 |     |              |        |
| 2-Fluorobiphenyl (Surr)      |        |                      | 90 %               | 44-          | 120 %    |                 | "                |       |                 |     |              |        |
| Phenol-d6 (Surr)             |        |                      | 83 %               | 33-          | 122 %    |                 | "                |       |                 |     |              |        |
| p-Terphenyl-d14 (Surr)       |        |                      | 110 %              | 54-          | 127 %    |                 | "                |       |                 |     |              |        |
| 2-Fluorophenol (Surr)        |        |                      | 89 %               | 35-          | 120 %    |                 | "                |       |                 |     |              |        |
| 2,4,6-Tribromophenol (Surr)  |        |                      | 99 %               | 39-          | 132 %    |                 | "                |       |                 |     |              |        |
| LCS (23E0546-BS1)            |        |                      | Prepared           | : 05/12/23 0 | 8:03 Ana | lyzed: 05/12/   | /23 18:57        |       |                 |     |              |        |
| EPA 8270E                    |        |                      |                    |              |          |                 |                  |       |                 |     |              |        |
| Benz(a)anthracene            | 0.546  | 0.00532              | 0.0107             | mg/kg we     | et 4     | 0.533           |                  | 102   | 49-126%         |     |              |        |
| Benzo(a)pyrene               | 0.521  | 0.00800              | 0.0160             | mg/kg we     | et 4     | 0.533           |                  | 98    | 45-129%         |     |              |        |
| Benzo(b)fluoranthene         | 0.540  | 0.00800              | 0.0160             | mg/kg we     | et 4     | 0.533           |                  | 101   | 45-132%         |     |              |        |
| Benzo(k)fluoranthene         | 0.534  | 0.00800              | 0.0160             | mg/kg we     | et 4     | 0.533           |                  | 100   | 47-132%         |     |              |        |
| Chrysene                     | 0.545  | 0.00532              | 0.0107             | mg/kg we     | et 4     | 0.533           |                  | 102   | 50-124%         |     |              |        |
| Dibenz(a,h)anthracene        | 0.539  | 0.00532              | 0.0107             | mg/kg we     | et 4     | 0.533           |                  | 101   | 45-134%         |     |              |        |
| Indeno(1,2,3-cd)pyrene       | 0.517  | 0.00532              | 0.0107             | mg/kg we     | et 4     | 0.533           |                  | 97    | 45-133%         |     |              |        |
| 1-Methylnaphthalene          | 0.551  | 0.0107               | 0.0213             | mg/kg we     | et 4     | 0.533           |                  | 103   | 40-120%         |     |              |        |
| 2-Methylnaphthalene          | 0.575  | 0.0107               | 0.0213             | mg/kg we     | t 4      | 0.533           |                  | 108   | 38-122%         |     |              |        |
| Naphthalene                  | 0.528  | 0.0107               | 0.0213             | mg/kg we     |          | 0.533           |                  | 99    | 35-123%         |     |              |        |
| Surr: Nitrobenzene-d5 (Surr) |        | Reco                 | very: 84 %         | Limits: 37-  | 122 %    | Dilı            | ution: 4x        |       |                 |     |              |        |
| 2-Fluorobiphenyl (Surr)      |        |                      | 97%                | 44-          | 120 %    |                 | "                |       |                 |     |              |        |
| Phenol-d6 (Surr)             |        |                      | 90 %               | 33-          | 122 %    |                 | "                |       |                 |     |              |        |
| p-Terphenyl-d14 (Surr)       |        |                      | 116 %              | 54-          | 127 %    |                 | "                |       |                 |     |              |        |
| 2-Fluorophenol (Surr)        |        |                      | 99 %               | 35           | 120 %    |                 | "                |       |                 |     |              |        |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(milale fog



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1048 - 05 25 23 1102

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                   |           | Selecte              | d Semivola         | atile Orga   | nic Com   | pounds b        | y EPA 82         | 270E  |                 |     |              |      |     |
|-----------------------------------|-----------|----------------------|--------------------|--------------|-----------|-----------------|------------------|-------|-----------------|-----|--------------|------|-----|
| Analyte                           | Result    | Detection L<br>Limit | Reporting<br>Limit | Units        | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Not  | es  |
| Batch 23E0546 - EPA 3546          |           |                      |                    |              |           |                 | Soi              | I     |                 |     |              |      |     |
| LCS (23E0546-BS1)                 |           |                      | Prepared           | : 05/12/23 ( | 08:03 Ana | lyzed: 05/12    | 2/23 18:57       |       |                 |     |              |      |     |
| Surr: 2,4,6-Tribromophenol (Surr) |           | Recov                | ery: 120 %         | Limits: 39   | -132 %    | Dil             | lution: 4x       |       |                 |     |              |      |     |
| Duplicate (23E0546-DUP3)          |           |                      | Prepared           | : 05/12/23 ( | 08:03 Ana | lyzed: 05/15    | 5/23 15:35       |       |                 |     |              |      |     |
| QC Source Sample: FMW-163-20.     | 0 (A3E104 | 8-01RE2)             |                    |              |           |                 |                  |       |                 |     |              |      |     |
| <u>EPA 8270E</u>                  |           |                      |                    |              |           |                 |                  |       |                 |     |              |      |     |
| Benz(a)anthracene                 | ND        | 0.00153              | 0.00307            | mg/kg dr     | •         |                 | ND               |       |                 |     | 30%          |      |     |
| Benzo(a)pyrene                    | ND        | 0.00230              | 0.00460            | mg/kg dr     | y 1       |                 | ND               |       |                 |     | 30%          |      |     |
| Benzofluoranthenes (Total)        | ND        | 0.00689              | 0.0138             | mg/kg dr     | y 1       |                 | ND               |       |                 |     | 30%          |      |     |
| Chrysene                          | ND        | 0.00153              | 0.00307            | mg/kg dr     | y 1       |                 | ND               |       |                 |     | 30%          |      |     |
| Dibenz(a,h)anthracene             | ND        | 0.00153              | 0.00307            | mg/kg dr     | y 1       |                 | ND               |       |                 |     | 30%          |      |     |
| Indeno(1,2,3-cd)pyrene            | ND        | 0.00153              | 0.00307            | mg/kg dr     | y 1       |                 | ND               |       |                 |     | 30%          |      |     |
| 1-Methylnaphthalene               | ND        | 0.00307              | 0.00612            | mg/kg dr     | y 1       |                 | ND               |       |                 |     | 30%          |      |     |
| 2-Methylnaphthalene               | ND        | 0.00307              | 0.00612            | mg/kg dr     | y 1       |                 | ND               |       |                 |     | 30%          |      |     |
| Naphthalene                       | 0.0167    | 0.00307              | 0.00612            | mg/kg dr     | y 1       |                 | 0.00552          |       |                 | 100 | 30%          |      | Q-0 |
| Surr: Nitrobenzene-d5 (Surr)      |           | Recove               | ery: 107 %         | Limits: 37   | -122 %    | Dil             | lution: 1x       |       |                 |     |              |      |     |
| 2-Fluorobiphenyl (Surr)           |           |                      | 84 %               | 44-          | 120 %     |                 | "                |       |                 |     |              |      |     |
| Phenol-d6 (Surr)                  |           |                      | 130 %              | 33-          | 122 %     |                 | "                |       |                 |     |              | S-03 |     |
| p-Terphenyl-d14 (Surr)            |           |                      | 94 %               | 54-          | 127 %     |                 | "                |       |                 |     |              |      |     |
| 2-Fluorophenol (Surr)             |           |                      | 107 %              | 35-          | 120 %     |                 | "                |       |                 |     |              |      |     |
| 2,4,6-Tribromophenol (Surr)       |           |                      | 94 %               | 39-          | -132 %    |                 | "                |       |                 |     |              |      |     |
| Matrix Spike (23E0546-MS1)        |           |                      | Prepared           | : 05/12/23 ( | 08:03 Ana | lyzed: 05/15    | 5/23 12:36       |       |                 |     |              |      |     |
| QC Source Sample: FMW-161-15.     | 0 (A3E104 | 8-06RE2)             |                    |              |           |                 |                  |       |                 |     |              |      |     |
| EPA 8270E                         |           |                      |                    |              |           |                 |                  |       |                 |     |              |      |     |
| Benz(a)anthracene                 | 0.602     | 0.00633              | 0.0127             | mg/kg dr     | y 4       | 0.634           | ND               | 95    | 49-126%         |     |              |      |     |
| Benzo(a)pyrene                    | 0.575     | 0.00951              | 0.0190             | mg/kg dr     | y 4       | 0.634           | ND               | 91    | 45-129%         |     |              |      |     |
| Benzo(b)fluoranthene              | 0.565     | 0.00951              | 0.0190             | mg/kg dr     | y 4       | 0.634           | ND               | 89    | 45-132%         |     |              |      |     |
| Benzo(k)fluoranthene              | 0.598     | 0.00951              | 0.0190             | mg/kg dr     | y 4       | 0.634           | ND               | 94    | 47-132%         |     |              |      |     |
| Chrysene                          | 0.607     | 0.00633              | 0.0127             | mg/kg dr     | y 4       | 0.634           | ND               | 96    | 50-124%         |     |              |      |     |
| Dibenz(a,h)anthracene             | 0.611     | 0.00633              | 0.0127             | mg/kg dr     | y 4       | 0.634           | ND               | 96    | 45-134%         |     |              |      |     |
| Indeno(1,2,3-cd)pyrene            | 0.575     | 0.00633              | 0.0127             | mg/kg dr     | y 4       | 0.634           | ND               | 91    | 45-133%         |     |              |      |     |
| 1-Methylnaphthalene               | 0.595     | 0.0127               | 0.0253             | mg/kg dr     | y 4       | 0.634           | ND               | 94    | 40-120%         |     |              |      |     |
| 2-Methylnaphthalene               | 0.629     | 0.0127               | 0.0253             | mg/kg dr     | y 4       | 0.634           | ND               | 99    | 38-122%         |     |              |      |     |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(milale Poq-



#### **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1048 - 05 25 23 1102

# QUALITY CONTROL (QC) SAMPLE RESULTS

#### Selected Semivolatile Organic Compounds by EPA 8270E % REC RPD Detection L Reporting Spike Source Result Units Dilution % REC Limits RPD Analyte Limit Limit Amount Result Limit Notes Batch 23E0546 - EPA 3546 Soil Matrix Spike (23E0546-MS1) Prepared: 05/12/23 08:03 Analyzed: 05/15/23 12:36 QC Source Sample: FMW-161-15.0 (A3E1048-06RE2) 0.0127 0.634 Naphthalene 0.637 0.0253 mg/kg dry 0.0336 35-123% Surr: Nitrobenzene-d5 (Surr) Recovery: 92 % Limits: 37-122 % Dilution: 4x 2-Fluorobiphenyl (Surr) 44-120 % 96%Phenol-d6 (Surr) 102 % 33-122 % p-Terphenyl-d14 (Surr) 102 % 54-127 % 2-Fluorophenol (Surr) 93 % 35-120 % 2,4,6-Tribromophenol (Surr) 39-132 % 106 %

Apex Laboratories



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1048 - 05 25 23 1102

# **QUALITY CONTROL (QC) SAMPLE RESULTS**

|                                 |           |                      |                    | Percen     | t Dry Wei  | ght             |                  |       |                 |      |              |           |
|---------------------------------|-----------|----------------------|--------------------|------------|------------|-----------------|------------------|-------|-----------------|------|--------------|-----------|
| Analyte                         | Result    | Detection L<br>Limit | Reporting<br>Limit | Units      | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD  | RPD<br>Limit | Notes     |
| Batch 23E0260 - Total Solids (I | Ory Weig  | ht) - 2022           |                    |            |            |                 | Soil             |       |                 |      |              |           |
| Duplicate (23E0260-DUP1)        |           |                      | Prepared           | : 05/05/23 | 09:23 Anal | yzed: 05/06     | /23 14:50        |       |                 |      |              | COMP, PRO |
| QC Source Sample: Non-SDG (A3)  | D1502-17) |                      |                    |            |            |                 |                  |       |                 |      |              |           |
| % Solids                        | 96.6      | 1.00                 | 1.00               | %          | 1          |                 | 96.6             |       |                 | 0.01 | 10%          |           |
| Duplicate (23E0260-DUP2)        |           |                      | Prepared           | : 05/05/23 | 09:23 Anal | yzed: 05/06     | /23 14:50        |       |                 |      |              | COMP, PRO |
| QC Source Sample: Non-SDG (A3)  | D1502-18) |                      |                    |            |            |                 |                  |       |                 |      |              |           |
| % Solids                        | 97.1      | 1.00                 | 1.00               | %          | 1          |                 | 97.1             |       |                 | 0.04 | 10%          |           |
| Duplicate (23E0260-DUP3)        |           |                      | Prepared           | : 05/05/23 | 09:23 Anal | yzed: 05/06     | /23 14:50        |       |                 |      |              | COMP, PRO |
| QC Source Sample: Non-SDG (A3)  | D1502-19) |                      |                    |            |            |                 |                  |       |                 |      |              |           |
| % Solids                        | 96.9      | 1.00                 | 1.00               | %          | 1          |                 | 97.0             |       |                 | 0.09 | 10%          |           |

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1048 - 05 25 23 1102

#### SAMPLE PREPARATION INFORMATION

|                                          |        | Diesel an | d/or Oil Hydrocarbor | ns by NWTPH-Dx |               |               |        |  |  |  |  |  |  |
|------------------------------------------|--------|-----------|----------------------|----------------|---------------|---------------|--------|--|--|--|--|--|--|
| Prep: EPA 3546 (Fuels) Sample Default RL |        |           |                      |                |               |               |        |  |  |  |  |  |  |
| Lab Number                               | Matrix | Method    | Sampled              | Prepared       | Initial/Final | Initial/Final | Factor |  |  |  |  |  |  |
| Batch: 23E0443                           |        |           |                      |                |               |               |        |  |  |  |  |  |  |
| A3E1048-01                               | Soil   | NWTPH-Dx  | 05/01/23 12:40       | 05/10/23 08:45 | 10.12g/5mL    | 10g/5mL       | 0.99   |  |  |  |  |  |  |
| A3E1048-02                               | Soil   | NWTPH-Dx  | 05/01/23 12:50       | 05/10/23 08:45 | 10.05g/5mL    | 10g/5mL       | 1.00   |  |  |  |  |  |  |
| A3E1048-05                               | Soil   | NWTPH-Dx  | 05/03/23 10:40       | 05/10/23 08:45 | 10.05g/5mL    | 10g/5mL       | 1.00   |  |  |  |  |  |  |
| A3E1048-06                               | Soil   | NWTPH-Dx  | 05/03/23 10:47       | 05/10/23 08:45 | 10.04g/5mL    | 10g/5mL       | 1.00   |  |  |  |  |  |  |

| Selected Semivolatile Organic Compounds by EPA 8270E |        |           |                |                |               |               |         |
|------------------------------------------------------|--------|-----------|----------------|----------------|---------------|---------------|---------|
| Prep: EPA 3546                                       |        |           |                |                | Sample        | Default       | RL Prep |
| Lab Number                                           | Matrix | Method    | Sampled        | Prepared       | Initial/Final | Initial/Final | Factor  |
| Batch: 23E0546                                       |        |           |                |                |               |               |         |
| A3E1048-01RE2                                        | Soil   | EPA 8270E | 05/01/23 12:40 | 05/12/23 08:03 | 15.18g/2mL    | 15g/2mL       | 0.99    |
| A3E1048-02RE1                                        | Soil   | EPA 8270E | 05/01/23 12:50 | 05/12/23 08:03 | 15.26g/2mL    | 15g/2mL       | 0.98    |
| A3E1048-05RE2                                        | Soil   | EPA 8270E | 05/03/23 10:40 | 05/12/23 08:03 | 15.41g/2mL    | 15g/2mL       | 0.97    |
| A3E1048-06RE2                                        | Soil   | EPA 8270E | 05/03/23 10:47 | 05/12/23 08:03 | 15.53g/2mL    | 15g/2mL       | 0.97    |

| Percent Dry Weight                     |        |           |                |                |               |               |         |
|----------------------------------------|--------|-----------|----------------|----------------|---------------|---------------|---------|
| Prep: Total Solids (Dry Weight) - 2022 |        |           |                |                | Sample        | Default       | RL Prep |
| Lab Number                             | Matrix | Method    | Sampled        | Prepared       | Initial/Final | Initial/Final | Factor  |
| Batch: 23E0260                         |        |           |                |                |               |               |         |
| A3E1048-01                             | Soil   | EPA 8000D | 05/01/23 12:40 | 05/05/23 09:23 |               |               | NA      |
| A3E1048-02                             | Soil   | EPA 8000D | 05/01/23 12:50 | 05/05/23 09:23 |               |               | NA      |
| A3E1048-05                             | Soil   | EPA 8000D | 05/03/23 10:40 | 05/05/23 09:23 |               |               | NA      |
| A3E1048-06                             | Soil   | EPA 8000D | 05/03/23 10:47 | 05/05/23 09:23 |               |               | NA      |
|                                        |        |           |                |                |               |               |         |

Apex Laboratories



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1048 - 05 25 23 1102

# **QUALIFIER DEFINITIONS**

# Client Sample and Quality Control (QC) Sample Qualifier Definitions:

## **Apex Laboratories**

| COMP | Analyzed sample is a composite of discrete samples that was performed in the laboratory.                                                                                                 |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F-13 | The chromatographic pattern does not resemble the fuel standard used for quantitation                                                                                                    |
| J    | Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.                                                                          |
| PRO  | Sample has undergone sample processing prior to extraction and analysis.                                                                                                                 |
| Q-05 | Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.                                                           |
| Q-37 | Sample is non-homogenous. Sample results are less than the Reporting Level (MDL and/or MRL) and Duplicate results exceed this level. See QC Section of the report for Duplicate results. |
| S-03 | Sample re-extract, or the analysis of an associated Batch QC sample, confirms surrogate failure due to sample matrix effect.                                                             |

Apex Laboratories



#### Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1048 - 05 25 23 1102

#### **REPORTING NOTES AND CONVENTIONS:**

#### **Abbreviations:**

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

#### **Detection Limits:** Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

#### Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

#### **Reporting Conventions:**

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"\_\_\_" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

#### **QC Source:**

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

#### Miscellaneous Notes:

" --- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"\*\*\* " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

| A nev | Laha | oratories |
|-------|------|-----------|

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

( milale fog



#### Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1048 - 05 25 23 1102

#### **REPORTING NOTES AND CONVENTIONS (Cont.):**

#### Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

-Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

#### **Preparation Notes:**

#### Mixed Matrix Samples:

#### Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

#### Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

#### **Sampling and Preservation Notes:**

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

| A nev | Laha | oratories |
|-------|------|-----------|



#### **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1048 - 05 25 23 1102

#### LABORATORY ACCREDITATION INFORMATION

# ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

#### **Apex Laboratories**

Matrix Analysis TNI\_ID Analyte TNI\_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

# **Secondary Accreditations**

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

#### **Subcontract Laboratory Accreditations**

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

#### Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1048 - 05 25 23 1102

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(milale fog



# **Apex Laboratories, LLC**

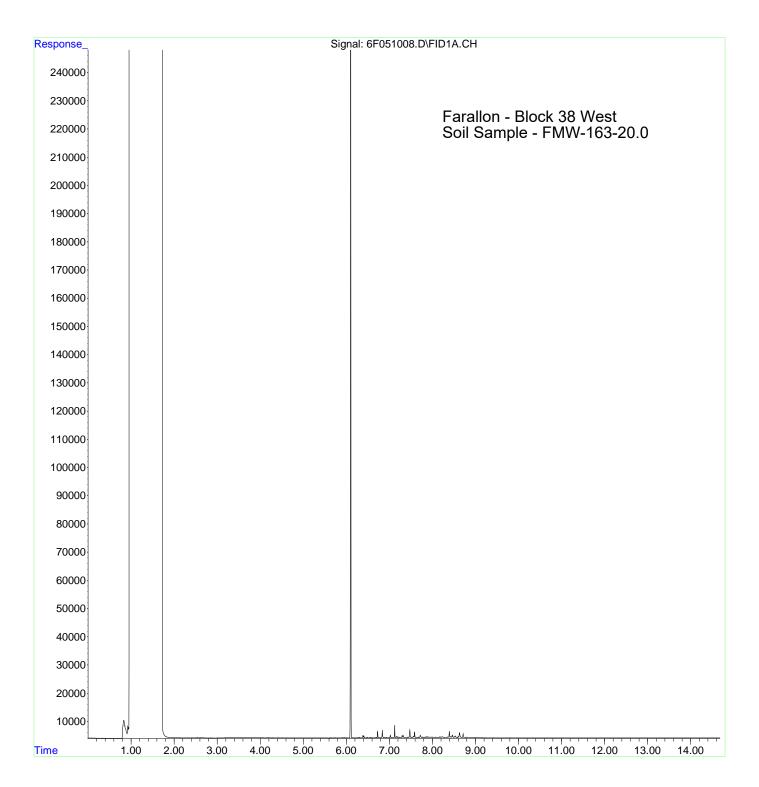
6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1048 - 05 25 23 1102

| APEX LABS COOLER RECEIPT FORM                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Client: Favallon Consulting Element WO#: A3151048                                                                                                                                                                                                                                                                                                       |
| Project/Project #: Block 38 West 397-019                                                                                                                                                                                                                                                                                                                |
| Delivery Info:  Date/time received: 5 /4/23@ //58 By:  Delivered by: Apex_Client_ESS_FedEx_UPS_Radio_Morgan_SDS_Evergreen_Other_  Cooler Inspection Date/time inspected: 5 /4 /2@ ///59 By:  Chain of Custody included? Yes No_ Signed/dated by client? Yes No_ Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7  Temperature (°C) |
| All samples intact? Yes X No Comments:                                                                                                                                                                                                                                                                                                                  |
| Bottle labels/COCs agree? Yes X No Comments:                                                                                                                                                                                                                                                                                                            |
| COC/container discrepancies form initiated? Yes No Containers/volumes received appropriate for analysis? Yes No Comments:                                                                                                                                                                                                                               |
| Do VOA vials have visible headspace? Yes No NA                                                                                                                                                                                                                                                                                                          |
| Additional information: 3978 4132 8860                                                                                                                                                                                                                                                                                                                  |
| Labeled by: Witness: Cooler Inspected by:  Form Y-003 R-00                                                                                                                                                                                                                                                                                              |

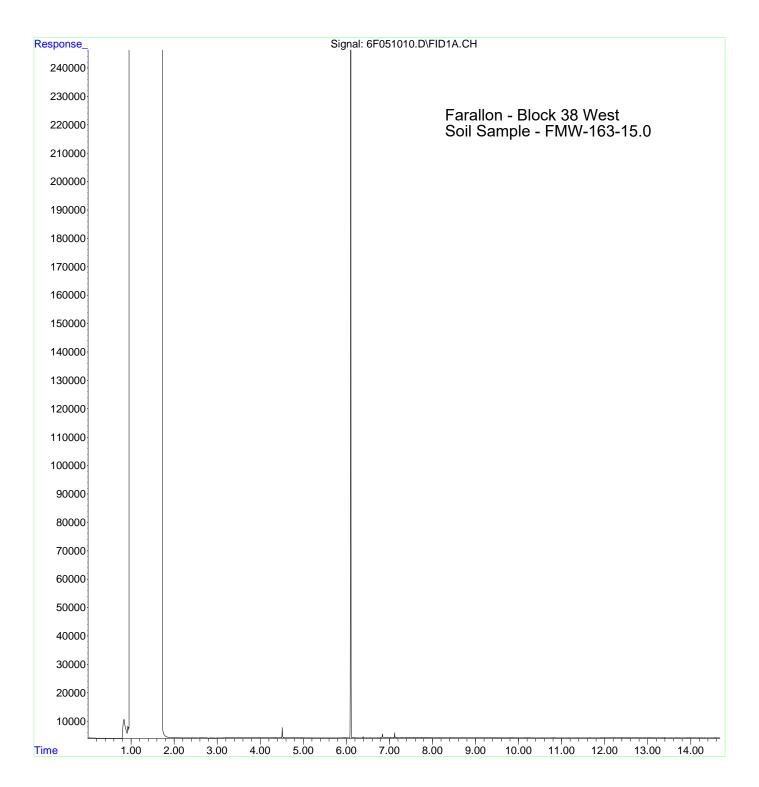

Apex Laboratories

File :M:\DUALFID6\1\DATA\2023-05\3E10058\6F051008.D

Operator : BLL

Acquired : 10 May 2023 9:15 pm using AcqMethod 6F71215A.M

Instrument : HP G1530A
Sample Name: A3E1048-01

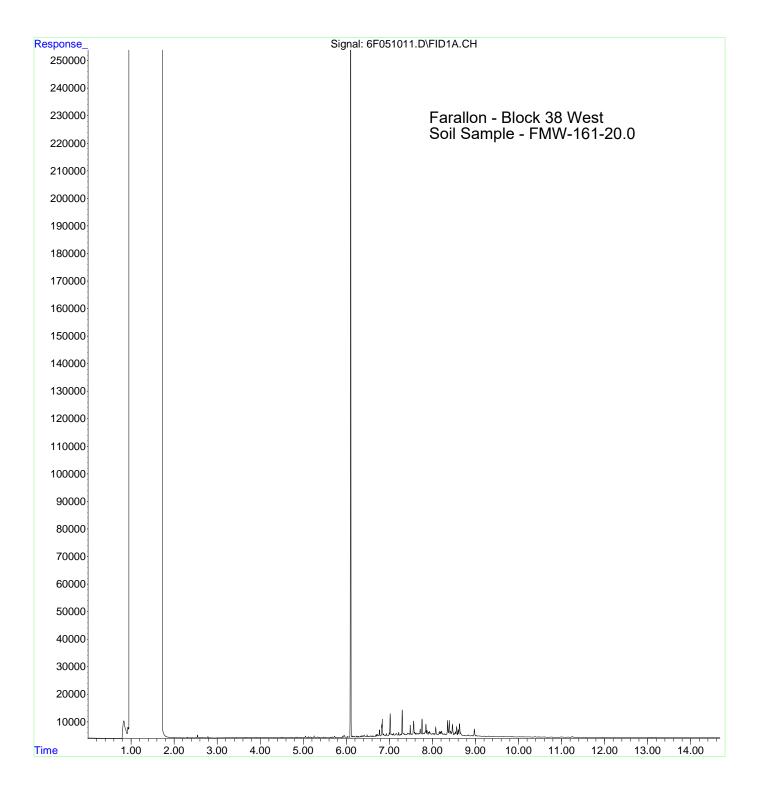



File :M:\DUALFID6\1\DATA\2023-05\3E10058\6F051010.D

Operator : BLL

Acquired : 10 May 2023 9:55 pm using AcqMethod 6F71215A.M

Instrument : HP G1530A
Sample Name: A3E1048-02

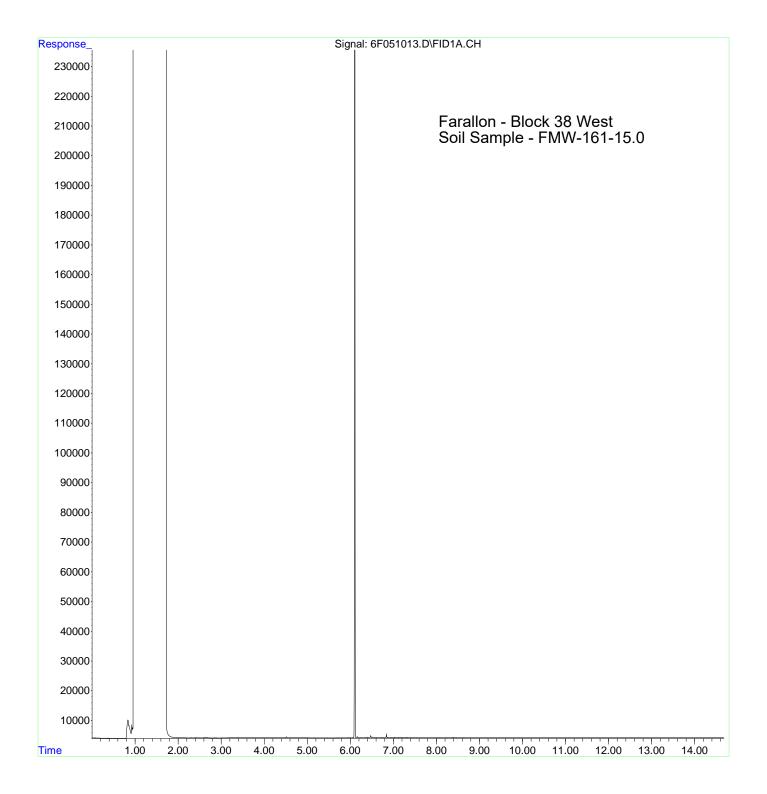



File :M:\DUALFID6\1\DATA\2023-05\3E10058\6F051011.D

Operator : BLL

Acquired : 10 May 2023 10:15 pm using AcqMethod 6F71215A.M

Instrument : HP G1530A
Sample Name: A3E1048-05

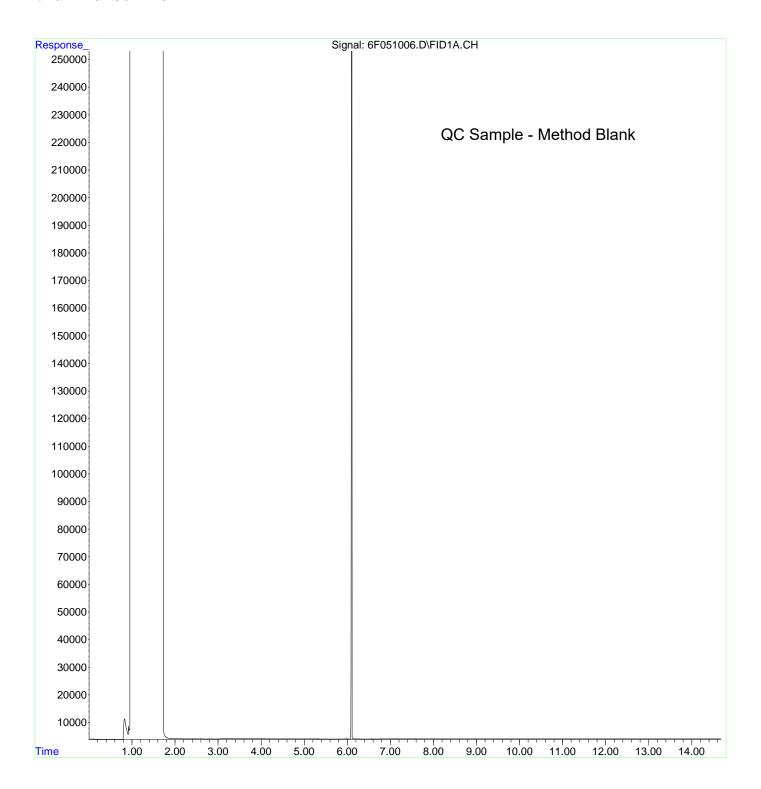



File :M:\DUALFID6\1\DATA\2023-05\3E10058\6F051013.D

Operator : BLL

Acquired: 10 May 2023 10:56 pm using AcqMethod 6F71215A.M

Instrument : HP G1530A
Sample Name: A3E1048-06

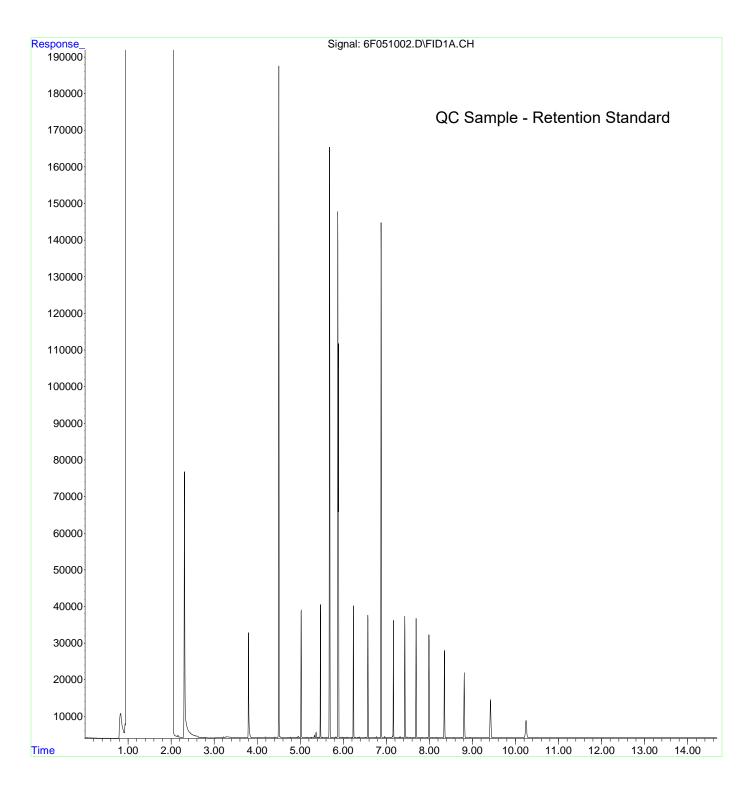



File :M:\DUALFID6\1\DATA\2023-05\3E10058\6F051006.D

Operator : BLL

Acquired : 10 May 2023 8:34 pm using AcqMethod 6F71215A.M

Instrument : HP G1530A
Sample Name: 23E0443-BLK1

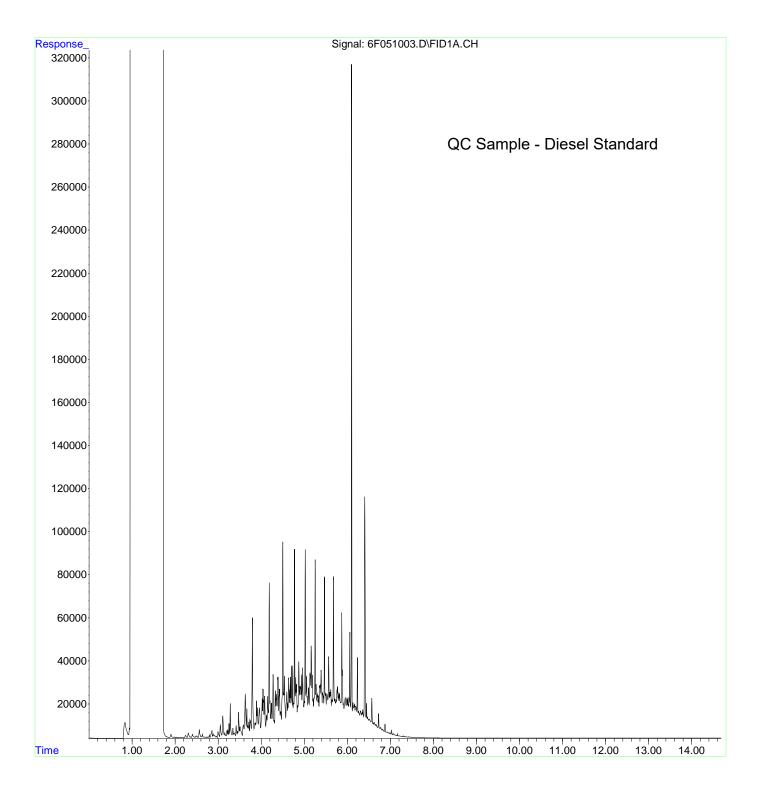



File :M:\DUALFID6\1\DATA\2023-05\3E10058\6F051002.D

Operator : BLL

Acquired : 10 May 2023 1:39 pm using AcqMethod 6F71215A.M

Instrument: HP G1530A Sample Name: 3E10058-RES1

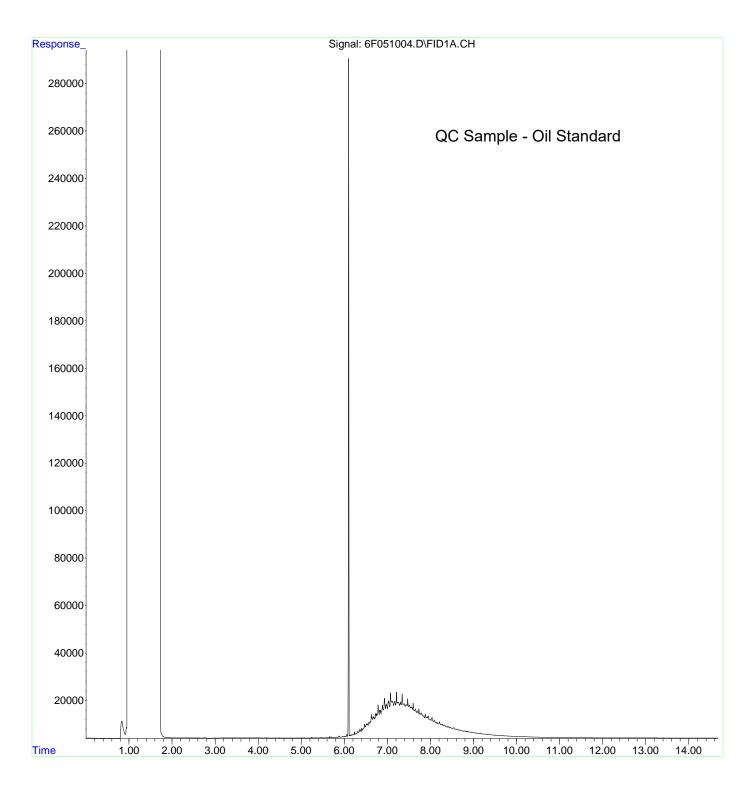



File :M:\DUALFID6\1\DATA\2023-05\3E10058\6F051003.D

Operator : BLL

Acquired : 10 May 2023 1:59 pm using AcqMethod 6F71215A.M

Instrument: HP G1530A Sample Name: 3E10058-CCV1




File :M:\DUALFID6\1\DATA\2023-05\3E10058\6F051004.D

Operator : BLL

Acquired : 10 May 2023 2:20 pm using AcqMethod 6F71215A.M

Instrument : HP G1530A
Sample Name: 3E10058-CCV2





Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Friday, May 26, 2023 Suzy Stumpf Farallon-Seattle 1809 7th Ave Suite 1111 Seattle, WA 98101

RE: A3E1263 - 397-019 Block 38 West - 397-019 Block 38 West

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A3E1263, which was received by the laboratory on 5/10/2023 at 10:36:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: mpoquiz@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

(See Cooler Receipt Form for details)

Default Cooler 2.4 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.





Apex Laboratories



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-SeattleProject:397-019 Block 38 West1809 7th Ave Suite 1111Project Number:397-019 Block 38 West

Seattle, WA 98101 Project Manager: Suzy Stumpf

Report ID: A3E1263 - 05 26 23 1018

# ANALYTICAL REPORT FOR SAMPLES

| SAMPLE INFORMATION |               |        |                |                |  |  |  |  |  |  |  |
|--------------------|---------------|--------|----------------|----------------|--|--|--|--|--|--|--|
| Client Sample ID   | Laboratory ID | Matrix | Date Sampled   | Date Received  |  |  |  |  |  |  |  |
| FMW-160-20.0       | A3E1263-01    | Soil   | 05/05/23 10:30 | 05/10/23 10:36 |  |  |  |  |  |  |  |
| FMW-160-15.0       | A3E1263-03    | Soil   | 05/05/23 10:40 | 05/10/23 10:36 |  |  |  |  |  |  |  |
| FMW-159-20.0       | A3E1263-04    | Soil   | 05/08/23 11:20 | 05/10/23 10:36 |  |  |  |  |  |  |  |
| FMW-159-15.0       | A3E1263-05    | Soil   | 05/08/23 11:30 | 05/10/23 10:36 |  |  |  |  |  |  |  |
| FB-17-17.0         | A3E1263-06    | Soil   | 05/09/23 12:35 | 05/10/23 10:36 |  |  |  |  |  |  |  |
| FB-17-15.0         | A3E1263-07    | Soil   | 05/09/23 12:42 | 05/10/23 10:36 |  |  |  |  |  |  |  |
| FB-17-10.0         | A3E1263-08    | Soil   | 05/09/23 12:48 | 05/10/23 10:36 |  |  |  |  |  |  |  |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 2 of 23



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle
1809 7th Ave Suite 1111
Seattle, WA 98101

Project Number: 397-019 Block 38 West
Project Manager: Suzy Stumpf

Report ID: A3E1263 - 05 26 23 1018

# ANALYTICAL SAMPLE RESULTS

|                               | Die              | esel and/or O      | il Hydrocar        | bons by NWTPI    | l-Dx     |                  |             |       |
|-------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|-------------|-------|
| Analyte                       | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| FMW-160-20.0 (A3E1263-01)     |                  |                    |                    | Matrix: Soil     |          | Batch: 2         | 23E0662     |       |
| Diesel                        | ND               | 12.1               | 24.3               | mg/kg dry        | 1        | 05/17/23 01:40   | NWTPH-Dx    |       |
| Oil                           | 48.7             | 24.3               | 48.5               | mg/kg dry        | 1        | 05/17/23 01:40   | NWTPH-Dx    | F-03  |
| Surrogate: o-Terphenyl (Surr) |                  | Reco               | very: 90 %         | Limits: 50-150 % | 1        | 05/17/23 01:40   | NWTPH-Dx    |       |
| FMW-160-15.0 (A3E1263-03)     |                  |                    |                    | Matrix: Soil     |          | Batch:           | 23E0662     |       |
| Diesel                        | ND               | 12.9               | 25.7               | mg/kg dry        | 1        | 05/17/23 02:01   | NWTPH-Dx    |       |
| Oil                           | ND               | 25.7               | 51.4               | mg/kg dry        | 1        | 05/17/23 02:01   | NWTPH-Dx    |       |
| Surrogate: o-Terphenyl (Surr) |                  | Reco               | very: 83 %         | Limits: 50-150 % | 1        | 05/17/23 02:01   | NWTPH-Dx    |       |
| FB-17-17.0 (A3E1263-06RE1)    |                  |                    |                    | Matrix: Soil     |          | Batch:           | 23E0662     |       |
| Diesel                        | ND               | 11.2               | 22.5               | mg/kg dry        | 1        | 05/17/23 11:55   | NWTPH-Dx    |       |
| Oil                           | 128              | 22.5               | 45.0               | mg/kg dry        | 1        | 05/17/23 11:55   | NWTPH-Dx    |       |
| Surrogate: o-Terphenyl (Surr) |                  | Reco               | very: 82 %         | Limits: 50-150 % | 1        | 05/17/23 11:55   | NWTPH-Dx    |       |
| FB-17-15.0 (A3E1263-07)       |                  |                    |                    | Matrix: Soil     |          | Batch:           | 23E0662     |       |
| Diesel                        | 131              | 59.7               | 119                | mg/kg dry        | 1        | 05/17/23 03:03   | NWTPH-Dx    | F-17  |
| Oil                           | 1550             | 119                | 239                | mg/kg dry        | 1        | 05/17/23 03:03   | NWTPH-Dx    | F-17  |
| Surrogate: o-Terphenyl (Surr) |                  | Reco               | very: 91 %         | Limits: 50-150 % | 1        | 05/17/23 03:03   | NWTPH-Dx    |       |
| FB-17-10.0 (A3E1263-08)       |                  |                    |                    | Matrix: Soil     |          | Batch:           | 23E0662     |       |
| Diesel                        | ND               | 12.1               | 24.2               | mg/kg dry        | 1        | 05/17/23 03:23   | NWTPH-Dx    |       |
| Oil                           | ND               | 24.2               | 48.3               | mg/kg dry        | 1        | 05/17/23 03:23   | NWTPH-Dx    |       |
| Surrogate: o-Terphenyl (Surr) |                  | Reco               | very: 87%          | Limits: 50-150 % | 1        | 05/17/23 03:23   | NWTPH-Dx    |       |

Apex Laboratories



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Report ID:

Farallon-SeattleProject:397-019 Block 38 West1809 7th Ave Suite 1111Project Number:397-019 Block 38 WestSeattle, WA 98101Project Manager:Suzy Stumpf

Project Manager: Suzy Stumpf A3E1263 - 05 26 23 1018

# ANALYTICAL SAMPLE RESULTS

|                                   | Selected         | I Semivolatile C   | Organic C          | ompounds by E    | PA 8270  | E                |             |       |
|-----------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|-------------|-------|
| Analyte                           | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| FMW-160-20.0 (A3E1263-01RE1)      |                  |                    |                    | Matrix: Soil     |          | Batch:           | 23E0546     |       |
| Benz(a)anthracene                 | 0.100            | 0.00655            | 0.0132             | mg/kg dry        | 4        | 05/15/23 14:24   | EPA 8270E   |       |
| Benzo(a)pyrene                    | 0.144            | 0.00985            | 0.0197             | mg/kg dry        | 4        | 05/15/23 14:24   | EPA 8270E   |       |
| Benzofluoranthenes (Total)        | 0.181            | 0.0296             | 0.0591             | mg/kg dry        | 4        | 05/15/23 14:24   | EPA 8270E   |       |
| Chrysene                          | 0.125            | 0.00655            | 0.0132             | mg/kg dry        | 4        | 05/15/23 14:24   | EPA 8270E   |       |
| Dibenz(a,h)anthracene             | 0.0220           | 0.00655            | 0.0132             | mg/kg dry        | 4        | 05/15/23 14:24   | EPA 8270E   |       |
| Indeno(1,2,3-cd)pyrene            | 0.0972           | 0.00655            | 0.0132             | mg/kg dry        | 4        | 05/15/23 14:24   | EPA 8270E   |       |
| 1-Methylnaphthalene               | ND               | 0.0132             | 0.0263             | mg/kg dry        | 4        | 05/15/23 14:24   | EPA 8270E   |       |
| 2-Methylnaphthalene               | ND               | 0.0132             | 0.0263             | mg/kg dry        | 4        | 05/15/23 14:24   | EPA 8270E   |       |
| Naphthalene                       | 0.0276           | 0.0132             | 0.0263             | mg/kg dry        | 4        | 05/15/23 14:24   | EPA 8270E   |       |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recover            | v: 86 %            | Limits: 37-122 % | 4        | 05/15/23 14:24   | EPA 8270E   |       |
| 2-Fluorobiphenyl (Surr)           |                  |                    | 87 %               | 44-120 %         | 4        | 05/15/23 14:24   | EPA 8270E   |       |
| Phenol-d6 (Surr)                  |                  |                    | 102 %              | 33-122 %         | 4        | 05/15/23 14:24   | EPA 8270E   |       |
| p-Terphenyl-d14 (Surr)            |                  |                    | 104 %              | 54-127 %         | 4        | 05/15/23 14:24   | EPA 8270E   |       |
| 2-Fluorophenol (Surr)             |                  |                    | 86 %               | 35-120 %         | 4        | 05/15/23 14:24   | EPA 8270E   |       |
| 2,4,6-Tribromophenol (Surr)       |                  |                    | 113 %              | 39-132 %         | 4        | 05/15/23 14:24   | EPA 8270E   |       |
| FMW-160-15.0 (A3E1263-03RE1)      |                  |                    |                    | Matrix: Soil     |          | Batch:           | 23E0546     |       |
| Benz(a)anthracene                 | ND               | 0.00169            | 0.00339            | mg/kg dry        | 1        | 05/15/23 16:47   | EPA 8270E   |       |
| Benzo(a)pyrene                    | ND               | 0.00254            | 0.00508            | mg/kg dry        | 1        | 05/15/23 16:47   | EPA 8270E   |       |
| Benzofluoranthenes (Total)        | ND               | 0.00762            | 0.0152             | mg/kg dry        | 1        | 05/15/23 16:47   | EPA 8270E   |       |
| Chrysene                          | ND               | 0.00169            | 0.00339            | mg/kg dry        | 1        | 05/15/23 16:47   | EPA 8270E   |       |
| Dibenz(a,h)anthracene             | ND               | 0.00169            | 0.00339            | mg/kg dry        | 1        | 05/15/23 16:47   | EPA 8270E   |       |
| Indeno(1,2,3-cd)pyrene            | ND               | 0.00169            | 0.00339            | mg/kg dry        | 1        | 05/15/23 16:47   | EPA 8270E   |       |
| 1-Methylnaphthalene               | ND               | 0.00339            | 0.00677            | mg/kg dry        | 1        | 05/15/23 16:47   | EPA 8270E   |       |
| 2-Methylnaphthalene               | ND               | 0.00339            | 0.00677            | mg/kg dry        | 1        | 05/15/23 16:47   | EPA 8270E   |       |
| Naphthalene                       | ND               | 0.00339            | 0.00677            | mg/kg dry        | 1        | 05/15/23 16:47   | EPA 8270E   |       |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recover            | y: 83 %            | Limits: 37-122 % | 1        | 05/15/23 16:47   | EPA 8270E   |       |
| 2-Fluorobiphenyl (Surr)           |                  |                    | 77 %               | 44-120 %         | 1        | 05/15/23 16:47   | EPA 8270E   |       |
| Phenol-d6 (Surr)                  |                  |                    | 91 %               | 33-122 %         | 1        | 05/15/23 16:47   | EPA 8270E   |       |
| p-Terphenyl-d14 (Surr)            |                  |                    | 86 %               | 54-127 %         | 1        | 05/15/23 16:47   | EPA 8270E   |       |
| 2-Fluorophenol (Surr)             |                  |                    | 85 %               | 35-120 %         |          | 05/15/23 16:47   | EPA 8270E   |       |
| 2,4,6-Tribromophenol (Surr)       |                  |                    | 87 %               | 39-132 %         | 1        | 05/15/23 16:47   | EPA 8270E   |       |
| FB-17-17.0 (A3E1263-06)           |                  |                    |                    | Matrix: Soil     |          | Batch:           | 23E0546     |       |
| Benz(a)anthracene                 | 0.146            | 0.0601             | 0.121              | mg/kg dry        | 40       | 05/13/23 01:06   | EPA 8270E   |       |

Apex Laboratories



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-SeattleProject:397-019 Block 38 West1809 7th Ave Suite 1111Project Number:397-019 Block 38 WestSeattle, WA 98101Project Manager:Suzy Stumpf

Project Number: 397-019 Block 38 West

Project Manager: Suzy Stumpf

A3E1263 - 05 26 23 1018

# ANALYTICAL SAMPLE RESULTS

|                                   | Selected | Semivoialile | organic C  | ompounds by E    | .FA 02/U | <u>'L</u>      |             |       |
|-----------------------------------|----------|--------------|------------|------------------|----------|----------------|-------------|-------|
| A 1.                              | Sample   | Detection    | Reporting  | TT '4            | D'L 4    | Date           | M 4 1D C    | NT ·  |
| Analyte                           | Result   | Limit        | Limit      | Units            | Dilution | Analyzed       | Method Ref. | Notes |
| FB-17-17.0 (A3E1263-06)           |          |              |            | Matrix: Soil     |          | Batch:         | 23E0546     |       |
| Benzo(a)pyrene                    | 0.215    | 0.0904       | 0.181      | mg/kg dry        | 40       | 05/13/23 01:06 | EPA 8270E   |       |
| Benzofluoranthenes (Total)        | 0.319    | 0.271        | 0.543      | mg/kg dry        | 40       | 05/13/23 01:06 | EPA 8270E   | J     |
| Chrysene                          | 0.192    | 0.0601       | 0.121      | mg/kg dry        | 40       | 05/13/23 01:06 | EPA 8270E   |       |
| Dibenz(a,h)anthracene             | ND       | 0.0601       | 0.121      | mg/kg dry        | 40       | 05/13/23 01:06 | EPA 8270E   |       |
| Indeno(1,2,3-cd)pyrene            | 0.126    | 0.0601       | 0.121      | mg/kg dry        | 40       | 05/13/23 01:06 | EPA 8270E   |       |
| 1-Methylnaphthalene               | ND       | 0.121        | 0.241      | mg/kg dry        | 40       | 05/13/23 01:06 | EPA 8270E   |       |
| 2-Methylnaphthalene               | ND       | 0.121        | 0.241      | mg/kg dry        | 40       | 05/13/23 01:06 | EPA 8270E   |       |
| Naphthalene                       | ND       | 0.121        | 0.241      | mg/kg dry        | 40       | 05/13/23 01:06 | EPA 8270E   |       |
| Surrogate: Nitrobenzene-d5 (Surr) |          | Reco         | very: 42 % | Limits: 37-122 % | 40       | 05/13/23 01:06 | EPA 8270E   | S-05  |
| 2-Fluorobiphenyl (Surr)           |          |              | 59 %       | 44-120 %         | 40       | 05/13/23 01:06 | EPA 8270E   | S-05  |
| Phenol-d6 (Surr)                  |          |              | 42 %       | 33-122 %         | 40       | 05/13/23 01:06 | EPA 8270E   | S-05  |
| p-Terphenyl-d14 (Surr)            |          |              | 86 %       | 54-127 %         | 40       | 05/13/23 01:06 | EPA 8270E   | S-05  |
| 2-Fluorophenol (Surr)             |          |              | 43 %       | 35-120 %         | 40       | 05/13/23 01:06 | EPA 8270E   | S-05  |
| 2,4,6-Tribromophenol (Surr)       |          |              | 66 %       | 39-132 %         | 40       | 05/13/23 01:06 | EPA 8270E   | S-05  |
| FB-17-15.0 (A3E1263-07RE1)        |          |              |            | Matrix: Soil     |          | Batch:         | 23E0546     | R-04  |
| Benz(a)anthracene                 | ND       | 0.0434       | 0.0872     | mg/kg dry        | 10       | 05/15/23 13:48 | EPA 8270E   |       |
| Benzo(a)pyrene                    | ND       | 0.0653       | 0.131      | mg/kg dry        | 10       | 05/15/23 13:48 | EPA 8270E   |       |
| Benzofluoranthenes (Total)        | ND       | 0.196        | 0.392      | mg/kg dry        | 10       | 05/15/23 13:48 | EPA 8270E   |       |
| Chrysene                          | ND       | 0.0434       | 0.0872     | mg/kg dry        | 10       | 05/15/23 13:48 | EPA 8270E   |       |
| Dibenz(a,h)anthracene             | ND       | 0.0434       | 0.0872     | mg/kg dry        | 10       | 05/15/23 13:48 | EPA 8270E   |       |
| Indeno(1,2,3-cd)pyrene            | ND       | 0.0434       | 0.0872     | mg/kg dry        | 10       | 05/15/23 13:48 | EPA 8270E   |       |
| Surrogate: Nitrobenzene-d5 (Surr) |          | Reco         | very: 91 % | Limits: 37-122 % | 10       | 05/15/23 13:48 | EPA 8270E   |       |
| 2-Fluorobiphenyl (Surr)           |          |              | 86 %       | 44-120 %         | 10       | 05/15/23 13:48 | EPA 8270E   |       |
| Phenol-d6 (Surr)                  |          |              | 84 %       | 33-122 %         | 10       | 05/15/23 13:48 | EPA 8270E   |       |
| p-Terphenyl-d14 (Surr)            |          |              | 90 %       | 54-127 %         | 10       | 05/15/23 13:48 | EPA 8270E   |       |
| 2-Fluorophenol (Surr)             |          |              | 75 %       | 35-120 %         | 10       | 05/15/23 13:48 | EPA 8270E   |       |
| 2,4,6-Tribromophenol (Surr)       |          |              | 108 %      | 39-132 %         | 10       | 05/15/23 13:48 | EPA 8270E   |       |
| FB-17-10.0 (A3E1263-08RE1)        |          |              |            | Matrix: Soil     |          | Batch:         | 23E0546     |       |
| Benz(a)anthracene                 | ND       | 0.00168      | 0.00337    | mg/kg dry        | 1        | 05/15/23 17:59 | EPA 8270E   |       |
| Benzo(a)pyrene                    | ND       | 0.00253      | 0.00505    | mg/kg dry        | 1        | 05/15/23 17:59 | EPA 8270E   |       |
| Benzofluoranthenes (Total)        | ND       | 0.00758      | 0.0152     | mg/kg dry        | 1        | 05/15/23 17:59 | EPA 8270E   |       |
| Chrysene                          | ND       | 0.00168      | 0.00337    | mg/kg dry        | 1        | 05/15/23 17:59 | EPA 8270E   |       |
|                                   | 110      | 0.00100      | 0.00557    | mg ng ui y       | 1        |                |             |       |

Apex Laboratories



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-SeattleProject:397-019 Block 38 West1809 7th Ave Suite 1111Project Number:397-019 Block 38 WestSeattle, WA 98101Project Manager:Suzy Stumpf

Report ID: A3E1263 - 05 26 23 1018

# ANALYTICAL SAMPLE RESULTS

|                                   | Selected         | Semivolatile C     | rganic C           | ompour  | nds by E  | PA 8270  | E                |             |       |
|-----------------------------------|------------------|--------------------|--------------------|---------|-----------|----------|------------------|-------------|-------|
| Analyte                           | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Uı      | nits      | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| FB-17-10.0 (A3E1263-08RE1)        |                  |                    |                    | Matı    | rix: Soil |          | Batch:           | 23E0546     |       |
| Indeno(1,2,3-cd)pyrene            | ND               | 0.00168            | 0.00337            | mg/     | kg dry    | 1        | 05/15/23 17:59   | EPA 8270E   |       |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recovery           | v: 96 %            | Limits: | 37-122 %  | 1        | 05/15/23 17:59   | EPA 8270E   |       |
| 2-Fluorobiphenyl (Surr)           |                  |                    | 83 %               |         | 44-120 %  | 1        | 05/15/23 17:59   | EPA 8270E   |       |
| Phenol-d6 (Surr)                  |                  |                    | 108 %              |         | 33-122 %  | 1        | 05/15/23 17:59   | EPA 8270E   |       |
| p-Terphenyl-d14 (Surr)            |                  |                    | 93 %               |         | 54-127 %  | 1        | 05/15/23 17:59   | EPA 8270E   |       |
| 2-Fluorophenol (Surr)             |                  |                    | 100 %              |         | 35-120 %  | 1        | 05/15/23 17:59   | EPA 8270E   |       |
| 2,4,6-Tribromophenol (Surr)       |                  |                    | 104 %              |         | 39-132 %  | 1        | 05/15/23 17:59   | EPA 8270E   |       |

Apex Laboratories



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Farallon-Seattle</u> 1809 7th Ave Suite 1111 Seattle, WA 98101 Project Number: 397-019 Block 38 West
Project Manager: Suzy Stumpf

Report ID: A3E1263 - 05 26 23 1018

# ANALYTICAL SAMPLE RESULTS

|                           |                             | Pe                 | ercent Dry W       | eight      |          |                  |                |       |  |  |
|---------------------------|-----------------------------|--------------------|--------------------|------------|----------|------------------|----------------|-------|--|--|
| Analyte                   | Sample<br>Result            | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution | Date<br>Analyzed | Method Ref.    | Notes |  |  |
| FMW-160-20.0 (A3E1263-01) |                             |                    |                    | Matrix: So | oil      | Batch:           | Batch: 23E0502 |       |  |  |
| % Solids                  | 79.1                        | 1.00               | 1.00               | %          | 1        | 05/12/23 05:47   | EPA 8000D      |       |  |  |
| FMW-160-15.0 (A3E1263-03) |                             |                    |                    | Matrix: So | oil      | Batch:           | 23E0502        |       |  |  |
| % Solids                  | 77.7                        | 1.00               | 1.00               | %          | 1        | 05/12/23 05:47   | EPA 8000D      |       |  |  |
| FMW-159-20.0 (A3E1263-04) |                             |                    |                    | Matrix: So | oil      | Batch:           | 23E0980        | H-01  |  |  |
| % Solids                  | 42.2                        | 1.00               | 1.00               | %          | 1        | 05/24/23 07:19   | EPA 8000D      |       |  |  |
| FMW-159-15.0 (A3E1263-05) |                             |                    |                    | Matrix: So | oil      | Batch:           | 23E0980        | H-01  |  |  |
| % Solids                  | 68.4                        | 1.00               | 1.00               | %          | 1        | 05/24/23 07:19   | EPA 8000D      |       |  |  |
| FB-17-17.0 (A3E1263-06)   |                             |                    |                    | Matrix: So | oil      | Batch:           | 23E0502        |       |  |  |
| % Solids                  | 87.5                        | 1.00               | 1.00               | %          | 1        | 05/12/23 05:47   | EPA 8000D      |       |  |  |
| FB-17-15.0 (A3E1263-07)   |                             |                    |                    | Matrix: So | oil      | Batch:           | 23E0502        |       |  |  |
| % Solids                  | 30.4                        | 1.00               | 1.00               | %          | 1        | 05/12/23 05:47   | EPA 8000D      |       |  |  |
| FB-17-10.0 (A3E1263-08)   | Matrix: Soil Batch: 23E0502 |                    |                    |            |          |                  |                |       |  |  |
| % Solids                  | 78.4                        | 1.00               | 1.00               | %          | 1        | 05/12/23 05:47   | EPA 8000D      |       |  |  |

Apex Laboratories



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-SeattleProject:397-019 Block 38 West1809 7th Ave Suite 1111Project Number:397-019 Block 38 WestSeattle, WA 98101Project Manager:Suzy Stumpf

Report ID: A3E1263 - 05 26 23 1018

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                |            | Di                   | iesel and/d        | or Oil Hy   | drocarbor | s by NW         | TPH-Dx           |       |                 |     |              |           |
|--------------------------------|------------|----------------------|--------------------|-------------|-----------|-----------------|------------------|-------|-----------------|-----|--------------|-----------|
| Analyte                        | Result     | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes     |
| Batch 23E0662 - EPA 3546 (F    | uels)      |                      |                    |             |           |                 | So               | il    |                 |     |              |           |
| Blank (23E0662-BLK1)           |            |                      | Prepared           | d: 05/16/23 | 07:26 Ana | lyzed: 05/16    | 5/23 17:23       |       |                 |     |              |           |
| NWTPH-Dx                       |            |                      |                    |             |           |                 |                  |       |                 |     |              |           |
| Diesel                         | ND         | 10.0                 | 20.0               | mg/kg v     | vet 1     |                 |                  |       |                 |     |              |           |
| Oil                            | ND         | 20.0                 | 40.0               | mg/kg v     | vet 1     |                 |                  |       |                 |     |              |           |
| Surr: o-Terphenyl (Surr)       |            | Recov                | very: 108 %        | Limits: 5   | 0-150 %   | Dili            | ution: 1x        |       |                 |     |              |           |
| LCS (23E0662-BS1)              |            |                      | Prepared           | d: 05/16/23 | 07:26 Ana | lyzed: 05/16    | 5/23 17:43       |       |                 |     |              |           |
| NWTPH-Dx                       |            |                      |                    |             |           |                 |                  |       |                 |     |              |           |
| Diesel                         | 131        | 10.0                 | 20.0               | mg/kg v     | vet 1     | 125             |                  | 105   | 38-132%         |     |              |           |
| Surr: o-Terphenyl (Surr)       |            | Reco                 | very: 111 %        | Limits: 5   | 0-150 %   | Dili            | ution: 1x        |       |                 |     |              |           |
| Duplicate (23E0662-DUP1)       |            |                      | Prepared           | d: 05/16/23 | 07:26 Ana | lyzed: 05/16    | 5/23 18:25       |       |                 |     |              |           |
| QC Source Sample: Non-SDG (A3  | 3E1233-03) |                      |                    |             |           |                 |                  |       |                 |     |              |           |
| Diesel                         | 1490       | 13.9                 | 27.7               | mg/kg o     | lry 1     |                 | 1280             |       |                 | 15  | 30%          | F-11, F-1 |
| Oil                            | 1160       | 27.7                 | 55.4               | mg/kg       | lry 1     |                 | 1250             |       |                 | 8   | 30%          | F-03, F-1 |
| Surr: o-Terphenyl (Surr)       |            | Reco                 | overy: 98 %        | Limits: 5   | 0-150 %   | Dili            | ution: 1x        |       |                 |     |              |           |
| Duplicate (23E0662-DUP2)       |            |                      | Prepared           | d: 05/16/23 | 07:26 Ana | lyzed: 05/17    | 7/23 03:44       |       |                 |     |              |           |
| OC Source Sample: FB-17-10.0 ( | A3E1263-08 | <u>n</u>             |                    |             |           |                 |                  |       |                 |     |              |           |
| Diesel                         | ND         | 12.5                 | 25.0               | mg/kg       | lrv 1     |                 | ND               |       |                 |     | 30%          |           |
| Oil                            | ND         | 25.0                 | 50.1               | mg/kg o     | -         |                 | ND               |       |                 |     | 30%          |           |
| Surr: o-Terphenyl (Surr)       | 2          |                      | overy: 85 %        | Limits: 5   | -         | Dila            | ution: 1x        |       |                 |     |              |           |

Apex Laboratories



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-SeattleProject:397-019 Block 38 West1809 7th Ave Suite 1111Project Number:397-019 Block 38 WestSeattle, WA 98101Project Manager:Suzy Stumpf

Report ID: A3E1263 - 05 26 23 1018

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                              |        | Selecte              | d Semivola         | tile Orga    | nic Com   | pounds by       | y EPA 82         | 270E  |                 |     |              |       |
|------------------------------|--------|----------------------|--------------------|--------------|-----------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                      | Result | Detection L<br>Limit | Reporting<br>Limit | Units        | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 23E0546 - EPA 3546     |        |                      |                    |              |           |                 | Soi              | I .   |                 |     |              |       |
| Blank (23E0546-BLK1)         |        |                      | Prepared           | : 05/12/23 0 | 8:03 Ana  | lyzed: 05/12/   | /23 18:23        |       |                 |     |              |       |
| EPA 8270E                    |        |                      |                    |              |           |                 |                  |       |                 |     |              |       |
| Benz(a)anthracene            | ND     | 0.00133              | 0.00267            | mg/kg we     | et 1      |                 |                  |       |                 |     |              |       |
| Benzo(a)pyrene               | ND     | 0.00200              | 0.00400            | mg/kg we     | et 1      |                 |                  |       |                 |     |              |       |
| Benzofluoranthenes (Total)   | ND     | 0.00600              | 0.0120             | mg/kg we     | et 1      |                 |                  |       |                 |     |              |       |
| Chrysene                     | ND     | 0.00133              | 0.00267            | mg/kg we     | et 1      |                 |                  |       |                 |     |              |       |
| Dibenz(a,h)anthracene        | ND     | 0.00133              | 0.00267            | mg/kg we     | et 1      |                 |                  |       |                 |     |              |       |
| Indeno(1,2,3-cd)pyrene       | ND     | 0.00133              | 0.00267            | mg/kg we     | et 1      |                 |                  |       |                 |     |              |       |
| 1-Methylnaphthalene          | ND     | 0.00267              | 0.00533            | mg/kg we     | et 1      |                 |                  |       |                 |     |              |       |
| 2-Methylnaphthalene          | ND     | 0.00267              | 0.00533            | mg/kg we     | et 1      |                 |                  |       |                 |     |              |       |
| Naphthalene                  | ND     | 0.00267              | 0.00533            | mg/kg we     | et 1      |                 |                  |       |                 |     |              |       |
| Surr: Nitrobenzene-d5 (Surr) |        | Reco                 | very: 82 %         | Limits: 37-  | -122 %    | Dilı            | ution: 1x        |       |                 |     |              |       |
| 2-Fluorobiphenyl (Surr)      |        |                      | 90 %               | 44-          | 120 %     |                 | "                |       |                 |     |              |       |
| Phenol-d6 (Surr)             |        |                      | 83 %               | 33-          | 122 %     |                 | "                |       |                 |     |              |       |
| p-Terphenyl-d14 (Surr)       |        |                      | 110 %              | 54-          | 127 %     |                 | "                |       |                 |     |              |       |
| 2-Fluorophenol (Surr)        |        |                      | 89 %               | 35-          | 120 %     |                 | "                |       |                 |     |              |       |
| 2,4,6-Tribromophenol (Surr)  |        |                      | 99 %               | 39-          | 132 %     |                 | "                |       |                 |     |              |       |
| LCS (23E0546-BS1)            |        |                      | Prepared           | : 05/12/23 0 | 8:03 Anal | lyzed: 05/12/   | /23 18:57        |       |                 |     |              |       |
| EPA 8270E                    |        |                      |                    |              |           | -               |                  |       |                 |     |              |       |
| Benz(a)anthracene            | 0.546  | 0.00532              | 0.0107             | mg/kg we     | et 4      | 0.533           |                  | 102   | 49-126%         |     |              |       |
| Benzo(a)pyrene               | 0.521  | 0.00800              | 0.0160             | mg/kg we     |           | 0.533           |                  | 98    | 45-129%         |     |              |       |
| Benzo(b)fluoranthene         | 0.540  | 0.00800              | 0.0160             | mg/kg we     |           | 0.533           |                  | 101   | 45-132%         |     |              |       |
| Benzo(k)fluoranthene         | 0.534  | 0.00800              | 0.0160             | mg/kg we     |           | 0.533           |                  | 100   | 47-132%         |     |              |       |
| Chrysene                     | 0.545  | 0.00532              | 0.0107             | mg/kg we     | et 4      | 0.533           |                  | 102   | 50-124%         |     |              |       |
| Dibenz(a,h)anthracene        | 0.539  | 0.00532              | 0.0107             | mg/kg we     |           | 0.533           |                  | 101   | 45-134%         |     |              |       |
| Indeno(1,2,3-cd)pyrene       | 0.517  | 0.00532              | 0.0107             | mg/kg we     |           | 0.533           |                  | 97    | 45-133%         |     |              |       |
| 1-Methylnaphthalene          | 0.551  | 0.0107               | 0.0213             | mg/kg we     |           | 0.533           |                  | 103   | 40-120%         |     |              |       |
| 2-Methylnaphthalene          | 0.575  | 0.0107               | 0.0213             | mg/kg we     |           | 0.533           |                  | 108   | 38-122%         |     |              |       |
| Naphthalene                  | 0.528  | 0.0107               | 0.0213             | mg/kg we     |           | 0.533           |                  | 99    | 35-123%         |     |              |       |
| Surr: Nitrobenzene-d5 (Surr) |        | Reco                 | very: 84 %         | Limits: 37-  |           | Dilı            | ution: 4x        |       |                 |     |              |       |
| 2-Fluorobiphenyl (Surr)      |        |                      | 97%                |              | 120 %     |                 | "                |       |                 |     |              |       |
| Phenol-d6 (Surr)             |        |                      | 90 %               |              | 122 %     |                 | "                |       |                 |     |              |       |
| p-Terphenyl-d14 (Surr)       |        |                      | 116 %              |              | 127 %     |                 | "                |       |                 |     |              |       |
| 2-Fluorophenol (Surr)        |        |                      | 99 %               |              | 120 %     |                 | "                |       |                 |     |              |       |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(milale fog



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-SeattleProject:397-019 Block 38 West1809 7th Ave Suite 1111Project Number:397-019 Block 38 WestSeattle, WA 98101Project Manager:Suzy Stumpf

Report ID: A3E1263 - 05 26 23 1018

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                   |           | Selecte              | d Semivola         | atile Orga   | nic Com    | pounds b        | y EPA 82         | 270E  |                 |     |              |       |
|-----------------------------------|-----------|----------------------|--------------------|--------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                           | Result    | Detection L<br>Limit | Reporting<br>Limit | Units        | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 23E0546 - EPA 3546          |           |                      |                    |              |            |                 | Soi              | il    |                 |     |              |       |
| LCS (23E0546-BS1)                 |           |                      | Prepared           | : 05/12/23 ( | 08:03 Ana  | lyzed: 05/12    | 2/23 18:57       |       |                 |     |              |       |
| Surr: 2,4,6-Tribromophenol (Surr) |           | Recov                | ery: 120 %         | Limits: 39   | -132 %     | Dil             | ution: 4x        |       |                 |     |              |       |
| Duplicate (23E0546-DUP3)          |           |                      | Prepared           | : 05/12/23 ( | 08:03 Anal | lyzed: 05/15    | 5/23 15:35       |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A3     | E1048-01R | <u>E2)</u>           |                    |              |            |                 |                  |       |                 |     |              |       |
| Benz(a)anthracene                 | ND        | 0.00153              | 0.00307            | mg/kg dı     | y 1        |                 | ND               |       |                 |     | 30%          |       |
| Benzo(a)pyrene                    | ND        | 0.00230              | 0.00460            | mg/kg dı     | y 1        |                 | ND               |       |                 |     | 30%          |       |
| Benzofluoranthenes (Total)        | ND        | 0.00689              | 0.0138             | mg/kg dr     | y 1        |                 | ND               |       |                 |     | 30%          |       |
| Chrysene                          | ND        | 0.00153              | 0.00307            | mg/kg dr     | y 1        |                 | ND               |       |                 |     | 30%          |       |
| Dibenz(a,h)anthracene             | ND        | 0.00153              | 0.00307            | mg/kg dı     | y 1        |                 | ND               |       |                 |     | 30%          |       |
| Indeno(1,2,3-cd)pyrene            | ND        | 0.00153              | 0.00307            | mg/kg dı     | y 1        |                 | ND               |       |                 |     | 30%          |       |
| 1-Methylnaphthalene               | ND        | 0.00307              | 0.00612            | mg/kg dr     | y 1        |                 | ND               |       |                 |     | 30%          |       |
| 2-Methylnaphthalene               | ND        | 0.00307              | 0.00612            | mg/kg dı     | y 1        |                 | ND               |       |                 |     | 30%          |       |
| Naphthalene                       | 0.0167    | 0.00307              | 0.00612            | mg/kg dı     | y 1        |                 | 0.00552          |       |                 | 100 | 30%          | Q-(   |
| Surr: Nitrobenzene-d5 (Surr)      |           | Recov                | ery: 107 %         | Limits: 37   | -122 %     | Dil             | ution: 1x        |       |                 |     |              |       |
| 2-Fluorobiphenyl (Surr)           |           |                      | 84 %               | 44           | -120 %     |                 | "                |       |                 |     |              |       |
| Phenol-d6 (Surr)                  |           |                      | 130 %              | 33-          | -122 %     |                 | "                |       |                 |     |              | S-03  |
| p-Terphenyl-d14 (Surr)            |           |                      | 94 %               | 54           | -127 %     |                 | "                |       |                 |     |              |       |
| 2-Fluorophenol (Surr)             |           |                      | 107 %              | 35-          | -120 %     |                 | "                |       |                 |     |              |       |
| 2,4,6-Tribromophenol (Surr)       |           |                      | 94 %               | 39           | -132 %     |                 | "                |       |                 |     |              |       |
| Matrix Spike (23E0546-MS1)        |           |                      | Prepared           | : 05/12/23 ( | 08:03 Anal | lyzed: 05/15    | 5/23 12:36       |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A3     | E1048-06R | E2)                  |                    |              |            |                 |                  |       |                 |     |              |       |
| EPA 8270E                         |           |                      |                    |              |            |                 |                  |       |                 |     |              |       |
| Benz(a)anthracene                 | 0.499     | 0.00524              | 0.0105             | mg/kg w      | et 4       | 0.525           | ND               | 95    | 49-126%         |     |              |       |
| Benzo(a)pyrene                    | 0.476     | 0.00788              | 0.0158             | mg/kg w      | et 4       | 0.525           | ND               | 91    | 45-129%         |     |              |       |
| Benzo(b)fluoranthene              | 0.468     | 0.00788              | 0.0158             | mg/kg w      | et 4       | 0.525           | ND               | 89    | 45-132%         |     |              |       |
| Benzo(k)fluoranthene              | 0.496     | 0.00788              | 0.0158             | mg/kg w      | et 4       | 0.525           | ND               | 94    | 47-132%         |     |              |       |
| Chrysene                          | 0.503     | 0.00524              | 0.0105             | mg/kg w      | et 4       | 0.525           | ND               | 96    | 50-124%         |     |              |       |
| Dibenz(a,h)anthracene             | 0.506     | 0.00524              | 0.0105             | mg/kg w      | et 4       | 0.525           | ND               | 96    | 45-134%         |     |              |       |
| Indeno(1,2,3-cd)pyrene            | 0.477     | 0.00524              | 0.0105             | mg/kg w      | et 4       | 0.525           | ND               | 91    | 45-133%         |     |              |       |
| 1-Methylnaphthalene               | 0.493     | 0.0105               | 0.0210             | mg/kg w      |            | 0.525           | ND               | 94    | 40-120%         |     |              |       |
| 2-Methylnaphthalene               | 0.521     | 0.0105               | 0.0210             | mg/kg w      | et 4       | 0.525           | ND               | 99    | 38-122%         |     |              |       |
| Naphthalene                       | 0.527     | 0.0105               | 0.0210             | mg/kg w      |            | 0.525           | 0.0279           | 95    | 35-123%         |     |              |       |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(milale fog



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-SeattleProject:397-019 Block 38 West1809 7th Ave Suite 1111Project Number:397-019 Block 38 WestSeattle, WA 98101Project Manager:Suzy Stumpf

Report ID: A3E1263 - 05 26 23 1018

# QUALITY CONTROL (QC) SAMPLE RESULTS

#### Selected Semivolatile Organic Compounds by EPA 8270E % REC RPD Detection L Reporting Spike Source Result Units Dilution % REC Limits RPD Analyte Limit Limit Amount Result Limit Notes Batch 23E0546 - EPA 3546 Soil Matrix Spike (23E0546-MS1) Prepared: 05/12/23 08:03 Analyzed: 05/15/23 12:36 QC Source Sample: Non-SDG (A3E1048-06RE2) Limits: 37-122 % Surr: Nitrobenzene-d5 (Surr) Recovery: 92 % Dilution: 4x 2-Fluorobiphenyl (Surr) 96% 44-120 % Phenol-d6 (Surr) 102 % 33-122 % p-Terphenyl-d14 (Surr) 54-127 % 102 % 2-Fluorophenol (Surr) 93 % 35-120 % 2,4,6-Tribromophenol (Surr) 106 % 39-132 %

Apex Laboratories



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-SeattleProject:397-019 Block 38 West1809 7th Ave Suite 1111Project Number:397-019 Block 38 WestSeattle, WA 98101Project Manager:Suzy Stumpf

Report ID: A3E1263 - 05 26 23 1018

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                 |          |                      |                    | Percent    | t Dry Wei  | ght             |                  |       |                 |     |              |       |
|---------------------------------|----------|----------------------|--------------------|------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                         | Result   | Detection L<br>Limit | Reporting<br>Limit | Units      | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 23E0502 - Total Solids (D | ry Weig  | ht) - 2022           |                    |            |            |                 | Soi              | I     |                 |     |              |       |
| Duplicate (23E0502-DUP1)        |          |                      | Prepared           | : 05/11/23 | 10:11 Anal | yzed: 05/12/    | /23 05:47        |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A3E  | 1211-01) |                      |                    |            |            |                 |                  |       |                 |     |              |       |
| % Solids                        | 78.4     | 1.00                 | 1.00               | %          | 1          |                 | 77.3             |       |                 | 1   | 10%          |       |
| Duplicate (23E0502-DUP2)        |          |                      | Prepared           | : 05/11/23 | 10:11 Anal | yzed: 05/12/    | /23 05:47        |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A3E  | 1231-01) |                      |                    |            |            |                 |                  |       |                 |     |              |       |
| % Solids                        | 81.0     | 1.00                 | 1.00               | %          | 1          |                 | 82.3             |       |                 | 2   | 10%          |       |
| Duplicate (23E0502-DUP3)        |          |                      | Prepared           | : 05/11/23 | 10:11 Anal | yzed: 05/12/    | /23 05:47        |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A3E  | 1233-03) |                      |                    |            |            |                 |                  |       |                 |     |              |       |
| % Solids                        | 80.0     | 1.00                 | 1.00               | %          | 1          |                 | 71.0             |       |                 | 12  | 10%          | Q-0   |
| Duplicate (23E0502-DUP4)        |          |                      | Prepared           | : 05/11/23 | 18:03 Anal | yzed: 05/12     | /23 05:47        |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A3E  | 1267-01) |                      |                    |            |            |                 |                  |       |                 |     |              |       |
| % Solids                        | 79.1     | 1.00                 | 1.00               | %          | 1          |                 | 78.9             |       |                 | 0.3 | 10%          |       |
| Duplicate (23E0502-DUP5)        |          |                      | Prepared           | : 05/11/23 | 19:00 Anal | yzed: 05/12     | /23 05:47        |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A3E  | 1302-01) |                      |                    |            |            |                 |                  |       |                 |     |              |       |
| % Solids                        | 92.1     | 1.00                 | 1.00               | %          | 1          |                 | 94.0             |       |                 | 2   | 10%          |       |
| Duplicate (23E0502-DUP6)        |          |                      | Prepared           | : 05/11/23 | 19:00 Anal | yzed: 05/12     | /23 05:47        |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A3E  | 1307-09) |                      |                    |            |            |                 |                  |       |                 |     |              |       |
| % Solids                        | 82.5     | 1.00                 | 1.00               | %          | 1          |                 | 81.3             |       |                 | 1   | 10%          |       |

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

( withle fog -



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-SeattleProject:397-019 Block 38 West1809 7th Ave Suite 1111Project Number:397-019 Block 38 WestSeattle, WA 98101Project Manager:Suzy Stumpf

Report ID: A3E1263 - 05 26 23 1018

# **QUALITY CONTROL (QC) SAMPLE RESULTS**

|                                        |            |                      |                    | Percen     | t Dry Wei   | ght             |                  |                |                 |           |              |       |
|----------------------------------------|------------|----------------------|--------------------|------------|-------------|-----------------|------------------|----------------|-----------------|-----------|--------------|-------|
| Analyte                                | Result     | Detection L<br>Limit | Reporting<br>Limit | Units      | Dilution    | Spike<br>Amount | Source<br>Result | % REC          | % REC<br>Limits | RPD       | RPD<br>Limit | Notes |
| Batch 23E0980 - Total Solids           | (Dry Weig  | ht) - 2022           |                    |            |             |                 | Soi              | I              |                 |           |              |       |
| Duplicate (23E0980-DUP1)               |            |                      | Prepared           | : 05/23/23 | 11:13 Anal  | lyzed: 05/24    | /23 07:19        |                |                 |           |              |       |
| QC Source Sample: FMW-159-20           | .0 (A3E126 | 3-04)                |                    |            |             |                 |                  |                |                 |           |              |       |
| EPA 8000D                              | 12.5       | 1.00                 | 1.00               | 0/         | 1           |                 | 42.2             |                |                 | 0.6       | 100/         |       |
| % Solids                               | 42.5       | 1.00                 | 1.00               | %          | 1           |                 | 42.2             |                |                 | 0.6       | 10%          |       |
| Duplicate (23E0980-DUP2)               |            |                      | Prepared           | : 05/23/23 | 11:13 Anal  | lyzed: 05/24    | /23 07:19        |                |                 |           |              |       |
| QC Source Sample: FMW-159-15           | .0 (A3E126 | 3-05)                |                    |            |             |                 |                  |                |                 |           |              |       |
| EPA 8000D                              |            |                      | 1.00               |            |             |                 |                  |                |                 |           |              |       |
| % Solids                               | 73.8       | 1.00                 | 1.00               | %          | 1           |                 | 68.4             |                |                 | 8         | 10%          |       |
| Duplicate (23E0980-DUP3)               |            |                      | Prepared           | : 05/23/23 | 11:13 Anal  | lyzed: 05/24    | /23 07:19        |                |                 |           |              |       |
| QC Source Sample: Non-SDG (A.          | 3E1383-03) |                      |                    |            |             |                 |                  |                |                 |           |              |       |
| % Solids                               | 75.6       | 1.00                 | 1.00               | %          | 1           |                 | 78.1             |                |                 | 3         | 10%          |       |
| Duplicate (23E0980-DUP4)               |            |                      | D                  | . 05/22/22 | 11.12       | J 4- 05/24      | /22 07-10        |                |                 |           |              |       |
|                                        | 2E1202.00  |                      | Prepared           | . 03/23/23 | 11:13 Anal  | iyzeu. 03/24    | 723 07.19        |                |                 |           |              |       |
| QC Source Sample: Non-SDG (A. % Solids | 77.0       | 1.00                 | 1.00               | %          | 1           |                 | 77.0             |                |                 | 0.05      | 10%          |       |
|                                        |            |                      |                    |            |             |                 |                  |                |                 |           |              |       |
| Duplicate (23E0980-DUP5)               |            |                      | Prepared           | : 05/23/23 | 11:13 Anal  | lyzed: 05/24    | /23 07:19        |                |                 |           |              |       |
| QC Source Sample: Non-SDG (A.          | 3E1383-13) |                      |                    |            |             |                 |                  |                |                 |           |              |       |
| % Solids                               | 78.4       | 1.00                 | 1.00               | %          | 1           |                 | 78.7             |                |                 | 0.4       | 10%          |       |
| Duplicate (23E0980-DUP6)               |            |                      | Prepared           | : 05/23/23 | 11:13 Anal  | lyzed: 05/24    | /23 07:19        |                |                 |           |              |       |
| QC Source Sample: Non-SDG (A.          | 3E1555-01) |                      | 1                  |            |             | <u> </u>        |                  |                |                 |           |              |       |
| % Solids                               | 90.5       | 1.00                 | 1.00               | %          | 1           |                 | 78.6             |                |                 | 14        | 10%          | Q-0   |
| Duplicate (23E0980-DUP7)               |            |                      | Drangrad           | . 05/23/23 | 18:40 Anal  | lyzad: 05/24    | /23 07:10        |                |                 |           |              |       |
|                                        | 2E1652 02) |                      | Ттератец           | . 03/23/23 | 10.40 Alla  | 1y2cu. 03/24    | 723 07.19        |                |                 |           |              |       |
| QC Source Sample: Non-SDG (A. % Solids | 69.5       | 1.00                 | 1.00               | %          | 1           |                 | 70.0             |                |                 | 0.7       | 10%          |       |
|                                        |            |                      |                    |            |             |                 |                  |                |                 |           |              |       |
| Duplicate (23E0980-DUP8)               |            |                      | Prepared           | : 05/23/23 | 19:31 Ana   | lyzed: 05/24    | /23 07:19        |                |                 |           |              |       |
| QC Source Sample: Non-SDG (A.          | 3E1654-02) |                      |                    |            |             |                 |                  |                |                 |           |              |       |
| Apex Laboratories                      |            |                      |                    |            | The results | in this report  | annly to the     | samples analy  | ed in accor     | dance wit | h the chain  | of    |
| - Ipon Euroratorios                    |            |                      |                    |            |             | -               |                  | ort must be re |                 |           |              | ~/    |



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-SeattleProject:397-019 Block 38 West1809 7th Ave Suite 1111Project Number:397-019 Block 38 WestSeattle, WA 98101Project Manager:Suzy Stumpf

Report ID: A3E1263 - 05 26 23 1018

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                | Percent Dry Weight |                      |                    |            |            |                 |                  |       |                 |     |              |       |
|--------------------------------|--------------------|----------------------|--------------------|------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                        | Result             | Detection L<br>Limit | Reporting<br>Limit | Units      | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 23E0980 - Total Solids ( | Dry Weig           | ht) - 2022           |                    |            |            |                 | Soil             |       |                 |     |              |       |
| Duplicate (23E0980-DUP8)       |                    |                      | Prepared           | : 05/23/23 | 19:31 Anal | yzed: 05/24/    | /23 07:19        |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A3  | E1654-02)          |                      |                    |            |            |                 |                  |       |                 |     |              |       |
| % Solids                       | 74.5               | 1.00                 | 1.00               | %          | 1          |                 | 73.8             |       |                 | 1   | 10%          |       |

No Client related Batch QC samples analyzed for this batch. See notes page for more information.

Apex Laboratories



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-SeattleProject:397-019 Block 38 West1809 7th Ave Suite 1111Project Number:397-019 Block 38 WestSeattle, WA 98101Project Manager:Suzy Stumpf

Project Number: 397-019 Block 38 West

Project Manager: Suzy Stumpf

A3E1263 - 05 26 23 1018

### SAMPLE PREPARATION INFORMATION

|                     |        | Diesel an | d/or Oil Hydrocarbor | ns by NWTPH-Dx |               |               |         |
|---------------------|--------|-----------|----------------------|----------------|---------------|---------------|---------|
| Prep: EPA 3546 (Fue | els)   |           |                      |                | Sample        | Default       | RL Prep |
| Lab Number          | Matrix | Method    | Sampled              | Prepared       | Initial/Final | Initial/Final | Factor  |
| Batch: 23E0662      |        |           |                      |                |               |               |         |
| A3E1263-01          | Soil   | NWTPH-Dx  | 05/05/23 10:30       | 05/16/23 07:26 | 10.42g/5mL    | 10g/5mL       | 0.96    |
| A3E1263-03          | Soil   | NWTPH-Dx  | 05/05/23 10:40       | 05/16/23 07:26 | 10.01g/5mL    | 10g/5mL       | 1.00    |
| A3E1263-06RE1       | Soil   | NWTPH-Dx  | 05/09/23 12:35       | 05/16/23 07:26 | 10.17g/5mL    | 10g/5mL       | 0.98    |
| A3E1263-07          | Soil   | NWTPH-Dx  | 05/09/23 12:42       | 05/16/23 07:26 | 5.51g/5mL     | 10g/5mL       | 1.81    |
| A3E1263-08          | Soil   | NWTPH-Dx  | 05/09/23 12:48       | 05/16/23 07:26 | 10.56g/5mL    | 10g/5mL       | 0.95    |

|                |        | Selected Semi | ivolatile Organic Com | pounds by EPA 827 | '0E           |               |         |
|----------------|--------|---------------|-----------------------|-------------------|---------------|---------------|---------|
| Prep: EPA 3546 |        |               |                       |                   | Sample        | Default       | RL Prep |
| Lab Number     | Matrix | Method        | Sampled               | Prepared          | Initial/Final | Initial/Final | Factor  |
| Batch: 23E0546 |        |               |                       |                   |               |               |         |
| A3E1263-01RE1  | Soil   | EPA 8270E     | 05/05/23 10:30        | 05/12/23 13:23    | 15.4g/2mL     | 15g/2mL       | 0.97    |
| A3E1263-03RE1  | Soil   | EPA 8270E     | 05/05/23 10:40        | 05/12/23 13:23    | 15.2g/2mL     | 15g/2mL       | 0.99    |
| A3E1263-06     | Soil   | EPA 8270E     | 05/09/23 12:35        | 05/12/23 13:23    | 15.17g/2mL    | 15g/2mL       | 0.99    |
| A3E1263-07RE1  | Soil   | EPA 8270E     | 05/09/23 12:42        | 05/12/23 13:23    | 15.12g/2mL    | 15g/2mL       | 0.99    |
| A3E1263-08RE1  | Soil   | EPA 8270E     | 05/09/23 12:48        | 05/12/23 13:23    | 15.15g/2mL    | 15g/2mL       | 0.99    |

|                        |                  |           | Percent Dry We | ight           |               |               |         |
|------------------------|------------------|-----------|----------------|----------------|---------------|---------------|---------|
| Prep: Total Solids (Dr | y Weight) - 2022 |           |                |                | Sample        | Default       | RL Prep |
| Lab Number             | Matrix           | Method    | Sampled        | Prepared       | Initial/Final | Initial/Final | Factor  |
| Batch: 23E0502         |                  |           |                |                |               |               |         |
| A3E1263-01             | Soil             | EPA 8000D | 05/05/23 10:30 | 05/11/23 10:11 |               |               | NA      |
| A3E1263-03             | Soil             | EPA 8000D | 05/05/23 10:40 | 05/11/23 10:11 |               |               | NA      |
| A3E1263-06             | Soil             | EPA 8000D | 05/09/23 12:35 | 05/11/23 10:11 |               |               | NA      |
| A3E1263-07             | Soil             | EPA 8000D | 05/09/23 12:42 | 05/11/23 10:11 |               |               | NA      |
| A3E1263-08             | Soil             | EPA 8000D | 05/09/23 12:48 | 05/11/23 10:11 |               |               | NA      |
| Batch: 23E0980         |                  |           |                |                |               |               |         |
| A3E1263-04             | Soil             | EPA 8000D | 05/08/23 11:20 | 05/23/23 11:13 |               |               | NA      |
| A3E1263-05             | Soil             | EPA 8000D | 05/08/23 11:30 | 05/23/23 11:13 |               |               | NA      |
| A3E1263-05             | Soil             | EPA 8000D | 05/08/23 11:30 | 05/23/23 11:13 |               |               | N.A     |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 15 of 23



# Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West 1809 7th Ave Suite 1111 Project Number: 397-019 Block 38 West Seattle, WA 98101 Project Manager: Suzy Stumpf

Report ID: A3E1263 - 05 26 23 1018

# **QUALIFIER DEFINITIONS**

# Client Sample and Quality Control (QC) Sample Qualifier Definitions:

#### **Apex Laboratories**

Q-04

| F-03 | The result for this hydrocarbon range is elevated due to the presence of individual analyte peaks in the quantitation range that are not representative of the fuel pattern reported. |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F-11 | The hydrocarbon pattern indicates possible weathered diesel, mineral oil, or a contribution from a related component.                                                                 |
| F-15 | Results for diesel are estimated due to overlap from the reported oil result.                                                                                                         |
| F-16 | Results for oil are estimated due to overlap from the reported diesel result.                                                                                                         |
| F-17 | No fuel pattern detected. The Diesel result represents carbon range C10 to C25, and the Oil result represents >C25 to C40.                                                            |

- H-01 Analyzed outside the recommended holding time.
- J Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL. Spike recovery and/or RPD is outside control limits due to a non-homogeneous sample matrix.
- Q-05 Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.
- R-04 Reporting levels elevated due to preparation and/or analytical dilution necessary for analysis.
- S-03 Sample re-extract, or the analysis of an associated Batch QC sample, confirms surrogate failure due to sample matrix effect.
- Surrogate recovery is estimated due to sample dilution required for high analyte concentration and/or matrix interference. S-05

Apex Laboratories



### **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-SeattleProject:397-019 Block 38 West1809 7th Ave Suite 1111Project Number:397-019 Block 38 WestSeattle, WA 98101Project Manager:Suzy Stumpf

Report ID: A3E1263 - 05 26 23 1018

#### **REPORTING NOTES AND CONVENTIONS:**

#### **Abbreviations:**

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

#### **Detection Limits:** Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

#### Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

### **Reporting Conventions:**

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

# **QC Source:**

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

### **Miscellaneous Notes:**

" --- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"\*\*\* Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

|      | _    |           |
|------|------|-----------|
| Anex | Labo | oratories |



### **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-SeattleProject:397-019 Block 38 West1809 7th Ave Suite 1111Project Number:397-019 Block 38 WestSeattle, WA 98101Project Manager:Suzy Stumpf

Report ID: A3E1263 - 05 26 23 1018

### **REPORTING NOTES AND CONVENTIONS (Cont.):**

#### Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

#### **Preparation Notes:**

#### Mixed Matrix Samples:

#### Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

#### Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

# **Sampling and Preservation Notes:**

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold time compliance and field filtration. Data is qualified as necessary, and the lack of qualification indicates compliance with required parameters.

Apex Laboratories



### **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-SeattleProject:397-019 Block 38 West1809 7th Ave Suite 1111Project Number:397-019 Block 38 WestSeattle, WA 98101Project Manager:Suzy Stumpf

Report ID: A3E1263 - 05 26 23 1018

### LABORATORY ACCREDITATION INFORMATION

# ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

### **Apex Laboratories**

Matrix Analysis TNI\_ID Analyte TNI\_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

# **Secondary Accreditations**

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

### **Subcontract Laboratory Accreditations**

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

### Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-SeattleProject:397-019 Block 38 West1809 7th Ave Suite 1111Project Number:397-019 Block 38 West

Seattle, WA 98101 Project Manager: Suzy Stumpf

Report ID: A3E1263 - 05 26 23 1018

| 6700 SW Sandburg St., Tigard, OR 97223 Fn: 303-718-2323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 223 FM: 303                                        | 7.10-27  | 3                          |          |          |         |        |        |                     |               |                      |        |      |          | ,                                                 | ľ                                             |                                                                        |            | - 1 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------|----------------------------|----------|----------|---------|--------|--------|---------------------|---------------|----------------------|--------|------|----------|---------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------|------------|-----|
| company: Forallon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pro                                                | ect Mgr. | Project Mgr. SIZLA SALLMAP | 5        | TWIT I   | 4       |        | P      | Project Name: Block | ie:           | ğ                    | 4      | 50   | -        | 39 West                                           |                                               | Project #: 297 - 014                                                   | 5          | - 1 |
| Address 75 5th AUR NW, ISSOQUIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tessoum                                            | - 4      | FM.                        | ,        | Phone    | 5CH)    | 33     | 5-0    | g                   | mail:         | SS                   | d      | £003 | See Line | JANCONSUH!                                        | (S)                                           | Phone (425) 295-1800 Email: SSAUMPE (BEAUMENCONSUHing 10190# 397 - 019 |            |     |
| Sampled by: Annie OSMUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |          |                            |          |          | lates i | 19100  |        |                     |               |                      |        | 7    | Y.Y      | ANALYSIS REQUEST                                  |                                               |                                                                        |            | +   |
| Site Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    |          | S                          |          |          |         | S;     |        |                     | SHA9:         | tei. I Ilt           |        |      | (        | CCP<br>'Al' K'<br>'E' EP'<br>'E' Cq'              |                                               | 577                                                                    |            |     |
| State WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    |          | INE                        | aic      |          | :       | DOA    | OC2    |                     |               | ols et               | səţ    |      | EI) sla  | Ba, I<br>L V,<br>T Wo,<br>T V,                    | (8) sI                                        | 18UB/                                                                  |            |     |
| County ZIND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    | X.       |                            | )н-н     | xa-H     | 2012    |        | V olal |                     |               |                      |        |      | y Met    | Co,<br>g, Mi<br>Na, T                             | Meta                                          | σ/tr                                                                   | əjdun      |     |
| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DATE                                               | TIME     | WATRI                      | ILMN     | ILMN     | LLMN    | H 0928 | H 0978 | 1 0978              |               | # 2808<br>S 0/28     | T 1808 | КСКА | Priorit  | 11, Sb,<br>Ca, Cr,<br>Ig, Mg,<br>ie, Ag,<br>FOTAI | TCLP                                          | 1goU                                                                   | S PIOE     |     |
| FRIN- 160 - 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1:2                                                | 1        | +-                         |          | X        |         | ╂      |        |                     | X             | $\vdash$             | -      |      |          | S<br>I<br>D                                       | Ĺ                                             | ×                                                                      |            | +-  |
| FMM-101-18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 200                                                | 33       |                            |          |          | ļ       |        |        |                     |               |                      |        |      |          |                                                   |                                               |                                                                        |            |     |
| FM1, 1- 1(0-15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                  | SE       |                            |          | X        |         |        |        |                     | ×             |                      |        |      |          |                                                   |                                               | ×                                                                      |            |     |
| FMW- 159-20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5-8-73 (100)                                       | Q        |                            |          |          |         |        |        |                     |               |                      |        |      |          |                                                   |                                               |                                                                        |            |     |
| FMW- 159-15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>+</u>                                           | 93       |                            |          |          |         |        |        |                     |               |                      |        |      |          |                                                   |                                               |                                                                        |            |     |
| 0.FI-FI-87 MM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 573                                                | 1935     |                            |          | ×        |         |        |        |                     | X             |                      |        |      |          |                                                   | /                                             | ×                                                                      |            |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2                                                 | (243     |                            |          | $\times$ |         |        |        |                     | $\times$      |                      |        |      |          |                                                   |                                               |                                                                        |            |     |
| FB-17-10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u>의</u><br>그                                      | 348      |                            |          | ×        |         |        |        |                     | $\overline{}$ |                      |        |      |          |                                                   |                                               |                                                                        |            |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |                            |          |          |         |        |        |                     |               |                      | _      |      |          |                                                   |                                               |                                                                        |            |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |                            |          |          |         |        |        |                     |               |                      | -      |      |          |                                                   |                                               |                                                                        |            | -   |
| Standard Turn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Standard Turn Around Time (TAT) = 10 Business Days | TAT) =   | 10 Busine                  | ss Days  |          |         |        |        | T                   | SPEC          | SPECIAL INSTRUCTIONS | STRU   | CTIO | iš.      | ,                                                 |                                               | •                                                                      |            |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 Day                                              | 2.1      | 2 Day                      | 60       | 3 Day    |         |        |        |                     | 至             | ~                    | 王      | 3    | 9        | 0-81-0                                            | 1                                             | Hold: FINW- (60-18-0, FINW- 154-20-0, and                              | - and      |     |
| TAT Requested (circle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 Day                                              | 7        | Standard                   | <u> </u> | Offher   |         |        |        |                     |               |                      | 豆      | 3    | 5        | FMW-159-15.0                                      |                                               |                                                                        |            |     |
| a desper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SAMPLES ARE HELD FOR 30 DAYS                       |          | E S                        |          |          |         |        | ı      |                     | 乎             | 4                    | Jag-   | aler | SS       | for Fig.                                          | İ                                             | Hold: Naphalenes for FB-17-15.0 and FB                                 | FB-17-10.0 | 0   |
| UISHED BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                    | R        | RECEIVED BY                | BY:      | ١.       |         |        |        |                     | RELIN         | RELINQUISHED BY:     | ED B   | 22   |          | 4                                                 |                                               | RECEIVED BY:                                                           |            | ł   |
| Suprantice: Con a feet of the control of the contro | 5- <b>4</b> -23                                    | ×        | September 1                | F        | _        | Ä       | Date   | 1/0    | ~                   | Signatur      | ы                    |        |      |          | Date:                                             | <u>,                                     </u> | ignature:                                                              | Date:      |     |
| Printed Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Time:                                              | Pri      | rinted Name                | 5 3      |          | H       | Time:  | 180,   |                     | Printed Name  | Name:                |        |      |          | Time:                                             |                                               | Printed Name:                                                          | Time:      |     |
| Соптраву:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    | <u>క</u> | Company:                   | A        | 8        |         |        |        |                     | Company       | ži.                  |        |      |          |                                                   |                                               | Сопрапу:                                                               |            |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |          |                            | 1        |          |         |        | l      |                     |               | l                    |        |      |          |                                                   |                                               |                                                                        |            |     |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(milale fog



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-SeattleProject:397-019 Block 38 West1809 7th Ave Suite 1111Project Number:397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019 Block 38 West
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1263 - 05 26 23 1018

| Company Factual lay   Project May   Projec   | AFEA LADO<br>6700 SW Sandburg St., Tigard, OR 97223 Ph.: 503-718-2323 | 223 Ph: 503   | 718-2    | 323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 3        | 4    | CHAIN OF CUSIODY | = | 3        | 2                | 3                                                | <b>&gt;</b>  |                |                |                                                   | * 20     | Tab # TTO COC   of    | - Ju                       |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|------|------------------|---|----------|------------------|--------------------------------------------------|--------------|----------------|----------------|---------------------------------------------------|----------|-----------------------|----------------------------|---------|
| 1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900   1900      | company: For allow                                                    | Pro           | ect Mgr  | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SA      | HIM      | 4    |                  | Æ | ject N   | ame:             | 18                                               | 3            | 32             | 3              |                                                   |          | Project #: 3974 - 019 |                            |         |
| 1   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Address 75 5th AVE NW.                                                | 1ssout        | 4        | FM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ~       | Phone    | (H); | 5)3              | 3 | g        | Email:           | SS                                               | TI CONT      | 9              | and the second | JANCONSUL                                         | g) lavu  | PO# 397 - 019         |                            | 1       |
| 100   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150   150    | Sampled by: PKNING OSIMBUL                                            | >             |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |      |                  |   |          |                  |                                                  |              | ٧              | NAL            | SIS REQUES                                        | ,        |                       |                            |         |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Site Location:                                                        |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,       |          |      |                  |   |          | SHA              | 181                                              |              |                |                | K?<br>BP'<br>GP'                                  |          |                       |                            |         |
| SWIPE ID  SWIPE  | State (10-A)                                                          |               |          | 1EK2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |          |      | *50              | · | tei.I II | 9J-a             | Lon L                                            |              |                |                | t, Be, 11, Fe, V, Zn V, Zn T                      |          | San                   |                            |         |
| SAMPLE ID   | County king                                                           |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | zq-F     |      |                  |   | OCa En   | <del>IVI</del> N |                                                  |              |                |                | As, B:<br>Ma, I<br>Ma, I<br>(a, Tl,               |          | glad                  | əlq                        | rchive  |
| 160 - 20.0   5543   170   175   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   170   17   | SAMPLE ID                                                             |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | IALMN    |      |                  |   | OA 0978  | IS 0718          |                                                  |              |                |                | AL Sb, Se, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg |          | triqoU                | mrs blot                   | A Hazor |
| 160 - 18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Frim-160 - 20.0                                                       | 553310        | 8        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | X        |      |                  | ļ |          | X                | <u> </u>                                         | -            | ╂—             | _              | 5<br>1<br>7                                       |          | X                     | 1                          | 4       |
| 150 - 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FMW-160-18.0                                                          | <u> </u>      | 45       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |      | -                |   |          |                  | <del>                                     </del> |              |                |                |                                                   | ļ        |                       |                            |         |
| 154-20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FM11-160-15.0                                                         | 7             | 9        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | X        |      | ļ                | ~ |          | X                | <del> </del>                                     | -            | -              |                |                                                   | <u> </u> | ×                     |                            |         |
| 159 - 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FMW- 159-20.0                                                         | 5-8-73 (V.    | Q        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |          |      |                  |   |          |                  | <b>†</b>                                         | -            | -              | ļ              |                                                   | _        |                       |                            |         |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FMW- 159- 15.0                                                        | ;†            | S        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |          |      |                  | _ |          |                  |                                                  | <del> </del> |                |                | -                                                 |          |                       |                            |         |
| 1040   1040   X   X   X   X   X   X   X   X   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FB-17-17.0                                                            | 573           | 35       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | ×        |      | ļ                |   |          | X                |                                                  |              | -              | ļ              |                                                   |          | Please                | proceed w                  | T 3     |
| Standard Turn Around Time (TAT) = 10 Besiness Days   Standard Turn Around Turne (TAT) = 10 Besiness Days   Standard Other:   Standard St   |                                                                       | 0             | HJ<br>HJ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | $\times$ |      |                  |   |          | ×                |                                                  |              |                |                |                                                   |          | Ţ                     | ung and non<br>samples for | ₫.      |
| Standard Turn Around Time (TAT) = 10 Business Days  1 Day 2 Day 3 Day  Standard Other:  SAMPLES ARE HELD FOR 30 DAYS  RECEIVED BY:  5 Date:  5 Date:  5 Date:  5 Date:  5 Date:  6 Ourpary:  Company:  Company | FB-17-10.0                                                            | S             | 8        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | ×        |      |                  |   |          | $\sim$           |                                                  |              | -              | ļ              |                                                   |          | \                     | tial naphtha               | 윤       |
| Standard Turn Around Ture (TAT) = 10 Business Days  sted (circle)  5 Day  Standard  Other:  Date:  5 Standard  Other:  Date:  5 Standard  Other:  Date:  5 Standard  Other:  Date:  5 Standard  Other:  Company:  Time:  Company:  |                                                                       |               |          | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |          |      |                  |   |          |                  |                                                  |              |                |                |                                                   |          |                       |                            |         |
| sted (circle)  5 Day Standard  Standard  Other:  Date  5.04-2.3  Company:  Company:  Company:  Standard  Other:  Date  1.07C  Company:   | Standard Turn                                                         | Around Time ( | [AT]=    | 10 Busine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ss Days |          |      | -                | _ |          | SPEC             | IAL II                                           | STRI         | CLIO           |                |                                                   |          |                       |                            |         |
| sted (circle)  5 Day Standard Other:  SAMPLES ARE HELD FOR 30 DAYS  BECENVED BY:  5 Simonfe:  Time: Frince Simonfe:  Company:  Company:  The Company:  Company:  The Compa |                                                                       | 1 Day         | 2]       | Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | Day      |      |                  |   |          | 至                | -6                                               | 己            | 3              | 3              | 18.0                                              | 1        | W-159-30.0,           | and                        |         |
| SAMPLES ARE HELD FOR 30 DAYS  Date:  5-40-23 Method Name.  Time:  Company:  Company:  The Company:   | TAT Requested (circle)                                                | 5 Day         | Star     | dard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | ther:    |      |                  |   |          |                  |                                                  | 迁            | 3              | 5              | 15.0                                              |          |                       |                            |         |
| Date: Signature: Superature: Date: Signature: Signature: Date: Signature: Signature: Signature: Signature: Signature: Signature: Signature: Signature: Time: Transi Name: Transi Ocupany: Ocupany: Company: Activity Market                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SAMPLE                                                                | S ARE HELD F  | 88       | LE STATE OF THE PERSON NAMED IN COLUMN TO STATE OF THE PE |         |          |      |                  | ı |          | 乎                | 1,                                               | Top          | Dales<br>Dales | 35             | for Fig.                                          | It.      | -15.0 and FB-15       | 1-10.0                     |         |
| LOVE Superhore: Date: Superhore: Date: Superhore: Date: Superhore: Date: Superhore: Date: Superhore: Date: Superhore: Originature: Printed Name: Time: Printed Name: Printed Name: Printed Name: Time: Printed Name: Originature: Originature: Date: Superhore: Date: Superhore: Originature: Date: Superhore: Date: Date: Superhore: Date: Superhore: Date: Date: Superhore: Date: Superhore: Date: Date |                                                                       | į             |          | ECEIVED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BY:     | 10       |      |                  |   |          | RELD             | NOUS                                             | HED B        | ï.             |                |                                                   |          |                       |                            | 1       |
| Time: Time: Printed Name: Time: Printed Name: Time: Printed Name: Ourpany: Company: Company:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       | 5-9-2         |          | S. S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1       | 1        | -    |                  | 6 | <b>N</b> | Signatu          | Ë                                                |              |                |                | Date:                                             |          |                       | 041-                       |         |
| Compuny:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Printed Name:                                                         | Time:         | £        | Tinted Nam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1/1     |          |      | 1 8              | 2 |          | Printed          | Name                                             |              |                |                | Птв.                                              |          |                       |                            |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Сопралу:                                                              |               | 8        | ompany.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | K       | 3        | Y    |                  | 1 |          | S                | iny.                                             |              |                |                |                                                   |          | Сощрапу:              |                            |         |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

(milale fog



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-SeattleProject:397-019 Block 38 West1809 7th Ave Suite 1111Project Number:397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019 Block 38 West
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1263 - 05 26 23 1018

| Company Forallian Project Address Fig. 1850 August Address Fight August 1850 August 1850 August 1860 A |              |                          |                                                  |                 |          |        |          |              |                      | 2000      |           |                                                                                     | 7        | イ・しょうしゃ           | 7                                                       |                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------|--------------------------------------------------|-----------------|----------|--------|----------|--------------|----------------------|-----------|-----------|-------------------------------------------------------------------------------------|----------|-------------------|---------------------------------------------------------|---------------------------------------------|
| Addres 975 5th AVE NW. ISS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Project M    | Project Mgr. SUZU SHLIMM | 15 W.                                            | JIMI            | 4        |        | mject N  | lame:        | Sloc                 | 7         | 38        | Project Name: Block 38 West                                                         |          | Project # 297-019 | 47-019                                                  |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Janah        | AM.                      | 7                                                | Phone:          | (50)     | 385    | 080      | Bmail:       | SCALL                | MOF       | Sec       | Phone (435) 245-08/10 Bringt SSA11 M Ch (D. Euroll Briconsculting Carpo # 297 - 019 | (B) (B)  | FAS #0            | 610-                                                    |                                             |
| Sampled by: Profix'o, Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | د            |                          |                                                  |                 |          |        |          |              |                      | L         | ANA       | ANALYSIS REGUEST                                                                    | , .      |                   |                                                         |                                             |
| Site Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |                          | _                                                |                 | <u> </u> |        | <u> </u> |              | <b>-</b> ,           |           | H         | K'<br>K'<br>P'<br>q'                                                                |          |                   |                                                         |                                             |
| State WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | SHEN                     |                                                  |                 |          |        |          |              | al not a             | •         |           | a, Be, C<br>a, Fe, P<br>Mo, Ni, I                                                   | (8)      | Sang              |                                                         |                                             |
| 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ε            | CONTAI                   | TPH-HCI                                          | ra-H9T          | TPH-Gx   | BBDM A | AOCª E   | ew par       | LCB*                 | Pesticide | elataM A1 | ity Metals b, As, B 7, Co, C Mg, Mn, g, Ns, Tl, g, Ns, Tl,                          | elataM ¶ | sladtde           |                                                         | Sample                                      |
| SAMPLE ID A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IMIT         | TAM<br>TO #              |                                                  |                 |          |        |          |              | -                    |           |           |                                                                                     | TOL      | do (1             |                                                         | S bioH                                      |
| FAW-160-30.0 5523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 1830       |                          |                                                  | X               |          |        |          | X            |                      |           |           |                                                                                     |          | ×                 |                                                         |                                             |
| FMW-100-18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1835         |                          |                                                  |                 |          |        |          |              |                      |           |           |                                                                                     |          |                   |                                                         |                                             |
| FM1-140-15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S            |                          |                                                  | ×               |          |        |          | ×            | -                    |           |           |                                                                                     |          | ×                 |                                                         |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OD1185-8-2   | -                        |                                                  |                 | -        |        |          |              | -                    |           | 1         |                                                                                     |          |                   |                                                         | -                                           |
| FMW- 159- 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 93           |                          |                                                  |                 |          |        |          |              |                      |           | _         |                                                                                     |          |                   |                                                         |                                             |
| B-1-1-17.0 15-17.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F 1234       | 1                        | <del>                                     </del> | ×               | -        |        | -        | X            | -                    |           | H         |                                                                                     | Ĺ        | ×                 | Please                                                  | Please proceed with                         |
| FB-17-15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 다.<br>-      |                          | $\vdash$                                         | X               | 1        |        |          | $\times$     |                      |           | T         |                                                                                     |          | ×                 | extractii<br>these sa                                   | extracting and holding<br>these samples for |
| FB-17-10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 85           |                          | _                                                | ×               |          |        | /        | >/           | -                    |           |           |                                                                                     |          | ×                 | potentia                                                | potential naphthalene                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                          |                                                  |                 |          |        |          |              | /                    |           |           |                                                                                     |          |                   |                                                         |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                          | _                                                |                 |          |        |          |              |                      |           | 1         |                                                                                     |          |                   |                                                         |                                             |
| Standard Turn Around Time (TAT) = 10 Business Days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Time (TAT)   | = 10 Busin               | ess Days                                         |                 |          |        |          | SPEC         | SPECIAL INSTRUCTIONS | TRUC      | IONS      |                                                                                     |          |                   |                                                         |                                             |
| 1 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | 2 Day                    | 3                                                | 3 Day           |          |        |          | Pe :         | ase E                | xtra      | ct ar     | d hold san                                                                          | ple .    | 5 FMW-15          | Please Extract and hold samples FMW-159-20.0 and        | _                                           |
| TAT Requested (circle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                          | C                                                | the contract of |          |        |          | ≥ :          |                      |           |           | or the folic                                                                        | Ž.       | g: DRO,OI         | FINW-159-15.U for the following: UKU, UKU, naphthalenes | alenes                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                          |                                                  | <u> </u>        |          |        |          | ğ            | and crams            | £         |           |                                                                                     |          |                   |                                                         |                                             |
| RELINOUISHED BY: BECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ELD FOR 30   | BECTIVED BY              | . BV.                                            |                 |          |        |          | l sad        | in St. I C.          | 200       |           |                                                                                     |          | o contract        |                                                         |                                             |
| }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date: 5-4-23 | Signature                | X                                                | CR              | S Dete   | lop    | 2        | Signatur     | Signature:           |           |           | Date:                                                                               |          | Signature:        | Date:                                                   |                                             |
| Printed Name: Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | Printed Name             | 1                                                |                 | Time     | Ĭ,     | _(       | Printed Name | Name:                |           |           | Time:                                                                               |          | Printed Name:     | Time                                                    |                                             |
| Сокираву:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | Company:                 | A                                                | XX              |          |        |          | Соптрану:    | Star                 |           |           |                                                                                     |          | Сопрацу:          |                                                         |                                             |

Apex Laboratories



Seattle, WA 98101

### ANALYTICAL REPORT

Project Manager: Suzy Stumpf

### Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Farallon-SeattleProject:397-019 Block 38 West1809 7th Ave Suite 1111Project Number:397-019 Block 38 West

Report ID: A3E1263 - 05 26 23 1018

APEX LABS COOLER RECEIPT FORM Client: Farallon Element WO#: A3 £1263 Project/Project #: Block 38 West **Delivery Info:** Date/time received: 5/10/23 @ 1036 By:\_\_\_\_\_ Delivered by: Apex\_Client\_ESS\_\_FedEx\_UPS\_Radio\_\_Morgan\_\_SDS\_\_Evergreen\_\_Other\_\_\_ Date/time inspected: <u>5/10/23 @ 1036</u> By: \_\_\_\_\_\_ Cooler Inspection Yes \_\_ No \_\_ Chain of Custody included? Signed/dated by client? Yes ⊂ No Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7 Temperature (°C) Custody seals? (Y/N) Received on ice? (Y/N) Temp. blanks? (Y/N) Ice type: (Gel/Real/Other) Condition (In/Out): In Cooler out of temp? (YN) Possible reason why: Green dots applied to out of temperature samples? Yes No Out of temperature samples form initiated? Yes No Sample Inspection: Date/time inspected: 5 10-23 @ 1114 By: D35 All samples intact? Yes No Comments: Bottle labels/COCs agree? Yes > No \_ Comments: \_\_\_\_ COC/container discrepancies form initiated? Yes \_\_\_ No \_> Containers/volumes received appropriate for analysis? Yes \_\_\_\_ No \_\_\_ Comments: \_\_\_\_\_ Do VOA vials have visible headspace? Yes \_\_\_ No \_\_\_ NA \_\_X Water samples: pH checked: Yes\_\_\_No\_\_\_NA\_\_xpH appropriate? Yes\_\_\_No\_\_\_NA\_\_x Additional information: 3980 9834 9841 Labeled by: Witness: Cooler Inspected by: Form Y-003 R-00 DIS D55

Apex Laboratories



### **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

AMENDED REPORT

Friday, December 22, 2023 Suzy Stumpf Farallon-Seattle 1809 7th Ave Suite 1111 Seattle, WA 98101

RE: A3E1405 - 397-019 Block 38 West - 397-019

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A3E1405, which was received by the laboratory on 5/16/2023 at 10:42:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: mpoquiz@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

| Acceptable Receipt Temperature is less than, or equal to, 6 degC (not frozen), or received on ice the same day as sampling  (See Cooler Receipt Form for details)  Cooler #1 2.1 degC Cooler #2 4.8 degC |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                          |
|                                                                                                                                                                                                          |
| Cooler #3 4.7 degC                                                                                                                                                                                       |

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.





Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1405 - 12 22 23 1809

# ANALYTICAL REPORT FOR SAMPLES

|                  | SAMPLE INFO   | ORMATION |                |                |
|------------------|---------------|----------|----------------|----------------|
| Client Sample ID | Laboratory ID | Matrix   | Date Sampled   | Date Received  |
| FMW-160-051523   | A3E1405-01    | Water    | 05/15/23 13:33 | 05/16/23 10:42 |
| FMW-158-051523   | A3E1405-02    | Water    | 05/15/23 14:00 | 05/16/23 10:42 |
| FMW-161-051523   | A3E1405-03    | Water    | 05/15/23 15:40 | 05/16/23 10:42 |
| FMW-163-051523   | A3E1405-04    | Water    | 05/15/23 15:45 | 05/16/23 10:42 |

Apex Laboratories

395



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1405 - 12 22 23 1809

# ANALYTICAL CASE NARRATIVE

A3E1405 Apex Laboratories

Amended Report Revision 1:

Reporting to Reporting Limits (RLs)-

This report supersedes all previous reports.

Per client request, this report has been amended to report all NWTPH-Dx data to the RLs.

Michele Poquiz Forensics Project Manager 12/22/2023

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1405 - 12 22 23 1809

# ANALYTICAL SAMPLE RESULTS

|                               | Die              | esel and/or Oi     | l Hydrocar         | bons by NWTP     | H-Dx     |                  |             |       |
|-------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|-------------|-------|
| Analyte                       | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| FMW-160-051523 (A3E1405-01)   |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23E1023     |       |
| Diesel                        | 114              |                    | 75.5               | ug/L             | 1        | 05/24/23 22:33   | NWTPH-Dx LL | F-11  |
| Oil                           | ND               |                    | 151                | ug/L             | 1        | 05/24/23 22:33   | NWTPH-Dx LL |       |
| Surrogate: o-Terphenyl (Surr) |                  | Recov              | very: 71 %         | Limits: 50-150 % | 5 I      | 05/24/23 22:33   | NWTPH-Dx LL |       |
| FMW-158-051523 (A3E1405-02)   |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23E1023     |       |
| Diesel                        | 149              |                    | 75.5               | ug/L             | 1        | 05/24/23 22:53   | NWTPH-Dx LL | F-11  |
| Oil                           | ND               |                    | 151                | ug/L             | 1        | 05/24/23 22:53   | NWTPH-Dx LL |       |
| Surrogate: o-Terphenyl (Surr) |                  | Recov              | very: 77 %         | Limits: 50-150 % | 5 1      | 05/24/23 22:53   | NWTPH-Dx LL |       |
| FMW-161-051523 (A3E1405-03)   |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23E1023     |       |
| Diesel                        | 211              |                    | 75.5               | ug/L             | 1        | 05/24/23 23:14   | NWTPH-Dx LL | F-11  |
| Oil                           | ND               |                    | 151                | ug/L             | 1        | 05/24/23 23:14   | NWTPH-Dx LL |       |
| Surrogate: o-Terphenyl (Surr) |                  | Recov              | very: 75 %         | Limits: 50-150 % | 5 1      | 05/24/23 23:14   | NWTPH-Dx LL |       |
| FMW-163-051523 (A3E1405-04)   |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23E1023     |       |
| Diesel                        | 181              |                    | 76.9               | ug/L             | 1        | 05/24/23 23:34   | NWTPH-Dx LL | F-11  |
| Oil                           | ND               |                    | 154                | ug/L             | 1        | 05/24/23 23:34   | NWTPH-Dx LL |       |
| Surrogate: o-Terphenyl (Surr) |                  | Recov              | very: 78 %         | Limits: 50-150 % | 5 1      | 05/24/23 23:34   | NWTPH-Dx LL |       |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1405 - 12 22 23 1809

# ANALYTICAL SAMPLE RESULTS

| Gasoli                                | ne Range Hy      | drocarbons (Be       | nzene tl           | hrough Naphtha   | alene) by | NWTPH-Gx         |               |       |
|---------------------------------------|------------------|----------------------|--------------------|------------------|-----------|------------------|---------------|-------|
| Analyte                               | Sample<br>Result | Detection l<br>Limit | Reporting<br>Limit | Units            | Dilution  | Date<br>Analyzed | Method Ref.   | Notes |
| FMW-160-051523 (A3E1405-01RE1)        |                  |                      |                    | Matrix: Wate     | er        | Batch:           | : 23E0762     |       |
| Gasoline Range Organics               | ND               | 50.0                 | 100                | ug/L             | 1         | 05/17/23 15:03   | NWTPH-Gx (MS) |       |
| Surrogate: 4-Bromofluorobenzene (Sur) |                  | Recovery.            | 93 %               | Limits: 50-150 % | 1         | 05/17/23 15:03   | NWTPH-Gx (MS) |       |
| 1,4-Difluorobenzene (Sur)             |                  |                      | 96 %               | 50-150 %         | 1         | 05/17/23 15:03   | NWTPH-Gx (MS) |       |
| FMW-158-051523 (A3E1405-02RE1)        |                  |                      |                    | Matrix: Wate     | er        | Batch:           | : 23E0762     |       |
| Gasoline Range Organics               | ND               | 50.0                 | 100                | ug/L             | 1         | 05/17/23 15:25   | NWTPH-Gx (MS) |       |
| Surrogate: 4-Bromofluorobenzene (Sur) |                  | Recovery.            | 95 %               | Limits: 50-150 % | 1         | 05/17/23 15:25   | NWTPH-Gx (MS) |       |
| 1,4-Difluorobenzene (Sur)             |                  |                      | 98 %               | 50-150 %         | 1         | 05/17/23 15:25   | NWTPH-Gx (MS) |       |
| FMW-161-051523 (A3E1405-03RE1)        |                  |                      |                    | Matrix: Wate     | er        | Batch:           | : 23E0762     |       |
| Gasoline Range Organics               | ND               | 50.0                 | 100                | ug/L             | 1         | 05/17/23 15:48   | NWTPH-Gx (MS) |       |
| Surrogate: 4-Bromofluorobenzene (Sur) |                  | Recovery             | 92 %               | Limits: 50-150 % | 1         | 05/17/23 15:48   | NWTPH-Gx (MS) |       |
| 1,4-Difluorobenzene (Sur)             |                  |                      | 97 %               | 50-150 %         | 1         | 05/17/23 15:48   | NWTPH-Gx (MS) |       |
| FMW-163-051523 (A3E1405-04RE1)        |                  |                      |                    | Matrix: Wate     | er        | Batch            | : 23E0762     |       |
| Gasoline Range Organics               | ND               | 50.0                 | 100                | ug/L             | 1         | 05/17/23 16:10   | NWTPH-Gx (MS) |       |
| Surrogate: 4-Bromofluorobenzene (Sur) |                  | Recovery             | 91%                | Limits: 50-150 % | 1         | 05/17/23 16:10   | NWTPH-Gx (MS) |       |
| 1,4-Difluorobenzene (Sur)             |                  |                      | 97 %               | 50-150 %         | 1         | 05/17/23 16:10   | NWTPH-Gx (MS) |       |

Apex Laboratories

(milale fogs



#### AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1405 - 12 22 23 1809

# ANALYTICAL SAMPLE RESULTS

|                                       |        | BTEX Co   | mpounds b  | y EPA 8260D      |          |                |             |       |
|---------------------------------------|--------|-----------|------------|------------------|----------|----------------|-------------|-------|
|                                       | Sample | Detection | Reporting  | ** *             | B11 - 1  | Date           | V 1 15 2    | 37.   |
| Analyte                               | Result | Limit     | Limit      | Units            | Dilution | Analyzed       | Method Ref. | Notes |
| FMW-160-051523 (A3E1405-01RE1)        |        |           |            | Matrix: Wate     | r        | Batch:         | 23E0762     |       |
| Benzene                               | ND     | 0.100     | 0.200      | ug/L             | 1        | 05/17/23 15:03 | EPA 8260D   |       |
| Toluene                               | ND     | 0.500     | 1.00       | ug/L             | 1        | 05/17/23 15:03 | EPA 8260D   |       |
| Ethylbenzene                          | ND     | 0.250     | 0.500      | ug/L             | 1        | 05/17/23 15:03 | EPA 8260D   |       |
| Xylenes, total                        | ND     | 0.750     | 1.50       | ug/L             | 1        | 05/17/23 15:03 | EPA 8260D   |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |        | Reco      | very: 98 % | Limits: 80-120 % | 1        | 05/17/23 15:03 | EPA 8260D   |       |
| Toluene-d8 (Surr)                     |        |           | 101 %      | 80-120 %         | 1        | 05/17/23 15:03 | EPA 8260D   |       |
| 4-Bromofluorobenzene (Surr)           |        |           | 107 %      | 80-120 %         | 1        | 05/17/23 15:03 | EPA 8260D   |       |
| FMW-158-051523 (A3E1405-02RE1)        |        |           |            | Matrix: Wate     | er       | Batch: 2       | 23E0762     |       |
| Benzene                               | ND     | 0.100     | 0.200      | ug/L             | 1        | 05/17/23 15:25 | EPA 8260D   |       |
| Toluene                               | ND     | 0.500     | 1.00       | ug/L             | 1        | 05/17/23 15:25 | EPA 8260D   |       |
| Ethylbenzene                          | ND     | 0.250     | 0.500      | ug/L             | 1        | 05/17/23 15:25 | EPA 8260D   |       |
| Xylenes, total                        | ND     | 0.750     | 1.50       | ug/L             | 1        | 05/17/23 15:25 | EPA 8260D   |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |        | Reco      | very: 94 % | Limits: 80-120 % | 1        | 05/17/23 15:25 | EPA 8260D   |       |
| Toluene-d8 (Surr)                     |        |           | 100 %      | 80-120 %         | 1        | 05/17/23 15:25 | EPA 8260D   |       |
| 4-Bromofluorobenzene (Surr)           |        |           | 105 %      | 80-120 %         | 1        | 05/17/23 15:25 | EPA 8260D   |       |
| FMW-161-051523 (A3E1405-03RE1)        |        |           |            | Matrix: Wate     | er       | Batch:         | 23E0762     |       |
| Benzene                               | 0.120  | 0.100     | 0.200      | ug/L             | 1        | 05/17/23 15:48 | EPA 8260D   | J     |
| Toluene                               | ND     | 0.500     | 1.00       | ug/L             | 1        | 05/17/23 15:48 | EPA 8260D   |       |
| Ethylbenzene                          | ND     | 0.250     | 0.500      | ug/L             | 1        | 05/17/23 15:48 | EPA 8260D   |       |
| Xylenes, total                        | ND     | 0.750     | 1.50       | ug/L             | 1        | 05/17/23 15:48 | EPA 8260D   |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |        | Reco      | very: 95 % | Limits: 80-120 % | 1        | 05/17/23 15:48 | EPA 8260D   |       |
| Toluene-d8 (Surr)                     |        |           | 99 %       | 80-120 %         | 1        | 05/17/23 15:48 | EPA 8260D   |       |
| 4-Bromofluorobenzene (Surr)           |        |           | 108 %      | 80-120 %         | 1        | 05/17/23 15:48 | EPA 8260D   |       |
| FMW-163-051523 (A3E1405-04RE1)        |        |           |            | Matrix: Wate     | er       | Batch:         | 23E0762     | •     |
| Benzene                               | 1.16   | 0.100     | 0.200      | ug/L             | 1        | 05/17/23 16:10 | EPA 8260D   |       |
| Toluene                               | ND     | 0.500     | 1.00       | ug/L             | 1        | 05/17/23 16:10 | EPA 8260D   |       |
| Ethylbenzene                          | ND     | 0.250     | 0.500      | ug/L             | 1        | 05/17/23 16:10 | EPA 8260D   |       |
| Xylenes, total                        | ND     | 0.750     | 1.50       | ug/L             | 1        | 05/17/23 16:10 | EPA 8260D   |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |        | Reco      | very: 94 % | Limits: 80-120 % | I        | 05/17/23 16:10 | EPA 8260D   |       |
| Toluene-d8 (Surr)                     |        |           | 100 %      | 80-120 %         | 1        | 05/17/23 16:10 | EPA 8260D   |       |
| 4-Bromofluorobenzene (Surr)           |        |           | 105 %      | 80-120 %         | 1        | 05/17/23 16:10 | EPA 8260D   |       |

Apex Laboratories



Farallon-Seattle

Seattle, WA 98101

1809 7th Ave Suite 1111

#### ANALYTICAL REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

**Apex Laboratories, LLC** 

ORELAP ID: OR100062

AMENDED REPORT

Project: <u>397-019 Block 38 West</u>

Project Number: 397-019

Project Manager: Suzy Stumpf

A3E1405 - 12 22 23 1809

# ANALYTICAL SAMPLE RESULTS

|         |        | BTEX Co   | mpounds by | EPA 8260D |          |          |             |       |
|---------|--------|-----------|------------|-----------|----------|----------|-------------|-------|
|         | Sample | Detection | Reporting  |           |          | Date     |             |       |
| Analyte | Result | Limit     | Limit      | Units     | Dilution | Analyzed | Method Ref. | Notes |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1405 - 12 22 23 1809

# ANALYTICAL SAMPLE RESULTS

|                                    | Polyaro          | matic Hydroca      | rbons (PA          | AHs) by EPA 827  | 70E (SIM | )                |               |       |
|------------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|---------------|-------|
| Analyte                            | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref.   | Notes |
| FMW-160-051523 (A3E1405-01)        |                  |                    |                    | Matrix: Wate     | r        | Batch:           | 23E0844       |       |
| 1-Methylnaphthalene                | ND               | 0.0377             | 0.0755             | ug/L             | 1        | 05/19/23 21:01   | EPA 8270E SIM |       |
| 2-Methylnaphthalene                | ND               | 0.0377             | 0.0755             | ug/L             | 1        | 05/19/23 21:01   | EPA 8270E SIM |       |
| Naphthalene                        | ND               | 0.0377             | 0.0755             | ug/L             | 1        | 05/19/23 21:01   | EPA 8270E SIM |       |
| Surrogate: 2-Fluorobiphenyl (Surr) |                  | Recover            | v: 56 %            | Limits: 44-120 % | 1        | 05/19/23 21:01   | EPA 8270E SIM |       |
| p-Terphenyl-d14 (Surr)             |                  |                    | 68 %               | 50-134 %         | 1        | 05/19/23 21:01   | EPA 8270E SIM |       |
| FMW-158-051523 (A3E1405-02)        |                  |                    |                    | Matrix: Wate     | r        | Batch:           | 23E0844       |       |
| 1-Methylnaphthalene                | 0.180            | 0.0381             | 0.0762             | ug/L             | 1        | 05/22/23 17:25   | EPA 8270E SIM |       |
| 2-Methylnaphthalene                | ND               | 0.0381             | 0.0762             | ug/L             | 1        | 05/22/23 17:25   | EPA 8270E SIM |       |
| Naphthalene                        | 0.316            | 0.0381             | 0.0762             | ug/L             | 1        | 05/22/23 17:25   | EPA 8270E SIM |       |
| Surrogate: 2-Fluorobiphenyl (Surr) |                  | Recover            | v: 55 %            | Limits: 44-120 % | 1        | 05/22/23 17:25   | EPA 8270E SIM |       |
| p-Terphenyl-d14 (Surr)             |                  |                    | 73 %               | 50-134 %         | 1        | 05/22/23 17:25   | EPA 8270E SIM |       |
| FMW-161-051523 (A3E1405-03)        |                  |                    |                    | Matrix: Wate     | r        | Batch:           | 23E0844       |       |
| 1-Methylnaphthalene                | ND               | 0.0381             | 0.0762             | ug/L             | 1        | 05/22/23 17:50   | EPA 8270E SIM |       |
| 2-Methylnaphthalene                | ND               | 0.0381             | 0.0762             | ug/L             | 1        | 05/22/23 17:50   | EPA 8270E SIM |       |
| Naphthalene                        | 0.206            | 0.0381             | 0.0762             | ug/L             | 1        | 05/22/23 17:50   | EPA 8270E SIM |       |
| Surrogate: 2-Fluorobiphenyl (Surr) |                  | Recovery           | y: 53 %            | Limits: 44-120 % | 1        | 05/22/23 17:50   | EPA 8270E SIM |       |
| p-Terphenyl-d14 (Surr)             |                  |                    | 68 %               | 50-134 %         | 1        | 05/22/23 17:50   | EPA 8270E SIM |       |
| FMW-163-051523 (A3E1405-04)        | _                | _                  |                    | Matrix: Wate     | r        | Batch:           | 23E0844       |       |
| 1-Methylnaphthalene                | ND               | 0.0381             | 0.0762             | ug/L             | 1        | 05/22/23 18:16   | EPA 8270E SIM |       |
| 2-Methylnaphthalene                | ND               | 0.0381             | 0.0762             | ug/L             | 1        | 05/22/23 18:16   | EPA 8270E SIM |       |
| Naphthalene                        | 0.122            | 0.0381             | 0.0762             | ug/L             | 1        | 05/22/23 18:16   | EPA 8270E SIM |       |
| Surrogate: 2-Fluorobiphenyl (Surr) |                  | Recovery           | y: 36 %            | Limits: 44-120 % | I        | 05/22/23 18:16   | EPA 8270E SIM | S-06  |
| p-Terphenyl-d14 (Surr)             |                  |                    | 70 %               | 50-134 %         | 1        | 05/22/23 18:16   | EPA 8270E SIM |       |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1405 - 12 22 23 1809

# ANALYTICAL SAMPLE RESULTS

|                                |                  | Total Meta         | ils by EPA 60      | 20B (ICPMS | S)       |                  |             |       |
|--------------------------------|------------------|--------------------|--------------------|------------|----------|------------------|-------------|-------|
| Analyte                        | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| FMW-158-051523 (A3E1405-02RE1) |                  |                    |                    | Matrix: W  | ater     |                  |             |       |
| Batch: 23E0748  Barium         | 84.7             | 1.00               | 2.00               | ug/L       | 1        | 05/17/23 16:43   | EPA 6020B   |       |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1405 - 12 22 23 1809

# ANALYTICAL SAMPLE RESULTS

|                             |                  | Dissolved M        | etals by EPA       | 6020B (ICP | MS)      |                  |                  |       |
|-----------------------------|------------------|--------------------|--------------------|------------|----------|------------------|------------------|-------|
| Analyte                     | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution | Date<br>Analyzed | Method Ref.      | Notes |
| FMW-158-051523 (A3E1405-02) |                  |                    |                    | Matrix: W  | ater     |                  |                  |       |
| Batch: 23E1016 Barium       | 82.0             | 0.500              | 1.00               | ug/L       | 1        | 05/25/23 12:15   | EPA 6020B (Diss) |       |

Apex Laboratories



AMENDED REPORT

Project:

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

**Apex Laboratories, LLC** 

ORELAP ID: OR100062

<u>Farallon-Seattle</u> 1809 7th Ave Suite 1111 Seattle, WA 98101

Project Number: 397-019
Project Manager: Suzy Stumpf

397-019 Block 38 West

Report ID: A3E1405 - 12 22 23 1809

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                           |             | D                    | iesel and/         | or Oil Hyd  | drocarbor | s by NWT        | PH-Dx            |       |                 |     |              |       |
|---------------------------|-------------|----------------------|--------------------|-------------|-----------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                   | Result      | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 23E1023 - EPA 3510C | (Fuels/Acid | d Ext.)              |                    |             |           |                 | Wa               | ter   |                 |     |              |       |
| Blank (23E1023-BLK1)      |             |                      | Prepare            | d: 05/24/23 | 11:28 Ana | lyzed: 05/24/   | 23 21:32         |       |                 |     |              |       |
| NWTPH-Dx LL               |             |                      |                    |             |           |                 |                  |       |                 |     |              |       |
| Diesel                    | ND          |                      | 80.0               | ug/L        | 1         |                 |                  |       |                 |     |              |       |
| Oil                       | ND          |                      | 160                | ug/L        | 1         |                 |                  |       |                 |     |              |       |
| Surr: o-Terphenyl (Surr)  |             | Reco                 | overy: 90 %        | Limits: 50  | 0-150 %   | Dilu            | tion: 1x         |       |                 |     |              |       |
| LCS (23E1023-BS1)         |             |                      | Prepare            | d: 05/24/23 | 11:28 Ana | lyzed: 05/24/   | 23 21:52         |       |                 |     |              |       |
| NWTPH-Dx LL               |             |                      |                    |             |           |                 |                  |       |                 |     |              |       |
| Diesel                    | 266         |                      | 80.0               | ug/L        | 1         | 500             |                  | 53    | 36-132%         |     |              |       |
| Surr: o-Terphenyl (Surr)  |             | Reco                 | overy: 89 %        | Limits: 50  | 0-150 %   | Dilu            | tion: 1x         |       |                 |     |              |       |
| LCS Dup (23E1023-BSD1)    |             |                      | Prepare            | d: 05/24/23 | 11:28 Ana | lyzed: 05/24/   | 23 22:13         |       |                 |     |              | Q-    |
| NWTPH-Dx LL               |             |                      |                    |             |           |                 |                  |       |                 |     |              |       |
| Diesel                    | 269         |                      | 80.0               | ug/L        | 1         | 500             |                  | 54    | 36-132%         | 1   | 30%          |       |
| Surr: o-Terphenyl (Surr)  |             | Reco                 | overy: 84 %        | Limits: 50  | 0-150 %   | Dilu            | tion: 1x         |       |                 |     |              |       |

Apex Laboratories

(milele fog



AMENDED REPORT

6700 S.W. Sandburg Street

Tigard, OR 97223 503-718-2323

**Apex Laboratories, LLC** 

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West 1809 7th Ave Suite 1111 Project Number: 397-019 Report ID: Seattle, WA 98101 Project Manager: Suzy Stumpf A3E1405 - 12 22 23 1809

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                  | Gasoli     | ne Range H           | ydrocarbo          | ons (Ben    | zene thro | ugh Naphi       | thalene)         | by NWTP | H-Gx            |     |              |       |
|----------------------------------|------------|----------------------|--------------------|-------------|-----------|-----------------|------------------|---------|-----------------|-----|--------------|-------|
| Analyte                          | Result     | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution  | Spike<br>Amount | Source<br>Result | % REC   | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 23E0669 - EPA 5030C        |            |                      |                    |             |           |                 | Wa               | ter     |                 |     |              |       |
| Blank (23E0669-BLK1)             |            |                      | Prepared           | d: 05/16/23 | 10:00 Ana | lyzed: 05/16    | /23 11:21        |         |                 |     |              |       |
| NWTPH-Gx (MS)                    |            |                      |                    |             |           |                 |                  |         |                 |     |              |       |
| Gasoline Range Organics          | ND         | 50.0                 | 100                | ug/L        | 1         |                 |                  |         |                 |     |              |       |
| Surr: 4-Bromofluorobenzene (Sur) |            | Recov                | ery: 104 %         | Limits: 5   | 0-150 %   | Dilı            | ution: 1x        |         |                 |     |              |       |
| 1,4-Difluorobenzene (Sur)        |            |                      | 114 %              | 5           | 0-150 %   |                 | "                |         |                 |     |              |       |
| LCS (23E0669-BS2)                |            |                      | Prepared           | d: 05/16/23 | 10:00 Ana | lyzed: 05/16/   | /23 10:54        |         |                 |     |              |       |
| NWTPH-Gx (MS)                    |            |                      |                    |             |           |                 |                  |         |                 |     |              |       |
| Gasoline Range Organics          | 504        | 50.0                 | 100                | ug/L        | 1         | 500             |                  | 101     | 80-120%         |     |              |       |
| Surr: 4-Bromofluorobenzene (Sur) |            | Recov                | ery: 105 %         | Limits: 5   | 0-150 %   | Dilı            | ution: 1x        |         |                 |     |              |       |
| 1,4-Difluorobenzene (Sur)        |            |                      | 109 %              | 5           | 0-150 %   |                 | "                |         |                 |     |              |       |
| Duplicate (23E0669-DUP1)         |            |                      | Prepared           | d: 05/16/23 | 10:00 Ana | lyzed: 05/16/   | /23 17:41        |         |                 |     |              |       |
| QC Source Sample: Non-SDG (A3    | BE1253-01) |                      |                    |             |           |                 |                  |         |                 |     |              |       |
| Gasoline Range Organics          | ND         | 500                  | 1000               | ug/L        | 10        |                 | ND               |         |                 |     | 30%          |       |
| Surr: 4-Bromofluorobenzene (Sur) |            | Recov                | ery: 108 %         | Limits: 5   | 0-150 %   | Dilı            | ution: 1x        |         |                 |     |              |       |
|                                  |            |                      | 117 %              |             | 0-150 %   |                 | "                |         |                 |     |              |       |

Apex Laboratories



Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AMENDED REPORT

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1405 - 12 22 23 1809

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                  | Gasolii   | ne Range H           | ydrocarbo          | ns (Ben     | zene thro  | ugh Naph        | thalene)         | by NWTP | H-Gx            |     |              |             |
|----------------------------------|-----------|----------------------|--------------------|-------------|------------|-----------------|------------------|---------|-----------------|-----|--------------|-------------|
| Analyte                          | Result    | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution   | Spike<br>Amount | Source<br>Result | % REC   | % REC<br>Limits | RPD | RPD<br>Limit | Notes       |
| Batch 23E0762 - EPA 5030C        |           |                      |                    |             |            |                 | Wa               | ter     |                 |     |              |             |
| Blank (23E0762-BLK1)             |           |                      | Prepared           | d: 05/17/23 | 12:02 Anal | lyzed: 05/17    | /23 14:12        |         |                 |     |              |             |
| NWTPH-Gx (MS)                    |           |                      |                    |             |            |                 |                  |         |                 |     |              |             |
| Gasoline Range Organics          | ND        | 50.0                 | 100                | ug/L        | 1          |                 |                  |         |                 |     |              |             |
| Surr: 4-Bromofluorobenzene (Sur) |           | Reco                 | very: 92 %         | Limits: 5   | 0-150 %    | Dilı            | ution: 1x        |         |                 |     |              | <del></del> |
| 1,4-Difluorobenzene (Sur)        |           |                      | 97 %               | 5           | 0-150 %    |                 | "                |         |                 |     |              |             |
| LCS (23E0762-BS2)                |           |                      | Prepared           | d: 05/17/23 | 12:02 Anal | lyzed: 05/17    | /23 13:50        |         |                 |     |              |             |
| NWTPH-Gx (MS)                    |           |                      |                    |             |            |                 |                  |         |                 |     |              |             |
| Gasoline Range Organics          | 417       | 50.0                 | 100                | ug/L        | 1          | 500             |                  | 83      | 80-120%         |     |              |             |
| Surr: 4-Bromofluorobenzene (Sur) |           | Reco                 | very: 95 %         | Limits: 5   | 0-150 %    | Dilı            | ution: 1x        |         |                 |     |              |             |
| 1,4-Difluorobenzene (Sur)        |           |                      | 97 %               | 5           | 0-150 %    |                 | "                |         |                 |     |              |             |
| Duplicate (23E0762-DUP1)         |           |                      | Prepared           | d: 05/17/23 | 12:02 Ana  | lyzed: 05/17    | /23 21:02        |         |                 |     |              |             |
| QC Source Sample: Non-SDG (A3    | E1364-02) |                      |                    |             |            |                 |                  |         | ·               |     |              |             |
| Gasoline Range Organics          | ND        | 2500                 | 5000               | ug/L        | 50         |                 | ND               |         |                 |     | 30%          |             |
| Surr: 4-Bromofluorobenzene (Sur) |           | Reco                 | very: 93 %         | Limits: 5   | 0-150 %    | Dilı            | ution: 1x        |         |                 |     |              |             |
| 1,4-Difluorobenzene (Sur)        |           |                      | 100 %              | 5           | 0-150 %    |                 | "                |         |                 |     |              |             |

Apex Laboratories

/ milale fog



Farallon-Seattle

Seattle, WA 98101

1809 7th Ave Suite 1111

### ANALYTICAL REPORT

6700 S.W. Sandburg Street Tigard, OR 97223

**Apex Laboratories, LLC** 

**503-718-2323**ORELAP ID: **OR100062** 

AMENDED REPORT

Project: <u>397-019 Block 38 West</u>

 Project Number: 397-019
 Report ID:

 Project Manager: Suzy Stumpf
 A3E1405 - 12 22 23 1809

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                  |           |                      | BTEX               | Compo       | unds by E  | PA 8260D        |                  |       |                 |     |              |       |
|----------------------------------|-----------|----------------------|--------------------|-------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                          | Result    | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 23E0669 - EPA 5030C        |           |                      |                    |             |            |                 | Wa               | ter   |                 |     |              |       |
| Blank (23E0669-BLK1)             |           |                      | Prepared           | 1: 05/16/23 | 10:00 Ana  | lyzed: 05/16    | /23 11:21        |       |                 |     |              |       |
| EPA 8260D                        |           |                      |                    |             |            |                 |                  |       |                 |     |              |       |
| Benzene                          | ND        | 0.100                | 0.200              | ug/L        | 1          |                 |                  |       |                 |     |              |       |
| Toluene                          | ND        | 0.500                | 1.00               | ug/L        | 1          |                 |                  |       |                 |     |              |       |
| Ethylbenzene                     | ND        | 0.250                | 0.500              | ug/L        | 1          |                 |                  |       |                 |     |              |       |
| Xylenes, total                   | ND        | 0.750                | 1.50               | ug/L        | 1          |                 |                  |       |                 |     |              |       |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recon                | very: 111 %        | Limits: 80  | 0-120 %    | Dilı            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           |                      | 103 %              | 80          | 0-120 %    |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 100 %              | 80          | 0-120 %    |                 | "                |       |                 |     |              |       |
| LCS (23E0669-BS1)                |           |                      | Prepared           | 1: 05/16/23 | 10:00 Anal | lyzed: 05/16    | /23 10:27        |       |                 |     |              |       |
| EPA 8260D                        |           |                      | •                  |             |            | -               |                  |       |                 |     |              |       |
| Benzene                          | 20.2      | 0.100                | 0.200              | ug/L        | 1          | 20.0            |                  | 101   | 80-120%         |     |              |       |
| Toluene                          | 18.4      | 0.500                | 1.00               | ug/L        | 1          | 20.0            |                  | 92    | 80-120%         |     |              |       |
| Ethylbenzene                     | 19.3      | 0.250                | 0.500              | ug/L        | 1          | 20.0            |                  | 97    | 80-120%         |     |              |       |
| Xylenes, total                   | 56.2      | 0.750                | 1.50               | ug/L        | 1          | 60.0            |                  | 94    | 80-120%         |     |              |       |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recov                | ery: 106 %         | Limits: 80  | 0-120 %    | Dilı            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           |                      | 98 %               | 80          | 0-120 %    |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 86 %               | 80          | 0-120 %    |                 | "                |       |                 |     |              |       |
| Duplicate (23E0669-DUP1)         |           |                      | Prepared           | 1: 05/16/23 | 10:00 Anal | lyzed: 05/16    | /23 17:41        |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A3I   | E1253-01) |                      |                    |             |            |                 |                  |       |                 |     |              |       |
| Benzene                          | ND        | 1.00                 | 2.00               | ug/L        | 10         |                 | ND               |       |                 |     | 30%          |       |
| Toluene                          | ND        | 5.00                 | 10.0               | ug/L        | 10         |                 | ND               |       |                 |     | 30%          |       |
| Ethylbenzene                     | ND        | 2.50                 | 5.00               | ug/L        | 10         |                 | ND               |       |                 |     | 30%          |       |
| Xylenes, total                   | ND        | 7.50                 | 15.0               | ug/L        | 10         |                 | ND               |       |                 |     | 30%          |       |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recov                |                    | Limits: 80  |            | Dilı            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           |                      | 104 %              |             | 0-120 %    |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 101 %              |             | 0-120 %    |                 | "                |       |                 |     |              |       |
| Matrix Spike (23E0669-MS1)       |           |                      | Prepared           | 1: 05/16/23 | 10:00 Ana  | lyzed: 05/16    | /23 15:52        |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A3I   | E1310-01R | E1)                  | 1                  |             |            | - "             |                  |       |                 |     |              |       |
| EPA 8260D                        | 21310-01K | <u></u>              |                    |             |            |                 |                  |       |                 |     |              |       |
| Benzene                          | 20.9      | 0.100                | 0.200              | ug/L        | 1          | 20.0            | ND               | 104   | 79-120%         |     |              |       |

Apex Laboratories



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Apex Laboratories, LLC

ORELAP ID: OR100062

AMENDED REPORT

Farallon-Seattle 1809 7th Ave Suite 1111 Seattle, WA 98101

397-019 Block 38 West Project:

Project Number: 397-019 Project Manager: Suzy Stumpf

Report ID: A3E1405 - 12 22 23 1809

### QUALITY CONTROL (QC) SAMPLE RESULTS

#### BTEX Compounds by EPA 8260D Reporting % REC RPD Detection L Spike Source Result Units Dilution % REC Limits RPD Analyte Limit Limit Amount Result Limit Notes Batch 23E0669 - EPA 5030C Water Matrix Spike (23E0669-MS1) Prepared: 05/16/23 10:00 Analyzed: 05/16/23 15:52 QC Source Sample: Non-SDG (A3E1310-01RE1) 20.0 95 Toluene 19.0 0.500 1.00 ug/L 1 ND 80-121% Ethylbenzene 20.1 0.250 0.500 20.0 ug/L 1 ND 100 79-121% 79-121% Xylenes, total 58.6 0.750 1.50 ug/L 1 60.0 ND 98 Surr: 1,4-Difluorobenzene (Surr) 105 % Recovery: Limits: 80-120 % Dilution: 1x 97% Toluene-d8 (Surr) 80-120 % 4-Bromofluorobenzene (Surr) 86 % 80-120 % Matrix Spike Dup (23E0669-MSD1) Prepared: 05/16/23 10:00 Analyzed: 05/16/23 16:19 QC Source Sample: Non-SDG (A3E1310-01RE1) 105 30% Benzene 0.100 0.200 ug/L 20.0 20.9 1 ND 79-120% 0.1 Toluene 18.8 0.500 1.00 ug/L 1 20.0 ND 94 80-121% 0.9 30% Ethylbenzene 20.0 0.250 20.0 ND 100 79-121% 30% 0.500 ug/L 1 0.6 Xylenes, total 58.2 0.750 1.50 ug/L 60.0 ND 97 79-121% 0.7 30% Surr: 1,4-Difluorobenzene (Surr) Recovery: 106 % Limits: 80-120 % Dilution: 1x Toluene-d8 (Surr) 97% 80-120 % 4-Bromofluorobenzene (Surr) 85 % 80-120 %

Apex Laboratories



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

**Apex Laboratories, LLC** 

ORELAP ID: OR100062

AMENDED REPORT

Farallon-Seattle Project: 397-019 Block 38 West

1809 7th Ave Suite 1111 Project Number: 397-019 Report ID: Seattle, WA 98101 Project Manager: Suzy Stumpf A3E1405 - 12 22 23 1809

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                  |           |                      | BTEX               | Compou      | ınds by E  | PA 8260D        | )                |       |                 |     |              |       |
|----------------------------------|-----------|----------------------|--------------------|-------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                          | Result    | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 23E0762 - EPA 5030C        |           |                      |                    |             |            |                 | Wa               | ter   |                 |     |              |       |
| Blank (23E0762-BLK1)             |           |                      | Prepared           | 1: 05/17/23 | 12:02 Anal | yzed: 05/17     | /23 14:12        |       |                 |     |              |       |
| EPA 8260D                        |           |                      |                    |             |            |                 |                  |       |                 |     |              |       |
| Benzene                          | ND        | 0.100                | 0.200              | ug/L        | 1          |                 |                  |       |                 |     |              |       |
| Toluene                          | ND        | 0.500                | 1.00               | ug/L        | 1          |                 |                  |       |                 |     |              |       |
| Ethylbenzene                     | ND        | 0.250                | 0.500              | ug/L        | 1          |                 |                  |       |                 |     |              |       |
| Xylenes, total                   | ND        | 0.750                | 1.50               | ug/L        | 1          |                 |                  |       |                 |     |              |       |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recov                | ery: 101 %         | Limits: 80  | -120 %     | Dilı            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           |                      | 99 %               | 80          | -120 %     |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 106 %              | 80          | -120 %     |                 | "                |       |                 |     |              |       |
| LCS (23E0762-BS1)                |           |                      | Prepared           | 1: 05/17/23 | 12:02 Anal | yzed: 05/17     | /23 13:27        |       |                 |     |              |       |
| EPA 8260D                        |           |                      |                    |             |            |                 |                  |       |                 |     |              |       |
| Benzene                          | 19.0      | 0.100                | 0.200              | ug/L        | 1          | 20.0            |                  | 95    | 80-120%         |     |              |       |
| Toluene                          | 19.9      | 0.500                | 1.00               | ug/L        | 1          | 20.0            |                  | 100   | 80-120%         |     |              |       |
| Ethylbenzene                     | 20.6      | 0.250                | 0.500              | ug/L        | 1          | 20.0            |                  | 103   | 80-120%         |     |              |       |
| Xylenes, total                   | 67.2      | 0.750                | 1.50               | ug/L        | 1          | 60.0            |                  | 112   | 80-120%         |     |              |       |
| Surr: 1,4-Difluorobenzene (Surr) |           | Reco                 | very: 96 %         | Limits: 80  | -120 %     | Dilı            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           |                      | 98 %               | 80          | -120 %     |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 101 %              | 80          | -120 %     |                 | "                |       |                 |     |              |       |
| Duplicate (23E0762-DUP1)         |           |                      | Prepared           | 1: 05/17/23 | 12:02 Anal | yzed: 05/17     | /23 21:02        |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A3)   | E1364-02) |                      |                    |             |            |                 |                  |       |                 |     |              |       |
| Benzene                          | ND        | 5.00                 | 10.0               | ug/L        | 50         |                 | ND               |       |                 |     | 30%          |       |
| Toluene                          | ND        | 25.0                 | 50.0               | ug/L        | 50         |                 | ND               |       |                 |     | 30%          |       |
| Ethylbenzene                     | ND        | 12.5                 | 25.0               | ug/L        | 50         |                 | ND               |       |                 |     | 30%          |       |
| Xylenes, total                   | ND        | 37.5                 | 75.0               | ug/L        | 50         |                 | ND               |       |                 |     | 30%          |       |
| Surr: 1,4-Difluorobenzene (Surr) |           |                      | very: 95 %         | Limits: 80  | )-120 %    | Dilt            | ution: 1x        |       |                 |     |              | _     |
| Toluene-d8 (Surr)                |           |                      | 101 %              |             | -120 %     |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 107 %              |             | -120 %     |                 | "                |       |                 |     |              |       |
|                                  |           |                      |                    |             |            |                 |                  |       |                 |     |              |       |
| Matrix Spike (23E0762-MS1)       |           |                      | Prepared           | 1: 05/17/23 | 12:02 Anal | yzed: 05/17     | /23 23:17        |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A3    | E1428-01) |                      |                    |             |            |                 |                  |       |                 |     |              |       |
| EPA 8260D                        |           |                      |                    |             |            |                 |                  |       |                 |     |              |       |
| Benzene                          | 19.6      | 0.100                | 0.200              | ug/L        | 1          | 20.0            | ND               | 98    | 79-120%         |     |              |       |

Apex Laboratories



Farallon-Seattle

Seattle, WA 98101

1809 7th Ave Suite 1111

#### ANALYTICAL REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AMENDED REPORT

Project: 397-019 Block 38 West

Project Number: **397-019**Project Manager: **Suzy Stumpf** 

Report ID: A3E1405 - 12 22 23 1809

#### **QUALITY CONTROL (QC) SAMPLE RESULTS**

#### BTEX Compounds by EPA 8260D % REC RPD Detection L Reporting Spike Source Result Units Dilution % REC Limits RPD Analyte Limit Limit Amount Result Limit Notes Batch 23E0762 - EPA 5030C Water Matrix Spike (23E0762-MS1) Prepared: 05/17/23 12:02 Analyzed: 05/17/23 23:17 QC Source Sample: Non-SDG (A3E1428-01) 0.500 20.0 Toluene 21.0 1.00 ug/L 1 ND 105 80-121% 0.250 Ethylbenzene 22.6 0.500 20.0 ND ug/L 1 113 79-121% 73.4 0.750 ug/L 60.0 ND Q-01 Xylenes, total 1.50 1 122 79-121% Surr: 1,4-Difluorobenzene (Surr) 93 % Limits: 80-120 % Dilution: 1x Recovery: Toluene-d8 (Surr) 97% 80-120 % 4-Bromofluorobenzene (Surr) 95 % 80-120 %

Apex Laboratories

(milele fog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1405 - 12 22 23 1809

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                               |            | Polyar               | omatic Hy          | drocarbo    | ns (PAHs   | ) by EPA        | 8270E (S         | SIM)  |                 |     |              |       |
|-------------------------------|------------|----------------------|--------------------|-------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                       | Result     | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 23E0844 - EPA 3510C (   | Acid Extra | ction)               |                    |             |            |                 | Wa               | ter   |                 |     |              |       |
| Blank (23E0844-BLK2)          |            |                      | Prepared           | 1: 05/19/23 | 07:20 Anal | lyzed: 05/19    | /23 19:45        |       |                 |     |              |       |
| EPA 8270E SIM                 |            |                      |                    |             |            |                 |                  |       |                 |     |              |       |
| 1-Methylnaphthalene           | ND         | 0.0400               | 0.0800             | ug/L        | 1          |                 |                  |       |                 |     |              |       |
| 2-Methylnaphthalene           | ND         | 0.0400               | 0.0800             | ug/L        | 1          |                 |                  |       |                 |     |              |       |
| Naphthalene                   | ND         | 0.0400               | 0.0800             | ug/L        | 1          |                 |                  |       |                 |     |              |       |
| Surr: 2-Fluorobiphenyl (Surr) |            | Reco                 | very: 66 %         | Limits: 44  | 4-120 %    | Dilı            | ution: 1x        |       |                 |     |              |       |
| p-Terphenyl-d14 (Surr)        |            |                      | 110 %              | 50          | 0-134 %    |                 | "                |       |                 |     |              |       |
| LCS (23E0844-BS2)             |            |                      | Prepared           | 1: 05/19/23 | 07:20 Anal | lyzed: 05/19    | /23 20:11        |       |                 |     |              |       |
| EPA 8270E SIM                 |            |                      |                    |             |            |                 |                  |       |                 |     |              |       |
| 1-Methylnaphthalene           | 6.11       | 0.0400               | 0.0800             | ug/L        | 1          | 8.00            |                  | 76    | 41-120%         |     |              |       |
| 2-Methylnaphthalene           | 6.63       | 0.0400               | 0.0800             | ug/L        | 1          | 8.00            |                  | 83    | 40-121%         |     |              |       |
| Naphthalene                   | 5.68       | 0.0400               | 0.0800             | ug/L        | 1          | 8.00            |                  | 71    | 40-121%         |     |              |       |
| Surr: 2-Fluorobiphenyl (Surr) |            | Reco                 | very: 77%          | Limits: 44  | 4-120 %    | Dilı            | ution: 1x        |       |                 |     |              |       |
| p-Terphenyl-d14 (Surr)        |            |                      | 98 %               | 50          | 0-134 %    |                 | "                |       |                 |     |              |       |
| LCS Dup (23E0844-BSD2)        |            |                      | Prepared           | 1: 05/19/23 | 07:20 Anal | lyzed: 05/19    | /23 20:36        |       |                 |     |              | Q-    |
| EPA 8270E SIM                 |            |                      |                    |             |            |                 |                  |       |                 |     |              |       |
| 1-Methylnaphthalene           | 6.46       | 0.0400               | 0.0800             | ug/L        | 1          | 8.00            |                  | 81    | 41-120%         | 5   | 30%          |       |
| 2-Methylnaphthalene           | 5.87       | 0.0400               | 0.0800             | ug/L        | 1          | 8.00            |                  | 73    | 40-121%         | 12  | 30%          |       |
| Naphthalene                   | 6.03       | 0.0400               | 0.0800             | ug/L        | 1          | 8.00            |                  | 75    | 40-121%         | 6   | 30%          |       |
| Surr: 2-Fluorobiphenyl (Surr) |            | Reco                 | very: 77 %         | Limits: 44  | 4-120 %    | Dilt            | ution: 1x        |       |                 |     |              |       |
| p-Terphenyl-d14 (Surr)        |            |                      | 97 %               | 50          | 0-134 %    |                 | "                |       |                 |     |              |       |

Apex Laboratories

/ milale fog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1405 - 12 22 23 1809

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                              |            | Polyar               | omatic Hyd         | Irocarbo     | ns (PAHs   | ) by EPA        | 8270E (S         | IM)   |                 |     |              |       |
|------------------------------|------------|----------------------|--------------------|--------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                      | Result     | Detection L<br>Limit | Reporting<br>Limit | Units        | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| 3atch 23E0981 - EPA 3510C (  | Acid Extra | ction)               |                    |              |            |                 | Wat              | ter   |                 |     |              |       |
| Blank (23E0981-BLK1)         |            |                      | Prepared           | 05/23/23     | 11:27 Anal | yzed: 05/23/    | /23 23:13        |       |                 |     |              |       |
| EPA 8270E SIM                |            |                      |                    |              |            |                 |                  |       |                 |     |              |       |
| Acenaphthene                 | ND         | 0.0200               | 0.0400             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Acenaphthylene               | ND         | 0.0200               | 0.0400             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Anthracene                   | ND         | 0.0200               | 0.0400             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Benz(a)anthracene            | ND         | 0.0200               | 0.0400             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Benzo(a)pyrene               | ND         | 0.0200               | 0.0400             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Benzo(b)fluoranthene         | ND         | 0.0200               | 0.0400             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Benzo(k)fluoranthene         | ND         | 0.0200               | 0.0400             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Benzo(g,h,i)perylene         | ND         | 0.0200               | 0.0400             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Chrysene                     | ND         | 0.0200               | 0.0400             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Dibenz(a,h)anthracene        | ND         | 0.0200               | 0.0400             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Fluoranthene                 | ND         | 0.0200               | 0.0400             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Fluorene                     | ND         | 0.0200               | 0.0400             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Indeno(1,2,3-cd)pyrene       | ND         | 0.0200               | 0.0400             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| 1-Methylnaphthalene          | ND         | 0.0400               | 0.0800             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| 2-Methylnaphthalene          | ND         | 0.0400               | 0.0800             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Naphthalene                  | ND         | 0.0400               | 0.0800             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Phenanthrene                 | ND         | 0.0200               | 0.0400             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Pyrene                       | ND         | 0.0200               | 0.0400             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Dibenzofuran                 | ND         | 0.0200               | 0.0400             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| urr: 2-Fluorobiphenyl (Surr) |            | Reco                 | very: 75 %         | Limits: 44   | 1-120 %    | Dilı            | ution: 1x        |       |                 |     |              |       |
| p-Terphenyl-d14 (Surr)       |            |                      | 89 %               |              | -134 %     |                 | "                |       |                 |     |              |       |
| LCS (23E0981-BS1)            |            |                      | Prepared           | : 05/23/23   | 11:27 Anal | yzed: 05/23/    | /23 23:38        |       |                 |     |              |       |
| EPA 8270E SIM                |            |                      | 1                  |              |            | -               |                  |       |                 |     |              |       |
| Acenaphthene                 | 5.06       | 0.0200               | 0.0400             | ug/L         | 1          | 8.00            |                  | 63    | 47-122%         |     |              |       |
| Acenaphthylene               | 5.06       | 0.0200               | 0.0400             | ug/L         | 1          | 8.00            |                  | 63    | 41-130%         |     |              |       |
| Anthracene                   | 6.89       | 0.0200               | 0.0400             | ug/L         | 1          | 8.00            |                  | 86    | 57-123%         |     |              |       |
| Benz(a)anthracene            | 7.02       | 0.0200               | 0.0400             | ug/L         | 1          | 8.00            |                  | 88    | 58-125%         |     |              |       |
| Benzo(a)pyrene               | 7.32       | 0.0200               | 0.0400             | ug/L         | 1          | 8.00            |                  | 92    | 54-128%         |     |              |       |
| Benzo(b)fluoranthene         | 7.40       | 0.0200               | 0.0400             | ug/L<br>ug/L | 1          | 8.00            |                  | 93    | 53-131%         |     |              |       |
| Benzo(k)fluoranthene         | 7.63       | 0.0200               | 0.0400             | ug/L         | 1          | 8.00            |                  | 95    | 57-129%         |     |              |       |
| Benzo(g,h,i)perylene         | 6.83       | 0.0200               | 0.0400             | ug/L<br>ug/L | 1          | 8.00            |                  | 85    | 50-134%         |     |              |       |
| Chrysene                     | 7.29       | 0.0200               | 0.0400             | ug/L<br>ug/L | 1          | 8.00            |                  | 91    | 59-123%         |     |              |       |

Apex Laboratories

(milele fog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1405 - 12 22 23 1809

# QUALITY CONTROL (QC) SAMPLE RESULTS Polyaromatic Hydrocarbons (PAHs) by EPA 8270E (SIM)

| Analyte                       | Result      | Detection L<br>Limit | Reporting<br>Limit | Units      | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
|-------------------------------|-------------|----------------------|--------------------|------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Batch 23E0981 - EPA 3510C     | (Acid Extra | ction)               |                    |            |            |                 | Wa               | ter   |                 |     |              |       |
| LCS (23E0981-BS1)             |             |                      | Prepared           | : 05/23/23 | 11:27 Anal | yzed: 05/23/    | 23 23:38         |       |                 |     |              |       |
| Dibenz(a,h)anthracene         | 7.38        | 0.0200               | 0.0400             | ug/L       | 1          | 8.00            |                  | 92    | 51-134%         |     |              |       |
| Fluoranthene                  | 7.51        | 0.0200               | 0.0400             | ug/L       | 1          | 8.00            |                  | 94    | 57-128%         |     |              |       |
| Fluorene                      | 5.85        | 0.0200               | 0.0400             | ug/L       | 1          | 8.00            |                  | 73    | 52-124%         |     |              |       |
| Indeno(1,2,3-cd)pyrene        | 7.52        | 0.0200               | 0.0400             | ug/L       | 1          | 8.00            |                  | 94    | 52-134%         |     |              |       |
| 1-Methylnaphthalene           | 3.68        | 0.0400               | 0.0800             | ug/L       | 1          | 8.00            |                  | 46    | 41-120%         |     |              |       |
| 2-Methylnaphthalene           | 3.55        | 0.0400               | 0.0800             | ug/L       | 1          | 8.00            |                  | 44    | 40-121%         |     |              |       |
| Naphthalene                   | 3.70        | 0.0400               | 0.0800             | ug/L       | 1          | 8.00            |                  | 46    | 40-121%         |     |              |       |
| Phenanthrene                  | 6.80        | 0.0200               | 0.0400             | ug/L       | 1          | 8.00            |                  | 85    | 59-120%         |     |              |       |
| Pyrene                        | 7.58        | 0.0200               | 0.0400             | ug/L       | 1          | 8.00            |                  | 95    | 57-126%         |     |              |       |
| Dibenzofuran                  | 5.37        | 0.0200               | 0.0400             | ug/L       | 1          | 8.00            |                  | 67    | 53-120%         |     |              |       |
| Surr: 2-Fluorobiphenyl (Surr) |             | Reco                 | very: 75 %         | Limits: 44 | 1-120 %    | Dilı            | ution: 1x        |       |                 |     |              |       |
| p-Terphenyl-d14 (Surr)        |             |                      | 86 %               | 50         | -134 %     |                 | "                |       |                 |     |              |       |

| LCS Dup (23E0981-BSD1) |      |        | Prepared: | 05/23/23 11 | :27 Ana | lyzed: 05/24/ | 23 00:03 |     |         |   |     | Q-19 |
|------------------------|------|--------|-----------|-------------|---------|---------------|----------|-----|---------|---|-----|------|
| EPA 8270E SIM          |      |        |           |             |         |               |          |     |         |   |     |      |
| Acenaphthene           | 5.48 | 0.0200 | 0.0400    | ug/L        | 1       | 8.00          |          | 68  | 47-122% | 8 | 30% |      |
| Acenaphthylene         | 5.32 | 0.0200 | 0.0400    | ug/L        | 1       | 8.00          |          | 66  | 41-130% | 5 | 30% |      |
| Anthracene             | 7.00 | 0.0200 | 0.0400    | ug/L        | 1       | 8.00          |          | 88  | 57-123% | 2 | 30% |      |
| Benz(a)anthracene      | 7.30 | 0.0200 | 0.0400    | ug/L        | 1       | 8.00          |          | 91  | 58-125% | 4 | 30% |      |
| Benzo(a)pyrene         | 7.63 | 0.0200 | 0.0400    | ug/L        | 1       | 8.00          |          | 95  | 54-128% | 4 | 30% |      |
| Benzo(b)fluoranthene   | 7.55 | 0.0200 | 0.0400    | ug/L        | 1       | 8.00          |          | 94  | 53-131% | 2 | 30% |      |
| Benzo(k)fluoranthene   | 8.04 | 0.0200 | 0.0400    | ug/L        | 1       | 8.00          |          | 100 | 57-129% | 5 | 30% |      |
| Benzo(g,h,i)perylene   | 7.15 | 0.0200 | 0.0400    | ug/L        | 1       | 8.00          |          | 89  | 50-134% | 5 | 30% |      |
| Chrysene               | 7.61 | 0.0200 | 0.0400    | ug/L        | 1       | 8.00          |          | 95  | 59-123% | 4 | 30% |      |
| Dibenz(a,h)anthracene  | 7.60 | 0.0200 | 0.0400    | ug/L        | 1       | 8.00          |          | 95  | 51-134% | 3 | 30% |      |
| Fluoranthene           | 7.90 | 0.0200 | 0.0400    | ug/L        | 1       | 8.00          |          | 99  | 57-128% | 5 | 30% |      |
| Fluorene               | 6.21 | 0.0200 | 0.0400    | ug/L        | 1       | 8.00          |          | 78  | 52-124% | 6 | 30% |      |
| Indeno(1,2,3-cd)pyrene | 7.92 | 0.0200 | 0.0400    | ug/L        | 1       | 8.00          |          | 99  | 52-134% | 5 | 30% |      |
| 1-Methylnaphthalene    | 4.01 | 0.0400 | 0.0800    | ug/L        | 1       | 8.00          |          | 50  | 41-120% | 9 | 30% |      |
| 2-Methylnaphthalene    | 3.85 | 0.0400 | 0.0800    | ug/L        | 1       | 8.00          |          | 48  | 40-121% | 8 | 30% |      |
| Naphthalene            | 3.94 | 0.0400 | 0.0800    | ug/L        | 1       | 8.00          |          | 49  | 40-121% | 6 | 30% |      |
| Phenanthrene           | 6.99 | 0.0200 | 0.0400    | ug/L        | 1       | 8.00          |          | 87  | 59-120% | 3 | 30% |      |
| Pyrene                 | 7.90 | 0.0200 | 0.0400    | ug/L        | 1       | 8.00          |          | 99  | 57-126% | 4 | 30% |      |
| Dibenzofuran           | 5.75 | 0.0200 | 0.0400    | ug/L        | 1       | 8.00          |          | 72  | 53-120% | 7 | 30% |      |
|                        |      |        |           |             |         |               |          |     |         |   |     |      |

Apex Laboratories

(milale fog



Farallon-Seattle

#### ANALYTICAL REPORT

AMENDED REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1405 - 12 22 23 1809

Project:

# QUALITY CONTROL (QC) SAMPLE RESULTS

# Polyaromatic Hydrocarbons (PAHs) by EPA 8270E (SIM)

| Analyte                       | Result     | Detection L<br>Limit | Reporting<br>Limit | Units         | Dilution | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
|-------------------------------|------------|----------------------|--------------------|---------------|----------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Batch 23E0981 - EPA 3510C (   | Acid Extra | ection)              |                    |               |          |                 | Wa               | ter   |                 |     |              |       |
| LCS Dup (23E0981-BSD1)        |            |                      | Prepared           | 1: 05/23/23 1 | 11:27 Ar | nalyzed: 05/24/ | 23 00:03         |       |                 |     |              | Q-19  |
| Surr: 2-Fluorobiphenyl (Surr) |            | Reco                 | very: 77%          | Limits: 44    | !-120 %  | Dilu            | tion: 1x         |       |                 |     |              |       |
| p-Terphenyl-d14 (Surr)        |            |                      | 88 %               | 50-           | -134 %   |                 | "                |       |                 |     |              |       |

Apex Laboratories



Seattle, WA 98101

#### ANALYTICAL REPORT

# Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AMENDED REPORT

Project:

<u>Farallon-Seattle</u> 1809 7th Ave Suite 1111

Project Number: 397-019
Project Manager: Suzy Stumpf

397-019 Block 38 West

Report ID: A3E1405 - 12 22 23 1809

#### **QUALITY CONTROL (QC) SAMPLE RESULTS**

#### Total Metals by EPA 6020B (ICPMS) % REC RPD Detection L Reporting Spike Source Result Units Dilution % REC Limits RPD Analyte Limit Limit Amount Result Limit Notes Batch 23E0748 - EPA 3015A Water Blank (23E0748-BLK2) Prepared: 05/17/23 09:52 Analyzed: 05/17/23 16:03 EPA 6020B Barium ND 1.00 2.00 Q-16 ug/L LCS (23E0748-BS2) Prepared: 05/17/23 09:52 Analyzed: 05/17/23 16:08 EPA 6020B 1.00 Q-16 Barium 60.5 2.00 ug/L 1 55.6 109 80-120% Duplicate (23E0748-DUP2) Prepared: 05/17/23 09:52 Analyzed: 05/17/23 16:17 QC Source Sample: Non-SDG (A3E1181-01RE1) Barium ND 1.00 2.00 ug/L ND 20% Q-16 Matrix Spike (23E0748-MS2) Prepared: 05/17/23 09:52 Analyzed: 05/17/23 16:22 QC Source Sample: Non-SDG (A3E1181-01RE1) EPA 6020B Barium 60.4 1.00 2.00 ug/L 1 55.6 ND 109 75-125% Q-16

Apex Laboratories

(milele fog



Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AMENDED REPORT

Farallon-Seattle Project:

1809 7th Ave Suite 1111 Project Number

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1405 - 12 22 23 1809

#### QUALITY CONTROL (QC) SAMPLE RESULTS

397-019 Block 38 West

#### Dissolved Metals by EPA 6020B (ICPMS) % REC RPD Detection L Reporting Spike Source Units Dilution % REC Limits RPD Analyte Result Limit Amount Result Limit Notes Batch 23E1016 - Matrix Matched Direct Inject Water Blank (23E1016-BLK1) Prepared: 05/24/23 10:29 Analyzed: 05/25/23 11:55 EPA 6020B (Diss) Barium ND 0.500 1.00 ug/L LCS (23E1016-BS1) Prepared: 05/24/23 10:29 Analyzed: 05/25/23 12:00 EPA 6020B (Diss) 0.500 Barium 57.9 1.00 ug/L 55.6 104 80-120% Duplicate (23E1016-DUP1) Prepared: 05/24/23 10:29 Analyzed: 05/25/23 12:20 QC Source Sample: FMW-158-051523 (A3E1405-02) EPA 6020B (Diss) ug/L Barium 82.2 0.500 1.00 82.0 0.2 20% Matrix Spike (23E1016-MS1) Prepared: 05/24/23 10:29 Analyzed: 05/25/23 12:24 OC Source Sample: FMW-158-051523 (A3E1405-02) EPA 6020B (Diss) Barium 137 0.500 1.00 1 55.6 82.0 99 75-125% ug/L

Apex Laboratories

(milale fog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1405 - 12 22 23 1809

#### SAMPLE PREPARATION INFORMATION

|                     |                | Diesel and  | d/or Oil Hydrocarbor | s by NWTPH-Dx  |               |               |         |
|---------------------|----------------|-------------|----------------------|----------------|---------------|---------------|---------|
| Prep: EPA 3510C (Fu | els/Acid Ext.) |             |                      |                | Sample        | Default       | RL Prep |
| Lab Number          | Matrix         | Method      | Sampled              | Prepared       | Initial/Final | Initial/Final | Factor  |
| Batch: 23E1023      |                |             |                      |                |               |               |         |
| A3E1405-01          | Water          | NWTPH-Dx LL | 05/15/23 13:33       | 05/24/23 11:28 | 1060mL/2mL    | 1000 mL/2 mL  | 0.94    |
| A3E1405-02          | Water          | NWTPH-Dx LL | 05/15/23 14:00       | 05/24/23 11:28 | 1060mL/2mL    | 1000mL/2mL    | 0.94    |
| A3E1405-03          | Water          | NWTPH-Dx LL | 05/15/23 15:40       | 05/24/23 11:28 | 1060mL/2mL    | 1000mL/2mL    | 0.94    |
| A3E1405-04          | Water          | NWTPH-Dx LL | 05/15/23 15:45       | 05/24/23 11:28 | 1040 mL/2 mL  | 1000 mL/2 mL  | 0.96    |

|                 | Gas    | soline Range Hydrocart | oons (Benzene thro | ugh Naphthalene) b | y NWTPH-Gx    |               |         |
|-----------------|--------|------------------------|--------------------|--------------------|---------------|---------------|---------|
| Prep: EPA 5030C |        |                        |                    |                    | Sample        | Default       | RL Prep |
| Lab Number      | Matrix | Method                 | Sampled            | Prepared           | Initial/Final | Initial/Final | Factor  |
| Batch: 23E0762  |        |                        |                    |                    |               |               |         |
| A3E1405-01RE1   | Water  | NWTPH-Gx (MS)          | 05/15/23 13:33     | 05/17/23 12:48     | 5mL/5mL       | 5mL/5mL       | 1.00    |
| A3E1405-02RE1   | Water  | NWTPH-Gx (MS)          | 05/15/23 14:00     | 05/17/23 12:48     | 5mL/5mL       | 5mL/5mL       | 1.00    |
| A3E1405-03RE1   | Water  | NWTPH-Gx (MS)          | 05/15/23 15:40     | 05/17/23 12:48     | 5mL/5mL       | 5mL/5mL       | 1.00    |
| A3E1405-04RE1   | Water  | NWTPH-Gx (MS)          | 05/15/23 15:45     | 05/17/23 12:48     | 5mL/5mL       | 5mL/5mL       | 1.00    |

|                 |        | ВТ        | ΓΕΧ Compounds by E | EPA 8260D      |               | 1             |         |
|-----------------|--------|-----------|--------------------|----------------|---------------|---------------|---------|
| Prep: EPA 5030C |        |           |                    |                | Sample        | Default       | RL Prep |
| Lab Number      | Matrix | Method    | Sampled            | Prepared       | Initial/Final | Initial/Final | Factor  |
| Batch: 23E0762  |        |           |                    |                |               |               |         |
| A3E1405-01RE1   | Water  | EPA 8260D | 05/15/23 13:33     | 05/17/23 12:48 | 5mL/5mL       | 5mL/5mL       | 1.00    |
| A3E1405-02RE1   | Water  | EPA 8260D | 05/15/23 14:00     | 05/17/23 12:48 | 5mL/5mL       | 5mL/5mL       | 1.00    |
| A3E1405-03RE1   | Water  | EPA 8260D | 05/15/23 15:40     | 05/17/23 12:48 | 5mL/5mL       | 5mL/5mL       | 1.00    |
| A3E1405-04RE1   | Water  | EPA 8260D | 05/15/23 15:45     | 05/17/23 12:48 | 5mL/5mL       | 5mL/5mL       | 1.00    |

|                    |                 | Polyaromatic H | lydrocarbons (PAHs | ) by EPA 8270E (SI | M)            |               |         |
|--------------------|-----------------|----------------|--------------------|--------------------|---------------|---------------|---------|
| Prep: EPA 3510C (A | cid Extraction) |                |                    |                    | Sample        | Default       | RL Prep |
| Lab Number         | Matrix          | Method         | Sampled            | Prepared           | Initial/Final | Initial/Final | Factor  |
| Batch: 23E0844     |                 |                |                    |                    |               |               |         |
| A3E1405-01         | Water           | EPA 8270E SIM  | 05/15/23 13:33     | 05/19/23 07:20     | 1060mL/2mL    | 1000mL/2mL    | 0.94    |
| A3E1405-02         | Water           | EPA 8270E SIM  | 05/15/23 14:00     | 05/19/23 07:20     | 1050mL/2mL    | 1000mL/2mL    | 0.95    |
| A3E1405-03         | Water           | EPA 8270E SIM  | 05/15/23 15:40     | 05/19/23 07:20     | 1050mL/2mL    | 1000mL/2mL    | 0.95    |
| A3E1405-04         | Water           | EPA 8270E SIM  | 05/15/23 15:45     | 05/19/23 07:20     | 1050 mL/2 mL  | 1000 mL/2 mL  | 0.95    |

Apex Laboratories

an



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1405 - 12 22 23 1809

#### SAMPLE PREPARATION INFORMATION

|                                 |                 | Total     | Metals by EPA 602  | 0B (ICPMS)     |                         |                          |                   |
|---------------------------------|-----------------|-----------|--------------------|----------------|-------------------------|--------------------------|-------------------|
| Prep: EPA 3015A<br>Lab Number   | Matrix          | Method    | Sampled            | Prepared       | Sample<br>Initial/Final | Default<br>Initial/Final | RL Prep<br>Factor |
| Batch: 23E0748<br>A3E1405-02RE1 | Water           | EPA 6020B | 05/15/23 14:00     | 05/17/23 09:52 | 45mL/50mL               | 45mL/50mL                | 1.00              |
|                                 |                 | Dissolv   | ed Metals by EPA 6 | 020B (ICPMS)   |                         |                          |                   |
| Prep: Matrix Matched            | d Direct Inject |           |                    |                | Sample                  | Default                  | RL Prep           |
| Lab Number                      | Matrix          | Method    | Sampled            | Prepared       | Initial/Final           | Initial/Final            | Factor            |
| Batch: 23E1016                  |                 |           |                    |                |                         |                          |                   |

Apex Laboratories

/ milule fog



AMENDED REPORT

#### **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1405 - 12 22 23 1809

#### **QUALIFIER DEFINITIONS**

#### Client Sample and Quality Control (QC) Sample Qualifier Definitions:

#### **Apex Laboratories**

- F-11 The hydrocarbon pattern indicates possible weathered diesel, mineral oil, or a contribution from a related component.
- J Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
- Q-01 Spike recovery and/or RPD is outside acceptance limits.
- Q-16 Reanalysis of an original Batch QC sample.
- Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
- **S-06** Surrogate recovery is outside of established control limits.

Apex Laboratories



AMENDED REPORT

#### **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1405 - 12 22 23 1809

#### **REPORTING NOTES AND CONVENTIONS:**

#### **Abbreviations:**

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

#### **Detection Limits:** Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

#### Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

#### **Reporting Conventions:**

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"\_\_\_" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

#### **QC Source:**

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

#### **Miscellaneous Notes:**

" --- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

" \*\*\* " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories



AMENDED REPORT

#### **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1405 - 12 22 23 1809

#### REPORTING NOTES AND CONVENTIONS (Cont.):

#### Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

-Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

#### **Preparation Notes:**

#### Mixed Matrix Samples:

#### Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

#### Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

# **Sampling and Preservation Notes:**

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold

Apex Laboratories



Farallon-Seattle

#### ANALYTICAL REPORT

AMENDED REPORT

#### **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1405 - 12 22 23 1809

#### LABORATORY ACCREDITATION INFORMATION

# ORELAP Certification ID: OR100062 (Primary Accreditation) - EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

#### **Apex Laboratories**

Matrix Analysis TNI\_ID Analyte TNI\_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

#### **Secondary Accreditations**

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

#### **Subcontract Laboratory Accreditations**

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

#### Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1405 - 12 22 23 1809

| Company: Forallon ansiething                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |                                                  |                             |              |          |              |          |             |         |       |           |                          |          |              |                 |              |                                                            |                  |       |              |                     |      |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------|-----------------------------|--------------|----------|--------------|----------|-------------|---------|-------|-----------|--------------------------|----------|--------------|-----------------|--------------|------------------------------------------------------------|------------------|-------|--------------|---------------------|------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                            | <u> </u>                                         | Project Mgr. S/Z// Sturn of | 21/5         | 5        | C.W.         | 4        |             |         | Į.    | ect Na    | Project Name: PINV 38 WP | 300      | 143          | 18              | 18           | <i>t</i>                                                   |                  | 1     | #            | PMiest #. 397 - 1/9 |      |       |
| Address: 975 5th AIR NW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 4                          | Sagu                                             | Issacinaly, WA              | #            | ļ.,      | <u> </u>     | vorne: ( | 435         | 199     | 188   | 5         | Smail;                   | T.       | 70.70        | 100             | aller.       | Phone: (435) 395-0861) Brazil: St. W. Man Man Day Him. Com | 8                | 2     | × #          | PO# 397-1110        |      | 1     |
| Sampled by: Angle (SMan)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              | 11Cha                                            | Michael Ysaquirre           | aguin        | 120      |              |          |             |         |       |           |                          |          |              |                 | NAT          | ANALYSIS BEOILEST                                          | 1                | 4     |              |                     |      |       |
| Site Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              |                                                  | -                           | -            |          |              |          | 1           | L.,     |       |           |                          | 15       | -            | <b>`</b>        |              | K'<br>5p'<br>5q'                                           | dTC              | 30€   | ļ.,          | r                   |      |       |
| State W.A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |                                                  |                             |              |          |              |          | 0968        |         | s     | 12iJ      |                          | Eall Ei  |              |                 |              | Be, (<br>Fe, 1<br>0, Ni,<br>0, Xn                          | ).L. ·           |       | (Lis         | Svlozz              |      |       |
| County King                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | <u> </u>                                         |                             |              | NIATI    | ·Dx<br>·HCID |          |             | ) W     | OOA   | lua e     | ьки                      |          |              | etals (8        | ) etals      |                                                            | SSIG<br>8) sle3: | lene  | 10T)         |                     | əj   | avid  |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HT                           |                                                  |                             | TRIX         |          | HAT/         | Hall     | O BLE       |         | o Hak | ол о      |                          |          | 5 PCB        | i Pesti<br>M AS |              |                                                            | TV We            |       | WM           | wy.                 | dmeS | п Акс |
| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DV.                          |                                                  |                             |              |          |              |          |             |         | 978   | 978       |                          |          |              |                 |              |                                                            | TOT              |       | JUS          |                     | blol | azox  |
| FMW-160-051523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | 5-1673/7                                         | 1333 1                      | i patoni     | 0.0      | ×            | X        | ×           |         |       |           | T                        |          | <del> </del> |                 | <del> </del> |                                                            | $\vdash$         | ×     | -            |                     | 1    | H     |
| FNW- 158-051523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                                  | Q0h.                        |              | i.       | ×            | 7        | ×           |         |       |           |                          | $\vdash$ | -            |                 | -            |                                                            |                  | X     | ×            | <br>                | -    |       |
| PRW-[61-051513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | 1.22                                             | 35                          |              | 9        | 17           | ×        | ×           |         |       | T         |                          | +        | +            |                 | -            |                                                            | +                | ×     | 4            |                     | -    |       |
| FMIN-163-041523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                            | 1 ==                                             |                             |              | 2        | <u> </u>     |          |             |         | Γ     | 1         |                          | +        | +            | -               |              |                                                            | +-               | X     | $\downarrow$ |                     | -    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                            | +                                                | 2                           | 1-           | ,        | $\vdash$     |          | 4_          |         |       | 1         | <del> </del>             | +        | +            |                 |              |                                                            | +                |       | 4            |                     | +    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | <del>                                     </del> | +                           |              | +        | -            | -        |             |         |       |           | $\dagger$                | 24       | -            | -               | +-           |                                                            | +                | 4     |              |                     | -    |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                                  |                             |              |          | H            |          |             |         |       |           |                          | 1        | 1            | -               | ļ            |                                                            | +                | ļ     |              |                     | -    |       |
| The state of the s |                              | -                                                |                             | 1            | 7        |              | -        |             |         |       |           |                          |          | $\vdash$     |                 |              |                                                            | -                | ļ     |              |                     |      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                            | -                                                | $\dashv$                    |              | $\dashv$ |              |          | _           |         |       |           |                          |          |              |                 | -            |                                                            |                  |       |              |                     |      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                            | -                                                | -                           |              | $\dashv$ | $\dashv$     | $\dashv$ |             |         |       |           |                          |          |              |                 |              |                                                            |                  |       |              |                     |      |       |
| Standard Turn Around Time (TAT) = 10 Business Days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | um Arour                     | Jd Time                                          | (TAT)=                      | 10 Busir     | ness Da  | ys           |          |             |         |       | T         | SPECIAL INSTRUCTIONS:    | AL IN    | STRU         | CTIO            | NS:          |                                                            |                  |       |              |                     |      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 Day                        | )ay                                              | 2.1                         | 2 Day        |          | 3 Day        |          |             |         |       |           |                          |          |              |                 |              |                                                            |                  |       |              |                     |      |       |
| tat requested (circle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 Day                        | lay (                                            | Stan                        | Standard     | _        | Other:       |          |             |         |       |           |                          |          |              |                 |              |                                                            |                  |       |              |                     |      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAMPLES ARE HELD FOR 30 DAYS | E E                                              | OR 30 D                     | AYS          |          |              |          |             |         |       | T         |                          |          |              |                 |              |                                                            |                  |       |              |                     |      |       |
| RELINQUISHED BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - Pole                       |                                                  | 2 3                         | RECEIVED BY: | D BY:    |              |          |             |         |       | Ť         | RELINQUISHED BY:         | OUISE    | IED B        | نڌ              |              |                                                            |                  | REC   | EIVE         | BY:                 |      |       |
| anshim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                            | 5/15/23                                          |                             | N N          | L        |              |          | Date: 5 (6. | 5.16.23 |       | <u>v2</u> | ignatur                  | ò        |              |                 |              | Date:                                                      |                  | Signs | Signature:   | Date:               |      |       |
| Printed Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Time:                        |                                                  | 1 E 6-                      | Printed Name | ië.      |              |          | Time:       |         |       | 1         | Printed Name             | Name     |              |                 |              | Time:                                                      |                  | Prior | Printed Name | te: Time:           |      |       |
| Company:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |                                                  | - 2                         | STEIN Show   | N.       | 120          |          | 10,5        | 2401    | İ     | 7         | 1                        |          |              | Ì               |              |                                                            |                  |       |              |                     |      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                                                  | 3                           | A Z X        | ×        |              |          |             |         |       | =         | Company.                 | ž.       |              |                 |              |                                                            |                  | Con   | Сопрапу:     |                     |      |       |

Apex Laboratories

/ milele Po g



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

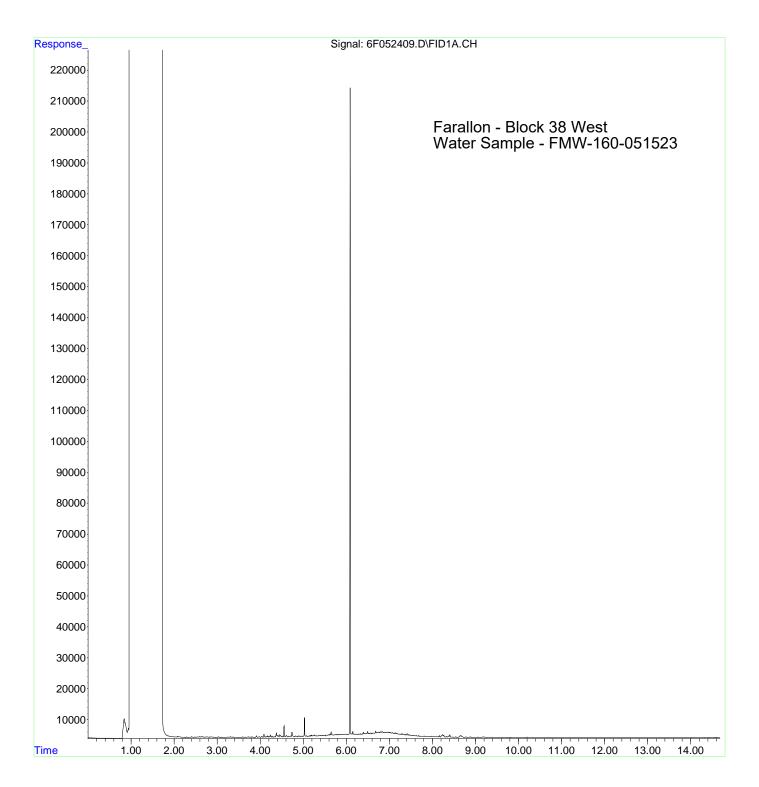
Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1405 - 12 22 23 1809

|                                                                                           | APEX LABS COOL                                                                  | ER RECEIPT FO            | <u>PRM</u>          |                                      |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------|---------------------|--------------------------------------|
| Client: Familian Consu                                                                    | iting                                                                           | Eleme                    | ent WO#: A3_E1405   |                                      |
| Project/Project #:                                                                        | Block 38 Vest /                                                                 | 397-019                  |                     |                                      |
| Delivery Info:                                                                            |                                                                                 |                          |                     |                                      |
| Date/time received: 5.16.2.3                                                              | » <u>@ 1042</u> Ву:                                                             | DJJ_                     |                     |                                      |
| Delivered by: ApexClient_                                                                 | _ESSFedEx<_UPSI                                                                 | RadioMorgan              | _SDSEvergreen_      | _Other                               |
| Cooler Inspection Date/ti                                                                 | ime inspected: 5-16.23                                                          | @ 1043                   | By:                 |                                      |
| Chain of Custody included?                                                                | Yes No No                                                                       |                          |                     |                                      |
| Signed/dated by client?                                                                   | Yes No                                                                          |                          |                     |                                      |
| -                                                                                         | Cooler #1 Cooler #2 Co                                                          | oler #3 Cooler #4        | Cooler #5 Cooler #6 | Cooler #7                            |
| Temperature (°C)                                                                          | 2-1 4-8 4                                                                       | -7                       | ***                 |                                      |
| Custody seals? (Y/N)                                                                      | N N                                                                             | ?                        |                     |                                      |
| Received on ice? (Y/N)                                                                    | YY                                                                              |                          | 7 <del>2</del>      |                                      |
| Temp. blanks? (Y/N)                                                                       | N N I                                                                           |                          |                     |                                      |
| Ice type: (Gel/Real/Other) _                                                              | Real Real P                                                                     |                          |                     |                                      |
| Condition (In/Out):                                                                       | 10 lo                                                                           | <u>ta</u>                |                     | <del>-</del>                         |
| Green dots applied to out of to Out of temperature samples for Sample Inspection: Date/ti | orm initiated? Yes(No) me inspected: 5.16.23 No \(\frac{\chi}{2}\) Comments: 1/ | @ 1145<br>6 voas recene  | ed broken for .     |                                      |
| FMW-161-051523.                                                                           |                                                                                 |                          |                     |                                      |
| Bottle labels/COCs agree? Ye                                                              | s No Commen                                                                     |                          |                     |                                      |
| COC/container discrepancies                                                               | form initiated? Yes                                                             |                          |                     | <del></del>                          |
| Containers/volumes received                                                               | appropriate for analysis?                                                       | Yes <u>≻</u> No (        | Comments:           |                                      |
| Do VOA vials have visible he                                                              | . — -                                                                           |                          | 31                  |                                      |
| Comments FMW-160-0515                                                                     | 23=2/6 HS. FMW-1                                                                | 58-051523=1/6HS.         | FMW-161-051523 = 3  | 16 HS                                |
| Water samples: pH checked: Y                                                              | /es <u>√</u> NoNA pH a                                                          | ppropriate? Yes <u>×</u> | _NoNA               | accoliging                           |
| Comments:                                                                                 |                                                                                 |                          |                     |                                      |
|                                                                                           |                                                                                 |                          |                     | man and a 190 Market and an analysis |
| Additional information: 39                                                                | 8.3 1618 3017                                                                   |                          |                     |                                      |
|                                                                                           |                                                                                 |                          |                     |                                      |
| Labeled by:                                                                               | Witness:                                                                        | Co                       | poler Inspected by: |                                      |
| DJS                                                                                       |                                                                                 |                          | DIS                 | Form Y-003 R-00 -                    |
|                                                                                           | • /                                                                             |                          | シンプ                 |                                      |

Apex Laboratories

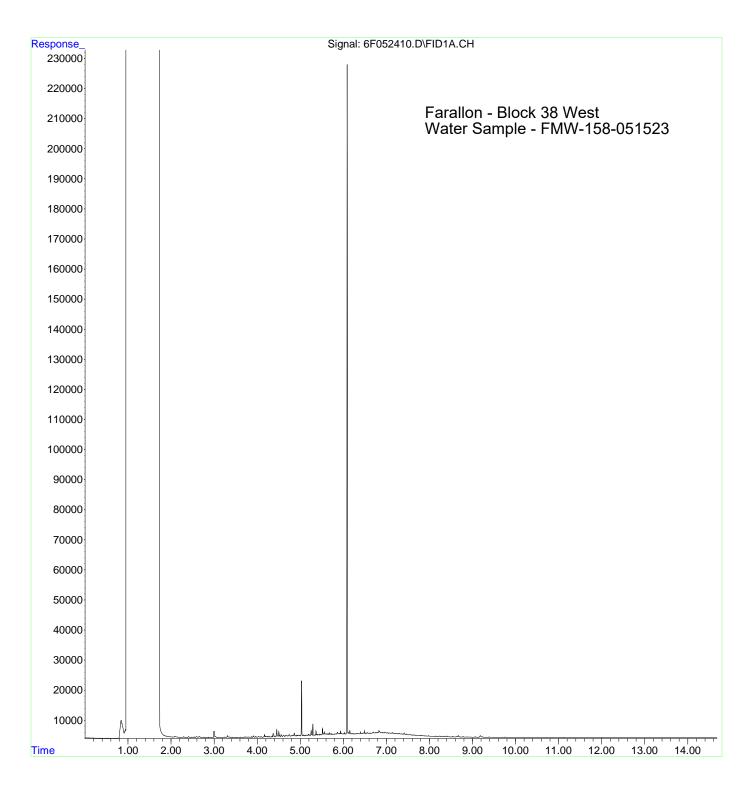

(milale fog

File :M:\DUALFID6\1\DATA\2023-05\3E24066\6F052409.D

Operator : BLL

Acquired : 24 May 2023 10:33 pm using AcqMethod 6F71215A.M

Instrument : HP G1530A
Sample Name: A3E1405-01

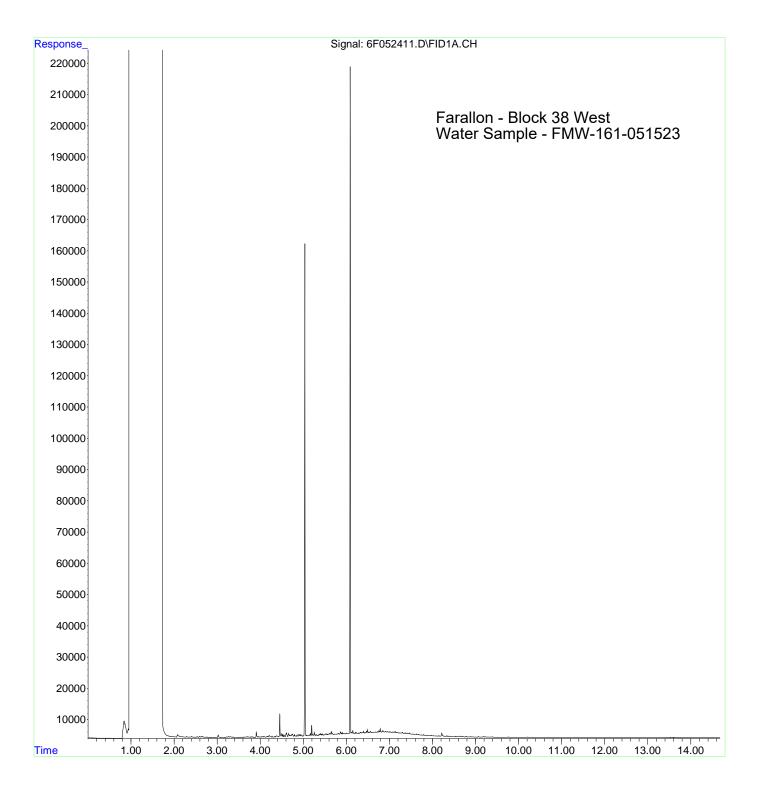



File :M:\DUALFID6\1\DATA\2023-05\3E24066\6F052410.D

Operator : BLL

Acquired : 24 May 2023 10:53 pm using AcqMethod 6F71215A.M

Instrument : HP G1530A
Sample Name: A3E1405-02

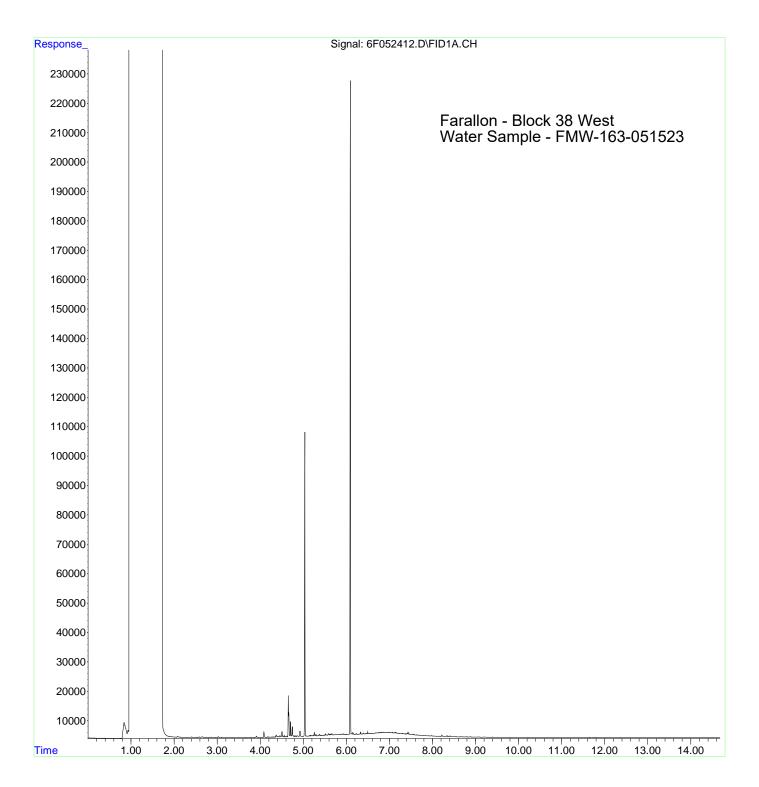



File :M:\DUALFID6\1\DATA\2023-05\3E24066\6F052411.D

Operator : BLL

Acquired : 24 May 2023 11:14 pm using AcqMethod 6F71215A.M

Instrument: HP G1530A Sample Name: A3E1405-03

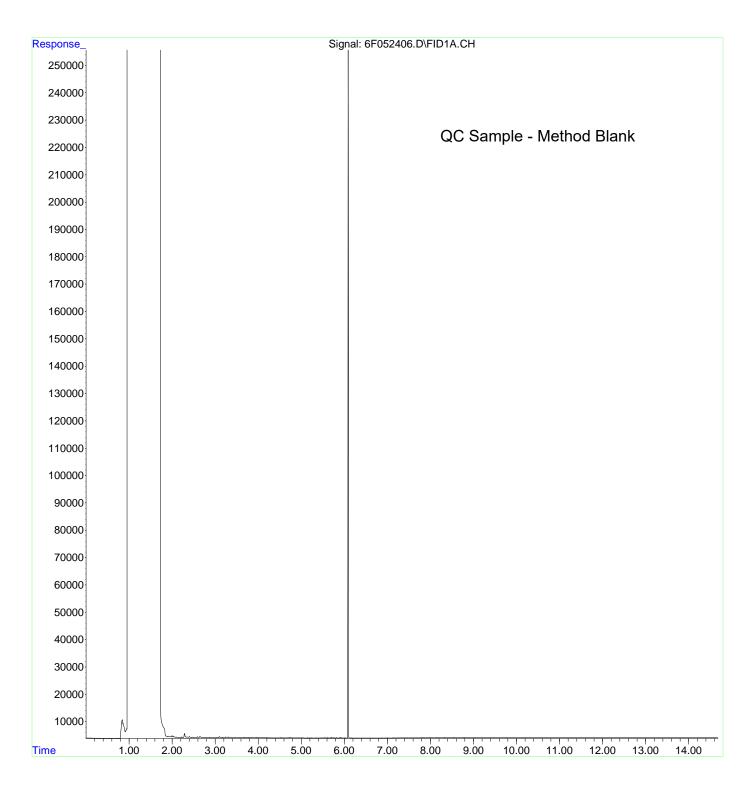



File :M:\DUALFID6\1\DATA\2023-05\3E24066\6F052412.D

Operator : BLL

Acquired : 24 May 2023 11:34 pm using AcqMethod 6F71215A.M

Instrument : HP G1530A
Sample Name: A3E1405-04

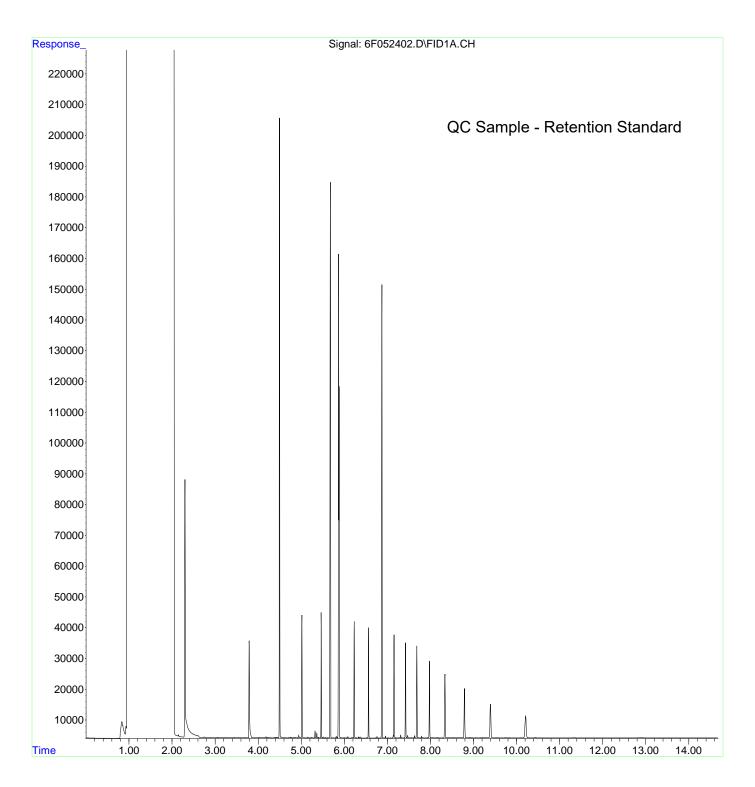



File :M:\DUALFID6\1\DATA\2023-05\3E24066\6F052406.D

Operator : BLL

Acquired : 24 May 2023 9:32 pm using AcqMethod 6F71215A.M

Instrument : HP G1530A
Sample Name: 23E1023-BLK1

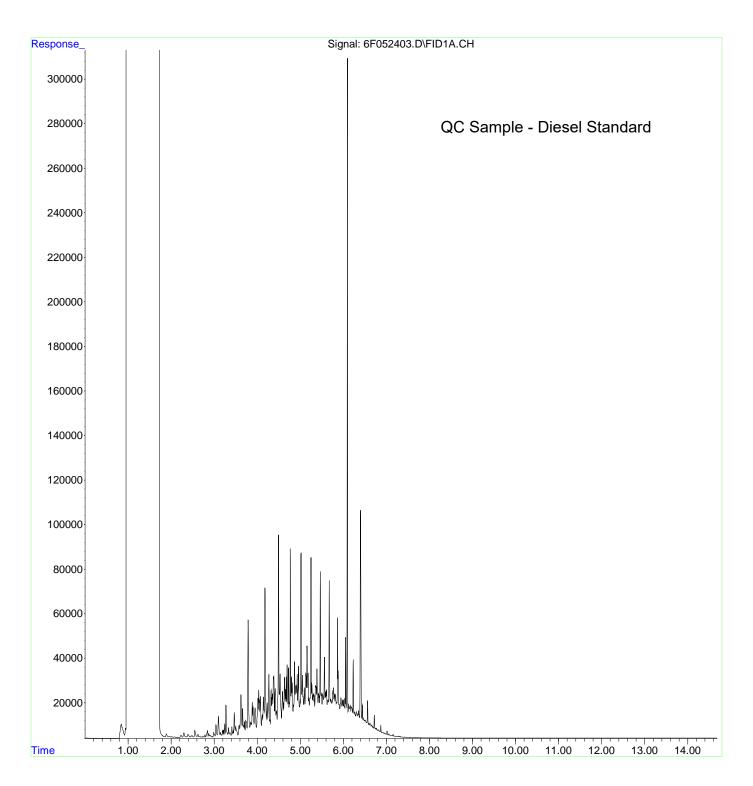



File :M:\DUALFID6\1\DATA\2023-05\3E24066\6F052402.D

Operator : BLL

Acquired : 24 May 2023 3:22 pm using AcqMethod 6F71215A.M

Instrument : HP G1530A
Sample Name: 3E24066-RES1

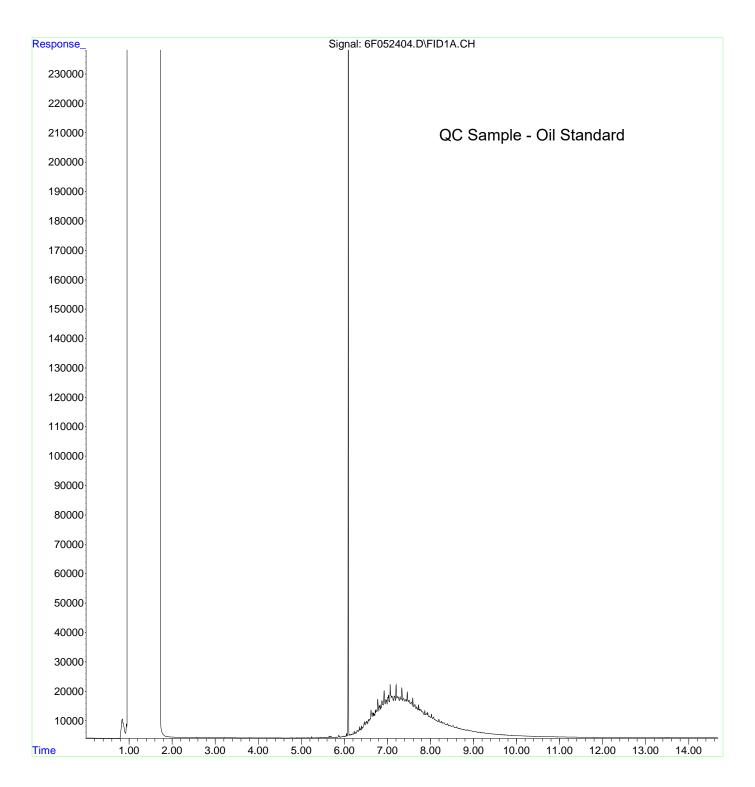



File :M:\DUALFID6\1\DATA\2023-05\3E24066\6F052403.D

Operator : BLL

Acquired : 24 May 2023 3:42 pm using AcqMethod 6F71215A.M

Instrument : HP G1530A
Sample Name: 3E24066-CCV1




File :M:\DUALFID6\1\DATA\2023-05\3E24066\6F052404.D

Operator : BLL

Acquired : 24 May 2023 4:03 pm using AcqMethod 6F71215A.M

Instrument : HP G1530A
Sample Name: 3E24066-CCV2





**Apex Laboratories, LLC** 

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

AMENDED REPORT

Friday, December 22, 2023 Suzy Stumpf Farallon-Seattle 1809 7th Ave Suite 1111 Seattle, WA 98101

RE: A3E1514 - 397-019 Block 38 West - 397-019

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A3E1514, which was received by the laboratory on 5/18/2023 at 10:45:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <a href="mailto:mpoquiz@apex-labs.com">mpoquiz@apex-labs.com</a>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

|          |                   | Cooler Receipt Information                       |                                                                                                   |                                                                                                                  |                                                                                                                                                              |
|----------|-------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| nperatui | re is less t      | an, or equal to, 6 degC (not frozen), or receive | ed on ice                                                                                         | e the same                                                                                                       | day as sampling                                                                                                                                              |
|          |                   | (See Cooler Receipt Form for details)            |                                                                                                   |                                                                                                                  |                                                                                                                                                              |
|          |                   |                                                  |                                                                                                   |                                                                                                                  |                                                                                                                                                              |
| 0.3      | degC              | Cooler #2                                        | 3.3                                                                                               | degC                                                                                                             | _                                                                                                                                                            |
| 5.6      | degC              | Cooler #4                                        | 2.0                                                                                               | degC                                                                                                             | _                                                                                                                                                            |
| 1.8      | degC              | Cooler #6                                        | 3.9                                                                                               | degC                                                                                                             | _                                                                                                                                                            |
| 5.6      | degC              | •                                                |                                                                                                   |                                                                                                                  |                                                                                                                                                              |
|          | 0.3<br>5.6<br>1.8 | 0.3 degC<br>5.6 degC<br>1.8 degC                 | (See Cooler Receipt Form for details)  0.3 degC Cooler #2  5.6 degC Cooler #4  1.8 degC Cooler #6 | (See Cooler Receipt Form for details)  0.3 degC  Cooler #2 3.3  5.6 degC  Cooler #4 2.0  1.8 degC  Cooler #6 3.9 | (See Cooler Receipt Form for details)    0.3   degC   Cooler #2   3.3   degC     5.6   degC   Cooler #4   2.0   degC     1.8   degC   Cooler #6   3.9   degC |

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.





Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1514 - 12 22 23 1814

#### ANALYTICAL REPORT FOR SAMPLES

|                  | SAMPLE INFO   | ORMATION |                               |  |
|------------------|---------------|----------|-------------------------------|--|
| Client Sample ID | Laboratory ID | Matrix   | Date Sampled Date Received    |  |
| FMW-155-051623   | A3E1514-01    | Water    | 05/16/23 07:45                |  |
| FMW-156-051623   | A3E1514-02    | Water    | 05/16/23 08:10 05/18/23 10:45 |  |
| OW-1-051623      | A3E1514-03    | Water    | 05/16/23 09:20 05/18/23 10:45 |  |
| FMW-154-051623   | A3E1514-04    | Water    | 05/16/23 09:45 05/18/23 10:45 |  |
| FMW-157-051623   | A3E1514-05    | Water    | 05/16/23 10:47 05/18/23 10:45 |  |
| OW-2-051623      | A3E1514-06    | Water    | 05/16/23 11:15 05/18/23 10:45 |  |
| FMW-152-051623   | A3E1514-07    | Water    | 05/16/23 12:45 05/18/23 10:45 |  |
| FMW-150-051623   | A3E1514-08    | Water    | 05/16/23 15:15                |  |
| FMW-137-051623   | A3E1514-09    | Water    | 05/16/23 16:20 05/18/23 10:45 |  |
| FMW-164-051623   | A3E1514-10    | Water    | 05/16/23 16:50 05/18/23 10:45 |  |
| FMW-138-051623   | A3E1514-11    | Water    | 05/16/23 18:00 05/18/23 10:45 |  |
| FMW-162-051623   | A3E1514-12    | Water    | 05/16/23 17:51 05/18/23 10:45 |  |
| FMW-159-051623   | A3E1514-13    | Water    | 05/16/23 19:20 05/18/23 10:45 |  |
| FMW-153-051623   | A3E1514-14    | Water    | 05/16/23 19:50 05/18/23 10:45 |  |
| FMW-151-051623   | A3E1514-15    | Water    | 05/16/23 20:48                |  |
| OW-3-051723      | A3E1514-16    | Water    | 05/17/23 12:32 05/18/23 10:45 |  |
| FMW-165-051723   | A3E1514-17    | Water    | 05/17/23 15:52 05/18/23 10:45 |  |

Apex Laboratories

(milele fog



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1514 - 12 22 23 1814

## ANALYTICAL CASE NARRATIVE

A3E1514 Apex Laboratories

Amended Report Revision 2:

Reporting to Reporting Limits (RLs)-

This report supersedes all previous reports.

Per client request, this report has been amended to report all NWTPH-Dx data to the RLs.

Michele Poquiz Forensics Project Manager 12/22/2023

Amended Report Revision 1:

Additional Data-

This report supersedes all previous reports.

The final report has been amended to report BTEX data for sample FMW-154-051623 (APEX ID: A3E1514-04).

Michele Poquiz Forensics Project Manager 7/3/23

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1514 - 12 22 23 1814

## ANALYTICAL SAMPLE RESULTS

|                               | Die    | sel and/or O | il Hydrocar | bons by NWTP     | H-Dx     |                |             |          |
|-------------------------------|--------|--------------|-------------|------------------|----------|----------------|-------------|----------|
|                               | Sample | Detection    | Reporting   | TT '-            | D.I. ·   | Date           | Malabas     | N        |
| Analyte                       | Result | Limit        | Limit       | Units            | Dilution | Analyzed       | Method Ref. | Notes    |
| FMW-155-051623 (A3E1514-01)   |        |              |             | Matrix: Wat      | er       | Batch:         | 23E0901     |          |
| Diesel                        | 287    |              | 75.5        | ug/L             | 1        | 05/22/23 19:08 | NWTPH-Dx LL | F-11     |
| Oil                           | ND     |              | 151         | ug/L             | 1        | 05/22/23 19:08 | NWTPH-Dx LL |          |
| Surrogate: o-Terphenyl (Surr) |        | Recove       | ery: 105 %  | Limits: 50-150 9 | % 1      | 05/22/23 19:08 | NWTPH-Dx LL |          |
| FMW-156-051623 (A3E1514-02)   |        |              |             | Matrix: Wat      | er       | Batch:         | 23E0901     |          |
| Diesel                        | 170    |              | 76.9        | ug/L             | 1        | 05/22/23 19:30 | NWTPH-Dx LL | F-11     |
| Oil                           | ND     |              | 154         | ug/L             | 1        | 05/22/23 19:30 | NWTPH-Dx LL |          |
| Surrogate: o-Terphenyl (Surr) |        | Recov        | ery: 105 %  | Limits: 50-150 9 | % 1      | 05/22/23 19:30 | NWTPH-Dx LL |          |
| OW-1-051623 (A3E1514-03)      |        |              |             | Matrix: Wat      | er       | Batch:         | 23E0901     |          |
| Diesel                        | 332    |              | 75.5        | ug/L             | 1        | 05/22/23 19:53 | NWTPH-Dx LL | F-11     |
| Oil                           | ND     |              | 151         | ug/L             | 1        | 05/22/23 19:53 | NWTPH-Dx LL |          |
| Surrogate: o-Terphenyl (Surr) |        | Recov        | ery: 111 %  | Limits: 50-150 9 | % 1      | 05/22/23 19:53 | NWTPH-Dx LL |          |
| FMW-154-051623 (A3E1514-04)   |        |              |             | Matrix: Water    |          | Batch:         | 23E0901     |          |
| Diesel                        | 318    |              | 76.9        | ug/L             | 1        | 05/22/23 20:14 | NWTPH-Dx LL | F-11     |
| Oil                           | ND     |              | 154         | ug/L             | 1        | 05/22/23 20:14 | NWTPH-Dx LL |          |
| Surrogate: o-Terphenyl (Surr) |        | Recov        | ery: 113 %  | Limits: 50-150 9 | % 1      | 05/22/23 20:14 | NWTPH-Dx LL |          |
| FMW-157-051623 (A3E1514-05)   |        |              |             | Matrix: Wat      | er       | Batch:         | 23E0901     |          |
| Diesel                        | 161    |              | 75.5        | ug/L             | 1        | 05/22/23 20:36 | NWTPH-Dx LL | F-11     |
| Oil                           | ND     |              | 151         | ug/L             | 1        | 05/22/23 20:36 | NWTPH-Dx LL |          |
| Surrogate: o-Terphenyl (Surr) |        | Recov        | ery: 117%   | Limits: 50-150 9 | % 1      | 05/22/23 20:36 | NWTPH-Dx LL |          |
| OW-2-051623 (A3E1514-06)      |        |              |             | Matrix: Wat      | er       | Batch:         | 23E0901     |          |
| Diesel                        | 107    |              | 76.9        | ug/L             | 1        | 05/22/23 20:58 | NWTPH-Dx LL | F-11     |
| Oil                           | ND     |              | 154         | ug/L             | 1        | 05/22/23 20:58 | NWTPH-Dx LL |          |
| Surrogate: o-Terphenyl (Surr) |        | Recove       | ery: 109 %  | Limits: 50-150 9 | % 1      | 05/22/23 20:58 | NWTPH-Dx LL |          |
| FMW-152-051623 (A3E1514-07)   | -      |              |             | Matrix: Wat      | er       | Batch:         |             |          |
| Diesel                        | 143    |              | 75.5        | ug/L             | 1        | 05/22/23 21:19 | NWTPH-Dx LL |          |
| Oil                           | ND     |              | 151         | ug/L             | 1        | 05/22/23 21:19 | NWTPH-Dx LL |          |
| Surrogate: o-Terphenyl (Surr) |        | Recov        | ery: 116%   | Limits: 50-150 9 | % I      | 05/22/23 21:19 | NWTPH-Dx LL | <u> </u> |

Apex Laboratories

custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ 



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1514 - 12 22 23 1814

## ANALYTICAL SAMPLE RESULTS

|                               | Die              | esel and/or O      | il Hydrocar        | bons by NWTF     | PH-Dx    |                  |             |            |
|-------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|-------------|------------|
| Analyte                       | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref. | Notes      |
| FMW-150-051623 (A3E1514-08)   |                  |                    |                    | Matrix: Wat      | ter      | Batch:           | 23E0901     |            |
| Diesel                        | 92.4             |                    | 76.9               | ug/L             | 1        | 05/22/23 21:41   | NWTPH-Dx LL | F-11       |
| Oil                           | ND               |                    | 154                | ug/L             | 1        | 05/22/23 21:41   | NWTPH-Dx LL |            |
| Surrogate: o-Terphenyl (Surr) |                  | Recove             | ery: 111 %         | Limits: 50-150   | % 1      | 05/22/23 21:41   | NWTPH-Dx LL |            |
| FMW-164-051623 (A3E1514-10)   |                  |                    |                    | Matrix: Wat      | ter      | Batch:           | 23E0901     |            |
| Diesel                        | 82.9             |                    | 76.9               | ug/L             | 1        | 05/22/23 22:02   | NWTPH-Dx LL | F-11       |
| Oil                           | ND               |                    | 154                | ug/L             | 1        | 05/22/23 22:02   | NWTPH-Dx LL |            |
| Surrogate: o-Terphenyl (Surr) |                  | Recove             | ery: 100 %         | Limits: 50-150   | % 1      | 05/22/23 22:02   | NWTPH-Dx LL |            |
| FMW-162-051623 (A3E1514-12)   |                  |                    |                    | Matrix: Wat      | ter      | Batch:           | 23E0956     |            |
| Diesel                        | 212              |                    | 74.8               | ug/L             | 1        | 05/24/23 09:28   | NWTPH-Dx LL | F-03, F-11 |
| Oil                           | ND               |                    | 150                | ug/L             | 1        | 05/24/23 09:28   | NWTPH-Dx LL |            |
| Surrogate: o-Terphenyl (Surr) |                  | Recove             | ery: 112 %         | Limits: 50-150   | % 1      | 05/24/23 09:28   | NWTPH-Dx LL |            |
| FMW-159-051623 (A3E1514-13)   |                  |                    |                    | Matrix: Water    |          | Batch:           |             |            |
| Diesel                        | 102              |                    | 74.8               | ug/L             | 1        | 05/24/23 09:50   | NWTPH-Dx LL | F-11       |
| Oil                           | ND               |                    | 150                | ug/L             | 1        | 05/24/23 09:50   | NWTPH-Dx LL |            |
| Surrogate: o-Terphenyl (Surr) |                  | Recove             | ery: 112 %         | Limits: 50-150   | % 1      | 05/24/23 09:50   | NWTPH-Dx LL |            |
| FMW-153-051623 (A3E1514-14)   |                  |                    |                    | Matrix: Wat      | ter      | Batch:           | 23E0956     |            |
| Diesel                        | ND               |                    | 74.8               | ug/L             | 1        | 05/24/23 10:12   | NWTPH-Dx LL |            |
| Oil                           | ND               |                    | 150                | ug/L             | 1        | 05/24/23 10:12   | NWTPH-Dx LL |            |
| Surrogate: o-Terphenyl (Surr) |                  | Recove             | ery: 107%          | Limits: 50-150   | % 1      | 05/24/23 10:12   | NWTPH-Dx LL |            |
| FMW-151-051623 (A3E1514-15)   |                  |                    |                    | Matrix: Wat      | ter      | Batch:           | 23E0956     |            |
| Diesel                        | 287              |                    | 74.8               | ug/L             | 1        | 05/24/23 10:33   | NWTPH-Dx LL | F-11       |
| Oil                           | ND               |                    | 150                | ug/L             | 1        | 05/24/23 10:33   | NWTPH-Dx LL |            |
| Surrogate: o-Terphenyl (Surr) |                  | Recove             | ery: 120 %         | Limits: 50-150   | % 1      | 05/24/23 10:33   | NWTPH-Dx LL |            |
| OW-3-051723 (A3E1514-16)      |                  |                    |                    | Matrix: Wat      | ter      | Batch:           | 23E0956     |            |
| Diesel                        | 84.8             |                    | 74.8               | ug/L             | 1        | 05/24/23 10:55   | NWTPH-Dx LL | F-11       |
| Oil                           | ND               |                    | 150                | ug/L             | 1        | 05/24/23 10:55   | NWTPH-Dx LL |            |
| Surrogate: o-Terphenyl (Surr) |                  | Recove             | ery: 104 %         | Limits: 50-150 9 | % 1      | 05/24/23 10:55   | NWTPH-Dx LL |            |

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1514 - 12 22 23 1814

## ANALYTICAL SAMPLE RESULTS

| Gasolii                               | ne Range Hy      | drocarbons (       | Benzene tł         | nrough Naphtha   | alene) by  | NWTPH-Gx         |               |       |
|---------------------------------------|------------------|--------------------|--------------------|------------------|------------|------------------|---------------|-------|
| Analyte                               | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution   | Date<br>Analyzed | Method Ref.   | Notes |
| FMW-155-051623 (A3E1514-01RE1)        |                  |                    |                    | Matrix: Wate     | er         | Batch:           | 23E0865       |       |
| Gasoline Range Organics               | ND               | 50.0               | 100                | ug/L             | 1          | 05/19/23 16:21   | NWTPH-Gx (MS) |       |
| Surrogate: 4-Bromofluorobenzene (Sur) |                  | Recove             | ery: 92 %          | Limits: 50-150 % | 5 1        | 05/19/23 16:21   | NWTPH-Gx (MS) |       |
| 1,4-Difluorobenzene (Sur)             |                  |                    | 103 %              | 50-150 %         | 1          | 05/19/23 16:21   | NWTPH-Gx (MS) |       |
| FMW-156-051623 (A3E1514-02RE1)        |                  |                    | Matrix: Water      |                  | Batch:     | 23E0865          |               |       |
| Gasoline Range Organics               | ND               | 50.0               | 100                | ug/L             | 1          | 05/19/23 18:36   | NWTPH-Gx (MS) |       |
| Surrogate: 4-Bromofluorobenzene (Sur) |                  | Recove             | ery: 96 %          | Limits: 50-150 % | 5 1        | 05/19/23 18:36   | NWTPH-Gx (MS) |       |
| 1,4-Difluorobenzene (Sur)             |                  |                    | 104 %              | 50-150 %         | 1          | 05/19/23 18:36   | NWTPH-Gx (MS) |       |
| FMW-154-051623 (A3E1514-04RE1)        |                  |                    |                    | Matrix: Wate     | er         | Batch:           | 23E0865       |       |
| Gasoline Range Organics               | ND               | 50.0               | 100                | ug/L             | 1          | 05/19/23 18:13   | NWTPH-Gx (MS) |       |
| Surrogate: 4-Bromofluorobenzene (Sur) |                  | Recove             | ery: 98 %          | Limits: 50-150 % | 5 1        | 05/19/23 18:13   | NWTPH-Gx (MS) |       |
| 1,4-Difluorobenzene (Sur)             |                  |                    | 107 %              | 50-150 %         | <i>i</i> 1 | 05/19/23 18:13   | NWTPH-Gx (MS) |       |

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1514 - 12 22 23 1814

## ANALYTICAL SAMPLE RESULTS

|                                       |                  | BTEX Co            | mpounds b          | y EPA 8260D      |               |                  |                |       |  |
|---------------------------------------|------------------|--------------------|--------------------|------------------|---------------|------------------|----------------|-------|--|
| Analyte                               | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution      | Date<br>Analyzed | Method Ref.    | Notes |  |
| FMW-155-051623 (A3E1514-01RE1)        |                  |                    |                    | Matrix: Wate     | er            | Batch:           | 23E0865        |       |  |
| Benzene                               | ND               | 0.100              | 0.200              | ug/L             | 1             | 05/19/23 16:21   | EPA 8260D      |       |  |
| Toluene                               | ND               | 0.500              | 1.00               | ug/L             | 1             | 05/19/23 16:21   | EPA 8260D      |       |  |
| Ethylbenzene                          | ND               | 0.250              | 0.500              | ug/L             | 1             | 05/19/23 16:21   | EPA 8260D      |       |  |
| Xylenes, total                        | ND               | 0.750              | 1.50               | ug/L             | 1             | 05/19/23 16:21   | EPA 8260D      |       |  |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Reco               | very: 96 %         | Limits: 80-120 % | 1             | 05/19/23 16:21   | EPA 8260D      |       |  |
| Toluene-d8 (Surr)                     |                  |                    | 102 %              | 80-120 %         | 1             | 05/19/23 16:21   | EPA 8260D      |       |  |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 101 %              | 80-120 %         | 1             | 05/19/23 16:21   | EPA 8260D      |       |  |
| FMW-156-051623 (A3E1514-02RE1)        |                  |                    |                    |                  | Matrix: Water |                  | Batch: 23E0865 |       |  |
| Benzene                               | ND               | 0.100              | 0.200              | ug/L             | 1             | 05/19/23 18:36   | EPA 8260D      |       |  |
| Toluene                               | ND               | 0.500              | 1.00               | ug/L             | 1             | 05/19/23 18:36   | EPA 8260D      |       |  |
| Ethylbenzene                          | ND               | 0.250              | 0.500              | ug/L             | 1             | 05/19/23 18:36   | EPA 8260D      |       |  |
| Xylenes, total                        | ND               | 0.750              | 1.50               | ug/L             | 1             | 05/19/23 18:36   | EPA 8260D      |       |  |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Reco               | very: 96 %         | Limits: 80-120 % | 1             | 05/19/23 18:36   | EPA 8260D      |       |  |
| Toluene-d8 (Surr)                     |                  |                    | 103 %              | 80-120 %         | 1             | 05/19/23 18:36   | EPA 8260D      |       |  |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 104 %              | 80-120 %         | 1             | 05/19/23 18:36   | EPA 8260D      |       |  |
| FMW-154-051623 (A3E1514-04RE1)        |                  |                    |                    | Matrix: Wate     | er            | Batch:           | 23E0865        |       |  |
| Benzene                               | ND               | 0.100              | 0.200              | ug/L             | 1             | 05/19/23 18:13   | EPA 8260D      |       |  |
| Toluene                               | ND               | 0.500              | 1.00               | ug/L             | 1             | 05/19/23 18:13   | EPA 8260D      |       |  |
| Ethylbenzene                          | ND               | 0.250              | 0.500              | ug/L             | 1             | 05/19/23 18:13   | EPA 8260D      |       |  |
| Xylenes, total                        | ND               |                    |                    | ug/L             | 1             | 05/19/23 18:13   | EPA 8260D      |       |  |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Reco               | very: 98 %         | Limits: 80-120 % | 1             | 05/19/23 18:13   | EPA 8260D      |       |  |
| Toluene-d8 (Surr)                     |                  |                    | 102 %              | 80-120 %         | 1             | 05/19/23 18:13   | EPA 8260D      |       |  |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 104 %              | 80-120 %         | 1             | 05/19/23 18:13   | EPA 8260D      |       |  |

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1514 - 12 22 23 1814

## ANALYTICAL SAMPLE RESULTS

|                                       | V                | olatile Organ      | ic Compou          | nds by EPA 826   | 0D       |                  |             |       |
|---------------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|-------------|-------|
| Analyte                               | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| FMW-137-051623 (A3E1514-09RE1)        |                  |                    |                    | Matrix: Wate     | er       | Batch: 2         | 23E0865     |       |
| cis-1,2-Dichloroethene                | 20.3             | 0.200              | 0.400              | ug/L             | 1        | 05/19/23 17:06   | EPA 8260D   |       |
| trans-1,2-Dichloroethene              | ND               | 0.200              | 0.400              | ug/L             | 1        | 05/19/23 17:06   | EPA 8260D   |       |
| Tetrachloroethene (PCE)               | ND               | 0.200              | 0.400              | ug/L             | 1        | 05/19/23 17:06   | EPA 8260D   |       |
| Trichloroethene (TCE)                 | ND               | 0.200              | 0.400              | ug/L             | 1        | 05/19/23 17:06   | EPA 8260D   |       |
| Vinyl chloride                        | 0.320            | 0.200              | 0.400              | ug/L             | 1        | 05/19/23 17:06   | EPA 8260D   | J     |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Reco               | very: 92 %         | Limits: 80-120 % | 1        | 05/19/23 17:06   | EPA 8260D   |       |
| Toluene-d8 (Surr)                     |                  |                    | 102 %              | 80-120 %         | 1        | 05/19/23 17:06   | EPA 8260D   |       |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 107 %              | 80-120 %         | 1        | 05/19/23 17:06   | EPA 8260D   |       |
| FMW-138-051623 (A3E1514-11RE1)        |                  |                    |                    | Matrix: Wate     | er       | Batch: 2         | 23E0865     |       |
| cis-1,2-Dichloroethene                | ND               | 0.200              | 0.400              | ug/L             | 1        | 05/19/23 17:28   | EPA 8260D   |       |
| trans-1,2-Dichloroethene              | ND               | 0.200              | 0.400              | ug/L             | 1        | 05/19/23 17:28   | EPA 8260D   |       |
| Tetrachloroethene (PCE)               | ND               | 0.200              | 0.400              | ug/L             | 1        | 05/19/23 17:28   | EPA 8260D   |       |
| Trichloroethene (TCE)                 | ND               | 0.200              | 0.400              | ug/L             | 1        | 05/19/23 17:28   | EPA 8260D   |       |
| Vinyl chloride                        | ND               | 0.200              | 0.400              | ug/L             | 1        | 05/19/23 17:28   | EPA 8260D   |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Reco               | very: 94%          | Limits: 80-120 % | 1        | 05/19/23 17:28   | EPA 8260D   |       |
| Toluene-d8 (Surr)                     |                  |                    | 102 %              | 80-120 %         | 1        | 05/19/23 17:28   | EPA 8260D   |       |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 106 %              | 80-120 %         | 1        | 05/19/23 17:28   | EPA 8260D   |       |
| FMW-165-051723 (A3E1514-17RE1)        |                  |                    |                    | Matrix: Wate     | er       | Batch: 2         | 23E0865     | V-01  |
| cis-1,2-Dichloroethene                | 4.46             | 0.200              | 0.400              | ug/L             | 1        | 05/19/23 17:50   | EPA 8260D   |       |
| trans-1,2-Dichloroethene              | ND               | 0.200              | 0.400              | ug/L             | 1        | 05/19/23 17:50   | EPA 8260D   |       |
| Tetrachloroethene (PCE)               | ND               | 0.200              | 0.400              | ug/L             | 1        | 05/19/23 17:50   | EPA 8260D   |       |
| Trichloroethene (TCE)                 | ND               | 0.200              | 0.400              | ug/L             | 1        | 05/19/23 17:50   | EPA 8260D   |       |
| Vinyl chloride                        | 0.880            | 0.200              | 0.400              | ug/L             | 1        | 05/19/23 17:50   | EPA 8260D   |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Reco               | very: 94 %         | Limits: 80-120 % | 1        | 05/19/23 17:50   | EPA 8260D   |       |
| Toluene-d8 (Surr)                     |                  |                    | 100 %              | 80-120 %         | 1        | 05/19/23 17:50   | EPA 8260D   |       |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 103 %              | 80-120 %         | 1        | 05/19/23 17:50   | EPA 8260D   |       |

Apex Laboratories

analytic



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1514 - 12 22 23 1814

## ANALYTICAL SAMPLE RESULTS

|                                    | Polyaromatic Hydrocarbons (PAHs) by EPA 8270E (SIM) |                    |                    |                  |          |                  |               |       |  |  |  |
|------------------------------------|-----------------------------------------------------|--------------------|--------------------|------------------|----------|------------------|---------------|-------|--|--|--|
| Analyte                            | Sample<br>Result                                    | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref.   | Notes |  |  |  |
| FMW-155-051623 (A3E1514-01)        |                                                     |                    |                    | Matrix: Wate     | r        | Batch:           | 23E0844       |       |  |  |  |
| 1-Methylnaphthalene                | ND                                                  | 0.0377             | 0.0755             | ug/L             | 1        | 05/22/23 11:30   | EPA 8270E SIM |       |  |  |  |
| 2-Methylnaphthalene                | ND                                                  | 0.0377             | 0.0755             | ug/L             | 1        | 05/22/23 11:30   | EPA 8270E SIM |       |  |  |  |
| Naphthalene                        | ND                                                  | 0.0377             | 0.0755             | ug/L             | 1        | 05/22/23 11:30   | EPA 8270E SIM |       |  |  |  |
| Surrogate: 2-Fluorobiphenyl (Surr) |                                                     | Recovery           | v: 79 %            | Limits: 44-120 % | 1        | 05/22/23 11:30   | EPA 8270E SIM |       |  |  |  |
| p-Terphenyl-d14 (Surr)             |                                                     |                    | 81 %               | 50-134 %         | 1        | 05/22/23 11:30   | EPA 8270E SIM |       |  |  |  |
| FMW-156-051623 (A3E1514-02)        |                                                     |                    |                    | Matrix: Wate     | r        | Batch:           | 23E0844       |       |  |  |  |
| 1-Methylnaphthalene                | ND                                                  | 0.0404             | 0.0808             | ug/L             | 1        | 05/22/23 11:55   | EPA 8270E SIM |       |  |  |  |
| 2-Methylnaphthalene                | ND                                                  | 0.0404             | 0.0808             | ug/L             | 1        | 05/22/23 11:55   | EPA 8270E SIM |       |  |  |  |
| Naphthalene                        | ND                                                  | 0.0404             | 0.0808             | ug/L             | 1        | 05/22/23 11:55   | EPA 8270E SIM |       |  |  |  |
| Surrogate: 2-Fluorobiphenyl (Surr) |                                                     | Recovery           | v: 69 %            | Limits: 44-120 % | I        | 05/22/23 11:55   | EPA 8270E SIM |       |  |  |  |
| p-Terphenyl-d14 (Surr)             |                                                     |                    | 107 %              | 50-134 %         | 1        | 05/22/23 11:55   | EPA 8270E SIM |       |  |  |  |
| OW-1-051623 (A3E1514-03)           |                                                     |                    |                    | Matrix: Wate     | r        | Batch:           | 23E0844       |       |  |  |  |
| 1-Methylnaphthalene                | ND                                                  | 0.0377             | 0.0755             | ug/L             | 1        | 05/22/23 12:21   | EPA 8270E SIM |       |  |  |  |
| 2-Methylnaphthalene                | ND                                                  | 0.0377             | 0.0755             | ug/L             | 1        | 05/22/23 12:21   | EPA 8270E SIM |       |  |  |  |
| Naphthalene                        | ND                                                  | 0.0377             | 0.0755             | ug/L             | 1        | 05/22/23 12:21   | EPA 8270E SIM |       |  |  |  |
| Surrogate: 2-Fluorobiphenyl (Surr) |                                                     | Recovery           | v: 74 %            | Limits: 44-120 % | 1        | 05/22/23 12:21   | EPA 8270E SIM |       |  |  |  |
| p-Terphenyl-d14 (Surr)             |                                                     |                    | 86 %               | 50-134 %         | 1        | 05/22/23 12:21   | EPA 8270E SIM |       |  |  |  |
| FMW-154-051623 (A3E1514-04)        |                                                     |                    |                    | Matrix: Wate     | r        | Batch:           | 23E0844       |       |  |  |  |
| 1-Methylnaphthalene                | ND                                                  | 0.0392             | 0.0784             | ug/L             | 1        | 05/22/23 12:46   | EPA 8270E SIM |       |  |  |  |
| 2-Methylnaphthalene                | ND                                                  | 0.0392             | 0.0784             | ug/L             | 1        | 05/22/23 12:46   | EPA 8270E SIM |       |  |  |  |
| Naphthalene                        | 0.0678                                              | 0.0392             | 0.0784             | ug/L             | 1        | 05/22/23 12:46   | EPA 8270E SIM | J     |  |  |  |
| Surrogate: 2-Fluorobiphenyl (Surr) |                                                     | Recovery           | v: 73 %            | Limits: 44-120 % | I        | 05/22/23 12:46   | EPA 8270E SIM |       |  |  |  |
| p-Terphenyl-d14 (Surr)             |                                                     |                    | 92 %               | 50-134 %         | 1        | 05/22/23 12:46   | EPA 8270E SIM |       |  |  |  |
| FMW-157-051623 (A3E1514-05)        |                                                     |                    |                    | Matrix: Wate     | r        | Batch:           | 23E0844       |       |  |  |  |
| 1-Methylnaphthalene                | ND                                                  | 0.0404             | 0.0808             | ug/L             | 1        | 05/22/23 13:11   | EPA 8270E SIM |       |  |  |  |
| 2-Methylnaphthalene                | ND                                                  | 0.0404             | 0.0808             | ug/L             | 1        | 05/22/23 13:11   | EPA 8270E SIM |       |  |  |  |
| Naphthalene                        | ND                                                  | 0.0404             | 0.0808             | ug/L             | 1        | 05/22/23 13:11   | EPA 8270E SIM |       |  |  |  |
| Surrogate: 2-Fluorobiphenyl (Surr) |                                                     | Recovery           | v: 70 %            | Limits: 44-120 % | I        | 05/22/23 13:11   | EPA 8270E SIM |       |  |  |  |
| p-Terphenyl-d14 (Surr)             |                                                     |                    | 95 %               | 50-134 %         | 1        | 05/22/23 13:11   | EPA 8270E SIM |       |  |  |  |

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1514 - 12 22 23 1814

## ANALYTICAL SAMPLE RESULTS

|                                    | Polyaro          | (Hs) by EPA 82     | 70E (SIM           | )                |          |                  |               |       |
|------------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|---------------|-------|
| Analyte                            | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref.   | Notes |
| OW-2-051623 (A3E1514-06)           |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23E0844       |       |
| 1-Methylnaphthalene                | ND               | 0.0385             | 0.0769             | ug/L             | 1        | 05/22/23 13:37   | EPA 8270E SIM |       |
| 2-Methylnaphthalene                | ND               | 0.0385             | 0.0769             | ug/L             | 1        | 05/22/23 13:37   | EPA 8270E SIM |       |
| Naphthalene                        | ND               | 0.0385             | 0.0769             | ug/L             | 1        | 05/22/23 13:37   | EPA 8270E SIM |       |
| Surrogate: 2-Fluorobiphenyl (Surr) |                  | Recovery           | v: 65 %            | Limits: 44-120 % | 1        | 05/22/23 13:37   | EPA 8270E SIM |       |
| p-Terphenyl-d14 (Surr)             |                  |                    | 93 %               | 50-134 %         | 1        | 05/22/23 13:37   | EPA 8270E SIM |       |
| FMW-152-051623 (A3E1514-07)        |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23E0844       |       |
| 1-Methylnaphthalene                | ND               | 0.0396             | 0.0792             | ug/L             | 1        | 05/22/23 14:02   | EPA 8270E SIM |       |
| 2-Methylnaphthalene                | ND               | 0.0396             | 0.0792             | ug/L             | 1        | 05/22/23 14:02   | EPA 8270E SIM |       |
| Naphthalene                        | ND               | 0.0396             | 0.0792             | ug/L             | 1        | 05/22/23 14:02   | EPA 8270E SIM |       |
| Surrogate: 2-Fluorobiphenyl (Surr) |                  | Recovery           | v: 77 %            | Limits: 44-120 % | 1        | 05/22/23 14:02   | EPA 8270E SIM |       |
| p-Terphenyl-d14 (Surr)             |                  |                    | 93 %               | 50-134 %         | 1        | 05/22/23 14:02   | EPA 8270E SIM |       |
| FMW-150-051623 (A3E1514-08)        |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23E0844       |       |
| 1-Methylnaphthalene                | ND               | 0.0377             | 0.0755             | ug/L             | 1        | 05/22/23 14:27   | EPA 8270E SIM |       |
| 2-Methylnaphthalene                | ND               | 0.0377             | 0.0755             | ug/L             | 1        | 05/22/23 14:27   | EPA 8270E SIM |       |
| Naphthalene                        | ND               | 0.0377             | 0.0755             | ug/L             | 1        | 05/22/23 14:27   | EPA 8270E SIM |       |
| Surrogate: 2-Fluorobiphenyl (Surr) |                  | Recovery           | v: 53 %            | Limits: 44-120 % | 1        | 05/22/23 14:27   | EPA 8270E SIM |       |
| p-Terphenyl-d14 (Surr)             |                  |                    | 92 %               | 50-134 %         | 1        | 05/22/23 14:27   | EPA 8270E SIM |       |
| FMW-164-051623 (A3E1514-10RE1)     |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23E0981       |       |
| 1-Methylnaphthalene                | ND               | 0.0377             | 0.0755             | ug/L             | 1        | 05/24/23 00:54   | EPA 8270E SIM |       |
| 2-Methylnaphthalene                | ND               | 0.0377             | 0.0755             | ug/L             | 1        | 05/24/23 00:54   | EPA 8270E SIM |       |
| Naphthalene                        | ND               | 0.0377             | 0.0755             | ug/L             | 1        | 05/24/23 00:54   | EPA 8270E SIM |       |
| Surrogate: 2-Fluorobiphenyl (Surr) |                  | Recovery           | v: 46 %            | Limits: 44-120 % | 1        | 05/24/23 00:54   | EPA 8270E SIM |       |
| p-Terphenyl-d14 (Surr)             |                  |                    | 73 %               | 50-134 %         | 1        | 05/24/23 00:54   | EPA 8270E SIM |       |
| FMW-162-051623 (A3E1514-12)        |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23E0844       |       |
| 1-Methylnaphthalene                | ND               | 0.0377             | 0.0755             | ug/L             | 1        | 05/22/23 15:18   | EPA 8270E SIM |       |
| 2-Methylnaphthalene                | ND               | 0.0377             | 0.0755             | ug/L             | 1        | 05/22/23 15:18   | EPA 8270E SIM |       |
| Naphthalene                        | ND               | 0.0377             | 0.0755             | ug/L             | 1        | 05/22/23 15:18   | EPA 8270E SIM |       |
| Surrogate: 2-Fluorobiphenyl (Surr) |                  | Recovery           | v: 56 %            | Limits: 44-120 % | 1        | 05/22/23 15:18   | EPA 8270E SIM |       |
| p-Terphenyl-d14 (Surr)             |                  |                    | 83 %               | 50-134 %         | 1        | 05/22/23 15:18   | EPA 8270E SIM |       |

Apex Laboratories

---



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1514 - 12 22 23 1814

## ANALYTICAL SAMPLE RESULTS

|                                    | Polyaromatic Hydrocarbons (PAHs) by EPA 8270E (SIM) |                    |                    |                  |          |                  |               |       |  |  |  |
|------------------------------------|-----------------------------------------------------|--------------------|--------------------|------------------|----------|------------------|---------------|-------|--|--|--|
| Analyte                            | Sample<br>Result                                    | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref.   | Notes |  |  |  |
| FMW-159-051623 (A3E1514-13RE1)     |                                                     |                    |                    | Matrix: Wate     | r        | Batch:           | 23E0981       |       |  |  |  |
| 1-Methylnaphthalene                | ND                                                  | 0.0377             | 0.0755             | ug/L             | 1        | 05/24/23 01:19   | EPA 8270E SIM |       |  |  |  |
| 2-Methylnaphthalene                | ND                                                  | 0.0377             | 0.0755             | ug/L             | 1        | 05/24/23 01:19   | EPA 8270E SIM |       |  |  |  |
| Naphthalene                        | ND                                                  | 0.0377             | 0.0755             | ug/L             | 1        | 05/24/23 01:19   | EPA 8270E SIM |       |  |  |  |
| Surrogate: 2-Fluorobiphenyl (Surr) |                                                     | Reco               | very: 51%          | Limits: 44-120 % | 1        | 05/24/23 01:19   | EPA 8270E SIM |       |  |  |  |
| p-Terphenyl-d14 (Surr)             |                                                     |                    | 68 %               | 50-134 %         | 1        | 05/24/23 01:19   | EPA 8270E SIM |       |  |  |  |
| FMW-153-051623 (A3E1514-14RE1)     |                                                     |                    |                    | Matrix: Wate     | er       | Batch:           | 23E0981       |       |  |  |  |
| 1-Methylnaphthalene                | ND                                                  | 0.0377             | 0.0755             | ug/L             | 1        | 05/24/23 01:44   | EPA 8270E SIM |       |  |  |  |
| 2-Methylnaphthalene                | ND                                                  | 0.0377             | 0.0755             | ug/L             | 1        | 05/24/23 01:44   | EPA 8270E SIM |       |  |  |  |
| Naphthalene                        | ND                                                  | 0.0377             | 0.0755             | ug/L             | 1        | 05/24/23 01:44   | EPA 8270E SIM |       |  |  |  |
| Surrogate: 2-Fluorobiphenyl (Surr) |                                                     | Reco               | Recovery: 53 % Lim |                  | 1        | 05/24/23 01:44   | EPA 8270E SIM |       |  |  |  |
| p-Terphenyl-d14 (Surr)             |                                                     |                    | 79 %               | 50-134 %         | 1        | 05/24/23 01:44   | EPA 8270E SIM |       |  |  |  |
| FMW-151-051623 (A3E1514-15)        |                                                     |                    |                    | Matrix: Wate     | er       | Batch:           | 23E0844       |       |  |  |  |
| 1-Methylnaphthalene                | ND                                                  | 0.0377             | 0.0755             | ug/L             | 1        | 05/22/23 16:34   | EPA 8270E SIM |       |  |  |  |
| 2-Methylnaphthalene                | ND                                                  | 0.0377             | 0.0755             | ug/L             | 1        | 05/22/23 16:34   | EPA 8270E SIM |       |  |  |  |
| Naphthalene                        | ND                                                  | 0.0377             | 0.0755             | ug/L             | 1        | 05/22/23 16:34   | EPA 8270E SIM |       |  |  |  |
| Surrogate: 2-Fluorobiphenyl (Surr) |                                                     | Reco               | very: 50 %         | Limits: 44-120 % | 1        | 05/22/23 16:34   | EPA 8270E SIM |       |  |  |  |
| p-Terphenyl-d14 (Surr)             |                                                     |                    | 79 %               | 50-134 %         | 1        | 05/22/23 16:34   | EPA 8270E SIM |       |  |  |  |
| OW-3-051723 (A3E1514-16RE1)        |                                                     |                    |                    | Matrix: Wate     | er       | Batch:           | 23E0981       |       |  |  |  |
| 1-Methylnaphthalene                | ND                                                  | 0.0377             | 0.0755             | ug/L             | 1        | 05/24/23 02:09   | EPA 8270E SIM |       |  |  |  |
| 2-Methylnaphthalene                | ND                                                  | 0.0377             | 0.0755             | ug/L             | 1        | 05/24/23 02:09   | EPA 8270E SIM |       |  |  |  |
| Naphthalene                        | ND                                                  | 0.0377             | 0.0755             | ug/L             | 1        | 05/24/23 02:09   | EPA 8270E SIM |       |  |  |  |
| Surrogate: 2-Fluorobiphenyl (Surr) |                                                     | Reco               | very: 48 %         | Limits: 44-120 % | 1        | 05/24/23 02:09   | EPA 8270E SIM |       |  |  |  |
| p-Terphenyl-d14 (Surr)             |                                                     |                    | 70 %               | 50-134 %         | 1        | 05/24/23 02:09   | EPA 8270E SIM |       |  |  |  |

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1514 - 12 22 23 1814

## ANALYTICAL SAMPLE RESULTS

|                             |                  | Total Meta         | ls by EPA 60       | 20B (ICPMS | 5)       |                  |             |       |
|-----------------------------|------------------|--------------------|--------------------|------------|----------|------------------|-------------|-------|
| Analyte                     | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| FMW-155-051623 (A3E1514-01) |                  |                    |                    | Matrix: W  | ater     |                  |             |       |
| Batch: 23E0934              |                  |                    |                    |            |          |                  |             | •     |
| Barium                      | 87.7             | 1.00               | 2.00               | ug/L       | 1        | 05/23/23 19:39   | EPA 6020B   |       |
| Mercury                     | ND               | 0.0400             | 0.0800             | ug/L       | 1        | 05/23/23 19:39   | EPA 6020B   |       |
| FMW-156-051623 (A3E1514-02) |                  |                    |                    | Matrix: W  | ater     |                  |             |       |
| Batch: 23E0934              |                  |                    |                    |            |          |                  |             |       |
| Barium                      | 44.5             | 1.00               | 2.00               | ug/L       | 1        | 05/23/23 19:54   | EPA 6020B   |       |
| FMW-154-051623 (A3E1514-04) | ·                |                    | ·                  | Matrix: W  | ater     |                  |             |       |
| Batch: 23E0934              |                  |                    |                    |            |          |                  |             |       |
| Barium                      | 95.5             | 1.00               | 2.00               | ug/L       | 1        | 05/23/23 19:59   | EPA 6020B   |       |

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1514 - 12 22 23 1814

## ANALYTICAL SAMPLE RESULTS

|                             |                  | Dissolved M        | etals by EPA       | 6020B (ICP | MS)      |                  |                  |       |
|-----------------------------|------------------|--------------------|--------------------|------------|----------|------------------|------------------|-------|
| Analyte                     | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units      | Dilution | Date<br>Analyzed | Method Ref.      | Notes |
| FMW-155-051623 (A3E1514-01) |                  |                    |                    | Matrix: W  | ater     |                  |                  |       |
| Batch: 23E1016              |                  |                    |                    |            |          |                  |                  | •     |
| Barium                      | 89.4             | 0.500              | 1.00               | ug/L       | 1        | 05/25/23 12:29   | EPA 6020B (Diss) |       |
| Mercury                     | ND               | 0.0400             | 0.0800             | ug/L       | 1        | 05/25/23 12:29   | EPA 6020B (Diss) |       |
| FMW-156-051623 (A3E1514-02) |                  |                    |                    | Matrix: Wa | ater     |                  |                  |       |
| Batch: 23E1016              |                  |                    |                    |            |          |                  |                  | ·     |
| Barium                      | 44.2             | 0.500              | 1.00               | ug/L       | 1        | 05/25/23 12:34   | EPA 6020B (Diss) |       |
| FMW-154-051623 (A3E1514-04) | ·                | ·                  |                    | Matrix: W  | ater     | ·                |                  |       |
| Batch: 23E1016              |                  |                    |                    |            |          |                  |                  |       |
| Barium                      | 91.1             | 0.500              | 1.00               | ug/L       | 1        | 05/25/23 12:39   | EPA 6020B (Diss) |       |

Apex Laboratories

(milale fog



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1514 - 12 22 23 1814

## QUALITY CONTROL (QC) SAMPLE RESULTS

|                                                                     |            | Di                                                | esel and/o          | or Oil Hyd         | Irocarbon  | s by NW1        | ΓPH-Dx           |       |                    |     |              |       |
|---------------------------------------------------------------------|------------|---------------------------------------------------|---------------------|--------------------|------------|-----------------|------------------|-------|--------------------|-----|--------------|-------|
| Analyte                                                             | Result     | Detection L<br>Limit                              | Reporting<br>Limit  | Units              | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits    | RPD | RPD<br>Limit | Notes |
| Batch 23E0901 - EPA 3510C (                                         | Fuels/Acid | Ext.)                                             |                     |                    |            |                 | Wa               | ter   |                    |     |              |       |
| Blank (23E0901-BLK1)                                                |            |                                                   | Prepared            | d: 05/22/23        | 07:11 Anal | yzed: 05/22     | /23 18:03        |       |                    |     |              |       |
| NWTPH-Dx LL                                                         |            |                                                   |                     |                    |            |                 |                  |       |                    |     |              |       |
| Diesel                                                              | ND         |                                                   | 80.0                | ug/L               | 1          |                 |                  |       |                    |     |              |       |
| Oil                                                                 | ND         |                                                   | 160                 | ug/L               | 1          |                 |                  |       |                    |     |              |       |
| Surr: o-Terphenyl (Surr)                                            |            | Recov                                             | very: 114%          | Limits: 50         | 0-150 %    | Dilı            | ution: 1x        |       |                    |     |              |       |
| LCS (23E0901-BS1)                                                   |            |                                                   | Prepared            | d: 05/22/23        | 07:11 Anal | yzed: 05/22     | /23 18:24        |       |                    |     |              |       |
| NWTPH-Dx LL                                                         |            |                                                   |                     |                    |            |                 |                  |       |                    |     |              |       |
| Diesel                                                              | 423        |                                                   | 80.0                | ug/L               | 1          | 500             |                  | 85    | 36-132%            |     |              |       |
| Surr: o-Terphenyl (Surr)                                            |            | Recov                                             | very: 116%          | Limits: 50         | 0-150 %    | Dilı            | ution: 1x        |       |                    |     |              |       |
| LCS Dup (23E0901-BSD1)                                              |            | Prepared: 05/22/23 07:11 Analyzed: 05/22/23 18:46 |                     |                    |            |                 |                  |       |                    |     | Q-1          |       |
| NWTPH-Dx LL                                                         |            |                                                   |                     |                    |            |                 |                  |       |                    |     |              |       |
| Diesel                                                              | 430        |                                                   | 80.0                | ug/L               | 1          | 500             |                  | 86    | 36-132%            | 2   | 30%          |       |
| Surr: o-Terphenyl (Surr)                                            |            | Recov                                             | ery: 124 %          | Limits: 50         | 0-150 %    | Dilı            | ution: 1x        |       |                    |     |              |       |
| Batch 23E0956 - EPA 3510C (                                         | Fuels/Acid | Ext.)                                             |                     |                    |            |                 | Wa               | ter   |                    |     |              |       |
| Blank (23E0956-BLK1)                                                |            |                                                   | Prepared            | d: 05/23/23        | 07:08 Anal | yzed: 05/24     | /23 08:22        |       |                    |     |              |       |
| NWTPH-Dx LL                                                         |            |                                                   |                     |                    |            |                 |                  |       |                    |     |              |       |
| Diesel                                                              | ND         |                                                   | 80.0                | ug/L               | 1          |                 |                  |       |                    |     |              |       |
| Oil                                                                 | ND         |                                                   | 160                 | ug/L               | 1          |                 |                  |       |                    |     |              |       |
| Surr: o-Terphenyl (Surr)                                            |            | Recov                                             | ery: 107 %          | Limits: 50         | 0-150 %    | Dilı            | ution: 1x        |       |                    |     |              | _     |
| LCS (23E0956-BS1)                                                   |            |                                                   | Prepared            | d: 05/23/23        | 07:08 Anal | yzed: 05/24     | /23 08:44        |       |                    |     |              |       |
| Ecs (2020/00 Bol)                                                   |            |                                                   |                     |                    |            |                 |                  |       |                    |     |              |       |
| NWTPH-Dx LL                                                         |            |                                                   |                     |                    |            |                 |                  |       |                    |     |              |       |
|                                                                     | 307        |                                                   | 80.0                | ug/L               | 1          | 500             |                  | 61    | 36-132%            |     |              |       |
| NWTPH-Dx LL                                                         | 307        |                                                   | 80.0<br>very: 117 % | ug/L<br>Limits: 50 |            |                 | ution: 1x        | 61    | 36-132%            |     |              |       |
| NWTPH-Dx LL  Diesel Surr: o-Terphenyl (Surr)                        | 307        |                                                   | pery: 117 %         | Limits: 50         | )-150 %    |                 | ution: Ix        | 61    | 36-132%            |     |              | Q-1   |
| NWTPH-Dx LL Diesel Surr: o-Terphenyl (Surr)                         | 307        |                                                   | pery: 117 %         | Limits: 50         | )-150 %    | Dilı            | ution: Ix        | 61    | 36-132%            |     |              | Q-1   |
| NWTPH-Dx LL Diesel Surr: o-Terphenyl (Surr)  LCS Dup (23E0956-BSD1) | 307        |                                                   | pery: 117 %         | Limits: 50         | )-150 %    | Dilı            | ution: Ix        | 61    | 36-132%<br>36-132% | 7   | 30%          | Q-1   |

Apex Laboratories



Farallon-Seattle

## ANALYTICAL REPORT

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

**Apex Laboratories, LLC** 

ORELAP ID: OR100062

397-019 Block 38 West

1809 7th Ave Suite 1111 Project Number: 397-019 Report ID: Seattle, WA 98101 Project Manager: Suzy Stumpf A3E1514 - 12 22 23 1814

Project:

## QUALITY CONTROL (QC) SAMPLE RESULTS

|                                  | Gasoli     | ne Range H           | lydrocarbo         | ns (Ben     | zene thro  | ugh Naph        | thalene)         | by NWTP | H-Gx            |     |              |      |
|----------------------------------|------------|----------------------|--------------------|-------------|------------|-----------------|------------------|---------|-----------------|-----|--------------|------|
| Analyte                          | Result     | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution   | Spike<br>Amount | Source<br>Result | % REC   | % REC<br>Limits | RPD | RPD<br>Limit | Note |
| Batch 23E0865 - EPA 5030C        |            |                      |                    |             |            |                 | Wa               | ter     |                 |     |              |      |
| Blank (23E0865-BLK1)             |            |                      | Prepared           | d: 05/19/23 | 10:02 Anal | lyzed: 05/19    | /23 12:58        |         |                 |     |              |      |
| NWTPH-Gx (MS)                    |            |                      |                    |             |            |                 |                  |         |                 |     |              |      |
| Gasoline Range Organics          | ND         | 50.0                 | 100                | ug/L        | 1          |                 |                  |         |                 |     |              |      |
| Surr: 4-Bromofluorobenzene (Sur) |            | Reco                 | very: 94 %         | Limits: 5   | 0-150 %    | Dilı            | ution: 1x        |         |                 |     |              |      |
| 1,4-Difluorobenzene (Sur)        |            |                      | 101 %              | 5           | 0-150 %    |                 | "                |         |                 |     |              |      |
| LCS (23E0865-BS2)                |            |                      | Prepared           | d: 05/19/23 | 10:02 Ana  | lyzed: 05/19    | /23 11:51        |         |                 |     |              |      |
| NWTPH-Gx (MS)                    |            |                      |                    |             |            |                 |                  |         |                 |     |              |      |
| Gasoline Range Organics          | 533        | 50.0                 | 100                | ug/L        | 1          | 500             |                  | 107     | 80-120%         |     |              |      |
| Surr: 4-Bromofluorobenzene (Sur) |            | Reco                 | very: 98 %         | Limits: 5   | 0-150 %    | Dilı            | ution: 1x        |         |                 |     |              |      |
| 1,4-Difluorobenzene (Sur)        |            |                      | 98 %               | 5           | 0-150 %    |                 | "                |         |                 |     |              |      |
| Duplicate (23E0865-DUP1)         |            |                      | Prepared           | d: 05/19/23 | 10:02 Anal | lyzed: 05/19    | /23 13:43        |         |                 |     |              |      |
| QC Source Sample: FMW-155-05     | 1623 (A3E1 | 514-01)              |                    |             |            |                 |                  |         |                 |     |              |      |
| NWTPH-Gx (MS)                    |            |                      |                    |             |            |                 |                  |         |                 |     |              |      |
| Gasoline Range Organics          | ND         | 500                  | 1000               | ug/L        | 10         |                 | ND               |         |                 |     | 30%          |      |
| Surr: 4-Bromofluorobenzene (Sur) |            | Reco                 | very: 95 %         | Limits: 5   | 0-150 %    | Dilı            | ution: 1x        |         |                 |     |              | _    |
| 1,4-Difluorobenzene (Sur)        |            |                      | 102 %              | 5           | 0-150 %    |                 | "                |         |                 |     |              |      |

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1514 - 12 22 23 1814

## QUALITY CONTROL (QC) SAMPLE RESULTS

|                                  |            |                      | BTEX               | Compou      | ınds by E  | PA 8260D        |                  |       |                 |     |              |       |
|----------------------------------|------------|----------------------|--------------------|-------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                          | Result     | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 23E0865 - EPA 5030C        |            |                      |                    |             |            |                 | Wa               | ter   |                 |     |              |       |
| Blank (23E0865-BLK1)             |            |                      | Prepared           | d: 05/19/23 | 10:02 Ana  | lyzed: 05/19    | /23 12:58        |       |                 |     |              |       |
| EPA 8260D                        |            |                      |                    |             |            |                 |                  |       |                 |     |              |       |
| Benzene                          | ND         | 0.100                | 0.200              | ug/L        | 1          |                 |                  |       |                 |     |              |       |
| Toluene                          | ND         | 0.500                | 1.00               | ug/L        | 1          |                 |                  |       |                 |     |              |       |
| Ethylbenzene                     | ND         | 0.250                | 0.500              | ug/L        | 1          |                 |                  |       |                 |     |              |       |
| Xylenes, total                   | ND         | 0.750                | 1.50               | ug/L        | 1          |                 |                  |       |                 |     |              |       |
| Surr: 1,4-Difluorobenzene (Surr) |            | Reco                 | very: 96 %         | Limits: 80  | 0-120 %    | Dilt            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |            |                      | 102 %              | 80          | 0-120 %    |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |            |                      | 104 %              | 80          | 0-120 %    |                 | "                |       |                 |     |              |       |
| LCS (23E0865-BS1)                |            |                      | Prepared           | d: 05/19/23 | 10:02 Anal | lyzed: 05/19    | /23 12:14        |       |                 |     |              |       |
| EPA 8260D                        |            |                      | -                  |             |            | -               |                  |       |                 |     |              |       |
| Benzene                          | 18.4       | 0.100                | 0.200              | ug/L        | 1          | 20.0            |                  | 92    | 80-120%         |     |              |       |
| Toluene                          | 19.9       | 0.500                | 1.00               | ug/L        | 1          | 20.0            |                  | 100   | 80-120%         |     |              |       |
| Ethylbenzene                     | 20.4       | 0.250                | 0.500              | ug/L        | 1          | 20.0            |                  | 102   | 80-120%         |     |              |       |
| Xylenes, total                   | 66.8       | 0.750                | 1.50               | ug/L        | 1          | 60.0            |                  | 111   | 80-120%         |     |              |       |
| Surr: 1,4-Difluorobenzene (Surr) |            | Reco                 | very: 95 %         | Limits: 80  | 0-120 %    | Dilı            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |            |                      | 98 %               | 80          | 0-120 %    |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |            |                      | 96 %               | 80          | 0-120 %    |                 | "                |       |                 |     |              |       |
| Duplicate (23E0865-DUP1)         |            |                      | Prepared           | d: 05/19/23 | 10:02 Ana  | yzed: 05/19     | /23 13:43        |       |                 |     |              |       |
| QC Source Sample: FMW-155-05     | 1623 (A3E1 | 514-01)              |                    |             |            |                 |                  |       |                 |     |              |       |
| EPA 8260D                        | •          | <u> </u>             |                    |             |            |                 |                  |       |                 |     |              |       |
| Benzene                          | ND         | 1.00                 | 2.00               | ug/L        | 10         |                 | ND               |       |                 |     | 30%          |       |
| Toluene                          | ND         | 5.00                 | 10.0               | ug/L        | 10         |                 | ND               |       |                 |     | 30%          |       |
| Ethylbenzene                     | ND         | 2.50                 | 5.00               | ug/L        | 10         |                 | ND               |       |                 |     | 30%          |       |
| Xylenes, total                   | ND         | 7.50                 | 15.0               | ug/L        | 10         |                 | ND               |       |                 |     | 30%          |       |
| Surr: 1,4-Difluorobenzene (Surr) |            |                      | very: 94%          | Limits: 80  | 0-120 %    | Dilı            | ution: 1x        |       |                 |     |              |       |
| ,                                |            | 2.500                | 2                  |             |            | _ ***           |                  |       |                 |     |              |       |
| Toluene-d8 (Surr)                |            |                      | 101 %              | 80          | 0-120 %    |                 | "                |       |                 |     |              |       |

Matrix Spike (23E0865-MS1)

Prepared: 05/19/23 10:02 Analyzed: 05/19/23 18:58

QC Source Sample: FMW-156-051623 (A3E1514-02RE1)

EPA 8260D

Apex Laboratories



Farallon-Seattle

## ANALYTICAL REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1514 - 12 22 23 1814

Project:

AMENDED REPORT

## QUALITY CONTROL (QC) SAMPLE RESULTS

#### BTEX Compounds by EPA 8260D % REC RPD Detection L Reporting Spike Source Result Units Dilution % REC Limits RPD Analyte Limit Limit Amount Result Limit Notes Batch 23E0865 - EPA 5030C Water Matrix Spike (23E0865-MS1) Prepared: 05/19/23 10:02 Analyzed: 05/19/23 18:58 QC Source Sample: FMW-156-051623 (A3E1514-02RE1) 20.0 98 Benzene 19.6 0.100 0.200 ug/L 1 ND 79-120% 0.500 Toluene 21.3 1.00 20.0 80-121% ug/L 1 ND 107 Ethylbenzene 22.2 0.250 0.500 20.0 79-121% ug/L 1 ND 111 Xylenes, total 72.1 0.750 1.50 ug/L 1 60.0 ND 120 79-121% Surr: 1,4-Difluorobenzene (Surr) 95 % Limits: 80-120 % Recovery: Dilution: 1x Toluene-d8 (Surr) 97% 80-120 % 92 % 80-120 % 4-Bromofluorobenzene (Surr)

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1514 - 12 22 23 1814

## **QUALITY CONTROL (QC) SAMPLE RESULTS**

|                                  |           | •                    | Volatile Or        | ganic Co    | mpounds    | by EPA 8        | 260D             |       |                 |     |              |       |
|----------------------------------|-----------|----------------------|--------------------|-------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                          | Result    | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 23E0865 - EPA 5030C        |           |                      |                    |             |            |                 | Wa               | ter   |                 |     |              |       |
| Blank (23E0865-BLK1)             |           |                      | Prepared           | 1: 05/19/23 | 10:02 Anal | yzed: 05/19/    | /23 12:58        |       |                 |     |              |       |
| EPA 8260D                        |           |                      |                    |             |            |                 |                  |       |                 |     |              |       |
| cis-1,2-Dichloroethene           | ND        | 0.200                | 0.400              | ug/L        | 1          |                 |                  |       |                 |     |              |       |
| trans-1,2-Dichloroethene         | ND        | 0.200                | 0.400              | ug/L        | 1          |                 |                  |       |                 |     |              |       |
| Tetrachloroethene (PCE)          | ND        | 0.200                | 0.400              | ug/L        | 1          |                 |                  |       |                 |     |              |       |
| Trichloroethene (TCE)            | ND        | 0.200                | 0.400              | ug/L        | 1          |                 |                  |       |                 |     |              |       |
| Vinyl chloride                   | ND        | 0.200                | 0.400              | ug/L        | 1          |                 |                  |       |                 |     |              |       |
| Surr: 1,4-Difluorobenzene (Surr) |           | Reco                 | very: 96 %         | Limits: 80  | 0-120 %    | Dilı            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           |                      | 102 %              | 80          | -120 %     |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 104 %              | 80          | )-120 %    |                 | "                |       |                 |     |              |       |
| LCS (23E0865-BS1)                |           |                      | Prepared           | 1: 05/19/23 | 10:02 Anal | yzed: 05/19/    | /23 12:14        |       |                 |     |              |       |
| EPA 8260D                        |           |                      |                    |             |            |                 |                  |       |                 |     |              |       |
| cis-1,2-Dichloroethene           | 19.6      | 0.200                | 0.400              | ug/L        | 1          | 20.0            |                  | 98    | 80-120%         |     |              |       |
| trans-1,2-Dichloroethene         | 18.3      | 0.200                | 0.400              | ug/L        | 1          | 20.0            |                  | 92    | 80-120%         |     |              |       |
| Tetrachloroethene (PCE)          | 19.4      | 0.200                | 0.400              | ug/L        | 1          | 20.0            |                  | 97    | 80-120%         |     |              |       |
| Trichloroethene (TCE)            | 18.6      | 0.200                | 0.400              | ug/L        | 1          | 20.0            |                  | 93    | 80-120%         |     |              |       |
| Vinyl chloride                   | 16.9      | 0.200                | 0.400              | ug/L        | 1          | 20.0            |                  | 84    | 80-120%         |     |              |       |
| Surr: 1,4-Difluorobenzene (Surr) |           | Reco                 | very: 95 %         | Limits: 80  | 0-120 %    | Dilı            | ution: 1x        |       |                 |     |              | _     |
| Toluene-d8 (Surr)                |           |                      | 98 %               | 80          | 0-120 %    |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 96 %               | 80          | )-120 %    |                 | "                |       |                 |     |              |       |
| Duplicate (23E0865-DUP1)         |           |                      | Prepared           | 1: 05/19/23 | 10:02 Anal | yzed: 05/19/    | /23 13:43        |       |                 |     |              |       |
| QC Source Sample: FMW-155-051    | 623 (A3E1 | 514-01)              |                    |             |            |                 |                  |       |                 |     |              |       |
| EPA 8260D                        |           |                      |                    |             |            |                 |                  |       |                 |     |              |       |
| cis-1,2-Dichloroethene           | ND        | 2.00                 | 4.00               | ug/L        | 10         |                 | ND               |       |                 |     | 30%          |       |
| trans-1,2-Dichloroethene         | ND        | 2.00                 | 4.00               | ug/L        | 10         |                 | ND               |       |                 |     | 30%          |       |
| Tetrachloroethene (PCE)          | ND        | 2.00                 | 4.00               | ug/L        | 10         |                 | ND               |       |                 |     | 30%          |       |
| Trichloroethene (TCE)            | ND        | 2.00                 | 4.00               | ug/L        | 10         |                 | ND               |       |                 |     | 30%          |       |
| Vinyl chloride                   | ND        | 2.00                 | 4.00               | ug/L        | 10         |                 | ND               |       |                 |     | 30%          |       |
| Surr: 1,4-Difluorobenzene (Surr) |           | Reco                 | very: 94 %         | Limits: 80  | 0-120 %    | Dilı            | tion: 1x         |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           |                      | 101 %              | 80          | -120 %     |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 103 %              | 80          | -120 %     |                 | "                |       |                 |     |              |       |

Apex Laboratories

custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Page 18 of 37

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ 



Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AMENDED REPORT

Project:

Farallon-Seattle
1809 7th Ave Suite 1111

1809 7th Ave Suite 1111Project Number: 397-019Seattle, WA 98101Project Manager: Suzy Stumpf

Report ID: A3E1514 - 12 22 23 1814

## **QUALITY CONTROL (QC) SAMPLE RESULTS**

397-019 Block 38 West

#### Volatile Organic Compounds by EPA 8260D % REC RPD Detection L Reporting Spike Source Limits RPD Result Units Dilution % REC Analyte Limit Limit Amount Result Limit Notes Batch 23E0865 - EPA 5030C Water Matrix Spike (23E0865-MS1) Prepared: 05/19/23 10:02 Analyzed: 05/19/23 18:58 QC Source Sample: FMW-156-051623 (A3E1514-02RE1) EPA 8260D 0.200 cis-1,2-Dichloroethene 0.400 21.0 ug/L 1 20.0 ND 105 78-123% ug/L trans-1,2-Dichloroethene 20.0 0.200 0.400 1 20.0 ND 100 75-124% Tetrachloroethene (PCE) 22.0 0.200 0.400 20.0 74-129% ug/L 1 ND 110 Trichloroethene (TCE) 19.3 0.200 0.400 ug/L 20.0 ND 97 79-123% Vinyl chloride 20.0 0.200 0.400 20.0 ND 100 58-137% ug/L Surr: 1,4-Difluorobenzene (Surr) 95 % Limits: 80-120 % Recovery: Dilution: 1x Toluene-d8 (Surr) 97% 80-120 % 4-Bromofluorobenzene (Surr) 92 % 80-120 %

Apex Laboratories

( milule fog



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1514 - 12 22 23 1814

## **QUALITY CONTROL (QC) SAMPLE RESULTS**

| Polyaromatic Hydrocarbons (PAHs) by EPA 8270E (SIM) |            |                      |                    |             |            |                 |                  |       |                 |     |              |       |
|-----------------------------------------------------|------------|----------------------|--------------------|-------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                                             | Result     | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 23E0844 - EPA 3510C (                         | Acid Extra | ction)               |                    |             |            |                 | Wa               | ter   |                 |     |              |       |
| Blank (23E0844-BLK2)                                |            |                      | Prepared           | 1: 05/19/23 | 07:20 Ana  | lyzed: 05/19    | /23 19:45        |       |                 |     |              |       |
| EPA 8270E SIM                                       |            |                      |                    |             |            |                 |                  |       |                 |     |              |       |
| 1-Methylnaphthalene                                 | ND         | 0.0400               | 0.0800             | ug/L        | 1          |                 |                  |       |                 |     |              |       |
| 2-Methylnaphthalene                                 | ND         | 0.0400               | 0.0800             | ug/L        | 1          |                 |                  |       |                 |     |              |       |
| Naphthalene                                         | ND         | 0.0400               | 0.0800             | ug/L        | 1          |                 |                  |       |                 |     |              |       |
| Surr: 2-Fluorobiphenyl (Surr)                       |            | Reco                 | very: 66 %         | Limits: 4   | 4-120 %    | Dilt            | ution: 1x        |       |                 |     |              |       |
| p-Terphenyl-d14 (Surr)                              |            |                      | 110 %              | 50          | )-134 %    |                 | "                |       |                 |     |              |       |
| LCS (23E0844-BS2)                                   |            |                      | Prepared           | d: 05/19/23 | 07:20 Ana  | lyzed: 05/19    | 0/23 20:11       |       |                 |     |              |       |
| EPA 8270E SIM                                       |            |                      |                    |             |            |                 |                  |       |                 |     |              |       |
| 1-Methylnaphthalene                                 | 6.11       | 0.0400               | 0.0800             | ug/L        | 1          | 8.00            |                  | 76    | 41-120%         |     |              |       |
| 2-Methylnaphthalene                                 | 6.63       | 0.0400               | 0.0800             | ug/L        | 1          | 8.00            |                  | 83    | 40-121%         |     |              |       |
| Naphthalene                                         | 5.68       | 0.0400               | 0.0800             | ug/L        | 1          | 8.00            |                  | 71    | 40-121%         |     |              |       |
| Surr: 2-Fluorobiphenyl (Surr)                       |            | Reco                 | very: 77 %         | Limits: 4   | 4-120 %    | Dila            | ution: 1x        |       |                 |     |              |       |
| p-Terphenyl-d14 (Surr)                              |            |                      | 98 %               | 50          | )-134 %    |                 | "                |       |                 |     |              |       |
| LCS Dup (23E0844-BSD2)                              |            |                      | Prepared           | 1: 05/19/23 | 07:20 Anal | lyzed: 05/19    | /23 20:36        |       |                 |     |              | Q-    |
| EPA 8270E SIM                                       |            |                      |                    |             |            |                 |                  |       |                 |     |              |       |
| 1-Methylnaphthalene                                 | 6.46       | 0.0400               | 0.0800             | ug/L        | 1          | 8.00            |                  | 81    | 41-120%         | 5   | 30%          |       |
| 2-Methylnaphthalene                                 | 5.87       | 0.0400               | 0.0800             | ug/L        | 1          | 8.00            |                  | 73    | 40-121%         | 12  | 30%          |       |
| Naphthalene                                         | 6.03       | 0.0400               | 0.0800             | ug/L        | 1          | 8.00            |                  | 75    | 40-121%         | 6   | 30%          |       |
| Surr: 2-Fluorobiphenyl (Surr)                       |            | Reco                 | very: 77 %         | Limits: 4   | 4-120 %    | Dili            | ution: 1x        |       |                 |     |              |       |
| p-Terphenyl-d14 (Surr)                              |            |                      | 97 %               | 5/          | 0-134 %    |                 | "                |       |                 |     |              |       |

Apex Laboratories

(milule fog



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1514 - 12 22 23 1814

## QUALITY CONTROL (QC) SAMPLE RESULTS

|                               |             | ,                    | omatic Hyd         |            | - (        | , .,            | ,-               |       |                 |     |              |       |
|-------------------------------|-------------|----------------------|--------------------|------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                       | Result      | Detection L<br>Limit | Reporting<br>Limit | Units      | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 23E0981 - EPA 3510C     | (Acid Extra | ction)               |                    |            |            |                 | Wa               | ter   |                 |     |              |       |
| Blank (23E0981-BLK1)          |             |                      | Prepared           | : 05/23/23 | 11:27 Anal | yzed: 05/23/    | /23 23:13        |       |                 |     |              |       |
| EPA 8270E SIM                 |             |                      |                    |            |            |                 |                  |       |                 |     |              |       |
| Acenaphthene                  | ND          | 0.0200               | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Acenaphthylene                | ND          | 0.0200               | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Anthracene                    | ND          | 0.0200               | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Benz(a)anthracene             | ND          | 0.0200               | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Benzo(a)pyrene                | ND          | 0.0200               | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Benzo(b)fluoranthene          | ND          | 0.0200               | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Benzo(k)fluoranthene          | ND          | 0.0200               | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Benzo(g,h,i)perylene          | ND          | 0.0200               | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Chrysene                      | ND          | 0.0200               | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Dibenz(a,h)anthracene         | ND          | 0.0200               | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Fluoranthene                  | ND          | 0.0200               | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Fluorene                      | ND          | 0.0200               | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Indeno(1,2,3-cd)pyrene        | ND          | 0.0200               | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| 1-Methylnaphthalene           | ND          | 0.0400               | 0.0800             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| 2-Methylnaphthalene           | ND          | 0.0400               | 0.0800             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Naphthalene                   | ND          | 0.0400               | 0.0800             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Phenanthrene                  | ND          | 0.0200               | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Pyrene                        | ND          | 0.0200               | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Dibenzofuran                  | ND          | 0.0200               | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Surr: 2-Fluorobiphenyl (Surr) | - 1,2       |                      | very: 75 %         | Limits: 44 |            |                 | ution: 1x        |       |                 |     |              |       |
| p-Terphenyl-d14 (Surr)        |             | Reco                 | 89 %               |            | )-134 %    | Diii            | uuon. 1x         |       |                 |     |              |       |
| p-16/pnenyi-014 (Suri)        |             |                      | 37 / 0             | 50         | 137 /0     |                 |                  |       |                 |     |              |       |
| LCS (23E0981-BS1)             |             |                      | Prepared           | : 05/23/23 | 11:27 Anal | yzed: 05/23/    | /23 23:38        |       |                 |     |              |       |
| EPA 8270E SIM                 |             |                      |                    |            |            |                 |                  |       |                 |     |              |       |
| Acenaphthene                  | 5.06        | 0.0200               | 0.0400             | ug/L       | 1          | 8.00            |                  | 63    | 47-122%         |     |              |       |
| Acenaphthylene                | 5.06        | 0.0200               | 0.0400             | ug/L       | 1          | 8.00            |                  | 63    | 41-130%         |     |              |       |
| Anthracene                    | 6.89        | 0.0200               | 0.0400             | ug/L       | 1          | 8.00            |                  | 86    | 57-123%         |     |              |       |
| Benz(a)anthracene             | 7.02        | 0.0200               | 0.0400             | ug/L       | 1          | 8.00            |                  | 88    | 58-125%         |     |              |       |
| Benzo(a)pyrene                | 7.32        | 0.0200               | 0.0400             | ug/L       | 1          | 8.00            |                  | 92    | 54-128%         |     |              |       |
| Benzo(b)fluoranthene          | 7.40        | 0.0200               | 0.0400             | ug/L       | 1          | 8.00            |                  | 93    | 53-131%         |     |              |       |
| Benzo(k)fluoranthene          | 7.63        | 0.0200               | 0.0400             | ug/L       | 1          | 8.00            |                  | 95    | 57-129%         |     |              |       |
| Benzo(g,h,i)perylene          | 6.83        | 0.0200               | 0.0400             | ug/L       | 1          | 8.00            |                  | 85    | 50-134%         |     |              |       |
| Chrysene                      | 7.29        | 0.0200               | 0.0400             | ug/L       | 1          | 8.00            |                  | 91    | 59-123%         |     |              |       |

Apex Laboratories

/ milale fog



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1514 - 12 22 23 1814

## QUALITY CONTROL (QC) SAMPLE RESULTS

| Analyte         Result         Detection L Limit         Reporting Limit           Batch 23E0981 - EPA 3510C (Acid Extraction)         Prepare           LCS (23E0981-BS1)         Prepare           Dibenz(a,h)anthracene         7.38         0.0200         0.0400           Fluoranthene         7.51         0.0200         0.0400           Fluorene         5.85         0.0200         0.0400 | Units ed: 05/23/23 ug/L | Dilution  11:27 Anal | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| LCS (23E0981-BS1)         Prepare           Dibenz(a,h)anthracene         7.38         0.0200         0.0400           Fluoranthene         7.51         0.0200         0.0400                                                                                                                                                                                                                        | ug/L                    |                      | yzed: 05/23/    |                  | ter   |                 |     |              |       |
| Dibenz(a,h)anthracene         7.38         0.0200         0.0400           Fluoranthene         7.51         0.0200         0.0400                                                                                                                                                                                                                                                                    | ug/L                    |                      | yzed: 05/23/    | 22.20            |       |                 |     |              |       |
| Fluoranthene 7.51 0.0200 0.0400                                                                                                                                                                                                                                                                                                                                                                       |                         | 1                    |                 | 23 23:38         |       |                 |     |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                       | ug/L                    |                      | 8.00            |                  | 92    | 51-134%         |     |              |       |
| Fluorene 5.85 0.0200 0.0400                                                                                                                                                                                                                                                                                                                                                                           |                         | 1                    | 8.00            |                  | 94    | 57-128%         |     |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                       | ug/L                    | 1                    | 8.00            |                  | 73    | 52-124%         |     |              |       |
| Indeno(1,2,3-cd)pyrene 7.52 0.0200 0.0400                                                                                                                                                                                                                                                                                                                                                             | ug/L                    | 1                    | 8.00            |                  | 94    | 52-134%         |     |              |       |
| 1-Methylnaphthalene 3.68 0.0400 0.0800                                                                                                                                                                                                                                                                                                                                                                | ug/L                    | 1                    | 8.00            |                  | 46    | 41-120%         |     |              |       |
| 2-Methylnaphthalene 3.55 0.0400 0.0800                                                                                                                                                                                                                                                                                                                                                                | ug/L                    | 1                    | 8.00            |                  | 44    | 40-121%         |     |              |       |
| Naphthalene 3.70 0.0400 0.0800                                                                                                                                                                                                                                                                                                                                                                        | ug/L                    | 1                    | 8.00            |                  | 46    | 40-121%         |     |              |       |
| Phenanthrene 6.80 0.0200 0.0400                                                                                                                                                                                                                                                                                                                                                                       | ug/L                    | 1                    | 8.00            |                  | 85    | 59-120%         |     |              |       |
| Pyrene 7.58 0.0200 0.0400                                                                                                                                                                                                                                                                                                                                                                             | ug/L                    | 1                    | 8.00            |                  | 95    | 57-126%         |     |              |       |
| Dibenzofuran 5.37 0.0200 0.0400                                                                                                                                                                                                                                                                                                                                                                       | ug/L                    | 1                    | 8.00            |                  | 67    | 53-120%         |     |              |       |
| Surr: 2-Fluorobiphenyl (Surr) Recovery: 75 %                                                                                                                                                                                                                                                                                                                                                          | Limits: 44              | 1-120 %              | Dilu            | tion: 1x         |       |                 |     |              |       |
| p-Terphenyl-d14 (Surr) 86 %                                                                                                                                                                                                                                                                                                                                                                           | 50                      | 0-134 %              |                 | "                |       |                 |     |              |       |
| CS Dup (23E0981-BSD1) Prepare  EPA 8270E SIM                                                                                                                                                                                                                                                                                                                                                          | ed: 05/23/23            | 11:27 Anal           | yzed: 05/24/    | 23 00:03         |       |                 |     |              | Q-    |
| Acenaphthene 5.48 0.0200 0.0400                                                                                                                                                                                                                                                                                                                                                                       | ug/L                    | 1                    | 8.00            |                  | 68    | 47-122%         | 8   | 30%          |       |
| Acenaphthylene 5.32 0.0200 0.0400                                                                                                                                                                                                                                                                                                                                                                     |                         | 1                    | 8.00            |                  | 66    | 41-130%         | 5   | 30%          |       |
| Anthracene 7.00 0.0200 0.0400                                                                                                                                                                                                                                                                                                                                                                         | _                       | 1                    | 8.00            |                  | 88    | 57-123%         | 2   | 30%          |       |
| Benz(a)anthracene 7.30 0.0200 0.0400                                                                                                                                                                                                                                                                                                                                                                  | _                       | 1                    | 8.00            |                  | 91    | 58-125%         | 4   | 30%          |       |
| Benzo(a)pyrene 7.63 0.0200 0.0400                                                                                                                                                                                                                                                                                                                                                                     | _                       | 1                    | 8.00            |                  | 95    | 54-128%         | 4   | 30%          |       |
| Benzo(b)fluoranthene 7.55 0.0200 0.0400                                                                                                                                                                                                                                                                                                                                                               | ug/L                    | 1                    | 8.00            |                  | 94    | 53-131%         | 2   | 30%          |       |
| Benzo(k)fluoranthene 8.04 0.0200 0.0400                                                                                                                                                                                                                                                                                                                                                               | _                       | 1                    | 8.00            |                  | 100   | 57-129%         | 5   | 30%          |       |
| Benzo(g,h,i)perylene 7.15 0.0200 0.0400                                                                                                                                                                                                                                                                                                                                                               | _                       | 1                    | 8.00            |                  | 89    | 50-134%         | 5   | 30%          |       |
| Chrysene 7.61 0.0200 0.0400                                                                                                                                                                                                                                                                                                                                                                           | _                       | 1                    | 8.00            |                  | 95    | 59-123%         | 4   | 30%          |       |
| Dibenz(a,h)anthracene 7.60 0.0200 0.0400                                                                                                                                                                                                                                                                                                                                                              | _                       | 1                    | 8.00            |                  | 95    | 51-134%         | 3   | 30%          |       |
| Fluoranthene 7.90 0.0200 0.0400                                                                                                                                                                                                                                                                                                                                                                       | _                       | 1                    | 8.00            |                  | 99    | 57-128%         | 5   | 30%          |       |
| Fluorene 6.21 0.0200 0.0400                                                                                                                                                                                                                                                                                                                                                                           | ug/L                    | 1                    | 8.00            |                  | 78    | 52-124%         | 6   | 30%          |       |
| Indeno(1,2,3-cd)pyrene 7.92 0.0200 0.0400                                                                                                                                                                                                                                                                                                                                                             | ug/L                    | 1                    | 8.00            |                  | 99    | 52-134%         | 5   | 30%          |       |
| 1-Methylnaphthalene 4.01 0.0400 0.0800                                                                                                                                                                                                                                                                                                                                                                | ug/L                    | 1                    | 8.00            |                  | 50    | 41-120%         | 9   | 30%          |       |

Apex Laboratories

2-Methylnaphthalene

Naphthalene

Phenanthrene

Dibenzofuran

Pyrene

(milale fog

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

48

49

87

99

72

40-121%

40-121%

59-120%

57-126%

53-120%

8

6

3

4

30%

30%

30%

30%

30%

3.85

3.94

6.99

7.90

5.75

0.0400

0.0400

0.0200

0.0200

0.0200

0.0800

0.0800

0.0400

0.0400

0.0400

ug/L

ug/L

ug/L

ug/L

ug/L

1

1

1

1

1

8.00

8.00

8.00

8.00

8.00



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1514 - 12 22 23 1814

## QUALITY CONTROL (QC) SAMPLE RESULTS

## Polyaromatic Hydrocarbons (PAHs) by EPA 8270E (SIM)

| Analyte                       | Result     | Detection L<br>Limit | Reporting<br>Limit | Units      | Dilution | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
|-------------------------------|------------|----------------------|--------------------|------------|----------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Batch 23E0981 - EPA 3510C (A  | Acid Extra | ction)               |                    |            |          |                 | Wat              | er    |                 |     |              |       |
| LCS Dup (23E0981-BSD1)        |            |                      | Prepared           | : 05/23/23 | 11:27 An | alyzed: 05/24/  | 23 00:03         |       |                 |     |              | Q-19  |
| Surr: 2-Fluorobiphenyl (Surr) |            | Reco                 | very: 77 %         | Limits: 4  | 14-120 % | Dilu            | tion: 1x         |       |                 |     |              |       |
| p-Terphenyl-d14 (Surr)        |            |                      | 88 %               | 5          | 0-134 %  |                 | "                |       |                 |     |              |       |

Apex Laboratories



Farallon-Seattle

#### ANALYTICAL REPORT

Apex Laboratories, LLC 6700 S.W. Sandburg Street

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1514 - 12 22 23 1814

Project:

AMENDED REPORT

## QUALITY CONTROL (QC) SAMPLE RESULTS

#### Total Metals by EPA 6020B (ICPMS) % REC RPD Detection L Reporting Spike Source Result Units Dilution % REC Limits RPD Analyte Limit Limit Amount Result Limit Notes Water Batch 23E0934 - EPA 3015A Blank (23E0934-BLK1) Prepared: 05/22/23 14:28 Analyzed: 05/23/23 19:19 EPA 6020B Barium ND 1.00 2.00 ug/L ND 0.0400 0.0800 ug/L Mercury ---LCS (23E0934-BS1) Prepared: 05/22/23 14:28 Analyzed: 05/23/23 19:24 EPA 6020B 57.7 1.00 104 Barium 2.00 ug/L 1 55.6 80-120% 1.03 0.0400 0.0800 93 Mercury ug/L 1.11 80-120% Duplicate (23E0934-DUP1) Prepared: 05/22/23 14:28 Analyzed: 05/23/23 19:44 OC Source Sample: FMW-155-051623 (A3E1514-01) EPA 6020B Barium 89.7 1.00 2.00 87.7 2 20% ug/L 1 0.0400 0.0800 Mercury ND 20% ug/L 1 ND Matrix Spike (23E0934-MS1) Prepared: 05/22/23 14:28 Analyzed: 05/23/23 19:49 QC Source Sample: FMW-155-051623 (A3E1514-01) EPA 6020B 1.00 Barium 151 2.00 ug/L 1 55.6 87.7 114 75-125% ug/L Mercury 1.06 0.0400 0.0800 1 1.11 ND 95 75-125%

Apex Laboratories

(milale fog



6700 S.W. Sandburg Street

6/00 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

Apex Laboratories, LLC

ORELAP ID: OR100062

AMENDED REPORT

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1514 - 12 22 23 1814

## QUALITY CONTROL (QC) SAMPLE RESULTS

#### Dissolved Metals by EPA 6020B (ICPMS) Reporting % REC RPD Detection L Spike Source Units Dilution % REC Limits RPD Analyte Result Limit Limit Amount Result Limit Notes Batch 23E1016 - Matrix Matched Direct Inject Water Blank (23E1016-BLK1) Prepared: 05/24/23 10:29 Analyzed: 05/25/23 11:55 EPA 6020B (Diss) Barium ND 0.500 1.00 ug/L ND 0.0400 0.0800 Mercury ug/L ---LCS (23E1016-BS1) Prepared: 05/24/23 10:29 Analyzed: 05/25/23 12:00 EPA 6020B (Diss) 57.9 0.500 104 Barium 1.00 ug/L 1 55.6 80-120% 1.05 0.0400 0.0800 94 Mercury ug/L 1.11 80-120% Duplicate (23E1016-DUP1) Prepared: 05/24/23 10:29 Analyzed: 05/25/23 12:20 OC Source Sample: Non-SDG (A3E1405-02) Barium 82.2 0.500 1.00 ug/L 1 82.0 0.2 20% ND 0.0400 0.0800 ug/L 20% Mercury ND ---Matrix Spike (23E1016-MS1) Prepared: 05/24/23 10:29 Analyzed: 05/25/23 12:24 QC Source Sample: Non-SDG (A3E1405-02) EPA 6020B (Diss) Barium 0.500 1.00 55.6 99 137 ug/L 1 82.0 75-125% Mercury 1.04 0.0400 0.0800 ug/L 1 1.11 ND 93 75-125%

Apex Laboratories

(milale fog



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1514 - 12 22 23 1814

## SAMPLE PREPARATION INFORMATION

|                     |                 | Diesel and  | d/or Oil Hydrocarbor | is by NWTPH-Dx |               |               |         |
|---------------------|-----------------|-------------|----------------------|----------------|---------------|---------------|---------|
| Prep: EPA 3510C (Fu | iels/Acid Ext.) |             |                      |                | Sample        | Default       | RL Prep |
| Lab Number          | Matrix          | Method      | Sampled              | Prepared       | Initial/Final | Initial/Final | Factor  |
| Batch: 23E0901      |                 |             |                      |                |               |               |         |
| A3E1514-01          | Water           | NWTPH-Dx LL | 05/16/23 07:45       | 05/22/23 11:28 | 1060 mL/2 mL  | 1000 mL/2 mL  | 0.94    |
| A3E1514-02          | Water           | NWTPH-Dx LL | 05/16/23 08:10       | 05/22/23 11:28 | 1040 mL/2 mL  | 1000 mL/2 mL  | 0.96    |
| A3E1514-03          | Water           | NWTPH-Dx LL | 05/16/23 09:20       | 05/22/23 11:28 | 1060 mL/2 mL  | 1000 mL/2 mL  | 0.94    |
| A3E1514-04          | Water           | NWTPH-Dx LL | 05/16/23 09:45       | 05/22/23 11:28 | 1040 mL/2 mL  | 1000 mL/2 mL  | 0.96    |
| A3E1514-05          | Water           | NWTPH-Dx LL | 05/16/23 10:47       | 05/22/23 11:28 | 1060mL/2mL    | 1000 mL/2 mL  | 0.94    |
| A3E1514-06          | Water           | NWTPH-Dx LL | 05/16/23 11:15       | 05/22/23 11:28 | 1040 mL/2 mL  | 1000 mL/2 mL  | 0.96    |
| A3E1514-07          | Water           | NWTPH-Dx LL | 05/16/23 12:45       | 05/22/23 11:28 | 1060 mL/2 mL  | 1000 mL/2 mL  | 0.94    |
| A3E1514-08          | Water           | NWTPH-Dx LL | 05/16/23 15:15       | 05/22/23 11:28 | 1040mL/2mL    | 1000mL/2mL    | 0.96    |
| A3E1514-10          | Water           | NWTPH-Dx LL | 05/16/23 16:50       | 05/22/23 11:28 | 1040 mL/2 mL  | 1000 mL/2 mL  | 0.96    |
| Batch: 23E0956      |                 |             |                      |                |               |               |         |
| A3E1514-12          | Water           | NWTPH-Dx LL | 05/16/23 17:51       | 05/23/23 07:08 | 1070 mL/2 mL  | 1000mL/2mL    | 0.94    |
| A3E1514-13          | Water           | NWTPH-Dx LL | 05/16/23 19:20       | 05/23/23 07:08 | 1070mL/2mL    | 1000mL/2mL    | 0.94    |
| A3E1514-14          | Water           | NWTPH-Dx LL | 05/16/23 19:50       | 05/23/23 07:08 | 1070mL/2mL    | 1000mL/2mL    | 0.94    |
| A3E1514-15          | Water           | NWTPH-Dx LL | 05/16/23 20:48       | 05/23/23 07:08 | 1070mL/2mL    | 1000mL/2mL    | 0.94    |
| A3E1514-16          | Water           | NWTPH-Dx LL | 05/17/23 12:32       | 05/23/23 07:08 | 1070mL/2mL    | 1000mL/2mL    | 0.94    |
|                     |                 |             |                      |                |               |               |         |

|                 | Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx |               |                |                |               |               |         |  |  |  |  |  |  |
|-----------------|-----------------------------------------------------------------------|---------------|----------------|----------------|---------------|---------------|---------|--|--|--|--|--|--|
| Prep: EPA 5030C |                                                                       |               |                |                | Sample        | Default       | RL Prep |  |  |  |  |  |  |
| Lab Number      | Matrix                                                                | Method        | Sampled        | Prepared       | Initial/Final | Initial/Final | Factor  |  |  |  |  |  |  |
| Batch: 23E0865  |                                                                       |               |                |                |               |               |         |  |  |  |  |  |  |
| A3E1514-01RE1   | Water                                                                 | NWTPH-Gx (MS) | 05/16/23 07:45 | 05/19/23 11:39 | 5mL/5mL       | 5mL/5mL       | 1.00    |  |  |  |  |  |  |
| A3E1514-02RE1   | Water                                                                 | NWTPH-Gx (MS) | 05/16/23 08:10 | 05/19/23 11:39 | 5mL/5mL       | 5mL/5mL       | 1.00    |  |  |  |  |  |  |
| A3E1514-04RE1   | Water                                                                 | NWTPH-Gx (MS) | 05/16/23 09:45 | 05/19/23 11:39 | 5mL/5mL       | 5mL/5mL       | 1.00    |  |  |  |  |  |  |

|                 |        | ВТ        | EX Compounds by E | EPA 8260D      |               |               |         |
|-----------------|--------|-----------|-------------------|----------------|---------------|---------------|---------|
| Prep: EPA 5030C |        |           |                   |                | Sample        | Default       | RL Prep |
| Lab Number      | Matrix | Method    | Sampled           | Prepared       | Initial/Final | Initial/Final | Factor  |
| Batch: 23E0865  |        |           |                   |                |               |               |         |
| A3E1514-01RE1   | Water  | EPA 8260D | 05/16/23 07:45    | 05/19/23 11:39 | 5mL/5mL       | 5mL/5mL       | 1.00    |
| A3E1514-02RE1   | Water  | EPA 8260D | 05/16/23 08:10    | 05/19/23 11:39 | 5mL/5mL       | 5mL/5mL       | 1.00    |
| A3E1514-04RE1   | Water  | EPA 8260D | 05/16/23 09:45    | 05/19/23 11:39 | 5mL/5mL       | 5mL/5mL       | 1.00    |

## Volatile Organic Compounds by EPA 8260D

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1514 - 12 22 23 1814

#### SAMPLE PREPARATION INFORMATION

|                 |        | Volatile  | Organic Compounds | by EPA 8260D   |               |               |         |
|-----------------|--------|-----------|-------------------|----------------|---------------|---------------|---------|
| Prep: EPA 5030C |        |           |                   |                | Sample        | Default       | RL Prep |
| Lab Number      | Matrix | Method    | Sampled           | Prepared       | Initial/Final | Initial/Final | Factor  |
| Batch: 23E0865  |        |           |                   |                |               |               |         |
| A3E1514-09RE1   | Water  | EPA 8260D | 05/16/23 16:20    | 05/19/23 11:39 | 5mL/5mL       | 5mL/5mL       | 1.00    |
| A3E1514-11RE1   | Water  | EPA 8260D | 05/16/23 18:00    | 05/19/23 11:39 | 5mL/5mL       | 5mL/5mL       | 1.00    |
| A3E1514-17RE1   | Water  | EPA 8260D | 05/17/23 15:52    | 05/19/23 11:39 | 5mL/5mL       | 5mL/5mL       | 1.00    |

|                     |                 | Polyaromatic F | Polyaromatic Hydrocarbons (PAHs) by EPA 8270E (SIM) |                |               |               |         |  |  |  |  |  |  |  |
|---------------------|-----------------|----------------|-----------------------------------------------------|----------------|---------------|---------------|---------|--|--|--|--|--|--|--|
| Prep: EPA 3510C (Ad | cid Extraction) |                |                                                     |                | Sample        | Default       | RL Prep |  |  |  |  |  |  |  |
| Lab Number          | Matrix          | Method         | Sampled                                             | Prepared       | Initial/Final | Initial/Final | Factor  |  |  |  |  |  |  |  |
| Batch: 23E0844      |                 |                |                                                     |                |               |               |         |  |  |  |  |  |  |  |
| A3E1514-01          | Water           | EPA 8270E SIM  | 05/16/23 07:45                                      | 05/19/23 11:06 | 1060 mL/2 mL  | 1000mL/2mL    | 0.94    |  |  |  |  |  |  |  |
| A3E1514-02          | Water           | EPA 8270E SIM  | 05/16/23 08:10                                      | 05/19/23 11:06 | 990mL/2mL     | 1000 mL/2 mL  | 1.01    |  |  |  |  |  |  |  |
| A3E1514-03          | Water           | EPA 8270E SIM  | 05/16/23 09:20                                      | 05/19/23 11:06 | 1060mL/2mL    | 1000 mL/2 mL  | 0.94    |  |  |  |  |  |  |  |
| A3E1514-04          | Water           | EPA 8270E SIM  | 05/16/23 09:45                                      | 05/19/23 11:06 | 1020 mL/2 mL  | 1000mL/2mL    | 0.98    |  |  |  |  |  |  |  |
| A3E1514-05          | Water           | EPA 8270E SIM  | 05/16/23 10:47                                      | 05/19/23 11:06 | 990mL/2mL     | 1000 mL/2 mL  | 1.01    |  |  |  |  |  |  |  |
| A3E1514-06          | Water           | EPA 8270E SIM  | 05/16/23 11:15                                      | 05/19/23 11:06 | 1040 mL/2 mL  | 1000 mL/2 mL  | 0.96    |  |  |  |  |  |  |  |
| A3E1514-07          | Water           | EPA 8270E SIM  | 05/16/23 12:45                                      | 05/19/23 11:06 | 1010 mL/2 mL  | 1000mL/2mL    | 0.99    |  |  |  |  |  |  |  |
| A3E1514-08          | Water           | EPA 8270E SIM  | 05/16/23 15:15                                      | 05/19/23 11:06 | 1060mL/2mL    | 1000 mL/2 mL  | 0.94    |  |  |  |  |  |  |  |
| A3E1514-12          | Water           | EPA 8270E SIM  | 05/16/23 17:51                                      | 05/19/23 11:06 | 1060mL/2mL    | 1000 mL/2 mL  | 0.94    |  |  |  |  |  |  |  |
| A3E1514-15          | Water           | EPA 8270E SIM  | 05/16/23 20:48                                      | 05/19/23 11:06 | 1060mL/2mL    | 1000 mL/2 mL  | 0.94    |  |  |  |  |  |  |  |
| Batch: 23E0981      |                 |                |                                                     |                |               |               |         |  |  |  |  |  |  |  |
| A3E1514-10RE1       | Water           | EPA 8270E SIM  | 05/16/23 16:50                                      | 05/23/23 11:27 | 1060mL/2mL    | 1000mL/2mL    | 0.94    |  |  |  |  |  |  |  |
| A3E1514-13RE1       | Water           | EPA 8270E SIM  | 05/16/23 19:20                                      | 05/23/23 11:27 | 1060mL/2mL    | 1000mL/2mL    | 0.94    |  |  |  |  |  |  |  |
| A3E1514-14RE1       | Water           | EPA 8270E SIM  | 05/16/23 19:50                                      | 05/23/23 11:27 | 1060mL/2mL    | 1000mL/2mL    | 0.94    |  |  |  |  |  |  |  |
| A3E1514-16RE1       | Water           | EPA 8270E SIM  | 05/17/23 12:32                                      | 05/23/23 11:27 | 1060mL/2mL    | 1000mL/2mL    | 0.94    |  |  |  |  |  |  |  |

|                 | Total Metals by EPA 6020B (ICPMS) |           |                |                |               |               |         |  |  |  |  |  |  |
|-----------------|-----------------------------------|-----------|----------------|----------------|---------------|---------------|---------|--|--|--|--|--|--|
| Prep: EPA 3015A |                                   |           |                |                | Sample        | Default       | RL Prep |  |  |  |  |  |  |
| Lab Number      | Matrix                            | Method    | Sampled        | Prepared       | Initial/Final | Initial/Final | Factor  |  |  |  |  |  |  |
| Batch: 23E0934  |                                   |           |                |                |               |               |         |  |  |  |  |  |  |
| A3E1514-01      | Water                             | EPA 6020B | 05/16/23 07:45 | 05/22/23 14:28 | 45mL/50mL     | 45mL/50mL     | 1.00    |  |  |  |  |  |  |
| A3E1514-02      | Water                             | EPA 6020B | 05/16/23 08:10 | 05/22/23 14:28 | 45mL/50mL     | 45mL/50mL     | 1.00    |  |  |  |  |  |  |
| A3E1514-04      | Water                             | EPA 6020B | 05/16/23 09:45 | 05/22/23 14:28 | 45mL/50mL     | 45mL/50mL     | 1.00    |  |  |  |  |  |  |

## Dissolved Metals by EPA 6020B (ICPMS)

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Page 27 of 37



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1514 - 12 22 23 1814

#### SAMPLE PREPARATION INFORMATION

|                      |                 | Dissolve         | ed Metals by EPA 6 | 020B (ICPMS)   |               |               |         |
|----------------------|-----------------|------------------|--------------------|----------------|---------------|---------------|---------|
| Prep: Matrix Matched | d Direct Inject |                  |                    |                | Sample        | Default       | RL Prep |
| Lab Number           | Matrix          | Method           | Sampled            | Prepared       | Initial/Final | Initial/Final | Factor  |
| Batch: 23E1016       |                 |                  |                    |                |               |               |         |
| A3E1514-01           | Water           | EPA 6020B (Diss) | 05/16/23 07:45     | 05/24/23 10:29 | 45mL/50mL     | 45 mL/50 mL   | 1.00    |
| A3E1514-02           | Water           | EPA 6020B (Diss) | 05/16/23 08:10     | 05/24/23 10:29 | 45mL/50mL     | 45mL/50mL     | 1.00    |
| A3E1514-04           | Water           | EPA 6020B (Diss) | 05/16/23 09:45     | 05/24/23 10:29 | 45mL/50mL     | 45mL/50mL     | 1.00    |

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1514 - 12 22 23 1814

## **QUALIFIER DEFINITIONS**

## Client Sample and Quality Control (QC) Sample Qualifier Definitions:

#### **Apex Laboratories**

- **F-03** The result for this hydrocarbon range is elevated due to the presence of individual analyte peaks in the quantitation range that are not representative of the fuel pattern reported.
- F-11 The hydrocarbon pattern indicates possible weathered diesel, mineral oil, or a contribution from a related component.
- J Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
- Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
- V-01 Sample aliquot taken from VOA vial with headspace (air bubble greater than 6 mm diameter).

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1514 - 12 22 23 1814

#### **REPORTING NOTES AND CONVENTIONS:**

#### **Abbreviations:**

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

#### **Detection Limits:** Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

#### Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

#### **Reporting Conventions:**

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

#### **QC Source:**

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

#### Miscellaneous Notes:

" --- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"\*\*\*" Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories



AMENDED REPORT

#### Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1514 - 12 22 23 1814

## **REPORTING NOTES AND CONVENTIONS (Cont.):**

#### Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

-Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

#### **Preparation Notes:**

#### Mixed Matrix Samples:

#### Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

#### Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

## **Sampling and Preservation Notes:**

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold

Apex Laboratories



Farallon-Seattle

#### ANALYTICAL REPORT

AMENDED REPORT

# Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1514 - 12 22 23 1814

#### LABORATORY ACCREDITATION INFORMATION

## ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Project:

#### **Apex Laboratories**

Matrix Analysis TNI\_ID Analyte TNI\_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

## **Secondary Accreditations**

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

#### **Subcontract Laboratory Accreditations**

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

## Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1514 - 12 22 23 1814

| Company: Farallan Consulting Project Mer. Suty Address: 975 54h Ave NW, Issaquah inAssaquah inAssaquah inAssaquah inAssaquah inAssaquah inAssaquah inAssaquah inAssaquah inAssaquah inAssaquin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5100 511 Juniarang St., 118ara, UK 9/223 FM: 303-/18-2323 |         |        |             | !                            |                                |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                               | Politica Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the Communication of the | }                   | - AND   |          |                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------|--------|-------------|------------------------------|--------------------------------|---------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------|----------|----------------------|
| our 975 5th Alpe NW, Issapuah I<br>boths: Angie Osman, Michael Vi<br>Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           | Stund   |        | Project     | Project Name Block 38 (1/85) | Blod                           | 1 S           | 3           | tsa<br>tsa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -            | 1                             | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Project #. 297 @ 19 | 6       |          |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | †                                                         | Phone:  | 485)29 | 3-086       | O Brand                      | Ster                           | Ger           | Suralle     | Phone (405) 295 - USCO Brands Hump Paralle Consisters Com. 100# 397-119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2            | # 0                           | 2 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6/0                 | 1       |          |                      |
| Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Aquirre.                                                  |         |        |             |                              |                                |               | AN A        | ANALYSIS REQUEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |         |          |                      |
| State (N) A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                           |         | (4098) |             |                              | Fedl List                      |               | (6          | Be, Cd,<br>Fe, Pb,<br>M, K,<br>M, K,<br>M, Zh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | (10kg                         | (bsyb?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (10)                | (+21/4) |          |                      |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MTPH-HCID                                                 | WTPH-Dx |        | OOA 978H 09 | 10 SIM BVH                   | 35 PCBs<br>70 Semi-Vols        | 21 Pesticides | ) alateM AX | ority Metals ( Sb., As., Bs., Cr., Co., Cu., Mg., Mn., M Mg., Mn., M Mg., Ms., Tl., Mg., Ms., Tl., Mg., Ms., Tl., Mg., Ms., Tl., Mg., Ms., Tl., Mg., Ms., Tl., Mg., Ms., Tl., Mg., Ms., Tl., Mg., Ms., Tl., Mg., Ms., Tl., Mg., Ms., Tl., Mg., Ms., Tl., Mg., Ms., Tl., Mg., Ms., Tl., Mg., Ms., Tl., Mg., Ms., Tl., Mg., Ms., Tl., Mg., Ms., Tl., Mg., Ms., Ms., Mg., Ms., Mg., Ms., Mg., Ms., Ms., Mg., Mg., Ms., Mg., Ms., Mg., Ms., Mg., Ms., Mg., Ms., Mg., Ms., Mg., Mg., Ms., Mg., Ms., Mg., Ms., Mg., Ms., Mg., Ms., Mg., Mg., Mg., Mg | LP Metals (8 | <u>Sonslanth</u> g<br>T) mwiz |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (To) pw             |         | alame2   | Sample<br>sn Archive |
| 2 N745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | )# Ç                                                      |         | 78 ×   |             |                              |                                |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | or           | CB)                           | m8 >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | rely -              |         | ын       |                      |
| CIDU I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                           | +       | ×      |             | 1                            | +                              | -             |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | <   ×                         | $\langle                   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>            |         | +        | -                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                         | ×       | -      |             | 1                            | +                              | 1             | +           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +                   |         | +-       | +                    |
| Fru - 154-05/623 0945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cb                                                        | ×       | ×      |             |                              | $\vdash$                       | -             | 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | <u>&gt;</u>                   | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +                   |         | +        | -                    |
| FMW-157-05(663                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |         |        |             |                              | -                              | -             | +           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +                   |         | +-       | -                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           | ×       |        |             |                              |                                |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | -<br>-                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                   |         | $\vdash$ | -                    |
| FMW- 152- (151623 11245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H                                                         | ×       |        |             |                              |                                |               | -           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | ×                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |         | -        | +-                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                         | ×       |        |             |                              |                                |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | ×                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |         | -        | -                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                           |         | *      |             |                              |                                |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | X       | -        |                      |
| FMW-164-(151633   1   1650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                           | ×       |        |             |                              |                                |               | $\vdash$    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3            |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |         | -        | -                    |
| Standard Turn Around Time (TAT) = 10 Business Days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Business Days                                             |         |        |             | SPBC                         | TAL IN                         | TRUC          | TONS        | SPECIAL INSTRUCTIONS (Hold CUDGS, FOW) 1-1- 05/16/3, FAMIL-157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 200          | 3                             | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1683                | Z       | 10       | ١,                   |
| 1 Day 2 Day TAT Requested (circle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                           | 3 Day   |        |             | 5 <b>\$</b>                  | 10 pg                          | 3 \$          | -5- E       | Unlead, UW-2 - 051623、FMU-152-051623、FMU-150-051623,<br>FMU-153-051629。FMW-164-051623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -05162       | 3 2                           | 57.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fmw                 | 150~(   | 29150    | w.                   |
| 5 Day Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\cap$                                                    | Other:  |        |             |                              |                                |               | ·           | i<br>Hold the following samples for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ollowir      | rg sal                        | nples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s for               |         |          |                      |
| SAMPLES ARE HELD FOR 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S                                                         |         |        |             | 1                            |                                |               |             | potential CVOC analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3,00C        | analy                         | Sis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |         |          |                      |
| Separate: Date: Separate: | RECEIVED BY:                                              |         | Date:  | 4           | RELII<br>Signatu             | RELINQUISHED BY:<br>Signature: | ED BY:        |             | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | # 35         | RECEIVED BY:<br>Signature:    | D BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | Date:   |          |                      |
| Printed Name: Time: Printe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Printed Name:                                             |         | Time:  |             | Filed                        | Printed Name:                  |               |             | Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A.           | Printed Name                  | )<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | Time:   |          |                      |
| Сопрану:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Company                                                   |         |        |             | Company                      | uty:                           |               |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10           | Company:                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |         |          |                      |

Apex Laboratories

/ milele fog



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1514 - 12 22 23 1814

| PASSACTION Project Mer. St.  THATE MACHAELY SANCTION OF THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND THATE AND | MALLH-HCID                    | VAOC? 32 13 13 13 13 13 13 13 13 13 13 13 13 13 | Project Name: Block 38 West                                            | 85 y                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                               |          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------|------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------|----------|
| ie Osman, Mi<br>King<br>King                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GIOH-HALMN                    | 1 (β. (β. (β. (β. (β. (β. (β. (β. (β. (β.       | O Emails fur                                                           |                                      | とと                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Project #: 397 - @                              | F-1819                                                                        |          |
| tie Osmanni<br>List                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MALLH-HCID                    | 400cs<br>(409c9)                                |                                                                        | nefohaa                              | Phone: (495)295 - USO Emails Hume & Brall M. Consulting. Com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PO# 397                                         | 397-019                                                                       |          |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *d-Hallan ×××××               | \$20A V                                         |                                                                        | 9                                    | AVALYSIS REQUEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                                               |          |
| TI Ç                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\times \times \times \times$ | 260 BTEX<br>260 RBD/<br>260 Hab                 | 560 VOCs Full List<br>70 Semi-Vols Full List<br>70 Semi-Vols Full List | 82 PCBs 81 Pesticides CRA Metals (8) | iority Metals (13)  Sb, As, Ba, Be, Cd, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Ag, Na, TL, V, Zn TAL DISS. TCLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sonolnathqu<br>(IstoT) mwin<br>(IssubiziO) mwin | (hand (Total)<br>(hand (Dresolved)<br>(kendosed) hard<br>(field thooks) = 200 | d Sample |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | 78                                              | Z8<br>Z8                                                               | 08                                   | AL,<br>Ca,<br>Se,<br>Se,<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < BD <                                          | 5 No                                                                          |          |
| OFFICE OFFICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |                                                 |                                                                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < >                                             | ×                                                                             |          |
| FMW-156-05/623 [0810   12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | ×                                               |                                                                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                               |                                                                               |          |
| 014-1-05/623 0990 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                             |                                                 |                                                                        | 24.70000                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                               |                                                                               |          |
| Fru - 154-05/623 1945 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                             | ×                                               |                                                                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                               |                                                                               |          |
| FMW-157-051683 1047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×                             |                                                 |                                                                        |                                      | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | ×                                               |                                                                               |          |
| M-2-051673   1115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ×                             |                                                 |                                                                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                               |                                                                               |          |
| FMW-152-051623 1245 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ×                             |                                                 |                                                                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                               |                                                                               |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×                             |                                                 |                                                                        |                                      | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | ×                                               |                                                                               |          |
| FMW-137-051633 [1620]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               | ×                                               |                                                                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                               |          |
| TMW-164-051673 L 1050 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ×                             |                                                 |                                                                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                               |          |
| Standard Turn Around Time (TAT) = 10 Business Days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Jays                          |                                                 | SPECIAL IN                                                             | ISTRUCTION                           | SPECIAL INSTRUCTIONS Hold CLOCS for CAN-1- 05/603, FMIN-157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -1-10 Jo                                        | 051683, FMILT                                                                 | G.       |
| 1 Day 2 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 Day                         |                                                 | 051623                                                                 | , ow-2                               | 051623, 0W-2-051623, FMW-152-051623, FMW-150-051623,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 152-051613                                      | , FMW-150-051                                                                 | 623,     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                                                 |                                                                        | STORY S                              | r4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 |                                                                               |          |
| 5 Day Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Other:                        |                                                 |                                                                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                               |          |
| SAMPLES ARE HELD FOR 30 DAYS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |                                                 |                                                                        |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                               |          |
| RELINQUISHED BY: Date: Signature: 5/17/23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               | Date:                                           | RELINQUISHED BY: Signature:                                            | HED BY:                              | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RECEIVED BY:<br>Signature:                      | :<br>Date:                                                                    |          |
| Time: Printed Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1000                          | Time:                                           | Printed Name:                                                          |                                      | Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Printed Name:                                   | Time:                                                                         |          |
| Company: Company:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                                                 | Company:                                                               |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Company:                                        |                                                                               |          |

Apex Laboratories

/ milale fog



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1514 - 12 22 23 1814

| COMPANY FATALLISM (STANITHING) PROJECT MATE SITTY STUMPT ADDRESS. 975 Str. Aut., NW ISSAMILAN, WHA PROMITE SAMILAN, MICHAEL VSAMILITE STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET S |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     |                                                 |                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------|
| Wall of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fum.                                             | Project Name: Blook 38 Wes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sa                                                                                                                                  | Project #: 397-019                              |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phone: (4%) (2%)                                 | Phone: [4/20] 297-1980 Brand Strugt Port Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand Brand B | Janconsultua u                                                                                                                      | 400 # 397-019                                   |                             |
| >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                  | ANA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ANALYSIS REQUEST                                                                                                                    |                                                 |                             |
| State MAP COUNTY LIME TO PATE  SAMPLE ID  SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8769 AOC* B™ IT# 8769 H™ AOC* 8769 BLEX AMALH-C* | 8210 SIM PAHs<br>8082 PCBs<br>8083 Pesticides<br>RCRA Metals (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Priority Metals (13)  Lough Ma, Mn, Mo, Mt, K, Mg, Mg, Mn, Mo, Mt, K, Mg, Mg, Ml, Mg, Mt, K, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg | CAOC? (Zhordist)                                | old Sample<br>rozen Archive |
| 138-05/673 5-11-73/800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | У                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L S                                                                                                                                 | X                                               | -                           |
| FMW-168-051683 1751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ×                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     | ×                                               | +                           |
| Phys 159-05/693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     | ×                                               | -                           |
| 74W-153-051673                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ×                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     | ×                                               | -                           |
| Mu-151-051633 1 2048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     | . ×                                             | +                           |
| OW-3-05/793 54-28 pcs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ダ                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     | ×. ×.                                           |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     | X                                               |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     |                                                 |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     |                                                 | 1                           |
| Standard Turn Around Time (TAT) = 10 Business Days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                  | SPECIAL INSTRUCTIONS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | They Chock                                                                                                                          | Ten 1 10 10 10 10 10 10 10 10 10 10 10 10 1     | 70 054                      |
| 1 Day 2 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 Day                                            | FMW-153"051623, FM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10-151-051623,                                                                                                                      | FMW-153-051623, FMNO-151-051623, 0W-3-051723,   |                             |
| 1.A.1 Kequested (circle)  5 Day Shandard Ot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Other:                                           | Fold Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mples above for                                                                                                                     | Hold Samples above for potential CVOCs analysis |                             |
| SAMPLES ARE HELD FOR 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     |                                                 |                             |
| RELANQUISHEND BY: Signature: Signature: 3/17/23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date:                                            | RELINQUISHED BY:<br>Signature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dafe:                                                                                                                               | RECEIVED BY: Signature: Date:                   |                             |
| Time: Printed Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                  | Printed Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | îme:                                                                                                                                | Printed Name: Time:                             |                             |
| Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  | Company:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                     | Сощваку:                                        |                             |

Apex Laboratories

/ milale fog



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A3E1514 - 12 22 23 1814

| Company: Farallon Consultion                       |              |               |                    |                            |                                          |          |                        |                |                     |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                 |                      |                                                                                                               |                 |                                                |                                              |            |
|----------------------------------------------------|--------------|---------------|--------------------|----------------------------|------------------------------------------|----------|------------------------|----------------|---------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------|----------------------------------------------|------------|
|                                                    |              | Project N     | Project Mgr. CITLA | 37                         | Jam'nt                                   | de       |                        | - E            | oject N             | Project Name: PSING 38 11 P. | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1         | 38                              | 3                    | 126                                                                                                           |                 | Project # 4071-010                             | 1-010                                        |            |
| Address: 975 5th Ave, NW                           | 12           | Issanuala, WA | MA.                |                            | Phor                                     |          | Phone: (426) 1995-1800 | 3              | 3                   | Email                        | 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | l god     | 3                               | 1                    | Shconsultin                                                                                                   | 10 A            | Email:Schuros Run Mores Schur Woo # 297- () (9 | 019                                          |            |
| Sampled by: P. M. O. S. D. D. D.                   |              | rael V        | Midnael Ysaguirre  | 9                          | e la la la la la la la la la la la la la |          |                        |                |                     |                              | e de la constante de la consta |           |                                 | 3                    | ANALYSIS REOUEST                                                                                              | ļ.              |                                                |                                              |            |
| Site Location:  State WA  County VIND  SAMPLE ID   |              | TIME          | XIATAM             | MALEH-HCID # OF CONTAINERS | xd-H4TWN                                 | NWTPH-Gx | 8260 BTEX              | 8700 H810 AOC* | 8769 VOCs Full List | 8HA9 MI2 0728                | 8270 Semi-Vols Full List                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8082 PCBs | 8081 Pesticides RCRA Metals (8) | Priority Metals (13) | L. Sb, As, Ba, Be, Cd, Se, NB, NI, V, Zn  12, NB, Na, Tl, V, Zn  13, NB, Na, Tl, V, Zn  14, NB, Na, Tl, V, Zn | TCLP Metals (8) | Sussissis                                      |                                              | old Sample |
| FAW- 138-051673 5                                  | 5-11-75 1800 | (800)         |                    | $\vdash$                   |                                          |          | ×                      | -              |                     |                              | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +         | -                               |                      | V                                                                                                             |                 | V                                              |                                              | B          |
| FMW-16A-0516A3                                     |              | 歪             |                    |                            | ×                                        |          |                        | -              |                     |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +         | -                               |                      |                                                                                                               |                 | ×                                              |                                              |            |
| FNW-159-051673                                     |              | 0%            |                    |                            | ×                                        | 1.00     |                        | _              |                     |                              | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | -                               | -                    |                                                                                                               |                 | ×                                              |                                              | 1          |
| FMW-153-051673                                     |              | 1950          |                    |                            | ×                                        |          |                        |                |                     |                              | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -         | <u> </u>                        | -                    |                                                                                                               |                 | ×                                              |                                              |            |
| FMW-151-051633                                     | -1           | 3048          |                    |                            | ×                                        |          |                        |                |                     |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | _                               |                      |                                                                                                               |                 | ×                                              |                                              |            |
| OW-3-051793 S                                      | 54-13105g    | 239           |                    |                            | X                                        |          |                        | 92.5           |                     |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         |                                 |                      |                                                                                                               |                 | メ                                              |                                              |            |
| FMW-165-051723                                     |              | (65)          |                    |                            |                                          |          | ×                      |                |                     |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                 |                      |                                                                                                               |                 |                                                |                                              |            |
|                                                    |              |               |                    |                            |                                          |          | $\dashv$               |                |                     |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                 |                      |                                                                                                               |                 |                                                |                                              |            |
|                                                    |              |               |                    |                            |                                          |          | $\dashv$               | _              |                     |                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +         |                                 |                      |                                                                                                               |                 |                                                |                                              |            |
| Standard Turn Around Time (TAT) = 10 Business Davs | round Tim    | e (TAT)       | = 10 Busin         | ess Davs                   |                                          |          | $\dashv$               | 4              |                     | CPRC                         | - A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ISTRI     | - E                             | ġ                    | 7,107                                                                                                         |                 | -<br>-<br>-<br>,                               |                                              | - 3        |
|                                                    | 1 Day        |               | 2 Day              |                            | 3 Day                                    |          |                        |                |                     | F                            | 0-153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 150.      | 623,                            | Ē                    | 151 - 0516                                                                                                    | £ 5.            | FMW-153-051623, FMW-151-051623, OW-3-051723,   | MM-161-031623, MM-137-03623,<br>00-3-051723, | -          |
| TAT Requested (circle)                             | 5 Day        | St            | Standard           | / \                        | Orther:                                  |          |                        | 1              |                     |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                 |                      |                                                                                                               |                 |                                                |                                              |            |
| SAMPLES ARE HELD FOR 30 DAYS                       | ARE HELD     | FOR 30        | DAYS               |                            |                                          |          |                        |                | Τ                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                 |                      |                                                                                                               |                 |                                                |                                              |            |
| RELINQUISHED BY: Dignature:                        | Date:        |               | RECEIVED BY:       | BY:                        |                                          | -        | į                      |                |                     | RELING                       | RELINQUISHED BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | HED B     | ï.                              |                      | 100                                                                                                           |                 | RECEIVED BY:                                   | 4                                            |            |
|                                                    | 5/17/23      |               | h                  | ĺ                          |                                          | , fV     | 5.18.23                | EU             |                     | manual c                     | <u>j</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                                 |                      | Date                                                                                                          |                 | ognature.                                      | Date;                                        |            |
| Printed Name:                                      | Time:        | -             | Printed Name:      |                            | Sylaron                                  | -        | Time: 101.09           | (i)            |                     | Printed Name                 | Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |                                 |                      | Time:                                                                                                         |                 | Printed Name:                                  | Time:                                        |            |
| Сопралу:                                           |              |               | Company:           |                            |                                          |          |                        |                |                     | Соптрапу:                    | ny.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |                                 |                      |                                                                                                               |                 | Сотрапу:                                       |                                              |            |

Apex Laboratories

/ milule Pog



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle

Project:

397-019 Block 38 West

1809 7th Ave Suite 1111 Seattle, WA 98101 Project Number: 397-019

Project Manager: Suzy Stumpf

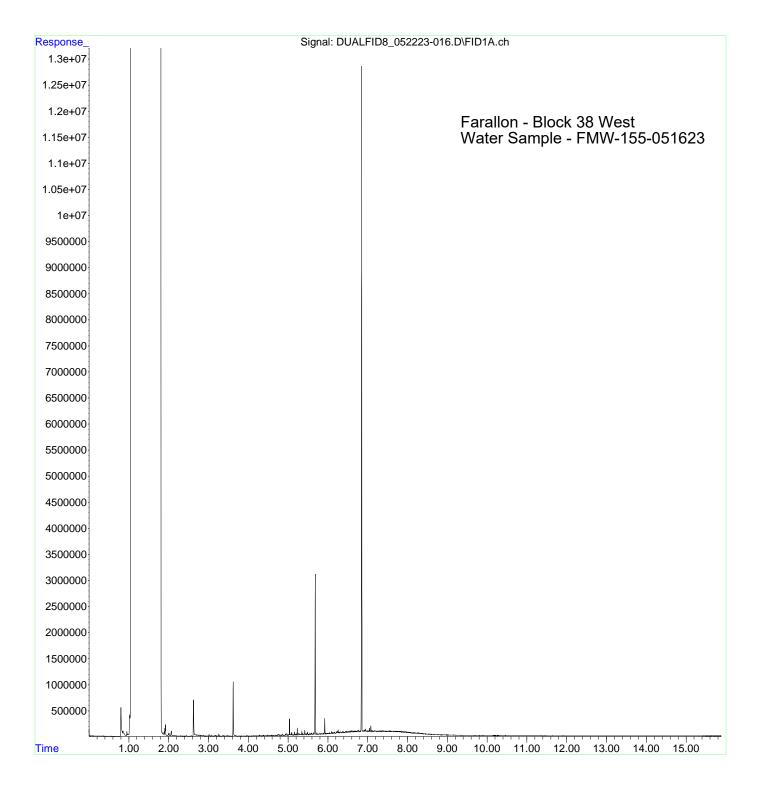
Report ID: A3E1514 - 12 22 23 1814

|                                                                                                 | APEX 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LABS C                       | OOLER RE        | CEIPT FO   | RM                 |                      |                        |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------|------------|--------------------|----------------------|------------------------|
| Client: Favallo                                                                                 | n Consui                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | iting                        |                 | Eleme      | ent WO#: A         | 3 <u>EISIM</u>       |                        |
| Project/Project #:                                                                              | Bloc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L 38                         | 3 West          | 1397       | -019               |                      |                        |
| Delivery Info:                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              |                 | /          | ·                  |                      |                        |
| Date/time received: 5 .19                                                                       | 3.23@10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45                           | Ву:             | DJ-        | 5                  |                      |                        |
| Delivered by: ApexClien                                                                         | t_ESSFed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lEx <u>⊁</u> UP              | SRadio          | _Morgan _  | SDS_E              | vergreen             | Other                  |
| Cooler Inspection Date                                                                          | e/time inspecte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d: <u>5-1</u>                | 8.23@1          | 051        | Ву:                | DIS                  |                        |
| Chain of Custody included?                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              |                 |            |                    |                      |                        |
| Signed/dated by client?                                                                         | Yes $\underline{\hspace{1em} \hspace{1em} \hspace$ | _ No                         |                 |            |                    |                      |                        |
|                                                                                                 | Cooler #1 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ooler #2                     | Cooler #3       | Cooler #4  | Cooler #5          | Cooler #6            | Cooler #7              |
| Temperature (°C)                                                                                | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.3                          | 5-6             | 2.0        | 1.8                | 3-9                  | 5.6                    |
| Custody seals? (Y/N)                                                                            | _ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~                            |                 |            | 2                  |                      | ~                      |
| Received on ice? (Y/N)                                                                          | <u>Y</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Υ                            |                 | ~~~        | Y                  | <u> </u>             | <u>~~</u>              |
| Temp. blanks? (Y/N)                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>                     | <u> </u>        | Ψ          | Y                  | Y                    | <u> </u>               |
| Ice type: (Gel/Real/Other)                                                                      | Real                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Real                         | Real            | Real       | Real               | Ral                  | Real                   |
| Condition (In/Out):                                                                             | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                           | 10              | [7         | 1/                 |                      | 11                     |
| Out of temperature samples Sample Inspection: Date. All samples intact? Yes YEPIGUED, NOW SPILL | /time inspected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | l: <i>5/18/7</i><br>nments:_ | 3 @14<br>0W-2-0 | 51623      | 1 CHCIA            | mberb                |                        |
| Bottle labels/COCs agree?                                                                       | Yes No Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Com                          | ments: FMW      | 1-151-0516 | 23 1/3 Vot         | 7 DD wad             | FMW-16 SP. 11          |
| and IL Amber no time                                                                            | listed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Makan.                       |                 |            |                    |                      |                        |
| COC/container discrepancie                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                            |                 |            |                    |                      |                        |
| Containers/volumes received                                                                     | d appropriate f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | or analys                    | sis?Yes 🔀       | No C       | Comments: _        |                      |                        |
| Do VOA vials have visible he Comments FMW-155 lb, Water samples: pH checked: Comments:          | 0W-1 '/3<br>Yes XNo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | , FMW<br>NA                  | 1-162 1/3       | FMW-15     | q 1/3 ()\<br>NoNA_ | N-3, <sup>1</sup> 3, | FMW-165 3/3<br>Have HS |
| Additional information:                                                                         | <i>39</i> 84 538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3°2 8                        | 8717            |            |                    |                      |                        |
| Labeled by:                                                                                     | Witn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ess: ,                       |                 | Co         | oler Inspect       | ed by: 🔘             | V . T                  |

Apex Laboratories

( withle fog

File :M:\DUALFID8\data\2023-05\3E22057\DUALFID8\_052223-016.D


Operator :

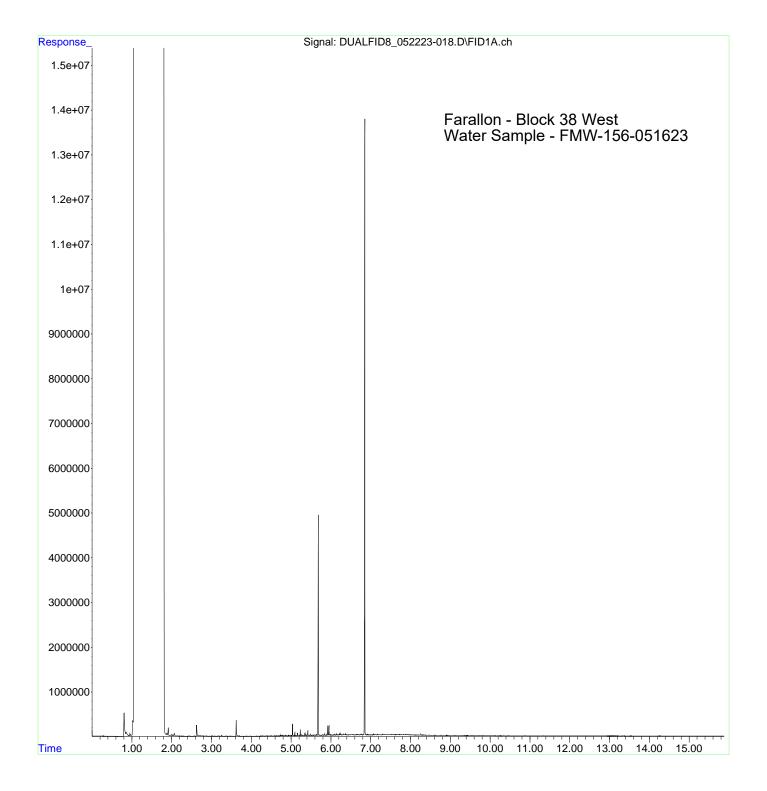
Acquired : 22 May 2023 07:08 pm using AcqMethod DUALFID8 Acquisition.M

Instrument : FUELS8
Sample Name: A3E1514-01

Misc Info : ERR

Vial Number: 6




File :M:\DUALFID8\data\2023-05\3E22057\DUALFID8\_052223-018.D

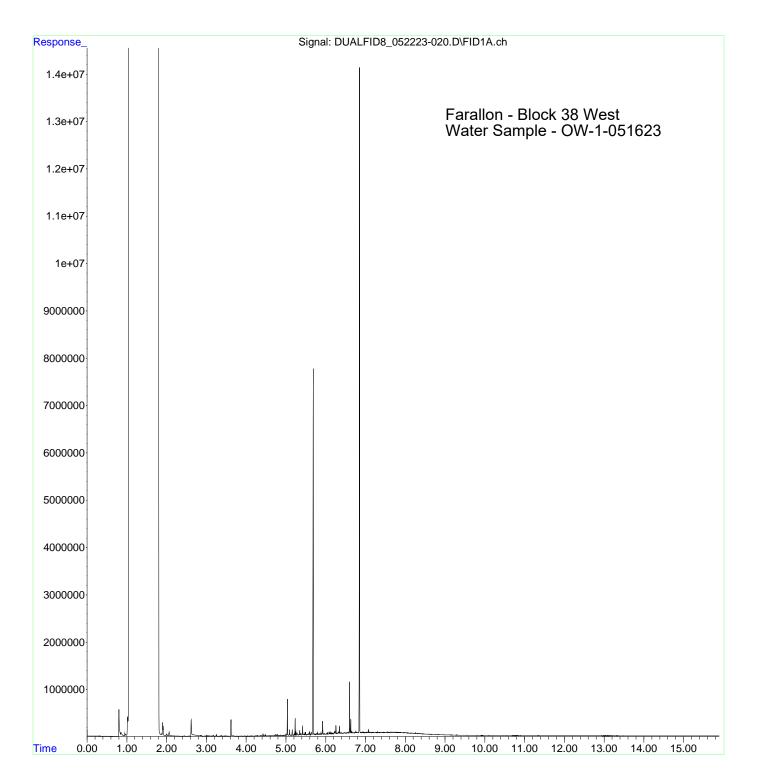
Operator :

Acquired : 22 May 2023 07:30 pm using AcqMethod DUALFID8 Acquisition.M

Instrument : FUELS8
Sample Name: A3E1514-02

Misc Info : ERR




File :M:\DUALFID8\data\2023-05\3E22057\DUALFID8\_052223-020.D

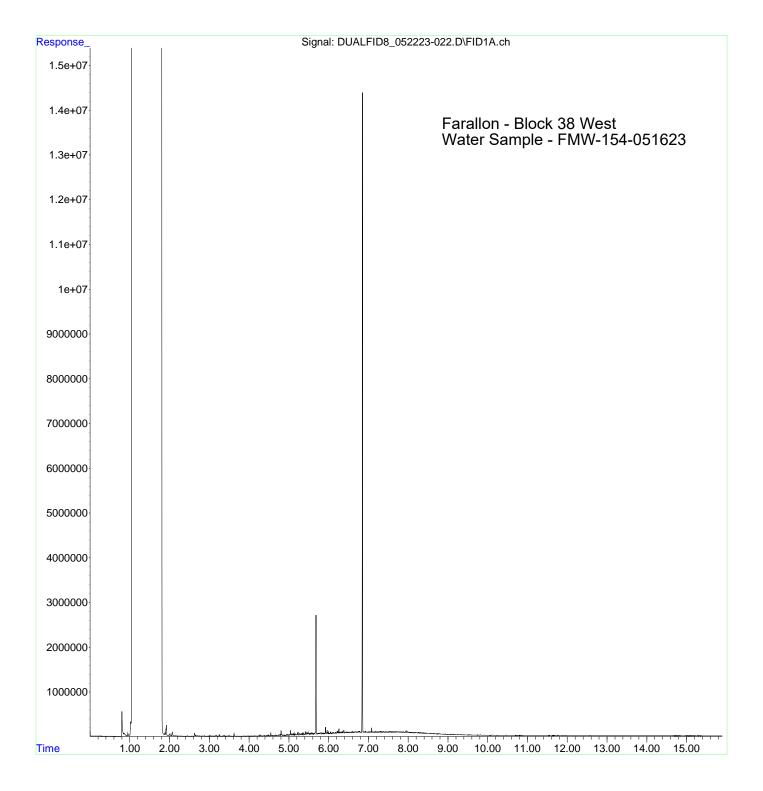
Operator :

Acquired : 22 May 2023 07:53 pm using AcqMethod DUALFID8 Acquisition.M

Instrument : FUELS8
Sample Name: A3E1514-03

Misc Info : ERR




File :M:\DUALFID8\data\2023-05\3E22057\DUALFID8\_052223-022.D

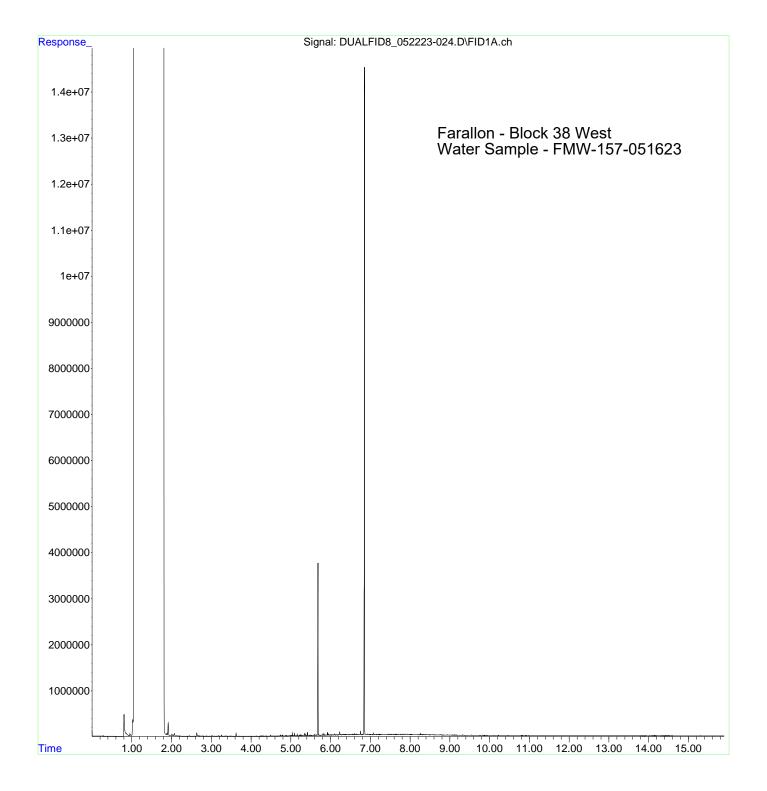
Operator :

Acquired : 22 May 2023 08:14 pm using AcqMethod DUALFID8 Acquisition.M

Instrument : FUELS8
Sample Name: A3E1514-04

Misc Info : ERR




File :M:\DUALFID8\data\2023-05\3E22057\DUALFID8\_052223-024.D

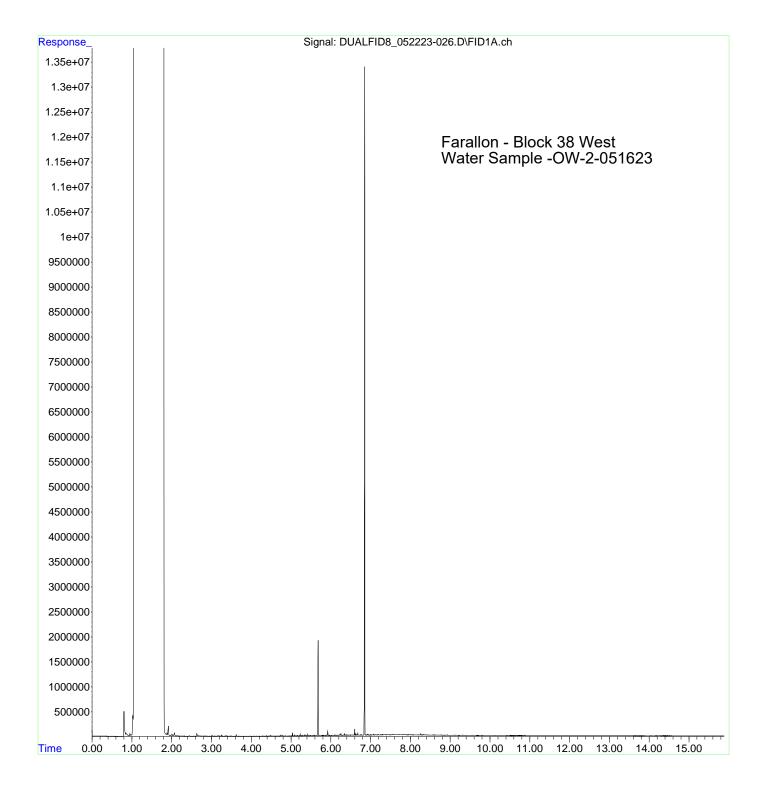
Operator :

Acquired : 22 May 2023 08:36 pm using AcqMethod DUALFID8 Acquisition.M

Instrument : FUELS8
Sample Name: A3E1514-05

Misc Info : ERR




File :M:\DUALFID8\data\2023-05\3E22057\DUALFID8\_052223-026.D

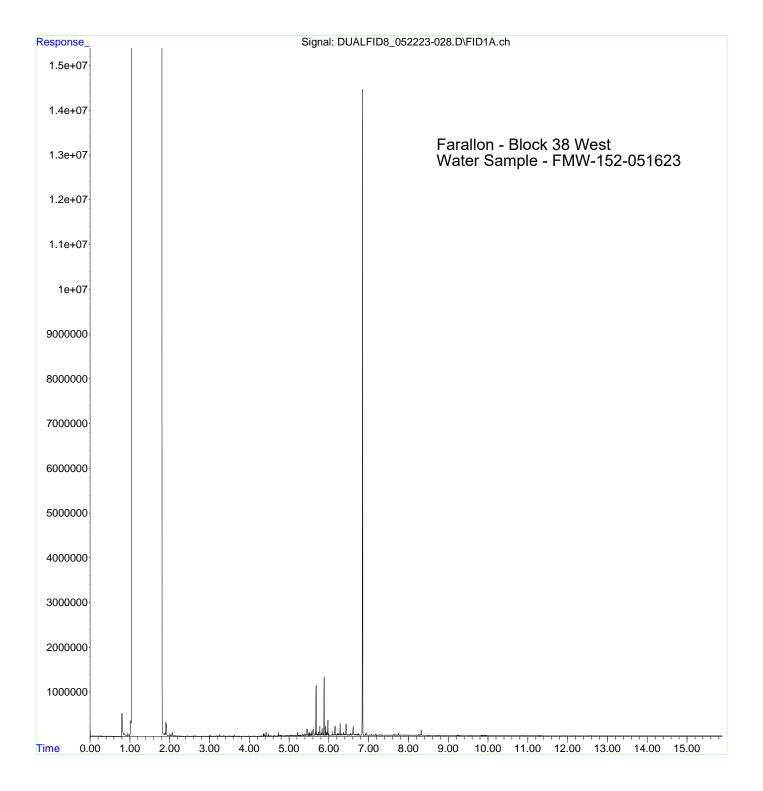
Operator :

Acquired : 22 May 2023 08:58 pm using AcqMethod DUALFID8 Acquisition.M

Instrument : FUELS8
Sample Name: A3E1514-06

Misc Info : ERR




File :M:\DUALFID8\data\2023-05\3E22057\DUALFID8\_052223-028.D

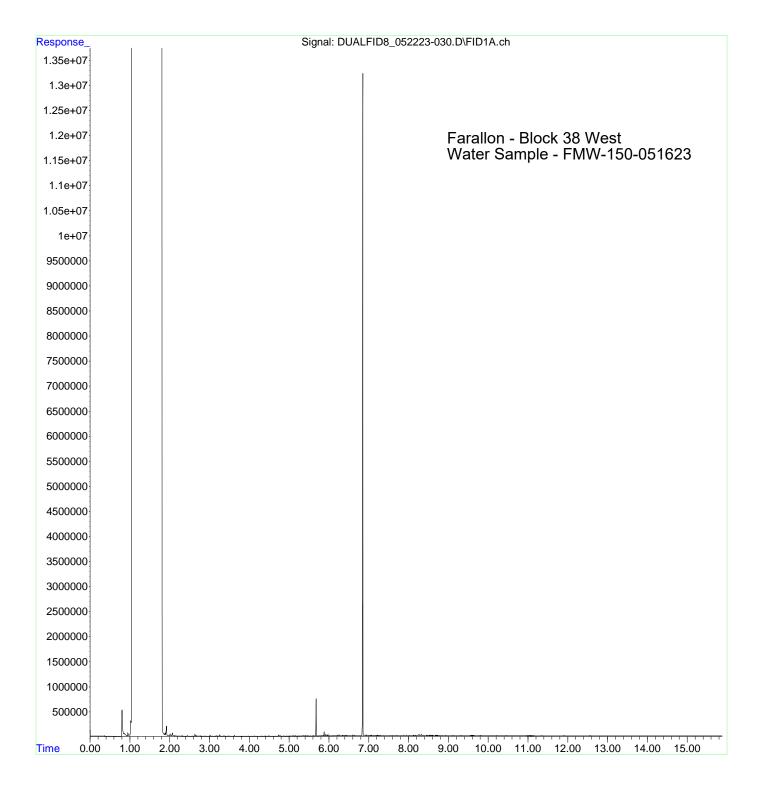
Operator :

Acquired : 22 May 2023 09:19 pm using AcqMethod DUALFID8 Acquisition.M

Instrument : FUELS8
Sample Name: A3E1514-07

Misc Info : ERR




File :M:\DUALFID8\data\2023-05\3E22057\DUALFID8\_052223-030.D

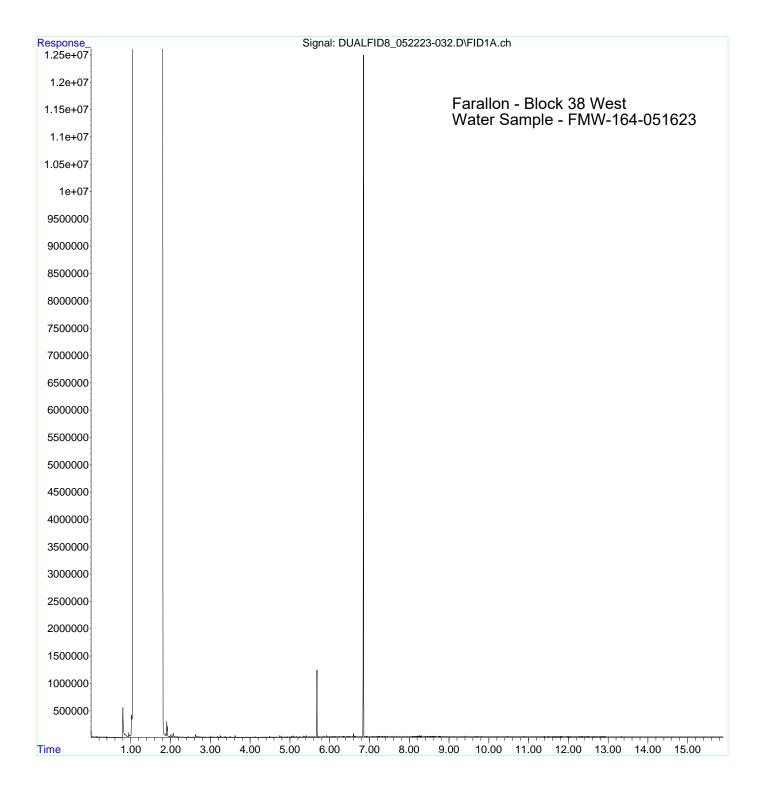
Operator :

Acquired : 22 May 2023 09:41 pm using AcqMethod DUALFID8 Acquisition.M

Instrument : FUELS8
Sample Name: A3E1514-08

Misc Info : ERR




File :M:\DUALFID8\data\2023-05\3E22057\DUALFID8\_052223-032.D

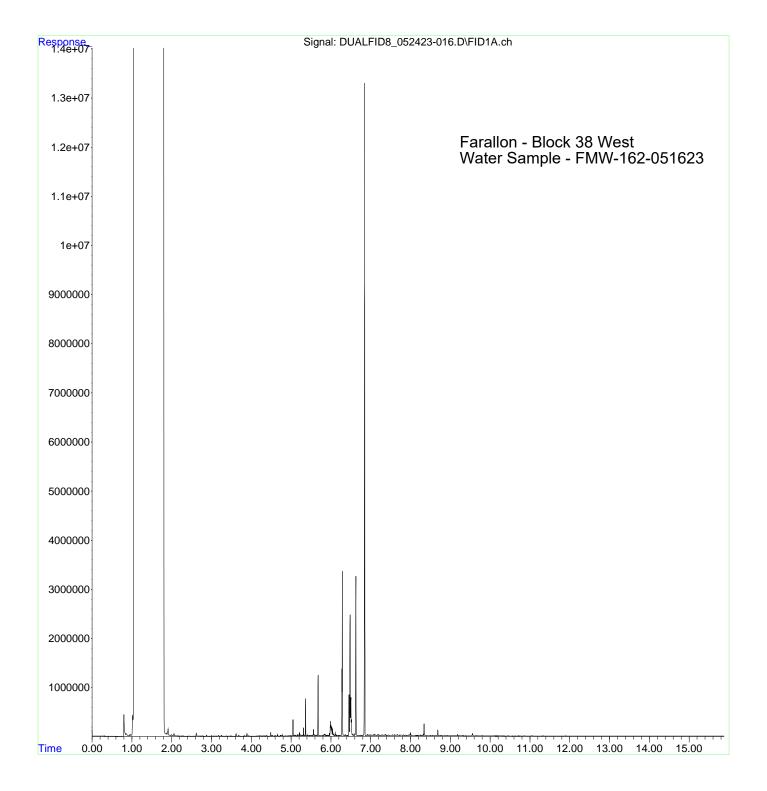
Operator :

Acquired : 22 May 2023 10:02 pm using AcqMethod DUALFID8 Acquisition.M

Instrument : FUELS8
Sample Name: A3E1514-10

Misc Info : ERR




File :M:\DUALFID8\data\2023-05\3E24034\DUALFID8\_052423-016.D

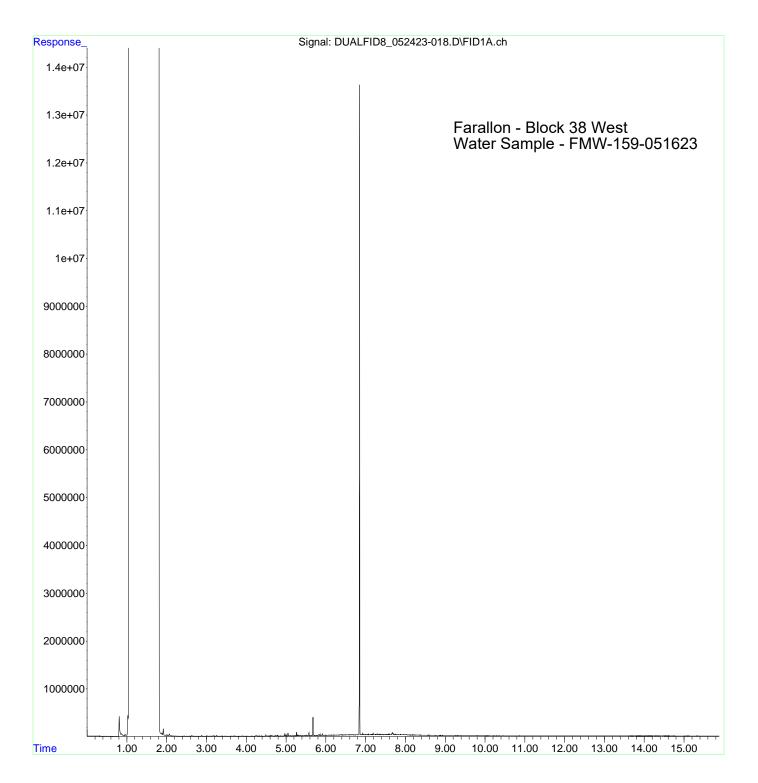
Operator :

Acquired : 24 May 2023 09:28 am using AcqMethod DUALFID8 Acquisition.M

Instrument : FUELS8
Sample Name: A3E1514-12

Misc Info : ERR




File :M:\DUALFID8\data\2023-05\3E24034\DUALFID8\_052423-018.D

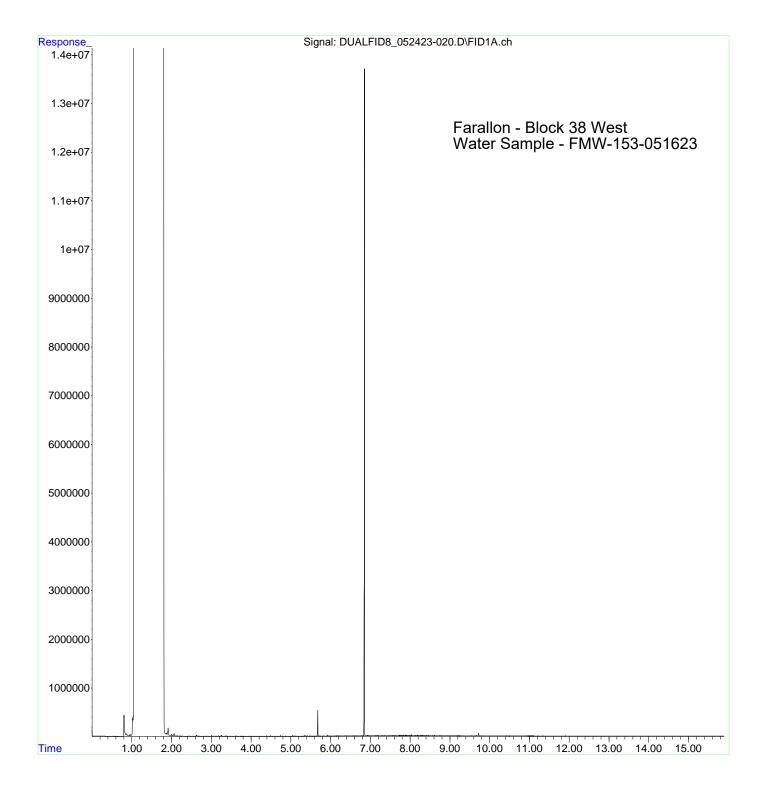
Operator :

Acquired : 24 May 2023 09:50 am using AcqMethod DUALFID8 Acquisition.M

Instrument : FUELS8
Sample Name: A3E1514-13

Misc Info : ERR




File :M:\DUALFID8\data\2023-05\3E24034\DUALFID8\_052423-020.D

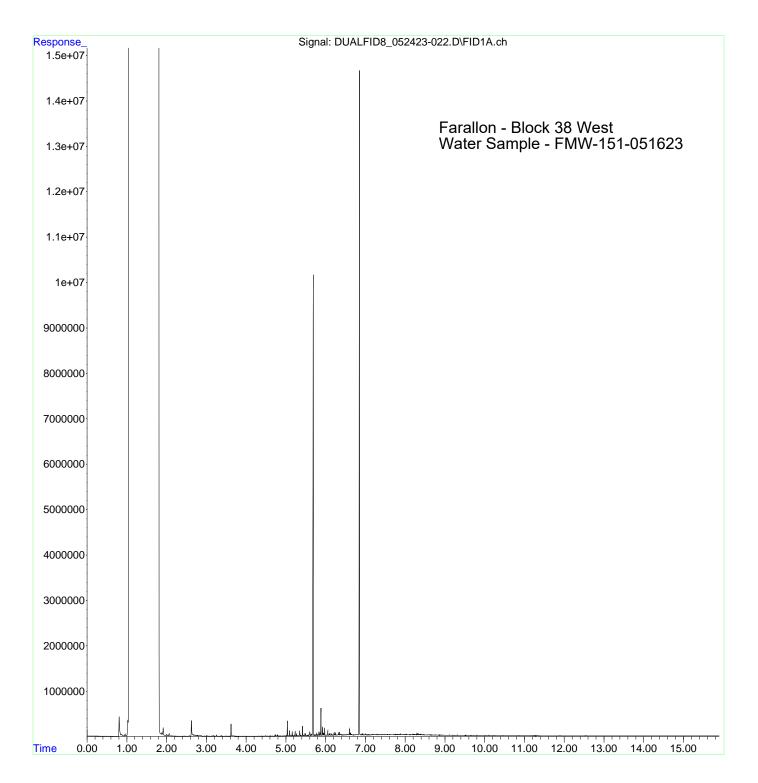
Operator :

Acquired : 24 May 2023 10:12 am using AcqMethod DUALFID8 Acquisition.M

Instrument : FUELS8
Sample Name: A3E1514-14

Misc Info : ERR




File :M:\DUALFID8\data\2023-05\3E24034\DUALFID8\_052423-022.D

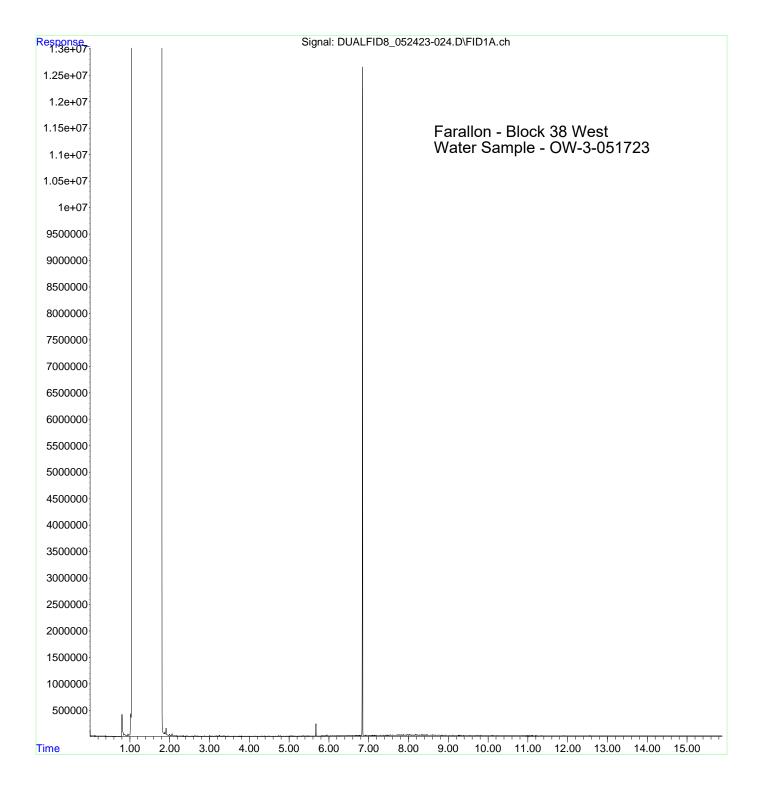
Operator :

Acquired : 24 May 2023 10:33 am using AcqMethod DUALFID8 Acquisition.M

Instrument : FUELS8
Sample Name: A3E1514-15

Misc Info : ERR




File :M:\DUALFID8\data\2023-05\3E24034\DUALFID8\_052423-024.D

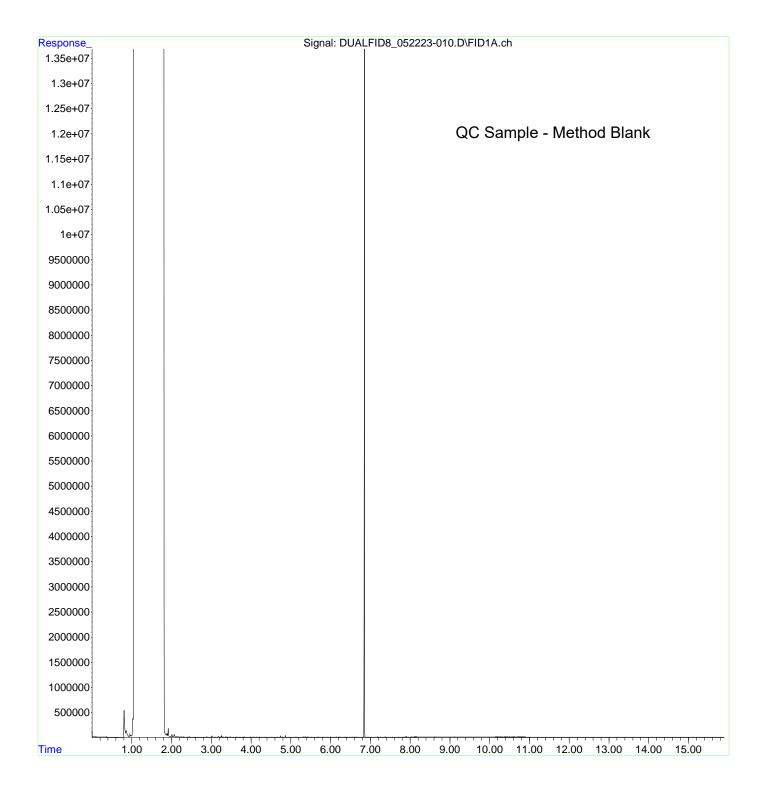
Operator :

Acquired : 24 May 2023 10:55 am using AcqMethod DUALFID8 Acquisition.M

Instrument : FUELS8
Sample Name: A3E1514-16

Misc Info : ERR




File :M:\DUALFID8\data\2023-05\3E22057\DUALFID8\_052223-010.D

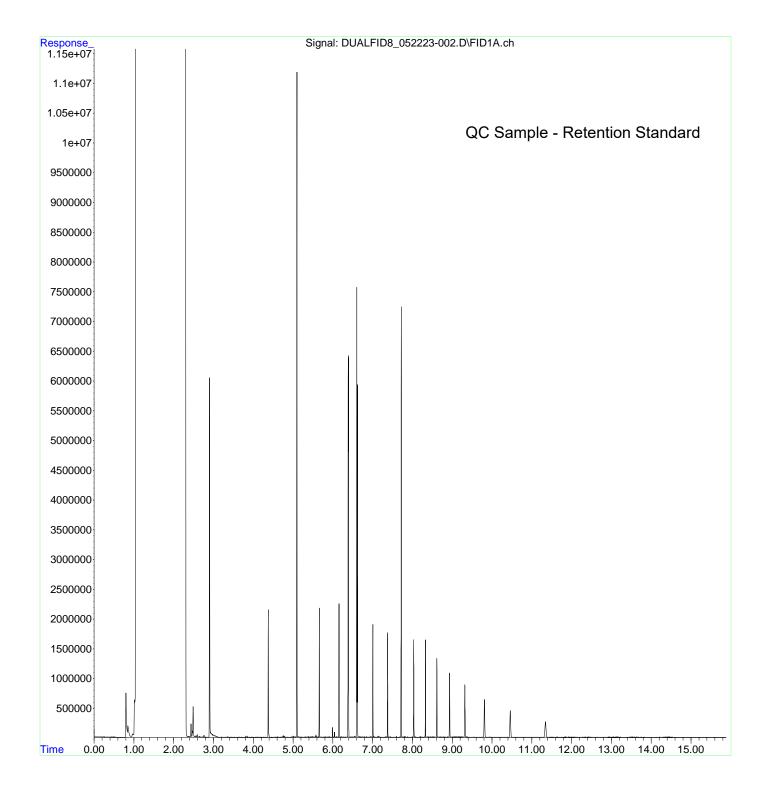
Operator :

Acquired : 22 May 2023 06:03 pm using AcqMethod DUALFID8 Acquisition.M

Instrument : FUELS8
Sample Name: 23E0901-BLK1

Misc Info : ERR




File :M:\DUALFID8\data\2023-05\3E22057\DUALFID8\_052223-002.D

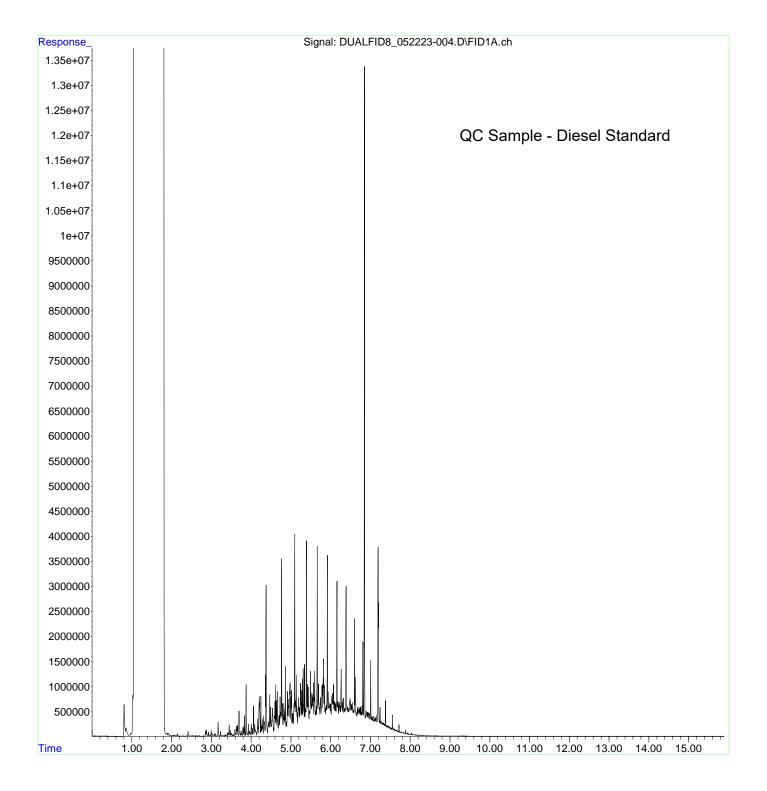
Operator :

Acquired : 22 May 2023 04:30 pm using AcqMethod DUALFID8 Acquisition.M

Instrument : FUELS8
Sample Name: 3E22057-RES1

Misc Info : ERR




File :M:\DUALFID8\data\2023-05\3E22057\DUALFID8\_052223-004.D

Operator :

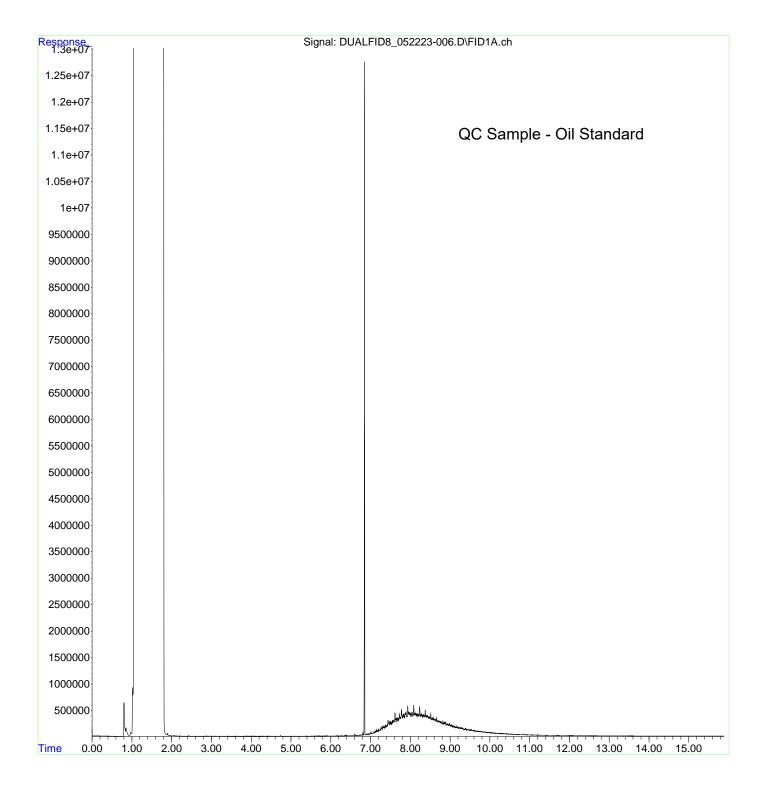
Acquired : 22 May 2023 04:52 pm using AcqMethod DUALFID8 Acquisition.M

Instrument : FUELS8
Sample Name: 3E22057-CCV1

Misc Info : ERR



File :M:\DUALFID8\data\2023-05\3E22057\DUALFID8\_052223-006.D


Operator :

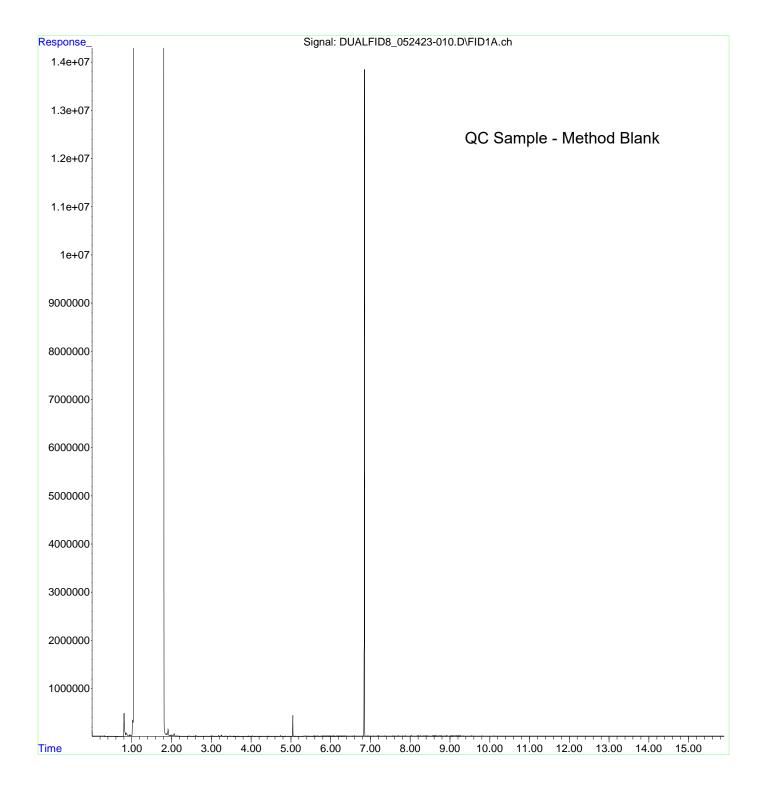
Acquired : 22 May 2023 05:20 pm using AcqMethod DUALFID8 Acquisition.M

Instrument : FUELS8

Sample Name: 3E22057-CCV2

Misc Info : ERR




File :M:\DUALFID8\data\2023-05\3E24034\DUALFID8\_052423-010.D

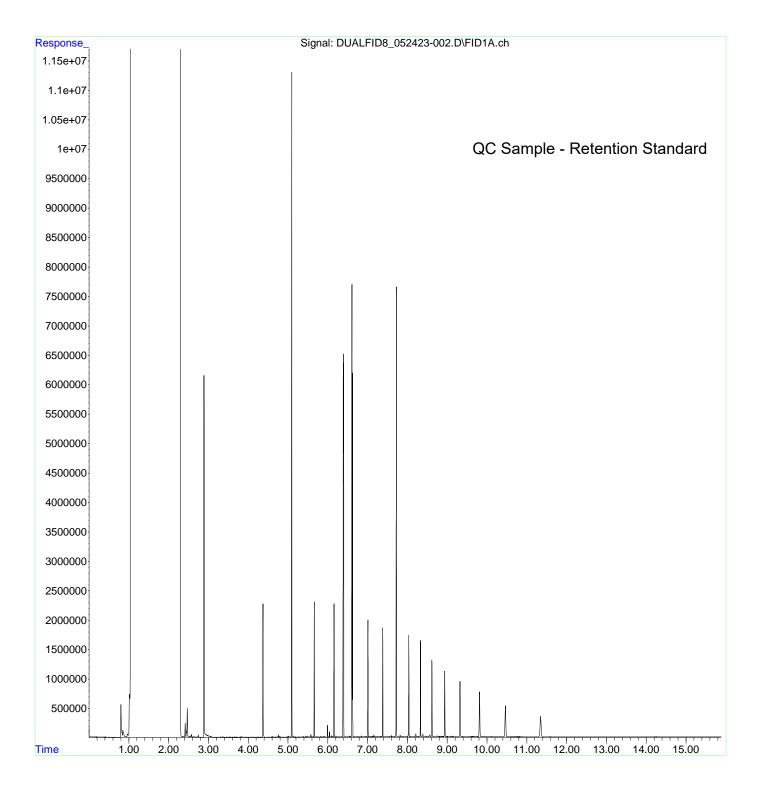
Operator :

Acquired : 24 May 2023 08:22 am using AcqMethod DUALFID8 Acquisition.M

Instrument : FUELS8
Sample Name: 23E0956-BLK1

Misc Info : ERR




File :M:\DUALFID8\data\2023-05\3E24034\DUALFID8\_052423-002.D

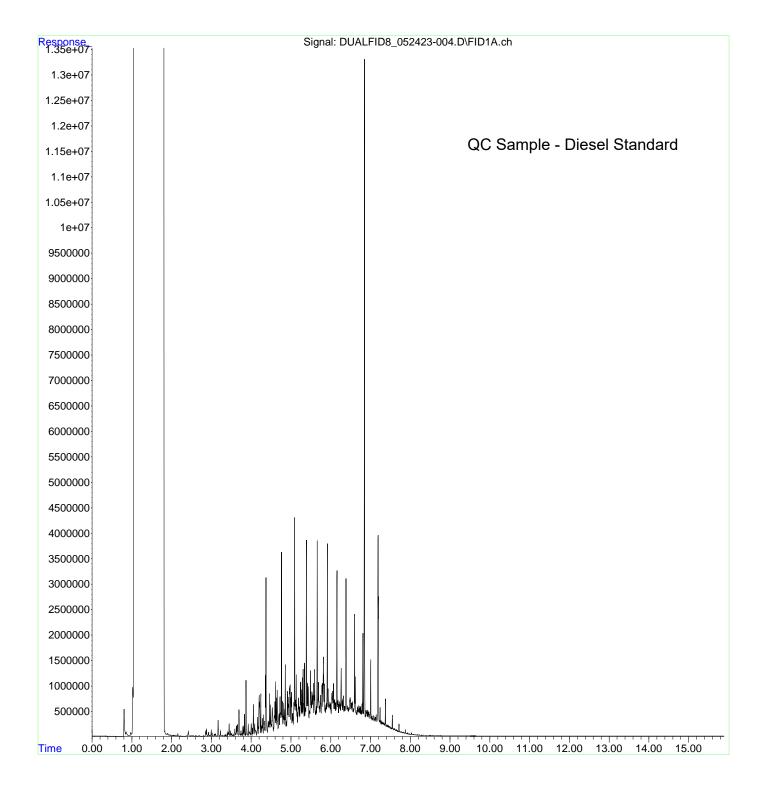
Operator :

Acquired : 24 May 2023 06:54 am using AcqMethod DUALFID8 Acquisition.M

Instrument : FUELS8
Sample Name: 3E24034-RES1

Misc Info : ERR




File :M:\DUALFID8\data\2023-05\3E24034\DUALFID8\_052423-004.D

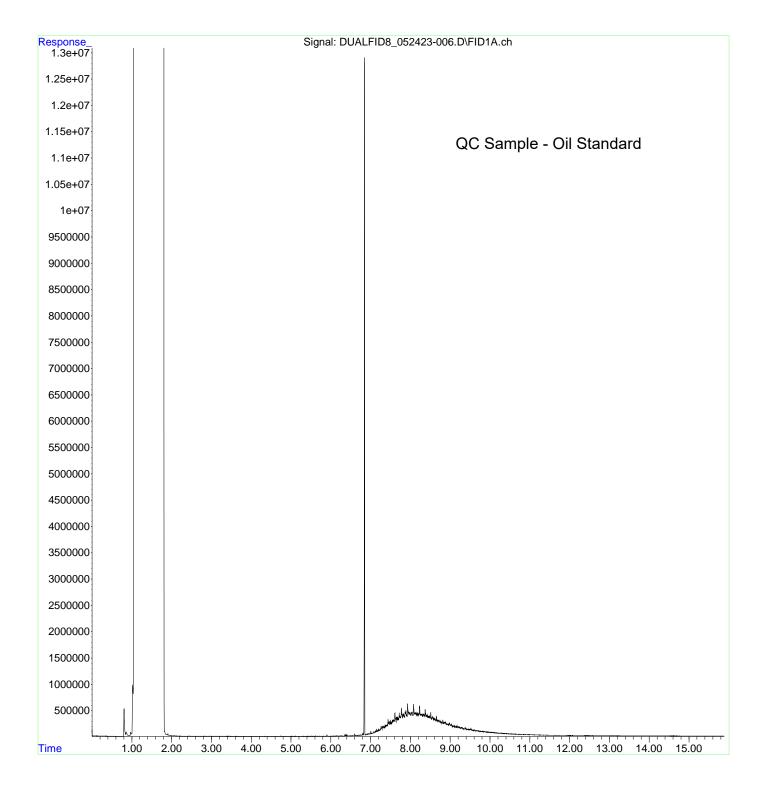
Operator :

Acquired : 24 May 2023 07:16 am using AcqMethod DUALFID8 Acquisition.M

Instrument : FUELS8
Sample Name: 3E24034-CCV1

Misc Info : ERR




File :M:\DUALFID8\data\2023-05\3E24034\DUALFID8\_052423-006.D

Operator :

Acquired : 24 May 2023 07:38 am using AcqMethod DUALFID8 Acquisition.M

Instrument : FUELS8
Sample Name: 3E24034-CCV2

Misc Info : ERR





**Apex Laboratories, LLC** 

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

AMENDED REPORT

Friday, December 22, 2023 Greg Peters Farallon-Seattle 1809 7th Ave Suite 1111 Seattle, WA 98101

RE: A3H1087 - 397-019 Block 38 West - 397-019 Block 38 West

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A3H1087, which was received by the laboratory on 8/15/2023 at 10:34:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <a href="mailto:mpoquiz@apex-labs.com">mpoquiz@apex-labs.com</a>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.





Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-SeattleProject:397-019 Block 38 West1809 7th Ave Suite 1111Project Number:397-019 Block 38 West

Seattle, WA 98101 Project Manager: Greg Peters

Report ID: A3H1087 - 12 22 23 1819

#### ANALYTICAL REPORT FOR SAMPLES

|                  | SAMPLE INFO   | ORMATION |                |                |
|------------------|---------------|----------|----------------|----------------|
| Client Sample ID | Laboratory ID | Matrix   | Date Sampled   | Date Received  |
| FMW-154-081423   | АЗН1087-01    | Water    | 08/14/23 15:00 | 08/15/23 10:34 |
| FMW-156-081423   | АЗН1087-02    | Water    | 08/14/23 13:30 | 08/15/23 10:34 |
| FMW-155-081423   | АЗН1087-03    | Water    | 08/14/23 10:50 | 08/15/23 10:34 |
| FMW-161-081423   | АЗН1087-04    | Water    | 08/14/23 14:26 | 08/15/23 10:34 |
| FMW-160-081423   | АЗН1087-05    | Water    | 08/14/23 13:08 | 08/15/23 10:34 |
| FMW-163-081423   | АЗН1087-06    | Water    | 08/14/23 11:44 | 08/15/23 10:34 |

Apex Laboratories

(milale fog



AMENDED REPORT

#### **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

**Report ID:** 

Farallon-SeattleProject:397-019 Block 38 West1809 7th Ave Suite 1111Project Number:397-019 Block 38 WestSeattle, WA 98101Project Manager:Greg Peters

Project Manager: Greg Peters A3H1087 - 12 22 23 1819

#### ANALYTICAL CASE NARRATIVE

A3H1087 Apex Laboratories

Amended Report Revision 2:

Reporting to Reporting Limits (RLs)-

This report supersedes all previous reports.

Per client request, this report has been amended to report all NWTPH-Dx data to the RLs.

Michele Poquiz Forensics Project Manager 12/22/2023

Amended Report Revision 1:

This report supersedes all previous reports.

Analysis of the following samples for NWTPH-Dx with silica gel column cleanup was added after the previous report version had been completed:

- FMW-154-081423 (A3H1087-01)
- FMW-155-081423 (A3H1087-03)
- FMW-160-081423 (A3H1087-05)

Michele Poquiz Forensics Project Manager 9/7/2023

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> 1809 7th Ave Suite 1111 Seattle, WA 98101 Project Number: 397-019 Block 38 West
Project Manager: Greg Peters

Report ID: A3H1087 - 12 22 23 1819

# ANALYTICAL SAMPLE RESULTS

|                               | Die    | esel and/or O      | il Hydrocar        | bons by NWTPI    | H-Dx          |                |              |      |
|-------------------------------|--------|--------------------|--------------------|------------------|---------------|----------------|--------------|------|
| Analyta                       | Sample | Detection<br>Limit | Reporting<br>Limit | T T '4-          | Dilor         | Date           | Matha J.D. C | NT 4 |
| Analyte                       | Result | Limit              | Limit              | Units            | Dilution      | Analyzed       | Method Ref.  | Note |
| FMW-154-081423 (A3H1087-01)   |        |                    |                    | Matrix: Wate     | Matrix: Water |                | 23H0758      |      |
| Diesel                        | 514    |                    | 76.2               | ug/L             | 1             | 08/21/23 23:44 | NWTPH-Dx LL  | F-11 |
| Oil                           | ND     |                    | 152                | ug/L             | 1             | 08/21/23 23:44 | NWTPH-Dx LL  |      |
| Surrogate: o-Terphenyl (Surr) |        | Reco               | very: 83 %         | Limits: 50-150 % | 1             | 08/21/23 23:44 | NWTPH-Dx LL  |      |
| FMW-156-081423 (A3H1087-02)   |        |                    |                    | Matrix: Wate     | r             | Batch:         | 23H0758      |      |
| Diesel                        | 256    |                    | 75.5               | ug/L             | 1             | 08/22/23 00:07 | NWTPH-Dx LL  | F-11 |
| Oil                           | ND     |                    | 151                | ug/L             | 1             | 08/22/23 00:07 | NWTPH-Dx LL  |      |
| Surrogate: o-Terphenyl (Surr) |        | Reco               | very: 96%          | Limits: 50-150 % | 1             | 08/22/23 00:07 | NWTPH-Dx LL  |      |
| FMW-155-081423 (A3H1087-03)   |        |                    |                    | Matrix: Water    |               | Batch:         |              |      |
| Diesel                        | 530    |                    | 76.9               | ug/L             | 1             | 08/22/23 00:31 | NWTPH-Dx LL  | F-11 |
| Oil                           | ND     |                    | 154                | ug/L             | 1             | 08/22/23 00:31 | NWTPH-Dx LL  |      |
| Surrogate: o-Terphenyl (Surr) |        | Reco               | very: 75 %         | Limits: 50-150 % | 1             | 08/22/23 00:31 | NWTPH-Dx LL  |      |
| FMW-161-081423 (A3H1087-04)   |        |                    |                    | Matrix: Wate     | r             | Batch:         |              |      |
| Diesel                        | 202    |                    | 76.9               | ug/L             | 1             | 08/22/23 00:54 | NWTPH-Dx LL  | F-11 |
| Oil                           | ND     |                    | 154                | ug/L             | 1             | 08/22/23 00:54 | NWTPH-Dx LL  |      |
| Surrogate: o-Terphenyl (Surr) |        | Reco               | very: 85 %         | Limits: 50-150 % | 1             | 08/22/23 00:54 | NWTPH-Dx LL  |      |
| FMW-160-081423 (A3H1087-05)   |        |                    |                    | Matrix: Wate     | r             | Batch:         | 23H0758      |      |
| Diesel                        | 634    |                    | 76.9               | ug/L             | 1             | 08/22/23 01:17 | NWTPH-Dx LL  | F-11 |
| Oil                           | ND     |                    | 154                | ug/L             | 1             | 08/22/23 01:17 | NWTPH-Dx LL  |      |
| Surrogate: o-Terphenyl (Surr) |        | Reco               | very: 82 %         | Limits: 50-150 % | 1             | 08/22/23 01:17 | NWTPH-Dx LL  |      |
| FMW-163-081423 (A3H1087-06)   |        |                    |                    | Matrix: Wate     | r             | Batch:         |              |      |
| Diesel                        | 259    |                    | 76.9               | ug/L             | 1             | 08/22/23 01:41 | NWTPH-Dx LL  | F-11 |
| Oil                           | ND     |                    | 154                | ug/L             | 1             | 08/22/23 01:41 | NWTPH-Dx LL  |      |
| Surrogate: o-Terphenyl (Surr) |        | Reco               | very: 80 %         | Limits: 50-150 % | 1             | 08/22/23 01:41 | NWTPH-Dx LL  |      |

Apex Laboratories

\_\_\_\_



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle
1809 7th Ave Suite 1111
Seattle, WA 98101

Project Number: 397-019 Block 38 West
Project Manager: Greg Peters

Report ID:
A3H1087 - 12 22 23 1819

# ANALYTICAL SAMPLE RESULTS

| Diese                         | el and/or Oil H  | ydrocarbons        | by NWTPH           | -Dx with Silica  | Gel Colu | mn Cleanup       |              |       |
|-------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|--------------|-------|
| Analyte                       | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref.  | Notes |
| FMW-154-081423 (A3H1087-01)   |                  |                    |                    | Matrix: Wate     | er       | Batch            | : 2310147    |       |
| Diesel                        | ND               |                    | 76.2               | ug/L             | 1        | 09/06/23 22:30   | NWTPH-Dx/SGC |       |
| Oil                           | 195              |                    | 152                | ug/L             | 1        | 09/06/23 22:30   | NWTPH-Dx/SGC | F-13  |
| Surrogate: o-Terphenyl (Surr) |                  | Reco               | very: 63 %         | Limits: 50-150 % | 5 1      | 09/06/23 22:30   | NWTPH-Dx/SGC |       |
| FMW-155-081423 (A3H1087-03)   |                  |                    |                    |                  | er       | Batch            |              |       |
| Diesel                        | ND               |                    | 76.9               | ug/L             | 1        | 09/06/23 22:54   | NWTPH-Dx/SGC |       |
| Oil                           | ND               |                    | 154                | ug/L             | 1        | 09/06/23 22:54   | NWTPH-Dx/SGC | F-13  |
| Surrogate: o-Terphenyl (Surr) |                  | Reco               | very: 53 %         | Limits: 50-150 % | 5 1      | 09/06/23 22:54   | NWTPH-Dx/SGC |       |
| FMW-160-081423 (A3H1087-05)   |                  |                    |                    | Matrix: Wate     | er       | Batch            | : 2310147    |       |
| Diesel                        | ND               |                    | 76.9               | ug/L             | 1        | 09/06/23 23:17   | NWTPH-Dx/SGC |       |
| Oil                           | ND               |                    | 154                | ug/L             | 1        | 09/06/23 23:17   | NWTPH-Dx/SGC |       |
| Surrogate: o-Terphenyl (Surr) |                  | Reco               | very: 57 %         | Limits: 50-150 % | 5 1      | 09/06/23 23:17   | NWTPH-Dx/SGC |       |

Apex Laboratories

/ milale fog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> 1809 7th Ave Suite 1111 Seattle, WA 98101 Project Number: 397-019 Block 38 West
Project Manager: Greg Peters

Report ID: A3H1087 - 12 22 23 1819

# ANALYTICAL SAMPLE RESULTS

| Gasoi                                 | inc italige Hy   | di ocai bolis (De | JIIZEIIE U         | rough Naphtha    | iciie, by | 111711111-08     |               |       |
|---------------------------------------|------------------|-------------------|--------------------|------------------|-----------|------------------|---------------|-------|
| Analyte                               | Sample<br>Result | Detection Limit   | Reporting<br>Limit | Units            | Dilution  | Date<br>Analyzed | Method Ref.   | Notes |
| FMW-154-081423 (A3H1087-01)           |                  |                   |                    | Matrix: Water    |           | Batch:           | 23H0599       |       |
| Gasoline Range Organics               | ND               | 50.0 100          |                    | ug/L             | 1         | 08/16/23 12:41   | NWTPH-Gx (MS) |       |
| Surrogate: 4-Bromofluorobenzene (Sur) |                  | Recovery          | : 93 %             | Limits: 50-150 % | 1         | 08/16/23 12:41   | NWTPH-Gx (MS) |       |
| 1,4-Difluorobenzene (Sur)             |                  |                   | 102 %              | 50-150 %         | 1         | 08/16/23 12:41   | NWTPH-Gx (MS) |       |
| FMW-156-081423 (A3H1087-02)           |                  |                   |                    | Matrix: Wate     | r         | Batch:           | 23H0599       |       |
| Gasoline Range Organics               | ND               | 50.0              | 100                | ug/L             | 1         | 08/16/23 13:03   | NWTPH-Gx (MS) |       |
| Surrogate: 4-Bromofluorobenzene (Sur) |                  | Recovery          | : 93 %             | Limits: 50-150 % | 1         | 08/16/23 13:03   | NWTPH-Gx (MS) |       |
| 1,4-Difluorobenzene (Sur)             |                  |                   | 102 %              | 50-150 %         | 1         | 08/16/23 13:03   | NWTPH-Gx (MS) |       |
| FMW-155-081423 (A3H1087-03)           |                  |                   |                    | Matrix: Wate     | r         | Batch:           | 23H0599       |       |
| Gasoline Range Organics               | ND               | 50.0              | 100                | ug/L             | 1         | 08/16/23 16:04   | NWTPH-Gx (MS) |       |
| Surrogate: 4-Bromofluorobenzene (Sur) |                  | Recovery          | : 94%              | Limits: 50-150 % | 1         | 08/16/23 16:04   | NWTPH-Gx (MS) |       |
| 1,4-Difluorobenzene (Sur)             |                  |                   | 103 %              | 50-150 %         | 1         | 08/16/23 16:04   | NWTPH-Gx (MS) |       |
| FMW-161-081423 (A3H1087-04)           |                  |                   |                    | Matrix: Wate     | r         | Batch:           | 23H0599       |       |
| Gasoline Range Organics               | ND               | 50.0              | 100                | ug/L             | 1         | 08/16/23 13:26   | NWTPH-Gx (MS) |       |
| Surrogate: 4-Bromofluorobenzene (Sur) |                  | Recovery          | : 92 %             | Limits: 50-150 % | 1         | 08/16/23 13:26   | NWTPH-Gx (MS) |       |
| 1,4-Difluorobenzene (Sur)             |                  |                   | 101 %              | 50-150 %         | 1         | 08/16/23 13:26   | NWTPH-Gx (MS) |       |
| FMW-160-081423 (A3H1087-05)           |                  |                   |                    | Matrix: Wate     | r         | Batch:           | 23H0599       |       |
| Gasoline Range Organics               | ND               | 50.0              | 100                | ug/L             | 1         | 08/16/23 13:48   | NWTPH-Gx (MS) |       |
| Surrogate: 4-Bromofluorobenzene (Sur) |                  | Recovery          | : 93 %             | Limits: 50-150 % | 1         | 08/16/23 13:48   | NWTPH-Gx (MS) |       |
| 1,4-Difluorobenzene (Sur)             |                  |                   | 102 %              | 50-150 %         | 1         | 08/16/23 13:48   | NWTPH-Gx (MS) |       |
| FMW-163-081423 (A3H1087-06)           |                  |                   |                    | Matrix: Wate     | r         | Batch:           | 23H0599       |       |
| Gasoline Range Organics               | ND               | 50.0              | 100                | ug/L             | 1         | 08/16/23 14:11   | NWTPH-Gx (MS) |       |
| Surrogate: 4-Bromofluorobenzene (Sur) |                  | Recovery          | : 95 %             | Limits: 50-150 % | 1         | 08/16/23 14:11   | NWTPH-Gx (MS) |       |
| 1,4-Difluorobenzene (Sur)             |                  |                   | 102 %              | 50-150 %         | 1         | 08/16/23 14:11   | NWTPH-Gx (MS) |       |

Apex Laboratories

( milale fog



#### AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> 1809 7th Ave Suite 1111 Seattle, WA 98101 Project Number: 397-019 Block 38 West
Project Manager: Greg Peters

Report ID: A3H1087 - 12 22 23 1819

# ANALYTICAL SAMPLE RESULTS

|                                       |                  | BTEX Co            | mpounds b          | y EPA 8260D      |          |                  |             |       |
|---------------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|-------------|-------|
| Analyte                               | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| FMW-154-081423 (A3H1087-01)           |                  |                    |                    | Matrix: Water    |          | Batch: 2         |             |       |
| Benzene                               | 0.120            | 0.100              | 0.200              | ug/L             | 1        | 08/16/23 12:41   | EPA 8260D   | J     |
| Toluene                               | ND               | 0.500              | 1.00               | ug/L             | 1        | 08/16/23 12:41   | EPA 8260D   |       |
| Ethylbenzene                          | ND               | 0.250              | 0.500              | ug/L             | 1        | 08/16/23 12:41   | EPA 8260D   |       |
| Xylenes, total                        | ND               | 0.750              | 1.50               | ug/L             | 1        | 08/16/23 12:41   | EPA 8260D   |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Recove             | ery: 102 %         | Limits: 80-120 % | 1        | 08/16/23 12:41   | EPA 8260D   |       |
| Toluene-d8 (Surr)                     |                  |                    | 103 %              | 80-120 %         | 1        | 08/16/23 12:41   | EPA 8260D   |       |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 102 %              | 80-120 %         | 1        | 08/16/23 12:41   | EPA 8260D   |       |
| FMW-156-081423 (A3H1087-02)           |                  |                    |                    | Matrix: Wate     | r        | Batch: 2         | 23H0599     |       |
| Benzene                               | ND               | 0.100              | 0.200              | ug/L             | 1        | 08/16/23 13:03   | EPA 8260D   |       |
| Toluene                               | ND               | 0.500              | 1.00               | ug/L             | 1        | 08/16/23 13:03   | EPA 8260D   |       |
| Ethylbenzene                          | ND               | 0.250              | 0.500              | ug/L             | 1        | 08/16/23 13:03   | EPA 8260D   |       |
| Xylenes, total                        | ND               | 0.750              | 1.50               | ug/L             | 1        | 08/16/23 13:03   | EPA 8260D   |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Recove             | ery: 102 %         | Limits: 80-120 % | 1        | 08/16/23 13:03   | EPA 8260D   |       |
| Toluene-d8 (Surr)                     |                  |                    | 102 %              | 80-120 %         | 1        | 08/16/23 13:03   | EPA 8260D   |       |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 102 %              | 80-120 %         | 1        | 08/16/23 13:03   | EPA 8260D   |       |
| FMW-155-081423 (A3H1087-03)           |                  |                    |                    | Matrix: Wate     | r        | Batch: 2         | 23H0599     |       |
| Benzene                               | ND               | 0.100              | 0.200              | ug/L             | 1        | 08/16/23 16:04   | EPA 8260D   |       |
| Toluene                               | ND               | 0.500              | 1.00               | ug/L             | 1        | 08/16/23 16:04   | EPA 8260D   |       |
| Ethylbenzene                          | ND               | 0.250              | 0.500              | ug/L             | 1        | 08/16/23 16:04   | EPA 8260D   |       |
| Xylenes, total                        | ND               | 0.750              | 1.50               | ug/L             | 1        | 08/16/23 16:04   | EPA 8260D   |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Recove             | ery: 100 %         | Limits: 80-120 % | 1        | 08/16/23 16:04   | EPA 8260D   |       |
| Toluene-d8 (Surr)                     |                  |                    | 102 %              | 80-120 %         | 1        | 08/16/23 16:04   | EPA 8260D   |       |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 97 %               | 80-120 %         | 1        | 08/16/23 16:04   | EPA 8260D   |       |
| FMW-161-081423 (A3H1087-04)           |                  |                    |                    | Matrix: Wate     | r        | Batch: 2         | 23H0599     |       |
| Benzene                               | ND               | 0.100              | 0.200              | ug/L             | 1        | 08/16/23 13:26   | EPA 8260D   |       |
| Toluene                               | ND               | 0.500              | 1.00               | ug/L             | 1        | 08/16/23 13:26   | EPA 8260D   |       |
| Ethylbenzene                          | ND               | 0.250              | 0.500              | ug/L             | 1        | 08/16/23 13:26   | EPA 8260D   |       |
| Xylenes, total                        | ND               | 0.750              | 1.50               | ug/L             | 1        | 08/16/23 13:26   | EPA 8260D   |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Recove             | ery: 100 %         | Limits: 80-120 % | I        | 08/16/23 13:26   | EPA 8260D   |       |
| Toluene-d8 (Surr)                     |                  |                    | 103 %              | 80-120 %         | 1        | 08/16/23 13:26   | EPA 8260D   |       |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 100 %              | 80-120 %         | 1        | 08/16/23 13:26   | EPA 8260D   |       |

Apex Laboratories

/ milale fog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-SeattleProject:1809 7th Ave Suite 1111Project NumSeattle, WA 98101Project Man

Project Number: 397-019 Block 38 West
Project Manager: Greg Peters

Report ID: A3H1087 - 12 22 23 1819

# ANALYTICAL SAMPLE RESULTS

|                                       |                  | BTEX Co            | mpounds b          | y EPA 8260D      |          |                  |             |       |
|---------------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|-------------|-------|
| Analyte                               | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| FMW-160-081423 (A3H1087-05)           |                  |                    |                    | Matrix: Water    |          | Batch: 2         | 23H0599     |       |
| Benzene                               | 0.250            | 0.100              | 0.200              | ug/L             | 1        | 08/16/23 13:48   | EPA 8260D   |       |
| Toluene                               | ND               | 0.500              | 1.00               | ug/L             | 1        | 08/16/23 13:48   | EPA 8260D   |       |
| Ethylbenzene                          | ND               | 0.250              | 0.500              | ug/L             | 1        | 08/16/23 13:48   | EPA 8260D   |       |
| Xylenes, total                        | ND               | 0.750              | 1.50               | ug/L             | 1        | 08/16/23 13:48   | EPA 8260D   |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Recove             | ery: 100 %         | Limits: 80-120 % | 6 I      | 08/16/23 13:48   | EPA 8260D   |       |
| Toluene-d8 (Surr)                     |                  |                    | 102 %              | 80-120 %         | 6 1      | 08/16/23 13:48   | EPA 8260D   |       |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 101 %              | 80-120 %         | 6 I      | 08/16/23 13:48   | EPA 8260D   |       |
| FMW-163-081423 (A3H1087-06)           |                  |                    |                    | Matrix: Wate     | ər       | Batch: 2         | 23H0599     |       |
| Benzene                               | 1.22             | 0.100              | 0.200              | ug/L             | 1        | 08/16/23 14:11   | EPA 8260D   |       |
| Toluene                               | ND               | 0.500              | 1.00               | ug/L             | 1        | 08/16/23 14:11   | EPA 8260D   |       |
| Ethylbenzene                          | ND               | 0.250              | 0.500              | ug/L             | 1        | 08/16/23 14:11   | EPA 8260D   |       |
| Xylenes, total                        | ND               | 0.750              | 1.50               | ug/L             | 1        | 08/16/23 14:11   | EPA 8260D   |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Reco               | very: 99 %         | Limits: 80-120 % | 6 1      | 08/16/23 14:11   | EPA 8260D   |       |
| Toluene-d8 (Surr)                     |                  |                    | 103 %              | 80-120 %         | 6 1      | 08/16/23 14:11   | EPA 8260D   |       |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 99 %               | 80-120 %         | 6 I      | 08/16/23 14:11   | EPA 8260D   |       |

Apex Laboratories

(milale fog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> 1809 7th Ave Suite 1111 Seattle, WA 98101 Project Number: 397-019 Block 38 West
Project Manager: Greg Peters

Report ID: A3H1087 - 12 22 23 1819

# ANALYTICAL SAMPLE RESULTS

|                                    | Polyaromatic Hydrocarbons (PAHs) by EPA 8270E (SIM) |          |           |                  |          |                |               |       |  |  |  |
|------------------------------------|-----------------------------------------------------|----------|-----------|------------------|----------|----------------|---------------|-------|--|--|--|
|                                    | Sample                                              |          | Reporting | ** *             | 50 m     | Date           | W 4 1D 2      |       |  |  |  |
| Analyte                            | Result                                              | Limit    | Limit     | Units            | Dilution | Analyzed       | Method Ref.   | Notes |  |  |  |
| FMW-154-081423 (A3H1087-01)        |                                                     |          |           | Matrix: Wate     | r        | Batch:         |               |       |  |  |  |
| 1-Methylnaphthalene                | 1.29                                                | 0.0385   | 0.0769    | ug/L             | 1        | 08/21/23 13:09 | EPA 8270E SIM |       |  |  |  |
| 2-Methylnaphthalene                | ND                                                  | 0.0385   | 0.0769    | ug/L             | 1        | 08/21/23 13:09 | EPA 8270E SIM |       |  |  |  |
| Naphthalene                        | 2.14                                                | 0.0385   | 0.0769    | ug/L             | 1        | 08/21/23 13:09 | EPA 8270E SIM |       |  |  |  |
| Surrogate: 2-Fluorobiphenyl (Surr) |                                                     | Recovery | : 63 %    | Limits: 44-120 % | I        | 08/21/23 13:09 | EPA 8270E SIM |       |  |  |  |
| p-Terphenyl-d14 (Surr)             |                                                     |          | 76 %      | 50-134 %         | I        | 08/21/23 13:09 | EPA 8270E SIM |       |  |  |  |
| FMW-156-081423 (A3H1087-02)        |                                                     |          |           | Matrix: Wate     | r        | Batch:         | 23H0735       |       |  |  |  |
| 1-Methylnaphthalene                | ND                                                  | 0.0392   | 0.0784    | ug/L             | 1        | 08/21/23 13:35 | EPA 8270E SIM |       |  |  |  |
| 2-Methylnaphthalene                | ND                                                  | 0.0392   | 0.0784    | ug/L             | 1        | 08/21/23 13:35 | EPA 8270E SIM |       |  |  |  |
| Naphthalene                        | ND                                                  | 0.0392   | 0.0784    | ug/L             | 1        | 08/21/23 13:35 | EPA 8270E SIM |       |  |  |  |
| Surrogate: 2-Fluorobiphenyl (Surr) |                                                     | Recovery | : 57 %    | Limits: 44-120 % | I        | 08/21/23 13:35 | EPA 8270E SIM |       |  |  |  |
| p-Terphenyl-d14 (Surr)             |                                                     |          | 82 %      | 50-134 %         | 1        | 08/21/23 13:35 | EPA 8270E SIM |       |  |  |  |
| FMW-155-081423 (A3H1087-03)        |                                                     |          |           | Matrix: Wate     | r        | Batch:         | 23H0735       |       |  |  |  |
| 1-Methylnaphthalene                | ND                                                  | 0.0392   | 0.0784    | ug/L             | 1        | 08/21/23 14:00 | EPA 8270E SIM |       |  |  |  |
| 2-Methylnaphthalene                | ND                                                  | 0.0392   | 0.0784    | ug/L             | 1        | 08/21/23 14:00 | EPA 8270E SIM |       |  |  |  |
| Naphthalene                        | ND                                                  | 0.0392   | 0.0784    | ug/L             | 1        | 08/21/23 14:00 | EPA 8270E SIM |       |  |  |  |
| Surrogate: 2-Fluorobiphenyl (Surr) |                                                     | Recovery | : 63 %    | Limits: 44-120 % | 1        | 08/21/23 14:00 | EPA 8270E SIM |       |  |  |  |
| p-Terphenyl-d14 (Surr)             |                                                     |          | 55 %      | 50-134 %         | I        | 08/21/23 14:00 | EPA 8270E SIM |       |  |  |  |
| FMW-161-081423 (A3H1087-04)        |                                                     |          |           | Matrix: Wate     | r        | Batch:         | 23H0735       |       |  |  |  |
| 1-Methylnaphthalene                | ND                                                  | 0.0385   | 0.0769    | ug/L             | 1        | 08/21/23 14:26 | EPA 8270E SIM |       |  |  |  |
| 2-Methylnaphthalene                | ND                                                  | 0.0385   | 0.0769    | ug/L             | 1        | 08/21/23 14:26 | EPA 8270E SIM |       |  |  |  |
| Naphthalene                        | 0.0692                                              | 0.0385   | 0.0769    | ug/L             | 1        | 08/21/23 14:26 | EPA 8270E SIM | J     |  |  |  |
| Surrogate: 2-Fluorobiphenyl (Surr) |                                                     | Recovery | : 47%     | Limits: 44-120 % | I        | 08/21/23 14:26 | EPA 8270E SIM |       |  |  |  |
| p-Terphenyl-d14 (Surr)             |                                                     |          | 67 %      | 50-134 %         | I        | 08/21/23 14:26 | EPA 8270E SIM |       |  |  |  |
| FMW-160-081423 (A3H1087-05)        |                                                     |          |           | Matrix: Wate     | r        | Batch:         | 23H0735       |       |  |  |  |
| 1-Methylnaphthalene                | ND                                                  | 0.0421   | 0.0842    | ug/L             | 1        | 08/21/23 14:51 | EPA 8270E SIM |       |  |  |  |
| 2-Methylnaphthalene                | ND                                                  | 0.0421   | 0.0842    | ug/L             | 1        | 08/21/23 14:51 | EPA 8270E SIM |       |  |  |  |
| Naphthalene                        | ND                                                  | 0.0421   | 0.0842    | ug/L             | 1        | 08/21/23 14:51 | EPA 8270E SIM |       |  |  |  |
| Surrogate: 2-Fluorobiphenyl (Surr) |                                                     | Recovery | v: 66 %   | Limits: 44-120 % | 1        | 08/21/23 14:51 | EPA 8270E SIM |       |  |  |  |
| p-Terphenyl-d14 (Surr)             |                                                     | •        | 75 %      | 50-134 %         | 1        | 08/21/23 14:51 | EPA 8270E SIM |       |  |  |  |

Apex Laboratories

(milale fog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-SeattleProject:397-019 Block 38 West1809 7th Ave Suite 1111Project Number:397-019 Block 38 WestSeattle, WA 98101Project Manager:Greg Peters

Report ID:
A3H1087 - 12 22 23 1819

# ANALYTICAL SAMPLE RESULTS

|                                    | Polyaro          | matic Hydrod       | carbons (PA        | AHs) by EPA 82   | 70E (SIM | )                |               |       |
|------------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|---------------|-------|
| Analyte                            | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref.   | Notes |
| FMW-163-081423 (A3H1087-06)        |                  |                    |                    | Matrix: Wate     | ər       | Batch:           | 23H0735       |       |
| 1-Methylnaphthalene                | ND               | 0.0444             | 0.0889             | ug/L             | 1        | 08/21/23 15:17   | EPA 8270E SIM |       |
| 2-Methylnaphthalene                | ND               | 0.0444             | 0.0889             | ug/L             | 1        | 08/21/23 15:17   | EPA 8270E SIM |       |
| Naphthalene                        | 0.328            | 0.0444             | 0.0889             | ug/L             | 1        | 08/21/23 15:17   | EPA 8270E SIM |       |
| Surrogate: 2-Fluorobiphenyl (Surr) |                  | Recov              | very: 60 %         | Limits: 44-120 % | 6 1      | 08/21/23 15:17   | EPA 8270E SIM |       |
| p-Terphenyl-d14 (Surr)             |                  |                    | 82 %               | 50-134 %         | 6 I      | 08/21/23 15:17   | EPA 8270E SIM |       |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> 1809 7th Ave Suite 1111 Seattle, WA 98101 Project Number: 397-019 Block 38 West
Project Manager: Greg Peters

Report ID:
A3H1087 - 12 22 23 1819

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                             |            | Di                   | esel and/d         | or Oil Hyd  | drocarbor | ns by NWT       | PH-Dx            |       |                 |     |              |       |
|-----------------------------|------------|----------------------|--------------------|-------------|-----------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                     | Result     | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 23H0758 - EPA 3510C ( | Fuels/Acid | d Ext.)              |                    |             |           |                 | Wa               | ter   |                 |     |              |       |
| Blank (23H0758-BLK1)        |            |                      | Prepared           | d: 08/21/23 | 10:55 Ana | lyzed: 08/21/   | /23 20:59        |       |                 |     |              |       |
| NWTPH-Dx LL                 |            |                      |                    |             |           |                 |                  |       |                 |     |              |       |
| Diesel                      | ND         |                      | 80.0               | ug/L        | 1         |                 |                  |       |                 |     |              |       |
| Oil                         | ND         |                      | 160                | ug/L        | 1         |                 |                  |       |                 |     |              |       |
| Surr: o-Terphenyl (Surr)    |            | Reco                 | very: 83 %         | Limits: 50  | 0-150 %   | Dilı            | ution: 1x        |       |                 |     |              |       |
| LCS (23H0758-BS1)           |            |                      | Prepared           | d: 08/21/23 | 10:55 Ana | lyzed: 08/21/   | /23 21:23        |       |                 |     |              |       |
| NWTPH-Dx LL                 |            |                      |                    |             |           |                 |                  |       |                 |     |              |       |
| Diesel                      | 394        |                      | 80.0               | ug/L        | 1         | 500             |                  | 79    | 36-132%         |     |              |       |
| Surr: o-Terphenyl (Surr)    |            | Reco                 | very: 98 %         | Limits: 50  | 0-150 %   | Dilı            | ution: 1x        |       |                 |     |              |       |
| LCS Dup (23H0758-BSD1)      |            |                      | Prepared           | d: 08/21/23 | 10:55 Ana | lyzed: 08/21/   | /23 21:46        |       |                 |     |              | Q-19  |
| NWTPH-Dx LL                 |            |                      |                    |             |           |                 |                  |       |                 |     |              |       |
| Diesel                      | 364        |                      | 80.0               | ug/L        | 1         | 500             |                  | 73    | 36-132%         | 8   | 30%          |       |
| Surr: o-Terphenyl (Surr)    |            | Reco                 | very: 97 %         | Limits: 50  | 0-150 %   | Dilı            | tion: 1x         |       |                 |     |              |       |

Apex Laboratories

(milule fog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle
1809 7th Ave Suite 1111
Seattle, WA 98101

Project: 397-019 Block 38 West
Project Number: 397-019 Block 38 West

Project Number: 397-019 Block 38 West

Project Manager: Greg Peters

A3H1087 - 12 22 23 1819

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                              | Diesel     | and/or Oil I         | Hydrocarb          | ons by N    | WTPH-Dx    | with Silic      | ca Gel Co        | olumn Cle | anup            |     |              |          |
|------------------------------|------------|----------------------|--------------------|-------------|------------|-----------------|------------------|-----------|-----------------|-----|--------------|----------|
| Analyte                      | Result     | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution   | Spike<br>Amount | Source<br>Result | % REC     | % REC<br>Limits | RPD | RPD<br>Limit | Notes    |
| Batch 23I0147 - EPA 3510C (I | Fuels/Acid | Ext.) w/SGC          |                    |             |            |                 | Wa               | ter       |                 |     |              |          |
| Blank (23I0147-BLK1)         |            |                      | Prepare            | d: 08/21/23 | 10:55 Anal | yzed: 09/06     | 5/23 21:20       |           |                 |     |              |          |
| NWTPH-Dx/SGC                 |            |                      |                    |             |            |                 |                  |           |                 |     |              |          |
| Diesel                       | ND         |                      | 80.0               | ug/L        | 1          |                 |                  |           |                 |     |              |          |
| Oil                          | ND         |                      | 160                | ug/L        | 1          |                 |                  |           |                 |     |              |          |
| Surr: o-Terphenyl (Surr)     |            | Reco                 | very: 81 %         | Limits: 50  | 0-150 %    | Dilı            | ution: 1x        |           |                 |     |              |          |
| LCS (23I0147-BS1)            |            |                      | Prepare            | d: 08/21/23 | 10:55 Anal | lyzed: 09/06    | 0/23 21:43       |           |                 |     |              |          |
| NWTPH-Dx/SGC                 |            |                      |                    |             |            |                 |                  |           |                 |     |              |          |
| Diesel                       | 327        |                      | 80.0               | ug/L        | 1          | 500             |                  | 65        | 36-132%         |     |              |          |
| Surr: o-Terphenyl (Surr)     |            | Reco                 | very: 83 %         | Limits: 50  | 0-150 %    | Dilı            | ution: 1x        |           |                 |     |              |          |
| LCS Dup (23I0147-BSD1)       |            |                      | Prepare            | d: 08/21/23 | 10:55 Anal | lyzed: 09/06    | 5/23 22:07       |           |                 |     |              | Q-1      |
| NWTPH-Dx/SGC                 |            |                      |                    |             |            |                 |                  |           |                 |     |              | <u> </u> |
| Diesel                       | 306        |                      | 80.0               | ug/L        | 1          | 500             |                  | 61        | 36-132%         | 7   | 30%          |          |
| Surr: o-Terphenyl (Surr)     |            | Reco                 | very: 82 %         | Limits: 50  | 0-150 %    | Dilı            | ution: 1x        |           |                 |     |              |          |

Apex Laboratories

(milale fog



AMENDED REPORT

**Apex Laboratories, LLC** 

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> 1809 7th Ave Suite 1111 Seattle, WA 98101 Project: 397-019 Block 38 West
Project Number: 397-019 Block 38 West

Report ID:
A3H1087 - 12 22 23 1819

# QUALITY CONTROL (QC) SAMPLE RESULTS

Project Manager: Greg Peters

|                                  | Gasoli     | ne Range H           | ydrocarbo          | ns (Ben     | zene thro  | ugh Naph        | thalene)         | by NWTP | H-Gx            |     |              |      |
|----------------------------------|------------|----------------------|--------------------|-------------|------------|-----------------|------------------|---------|-----------------|-----|--------------|------|
| Analyte                          | Result     | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution   | Spike<br>Amount | Source<br>Result | % REC   | % REC<br>Limits | RPD | RPD<br>Limit | Note |
| Batch 23H0599 - EPA 5030C        |            |                      |                    |             |            |                 | Wa               | ter     |                 |     |              |      |
| Blank (23H0599-BLK1)             |            |                      | Prepared           | d: 08/16/23 | 09:53 Anal | lyzed: 08/16    | /23 12:18        |         |                 |     |              |      |
| NWTPH-Gx (MS)                    |            |                      |                    |             |            |                 |                  |         |                 |     |              |      |
| Gasoline Range Organics          | ND         | 50.0                 | 100                | ug/L        | 1          |                 |                  |         |                 |     |              |      |
| Surr: 4-Bromofluorobenzene (Sur) |            | Reco                 | very: 93 %         | Limits: 5   | 0-150 %    | Dilı            | ution: 1x        |         |                 |     |              |      |
| 1,4-Difluorobenzene (Sur)        |            |                      | 101 %              | 5           | 0-150 %    |                 | "                |         |                 |     |              |      |
| LCS (23H0599-BS2)                |            |                      | Prepared           | d: 08/16/23 | 09:53 Ana  | lyzed: 08/16    | /23 11:55        |         |                 |     |              |      |
| NWTPH-Gx (MS)                    |            |                      |                    |             |            |                 |                  |         |                 |     |              |      |
| Gasoline Range Organics          | 430        | 50.0                 | 100                | ug/L        | 1          | 500             |                  | 86      | 80-120%         |     |              |      |
| Surr: 4-Bromofluorobenzene (Sur) |            | Reco                 | very: 95 %         | Limits: 5   | 0-150 %    | Dilı            | ution: 1x        |         |                 |     |              |      |
| 1,4-Difluorobenzene (Sur)        |            |                      | 101 %              | 5           | 0-150 %    |                 | "                |         |                 |     |              |      |
| Duplicate (23H0599-DUP1)         |            |                      | Prepared           | d: 08/16/23 | 09:53 Anal | lyzed: 08/16    | /23 14:33        |         |                 |     |              |      |
| QC Source Sample: FMW-163-08     | 1423 (A3H1 | 1087-06)             |                    |             |            |                 |                  |         |                 | _   |              |      |
| NWTPH-Gx (MS)                    |            |                      |                    |             |            |                 |                  |         |                 |     |              |      |
| Gasoline Range Organics          | ND         | 50.0                 | 100                | ug/L        | 1          |                 | ND               |         |                 |     | 30%          |      |
| Surr: 4-Bromofluorobenzene (Sur) |            | Reco                 | very: 92 %         | Limits: 5   | 0-150 %    | Dilı            | ution: 1x        |         |                 |     |              |      |
| 1,4-Difluorobenzene (Sur)        |            |                      | 103 %              | 5           | 0-150 %    |                 | "                |         |                 |     |              |      |

Apex Laboratories

(milale fog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-SeattleProject:397-019 Block 38 West1809 7th Ave Suite 1111Project Number:397-019 Block 38 WestSeattle, WA 98101Project Manager:Greg Peters

Report ID:
A3H1087 - 12 22 23 1819

# QUALITY CONTROL (QC) SAMPLE RESULTS

| BTEX Compounds by EPA 8260D      |           |                      |                    |                  |            |                 |                  |       |                 |     |              |       |
|----------------------------------|-----------|----------------------|--------------------|------------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                          | Result    | Detection L<br>Limit | Reporting<br>Limit | Units            | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 23H0599 - EPA 5030C        | Water     |                      |                    |                  |            |                 |                  |       |                 |     |              |       |
| Blank (23H0599-BLK1)             |           |                      | Prepared           | 1: 08/16/23      | 09:53 Anal | lyzed: 08/16    | /23 12:18        |       |                 |     |              |       |
| EPA 8260D                        |           |                      |                    |                  |            |                 |                  |       |                 |     |              |       |
| Benzene                          | ND        | 0.100                | 0.200              | ug/L             | 1          |                 |                  |       |                 |     |              |       |
| Toluene                          | ND        | 0.500                | 1.00               | ug/L             | 1          |                 |                  |       |                 |     |              |       |
| Ethylbenzene                     | ND        | 0.250                | 0.500              | ug/L             | 1          |                 |                  |       |                 |     |              |       |
| Xylenes, total                   | ND        | 0.750                | 1.50               | ug/L             | 1          |                 |                  |       |                 |     |              |       |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recovery: 103 %      |                    | Limits: 80-120 % |            | Dilution: 1x    |                  |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           |                      | 102 %              | 80-120 %         |            |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 101 %              | 80               | 0-120 %    |                 | "                |       |                 |     |              |       |
| LCS (23H0599-BS1)                |           |                      | Prepared           | 1: 08/16/23      | 09:53 Anal | lyzed: 08/16    | /23 11:33        |       |                 |     |              |       |
| EPA 8260D                        |           |                      |                    |                  |            |                 |                  |       |                 |     |              |       |
| Benzene                          | 20.3      | 0.100                | 0.200              | ug/L             | 1          | 20.0            |                  | 102   | 80-120%         |     |              |       |
| Toluene                          | 19.9      | 0.500                | 1.00               | ug/L             | 1          | 20.0            |                  | 99    | 80-120%         |     |              |       |
| Ethylbenzene                     | 20.0      | 0.250                | 0.500              | ug/L             | 1          | 20.0            |                  | 100   | 80-120%         |     |              |       |
| Xylenes, total                   | 62.0      | 0.750                | 1.50               | ug/L             | 1          | 60.0            |                  | 103   | 80-120%         |     |              |       |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recovery: 104 %      |                    | Limits: 80-120 % |            | Dilution: 1x    |                  |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           |                      | 101 %              | 80-120 %         |            |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 97 %               | 80-120 %         |            |                 | "                |       |                 |     |              |       |
| Duplicate (23H0599-DUP1)         |           |                      | Prepared           | 1: 08/16/23      | 09:53 Anal | yzed: 08/16     | /23 14:33        |       |                 |     |              |       |
| QC Source Sample: FMW-163-081    | 423 (A3H1 | .087-06)             |                    |                  |            |                 |                  |       |                 |     |              |       |
| EPA 8260D                        |           |                      |                    |                  |            |                 |                  |       |                 |     |              |       |
| Benzene                          | 1.52      | 0.100                | 0.200              | ug/L             | 1          |                 | 1.22             |       |                 | 22  | 30%          |       |
| Toluene                          | ND        | 0.500                | 1.00               | ug/L             | 1          |                 | ND               |       |                 |     | 30%          |       |
| Ethylbenzene                     | ND        | 0.250                | 0.500              | ug/L             | 1          |                 | ND               |       |                 |     | 30%          |       |
| Xylenes, total                   | ND        | 0.750                | 1.50               | ug/L             | 1          |                 | ND               |       |                 |     | 30%          |       |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recovery: 100 %      |                    | Limits: 80-120 % |            | Dilution: 1x    |                  |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           |                      | 102 %              | 80-120 %         |            |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 100 %              | 80-120 %         |            |                 | ,,               |       |                 |     |              |       |

Matrix Spike (23H0599-MS1)

Prepared: 08/16/23 09:53 Analyzed: 08/16/23 16:26

QC Source Sample: FMW-155-081423 (A3H1087-03)

EPA 8260D

Apex Laboratories



AMENDED REPORT

#### **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-SeattleProject:397-019 Block 38 West1809 7th Ave Suite 1111Project Number:397-019 Block 38 WestSeattle, WA 98101Project Manager:Greg Peters

Report ID: A3H1087 - 12 22 23 1819

#### QUALITY CONTROL (QC) SAMPLE RESULTS

#### BTEX Compounds by EPA 8260D % REC RPD Detection L Reporting Spike Source Result Units Dilution % REC Limits RPD Analyte Limit Limit Amount Result Limit Notes Batch 23H0599 - EPA 5030C Water Matrix Spike (23H0599-MS1) Prepared: 08/16/23 09:53 Analyzed: 08/16/23 16:26 QC Source Sample: FMW-155-081423 (A3H1087-03) 0.100 20.0 Benzene 21.2 0.200 ug/L 1 ND 106 79-120% Toluene 21.8 0.500 1.00 20.0 80-121% ug/L 1 ND 109 Ethylbenzene 22.4 0.250 20.0 79-121% 0.500 ug/L 1 ND 112 Xylenes, total 68.6 0.750 1.50 ug/L 1 60.0 ND 114 79-121% Surr: 1,4-Difluorobenzene (Surr) 99 % Limits: 80-120 % Recovery: Dilution: 1x Toluene-d8 (Surr) 101 % 80-120 % 95 % 80-120 % 4-Bromofluorobenzene (Surr)

Apex Laboratories

(milele fog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-SeattleProject:397-019 Block 38 West1809 7th Ave Suite 1111Project Number:397-019 Block 38 WestSeattle, WA 98101Project Manager:Greg Peters

Report ID: A3H1087 - 12 22 23 1819

# **QUALITY CONTROL (QC) SAMPLE RESULTS**

| Analyte                       | Result      | Detection L<br>Limit | Reporting<br>Limit | Units      | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
|-------------------------------|-------------|----------------------|--------------------|------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Batch 23H0735 - EPA 3510C     | (Acid Extra | ction)               |                    |            |            |                 | Wat              | ter   |                 |     |              |       |
| Blank (23H0735-BLK1)          |             |                      | Prepared           | : 08/21/23 | 06:16 Anal | yzed: 08/21     | /23 11:53        |       |                 |     |              |       |
| EPA 8270E SIM                 |             |                      |                    |            |            |                 |                  |       |                 |     |              |       |
| Acenaphthene                  | ND          | 0.0200               | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Acenaphthylene                | ND          | 0.0200               | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Anthracene                    | ND          | 0.0200               | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Benz(a)anthracene             | ND          | 0.0200               | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Benzo(a)pyrene                | ND          | 0.0200               | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Benzo(b)fluoranthene          | ND          | 0.0200               | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Benzo(k)fluoranthene          | ND          | 0.0200               | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Benzo(g,h,i)perylene          | ND          | 0.0200               | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Chrysene                      | ND          | 0.0200               | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Dibenz(a,h)anthracene         | ND          | 0.0200               | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Fluoranthene                  | ND          | 0.0200               | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Fluorene                      | ND          | 0.0200               | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Indeno(1,2,3-cd)pyrene        | ND          | 0.0200               | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| 1-Methylnaphthalene           | ND          | 0.0400               | 0.0800             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| 2-Methylnaphthalene           | ND          | 0.0400               | 0.0800             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Naphthalene                   | ND          | 0.0400               | 0.0800             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Phenanthrene                  | ND          | 0.0200               | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Pyrene                        | ND          | 0.0200               | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Dibenzofuran                  | ND          | 0.0200               | 0.0400             | ug/L       | 1          |                 |                  |       |                 |     |              |       |
| Surr: 2-Fluorobiphenyl (Surr) |             | Reco                 | very: 59 %         | Limits: 44 | 1-120 %    | Dilı            | ution: 1x        |       |                 |     |              |       |
| p-Terphenyl-d14 (Surr)        |             |                      | 82 %               | 50         | )-134 %    |                 | "                |       |                 |     |              |       |
| LCS (23H0735-BS1)             |             |                      | Prepared           | : 08/21/23 | 06:16 Anal | yzed: 08/21/    | /23 12:18        |       |                 |     |              |       |
| EPA 8270E SIM                 |             |                      |                    |            |            |                 |                  |       |                 |     |              |       |
| Acenaphthene                  | 6.50        | 0.0200               | 0.0400             | ug/L       | 1          | 8.00            |                  | 81    | 47-122%         |     |              |       |
| Acenaphthylene                | 6.56        | 0.0200               | 0.0400             | ug/L       | 1          | 8.00            |                  | 82    | 41-130%         |     |              |       |
| Anthracene                    | 6.87        | 0.0200               | 0.0400             | ug/L       | 1          | 8.00            |                  | 86    | 57-123%         |     |              |       |
| Benz(a)anthracene             | 7.03        | 0.0200               | 0.0400             | ug/L       | 1          | 8.00            |                  | 88    | 58-125%         |     |              |       |
| Benzo(a)pyrene                | 7.56        | 0.0200               | 0.0400             | ug/L       | 1          | 8.00            |                  | 95    | 54-128%         |     |              |       |
| Benzo(b)fluoranthene          | 7.34        | 0.0200               | 0.0400             | ug/L       | 1          | 8.00            |                  | 92    | 53-131%         |     |              |       |
| Benzo(k)fluoranthene          | 7.61        | 0.0200               | 0.0400             | ug/L       | 1          | 8.00            |                  | 95    | 57-129%         |     |              |       |
| Benzo(g,h,i)perylene          | 6.64        | 0.0200               | 0.0400             | ug/L       | 1          | 8.00            |                  | 83    | 50-134%         |     |              |       |
| Chrysene                      | 7.38        | 0.0200               | 0.0400             | ug/L       | 1          | 8.00            |                  | 92    | 59-123%         |     |              |       |

Apex Laboratories

/ milale Pog



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-SeattleProject:397-019 Block 38 West1809 7th Ave Suite 1111Project Number:397-019 Block 38 WestSeattle, WA 98101Project Manager:Greg Peters

Report ID: A3H1087 - 12 22 23 1819

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                                                                                                                                                                                                                                           |                                                                                                      | Polyare                                                                                                              | omatic Hyd                                                                                                                     |                                                              | (                         | ) by LFA (                                                   | 5270E (S                          | ,,                                                                         |                                                                                                                                  |                                                                      |                                                                    |       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------|--------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|-------|
| Analyte                                                                                                                                                                                                                                                   | Result                                                                                               | Detection L<br>Limit                                                                                                 | Reporting<br>Limit                                                                                                             | Units                                                        | Dilution                  | Spike<br>Amount                                              | Source<br>Result                  | % REC                                                                      | % REC<br>Limits                                                                                                                  | RPD                                                                  | RPD<br>Limit                                                       | Notes |
| Batch 23H0735 - EPA 3510C                                                                                                                                                                                                                                 | (Acid Extra                                                                                          | ction)                                                                                                               |                                                                                                                                |                                                              |                           |                                                              | Wa                                | ter                                                                        |                                                                                                                                  |                                                                      |                                                                    |       |
| LCS (23H0735-BS1)                                                                                                                                                                                                                                         |                                                                                                      |                                                                                                                      | Prepared:                                                                                                                      | 08/21/23 (                                                   | 06:16 Anal                | yzed: 08/21/                                                 | 23 12:18                          |                                                                            |                                                                                                                                  |                                                                      |                                                                    |       |
| Dibenz(a,h)anthracene                                                                                                                                                                                                                                     | 7.52                                                                                                 | 0.0200                                                                                                               | 0.0400                                                                                                                         | ug/L                                                         | 1                         | 8.00                                                         |                                   | 94                                                                         | 51-134%                                                                                                                          |                                                                      |                                                                    |       |
| Fluoranthene                                                                                                                                                                                                                                              | 7.48                                                                                                 | 0.0200                                                                                                               | 0.0400                                                                                                                         | ug/L                                                         | 1                         | 8.00                                                         |                                   | 93                                                                         | 57-128%                                                                                                                          |                                                                      |                                                                    |       |
| Fluorene                                                                                                                                                                                                                                                  | 6.92                                                                                                 | 0.0200                                                                                                               | 0.0400                                                                                                                         | ug/L                                                         | 1                         | 8.00                                                         |                                   | 86                                                                         | 52-124%                                                                                                                          |                                                                      |                                                                    |       |
| Indeno(1,2,3-cd)pyrene                                                                                                                                                                                                                                    | 7.40                                                                                                 | 0.0200                                                                                                               | 0.0400                                                                                                                         | ug/L                                                         | 1                         | 8.00                                                         |                                   | 93                                                                         | 52-134%                                                                                                                          |                                                                      |                                                                    |       |
| 1-Methylnaphthalene                                                                                                                                                                                                                                       | 5.01                                                                                                 | 0.0400                                                                                                               | 0.0800                                                                                                                         | ug/L                                                         | 1                         | 8.00                                                         |                                   | 63                                                                         | 41-120%                                                                                                                          |                                                                      |                                                                    |       |
| 2-Methylnaphthalene                                                                                                                                                                                                                                       | 4.97                                                                                                 | 0.0400                                                                                                               | 0.0800                                                                                                                         | ug/L                                                         | 1                         | 8.00                                                         |                                   | 62                                                                         | 40-121%                                                                                                                          |                                                                      |                                                                    |       |
| Naphthalene                                                                                                                                                                                                                                               | 4.86                                                                                                 | 0.0400                                                                                                               | 0.0800                                                                                                                         | ug/L                                                         | 1                         | 8.00                                                         |                                   | 61                                                                         | 40-121%                                                                                                                          |                                                                      |                                                                    |       |
| Phenanthrene                                                                                                                                                                                                                                              | 6.80                                                                                                 | 0.0200                                                                                                               | 0.0400                                                                                                                         | ug/L                                                         | 1                         | 8.00                                                         |                                   | 85                                                                         | 59-120%                                                                                                                          |                                                                      |                                                                    |       |
| Pyrene                                                                                                                                                                                                                                                    | 7.45                                                                                                 | 0.0200                                                                                                               | 0.0400                                                                                                                         | ug/L                                                         | 1                         | 8.00                                                         |                                   | 93                                                                         | 57-126%                                                                                                                          |                                                                      |                                                                    |       |
| Dibenzofuran                                                                                                                                                                                                                                              | 6.55                                                                                                 | 0.0200                                                                                                               | 0.0400                                                                                                                         | ug/L                                                         | 1                         | 8.00                                                         |                                   | 82                                                                         | 53-120%                                                                                                                          |                                                                      |                                                                    |       |
| Surr: 2-Fluorobiphenyl (Surr)                                                                                                                                                                                                                             |                                                                                                      | Reco                                                                                                                 | very: 75 %                                                                                                                     | Limits: 44                                                   | -120 %                    | Dilu                                                         | tion: 1x                          |                                                                            |                                                                                                                                  |                                                                      |                                                                    |       |
|                                                                                                                                                                                                                                                           |                                                                                                      |                                                                                                                      |                                                                                                                                |                                                              |                           |                                                              |                                   |                                                                            |                                                                                                                                  |                                                                      |                                                                    |       |
| p-Terphenyl-d14 (Surr)  CS Dun (23H0735-BSD1)                                                                                                                                                                                                             |                                                                                                      |                                                                                                                      | 87 %                                                                                                                           |                                                              | -134 %<br>06:16 Anal      | vzed: 08/21/                                                 | /23 12:44                         |                                                                            |                                                                                                                                  |                                                                      |                                                                    | 0     |
| p-Terphenyl-d14 (Surr)  LCS Dup (23H0735-BSD1)  EPA 8270E SIM                                                                                                                                                                                             |                                                                                                      |                                                                                                                      |                                                                                                                                |                                                              |                           | yzed: 08/21/                                                 |                                   |                                                                            |                                                                                                                                  |                                                                      |                                                                    | Q     |
| LCS Dup (23H0735-BSD1)                                                                                                                                                                                                                                    | 6.77                                                                                                 | 0.0200                                                                                                               |                                                                                                                                |                                                              |                           | yzed: 08/21/                                                 |                                   | 85                                                                         | 47-122%                                                                                                                          | 4                                                                    | 30%                                                                | Q     |
| LCS Dup (23H0735-BSD1) <u>EPA 8270E SIM</u>                                                                                                                                                                                                               | 6.77<br>6.81                                                                                         | 0.0200<br>0.0200                                                                                                     | Prepared                                                                                                                       | 08/21/23 (                                                   | 06:16 Anal                |                                                              | /23 12:44                         | 85<br>85                                                                   | 47-122%<br>41-130%                                                                                                               | 4 4                                                                  | 30%<br>30%                                                         | Q     |
| LCS Dup (23H0735-BSD1)  EPA 8270E SIM  Acenaphthene                                                                                                                                                                                                       |                                                                                                      |                                                                                                                      | Prepared: 0.0400                                                                                                               | ug/L                                                         | 06:16 Anal                | 8.00                                                         | /23 12:44                         |                                                                            |                                                                                                                                  |                                                                      |                                                                    | Q     |
| LCS Dup (23H0735-BSD1)  EPA 8270E SIM  Acenaphthene  Acenaphthylene                                                                                                                                                                                       | 6.81                                                                                                 | 0.0200                                                                                                               | 0.0400<br>0.0400                                                                                                               | ug/L<br>ug/L                                                 | 06:16 Anal                | 8.00<br>8.00                                                 | /23 12:44<br>                     | 85                                                                         | 41-130%                                                                                                                          | 4                                                                    | 30%                                                                | Q     |
| LCS Dup (23H0735-BSD1)  EPA 8270E SIM  Acenaphthene  Acenaphthylene  Anthracene                                                                                                                                                                           | 6.81<br>6.85                                                                                         | 0.0200<br>0.0200                                                                                                     | 0.0400<br>0.0400<br>0.0400                                                                                                     | ug/L<br>ug/L<br>ug/L<br>ug/L                                 | 06:16 Anal<br>1<br>1<br>1 | 8.00<br>8.00<br>8.00                                         | /23 12:44<br><br>                 | 85<br>86                                                                   | 41-130%<br>57-123%                                                                                                               | 4<br>0.2                                                             | 30%<br>30%                                                         | Q     |
| Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene                                                                                                                                                                                                  | 6.81<br>6.85<br>7.12                                                                                 | 0.0200<br>0.0200<br>0.0200                                                                                           | 0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400                                                                                 | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                         | 06:16 Anal                | 8.00<br>8.00<br>8.00<br>8.00                                 | /23 12:44<br><br>                 | 85<br>86<br>89                                                             | 41-130%<br>57-123%<br>58-125%                                                                                                    | 4<br>0.2<br>1                                                        | 30%<br>30%<br>30%                                                  | Q     |
| EPA 8270E SIM Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene                                                                                                                                                                     | 6.81<br>6.85<br>7.12<br>7.68                                                                         | 0.0200<br>0.0200<br>0.0200<br>0.0200                                                                                 | 0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400                                                                                 | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L                 | 06:16 Anal                | 8.00<br>8.00<br>8.00<br>8.00<br>8.00                         |                                   | 85<br>86<br>89<br>96                                                       | 41-130%<br>57-123%<br>58-125%<br>54-128%                                                                                         | 4<br>0.2<br>1<br>2                                                   | 30%<br>30%<br>30%<br>30%                                           | Q     |
| Acenaphthene Acenaphthylene Anthracene Benzo(a)pyrene Benzo(b)fluoranthene                                                                                                                                                                                | 6.81<br>6.85<br>7.12<br>7.68<br>7.61                                                                 | 0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200                                                                       | 0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400                                                                       | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L         | 06:16 Anal                | 8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00                 | /23 12:44<br><br><br>             | 85<br>86<br>89<br>96<br>95                                                 | 41-130%<br>57-123%<br>58-125%<br>54-128%<br>53-131%                                                                              | 4<br>0.2<br>1<br>2<br>4                                              | 30%<br>30%<br>30%<br>30%<br>30%                                    | Q     |
| Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene                                                                                                                                                        | 6.81<br>6.85<br>7.12<br>7.68<br>7.61<br>7.86                                                         | 0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200                                                             | 0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400                                                             | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 06:16 Anal                | 8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00         | <br><br><br><br>                  | 85<br>86<br>89<br>96<br>95<br>98                                           | 41-130%<br>57-123%<br>58-125%<br>54-128%<br>53-131%<br>57-129%                                                                   | 4<br>0.2<br>1<br>2<br>4<br>3                                         | 30%<br>30%<br>30%<br>30%<br>30%<br>30%                             | Q     |
| ECS Dup (23H0735-BSD1)  EPA 8270E SIM  Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene                                                                             | 6.81<br>6.85<br>7.12<br>7.68<br>7.61<br>7.86<br>6.76                                                 | 0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200                                                   | 0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400                                                   | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 06:16 Anal                | 8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00         | /23 12:44<br><br><br><br>         | 85<br>86<br>89<br>96<br>95<br>98                                           | 41-130%<br>57-123%<br>58-125%<br>54-128%<br>53-131%<br>57-129%<br>50-134%                                                        | 4<br>0.2<br>1<br>2<br>4<br>3<br>2                                    | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%                      | Q     |
| ECS Dup (23H0735-BSD1)  EPA 8270E SIM  Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Chrysene                                                                    | 6.81<br>6.85<br>7.12<br>7.68<br>7.61<br>7.86<br>6.76<br>7.71                                         | 0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200                                         | 0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400                                         | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 06:16 Anal                | 8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00 | <br><br><br><br><br>              | 85<br>86<br>89<br>96<br>95<br>98<br>85<br>96                               | 41-130%<br>57-123%<br>58-125%<br>54-128%<br>53-131%<br>57-129%<br>50-134%<br>59-123%                                             | 4<br>0.2<br>1<br>2<br>4<br>3<br>2<br>4                               | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%               | Q     |
| ECS Dup (23H0735-BSD1)  EPA 8270E SIM  Acenaphthene  Acenaphthylene  Anthracene  Benz(a)anthracene  Benzo(a)pyrene  Benzo(b)fluoranthene  Benzo(k)fluoranthene  Benzo(g,h,i)perylene  Chrysene  Dibenz(a,h)anthracene                                     | 6.81<br>6.85<br>7.12<br>7.68<br>7.61<br>7.86<br>6.76<br>7.71                                         | 0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200                               | 0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400                                         | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 06:16 Anal                | 8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00 | /23 12:44<br><br><br><br><br>     | 85<br>86<br>89<br>96<br>95<br>98<br>85<br>96<br>97                         | 41-130%<br>57-123%<br>58-125%<br>54-128%<br>53-131%<br>57-129%<br>50-134%<br>59-123%<br>51-134%                                  | 4<br>0.2<br>1<br>2<br>4<br>3<br>2<br>4<br>3                          | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%               | Q     |
| EAS Dup (23H0735-BSD1)  EPA 8270E SIM  Acenaphthene  Acenaphthylene  Anthracene  Benz(a)anthracene  Benzo(a)pyrene  Benzo(b)fluoranthene  Benzo(g,h,i)perylene  Chrysene  Dibenz(a,h)anthracene  Fluoranthene                                             | 6.81<br>6.85<br>7.12<br>7.68<br>7.61<br>7.86<br>6.76<br>7.71<br>7.78<br>7.61                         | 0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200                               | 0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400                     | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 06:16 Anal                | 8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00 | /23 12:44<br><br><br><br><br><br> | 85<br>86<br>89<br>96<br>95<br>98<br>85<br>96<br>97                         | 41-130%<br>57-123%<br>58-125%<br>54-128%<br>53-131%<br>57-129%<br>50-134%<br>59-123%<br>51-134%<br>57-128%                       | 4<br>0.2<br>1<br>2<br>4<br>3<br>2<br>4<br>3<br>2                     | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%        | Q     |
| EPA 8270E SIM Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene                                                                      | 6.81<br>6.85<br>7.12<br>7.68<br>7.61<br>7.86<br>6.76<br>7.71<br>7.78<br>7.61                         | 0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200                     | 0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400                     | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 06:16 Anal                | 8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00 | /23 12:44                         | 85<br>86<br>89<br>96<br>95<br>98<br>85<br>96<br>97<br>95<br>89             | 41-130%<br>57-123%<br>58-125%<br>54-128%<br>53-131%<br>57-129%<br>50-134%<br>59-123%<br>51-134%<br>57-128%<br>52-124%            | 4<br>0.2<br>1<br>2<br>4<br>3<br>2<br>4<br>3<br>2<br>4<br>3<br>2<br>3 | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30% | Q     |
| EAS Dup (23H0735-BSD1)  EPA 8270E SIM  Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(g,h,i)perylene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene | 6.81<br>6.85<br>7.12<br>7.68<br>7.61<br>7.86<br>6.76<br>7.71<br>7.78<br>7.61<br>7.10                 | 0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200           | 0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400           | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 06:16 Anal                | 8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00 | /23 12:44                         | 85<br>86<br>89<br>96<br>95<br>98<br>85<br>96<br>97<br>95<br>89             | 41-130%<br>57-123%<br>58-125%<br>54-128%<br>53-131%<br>57-129%<br>50-134%<br>51-134%<br>57-128%<br>52-124%<br>52-134%            | 4<br>0.2<br>1<br>2<br>4<br>3<br>2<br>4<br>3<br>2<br>3<br>2<br>3<br>2 | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30% | C     |
| EAS 270E SIM Acenaphthene Acenaphthylene Anthracene Benz(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(g,h,i)perylene Chrysene Dibenz(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene                      | 6.81<br>6.85<br>7.12<br>7.68<br>7.61<br>7.86<br>6.76<br>7.71<br>7.78<br>7.61<br>7.10<br>7.56<br>5.45 | 0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200<br>0.0200 | 0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400<br>0.0400 | ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L<br>ug/L | 06:16 Anal                | 8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00<br>8.00 | /23 12:44                         | 85<br>86<br>89<br>96<br>95<br>98<br>85<br>96<br>97<br>95<br>89<br>95<br>68 | 41-130%<br>57-123%<br>58-125%<br>54-128%<br>53-131%<br>57-129%<br>50-134%<br>59-123%<br>51-134%<br>52-124%<br>52-134%<br>41-120% | 4<br>0.2<br>1<br>2<br>4<br>3<br>2<br>4<br>3<br>2<br>3<br>2<br>8      | 30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30%<br>30% | Q     |

Apex Laboratories

Pyrene

Dibenzofuran

( withle fog

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

96

84

57-126%

53-120%

30%

30%

3

3

7.64

6.75

0.0200

0.0200

0.0400

0.0400

ug/L

ug/L

1

1

8.00

8.00



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-SeattleProject:397-019 Block 38 West1809 7th Ave Suite 1111Project Number:397-019 Block 38 WestSeattle, WA 98101Project Manager:Greg Peters

Report ID: A3H1087 - 12 22 23 1819

# **QUALITY CONTROL (QC) SAMPLE RESULTS**

# Polyaromatic Hydrocarbons (PAHs) by EPA 8270E (SIM)

| Analyte                       | Result     | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilutio  | Spike<br>n Amount | Source<br>Result |      | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
|-------------------------------|------------|----------------------|--------------------|-------------|----------|-------------------|------------------|------|-----------------|-----|--------------|-------|
| Batch 23H0735 - EPA 3510C (   | Acid Extra | iction)              |                    |             |          |                   | W                | ater |                 |     |              |       |
| LCS Dup (23H0735-BSD1)        |            |                      | Prepared           | 1: 08/21/23 | 06:16 A  | nalyzed: 08/21    | /23 12:44        |      |                 |     |              | Q-19  |
| Surr: 2-Fluorobiphenyl (Surr) |            | Reco                 | very: 73 %         | Limits: 4   | 14-120 % | Dilt              | ution: 1x        |      |                 |     |              |       |
| p-Terphenyl-d14 (Surr)        |            |                      | 85 %               | 5           | 0-134 %  |                   | "                |      |                 |     |              |       |

Apex Laboratories



### AMENDED REPORT

**Apex Laboratories, LLC** 

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-SeattleProject:397-019 Block 38 West1809 7th Ave Suite 1111Project Number:397-019 Block 38 WestSeattle, WA 98101Project Manager:Greg Peters

Report ID:
A3H1087 - 12 22 23 1819

### SAMPLE PREPARATION INFORMATION

|                    |                 | Diesel and  | d/or Oil Hydrocarbor | s by NWTPH-Dx  |               |               |         |
|--------------------|-----------------|-------------|----------------------|----------------|---------------|---------------|---------|
| Prep: EPA 3510C (F | uels/Acid Ext.) |             |                      |                | Sample        | Default       | RL Prep |
| Lab Number         | Matrix          | Method      | Sampled              | Prepared       | Initial/Final | Initial/Final | Factor  |
| Batch: 23H0758     |                 |             |                      |                |               |               |         |
| A3H1087-01         | Water           | NWTPH-Dx LL | 08/14/23 15:00       | 08/21/23 10:55 | 1050mL/2mL    | 1000mL/2mL    | 0.95    |
| A3H1087-02         | Water           | NWTPH-Dx LL | 08/14/23 13:30       | 08/21/23 10:55 | 1060mL/2mL    | 1000mL/2mL    | 0.94    |
| A3H1087-03         | Water           | NWTPH-Dx LL | 08/14/23 10:50       | 08/21/23 10:55 | 1040mL/2mL    | 1000mL/2mL    | 0.96    |
| A3H1087-04         | Water           | NWTPH-Dx LL | 08/14/23 14:26       | 08/21/23 10:55 | 1040mL/2mL    | 1000mL/2mL    | 0.96    |
| A3H1087-05         | Water           | NWTPH-Dx LL | 08/14/23 13:08       | 08/21/23 10:55 | 1040mL/2mL    | 1000mL/2mL    | 0.96    |
| A3H1087-06         | Water           | NWTPH-Dx LL | 08/14/23 11:44       | 08/21/23 10:55 | 1040mL/2mL    | 1000mL/2mL    | 0.96    |

|                     | Dies               | sel and/or Oil Hydrocar | bons by NWTPH-D: | x with Silica Gel Col | umn Cleanup   |               |         |
|---------------------|--------------------|-------------------------|------------------|-----------------------|---------------|---------------|---------|
| Prep: EPA 3510C (Fu | iels/Acid Ext.) w/ | <u>SGC</u>              |                  |                       | Sample        | Default       | RL Prep |
| Lab Number          | Matrix             | Method                  | Sampled          | Prepared              | Initial/Final | Initial/Final | Factor  |
| Batch: 23I0147      |                    |                         |                  |                       |               |               |         |
| A3H1087-01          | Water              | NWTPH-Dx/SGC            | 08/14/23 15:00   | 08/21/23 10:55        | 1050 mL/2 mL  | 1000 mL/2 mL  | 0.95    |
| A3H1087-03          | Water              | NWTPH-Dx/SGC            | 08/14/23 10:50   | 08/21/23 10:55        | 1040mL/2mL    | 1000mL/2mL    | 0.96    |
| A3H1087-05          | Water              | NWTPH-Dx/SGC            | 08/14/23 13:08   | 08/21/23 10:55        | 1040mL/2mL    | 1000mL/2mL    | 0.96    |

| Gas    | soline Range Hydrocart                     | oons (Benzene thro                                                                                                 | ugh Naphthalene) b                                                                                                                                                                                                                                                                                                                                     | y NWTPH-Gx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                                            |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                        | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Default                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RL Prep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Matrix | Method                                     | Sampled                                                                                                            | Prepared                                                                                                                                                                                                                                                                                                                                               | Initial/Final                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Initial/Final                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        |                                            |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Water  | NWTPH-Gx (MS)                              | 08/14/23 15:00                                                                                                     | 08/16/23 09:53                                                                                                                                                                                                                                                                                                                                         | 5mL/5mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5mL/5mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Water  | NWTPH-Gx (MS)                              | 08/14/23 13:30                                                                                                     | 08/16/23 09:53                                                                                                                                                                                                                                                                                                                                         | 5mL/5mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5mL/5mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Water  | NWTPH-Gx (MS)                              | 08/14/23 10:50                                                                                                     | 08/16/23 09:53                                                                                                                                                                                                                                                                                                                                         | 5mL/5mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5mL/5mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Water  | NWTPH-Gx (MS)                              | 08/14/23 14:26                                                                                                     | 08/16/23 09:53                                                                                                                                                                                                                                                                                                                                         | 5mL/5mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5mL/5mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Water  | NWTPH-Gx (MS)                              | 08/14/23 13:08                                                                                                     | 08/16/23 09:53                                                                                                                                                                                                                                                                                                                                         | 5mL/5mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5mL/5mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Water  | NWTPH-Gx (MS)                              | 08/14/23 11:44                                                                                                     | 08/16/23 09:53                                                                                                                                                                                                                                                                                                                                         | 5mL/5mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5mL/5mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        | Matrix<br>Water<br>Water<br>Water<br>Water | Matrix Method  Water NWTPH-Gx (MS) Water NWTPH-Gx (MS) Water NWTPH-Gx (MS) Water NWTPH-Gx (MS) Water NWTPH-Gx (MS) | Matrix         Method         Sampled           Water         NWTPH-Gx (MS)         08/14/23 15:00           Water         NWTPH-Gx (MS)         08/14/23 13:30           Water         NWTPH-Gx (MS)         08/14/23 10:50           Water         NWTPH-Gx (MS)         08/14/23 14:26           Water         NWTPH-Gx (MS)         08/14/23 13:08 | Matrix         Method         Sampled         Prepared           Water         NWTPH-Gx (MS)         08/14/23 15:00         08/16/23 09:53           Water         NWTPH-Gx (MS)         08/14/23 13:30         08/16/23 09:53           Water         NWTPH-Gx (MS)         08/14/23 10:50         08/16/23 09:53           Water         NWTPH-Gx (MS)         08/14/23 14:26         08/16/23 09:53           Water         NWTPH-Gx (MS)         08/14/23 13:08         08/16/23 09:53 | Matrix         Method         Sampled         Prepared         Initial/Final           Water         NWTPH-Gx (MS)         08/14/23 15:00         08/16/23 09:53         5mL/5mL           Water         NWTPH-Gx (MS)         08/14/23 13:30         08/16/23 09:53         5mL/5mL           Water         NWTPH-Gx (MS)         08/14/23 10:50         08/16/23 09:53         5mL/5mL           Water         NWTPH-Gx (MS)         08/14/23 14:26         08/16/23 09:53         5mL/5mL           Water         NWTPH-Gx (MS)         08/14/23 13:08         08/16/23 09:53         5mL/5mL | Matrix         Method         Sampled         Prepared         Sample Initial/Final         Default Initial/Final           Water         NWTPH-Gx (MS)         08/14/23 15:00         08/16/23 09:53         5mL/5mL         5mL/5mL           Water         NWTPH-Gx (MS)         08/14/23 13:30         08/16/23 09:53         5mL/5mL         5mL/5mL           Water         NWTPH-Gx (MS)         08/14/23 10:50         08/16/23 09:53         5mL/5mL         5mL/5mL           Water         NWTPH-Gx (MS)         08/14/23 14:26         08/16/23 09:53         5mL/5mL         5mL/5mL           Water         NWTPH-Gx (MS)         08/14/23 13:08         08/16/23 09:53         5mL/5mL         5mL/5mL |

|                 |        | ВТ        | EX Compounds by E | PA 8260D       |               |               |         |
|-----------------|--------|-----------|-------------------|----------------|---------------|---------------|---------|
| Prep: EPA 5030C |        |           |                   |                | Sample        | Default       | RL Prep |
| Lab Number      | Matrix | Method    | Sampled           | Prepared       | Initial/Final | Initial/Final | Factor  |
| Batch: 23H0599  |        |           |                   |                |               |               |         |
| A3H1087-01      | Water  | EPA 8260D | 08/14/23 15:00    | 08/16/23 09:53 | 5mL/5mL       | 5mL/5mL       | 1.00    |
| A3H1087-02      | Water  | EPA 8260D | 08/14/23 13:30    | 08/16/23 09:53 | 5mL/5mL       | 5mL/5mL       | 1.00    |
| A3H1087-03      | Water  | EPA 8260D | 08/14/23 10:50    | 08/16/23 09:53 | 5mL/5mL       | 5mL/5mL       | 1.00    |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-SeattleProject:397-019 Block 38 West1809 7th Ave Suite 1111Project Number:397-019 Block 38 WestSeattle, WA 98101Project Manager:Greg Peters

Report ID: A3H1087 - 12 22 23 1819

#### SAMPLE PREPARATION INFORMATION

|                 |        | ВТ        | EX Compounds by E | EPA 8260D      |               |               |         |
|-----------------|--------|-----------|-------------------|----------------|---------------|---------------|---------|
| Prep: EPA 5030C |        |           |                   |                | Sample        | Default       | RL Prep |
| Lab Number      | Matrix | Method    | Sampled           | Prepared       | Initial/Final | Initial/Final | Factor  |
| A3H1087-04      | Water  | EPA 8260D | 08/14/23 14:26    | 08/16/23 09:53 | 5mL/5mL       | 5mL/5mL       | 1.00    |
| A3H1087-05      | Water  | EPA 8260D | 08/14/23 13:08    | 08/16/23 09:53 | 5mL/5mL       | 5mL/5mL       | 1.00    |
| A3H1087-06      | Water  | EPA 8260D | 08/14/23 11:44    | 08/16/23 09:53 | 5mL/5mL       | 5mL/5mL       | 1.00    |

|                    |                 | Polyaromatic H | lydrocarbons (PAHs | ) by EPA 8270E (SI | M)            |               |         |
|--------------------|-----------------|----------------|--------------------|--------------------|---------------|---------------|---------|
| Prep: EPA 3510C (A | cid Extraction) |                |                    |                    | Sample        | Default       | RL Prep |
| Lab Number         | Matrix          | Method         | Sampled            | Prepared           | Initial/Final | Initial/Final | Factor  |
| Batch: 23H0735     |                 |                |                    |                    |               |               |         |
| A3H1087-01         | Water           | EPA 8270E SIM  | 08/14/23 15:00     | 08/21/23 06:16     | 1040mL/2mL    | 1000mL/2mL    | 0.96    |
| A3H1087-02         | Water           | EPA 8270E SIM  | 08/14/23 13:30     | 08/21/23 06:16     | 1020mL/2mL    | 1000mL/2mL    | 0.98    |
| A3H1087-03         | Water           | EPA 8270E SIM  | 08/14/23 10:50     | 08/21/23 06:16     | 1020 mL/2 mL  | 1000mL/2mL    | 0.98    |
| A3H1087-04         | Water           | EPA 8270E SIM  | 08/14/23 14:26     | 08/21/23 06:16     | 1040mL/2mL    | 1000mL/2mL    | 0.96    |
| A3H1087-05         | Water           | EPA 8270E SIM  | 08/14/23 13:08     | 08/21/23 06:16     | 950mL/2mL     | 1000mL/2mL    | 1.05    |
| A3H1087-06         | Water           | EPA 8270E SIM  | 08/14/23 11:44     | 08/21/23 06:16     | 900mL/2mL     | 1000mL/2mL    | 1.11    |

Apex Laboratories

(milele fog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-SeattleProject:397-019 Block 38 West1809 7th Ave Suite 1111Project Number:397-019 Block 38 WestSeattle, WA 98101Project Manager:Greg Peters

Report ID: A3H1087 - 12 22 23 1819

### **QUALIFIER DEFINITIONS**

### Client Sample and Quality Control (QC) Sample Qualifier Definitions:

### **Apex Laboratories**

- F-11 The hydrocarbon pattern indicates possible weathered diesel, mineral oil, or a contribution from a related component.
- F-13 The chromatographic pattern does not resemble the fuel standard used for quantitation
- J Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.
- Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.

Apex Laboratories



AMENDED REPORT

### **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-SeattleProject:397-019 Block 38 West1809 7th Ave Suite 1111Project Number:397-019 Block 38 WestSeattle, WA 98101Project Manager:Greg Peters

Report ID: A3H1087 - 12 22 23 1819

#### REPORTING NOTES AND CONVENTIONS:

#### **Abbreviations:**

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

#### **Detection Limits:** Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

#### Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

#### **Reporting Conventions:**

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"\_\_\_" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

#### **QC Source:**

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

### Miscellaneous Notes:

" --- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"\*\*\* " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories



AMENDED REPORT

#### Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-SeattleProject:397-019 Block 38 West1809 7th Ave Suite 1111Project Number:397-019 Block 38 WestSeattle, WA 98101Project Manager:Greg Peters

Report ID: A3H1087 - 12 22 23 1819

### **REPORTING NOTES AND CONVENTIONS (Cont.):**

#### Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

#### **Preparation Notes:**

#### Mixed Matrix Samples:

#### Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

#### Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

### **Sampling and Preservation Notes:**

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold

Apex Laboratories



# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AMENDED REPORT

Farallon-SeattleProject:397-019 Block 38 West1809 7th Ave Suite 1111Project Number:397-019 Block 38 WestSeattle, WA 98101Project Manager:Greg Peters

Report ID: A3H1087 - 12 22 23 1819

### LABORATORY ACCREDITATION INFORMATION

# ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

### **Apex Laboratories**

Matrix Analysis TNI\_ID Analyte TNI\_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

## **Secondary Accreditations**

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

### **Subcontract Laboratory Accreditations**

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

### Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories



Seattle, WA 98101

## ANALYTICAL REPORT

AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-SeattleProject:397-019 Block 38 West1809 7th Ave Suite 1111Project Number:397-019 Block 38 West

Project Manager: Greg Peters

Report ID:
A3H1087 - 12 22 23 1819

| Commany: FreeMan Consorting                        |                              | Droised   | Designet Merry (2000) |              | Pariene | 100      |                   |         |          | D. S. L.     | ,                     | 1               | 1                                       | 20      |             |                                                                         |                     | H        |                                         | 207-019   | 0  | C).             |                                         |          |
|----------------------------------------------------|------------------------------|-----------|-----------------------|--------------|---------|----------|-------------------|---------|----------|--------------|-----------------------|-----------------|-----------------------------------------|---------|-------------|-------------------------------------------------------------------------|---------------------|----------|-----------------------------------------|-----------|----|-----------------|-----------------------------------------|----------|
| Address 975 5th Ave NW, Issaquah, WA 98027         | Issagu                       | ah, U.P.  | 350                   | _            |         | , Dione  |                   |         |          |              | a in                  | 2 8             | ( 2                                     | 3       | 1 8         | me. Dioch 30                                                            | 80                  | 1        | # 4                                     | 7         | 9  |                 |                                         |          |
|                                                    |                              |           |                       |              | T       | T TOOLS  |                   |         |          |              | Tipal.                |                 |                                         |         | 9000        |                                                                         |                     | FO#      |                                         |           |    |                 | 100000000000000000000000000000000000000 |          |
| Sampled by:                                        |                              |           |                       |              |         | ere di   |                   |         |          |              |                       |                 |                                         | *       | 3           | ANAL YSIS REQUEST                                                       | EST                 |          |                                         |           |    |                 |                                         |          |
| Site Location:                                     |                              |           |                       |              |         |          |                   |         |          |              |                       | 38              | *************************************** |         | <u> </u>    | K²<br>q,<br>q;                                                          | dTC                 | 120      | t                                       | 5         | -  |                 |                                         | <u> </u> |
| State Washington                                   |                              |           |                       | NTAINERS     | -нстр   |          |                   | DM AOC® | \$20A 0  | Cs Full List |                       | i-Vols Full Lis |                                         |         | letals (13) | s, Ba, Be, C<br>o, Cu, Fe, P<br>Ma, Mo, Ui,<br>i, Ti, V, Za<br>DISS, TO | DISS, TC            | CO GIRDO | الا <del>(جمامدو، ال</del><br>بالمتصريح | A A       |    |                 | ગૃ                                      |          |
| SAMPLE ID                                          | DATE                         | TIME      | MATRIX                | # OF CO      | HATWN   | HALMN    | HALMN<br>8260 BTI |         | 18H 0928 | OA 0978      | MIS 0728              |                 | 8081 Pest                               | RCRA M  |             |                                                                         | TCLP M              | , ,      | A monde                                 |           |    |                 | qma2 blof                               | rozen Ar |
| FMW-154-081423                                     | 1 KZ/H/S                     | 1500      | H                     | 2            |         | ×        | ×                 | _       |          |              | $t^-$                 | +               | -                                       | -       |             |                                                                         | 4                   | ×        |                                         | $\dagger$ | +- | ļ               | 1                                       | 1_       |
| FMW-156-081423                                     |                              | i 330     | _                     | 12           |         | ×        | ×                 |         |          |              | <del> </del>          | -               | +                                       | -       | ļ           |                                                                         | -                   | ×        |                                         |           | -  |                 | -                                       | +        |
| FMW- 155-081423                                    |                              | 1050      |                       | 12           |         | ×        | X                 |         |          |              | 1                     | $\vdash$        | -                                       | -       | ļ           |                                                                         | <del> </del>        | ×        |                                         | +         | -  | 1               | -                                       | -        |
| FMW-161-081423                                     |                              | 1426      |                       | G            |         | Х        | ×                 | _       |          |              |                       | ļ               | -                                       |         |             |                                                                         | $\vdash$            | ×        |                                         |           | -  |                 |                                         | ↓_       |
| FMW-160-081423                                     |                              | 1308      |                       | Ő            |         | Х        | ×                 |         |          |              |                       | -               |                                         |         | <u> </u>    |                                                                         |                     | ×        |                                         | $\vdash$  | -  | _               | -                                       | _        |
| FMW-163-081423                                     | -1                           | Ŧ         | -1                    | ₽            |         | X        | ×                 |         |          |              |                       | -               | -                                       | -       | <u> </u>    |                                                                         | <del> </del>        | ×        |                                         | ļ         | +- |                 | -                                       | ļ        |
| 7,004,010                                          |                              |           |                       |              |         |          | $\vdash$          |         |          |              | T                     |                 |                                         |         |             |                                                                         | $\left\{ -\right\}$ |          |                                         |           | +  |                 |                                         | 1        |
|                                                    |                              |           |                       |              |         | $\dashv$ | -                 |         |          | $\neg$       | $\dashv$              |                 |                                         | $\perp$ | _           | ł                                                                       |                     |          |                                         | $\dashv$  |    |                 | $\dashv$                                |          |
|                                                    |                              |           |                       |              | 1       | +        | +                 | -       |          |              | +                     | +               | +                                       | _       |             |                                                                         |                     | _        |                                         | +         |    |                 |                                         |          |
| H F 70                                             |                              |           |                       |              |         |          | $\dashv$          | 4       |          | T            | $\dashv$              | $\dashv$        | $\dashv$                                |         |             |                                                                         |                     |          |                                         |           |    |                 | $\dashv$                                |          |
| Standard 1 um Around 1 me (1A1) = 10 Business Days | n Around 1                   | ime (TAT, | = 10 B                | usiness      | Days    |          |                   |         |          | Ť            | SPECIAL INSTRUCTIONS: | AL IN           | STRU                                    | CTIO    | (Ş)         | 1                                                                       | ć                   |          |                                         |           |    | SO OF           | (D)                                     |          |
| TAT Decreased (rivola)                             | 1 Day                        |           | 2 Day                 |              | 3 Day   | łay      |                   |         |          |              | P                     | 5               | Ē                                       | £       | -           | 156 - 156, 154                                                          | 5                   |          | ter.                                    | 400       | 1  | metals analyses |                                         |          |
| (along) pagenhay rus                               | 5 Day                        |           | Standard              | A            | Other:  | ä        |                   |         | 1        |              |                       |                 |                                         |         |             |                                                                         |                     |          |                                         |           |    |                 |                                         |          |
|                                                    | SAMPLES ARE HELD FOR 30 DAYS | LD FOR 3  | 0 DAYS                |              |         |          |                   |         |          | Τ            |                       |                 |                                         |         |             |                                                                         |                     |          |                                         |           |    |                 |                                         |          |
| RELINQUISHED BY:                                   | Date.                        |           | RECEIVI               | RECEIVED BY: |         |          | ģ                 |         |          | ,4           | RELINQUISHED BY:      | QUISH           | ED B                                    | يز      |             |                                                                         |                     | RE       | RECEIVED BY:                            | BY:       |    |                 |                                         |          |
| M                                                  | 8/14/25                      |           | K                     |              | 1       |          | 8                 | 8.15.22 | r./      | 0            | gnanur                | м               |                                         |         |             | Date:                                                                   |                     | E S      | ature:                                  |           |    | Date:           |                                         |          |
| Printed Name.                                      | Time:                        |           | Printed Name          | Name:        |         |          | Time:             |         |          | Α.           | Printed Name          | lame:           |                                         |         |             | Time:                                                                   |                     | E        | Printed Name:                           |           |    | Time:           |                                         |          |
| Transfer Transfer                                  |                              |           | S.                    | Salver       | rev     |          | 7)                | 10034   |          | $\neg$       |                       | İ               |                                         |         |             |                                                                         |                     |          |                                         |           |    |                 |                                         |          |
| Сопрану:                                           |                              |           | Company:              | mpany:       |         |          |                   |         |          | <u> </u>     | Company:              | ¥.              |                                         |         |             |                                                                         |                     | 3        | Соправу:                                |           |    |                 |                                         |          |

Apex Laboratories

/ milele Pog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> 1809 7th Ave Suite 1111 Seattle, WA 98101 Project: 397-019 Block 38 West
Project Number: 397-019 Block 38 West

Project Manager: Greg Peters

Report ID: A3H1087 - 12 22 23 1819

| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Company: Farallers Consorting | ~           | Project  | Mer. G   | C Y      | 3        |          |           |          |          |                        | 3                                     |          | 7        |     |                                                                                                      | H                | 200-1                                            | 200 | 0,0 |   |            |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------|----------|----------|----------|----------|----------|-----------|----------|----------|------------------------|---------------------------------------|----------|----------|-----|------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------|-----|-----|---|------------|-----|
| State   Warring   Warrin   | 475 577                       | . Issaqu    | ah, Le   | 35       | 5        | -        | ä        |           | 1        |          |                        | 00                                    | Ş        | } . Š    | 8   | onsomma .c.                                                                                          | 7                | 1300                                             | 5   | 3   | 1 |            |     |
| Source   10   10   10   10   10   10   10   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sumpled by:                   |             |          |          |          |          |          |           |          |          |                        |                                       |          |          |     |                                                                                                      | 10.00            |                                                  |     | ı   |   |            | 593 |
| State   Library   Librar   | Site Location:                | L           |          |          | $\vdash$ |          | _        |           | -        | -        |                        | _                                     | _        |          |     |                                                                                                      |                  | 3                                                |     |     | - |            | 26. |
| W-154 - 659423   619425   619425   619423   61950   72   × × × ×   ×   ×   ×   ×   ×   ×   ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | State Ubsignedton County Kieg | ELVO        | awit     | XIXIYW   |          |          |          | X314 9978 |          |          |                        | · · · · · · · · · · · · · · · · · · · | ·        |          |     | L SP, AR, BR, BC, CO, CR, FO, FO, CR, FO, CR, FO, CR, FO, CR, FO, FO, FO, FO, FO, FO, FO, FO, FO, FO | LCI'S Metrik (8) | THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER. | 96  |     |   | sigmus bio |     |
| 10   15   10   12   13   13   12   13   13   13   13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FMW-154-081423                | 8/H/Z       | 1500     | 2.<br>T  | 2        | ŀ        | -        | ×         | ╁        | ╀        |                        | $\dagger$                             | +        | 1        |     | A C R S                                                                                              | 1                |                                                  | Q   | T   | + | H          | ~~! |
| 105   12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FMW-156-081423                |             | 1330     | -        | 72       | X.       | -        | ×         |          | <u> </u> |                        | 1                                     | +        | _        |     |                                                                                                      | ╁                | _                                                | 1   | -   | - |            | - 1 |
| 1,061 - 081423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FMW- 155-051423               |             | OSOI     |          | 2        | ×        |          | ×         | $\vdash$ |          |                        | +                                     | $\vdash$ | -        |     |                                                                                                      | +                | Ļ                                                | Q   | +   | - |            | - 1 |
| 3- 160- 081423 1308 1.0 × × × × × × × × × × × × × × × × × × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FMW- 161-081423               |             | 1426     |          | ō        | /×       | -        | 1         | ╁        | _        |                        | -                                     | +        | _        |     |                                                                                                      | +                | -                                                | 9   | _   | + |            |     |
| 1-16-3-0814-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FMW-140-081423                |             | 1308     |          | ō        | X        | 1        |           | ├-       | ļ.,      |                        | +                                     | +        | -        |     |                                                                                                      | +                | 1                                                | 6   | -   | + |            | -1  |
| Standard Turn Acoust Time (TAT) = 10 Business Days  AT Requested (circle)  5 Day  2 Day  3 Day  3 Day  5 Day  5 Day  5 Day  5 Day  5 Day  5 Day  5 Day  5 Day  5 Day  5 Day  5 Day  5 Day  5 Day  5 Day  5 Day  6 Superior  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  7 Day  | FMW-163-081423                | -1          | 7        | -1       | 0        | >        | <u> </u> |           | ╁        | igspace  |                        | +-                                    | +        | <u> </u> | I   |                                                                                                      | +                | _                                                | 3   | 1   | + |            |     |
| Standard Turn Around Tune (TAT) = 10 Basiness Days  1 Day 2 Day 3 Day  1 Bay 2 Day 3 Day  1 Bay 2 Day 3 Day  1 Bay 2 Day 6 Standard Orther:  2 Standard Orther:  2 Standard Orther:  2 Standard Orther:  2 Standard Orther:  2 Standard Orther:  3 Date: Standard Orther:  5 Day: Standard Orther:  5 Day: Standard Orther:  5 Day: Standard Orther:  5 Day: Standard Orther:  5 Day: Standard Orther:  5 Day: Standard Orther:  6 Standard Orther:  6 Standard Orther:  6 Standard Orther:  7 Date: Standard Orther:  6 Standard Orther:  7 Date: Standard Orther:  6 Standard Orther:  7 Date: Standard Orther:  7 Date: Standard Orther:  8 Standard Orther:  8 Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  1 Day: Standard Orther:  2 Day: Standard Orther:  2 Day: Standard Orther:  2 Day: Standard Orther:  2 Day: Standard Orther:  2 Day: Standard Orther:  3 Day: Standard Orther:  4 Day: Standard Orther:  5 Day: Standard Orther:  5 Day: Standard Orther:  5 Day: Standard Orther:  5 Day: Standard Orther:  5 Day: Standard Orther:  5 Day: Standard Orther:  5 Day: Standard Orther:  5 Day: Standard Orther:  5 Day: Sta |                               |             |          |          |          |          |          |           | -        | _        |                        | $\vdash$                              | -        | -        |     |                                                                                                      | +                | +-                                               |     | -   |   |            | - 1 |
| Standard Turn Around Time (TAT) = 10 Business Days  1 Day 2 Day 3 Day  S Day Shandard Other:  SAMPLES ARE HELD FOR 30 DAYS  10 Day:  Standard Other:  Day:  Standard Other:  Square:  Day:  Standard Other:  Square:  Day:  Square:  Day:  Standard Other:  Standard Other:  Day:  Square:  Day:  Standard Other:  Square:  Square:  Day:  Da |                               |             |          |          |          |          |          |           | -        |          |                        |                                       | ├        | _        |     |                                                                                                      | +                | -                                                | +   | 1   | - |            | 1   |
| Standard Term Acoused Time (UAT) = 10 Bastiness Days  1 Day 2 Day 3 Day  Standard Orther:  5 Day (Standard) Orther:  5 Day (Standard) Orther:  5 Day:  6 A   4   2.5    7 Term:  7 Term:  7 Term:  7 Day:  7 Orther  8   5   5   2    7 Orther  9 Orther  1 Day:  1 Day:  1 Day:  1 Day:  1 Day:  1 Day:  2 Day:  5   5   5   2    7 Day:  1 Day:  1 Day:  1 Day:  1 Day:  2   7   2    1 Day:  1 Day:  2   7   2    1 Day:  1 Day:  2   7   2    1 Day:  1 Day:  2   7   2    1 Day:  2   7   2    1 Day:  2   7   2    1 Day:  2   7   2    1 Day:  2   7   2    1 Day:  2   7   2    1 Day:  3 Day  5   7   2    1 Day:  5   7   2    1 Day:  5   7   2    1 Day:  5   7   2    1 Day:  5   7   2    1 Day:  5   7   2    1 Day:  6   7   2    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    7   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8   7    8  |                               | _           |          |          | $\dashv$ |          |          |           |          |          |                        | $\vdash$                              |          |          |     |                                                                                                      |                  |                                                  |     |     |   |            |     |
| AT Requested (circle)  A Requested (circle)  S Day  Shandard  Other:  Address Are Held For as Day  Signal or Standard  Other:  Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or Signal or |                               |             |          | 1        | $\dashv$ | $\dashv$ |          |           | -        |          |                        | _                                     |          |          |     |                                                                                                      |                  |                                                  |     |     |   |            | İ   |
| 1 Day   2 Day   3 Day   3 Day   3 Day   3 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Day   5 Da   | Wandard Tu                    | n Around Ti | EAT      | = 10 Bus | thous De |          |          |           |          |          | SPEC                   | V.                                    | STRU     | ğ        | يزا |                                                                                                      |                  | -                                                |     | 1   | 3 | 1          | 1   |
| S Day Shandard Other:  SAMPLES ARE HELD FOR 30 DAYS  Des: Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain Day  Strain D |                               | 1 Day       |          | 2 Day    |          | 3 Day    |          |           |          |          | £                      | 5                                     | Ē        | f        | E   | P 182 19                                                                                             | =                | F                                                | CHO | 200 | ) |            |     |
| SECURD 3Y:   Det.   SECURD 3Y:   Det.   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:   Separator:     | A i Kejasued (circle)         | 5 Day       | E        | and and  | _        | Offer:   |          |           | - 1      |          | 8                      | Ad                                    | 7        | 8        | 3   | S & 8                                                                                                | 18/              | ú                                                |     |     |   |            |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | ES ARE HE   | D FOR 34 | DAYS     |          |          | 1        |           |          | Τ        |                        |                                       |          |          |     |                                                                                                      |                  |                                                  |     |     |   |            |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                             | Dete:       |          | RECEIVE  | D BY:    |          | -        | ¥         |          |          | Signatura<br>Signatura | OCUSE.                                | ¥ (1)    | l        | "   |                                                                                                      |                  | CENED                                            | BY: | '   |   | 1          | 1   |
| Time: Public Name: Time: Printed Name: Time: Printed Name: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company: Company |                               | 8/14/25     |          |          |          | ï        | 00       | 15.1      | M        |          |                        |                                       |          |          |     | į                                                                                                    |                  | Í                                                |     | 3   | ¥ |            |     |
| Company:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Tible Name:                   | į           | _حا      | S P      | £        | ,        | -        | 31        | 7        |          | F.                     | Negre                                 |          |          | -   | <b>36</b>                                                                                            | Ē                | ned Nam                                          |     | F   | ä |            | ı   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Company:                      |             |          | Company  | ,        |          |          |           |          |          | Compe                  | 5                                     |          |          |     |                                                                                                      | 8                | :Cased:                                          |     |     |   |            |     |

Apex Laboratories

\_\_\_\_



AMENDED REPORT

Project Manager: Greg Peters

### Apex Laboratories, LLC

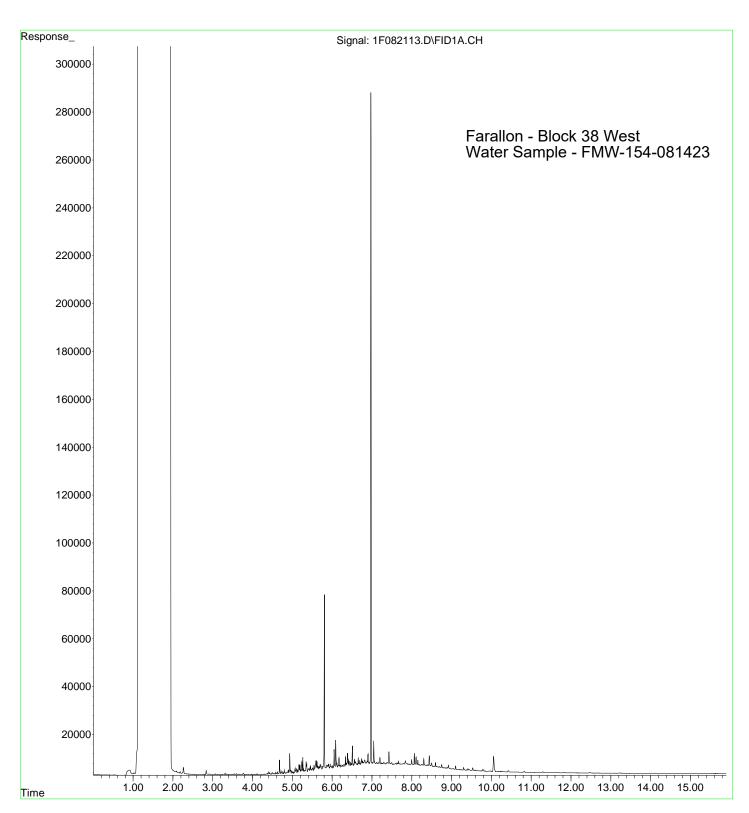
6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

<u>Farallon-Seattle</u> 1809 7th Ave Suite 1111 Seattle, WA 98101 Project: 397-019 Block 38 West
Project Number: 397-019 Block 38 West

Report ID: A3H1087 - 12 22 23 1819

# APEX LABS COOLER RECEIPT FORM Client: Familian Consulting Element WO#: A3 H1087 Block 38 / 397-019 Project/Project #: \_\_\_\_ **Delivery Info:** Date/time received: 8-15-23 @ 10-34 By: 55 Delivered by: Apex\_Client\_ESS\_\_FedEx\_YUPS\_Radio\_\_Morgan\_\_SDS\_\_Evergreen\_\_Other\_\_ Date/time inspected: 8-15-23 @ 1035 By: Das Cooler Inspection Chain of Custody included? Yes \_\_\_\_\_ No \_\_\_\_ Signed/dated by client? Yes \_\_\_\_\_ No \_\_\_ Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7 1.7 4.7 5.7 Temperature (°C) Custody seals? (Y/N) Received on ice? (Y/N) Temp. blanks? (Y/N) Ice type: (Gel/Real/Other) Condition (In/Out): Cooler out of temp? (Y/N) Possible reason why: Green dots applied to out of temperature samples? Yes/No Out of temperature samples form initiated? Yes(No Sample Inspection: Date/time inspected: 2-15-23@ 1540 By: DJS All samples intact? Yes No Comments: 2/6 your for FMW-161-081423 received Bottle labels/COCs agree? Yes No × Comments: No 1D, Date, or Time on 1/2 HCL arribers FMW-154-031423. Identified by bottles partiaged with FMW-165-081423 cont 10 reads FMW-081423 COC/container discrepancies form initiated? Yes \_\_\_\_ No >> Containers/volumes received appropriate for analysis? Yes Yes No Comments: Do VOA vials have visible headspace? Yes X No NA NA Comments FMW-160-081423 4/6 = HS. Water samples: pH checked: Yes No NA pH appropriate? Yes No NA Comments: \_\_\_\_ Additional information: 7824 8566 Oro7 Labeled by: Witness: Cooler Inspected by: Form Y-003 R-00 DJ5 DJS

Apex Laboratories

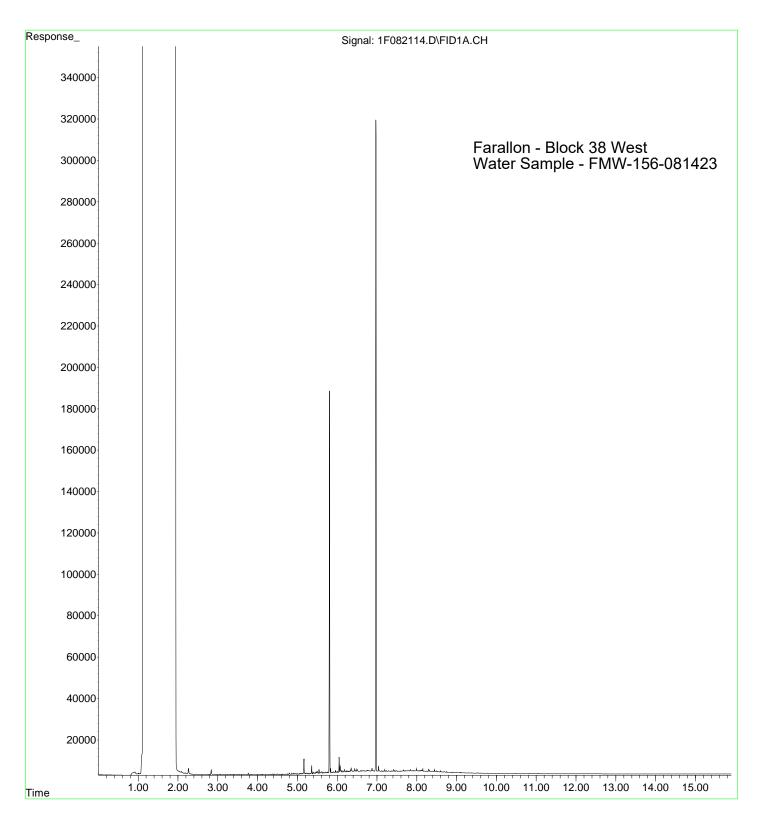

( withle fog

File : C: \gcms\1\data\3H21052\1F082113. D

Operator : BLL

Acquired : 21 Aug 2023 23:44 using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: A3H1087-01

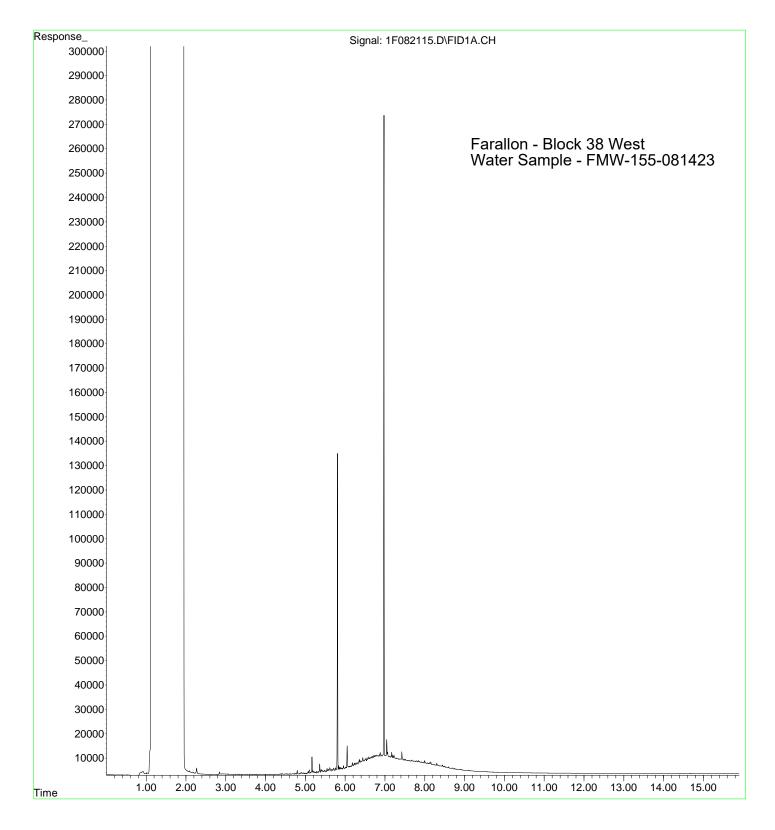



File : C: \gcns\1\data\3H21052\1F082114. D

Operator : BLL

Acquired : 22 Aug 2023 00:07 using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: A3H 087- 02

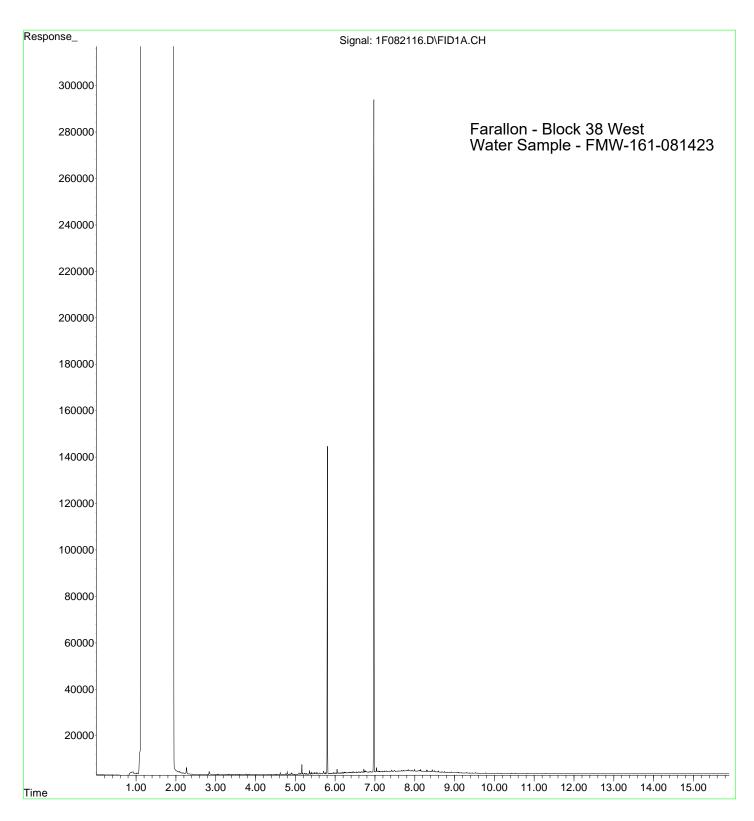



File : C: \gcns\1\data\3H21052\1F082115. D

Operator : BLL

Acquired : 22 Aug 2023 00: 31 using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: A3H1087-03

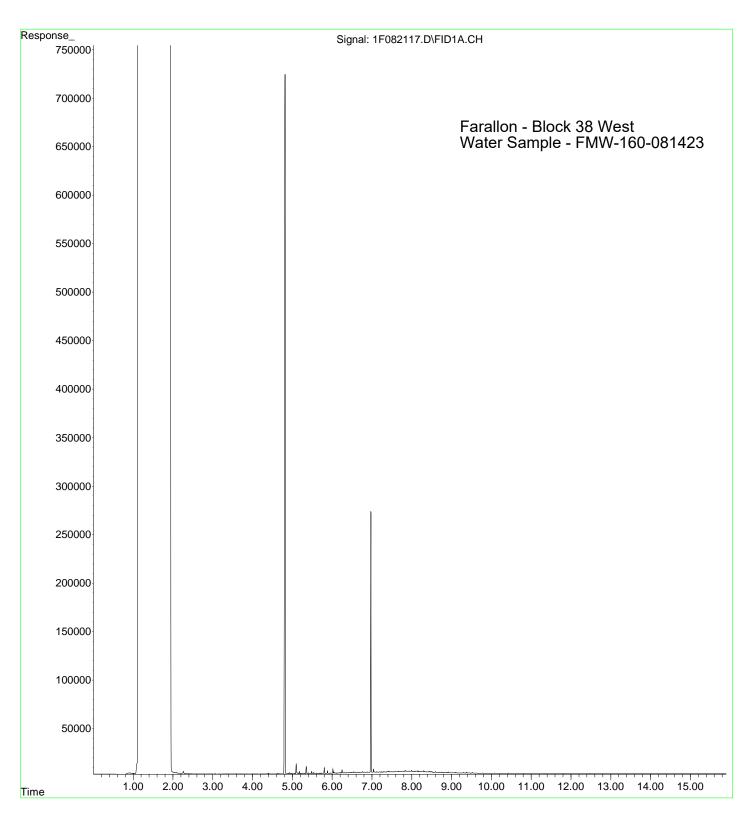



File : C: \gcms\1\data\3H21052\1F082116. D

Operator : BLL

Acquired : 22 Aug 2023 00: 54 using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: A3H 087-04

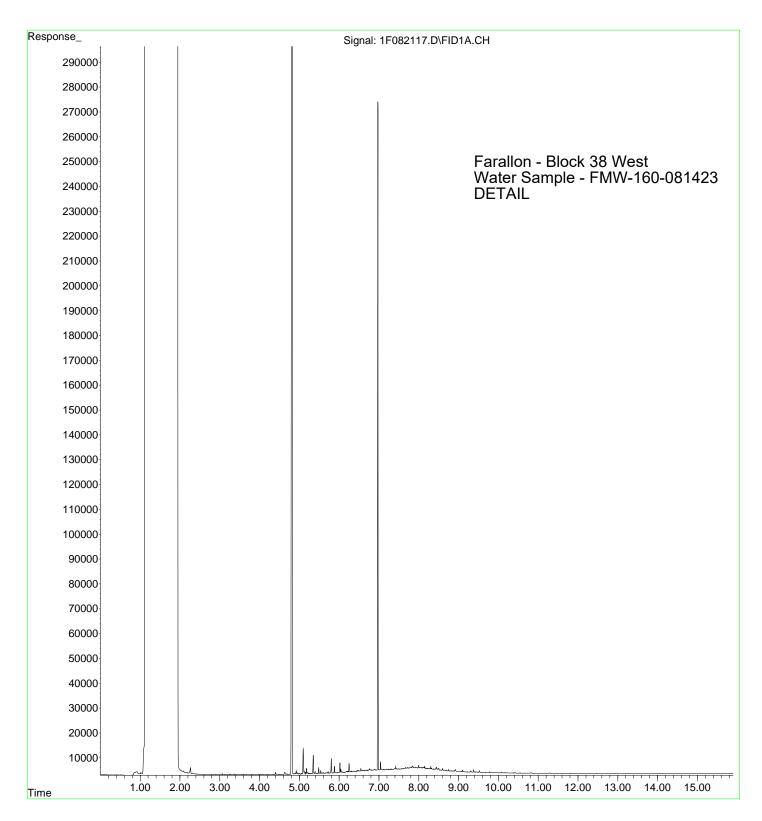



File : C: \gcns\1\data\3H21052\1F082117. D

Operator : BLL

Acquired: 22 Aug 2023 1:17 using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: A3H 087-05

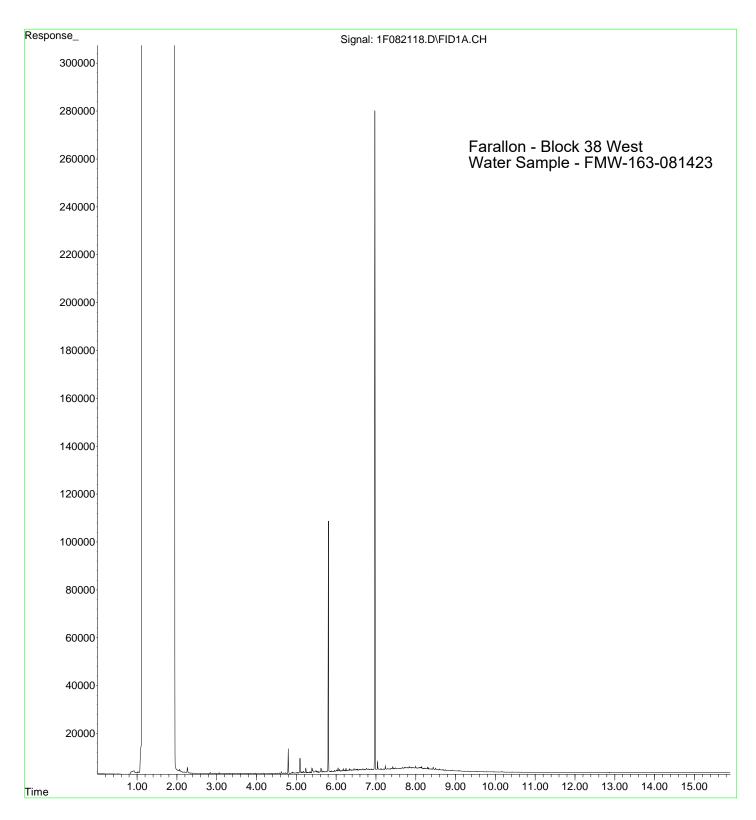



File : C: \gcns\1\data\3H21052\1F082117. D

Operator : BLL

Acquired: 22 Aug 2023 1:17 using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: A3H 087-05

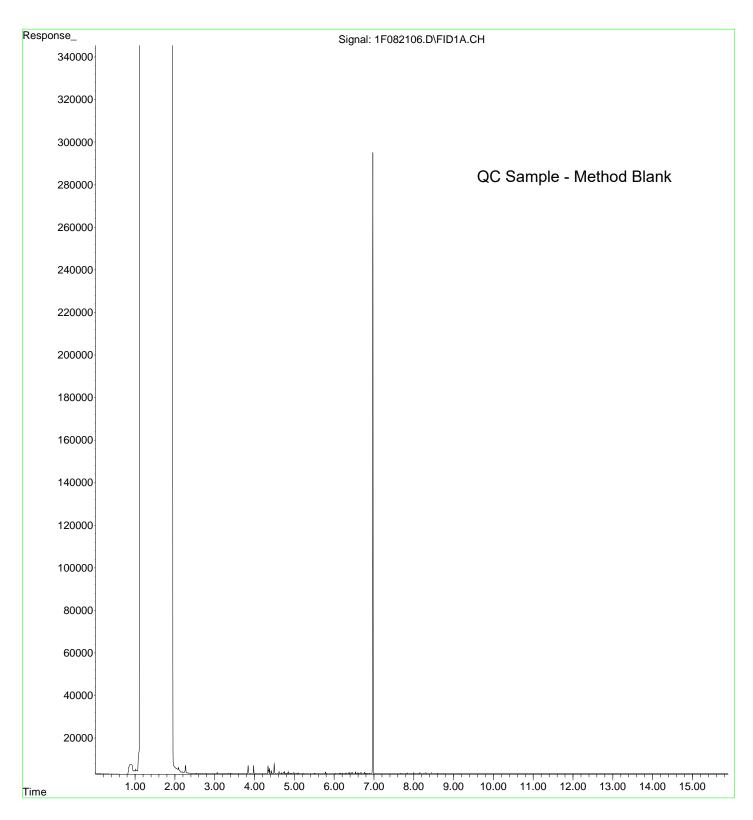



File : C: \gcms\1\data\3H21052\1F082118. D

Operator : BLL

Acquired : 22 Aug 2023 1:41 using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: A3H 087-06

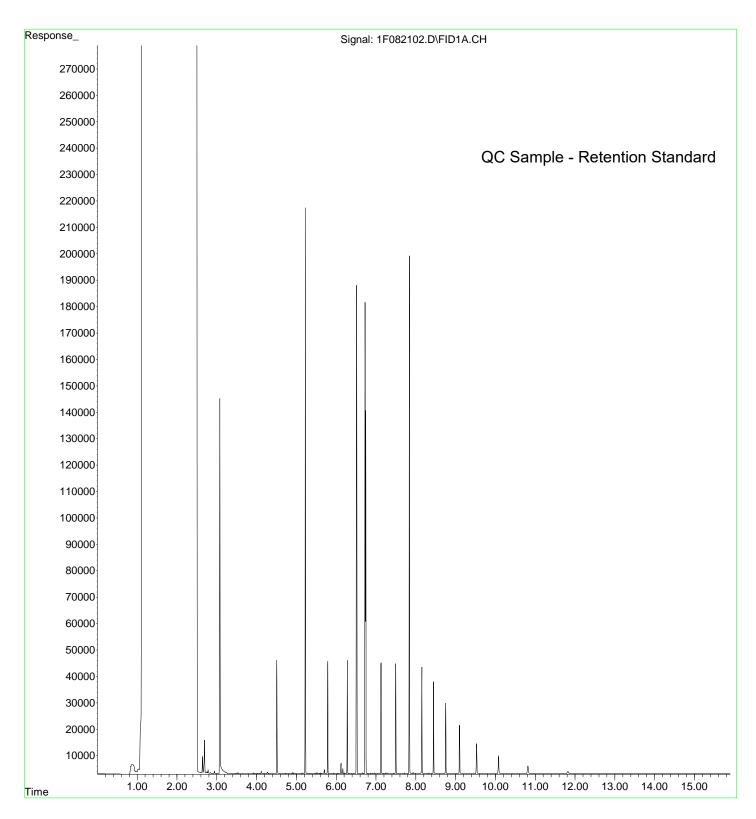



File : C: \gcns\1\data\3H21052\1F082106. D

Operator : BLL

Acquired : 21 Aug 2023 20:59 using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: 23HD758-HLKI

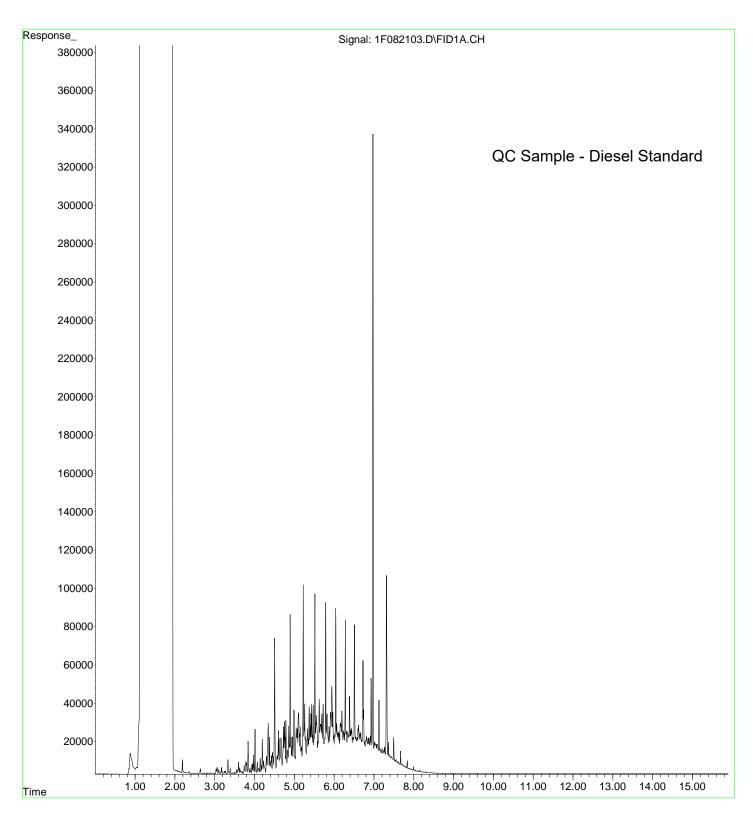



File : C: \gcns\1\data\3H21052\1F082102. D

Operator : BLL

Acquired : 21 Aug 2023 16:17 using AcqWethod A1F40422. M

Instrument: HP G1530A Sample Name: 3H21052-RES1

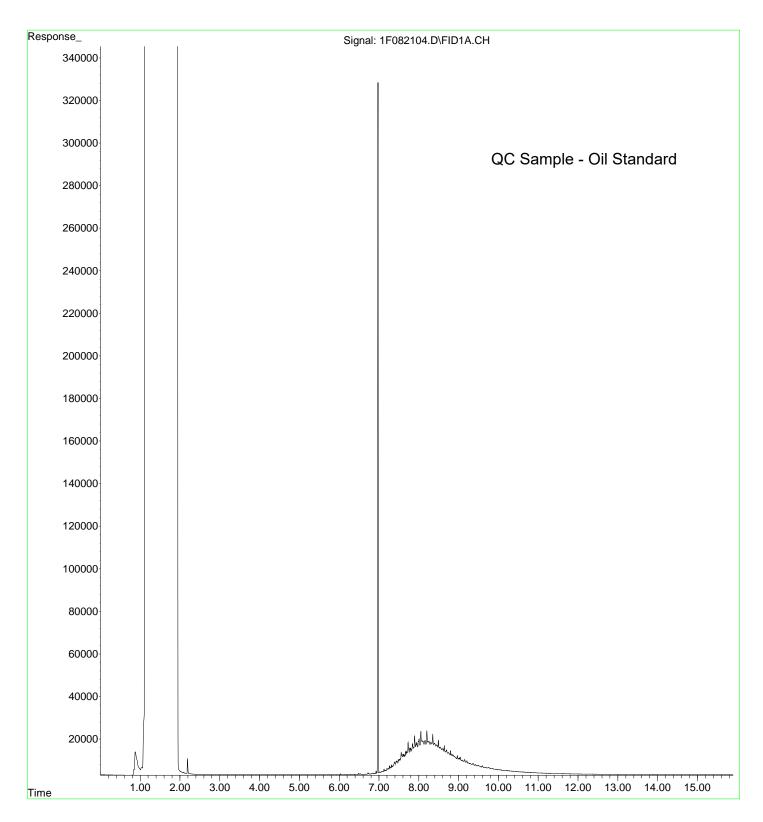



File : C: \gcns\1\data\3H21052\1F082103. D

Operator : BLL

Acquired : 21 Aug 2023 16:41 using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: 3H21052-CCV1

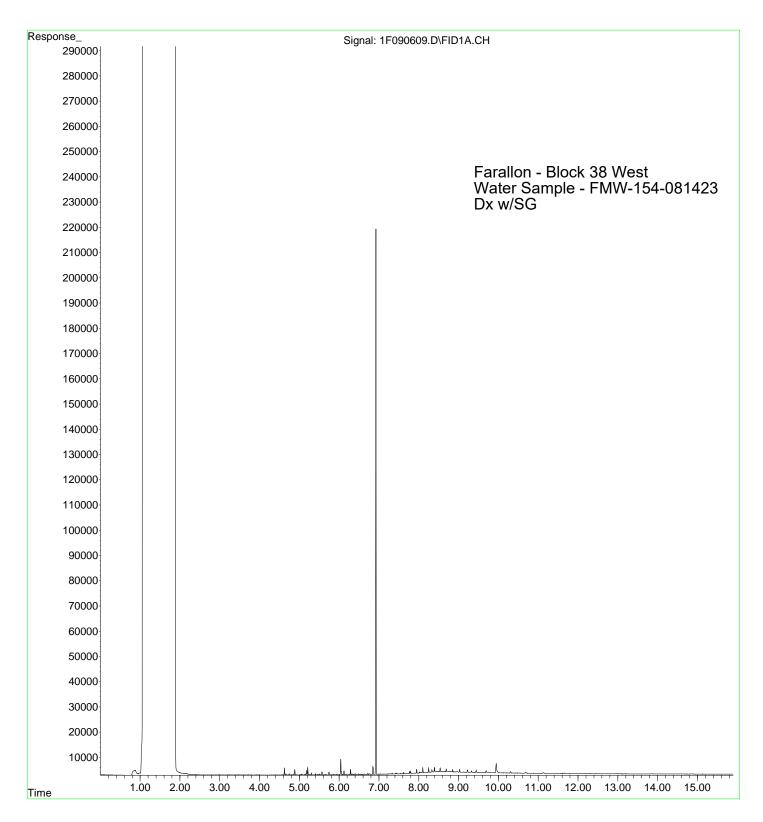



File : C: \gcms\1\data\3H21052\1F082104. D

Operator : BLL

Acquired : 21 Aug 2023 17:05 using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: 3H21052-CCV2

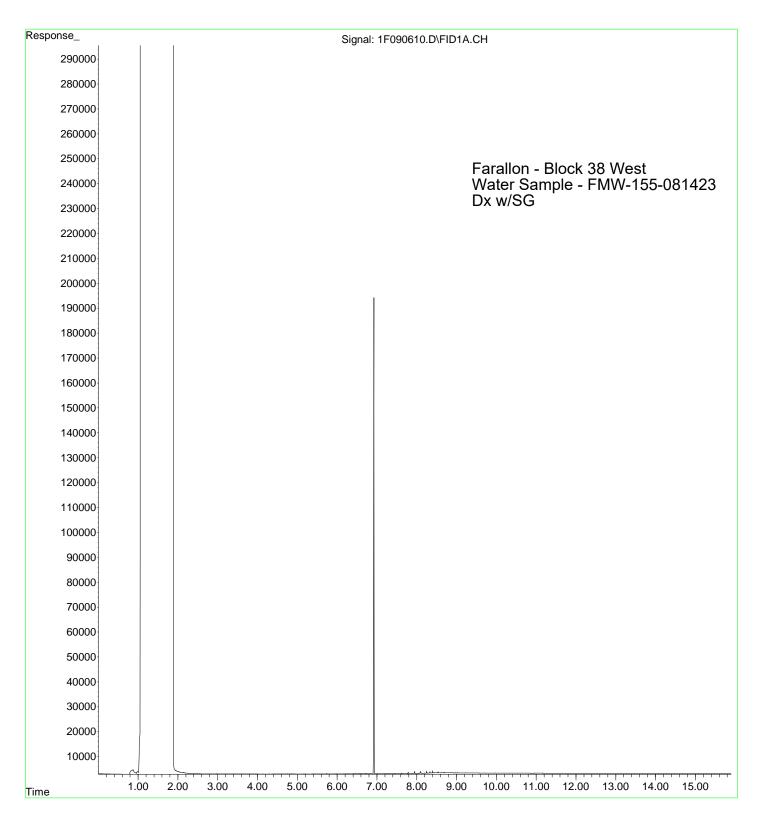



File : C: \gcns\1\data\3106064\1F090609. D

Operator : BLL

Acquired : 06 Sep 2023 22:30 using AcqNethod A1F40422. M

Instrument: HP G1530A Sample Name: A3H1087-01

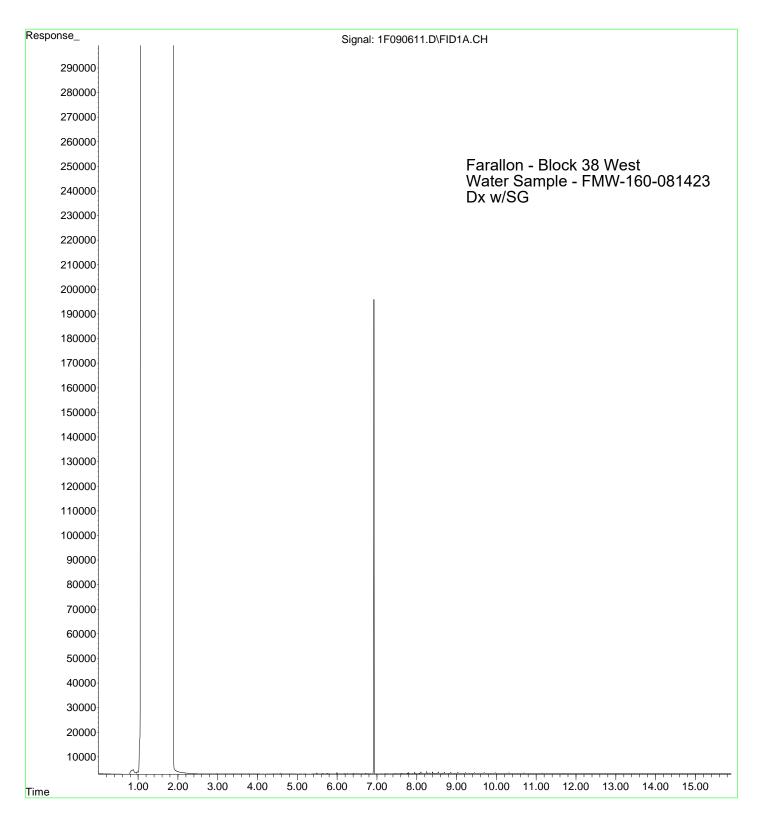



File : C: \gcns\1\data\3106064\1F090610. D

Operator : BLL

Acquired : 06 Sep 2023 22:54 using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: A3H1087-03

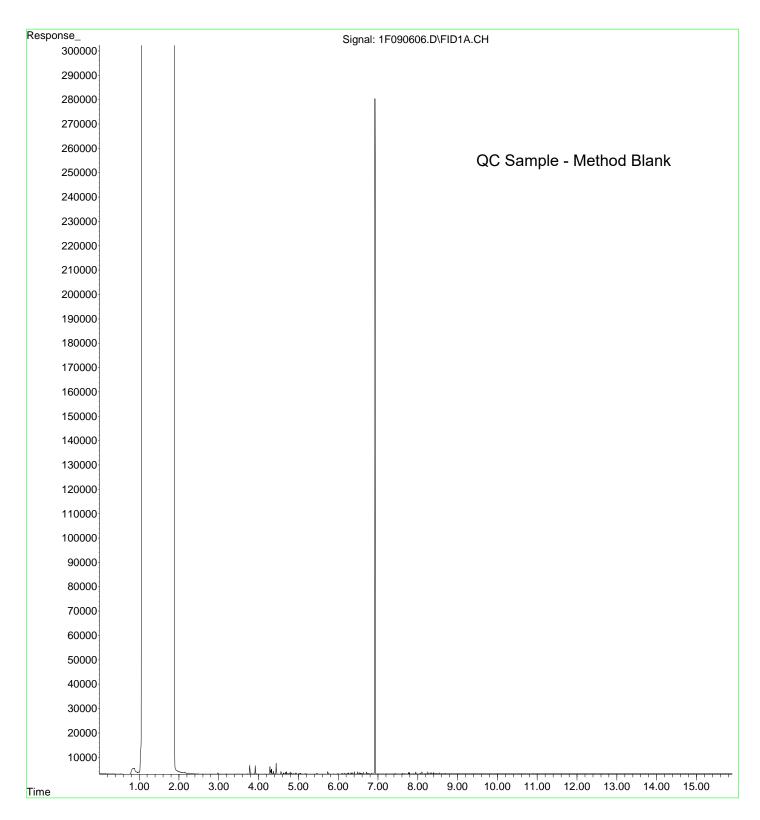



File : C: \gcns\1\data\3106064\1F090611. D

Operator : BLL

Acquired : 06 Sep 2023 23:17 using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: A3H1087-05

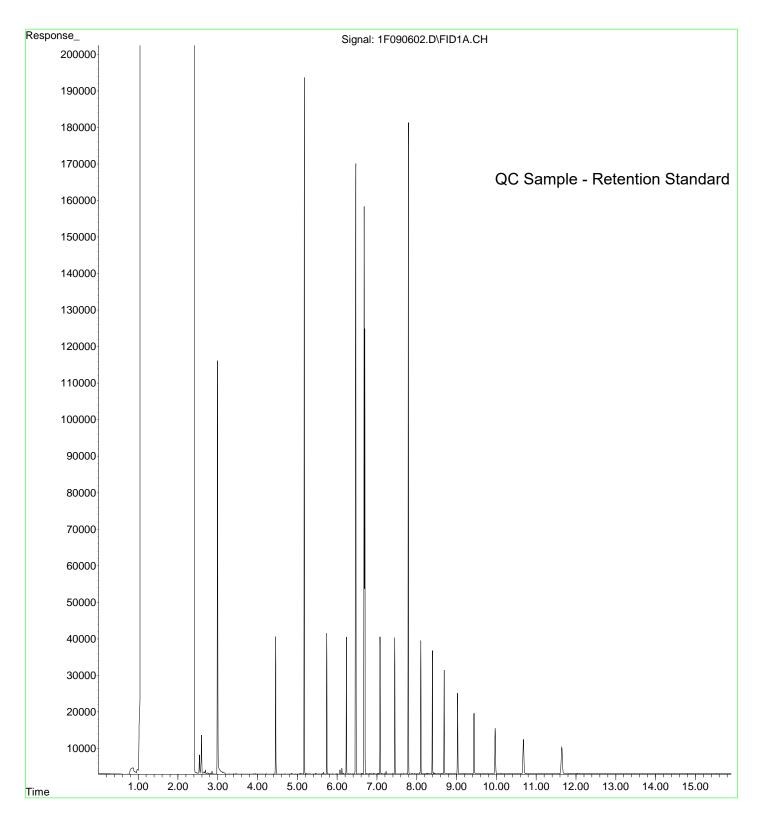



File : C: \gcns\1\data\3I06064\1F090606. D

Operator : BLL

Acquired : 06 Sep 2023 21:20 using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: 2310147-HLK1

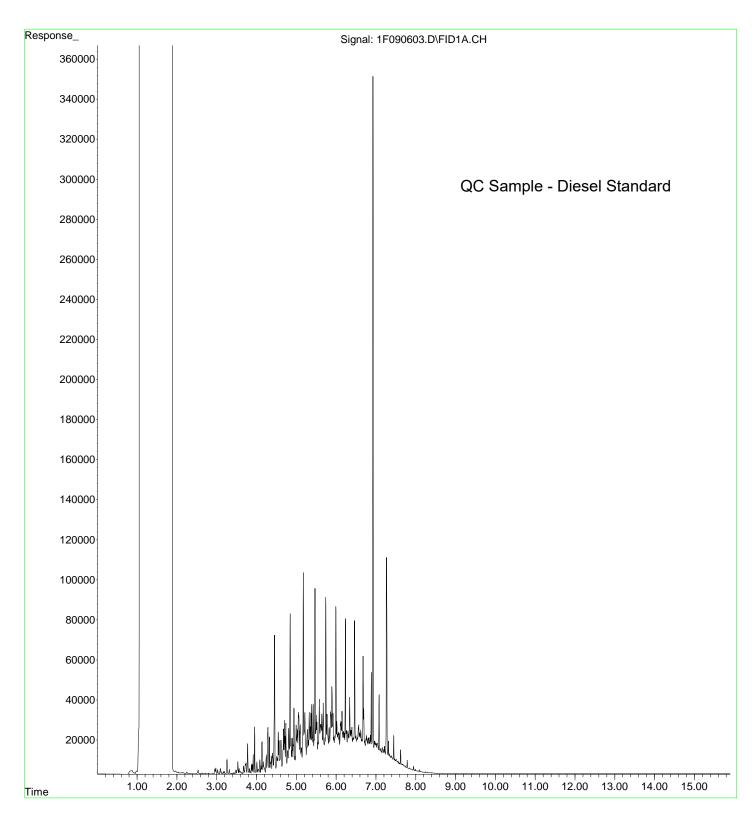



File : C: \gcns\1\data\3106064\1F090602. D

Operator : BLL

Acquired : 06 Sep 2023 15:23 using AcqWethod A1F40422. M

Instrument: HP G1530A Sample Name: 3106064-RES1

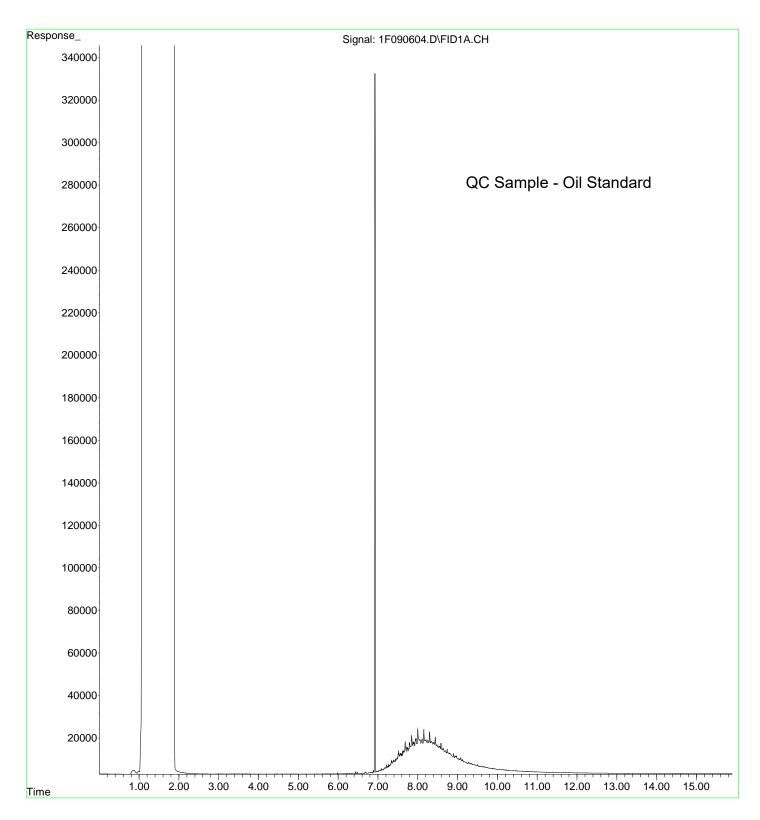



File : C: \gcns\1\data\3106064\1F090603. D

Operator : BLL

Acquired : 06 Sep 2023 15:46 using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: 3106064-CCV1




File : C: \gcns\1\data\3106064\1F090604. D

Operator : BLL

Acquired : 06 Sep 2023 16:10 using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: 3I06064-CCV2





**Apex Laboratories, LLC** 

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

AMENDED REPORT

Friday, December 22, 2023 Greg Peters Farallon-Seattle 1809 7th Ave Suite 1111 Seattle, WA 98101

RE: A3H1155 - 397-019 Block 38 West - 397-019

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A3H1155, which was received by the laboratory on 8/17/2023 at 10:24:00AM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <a href="mailto:mpoquiz@apex-labs.com">mpoquiz@apex-labs.com</a>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

|                        |         |            | Cooler Rece             | eipt Information             |          |             |               |     |
|------------------------|---------|------------|-------------------------|------------------------------|----------|-------------|---------------|-----|
| Acceptable Receipt Ten | nperatu | re is less | than, or equal to, 6 de | gC (not frozen), or received | d on ice | the same of | day as sampli | ng. |
|                        |         |            | (See Cooler Receipt     | t Form for details)          |          |             |               |     |
|                        |         |            |                         |                              |          |             |               |     |
| Cooler #1              | 2.9     | degC       | <u></u>                 | Cooler #2                    | 3.9      | degC        | _             |     |
| Cooler #3              | 0.4     | degC       | _                       | Cooler #4                    | 1.2      | degC        | _             |     |
| Cooler #5              | 3.6     | degC       |                         | Cooler #6                    | 2.8      | degC        | _             |     |
| Cooler #7              | 0.9     | degC       | _                       |                              |          |             |               |     |
| <br><u> </u>           |         |            |                         |                              |          |             |               |     |

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.





Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3H1155 - 12 22 23 1825

### ANALYTICAL REPORT FOR SAMPLES

| SAMPLE INFORMATION |               |        |                |                |  |  |  |  |
|--------------------|---------------|--------|----------------|----------------|--|--|--|--|
| Client Sample ID   | Laboratory ID | Matrix | Date Sampled   | Date Received  |  |  |  |  |
| OW-1-081523        | АЗН1155-01    | Water  | 08/15/23 11:41 | 08/17/23 10:24 |  |  |  |  |
| FMW-164-081523     | A3H1155-02    | Water  | 08/15/23 10:18 | 08/17/23 10:24 |  |  |  |  |
| OW-2-081523        | АЗН1155-03    | Water  | 08/15/23 08:23 | 08/17/23 10:24 |  |  |  |  |
| FMW-150-081523     | АЗН1155-04    | Water  | 08/15/23 15:45 | 08/17/23 10:24 |  |  |  |  |
| FMW-153-081523     | АЗН1155-05    | Water  | 08/15/23 14:45 | 08/17/23 10:24 |  |  |  |  |
| FMW-157-081523     | АЗН1155-06    | Water  | 08/15/23 13:09 | 08/17/23 10:24 |  |  |  |  |
| FMW-159-081523     | A3H1155-07    | Water  | 08/15/23 10:30 | 08/17/23 10:24 |  |  |  |  |
| OW-3-081523        | A3H1155-08    | Water  | 08/15/23 12:10 | 08/17/23 10:24 |  |  |  |  |
| FMW-162-081523     | A3H1155-09    | Water  | 08/15/23 13:10 | 08/17/23 10:24 |  |  |  |  |
| FMW-151-081523     | A3H1155-10    | Water  | 08/15/23 14:50 | 08/17/23 10:24 |  |  |  |  |
| FMW-152-081523     | АЗН1155-11    | Water  | 08/15/23 16:00 | 08/17/23 10:24 |  |  |  |  |
| FMW-158-081523     | АЗН1155-12    | Water  | 08/15/23 09:10 | 08/17/23 10:24 |  |  |  |  |

Apex Laboratories

(milale fog



AMENDED REPORT

# Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3H1155 - 12 22 23 1825

### ANALYTICAL CASE NARRATIVE

A3H1155 Apex Laboratories

Amended Report Revision 2:

Reporting to Reporting Limits (RLs)-

This report supersedes all previous reports.

Per client request, this report has been amended to report all NWTPH-Dx data to the RLs.

Michele Poquiz Forensics Project Manager 12/22/2023

Amended Report Revision 1:

Sample Identification Change-

This report supersedes all previous reports.

The following sample ID has been edited from the original chain of custody:

Sample FMW-154-081523 is now reported as FMW-153-081523 (Apex ID: A3H1155-05).

Michele Poquiz Forensics Project Manager 8/31/23

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3H1155 - 12 22 23 1825

# ANALYTICAL SAMPLE RESULTS

|                               | Die              | esel and/or Oil    | Hydrocar           | bons by NWTP     | H-Dx           |                  |             |       |
|-------------------------------|------------------|--------------------|--------------------|------------------|----------------|------------------|-------------|-------|
| Analyte                       | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution       | Date<br>Analyzed | Method Ref. | Notes |
| OW-1-081523 (A3H1155-01)      |                  |                    |                    | Matrix: Wate     | er             | Batch:           | 23H0834     |       |
| Diesel                        | 385              |                    | 76.9               | ug/L             | 1              | 08/23/23 21:52   | NWTPH-Dx LL | F-11  |
| Oil                           | ND               |                    | 154                | ug/L             | 1              | 08/23/23 21:52   | NWTPH-Dx LL |       |
| Surrogate: o-Terphenyl (Surr) |                  | Recove             | ery: 94%           | Limits: 50-150 % | 6 1            | 08/23/23 21:52   | NWTPH-Dx LL |       |
| FMW-164-081523 (A3H1155-02)   |                  |                    |                    | Matrix: Wate     | er             | Batch: 23H0834   |             |       |
| Diesel                        | ND               |                    | 76.9               | ug/L             | 1              | 08/23/23 22:12   | NWTPH-Dx LL |       |
| Oil                           | ND               |                    | 154                | ug/L             | 1              | 08/23/23 22:12   | NWTPH-Dx LL |       |
| Surrogate: o-Terphenyl (Surr) |                  | Recove             | ery: 84 %          | Limits: 50-150 % | 6 1            | 08/23/23 22:12   | NWTPH-Dx LL |       |
| OW-2-081523 (A3H1155-03)      |                  | Matrix: Water      |                    | er               | Batch: 23H0834 |                  |             |       |
| Diesel                        | ND               |                    | 78.4               | ug/L             | 1              | 08/23/23 22:33   | NWTPH-Dx LL |       |
| Oil                           | ND               |                    | 157                | ug/L             | 1              | 08/23/23 22:33   | NWTPH-Dx LL |       |
| Surrogate: o-Terphenyl (Surr) |                  | Recove             | ery: 77 %          | Limits: 50-150 % | 6 1            | 08/23/23 22:33   | NWTPH-Dx LL |       |
| FMW-150-081523 (A3H1155-04)   |                  |                    |                    | Matrix: Water    |                | Batch: 23H0834   |             |       |
| Diesel                        | ND               |                    | 76.9               | ug/L             | 1              | 08/23/23 22:54   | NWTPH-Dx LL |       |
| Oil                           | ND               |                    | 154                | ug/L             | 1              | 08/23/23 22:54   | NWTPH-Dx LL |       |
| Surrogate: o-Terphenyl (Surr) |                  | Recove             | ery: 83 %          | Limits: 50-150 % | 6 I            | 08/23/23 22:54   | NWTPH-Dx LL |       |
| FMW-153-081523 (A3H1155-05)   |                  |                    |                    | Matrix: Water    |                | Batch: 23H0834   |             |       |
| Diesel                        | ND               |                    | 76.2               | ug/L             | 1              | 08/23/23 23:15   | NWTPH-Dx LL |       |
| Oil                           | ND               |                    | 152                | ug/L             | 1              | 08/23/23 23:15   | NWTPH-Dx LL |       |
| Surrogate: o-Terphenyl (Surr) |                  | Recove             | ery: 89 %          | Limits: 50-150 % | 6 1            | 08/23/23 23:15   | NWTPH-Dx LL |       |
| FMW-157-081523 (A3H1155-06)   |                  |                    |                    | Matrix: Water    |                | Batch: 23H0834   |             |       |
| Diesel                        | 173              |                    | 77.7               | ug/L             | 1              | 08/24/23 00:58   | NWTPH-Dx LL | F-11  |
| Oil                           | ND               |                    | 155                | ug/L             | 1              | 08/24/23 00:58   | NWTPH-Dx LL |       |
| Surrogate: o-Terphenyl (Surr) |                  | Recove             | ery: 92 %          | Limits: 50-150 % | 6 1            | 08/24/23 00:58   | NWTPH-Dx LL |       |
| FMW-159-081523 (A3H1155-07)   |                  |                    |                    | Matrix: Water    |                | Batch: 23H0834   |             |       |
| Diesel                        | 109              |                    | 76.9               | ug/L             | 1              | 08/24/23 01:18   | NWTPH-Dx LL | F-11  |
| Oil                           | ND               |                    | 154                | ug/L             | 1              | 08/24/23 01:18   | NWTPH-Dx LL |       |
| Surrogate: o-Terphenyl (Surr) |                  | Recove             | ery: 92 %          | Limits: 50-150 % | 6 I            | 08/24/23 01:18   | NWTPH-Dx LL |       |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3H1155 - 12 22 23 1825

# ANALYTICAL SAMPLE RESULTS

| Diesel and/or Oil Hydrocarbons by NWTPH-Dx |                  |                    |                    |                  |          |                  |             |       |  |
|--------------------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|-------------|-------|--|
| Analyte                                    | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref. | Notes |  |
| OW-3-081523 (A3H1155-08)                   |                  |                    |                    | Matrix: Water    |          | Batch: 23H0834   |             |       |  |
| Diesel                                     | ND               |                    | 76.9               | ug/L             | 1        | 08/24/23 01:39   | NWTPH-Dx LL |       |  |
| Oil                                        | ND               |                    | 154                | ug/L             | 1        | 08/24/23 01:39   | NWTPH-Dx LL |       |  |
| Surrogate: o-Terphenyl (Surr)              |                  | Reco               | very: 89 %         | Limits: 50-150 % | 1        | 08/24/23 01:39   | NWTPH-Dx LL |       |  |
| FMW-162-081523 (A3H1155-09)                |                  |                    |                    | Matrix: Water    |          | Batch: 23H0834   |             |       |  |
| Diesel                                     | 103              |                    | 76.9               | ug/L             | 1        | 08/24/23 01:59   | NWTPH-Dx LL | F-11  |  |
| Oil                                        | ND               |                    | 154                | ug/L             | 1        | 08/24/23 01:59   | NWTPH-Dx LL |       |  |
| Surrogate: o-Terphenyl (Surr)              |                  | Reco               | very: 89 %         | Limits: 50-150 % | 1        | 08/24/23 01:59   | NWTPH-Dx LL |       |  |
| FMW-151-081523 (A3H1155-10)                |                  |                    |                    | Matrix: Water    |          | Batch: 23H0834   |             |       |  |
| Diesel                                     | 222              |                    | 75.5               | ug/L             | 1        | 08/24/23 02:20   | NWTPH-Dx LL | F-11  |  |
| Oil                                        | ND               |                    | 151                | ug/L             | 1        | 08/24/23 02:20   | NWTPH-Dx LL |       |  |
| Surrogate: o-Terphenyl (Surr)              |                  | Reco               | very: 91 %         | Limits: 50-150 % | 1        | 08/24/23 02:20   | NWTPH-Dx LL |       |  |
| FMW-152-081523 (A3H1155-11)                |                  |                    |                    | Matrix: Water    |          | Batch: 23H0834   |             |       |  |
| Diesel                                     | 216              |                    | 76.9               | ug/L             | 1        | 08/24/23 02:41   | NWTPH-Dx LL | F-11  |  |
| Oil                                        | ND               |                    | 154                | ug/L             | 1        | 08/24/23 02:41   | NWTPH-Dx LL |       |  |
| Surrogate: o-Terphenyl (Surr)              |                  | Reco               | very: 95 %         | Limits: 50-150 % | 1        | 08/24/23 02:41   | NWTPH-Dx LL |       |  |
| FMW-158-081523 (A3H1155-12)                |                  |                    |                    | Matrix: Water    |          | Batch: 23H0834   |             |       |  |
| Diesel                                     | 256              |                    | 75.5               | ug/L             | 1        | 08/24/23 03:01   | NWTPH-Dx LL | F-11  |  |
| Oil                                        | ND               |                    | 151                | ug/L             | 1        | 08/24/23 03:01   | NWTPH-Dx LL |       |  |
| Surrogate: o-Terphenyl (Surr)              |                  | Recovery: 91 %     |                    | Limits: 50-150 % | 1        | 08/24/23 03:01   | NWTPH-Dx LL |       |  |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3H1155 - 12 22 23 1825

# ANALYTICAL SAMPLE RESULTS

| Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx |                  |                    |                    |                  |          |                  |               |       |
|-----------------------------------------------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|---------------|-------|
| Analyte                                                               | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref.   | Notes |
| FMW-158-081523 (A3H1155-12)                                           |                  | Matrix: Water      |                    |                  | er       | Batch: 23H0703   |               |       |
| Gasoline Range Organics                                               | ND               | 50.0               | 100                | ug/L             | 1        | 08/18/23 20:06   | NWTPH-Gx (MS) |       |
| Surrogate: 4-Bromofluorobenzene (Sur)                                 |                  | Reco               | very: 97%          | Limits: 50-150 % |          | 08/18/23 20:06   | NWTPH-Gx (MS) |       |
| 1,4-Difluorobenzene (Sur)                                             |                  | Reco               | 110 %              | 50-150 %         |          | 08/18/23 20:06   | NWTPH-Gx (MS) |       |

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3H1155 - 12 22 23 1825

## ANALYTICAL SAMPLE RESULTS

|                                       |        | BTEX Co   | mpounds b  | y EPA 8260D      |          |                |             |       |
|---------------------------------------|--------|-----------|------------|------------------|----------|----------------|-------------|-------|
|                                       | Sample | Detection | Reporting  |                  |          | Date           |             |       |
| Analyte                               | Result | Limit     | Limit      | Units            | Dilution | Analyzed       | Method Ref. | Notes |
| FMW-158-081523 (A3H1155-12)           |        |           |            | Matrix: Wate     | er       | Batch:         | 23H0703     |       |
| Benzene                               | ND     | 0.100     | 0.200      | ug/L             | 1        | 08/18/23 20:06 | EPA 8260D   |       |
| Toluene                               | ND     | 0.500     | 1.00       | ug/L             | 1        | 08/18/23 20:06 | EPA 8260D   |       |
| Ethylbenzene                          | ND     | 0.250     | 0.500      | ug/L             | 1        | 08/18/23 20:06 | EPA 8260D   |       |
| Xylenes, total                        | ND     | 0.750     | 1.50       | ug/L             | 1        | 08/18/23 20:06 | EPA 8260D   |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |        | Recove    | ery: 104 % | Limits: 80-120 % | 6 1      | 08/18/23 20:06 | EPA 8260D   |       |
| Toluene-d8 (Surr)                     |        |           | 103 %      | 80-120 %         | 6 I      | 08/18/23 20:06 | EPA 8260D   |       |
| 4-Bromofluorobenzene (Surr)           |        |           | 101 %      | 80-120 %         | 6 I      | 08/18/23 20:06 | EPA 8260D   |       |

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3H1155 - 12 22 23 1825

## ANALYTICAL SAMPLE RESULTS

|                                    | Polyaro          | matic Hydroca      | rbons (PA          | (Hs) by EPA 82   | 70E (SIM | )                |               |       |
|------------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|---------------|-------|
| Analyte                            | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref.   | Notes |
| OW-1-081523 (A3H1155-01)           |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23H0786       |       |
| 1-Methylnaphthalene                | ND               | 0.0404             | 0.0808             | ug/L             | 1        | 08/22/23 19:47   | EPA 8270E SIM |       |
| 2-Methylnaphthalene                | ND               | 0.0404             | 0.0808             | ug/L             | 1        | 08/22/23 19:47   | EPA 8270E SIM |       |
| Naphthalene                        | ND               | 0.0404             | 0.0808             | ug/L             | 1        | 08/22/23 19:47   | EPA 8270E SIM |       |
| Surrogate: 2-Fluorobiphenyl (Surr) |                  | Recovery           | y: 66 %            | Limits: 44-120 % | 1        | 08/22/23 19:47   | EPA 8270E SIM |       |
| p-Terphenyl-d14 (Surr)             |                  |                    | 83 %               | 50-134 %         | 1        | 08/22/23 19:47   | EPA 8270E SIM |       |
| FMW-164-081523 (A3H1155-02)        |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23H0786       |       |
| 1-Methylnaphthalene                | ND               | 0.0400             | 0.0800             | ug/L             | 1        | 08/22/23 20:12   | EPA 8270E SIM |       |
| 2-Methylnaphthalene                | ND               | 0.0400             | 0.0800             | ug/L             | 1        | 08/22/23 20:12   | EPA 8270E SIM |       |
| Naphthalene                        | ND               | 0.0400             | 0.0800             | ug/L             | 1        | 08/22/23 20:12   | EPA 8270E SIM |       |
| Surrogate: 2-Fluorobiphenyl (Surr) |                  | Recovery           | y: 52 %            | Limits: 44-120 % | 1        | 08/22/23 20:12   | EPA 8270E SIM |       |
| p-Terphenyl-d14 (Surr)             |                  |                    | 89 %               | 50-134 %         | 1        | 08/22/23 20:12   | EPA 8270E SIM |       |
| OW-2-081523 (A3H1155-03)           |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23H0786       |       |
| 1-Methylnaphthalene                | ND               | 0.0377             | 0.0755             | ug/L             | 1        | 08/22/23 20:37   | EPA 8270E SIM |       |
| 2-Methylnaphthalene                | ND               | 0.0377             | 0.0755             | ug/L             | 1        | 08/22/23 20:37   | EPA 8270E SIM |       |
| Naphthalene                        | ND               | 0.0377             | 0.0755             | ug/L             | 1        | 08/22/23 20:37   | EPA 8270E SIM |       |
| Surrogate: 2-Fluorobiphenyl (Surr) |                  | Recovery           | v: 59 %            | Limits: 44-120 % | I        | 08/22/23 20:37   | EPA 8270E SIM |       |
| p-Terphenyl-d14 (Surr)             |                  |                    | 78 %               | 50-134 %         | 1        | 08/22/23 20:37   | EPA 8270E SIM |       |
| FMW-150-081523 (A3H1155-04)        |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23H0786       |       |
| 1-Methylnaphthalene                | ND               | 0.0385             | 0.0769             | ug/L             | 1        | 08/24/23 02:00   | EPA 8270E SIM |       |
| 2-Methylnaphthalene                | ND               | 0.0385             | 0.0769             | ug/L             | 1        | 08/24/23 02:00   | EPA 8270E SIM |       |
| Naphthalene                        | ND               | 0.0385             | 0.0769             | ug/L             | 1        | 08/24/23 02:00   | EPA 8270E SIM |       |
| Surrogate: 2-Fluorobiphenyl (Surr) |                  | Recovery           | y: 54 %            | Limits: 44-120 % | I        | 08/24/23 02:00   | EPA 8270E SIM |       |
| p-Terphenyl-d14 (Surr)             |                  |                    | 74 %               | 50-134 %         | 1        | 08/24/23 02:00   | EPA 8270E SIM |       |
| FMW-153-081523 (A3H1155-05)        |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23H0786       |       |
| 1-Methylnaphthalene                | ND               | 0.0388             | 0.0777             | ug/L             | 1        | 08/24/23 02:25   | EPA 8270E SIM |       |
| 2-Methylnaphthalene                | ND               | 0.0388             | 0.0777             | ug/L             | 1        | 08/24/23 02:25   | EPA 8270E SIM |       |
| Naphthalene                        | ND               | 0.0388             | 0.0777             | ug/L             | 1        | 08/24/23 02:25   | EPA 8270E SIM |       |
| Surrogate: 2-Fluorobiphenyl (Surr) |                  | Recovery           | y: 68 %            | Limits: 44-120 % | I        | 08/24/23 02:25   | EPA 8270E SIM |       |
| p-Terphenyl-d14 (Surr)             |                  |                    | 64 %               | 50-134 %         | 1        | 08/24/23 02:25   | EPA 8270E SIM |       |

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3H1155 - 12 22 23 1825

## ANALYTICAL SAMPLE RESULTS

|                                    | Polyard          | matic Hydroca      | rbons (PA          | (Hs) by EPA 82   | 70E (SIM | )                |               |       |
|------------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|---------------|-------|
| Analyte                            | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref.   | Notes |
| FMW-157-081523 (A3H1155-06)        |                  |                    |                    | Matrix: Wate     | r        | Batch:           | 23H0786       |       |
| 1-Methylnaphthalene                | ND               | 0.0408             | 0.0816             | ug/L             | 1        | 08/24/23 02:50   | EPA 8270E SIM |       |
| 2-Methylnaphthalene                | ND               | 0.0408             | 0.0816             | ug/L             | 1        | 08/24/23 02:50   | EPA 8270E SIM |       |
| Naphthalene                        | ND               | 0.0408             | 0.0816             | ug/L             | 1        | 08/24/23 02:50   | EPA 8270E SIM |       |
| Surrogate: 2-Fluorobiphenyl (Surr) |                  | Recover            | y: 73 %            | Limits: 44-120 % | 1        | 08/24/23 02:50   | EPA 8270E SIM |       |
| p-Terphenyl-d14 (Surr)             |                  |                    | 72 %               | 50-134 %         | 1        | 08/24/23 02:50   | EPA 8270E SIM |       |
| FMW-159-081523 (A3H1155-07)        |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23H0786       |       |
| 1-Methylnaphthalene                | ND               | 0.0385             | 0.0769             | ug/L             | 1        | 08/24/23 03:16   | EPA 8270E SIM |       |
| 2-Methylnaphthalene                | ND               | 0.0385             | 0.0769             | ug/L             | 1        | 08/24/23 03:16   | EPA 8270E SIM |       |
| Naphthalene                        | ND               | 0.0385             | 0.0769             | ug/L             | 1        | 08/24/23 03:16   | EPA 8270E SIM |       |
| Surrogate: 2-Fluorobiphenyl (Surr) |                  | Recovery           | v: 54 %            | Limits: 44-120 % | 1        | 08/24/23 03:16   | EPA 8270E SIM |       |
| p-Terphenyl-d14 (Surr)             |                  |                    | 62 %               | 50-134 %         | 1        | 08/24/23 03:16   | EPA 8270E SIM |       |
| OW-3-081523 (A3H1155-08)           |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23H0786       |       |
| 1-Methylnaphthalene                | ND               | 0.0404             | 0.0808             | ug/L             | 1        | 08/24/23 03:41   | EPA 8270E SIM |       |
| 2-Methylnaphthalene                | ND               | 0.0404             | 0.0808             | ug/L             | 1        | 08/24/23 03:41   | EPA 8270E SIM |       |
| Naphthalene                        | ND               | 0.0404             | 0.0808             | ug/L             | 1        | 08/24/23 03:41   | EPA 8270E SIM |       |
| Surrogate: 2-Fluorobiphenyl (Surr) |                  | Recovery           | y: 51 %            | Limits: 44-120 % | 1        | 08/24/23 03:41   | EPA 8270E SIM |       |
| p-Terphenyl-d14 (Surr)             |                  |                    | 73 %               | 50-134 %         | 1        | 08/24/23 03:41   | EPA 8270E SIM |       |
| FMW-162-081523 (A3H1155-09)        |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23H0786       |       |
| 1-Methylnaphthalene                | ND               | 0.0385             | 0.0769             | ug/L             | 1        | 08/22/23 13:00   | EPA 8270E SIM |       |
| 2-Methylnaphthalene                | ND               | 0.0385             | 0.0769             | ug/L             | 1        | 08/22/23 13:00   | EPA 8270E SIM |       |
| Naphthalene                        | ND               | 0.0385             | 0.0769             | ug/L             | 1        | 08/22/23 13:00   | EPA 8270E SIM |       |
| Surrogate: 2-Fluorobiphenyl (Surr) |                  | Recovery           | v: 59 %            | Limits: 44-120 % | 1        | 08/22/23 13:00   | EPA 8270E SIM |       |
| p-Terphenyl-d14 (Surr)             |                  |                    | 82 %               | 50-134 %         | 1        | 08/22/23 13:00   | EPA 8270E SIM |       |
| FMW-151-081523 (A3H1155-10)        |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23H0786       |       |
| 1-Methylnaphthalene                | ND               | 0.0385             | 0.0769             | ug/L             | 1        | 08/22/23 13:26   | EPA 8270E SIM |       |
| 2-Methylnaphthalene                | ND               | 0.0385             | 0.0769             | ug/L             | 1        | 08/22/23 13:26   | EPA 8270E SIM |       |
| Naphthalene                        | ND               | 0.0385             | 0.0769             | ug/L             | 1        | 08/22/23 13:26   | EPA 8270E SIM |       |
| Surrogate: 2-Fluorobiphenyl (Surr) |                  | Recover            | y: 56 %            | Limits: 44-120 % | 1        | 08/22/23 13:26   | EPA 8270E SIM |       |
| p-Terphenyl-d14 (Surr)             |                  |                    | 85 %               | 50-134 %         | 1        | 08/22/23 13:26   | EPA 8270E SIM |       |

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3H1155 - 12 22 23 1825

## ANALYTICAL SAMPLE RESULTS

|                                    | Polyaro          | matic Hydro        | carbons (PA        | (Hs) by EPA 82   | 70E (SIM   | )                |               |       |
|------------------------------------|------------------|--------------------|--------------------|------------------|------------|------------------|---------------|-------|
| Analyte                            | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution   | Date<br>Analyzed | Method Ref.   | Notes |
| FMW-152-081523 (A3H1155-11)        |                  |                    |                    | Matrix: Wate     | ər         | Batch:           | 23H0786       |       |
| 1-Methylnaphthalene                | ND               | 0.0400             | 0.0800             | ug/L             | 1          | 08/22/23 13:51   | EPA 8270E SIM |       |
| 2-Methylnaphthalene                | ND               | 0.0400             | 0.0800             | ug/L             | 1          | 08/22/23 13:51   | EPA 8270E SIM |       |
| Naphthalene                        | ND               | 0.0400             | 0.0800             | ug/L             | 1          | 08/22/23 13:51   | EPA 8270E SIM |       |
| Surrogate: 2-Fluorobiphenyl (Surr) |                  | Reco               | very: 84 %         | Limits: 44-120 % | 6 1        | 08/22/23 13:51   | EPA 8270E SIM |       |
| p-Terphenyl-d14 (Surr)             |                  |                    | 92 %               | 50-134 %         | 6 I        | 08/22/23 13:51   | EPA 8270E SIM |       |
| FMW-158-081523 (A3H1155-12)        |                  |                    |                    | Matrix: Wate     | ər         | Batch:           | 23H0786       |       |
| 1-Methylnaphthalene                | 0.0902           | 0.0408             | 0.0816             | ug/L             | 1          | 08/22/23 14:17   | EPA 8270E SIM |       |
| 2-Methylnaphthalene                | ND               | 0.0408             | 0.0816             | ug/L             | 1          | 08/22/23 14:17   | EPA 8270E SIM |       |
| Naphthalene                        | 0.108            | 0.0408             | 0.0816             | ug/L             | 1          | 08/22/23 14:17   | EPA 8270E SIM |       |
| Surrogate: 2-Fluorobiphenyl (Surr) |                  | Reco               | very: 80 %         | Limits: 44-120 % | 6 I        | 08/22/23 14:17   | EPA 8270E SIM |       |
| p-Terphenyl-d14 (Surr)             |                  |                    | 87 %               | 50-134 %         | 6 <i>1</i> | 08/22/23 14:17   | EPA 8270E SIM |       |

Apex Laboratories

( milale fog



AMENDED REPORT

#### **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3H1155 - 12 22 23 1825

#### QUALITY CONTROL (QC) SAMPLE RESULTS

#### Diesel and/or Oil Hydrocarbons by NWTPH-Dx % REC RPD Detection L Reporting Spike Source Units Dilution % REC Limits RPD Analyte Result Limit Limit Amount Result Limit Notes Batch 23H0834 - EPA 3510C (Fuels/Acid Ext.) Water Blank (23H0834-BLK1) Prepared: 08/23/23 06:00 Analyzed: 08/23/23 20:29 NWTPH-Dx LL Diesel ND 80.0 ug/L ND Oil 160 ug/L 1 Surr: o-Terphenyl (Surr) Recovery: 90 % Limits: 50-150 % Dilution: 1x LCS (23H0834-BS1) Prepared: 08/23/23 06:00 Analyzed: 08/23/23 20:50 NWTPH-Dx LL 419 80.0 Diesel ug/L 36-132% 1 500 84 Surr: o-Terphenyl (Surr) Recovery: 98 % Limits: 50-150 % Dilution: 1x LCS Dup (23H0834-BSD1) Prepared: 08/23/23 06:00 Analyzed: 08/23/23 21:10 Q-19 NWTPH-Dx LL Diesel 414 80.0 500 83 36-132% 30% ug/L 1 Surr: o-Terphenyl (Surr) Recovery: 98 % Limits: 50-150 % Dilution: 1x

Apex Laboratories

(milule fog



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

**Apex Laboratories, LLC** 

ORELAP ID: OR100062

AMENDED REPORT

<u>Farallon-Seattle</u> Project:

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3H1155 - 12 22 23 1825

## QUALITY CONTROL (QC) SAMPLE RESULTS

397-019 Block 38 West

|                                                               | Gasoli     | ne Range H           | ydrocarbo           | ons (Ben    | zene thro          | ugh Naph        | thalene)         | by NWTP | H-Gx            |     |              |       |
|---------------------------------------------------------------|------------|----------------------|---------------------|-------------|--------------------|-----------------|------------------|---------|-----------------|-----|--------------|-------|
| Analyte                                                       | Result     | Detection L<br>Limit | Reporting<br>Limit  | Units       | Dilution           | Spike<br>Amount | Source<br>Result | % REC   | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 23H0703 - EPA 5030C                                     |            |                      |                     |             |                    |                 | Wa               | ter     |                 |     |              |       |
| Blank (23H0703-BLK1)                                          |            |                      | Prepared            | d: 08/18/23 | 11:00 Ana          | lyzed: 08/18    | /23 14:40        |         |                 |     |              |       |
| NWTPH-Gx (MS) Gasoline Range Organics                         | ND         | 50.0                 | 100                 | ug/L        | 1                  |                 |                  |         |                 |     |              |       |
| Surr: 4-Bromofluorobenzene (Sur) 1,4-Difluorobenzene (Sur)    |            | Reco                 | very: 94 %<br>108 % | Limits: 5   | 0-150 %<br>0-150 % | Dilt            | ution: 1x        |         |                 |     |              |       |
| LCS (23H0703-BS2)                                             |            |                      | Prepared            | d: 08/18/23 | 11:00 Ana          | lyzed: 08/18    | /23 14:13        |         |                 |     |              |       |
| NWTPH-Gx (MS) Gasoline Range Organics                         | 524        | 50.0                 | 100                 | ug/L        | 1                  | 500             |                  | 105     | 80-120%         |     |              |       |
| Surr: 4-Bromofluorobenzene (Sur)<br>1,4-Difluorobenzene (Sur) |            | Reco                 | very: 96 %<br>106 % | Limits: 5   | 0-150 %<br>0-150 % | Dilt            | ution: 1x<br>"   |         |                 |     |              |       |
| Duplicate (23H0703-DUP1)                                      |            |                      | Prepared            | d: 08/18/23 | 11:00 Ana          | lyzed: 08/18    | /23 21:54        |         |                 |     |              |       |
| QC Source Sample: Non-SDG (A3                                 | BH1184-01) | ·                    | ·                   |             | ·                  | ·               |                  | ·       |                 |     |              |       |
| Gasoline Range Organics                                       | 52300      | 5000                 | 10000               | ug/L        | 100                |                 | 52600            |         |                 | 0.4 | 30%          | F     |
| Surr: 4-Bromofluorobenzene (Sur)<br>1,4-Difluorobenzene (Sur) |            | Reco                 | very: 97 %<br>112 % | Limits: 5   | 0-150 %<br>0-150 % | Dilt            | ution: Ix        |         |                 |     |              |       |

Apex Laboratories

(milale fogs



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3H1155 - 12 22 23 1825

## QUALITY CONTROL (QC) SAMPLE RESULTS

|                                  |           |                      | BTEX               | Compou       | ınds by E  | PA 8260D        | )                |       |                 |     |              |       |
|----------------------------------|-----------|----------------------|--------------------|--------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                          | Result    | Detection L<br>Limit | Reporting<br>Limit | Units        | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 23H0703 - EPA 5030C        |           |                      |                    |              |            |                 | Wa               | ter   |                 |     |              |       |
| Blank (23H0703-BLK1)             |           |                      | Prepared           | 1: 08/18/23  | 11:00 Anal | yzed: 08/18     | /23 14:40        |       |                 |     |              |       |
| EPA 8260D                        |           |                      |                    |              |            |                 |                  |       |                 |     |              |       |
| Benzene                          | ND        | 0.100                | 0.200              | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Toluene                          | ND        | 0.500                | 1.00               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Ethylbenzene                     | ND        | 0.250                | 0.500              | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Xylenes, total                   | ND        | 0.750                | 1.50               | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recov                | ery: 104 %         | Limits: 80   | 120 %      | Dilı            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           |                      | 104 %              | 80           | -120 %     |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 102 %              | 80           | -120 %     |                 | "                |       |                 |     |              |       |
| LCS (23H0703-BS1)                |           |                      | Prepared           | 1: 08/18/23  | 11:00 Anal | yzed: 08/18     | /23 13:46        |       |                 |     |              |       |
| EPA 8260D                        |           |                      |                    |              |            | -               |                  |       |                 |     |              |       |
| Benzene                          | 19.8      | 0.100                | 0.200              | ug/L         | 1          | 20.0            |                  | 99    | 80-120%         |     |              |       |
| Toluene                          | 19.2      | 0.500                | 1.00               | ug/L         | 1          | 20.0            |                  | 96    | 80-120%         |     |              |       |
| Ethylbenzene                     | 19.1      | 0.250                | 0.500              | ug/L         | 1          | 20.0            |                  | 95    | 80-120%         |     |              |       |
| Xylenes, total                   | 57.3      | 0.750                | 1.50               | ug/L         | 1          | 60.0            |                  | 95    | 80-120%         |     |              |       |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recov                | ery: 102 %         | Limits: 80   | 120 %      | Dilt            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           |                      | 101 %              | 80           | -120 %     |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 93 %               | 80           | -120 %     |                 | "                |       |                 |     |              |       |
| Duplicate (23H0703-DUP1)         |           |                      | Prepared           | 1: 08/18/23  | 11:00 Anal | yzed: 08/18     | /23 21:54        |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A3I   | H1184-01) |                      |                    |              |            | -               |                  |       |                 |     |              |       |
| Benzene                          | ND        | 10.0                 | 20.0               | ug/L         | 100        |                 | ND               |       |                 |     | 30%          |       |
| Toluene                          | ND        | 50.0                 | 100                | ug/L<br>ug/L | 100        |                 | ND               |       |                 |     | 30%          |       |
| Ethylbenzene                     | ND        | 25.0                 | 50.0               | ug/L<br>ug/L | 100        |                 | ND               |       |                 |     | 30%          |       |
| Xylenes, total                   | ND        | 75.0                 | 150                | ug/L         | 100        |                 | ND               |       |                 |     | 30%          |       |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recov                |                    | Limits: 80   |            | Dilı            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           | necov                | 103 %              |              | -120 %     | Diii            | 111011. 1X       |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 103 %              |              | -120 %     |                 | ,,               |       |                 |     |              |       |
| , Bromojiuorovenzene (Surr)      |           |                      | 103 /0             |              | 120 / 0    |                 |                  |       |                 |     |              |       |
| Matrix Spike (23H0703-MS1)       |           |                      | Prepared           | 1: 08/18/23  | 11:00 Anal | yzed: 08/18     | /23 20:33        |       |                 |     |              |       |
| QC Source Sample: FMW-158-081    | 523 (A3H1 | 1155-12)             |                    |              |            |                 |                  |       |                 |     |              |       |
| EPA 8260D                        |           |                      |                    |              |            |                 |                  |       |                 |     |              |       |
| Benzene                          | 21.0      | 0.100                | 0.200              | ug/L         | 1          | 20.0            | ND               | 105   | 79-120%         |     |              |       |

Apex Laboratories



Farallon-Seattle

Seattle, WA 98101

1809 7th Ave Suite 1111

#### ANALYTICAL REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

AMENDED REPORT

Project: 397-019 Block 38 West

Project Number: **397-019**Project Manager: **Greg Peters** 

Report ID: A3H1155 - 12 22 23 1825

## QUALITY CONTROL (QC) SAMPLE RESULTS

#### BTEX Compounds by EPA 8260D % REC RPD Detection L Reporting Spike Source Result Units Dilution % REC Limits RPD Analyte Limit Limit Amount Result Limit Notes Batch 23H0703 - EPA 5030C Water Matrix Spike (23H0703-MS1) Prepared: 08/18/23 11:00 Analyzed: 08/18/23 20:33 QC Source Sample: FMW-158-081523 (A3H1155-12) 0.500 20.0 98 Toluene 19.5 1.00 ug/L 1 ND 80-121% 0.250 Ethylbenzene 19.2 0.500 20.0 ND 96 ug/L 1 79-121% 58.3 0.750 ug/L 60.0 ND 97 79-121% Xylenes, total 1.50 1 Surr: 1,4-Difluorobenzene (Surr) 103 % Limits: 80-120 % Dilution: 1x Recovery: Toluene-d8 (Surr) 99 % 80-120 % 4-Bromofluorobenzene (Surr) 92 % 80-120 %

Apex Laboratories

/ milale fog



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3H1155 - 12 22 23 1825

## QUALITY CONTROL (QC) SAMPLE RESULTS

|                               |             | -                    |                    |            |           |                 |                  |       |                 |     |              |       |
|-------------------------------|-------------|----------------------|--------------------|------------|-----------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                       | Result      | Detection L<br>Limit | Reporting<br>Limit | Units      | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 23H0786 - EPA 3510C     | (Acid Extra | ction)               |                    |            |           |                 | Wa               | ter   |                 |     |              |       |
| Blank (23H0786-BLK1)          |             |                      | Prepared           | : 08/22/23 | 06:25 Ana | lyzed: 08/22    | /23 11:44        |       |                 |     |              |       |
| EPA 8270E SIM                 |             |                      |                    |            |           |                 |                  |       |                 |     |              |       |
| Acenaphthene                  | ND          | 0.0100               | 0.0200             | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| Acenaphthylene                | ND          | 0.0100               | 0.0200             | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| Anthracene                    | ND          | 0.0100               | 0.0200             | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| Benz(a)anthracene             | ND          | 0.0100               | 0.0200             | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| Benzo(a)pyrene                | ND          | 0.0100               | 0.0200             | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| Benzo(b)fluoranthene          | ND          | 0.0100               | 0.0200             | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| Benzo(k)fluoranthene          | ND          | 0.0100               | 0.0200             | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| Benzo(g,h,i)perylene          | ND          | 0.0100               | 0.0200             | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| Chrysene                      | ND          | 0.0100               | 0.0200             | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| Dibenz(a,h)anthracene         | ND          | 0.0100               | 0.0200             | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| Fluoranthene                  | ND          | 0.0100               | 0.0200             | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| Fluorene                      | ND          | 0.0100               | 0.0200             | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| Indeno(1,2,3-cd)pyrene        | ND          | 0.0100               | 0.0200             | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| 1-Methylnaphthalene           | ND          | 0.0200               | 0.0400             | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| 2-Methylnaphthalene           | ND          | 0.0200               | 0.0400             | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| Naphthalene                   | ND          | 0.0200               | 0.0400             | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| Phenanthrene                  | ND          | 0.0100               | 0.0200             | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| Pyrene                        | ND          | 0.0100               | 0.0200             | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| Dibenzofuran                  | ND          | 0.0100               | 0.0200             | ug/L       | 1         |                 |                  |       |                 |     |              |       |
| Surr: 2-Fluorobiphenyl (Surr) | - 1,2       |                      | very: 72 %         | Limits: 44 |           |                 | ution: 1x        |       |                 |     |              |       |
| p-Terphenyl-d14 (Surr)        |             | RECO                 | 92 %               |            | -120 %    | טווו            | uion. 1x         |       |                 |     |              |       |
| p-terpnenyt-u14 (Surr)        |             |                      | 92 /0              | 50         | -137 /0   |                 |                  |       |                 |     |              |       |
| LCS (23H0786-BS1)             |             |                      | Prepared           | : 08/22/23 | 06:25 Ana | lyzed: 08/22    | /23 12:10        |       |                 |     |              |       |
| EPA 8270E SIM                 |             |                      |                    |            |           |                 |                  |       |                 |     |              |       |
| Acenaphthene                  | 3.42        | 0.0100               | 0.0200             | ug/L       | 1         | 4.00            |                  | 86    | 47-122%         |     |              |       |
| Acenaphthylene                | 3.51        | 0.0100               | 0.0200             | ug/L       | 1         | 4.00            |                  | 88    | 41-130%         |     |              |       |
| Anthracene                    | 3.78        | 0.0100               | 0.0200             | ug/L       | 1         | 4.00            |                  | 95    | 57-123%         |     |              |       |
| Benz(a)anthracene             | 3.84        | 0.0100               | 0.0200             | ug/L       | 1         | 4.00            |                  | 96    | 58-125%         |     |              |       |
| Benzo(a)pyrene                | 4.22        | 0.0100               | 0.0200             | ug/L       | 1         | 4.00            |                  | 105   | 54-128%         |     |              |       |
| Benzo(b)fluoranthene          | 4.24        | 0.0100               | 0.0200             | ug/L       | 1         | 4.00            |                  | 106   | 53-131%         |     |              |       |
| Benzo(k)fluoranthene          | 4.43        | 0.0100               | 0.0200             | ug/L       | 1         | 4.00            |                  | 111   | 57-129%         |     |              |       |
| Benzo(g,h,i)perylene          | 3.34        | 0.0100               | 0.0200             | ug/L       | 1         | 4.00            |                  | 84    | 50-134%         |     |              |       |
| Chrysene                      | 4.11        | 0.0100               | 0.0200             | ug/L       | 1         | 4.00            |                  | 103   | 59-123%         |     |              |       |

Apex Laboratories

wille fog



AMENDED REPORT

#### **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3H1155 - 12 22 23 1825

## QUALITY CONTROL (QC) SAMPLE RESULTS

|                               |            | Polyar               | omatic Hyd         | Irocarbo   | ns (PAHs  | ) by EPA        | 8270E (S         | SIM)  |                 |      |              |       |
|-------------------------------|------------|----------------------|--------------------|------------|-----------|-----------------|------------------|-------|-----------------|------|--------------|-------|
| Analyte                       | Result     | Detection L<br>Limit | Reporting<br>Limit | Units      | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD  | RPD<br>Limit | Notes |
| Batch 23H0786 - EPA 3510C (   | Acid Extra | ction)               |                    |            |           |                 | Wa               | ter   |                 |      |              |       |
| LCS (23H0786-BS1)             |            |                      | Prepared           | : 08/22/23 | 06:25 Ana | yzed: 08/22/    | /23 12:10        |       |                 |      |              |       |
| Dibenz(a,h)anthracene         | 4.11       | 0.0100               | 0.0200             | ug/L       | 1         | 4.00            |                  | 103   | 51-134%         |      |              |       |
| Fluoranthene                  | 4.19       | 0.0100               | 0.0200             | ug/L       | 1         | 4.00            |                  | 105   | 57-128%         |      |              |       |
| Fluorene                      | 3.70       | 0.0100               | 0.0200             | ug/L       | 1         | 4.00            |                  | 93    | 52-124%         |      |              |       |
| Indeno(1,2,3-cd)pyrene        | 3.85       | 0.0100               | 0.0200             | ug/L       | 1         | 4.00            |                  | 96    | 52-134%         |      |              |       |
| 1-Methylnaphthalene           | 2.78       | 0.0200               | 0.0400             | ug/L       | 1         | 4.00            |                  | 69    | 41-120%         |      |              |       |
| 2-Methylnaphthalene           | 2.74       | 0.0200               | 0.0400             | ug/L       | 1         | 4.00            |                  | 69    | 40-121%         |      |              |       |
| Naphthalene                   | 2.76       | 0.0200               | 0.0400             | ug/L       | 1         | 4.00            |                  | 69    | 40-121%         |      |              |       |
| Phenanthrene                  | 3.73       | 0.0100               | 0.0200             | ug/L       | 1         | 4.00            |                  | 93    | 59-120%         |      |              |       |
| Pyrene                        | 4.16       | 0.0100               | 0.0200             | ug/L       | 1         | 4.00            |                  | 104   | 57-126%         |      |              |       |
| Dibenzofuran                  | 3.43       | 0.0100               | 0.0200             | ug/L       | 1         | 4.00            |                  | 86    | 53-120%         |      |              |       |
| Surr: 2-Fluorobiphenyl (Surr) |            | Reco                 | very: 79 %         | Limits: 44 | 1-120 %   | Dilı            | ıtion: 1x        |       |                 |      |              |       |
| p-Terphenyl-d14 (Surr)        |            |                      | 91 %               | 50         | )-134 %   |                 | "                |       |                 |      |              |       |
| LCS Dup (23H0786-BSD1)        |            |                      | Prepared           | 08/22/23   | 06:25 Ana | yzed: 08/22/    | /23 12:35        |       |                 |      |              | Q     |
| EPA 8270E SIM                 |            |                      |                    |            |           |                 |                  |       |                 |      |              |       |
| Acenaphthene                  | 3.45       | 0.0100               | 0.0200             | ug/L       | 1         | 4.00            |                  | 86    | 47-122%         | 0.8  | 30%          |       |
| Acenaphthylene                | 3.50       | 0.0100               | 0.0200             | ug/L       | 1         | 4.00            |                  | 88    | 41-130%         | 0.3  | 30%          |       |
| Anthracene                    | 3.65       | 0.0100               | 0.0200             | ug/L       | 1         | 4.00            |                  | 91    | 57-123%         | 4    | 30%          |       |
| Benz(a)anthracene             | 3.74       | 0.0100               | 0.0200             | ug/L       | 1         | 4.00            |                  | 94    | 58-125%         | 3    | 30%          |       |
| Benzo(a)pyrene                | 4.13       | 0.0100               | 0.0200             | ug/L       | 1         | 4.00            |                  | 103   | 54-128%         | 2    | 30%          |       |
| Benzo(b)fluoranthene          | 4.20       | 0.0100               | 0.0200             | ug/L       | 1         | 4.00            |                  | 105   | 53-131%         | 0.9  | 30%          |       |
| Benzo(k)fluoranthene          | 4.29       | 0.0100               | 0.0200             | ug/L       | 1         | 4.00            |                  | 107   | 57-129%         | 3    | 30%          |       |
| Benzo(g,h,i)perylene          | 3.34       | 0.0100               | 0.0200             | ug/L       | 1         | 4.00            |                  | 83    | 50-134%         | 0.07 | 30%          |       |
| Chrysene                      | 4.00       | 0.0100               | 0.0200             | ug/L       | 1         | 4.00            |                  | 100   | 59-123%         | 3    | 30%          |       |
| Dibenz(a,h)anthracene         | 4.05       | 0.0100               | 0.0200             | ug/L       | 1         | 4.00            |                  | 101   | 51-134%         | 2    | 30%          |       |
| Fluoranthene                  | 4.06       | 0.0100               | 0.0200             | ug/L       | 1         | 4.00            |                  | 101   | 57-128%         | 3    | 30%          |       |
| Fluorene                      | 3.61       | 0.0100               | 0.0200             | ug/L       | 1         | 4.00            |                  | 90    | 52-124%         | 2    | 30%          |       |
| Indeno(1,2,3-cd)pyrene        | 3.92       | 0.0100               | 0.0200             | ug/L       | 1         | 4.00            |                  | 98    | 52-134%         | 2    | 30%          |       |
| 1-Methylnaphthalene           | 2.87       | 0.0200               | 0.0400             | ug/L       | 1         | 4.00            |                  | 72    | 41-120%         | 3    | 30%          |       |
| 2-Methylnaphthalene           | 2.81       | 0.0200               | 0.0400             | ug/L       | 1         | 4.00            |                  | 70    | 40-121%         | 3    | 30%          |       |

Apex Laboratories

Naphthalene

Phenanthrene

Dibenzofuran

Pyrene

(milele fog

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

71

91

101

87

40-121%

59-120%

57-126%

53-120%

3

3

30%

30%

30%

30%

2.85

3.62

4.05

3.47

0.0200

0.0100

0.0100

0.0100

0.0400

0.0200

0.0200

0.0200

ug/L

ug/L

ug/L

ug/L

1

1

1

1

4.00

4.00

4.00

4.00



6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

**Apex Laboratories, LLC** 

ORELAP ID: OR100062

AMENDED REPORT

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3H1155 - 12 22 23 1825

## **QUALITY CONTROL (QC) SAMPLE RESULTS**

## Polyaromatic Hydrocarbons (PAHs) by EPA 8270E (SIM)

| Analyte                       | Result     | Detection L<br>Limit | Reporting<br>Limit | Units     | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
|-------------------------------|------------|----------------------|--------------------|-----------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Batch 23H0786 - EPA 3510C (A  | Acid Extra | ction)               |                    |           |            |                 | Wat              | er    |                 |     |              |       |
| LCS Dup (23H0786-BSD1)        |            |                      | Prepared           | : 08/22/2 | 3 06:25 An | alyzed: 08/22   | /23 12:35        |       |                 |     |              | Q-19  |
| Surr: 2-Fluorobiphenyl (Surr) |            | Reco                 | very: 75 %         | Limits:   | 44-120 %   | Dilı            | ution: 1x        |       |                 |     |              |       |
| p-Terphenyl-d14 (Surr)        |            |                      | 94 %               |           | 50-134 %   |                 | "                |       |                 |     |              |       |

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3H1155 - 12 22 23 1825

#### SAMPLE PREPARATION INFORMATION

|                                     |                | Diesel and                     | d/or Oil Hydrocarbon | is by NWTPH-Dx                |                          |                          |         |
|-------------------------------------|----------------|--------------------------------|----------------------|-------------------------------|--------------------------|--------------------------|---------|
| Prep: EPA 3510C (Fue                | els/Acid Ext.) |                                |                      |                               | Sample                   | Default                  | RL Prep |
| Lab Number                          | Matrix         | Method                         | Sampled              | Prepared                      | Initial/Final            | Initial/Final            | Factor  |
| Batch: 23H0834                      |                |                                |                      |                               |                          |                          |         |
| A3H1155-01                          | Water          | NWTPH-Dx LL                    | 08/15/23 11:41       | 08/23/23 06:00                | 1040mL/2mL               | 1000mL/2mL               | 0.96    |
| A3H1155-02                          | Water          | NWTPH-Dx LL                    | 08/15/23 10:18       | 08/23/23 06:00                | 1040mL/2mL               | 1000mL/2mL               | 0.96    |
| A3H1155-03                          | Water          | NWTPH-Dx LL                    | 08/15/23 08:23       | 08/23/23 06:00                | 1020 mL/2 mL             | 1000mL/2mL               | 0.98    |
| A3H1155-04                          | Water          | NWTPH-Dx LL                    | 08/15/23 15:45       | 08/23/23 06:00                | 1040mL/2mL               | 1000mL/2mL               | 0.96    |
| A3H1155-05                          | Water          | NWTPH-Dx LL                    | 08/15/23 14:45       | 08/23/23 06:00                | 1050mL/2mL               | 1000mL/2mL               | 0.95    |
| A3H1155-06                          | Water          | NWTPH-Dx LL                    | 08/15/23 13:09       | 08/23/23 06:00                | 1030mL/2mL               | 1000mL/2mL               | 0.97    |
| A3H1155-07                          | Water          | NWTPH-Dx LL                    | 08/15/23 10:30       | 08/23/23 06:00                | 1040mL/2mL               | 1000mL/2mL               | 0.96    |
| A3H1155-08                          | Water          | NWTPH-Dx LL                    | 08/15/23 12:10       | 08/23/23 06:00                | 1040mL/2mL               | 1000mL/2mL               | 0.96    |
| A3H1155-09                          | Water          | NWTPH-Dx LL                    | 08/15/23 13:10       | 08/23/23 06:00                | 1040mL/2mL               | 1000mL/2mL               | 0.96    |
| АЗН1155-10                          | Water          | NWTPH-Dx LL                    | 08/15/23 14:50       | 08/23/23 06:00                | 1060mL/2mL               | 1000mL/2mL               | 0.94    |
| A3H1155-11                          | Water          | NWTPH-Dx LL                    | 08/15/23 16:00       | 08/23/23 06:00                | 1040mL/2mL               | 1000mL/2mL               | 0.96    |
| A3H1155-12                          | Water          | NWTPH-Dx LL                    | 08/15/23 09:10       | 08/23/23 06:00                | 1060mL/2mL               | 1000mL/2mL               | 0.94    |
| <b></b>                             | Gas            | soline Range Hydrocarb         | bons (Benzene thro   | ugh Naphthalene) b            |                          |                          |         |
| Prep: EPA 5030C                     |                |                                |                      | <u> </u>                      | Sample                   | Default                  | RL Prep |
| -                                   | Ma4:           | λ // -∡1. 1                    | Cow1 1               | D <sub>me</sub> 1             | Initial/Final            | Initial/Final            | Factor  |
| Lab Number  Batch: 23H0703          | Matrix         | Method                         | Sampled              | Prepared                      |                          |                          | - 40101 |
| <u>Batch: 23H0703</u><br>A3H1155-12 | Water          | NWTPH-Gx (MS)                  | 08/15/23 09:10       | 08/18/23 11:00                | 5mL/5mL                  | 5mL/5mL                  | 1.00    |
|                                     |                | ВТЕ                            | EX Compounds by E    | PA 8260D                      |                          |                          |         |
| Prep: EPA 5030C                     |                |                                |                      |                               | Sample                   | Default                  | RL Prep |
| Lab Number                          | Matrix         | Method                         | Sampled              | Prepared                      | Initial/Final            | Initial/Final            | Factor  |
| Batch: 23H0703                      | iviaulX        | iviculou                       | Sampicu              | 1 repared                     |                          |                          |         |
| A3H1155-12                          | Water          | EPA 8260D                      | 08/15/23 09:10       | 08/18/23 11:00                | 5mL/5mL                  | 5mL/5mL                  | 1.00    |
|                                     |                | Polyaromatic H                 | ydrocarbons (PAHs    | s) by EPA 8270E (SII          | M)                       |                          |         |
| Prep: EPA 3510C (Aci                | id Extraction) | -                              | , ,                  | , ,                           | Sample                   | Default                  | RL Prep |
| Lab Number                          | Matrix         | Method                         | Sampled              | Prepared                      | Initial/Final            | Initial/Final            | Factor  |
| Batch: 23H0786                      |                | MOHIOU                         | ошприч               | 1 Toparou                     |                          |                          |         |
| A3H1155-01                          | Water          | EPA 8270E SIM                  | 08/15/23 11:41       | 08/22/23 11:32                | 990mL/2mL                | 1000mL/2mL               | 1.01    |
| A3H1155-02                          | Water          | EPA 8270E SIM                  | 08/15/23 10:18       | 08/22/23 11:32                | 1000mL/2mL               | 1000mL/2mL               | 1.01    |
| A3H1155-02<br>A3H1155-03            | Water          | EPA 8270E SIM<br>EPA 8270E SIM | 08/15/23 08:23       | 08/22/23 11:32                | 1060mL/2mL               | 1000mL/2mL<br>1000mL/2mL | 0.94    |
| A3H1155-03<br>A3H1155-04            | Water          | EPA 8270E SIM<br>EPA 8270E SIM | 08/15/23 15:45       | 08/22/23 11:32 08/22/23 11:32 | 1040mL/2mL<br>1040mL/2mL | 1000mL/2mL<br>1000mL/2mL | 0.94    |
| 13111133-U <del>1</del>             | water          | ELLY 02/0E OHVI                | 00/13/23 13.43       | 00122123 11.32                | I VTVIIIL/ ZIIIL         | 1000HIL/ZIIIL            | 0.30    |

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3H1155 - 12 22 23 1825

#### SAMPLE PREPARATION INFORMATION

|                   |                  | Polyaromatic H       | lydrocarbons (PAHs | ) by EPA 8270E (SI | M)            |               |         |
|-------------------|------------------|----------------------|--------------------|--------------------|---------------|---------------|---------|
| Prep: EPA 3510C ( | Acid Extraction) |                      |                    |                    | Sample        | Default       | RL Prep |
| Lab Number        | Matrix           | Method               | Sampled            | Prepared           | Initial/Final | Initial/Final | Factor  |
| A3H1155-05        | Water            | EPA 8270E SIM        | 08/15/23 14:45     | 08/22/23 11:32     | 1030mL/2mL    | 1000mL/2mL    | 0.97    |
| A3H1155-06        | Water            | <b>EPA 8270E SIM</b> | 08/15/23 13:09     | 08/22/23 11:32     | 980mL/2mL     | 1000mL/2mL    | 1.02    |
| A3H1155-07        | Water            | <b>EPA 8270E SIM</b> | 08/15/23 10:30     | 08/22/23 11:32     | 1040mL/2mL    | 1000mL/2mL    | 0.96    |
| A3H1155-08        | Water            | <b>EPA 8270E SIM</b> | 08/15/23 12:10     | 08/22/23 11:32     | 990mL/2mL     | 1000mL/2mL    | 1.01    |
| A3H1155-09        | Water            | EPA 8270E SIM        | 08/15/23 13:10     | 08/22/23 06:33     | 1040mL/2mL    | 1000mL/2mL    | 0.96    |
| A3H1155-10        | Water            | EPA 8270E SIM        | 08/15/23 14:50     | 08/22/23 06:33     | 1040mL/2mL    | 1000mL/2mL    | 0.96    |
| A3H1155-11        | Water            | EPA 8270E SIM        | 08/15/23 16:00     | 08/22/23 06:25     | 1000mL/2mL    | 1000mL/2mL    | 1.00    |
| A3H1155-12        | Water            | EPA 8270E SIM        | 08/15/23 09:10     | 08/22/23 06:25     | 980mL/2mL     | 1000mL/2mL    | 1.02    |

Apex Laboratories

/ milule fog



AMENDED REPORT

#### **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3H1155 - 12 22 23 1825

#### **QUALIFIER DEFINITIONS**

#### Client Sample and Quality Control (QC) Sample Qualifier Definitions:

#### **Apex Laboratories**

- F-11 The hydrocarbon pattern indicates possible weathered diesel, mineral oil, or a contribution from a related component.
- F-12 The result for this hydrocarbon range is primarily due to the presence of individual analyte peaks in the quantitation range. No fuel pattern detected.
- Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.

Apex Laboratories



AMENDED REPORT

#### **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3H1155 - 12 22 23 1825

#### **REPORTING NOTES AND CONVENTIONS:**

#### **Abbreviations:**

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

#### **Detection Limits:** Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

#### Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

#### **Reporting Conventions:**

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

#### **QC Source:**

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

#### Miscellaneous Notes:

" --- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"\*\*\* Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories



AMENDED REPORT

#### **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3H1155 - 12 22 23 1825

#### REPORTING NOTES AND CONVENTIONS (Cont.):

#### Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

-Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

#### **Preparation Notes:**

#### Mixed Matrix Samples:

#### Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

#### Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

## **Sampling and Preservation Notes:**

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold

Apex Laboratories



Farallon-Seattle

#### ANALYTICAL REPORT

AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3H1155 - 12 22 23 1825

#### LABORATORY ACCREDITATION INFORMATION

## ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

#### **Apex Laboratories**

Matrix Analysis TNI\_ID Analyte TNI\_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

#### **Secondary Accreditations**

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

#### **Subcontract Laboratory Accreditations**

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

#### Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories



# AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3H1155 - 12 22 23 1825

| •                                                     |                                                    |                                         |                         |               |                |        |               | +                |               |                  |                                |          |          | 1        |                                          | -            |                            |        |                                                  |                                                 |
|-------------------------------------------------------|----------------------------------------------------|-----------------------------------------|-------------------------|---------------|----------------|--------|---------------|------------------|---------------|------------------|--------------------------------|----------|----------|----------|------------------------------------------|--------------|----------------------------|--------|--------------------------------------------------|-------------------------------------------------|
| company: rarallon Consulting                          | Port                                               | Project Mgr. Greg Peters                | dg: C                   | Seg           | Sete.          | 50     |               | ᅴ                | Project Name: |                  | Block                          | 3        | 38       |          |                                          | Proj         | Project #: 3 <sup>C</sup>  | 397-01 | b                                                |                                                 |
| Address: 975 5th #668 A                               | Mes Ave NW, Issaquen, WA PEZT                      | TSSaq.                                  | Jeh, L                  | 35 to         | LZ7            | Phone: |               |                  |               | Email            | gpe                            | i+ers    | o fa     | Tallor   | Email: gpeters@farallonconsorting.com    | , PO#        | -                          | 10     |                                                  |                                                 |
| Sampled by: M. Ysagwirre / D. Blackwell / M.H. Welson | lack we 11                                         | / m.H.ħ                                 | Jelsor                  | _             |                |        |               | iai (h)          |               |                  |                                |          | •        | (ALX     | ANALYSIS REQUEST                         |              |                            |        |                                                  |                                                 |
| Site Location:                                        |                                                    |                                         |                         |               |                |        |               | <u> </u>         | _             |                  | 18                             | <b>-</b> |          |          | 'qa                                      | WIS          |                            |        |                                                  |                                                 |
| State Washington                                      |                                                    |                                         |                         | NEKS          | a              |        |               |                  |               |                  | I Hou s                        |          |          |          | u, Fe,<br>Mo, Ni,<br>V, Zn<br>S, T       |              |                            |        |                                                  |                                                 |
| County King                                           |                                                    |                                         | 3                       | IIVIN         |                |        |               |                  |               |                  |                                |          |          |          | Mn, I<br>Ma, Tl,<br>(a, Tl,              |              |                            |        |                                                  |                                                 |
| SAMPLE ID                                             | DATE                                               | TIME                                    | MATRE                   | # OF CC       | IATWN          | IALMN  | LH 0978       | 8260 Ri          | OA 0978       | IS 0478          |                                | 8082 PC  | BCBV     | Priority | Al, Sb,<br>Hg, Mg,<br>Hg, Ag, I<br>TOTAL | TCLP A       | SOOVS                      |        |                                                  | ns2 blol<br>——————————————————————————————————— |
| OW-1-081523                                           | 8/15/23                                            | ======================================= | H <sub>2</sub> C        | 7             | <del> </del> ^ | Х      |               | $\vdash$         | -             |                  |                                | <u> </u> | -        |          | 5                                        | X            |                            |        |                                                  | ├                                               |
| FMW-164-081523                                        | _                                                  | 10,8                                    | _                       | ~             | ×              | .,     |               | -                | -             |                  | $\vdash$                       |          | ļ        |          |                                          | ×            |                            |        |                                                  | 1-                                              |
| ბω-2- 08I523                                          |                                                    | 0823                                    |                         |               | ×              |        |               | -                | -             |                  | T                              | -        | -        |          |                                          | ×            |                            |        | <del>                                     </del> | +                                               |
| FMW-150-081523                                        |                                                    | 1545                                    | -                       | <u></u>       | ×              |        |               | -                | -             |                  |                                |          |          |          |                                          | ×            |                            |        |                                                  | +-                                              |
| FMW-154-081523                                        |                                                    | 7445                                    |                         | 1             | ×              |        |               | -                |               |                  |                                | -        |          |          |                                          | ×            |                            |        |                                                  | -                                               |
| FMW- 157- 681523                                      |                                                    | 1309                                    |                         | -             | ×              |        |               |                  |               |                  |                                |          |          |          |                                          | ×            |                            |        |                                                  |                                                 |
| FMW-159-081523                                        |                                                    | 1030                                    |                         | r             | ×              |        |               | -                |               |                  |                                |          | _        | _        |                                          | *            |                            |        |                                                  |                                                 |
| OW- 3. 081523                                         |                                                    | 1210                                    |                         | 7             | ×              |        |               |                  |               |                  |                                |          |          |          |                                          | ×            |                            |        |                                                  |                                                 |
| FMW-162-081523                                        |                                                    | 1310                                    |                         | 7             | ×              |        |               |                  |               |                  |                                |          |          | 100      |                                          | *            |                            |        |                                                  |                                                 |
| FMW-151- 081523                                       | -1                                                 | ибо                                     | -1                      | 5             | ×              |        |               | -                |               |                  |                                |          | <u> </u> | 21       |                                          | ×            |                            |        |                                                  | -                                               |
| Standard Tk                                           | Standard Turn Around Time (TAT) = 10 Business Days | ime (TAT)                               | = 10 Bu                 | isiness D.    | ays            |        |               |                  |               | SPEC             | SPECIAL INSTRUCTIONS:          | ISTRU    | CTIO     | iğ.      | ,                                        |              |                            |        |                                                  | 1                                               |
|                                                       | 1 Day                                              |                                         | 2 Day                   |               | 3 Day          |        |               |                  |               | 운                | 5<br>0                         | o<br>S   | S.       | Jou      | Hold CVOCS analysis for 8m request.      | ٤            | eques <del>,</del>         | ,      |                                                  |                                                 |
| TAT Requested (circle)                                | 5 Day                                              | ~                                       | Standard                | $\triangle$   | Other:         |        |               |                  |               |                  |                                |          |          |          |                                          |              |                            |        |                                                  |                                                 |
|                                                       | SAMPLES ARE HELD FOR 30 DAYS                       | LD FOR 30                               | DAYS                    | 1             |                |        |               |                  |               |                  |                                |          |          |          |                                          |              |                            |        |                                                  |                                                 |
| RELINQUISHED BY; signature:                           | Date:<br>8/15/23                                   |                                         | RECEIVED BY: Signature: | VED BY:       | ,              |        | Date:         | Date:<br>8.17-23 |               | RELLI<br>Signatu | RELINQUISHED BY:<br>Signature: | ED B     | ند ا     |          | Date:                                    | REC<br>Signa | RECEIVED BY:<br>Signature: |        | Date:                                            |                                                 |
| Printed Name:                                         | Time:                                              |                                         | Printed Name            | Trinted Name: | 5              |        | Time:<br>1024 | 7                |               | Printed          | Printed Name:                  |          |          |          | Time:                                    | Pair         | Printed Name:              |        | Time:                                            |                                                 |
| Сопрапу:                                              |                                                    |                                         | Company:                | ر ي           |                |        |               |                  |               | Company.         | any:                           |          |          |          |                                          | Company      | pany:                      |        |                                                  |                                                 |

Apex Laboratories

(milele fog



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3H1155 - 12 22 23 1825

| Company: Forallon Consulting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                        | - <u>=</u>     | oject Ms | Project Mer. (Spa.)    | i a             | 5,440      | ١.,      |           |                | jūd            | Project Name: Rick IV | i G                            | 12017                                 |                 | 38      |                      |                                      | -               | Project #: 3               | 397-019 | 6     |   |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------|----------|------------------------|-----------------|------------|----------|-----------|----------------|----------------|-----------------------|--------------------------------|---------------------------------------|-----------------|---------|----------------------|--------------------------------------|-----------------|----------------------------|---------|-------|---|-------------|
| Address: 975 5th Ave NW, ISSCGUCH, WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | J.55cc                   | , dah          | 3        | 98027                  | 2 2             |            | Phone:   |           |                |                | 12                    | mail:                          | d of                                  | erse            | र्जू र् | וסטכנ                | Email: 906+ers@forshonconsorthog.com |                 |                            |         |       |   |             |
| Sampled by: M. 450guire / D. Biccikwen /m.H. Nelson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Kwen /                   | 7.H.F          | Neiso    | c                      |                 |            |          |           |                |                | CHICA                 |                                |                                       |                 | Ą       | <b>M</b>             | ANALYSIS REQUEST                     |                 |                            |         |       |   |             |
| Site Location: State (1)Cs/hington County King SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TAG                      |                | TIME     | XIATAM # OF GODING     | # OF CONTAINERS | NWTPH-HCID | NWTPH-Gx | 8760 BTEX | 8700 KBDW AOC® | 8260 Halo VOCs | 8260 VOCs Full List   | 8170 SIM PAHs<br>8270 SIM FAHs | 8270 Semi-Vols Full List<br>8082 PCBs | 8081 Pesticides |         | Priority Metals (13) |                                      | TCLP Metals (8) | CAOCS                      |         |       |   | eldmaS blof |
| Finul - 152-081523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8/15/23                  |                | 0001     | L 02H                  | _               | ×          | -        | <u> </u>  |                |                | $\vdash$              | 1-                             | $\vdash$                              | -               | -       | _                    | S                                    | *               | ı ×                        |         |       |   | 1           |
| FMW - 158 - 081523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1                       |                | 080      | 7                      | 7               | ×          | ×        | ×         |                |                | -                     |                                | -                                     | -               |         | <u> </u>             |                                      | ×               |                            |         |       |   |             |
| To the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |                          |                |          |                        |                 |            |          |           |                |                |                       |                                |                                       |                 |         |                      |                                      |                 |                            |         |       |   |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                |          |                        |                 |            |          |           |                |                |                       |                                |                                       |                 |         | 3                    |                                      |                 |                            |         | -     |   |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                |          |                        |                 |            |          |           |                |                | $\vdash$              |                                |                                       |                 |         |                      |                                      |                 |                            |         |       |   |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                | $\neg$   |                        |                 |            |          |           |                |                |                       |                                |                                       |                 |         |                      |                                      |                 |                            |         |       |   |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          | +              |          |                        | -               | _          | $\dashv$ |           |                |                |                       | +                              |                                       | $\dashv$        | _       |                      |                                      |                 |                            |         |       |   |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                        | -              |          |                        |                 | _          | -        |           |                |                |                       | _                              | -+                                    |                 |         |                      |                                      |                 |                            |         | -     |   |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                |          | +                      | +               | -          |          |           |                |                | _                     | +                              |                                       | _               | -       |                      |                                      | +               |                            | _       |       | _ |             |
| Standard Turn Around Time (TAT) = 10 Business Days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | um Around                | 1 Time         | TAT)=    | 10 Busin               | ess Day         | - E        | -        |           |                |                | 183                   | SPECIAL INSTRUCTIONS:          | E P                                   | -\j             |         | <u> </u>             |                                      | $\dashv$        |                            |         |       |   |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 Day                    |                | 1        | 2 Dav                  |                 | 3 Day      |          |           |                |                | T                     | See page                       | g                                     | મુ              | H       | į                    |                                      |                 |                            |         |       |   |             |
| TAT Requested (circle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 Day                    | · Ar           | Sta      | Standard               | $\wedge$        | Other:     |          |           |                | 150            |                       |                                |                                       | )               |         |                      |                                      |                 |                            |         |       |   |             |
| SAMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LES ARE                  | HELD           | OR 30 C  | )AYS                   |                 |            |          |           |                |                | Т                     |                                |                                       |                 |         |                      |                                      |                 |                            |         |       |   |             |
| Sgrature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Date: Signature: 8/15/23 | Date: 8/15/123 | × iš V   | RECEIVED<br>Signature: | ik              | Ĭ.         |          | Date:     | Date:          | ,              | l≅ ŝ                  | RELINQUISHED BY:<br>Signature: | HSIO                                  | ED 83           | ٥       |                      | Date:                                | Sign            | RECEIVED BY:<br>Signature: | ä       | Date: |   |             |
| Printed Name.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Time:                    |                | 12 1-2   | Printed Name:          | 3 lerz          | 5          |          |           | [iii:          |                | Æ                     | Printed Name                   | чате:                                 |                 |         |                      | Time:                                | 분               | Printed Name:              |         | Time: |   |             |
| Сопрапу:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |                | 0        | Company:               |                 |            |          |           | 1              |                | 10                    | Соптралу                       | <u>.</u>                              |                 |         |                      |                                      | రే              | Company:                   |         |       |   | R           |

Apex Laboratories

/ milale Pog



# AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Farallon-Seattle

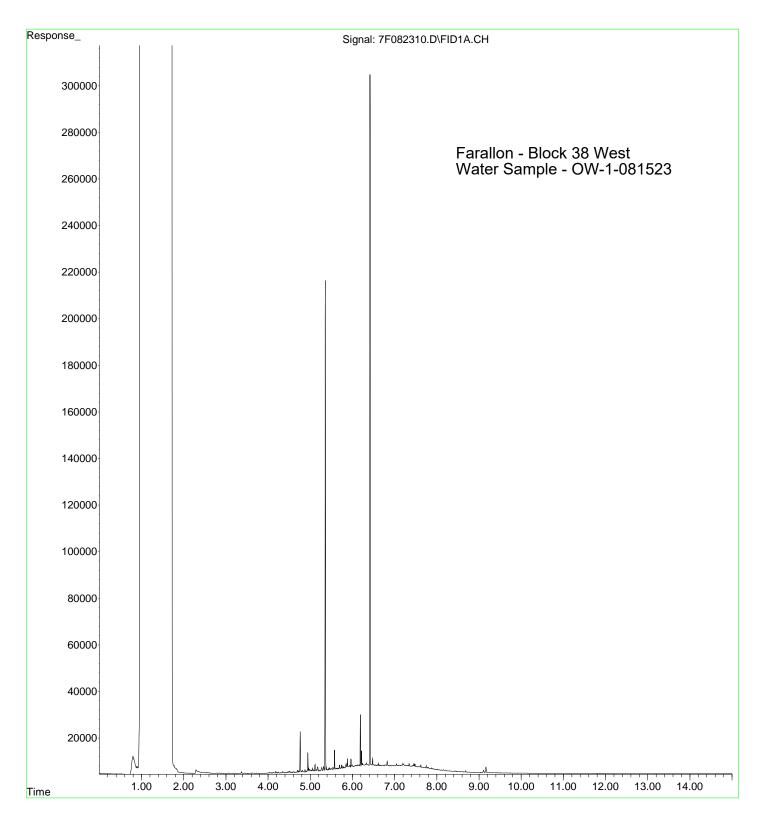
1809 7th Ave Suite 1111 Seattle, WA 98101 Project: <u>397-019 Block 38 West</u>

Project Number: **397-019**Project Manager: **Greg Peters** 

Report ID: A3H1155 - 12 22 23 1825

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                     | ٠.                                                                                |                                              |                                           | ent wo#: /                             | A3AH 11 55    | >                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------|----------------------------------------|---------------|-------------------------------------|
| Project/Project #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Block                                                                                                               | 38 /                                                                              | 397-0                                        | 719                                       |                                        | 8.17.23       |                                     |
| Delivery Info:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                     |                                                                                   |                                              |                                           |                                        |               |                                     |
| Date/time received: 8-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -23 @                                                                                                               | 1024                                                                              | By:                                          | _ D05                                     |                                        |               |                                     |
| Delivered by: ApexClier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                     |                                                                                   | K. V                                         |                                           |                                        | <br>Evergreen | Other                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e/time inspec                                                                                                       |                                                                                   |                                              |                                           |                                        |               |                                     |
| Chain of Custody included                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                     | < No                                                                              |                                              |                                           |                                        |               |                                     |
| Signed/dated by client?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                     | × No _                                                                            |                                              |                                           |                                        |               |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cooler #1                                                                                                           | Cooler #2                                                                         | Cooler #3                                    | Cooler #4                                 | Cooler #5                              | Cooler #6     | Cooler #7                           |
| Γemperature (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                     | 3.9                                                                               | 0.4                                          |                                           |                                        | 2.8           | 0.9                                 |
| Custody seals? (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                   |                                                                                   |                                              |                                           |                                        |               | _>                                  |
| Received on ice? (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>Y</u>                                                                                                            | -                                                                                 |                                              |                                           |                                        |               |                                     |
| Γemp. blanks? (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ٧                                                                                                                   |                                                                                   |                                              |                                           |                                        |               | 5                                   |
| ce type: (Gel/Real/Other)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Real                                                                                                                |                                                                                   |                                              |                                           |                                        |               | >                                   |
| Condition (In/Out):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11 -                                                                                                                |                                                                                   |                                              |                                           |                                        |               | 5                                   |
| Green dots applied to out of Dut of temperature samples Sample Inspection: Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | f temperature<br>form initiate<br>/time inspect                                                                     | samples?<br>d? Yes/No<br>ed: 8/14/2                                               | 8<br>23 @ 11                                 | :38                                       | Ву:                                    | N             |                                     |
| Green dots applied to out of Dut of temperature samples sample Inspection: Date All samples intact? Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | f temperature<br>form initiate<br>/time inspecto<br>No C                                                            | samples? d? Yes/No ed: S/14/2 omments:                                            | 8<br>23 @ 11                                 |                                           |                                        |               |                                     |
| Cooler out of temp? (YM) Green dots applied to out of Dut of temperature samples Sample Inspection: Date All samples intact? Yes Sottle labels/COCs agree?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | f temperature<br>form initiate<br>/time inspecto<br>No C                                                            | samples? d? Yes/No ed: S/14/2 omments:                                            | 8<br>23 @ 11                                 |                                           |                                        |               | FMW-153-U8                          |
| Green dots applied to out of Dut of temperature samples Sample Inspection: Date All samples intact? Yes Sottle labels/COCs agree?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | f temperature form initiate /time inspecte No C Yes No                                                              | samples? d? Yes/No ed: S/194/2 omments:_  / Comm                                  | 6<br>23 @ 11<br>ments: <u>FM</u> 1           | N -154-081                                |                                        |               | FMW-153-U8                          |
| Green dots applied to out of Out of temperature samples Sample Inspection: Date. All samples intact? Yes X. Bottle labels/COCs agree?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | f temperature form initiate /time inspecte No C Yes No                                                              | samples? d? Yes/No ed: S/14/2 omments:_ // Comr                                   | 73 @ 11. ments: <u>FM</u>                    | N -154-081                                | 523 cont.                              | ID reuds      |                                     |
| Green dots applied to out of Dut of temperature samples Sample Inspection: Date All samples intact? Yes Sottle labels/COCs agree?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | f temperature form initiate /time inspecte No C Yes No                                                              | samples? d? Yes/No ed: S/14/2 omments:_ // Comr                                   | 73 @ 11. ments: <u>FM</u>                    | N -154-081                                | 523 cont.                              | ID reuds      |                                     |
| Bottle labels/COCs agree?  COC/container discrepancie Containers/volumes received                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | f temperature form initiate /time inspecte No C Yes No es form initiate d appropriate                               | samples? d? Yes/Need: S/14/2 omments:  // Comr ed? Yes_ for analysi               | Ments: FMI  No × is? Yes ×                   | N - 154 - 081                             | 523 (unf.                              | ID reuds      |                                     |
| Bottle labels/COCs agree?  COC/container discrepancie Containers/volumes received                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | f temperature form initiate /time inspecte No C Yes No es form initiate d appropriate                               | samples? d? Yes/Need: S/14/2 omments:  // Comr ed? Yes_ for analysi               | Ments: FMI  No × is? Yes ×                   | N - 154 - 081                             | 523 (unf.                              | ID reuds      |                                     |
| Breen dots applied to out of Dut of temperature samples Sample Inspection: Date All samples intact? Yes Sottle labels/COCs agree?  Bottle labels/COCs agree?  COC/container discrepancie Containers/volumes received                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | f temperature form initiate form initiate /time inspects No C Yes No cs form initiate d appropriate headspace?      | samples? d? Yes/Nd? Yes/Nd? Omments:                                              | Ments: FMI  No × is? Yes ×  No NA  - 57, 3/3 | NO C<br>A<br>HS_FMW                       | 523 (unt.) Comments: -159, 43          | ID reads      |                                     |
| Green dots applied to out of Out of temperature samples Sample Inspection: Date. All samples intact? Yes All samples intact? Yes All samples intact? Yes Coccontainer discrepancie Containers/volumes received to VOA vials have visible becomments 313 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 15 HS Comments 1 | f temperature form initiate form initiate from initiate. No C  Yes No cs form initiate d appropriate headspace?     | samples? d? Yes/Nd? Yes/Nd? Omments:                                              | Ments: FMI  No × is? Yes ×  No NA  - 57, 3/3 | NO C<br>A<br>HS_FMW                       | 523 (unt.) Comments: -159, 43          | ID reads      |                                     |
| Breen dots applied to out of Dut of temperature samples Sample Inspection: Date All samples intact? Yes All samples intact? Yes All samples intact? Yes Bottle labels/COCs agree? DoC/container discrepancie Containers/volumes received Do VOA vials have visible by Comments 3/3 + B CW-Vater samples: pH checked:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | f temperature form initiate form initiate from initiate. No C  Yes No cs form initiate d appropriate headspace?     | samples? d? Yes/Nd? Yes/Nd? Omments:                                              | Ments: FMI  No × is? Yes ×  No NA  - 57, 3/3 | NO C<br>A<br>HS_FMW                       | 523 (unt.) Comments: -159, 43          | ID reads      |                                     |
| Breen dots applied to out of Dut of temperature samples Sample Inspection: Date All samples intact? Yes All samples intact? Yes All samples intact? Yes Bottle labels/COCs agree? DoC/container discrepancie Containers/volumes received Do VOA vials have visible by Comments 3/3 + B CW-Vater samples: pH checked:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | f temperature form initiate form initiate /time inspects No C  Yes No es form initiate d appropriate headspace? - \ | samples? d? Yes/Nd ed: S// // omments:_  // Comr ed? Yes_ for analysi  Yes_/ NA p | No × is? Yes × No NA                         | NO C<br>A<br>HS_FMW                       | 523 (unt.) Comments: -159, 43          | ID reads      |                                     |
| Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree.  Bottle labels/COCs ag | f temperature form initiate form initiate /time inspects No C  Yes No es form initiate d appropriate headspace? -   | samples? d? Yes/Nd ed: S// // omments:_  // Comr ed? Yes_ for analysi  Yes_/ NA p | No × is? Yes × No NA                         | No (<br>No (<br>A<br>HS_FMW<br>ate? Yes_X | 523 (unt.) Comments: -159, 43          | ID reads      |                                     |
| Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree?  Bottle labels/COCs agree.  Bottle labels/COCs ag | f temperature form initiate form initiate /time inspecte No C  Yes No cs form initiate d appropriate headspace? -   | samples? d? Yes/Nd ed: S// // omments:_  // Comr ed? Yes_ for analysi  Yes_/ NA p | No × is? Yes × No NA                         | No C No C A HS FMW ate? Yes X             | 523 cont.  Comments:  -159, 43  No_NA_ | ID reads      | 3, <sup>2</sup> / <sub>3</sub> HS / |

Apex Laboratories

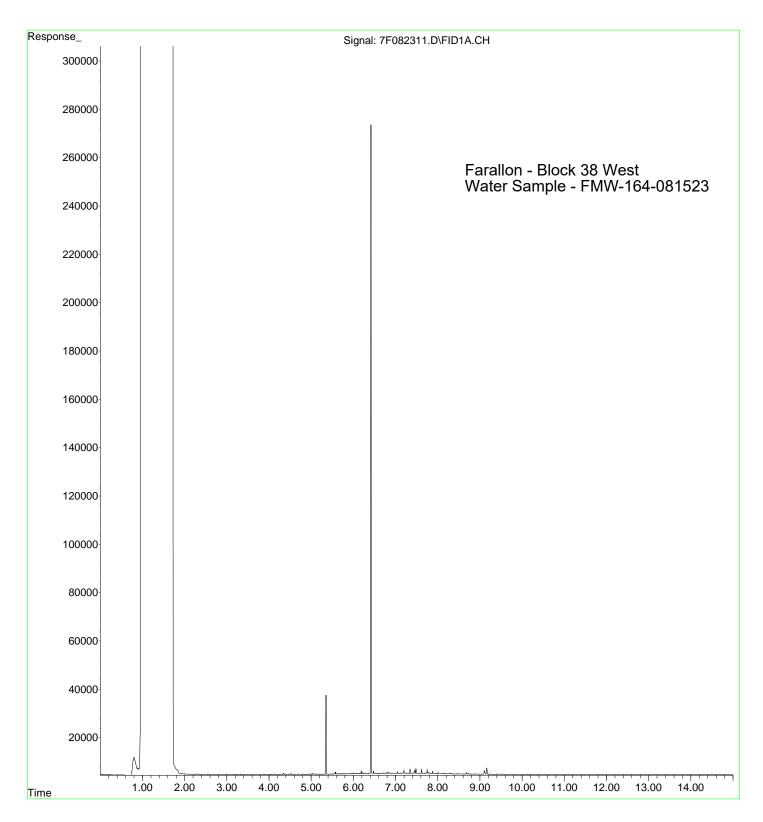

( withle fog

File : C: \gcns\1\data\3H23057\7F082310. D

Operator : BLL

Acquired : 23 Aug 2023 21:52 using AcqWethod FID7ACQ. M

Instrument: HP G1530A Sample Name: A3H155-01

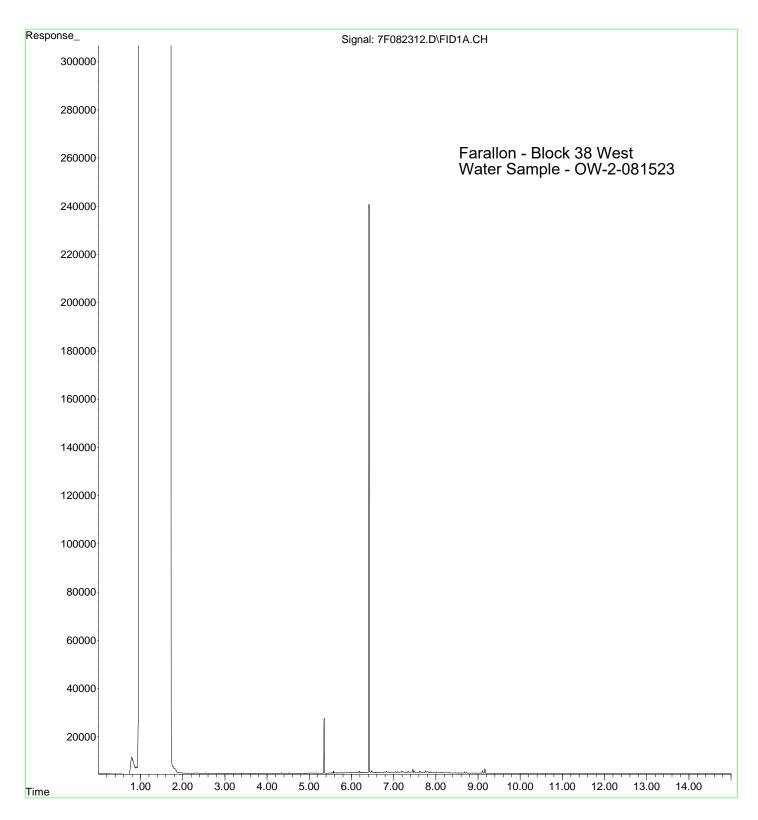



File : C: \gcns\1\data\3H23057\7F082311. D

Operator : BLL

Acquired : 23 Aug 2023 22:12 using AcqWethod FID7ACQ. M

Instrument: HP G1530A Sample Name: A3H1155-02

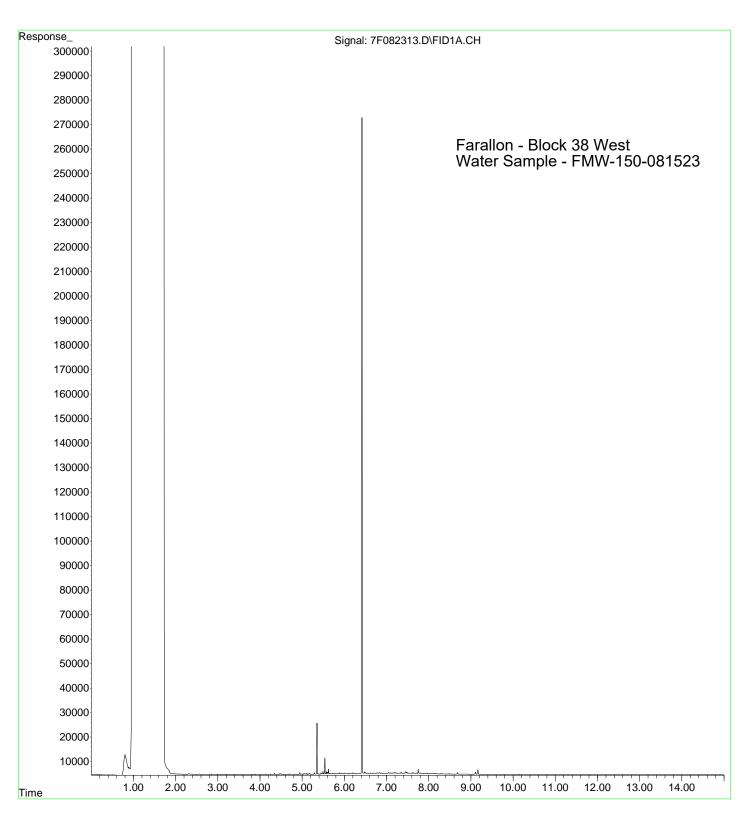



File : C: \gcns\1\data\3H23057\7F082312. D

Operator : BLL

Acquired : 23 Aug 2023 22: 33 using AcqMethod FID7ACQ. M

Instrument: HP G1530A Sample Name: A3H155-03

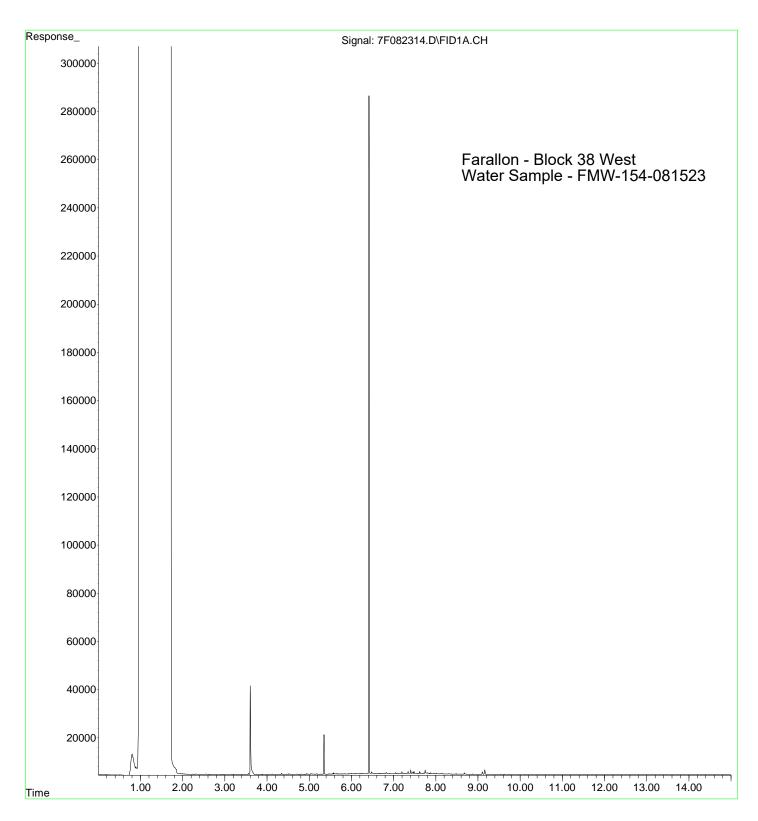



File : C: \gcns\1\data\3H23057\7F082313. D

Operator : BLL

Acquired: 23 Aug 2023 22: 54 using AcqMethod FID7ACQ. M

Instrument: HP G1530A Sample Name: A3H155-04

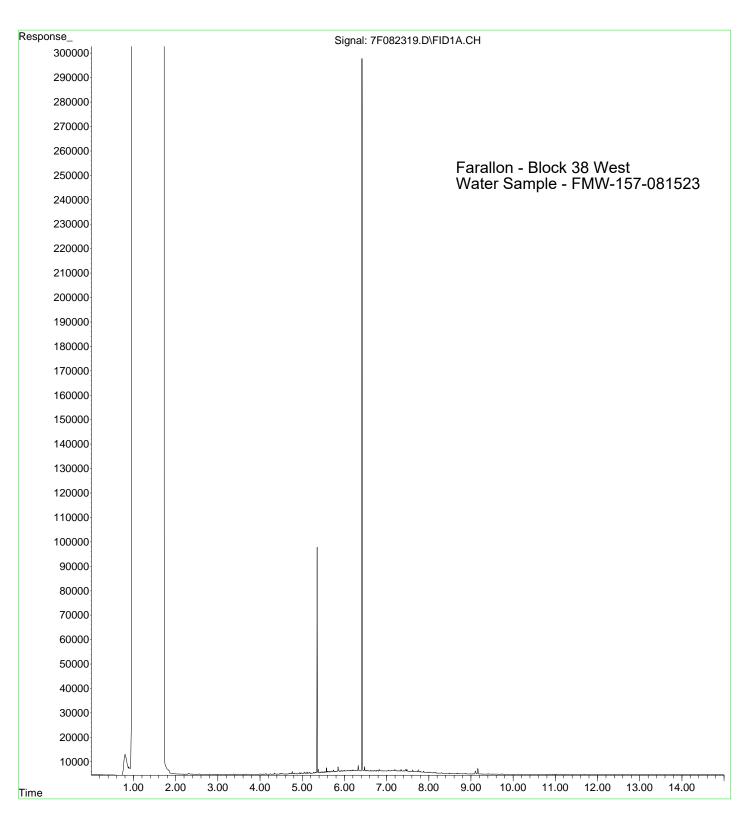



File : C: \gcns\1\data\3H23057\7F082314. D

Operator : BLL

Acquired : 23 Aug 2023 23:15 using AcqMethod FID7ACQ. M

Instrument: HP G1530A Sample Name: A3H155-05

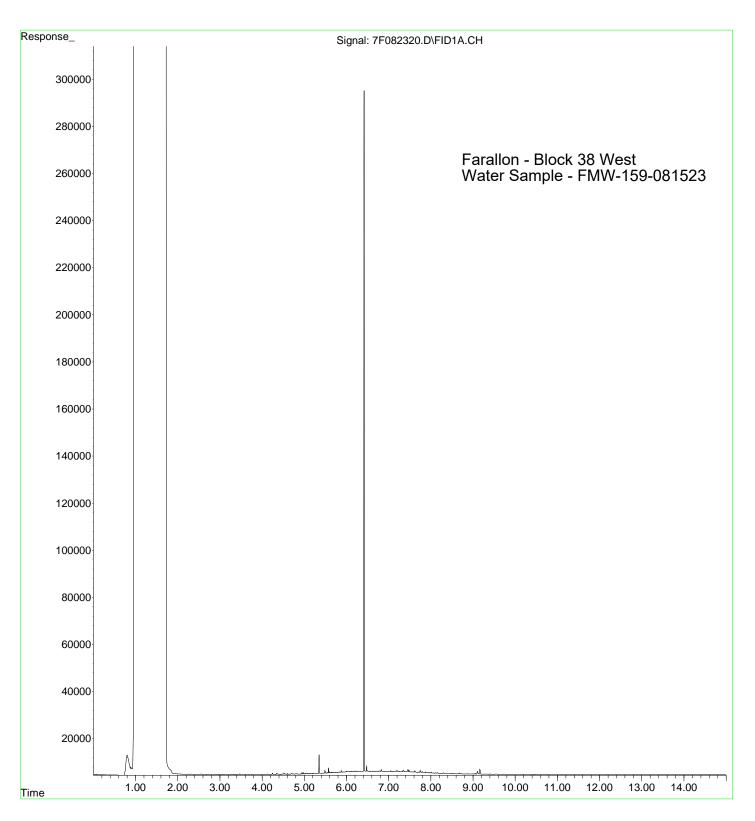



File : C: \gcns\1\data\3H23057\7F082319. D

Operator : BLL

Acquired : 24 Aug 2023 00:58 using AcqMethod FID7ACQ. M

Instrument: HP G1530A Sample Name: A3H155-06

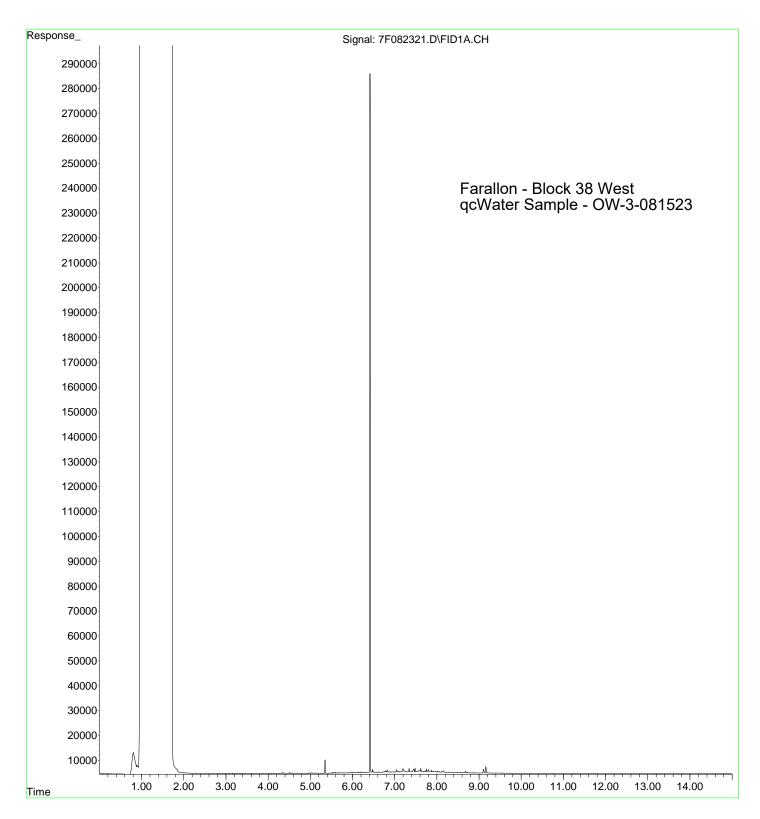



File : C: \gcns\1\data\3H23057\7F082320. D

Operator : BLL

Acquired : 24 Aug 2023 1:18 using AcqMethod FID7ACQ. M

Instrument: HP G1530A Sample Name: A3H1155-07

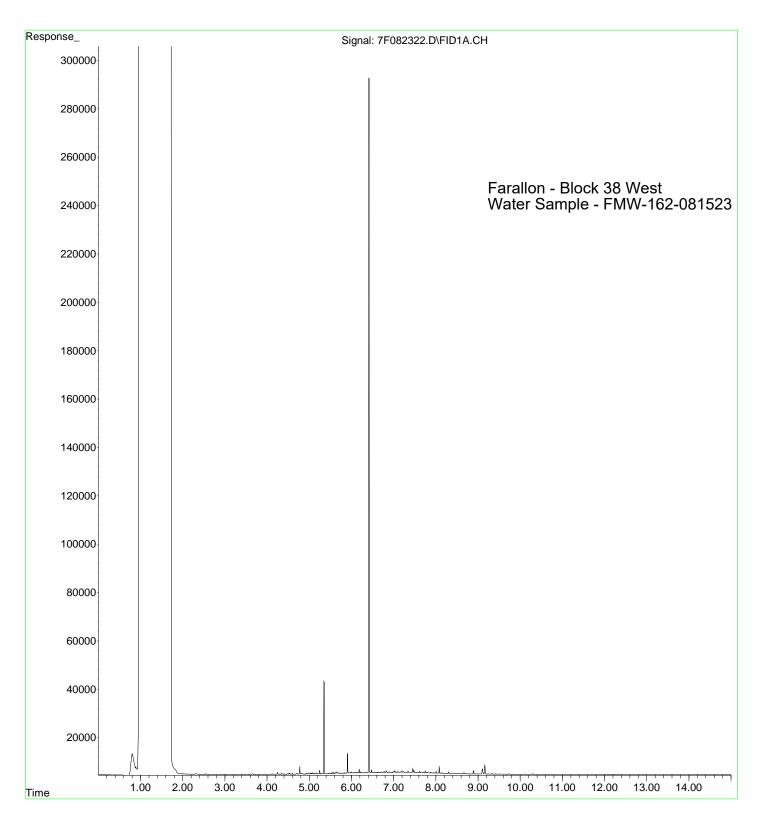



File : C: \gcns\1\data\3H23057\7F082321. D

Operator : BLL

Acquired : 24 Aug 2023 1:39 using AcqMethod FID7ACQ. M

Instrument: HP G1530A Sample Name: A3H155-08

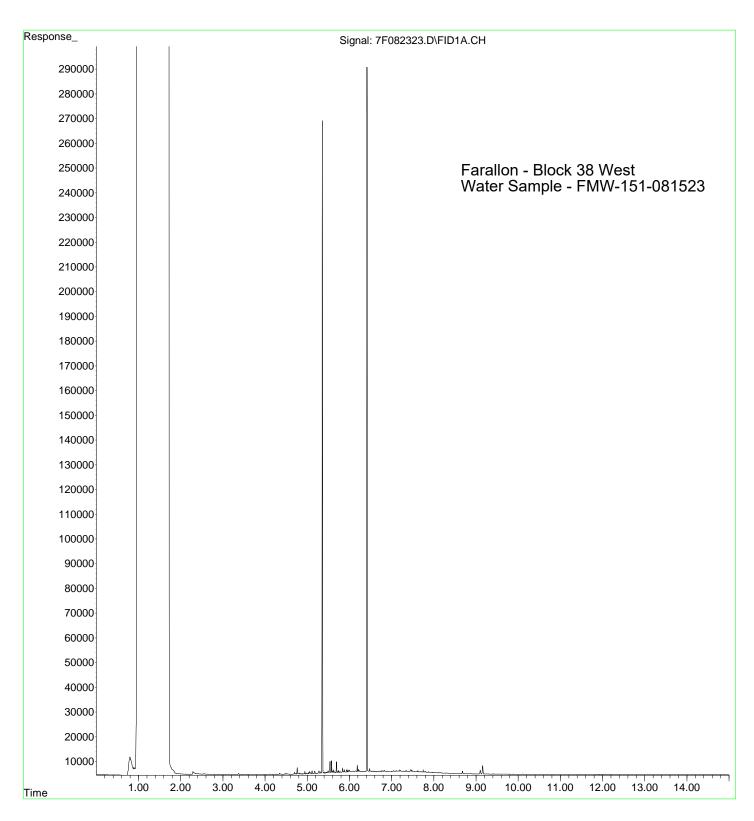



File : C: \gcns\1\data\3H23057\7F082322. D

Operator : BLL

Acquired: 24 Aug 2023 1:59 using AcqMethod FID7ACQ. M

Instrument: HP G1530A Sample Name: A3H155-09

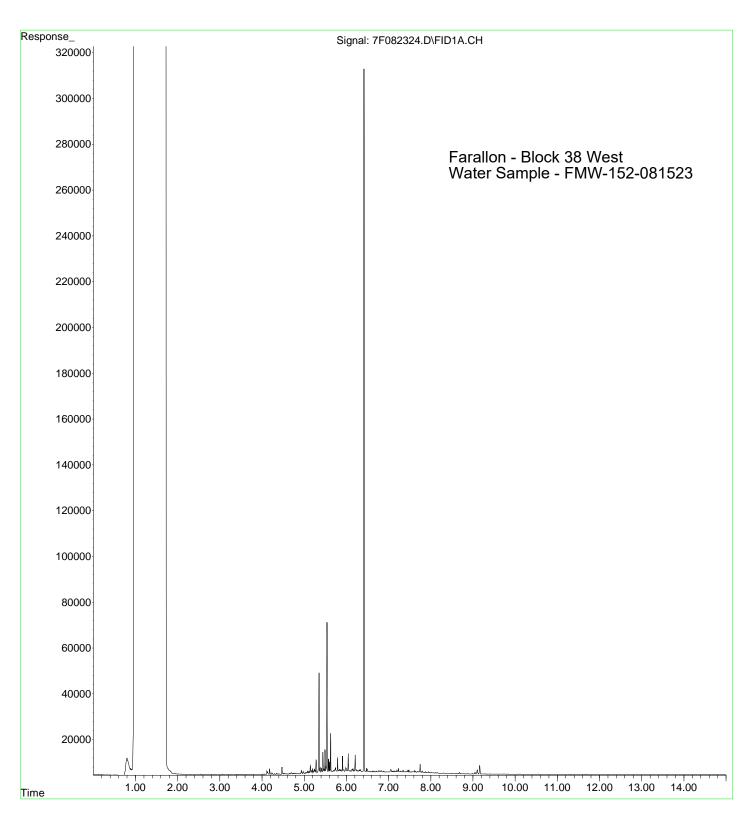



File : C: \gcns\1\data\3H23057\7F082323. D

Operator : BLL

Acquired : 24 Aug 2023 2: 20 using AcqMethod FID7ACQ. M

Instrument: HP G1530A Sample Name: A3H155-10

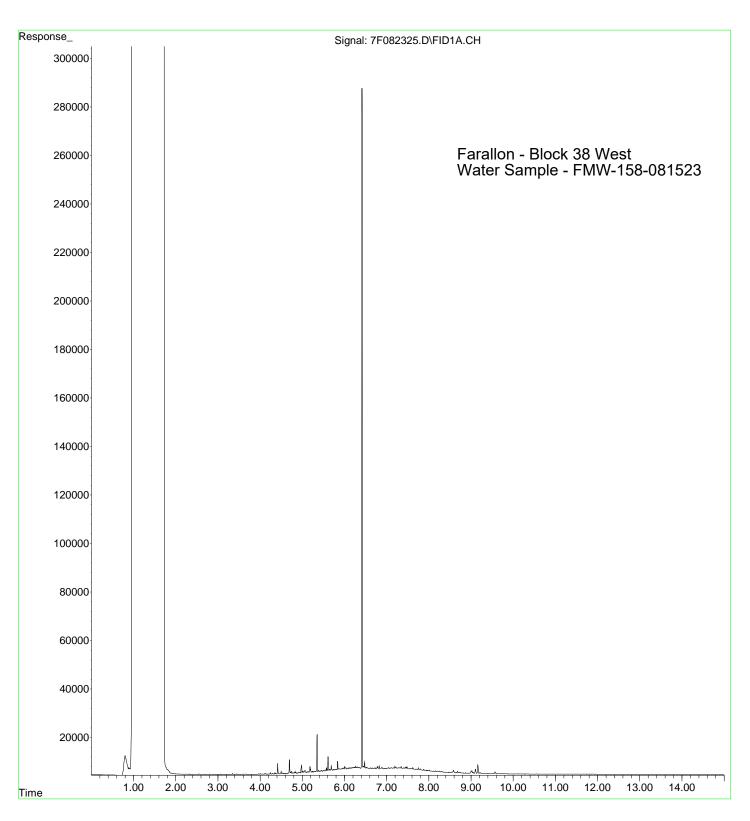



File : C: \gcns\1\data\3H23057\7F082324. D

Operator : BLL

Acquired: 24 Aug 2023 2:41 using AcqMethod FID7ACQ. M

Instrument: HP G1530A Sample Name: A3H155-11

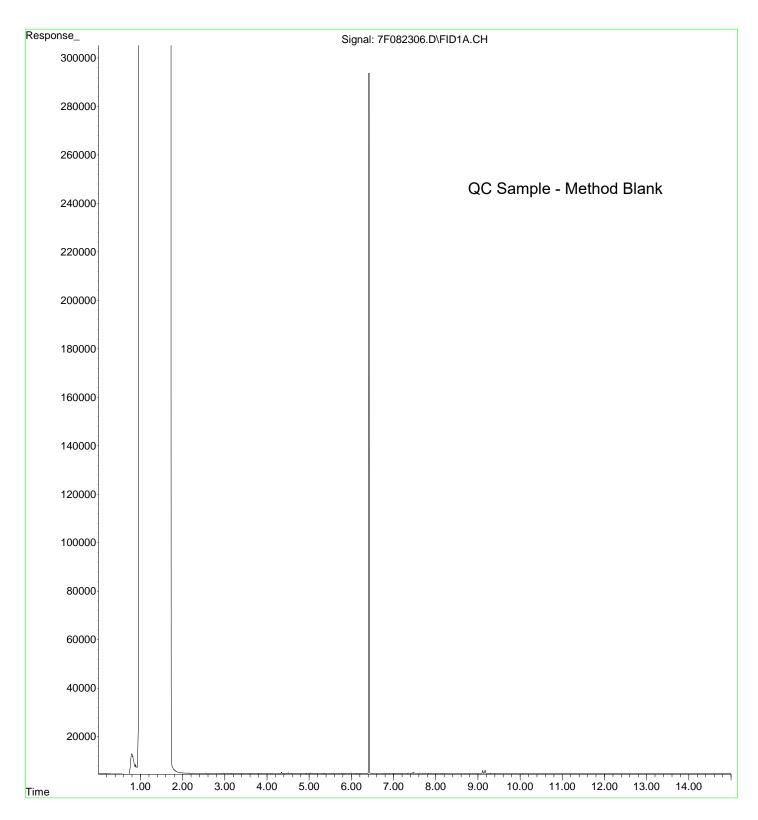



File : C: \gcns\1\data\3H23057\7F082325. D

Operator : BLL

Acquired : 24 Aug 2023 3:01 using AcqMethod FID7ACQ. M

Instrument: HP G1530A Sample Name: A3H155-12

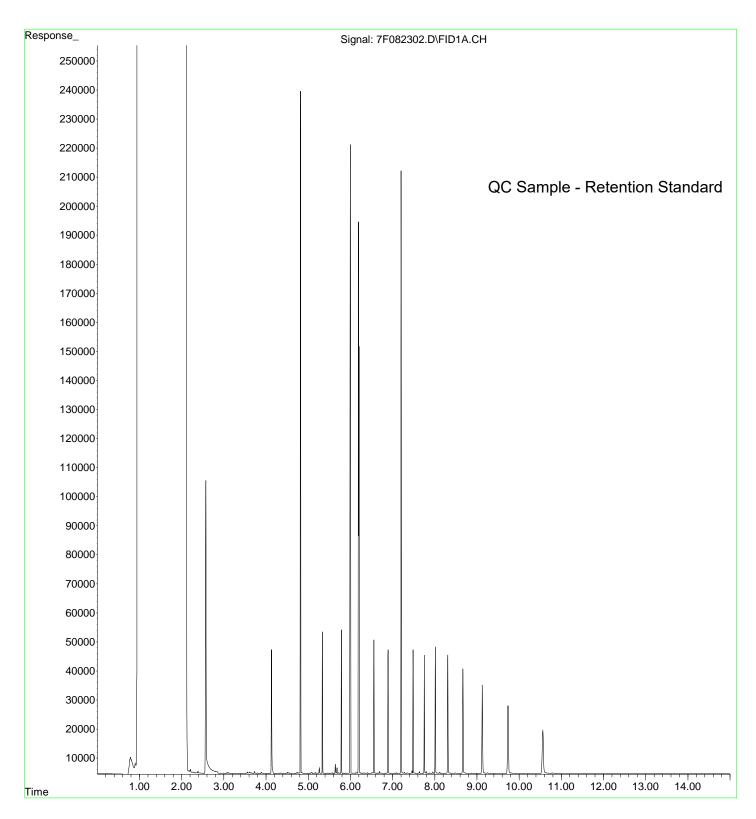



File : C: \gcns\1\data\3H23057\7F082306. D

Operator : BLL

Acquired : 23 Aug 2023 20: 29 using AcqMethod FID7ACQ. M

Instrument: HP G1530A Sample Name: 23HD834- HLKI




File : C: \gcns\1\data\3H23057\7F082302. D

Operator : BLL

Acquired : 23 Aug 2023 15: 24 using AcqMethod FID7ACQ. M

Instrument: HP G1530A Sample Name: 3H23057-RES1

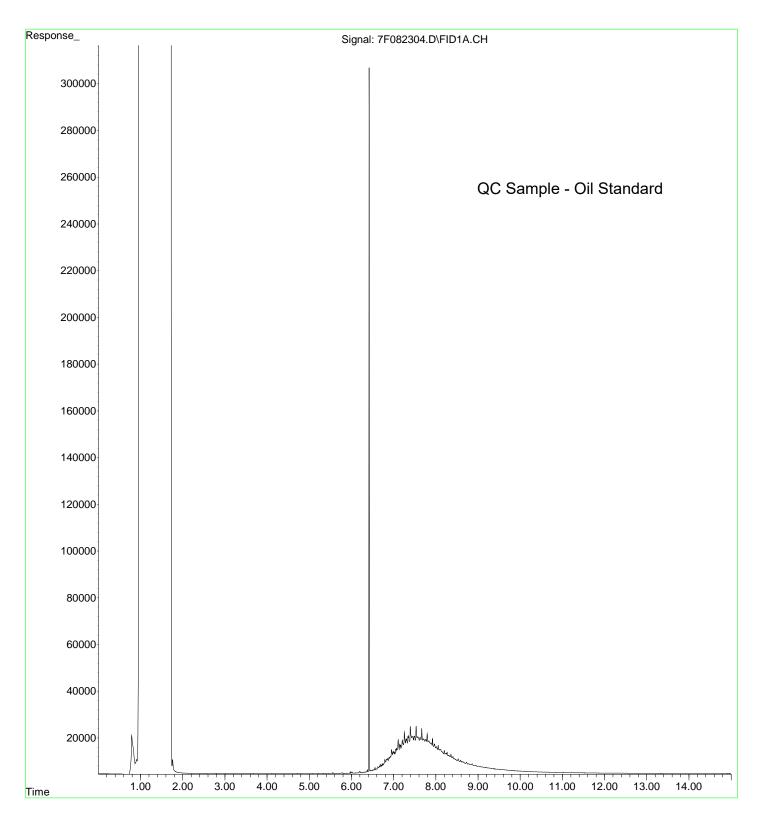



File : C: \gcns\1\data\3H23057\7F082303. D

Operator : BLL

Acquired : 23 Aug 2023 15:45 using AcqWethod FID7ACQ. M

Instrument: HP G1530A Sample Name: 3H23057-CCV1




File : C: \gcns\1\data\3H23057\7F082304. D

Operator : BLL

Acquired : 23 Aug 2023 16:06 using AcqMethod FID7ACQ. M

Instrument: HP G1530A Sample Name: 3H23057-CCV2





AMENDED REPORT

**Apex Laboratories, LLC** 

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Friday, December 22, 2023 Greg Peters Farallon-Seattle 1809 7th Ave Suite 1111 Seattle, WA 98101

RE: A3K1435 - 397-019 Block 38 West - 397-019

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A3K1435, which was received by the laboratory on 11/16/2023 at 4:22:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <a href="mailto:mpoquiz@apex-labs.com">mpoquiz@apex-labs.com</a>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

|   |                        |                                                                                                                            |      | Cooler Red | ceipt | Information |     |      |   |  |  |  |  |
|---|------------------------|----------------------------------------------------------------------------------------------------------------------------|------|------------|-------|-------------|-----|------|---|--|--|--|--|
|   | Acceptable Receipt Ten | cceptable Receipt Temperature is less than, or equal to, 6 degC (not frozen), or received on ice the same day as sampling. |      |            |       |             |     |      |   |  |  |  |  |
|   |                        | (See Cooler Receipt Form for details)                                                                                      |      |            |       |             |     |      |   |  |  |  |  |
|   |                        |                                                                                                                            |      |            |       |             |     |      |   |  |  |  |  |
|   | Cooler #1              | 4.9 d                                                                                                                      | degC | _          | _     | Cooler #2   | 3.1 | degC | _ |  |  |  |  |
|   | Cooler #3              | 2.5 d                                                                                                                      | degC | _          | _     | Cooler #4   | 1.0 | degC |   |  |  |  |  |
|   | Cooler #5              | 5.1 d                                                                                                                      | degC | _          | _     | Cooler #6   | 5.3 | degC |   |  |  |  |  |
|   | Cooler #7              | 4.8 d                                                                                                                      | degC | _          | _     | Cooler #8   | 5.3 | degC |   |  |  |  |  |
| , | Cooler #9              | 4.5 d                                                                                                                      | degC | _          |       |             |     |      |   |  |  |  |  |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

## ANALYTICAL REPORT FOR SAMPLES

|                  | SAMPLE INF    | ORMATION |                |                |
|------------------|---------------|----------|----------------|----------------|
| Client Sample ID | Laboratory ID | Matrix   | Date Sampled   | Date Received  |
| FMW-153-111523   | A3K1435-01    | Water    | 11/15/23 17:05 | 11/16/23 16:22 |
| FMW-150-111523   | A3K1435-02    | Water    | 11/15/23 15:35 | 11/16/23 16:22 |
| OW-1-111523      | A3K1435-03    | Water    | 11/15/23 14:15 | 11/16/23 16:22 |
| OW-2-111523      | A3K1435-04    | Water    | 11/15/23 12:55 | 11/16/23 16:22 |
| FMW-157-111523   | A3K1435-05    | Water    | 11/15/23 11:25 | 11/16/23 16:22 |
| FMW-156-111523   | A3K1435-06    | Water    | 11/15/23 10:05 | 11/16/23 16:22 |
| FMW-163-111523   | A3K1435-07    | Water    | 11/15/23 08:35 | 11/16/23 16:22 |
| FMW-158-111523   | A3K1435-08    | Water    | 11/15/23 08:40 | 11/16/23 16:22 |
| FMW-159-111523   | A3K1435-09    | Water    | 11/15/23 10:05 | 11/16/23 16:22 |
| OW-3-111523      | A3K1435-10    | Water    | 11/15/23 11:45 | 11/16/23 16:22 |
| FMW-164-111523   | A3K1435-11    | Water    | 11/15/23 13:01 | 11/16/23 16:22 |
| FMW-162-111523   | A3K1435-12    | Water    | 11/15/23 14:15 | 11/16/23 16:22 |
| FMW-152-111523   | A3K1435-13    | Water    | 11/15/23 15:51 | 11/16/23 16:22 |
| FMW-151-111523   | A3K1435-14    | Water    | 11/15/23 18:02 | 11/16/23 16:22 |
| FMW-160-111423   | A3K1435-15    | Water    | 11/14/23 14:25 | 11/16/23 16:22 |
| FMW-154-111423   | A3K1435-16    | Water    | 11/14/23 12:50 | 11/16/23 16:22 |
| FMW-155-111423   | A3K1435-17    | Water    | 11/14/23 12:30 | 11/16/23 16:22 |
| FMW-161-111423   | A3K1435-18    | Water    | 11/14/23 14:05 | 11/16/23 16:22 |

Apex Laboratories

(milale fog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

## ANALYTICAL CASE NARRATIVE

A3K1435 Apex Laboratories

Amended Report Revision 2:

Reporting to Reporting Limits (RLs)-

This report supersedes all previous reports.

Per client request, this report has been amended to report all NWTPH-Dx data to the RLs.

Michele Poquiz Forensics Project Manager 12/22/2023

Amended Report Revision 1:

This report supersedes all previous reports.

Analysis of NWTPH-Dx LL with silica gel column cleanup was added to the following samples after the previous report version had been completed.

- FMW-158-111523 (A3K1435-08)
- FMW-159-111523 (A3K1435-09)

Michele Poquiz Forensics Project Manager 12/19/2023

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

# ANALYTICAL SAMPLE RESULTS

|                               | Die              | esel and/or O      | il Hydrocar        | bons by NWTF   | PH-Dx    |                |             |       |
|-------------------------------|------------------|--------------------|--------------------|----------------|----------|----------------|-------------|-------|
| Analysta                      | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | T T:4-         | Dib-ti   | Date           | Mothe J.Df  | NT-4. |
| Analyte                       | Resuit           | Limit              | Limit              | Units          | Dilution | Analyzed       | Method Ref. | Notes |
| FMW-153-111523 (A3K1435-01)   |                  |                    |                    | Matrix: Wa     | ter      | Batch:         | 23K0934     |       |
| Diesel                        | ND               |                    | 76.9               | ug/L           | 1        | 11/27/23 20:19 | NWTPH-Dx LL |       |
| Oil                           | ND               |                    | 154                | ug/L           | 1        | 11/27/23 20:19 | NWTPH-Dx LL |       |
| Surrogate: o-Terphenyl (Surr) |                  | Reco               | very: 77 %         | Limits: 50-150 | % 1      | 11/27/23 20:19 | NWTPH-Dx LL |       |
| FMW-150-111523 (A3K1435-02)   |                  |                    |                    | Matrix: Wa     | ter      | Batch:         | 23K0934     |       |
| Diesel                        | ND               |                    | 76.2               | ug/L           | 1        | 11/27/23 20:40 | NWTPH-Dx LL |       |
| Oil                           | ND               |                    | 152                | ug/L           | 1        | 11/27/23 20:40 | NWTPH-Dx LL |       |
| Surrogate: o-Terphenyl (Surr) |                  | Reco               | very: 75 %         | Limits: 50-150 | % 1      | 11/27/23 20:40 | NWTPH-Dx LL |       |
| OW-1-111523 (A3K1435-03)      |                  |                    |                    | Matrix: Wa     | ter      | Batch:         | 23K0934     |       |
| Diesel                        | 628              |                    | 76.2               | ug/L           | 1        | 11/27/23 21:00 | NWTPH-Dx LL | F-11  |
| Oil                           | ND               |                    | 152                | ug/L           | 1        | 11/27/23 21:00 | NWTPH-Dx LL |       |
| Surrogate: o-Terphenyl (Surr) |                  | Reco               | very: 75 %         | Limits: 50-150 | % 1      | 11/27/23 21:00 | NWTPH-Dx LL |       |
| OW-2-111523 (A3K1435-04)      |                  |                    |                    | Matrix: Wa     | ter      | Batch:         | 23K0934     |       |
| Diesel                        | 378              |                    | 76.9               | ug/L           | 1        | 11/27/23 21:20 | NWTPH-Dx LL | F-11  |
| Oil                           | ND               |                    | 154                | ug/L           | 1        | 11/27/23 21:20 | NWTPH-Dx LL |       |
| Surrogate: o-Terphenyl (Surr) |                  | Reco               | very: 85 %         | Limits: 50-150 | % 1      | 11/27/23 21:20 | NWTPH-Dx LL |       |
| FMW-157-111523 (A3K1435-05)   |                  |                    |                    | Matrix: Wat    | ter      | Batch:         | 23K0934     |       |
| Diesel                        | 283              |                    | 76.2               | ug/L           | 1        | 11/27/23 21:40 | NWTPH-Dx LL | F-11  |
| Dil                           | ND               |                    | 152                | ug/L           | 1        | 11/27/23 21:40 | NWTPH-Dx LL |       |
| Surrogate: o-Terphenyl (Surr) |                  | Reco               | very: 84 %         | Limits: 50-150 | % 1      | 11/27/23 21:40 | NWTPH-Dx LL |       |
| FMW-156-111523 (A3K1435-06)   |                  |                    |                    | Matrix: Wat    | ter      | Batch:         | 23K0934     |       |
| Diesel                        | 397              |                    | 76.9               | ug/L           | 1        | 11/27/23 22:00 | NWTPH-Dx LL | F-11  |
| Dil                           | ND               |                    | 154                | ug/L           | 1        | 11/27/23 22:00 | NWTPH-Dx LL |       |
| Surrogate: o-Terphenyl (Surr) |                  | Reco               | very: 83 %         | Limits: 50-150 | % 1      | 11/27/23 22:00 | NWTPH-Dx LL |       |
| FMW-163-111523 (A3K1435-07)   |                  |                    |                    | Matrix: Wat    | ter      | Batch:         | 23K0934     |       |
| Diesel                        | 406              |                    | 76.9               | ug/L           | 1        | 11/27/23 22:20 | NWTPH-Dx LL | F-11  |
| Oil                           | ND               |                    | 154                | ug/L           | 1        | 11/27/23 22:20 | NWTPH-Dx LL |       |
| Surrogate: o-Terphenyl (Surr) |                  | Reco               | very: 77 %         | Limits: 50-150 | % 1      | 11/27/23 22:20 | NWTPH-Dx LL |       |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

# ANALYTICAL SAMPLE RESULTS

|                                 | Die              | esel and/or O      | il Hydrocar        | bons by NWTP           | H-Dx     |                  |                            |            |
|---------------------------------|------------------|--------------------|--------------------|------------------------|----------|------------------|----------------------------|------------|
| Analyte                         | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units                  | Dilution | Date<br>Analyzed | Method Ref.                | Notes      |
| FMW-158-111523 (A3K1435-08)     | resuit           | - Dillit           | - Emilit           | Matrix: Wat            |          | -                | 23K0934                    | 110103     |
| ,                               |                  |                    |                    |                        |          |                  |                            |            |
| Diesel                          | 398              |                    | 75.5               | ug/L                   | 1        | 11/27/23 22:41   | NWTPH-Dx LL<br>NWTPH-Dx LL | F-11       |
| Oil Suggested a Tamband (Sugge) | ND               | <br>Dage           | 151                | ug/L  Limits: 50-150 % | 1<br>6 I | 11/27/23 22:41   | NWTPH-Dx LL                |            |
| Surrogate: o-Terphenyl (Surr)   |                  | Reco               | very: 75 %         | Limits: 30-130 %       | o I      | 11/2//23 22:41   | NWIPH-Dx LL                |            |
| FMW-159-111523 (A3K1435-09)     |                  |                    |                    | Matrix: Wat            | er       | Batch:           | 23K0934                    |            |
| Diesel                          | 249              |                    | 75.5               | ug/L                   | 1        | 11/27/23 23:01   | NWTPH-Dx LL                | F-11       |
| Oil                             | ND               |                    | 151                | ug/L                   | 1        | 11/27/23 23:01   | NWTPH-Dx LL                |            |
| Surrogate: o-Terphenyl (Surr)   |                  | Reco               | very: 81 %         | Limits: 50-150 %       | 6 1      | 11/27/23 23:01   | NWTPH-Dx LL                |            |
| OW-3-111523 (A3K1435-10)        |                  |                    |                    | Matrix: Wat            | er       | Batch:           | 23K0934                    |            |
| Diesel                          | 238              |                    | 75.5               | ug/L                   | 1        | 11/27/23 23:21   | NWTPH-Dx LL                | F-11       |
| Oil                             | ND               |                    | 151                | ug/L                   | 1        | 11/27/23 23:21   | NWTPH-Dx LL                |            |
| Surrogate: o-Terphenyl (Surr)   |                  | Reco               | very: 71 %         | Limits: 50-150 %       | 6 1      | 11/27/23 23:21   | NWTPH-Dx LL                |            |
| FMW-164-111523 (A3K1435-11RE1)  |                  |                    |                    | Matrix: Wat            | er       | Batch:           | 23K0934                    |            |
| Diesel                          | ND               |                    | 75.5               | ug/L                   | 1        | 11/28/23 08:50   | NWTPH-Dx LL                |            |
| Oil                             | ND               |                    | 151                | ug/L                   | 1        | 11/28/23 08:50   | NWTPH-Dx LL                |            |
| Surrogate: o-Terphenyl (Surr)   |                  | Reco               | very: 70 %         | Limits: 50-150 %       | 6 1      | 11/28/23 08:50   | NWTPH-Dx LL                |            |
| FMW-162-111523 (A3K1435-12RE1)  |                  |                    |                    | Matrix: Wat            | er       | Batch:           | 23K0934                    |            |
| Diesel                          | ND               |                    | 75.5               | ug/L                   | 1        | 11/28/23 09:23   | NWTPH-Dx LL                |            |
| Oil                             | ND               |                    | 151                | ug/L                   | 1        | 11/28/23 09:23   | NWTPH-Dx LL                |            |
| Surrogate: o-Terphenyl (Surr)   |                  | Reco               | very: 69 %         | Limits: 50-150 %       | 6 1      | 11/28/23 09:23   | NWTPH-Dx LL                |            |
| FMW-152-111523 (A3K1435-13)     |                  |                    |                    | Matrix: Wat            | er       | Batch:           | 23K0934                    |            |
| Diesel                          | 269              |                    | 75.5               | ug/L                   | 1        | 11/28/23 01:43   | NWTPH-Dx LL                | F-03, F-11 |
| Oil                             | ND               |                    | 151                | ug/L                   | 1        | 11/28/23 01:43   | NWTPH-Dx LL                |            |
| Surrogate: o-Terphenyl (Surr)   |                  | Reco               | very: 73 %         | Limits: 50-150 %       | 6 1      | 11/28/23 01:43   | NWTPH-Dx LL                |            |
| FMW-151-111523 (A3K1435-14)     |                  |                    |                    | Matrix: Wat            | er       | Batch:           | 23K0934                    |            |
| Diesel                          | 263              |                    | 75.5               | ug/L                   | 1        | 11/28/23 02:03   | NWTPH-Dx LL                | F-03, F-11 |
| Oil                             | ND               |                    | 151                | ug/L                   | 1        | 11/28/23 02:03   | NWTPH-Dx LL                |            |
| Surrogate: o-Terphenyl (Surr)   |                  | Reco               | very: 75 %         | Limits: 50-150 %       | 6 I      | 11/28/23 02:03   | NWTPH-Dx LL                |            |

Apex Laboratories

( milule fog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

# ANALYTICAL SAMPLE RESULTS

|                               | Die              | esel and/or Oil    | l Hydrocar         | bons by NWTP     | H-Dx     |                  |             |       |
|-------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|-------------|-------|
| Analyte                       | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| FMW-160-111423 (A3K1435-15)   |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23K0934     |       |
| Diesel                        | 375              |                    | 76.9               | ug/L             | 1        | 11/28/23 02:23   | NWTPH-Dx LL | F-11  |
| Oil                           | ND               |                    | 154                | ug/L             | 1        | 11/28/23 02:23   | NWTPH-Dx LL |       |
| Surrogate: o-Terphenyl (Surr) |                  | Recove             | ery: 75 %          | Limits: 50-150 % | 5 I      | 11/28/23 02:23   | NWTPH-Dx LL |       |
| FMW-154-111423 (A3K1435-16)   |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23K0934     |       |
| Diesel                        | 791              |                    | 76.2               | ug/L             | 1        | 11/28/23 02:43   | NWTPH-Dx LL | F-11  |
| Oil                           | ND               |                    | 152                | ug/L             | 1        | 11/28/23 02:43   | NWTPH-Dx LL |       |
| Surrogate: o-Terphenyl (Surr) |                  | Recove             | ery: 79 %          | Limits: 50-150 % | 5 1      | 11/28/23 02:43   | NWTPH-Dx LL |       |
| FMW-155-111423 (A3K1435-17)   |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23K0934     |       |
| Diesel                        | 943              |                    | 76.2               | ug/L             | 1        | 11/28/23 03:04   | NWTPH-Dx LL | F-11  |
| Oil                           | ND               |                    | 152                | ug/L             | 1        | 11/28/23 03:04   | NWTPH-Dx LL |       |
| Surrogate: o-Terphenyl (Surr) |                  | Recove             | ery: 70 %          | Limits: 50-150 % | 5 1      | 11/28/23 03:04   | NWTPH-Dx LL |       |
| FMW-161-111423 (A3K1435-18)   |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23K0934     |       |
| Diesel                        | 423              |                    | 75.5               | ug/L             | 1        | 11/28/23 03:24   | NWTPH-Dx LL | F-11  |
| Oil                           | ND               |                    | 151                | ug/L             | 1        | 11/28/23 03:24   | NWTPH-Dx LL |       |
| Surrogate: o-Terphenyl (Surr) |                  | Recove             | ery: 86 %          | Limits: 50-150 % | 5 1      | 11/28/23 03:24   | NWTPH-Dx LL |       |

Apex Laboratories

(milale fog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

# ANALYTICAL SAMPLE RESULTS

| Dies                          | sel and/or Oil H | ydrocarbons        | by NWTPH           | -Dx with Silica  | Gel Colu | mn Cleanup       |              |       |
|-------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|--------------|-------|
| Analyte                       | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref.  | Notes |
| OW-1-111523 (A3K1435-03)      |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23K1067      |       |
| Diesel                        | ND               |                    | 76.2               | ug/L             | 1        | 11/29/23 20:02   | NWTPH-Dx/SGC |       |
| Oil                           | ND               |                    | 152                | ug/L             | 1        | 11/29/23 20:02   | NWTPH-Dx/SGC |       |
| Surrogate: o-Terphenyl (Surr) |                  | Reco               | very: 71 %         | Limits: 50-150 % | 5 I      | 11/29/23 20:02   | NWTPH-Dx/SGC |       |
| FMW-158-111523 (A3K1435-08)   |                  |                    |                    | Matrix: Wate     | er       | Batch:           | : 23L0687    |       |
| Diesel                        | ND               |                    | 75.5               | ug/L             | 1        | 12/18/23 19:44   | NWTPH-Dx/SGC |       |
| Oil                           | ND               |                    | 151                | ug/L             | 1        | 12/18/23 19:44   | NWTPH-Dx/SGC |       |
| Surrogate: o-Terphenyl (Surr) |                  | Reco               | very: 71 %         | Limits: 50-150 % | 5 1      | 12/18/23 19:44   | NWTPH-Dx/SGC |       |
| FMW-159-111523 (A3K1435-09)   |                  |                    |                    | Matrix: Wate     | er       | Batch:           | : 23L0687    |       |
| Diesel                        | ND               |                    | 75.5               | ug/L             | 1        | 12/18/23 20:55   | NWTPH-Dx/SGC |       |
| Oil                           | ND               |                    | 151                | ug/L             | 1        | 12/18/23 20:55   | NWTPH-Dx/SGC |       |
| Surrogate: o-Terphenyl (Surr) |                  | Reco               | very: 68 %         | Limits: 50-150 % | 5 1      | 12/18/23 20:55   | NWTPH-Dx/SGC |       |
| FMW-154-111423 (A3K1435-16)   |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23K1067      |       |
| Diesel                        | ND               |                    | 76.2               | ug/L             | 1        | 11/29/23 20:42   | NWTPH-Dx/SGC |       |
| Oil                           | ND               |                    | 152                | ug/L             | 1        | 11/29/23 20:42   | NWTPH-Dx/SGC |       |
| Surrogate: o-Terphenyl (Surr) |                  | Reco               | very: 65 %         | Limits: 50-150 % | 5 I      | 11/29/23 20:42   | NWTPH-Dx/SGC |       |
| FMW-155-111423 (A3K1435-17)   |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23K1067      |       |
| Diesel                        | ND               |                    | 76.2               | ug/L             | 1        | 11/29/23 21:23   | NWTPH-Dx/SGC |       |
| Oil                           | ND               |                    | 152                | ug/L             | 1        | 11/29/23 21:23   | NWTPH-Dx/SGC |       |
| Surrogate: o-Terphenyl (Surr) |                  | Reco               | very: 82 %         | Limits: 50-150 % | 5 I      | 11/29/23 21:23   | NWTPH-Dx/SGC |       |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

# ANALYTICAL SAMPLE RESULTS

| Amelioto                              | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Mathad Daf    | Note: |
|---------------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|---------------|-------|
| Analyte                               | Resuit           | Limit              | LIIIII             |                  |          |                  | Method Ref.   | Note  |
| FMW-156-111523 (A3K1435-06)           |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23K0755       |       |
| Gasoline Range Organics               | ND               | 50.0               | 100                | ug/L             | 1        | 11/18/23 16:56   | NWTPH-Gx (MS) |       |
| Surrogate: 4-Bromofluorobenzene (Sur) |                  | Recovery           | v: 84 %            | Limits: 50-150 % |          | 11/18/23 16:56   | NWTPH-Gx (MS) |       |
| 1,4-Difluorobenzene (Sur)             |                  |                    | 101 %              | 50-150 %         | 6 I      | 11/18/23 16:56   | NWTPH-Gx (MS) |       |
| FMW-163-111523 (A3K1435-07)           |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23K0756       |       |
| Gasoline Range Organics               | ND               | 50.0               | 100                | ug/L             | 1        | 11/19/23 23:23   | NWTPH-Gx (MS) |       |
| Surrogate: 4-Bromofluorobenzene (Sur) |                  | Recover            | v: 84 %            | Limits: 50-150 % | 6 I      | 11/19/23 23:23   | NWTPH-Gx (MS) |       |
| 1,4-Difluorobenzene (Sur)             |                  |                    | 100 %              | 50-150 %         | ó I      | 11/19/23 23:23   | NWTPH-Gx (MS) |       |
| FMW-158-111523 (A3K1435-08)           |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23K0756       |       |
| Gasoline Range Organics               | ND               | 50.0               | 100                | ug/L             | 1        | 11/19/23 23:45   | NWTPH-Gx (MS) |       |
| Surrogate: 4-Bromofluorobenzene (Sur) |                  | Recovery           | v: 82 %            | Limits: 50-150 % | 6 I      | 11/19/23 23:45   | NWTPH-Gx (MS) |       |
| 1,4-Difluorobenzene (Sur)             |                  |                    | 98 %               | 50-150 %         | 6 I      | 11/19/23 23:45   | NWTPH-Gx (MS) |       |
| FMW-160-111423 (A3K1435-15)           |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23K0756       |       |
| Gasoline Range Organics               | ND               | 50.0               | 100                | ug/L             | 1        | 11/20/23 00:07   | NWTPH-Gx (MS) |       |
| Surrogate: 4-Bromofluorobenzene (Sur) |                  | Recover            | v: 84 %            | Limits: 50-150 % | 6 I      | 11/20/23 00:07   | NWTPH-Gx (MS) |       |
| 1,4-Difluorobenzene (Sur)             |                  |                    | 98 %               | 50-150 %         | 6 I      | 11/20/23 00:07   | NWTPH-Gx (MS) |       |
| FMW-154-111423 (A3K1435-16)           |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23K0756       |       |
| Gasoline Range Organics               | ND               | 50.0               | 100                | ug/L             | 1        | 11/20/23 00:30   | NWTPH-Gx (MS) |       |
| Surrogate: 4-Bromofluorobenzene (Sur) |                  | Recovery           | v: 84 %            | Limits: 50-150 % | 6 I      | 11/20/23 00:30   | NWTPH-Gx (MS) |       |
| 1,4-Difluorobenzene (Sur)             |                  |                    | 99 %               | 50-150 %         | 6 I      | 11/20/23 00:30   | NWTPH-Gx (MS) |       |
| FMW-155-111423 (A3K1435-17)           |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23K0756       |       |
| Gasoline Range Organics               | ND               | 50.0               | 100                | ug/L             | 1        | 11/20/23 00:52   | NWTPH-Gx (MS) |       |
| Surrogate: 4-Bromofluorobenzene (Sur) |                  | Recovery           | v: 78 %            | Limits: 50-150 % | б I      | 11/20/23 00:52   | NWTPH-Gx (MS) |       |
| 1,4-Difluorobenzene (Sur)             |                  |                    | 96 %               | 50-150 %         | ó I      | 11/20/23 00:52   | NWTPH-Gx (MS) |       |
| FMW-161-111423 (A3K1435-18)           |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23K0756       |       |
| Gasoline Range Organics               | ND               | 50.0               | 100                | ug/L             | 1        | 11/20/23 01:15   | NWTPH-Gx (MS) |       |
| Surrogate: 4-Bromofluorobenzene (Sur) |                  | Recovery           | v: 81 %            | Limits: 50-150 % | 6 I      | 11/20/23 01:15   | NWTPH-Gx (MS) |       |
| 1,4-Difluorobenzene (Sur)             |                  |                    | 99 %               | 50-150 %         | 6 I      | 11/20/23 01:15   | NWTPH-Gx (MS) |       |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

# ANALYTICAL SAMPLE RESULTS

|                                                          |                  | BTEX Cor           | npounds b          | y EPA 8260D               |          |                                  |                        |       |
|----------------------------------------------------------|------------------|--------------------|--------------------|---------------------------|----------|----------------------------------|------------------------|-------|
| Analyte                                                  | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units                     | Dilution | Date<br>Analyzed                 | Method Ref.            | Notes |
| FMW-156-111523 (A3K1435-06)                              |                  | ·                  |                    | Matrix: Wate              |          |                                  | 23K0755                |       |
| ,                                                        | NID              | 0.100              | 0.200              |                           |          |                                  | EPA 8260D              |       |
| Benzene Toluene                                          | ND<br>ND         | 0.100<br>0.500     | 0.200<br>1.00      | ug/L<br>ug/L              | 1<br>1   | 11/18/23 16:56<br>11/18/23 16:56 | EPA 8260D<br>EPA 8260D |       |
| Ethylbenzene                                             | ND<br>ND         |                    |                    | =                         | 1        | 11/18/23 16:56                   | EPA 8260D              |       |
| Xylenes, total                                           | ND<br>ND         | 0.250<br>0.750     | 0.500<br>1.50      | ug/L                      | 1        | 11/18/23 16:56                   | EPA 8260D              |       |
| <u> </u>                                                 | ND               |                    |                    | ug/L  Limits: 80-120 %    |          |                                  |                        |       |
| Surrogate: 1,4-Difluorobenzene (Surr)  Toluene-d8 (Surr) |                  | Recover            | ry: 106 %<br>104 % | Limits: 80-120 % 80-120 % | 1<br>1   | 11/18/23 16:56<br>11/18/23 16:56 | EPA 8260D<br>EPA 8260D |       |
| 4-Bromofluorobenzene (Surr)                              |                  |                    | 104 %              | 80-120 %<br>80-120 %      | 1<br>1   | 11/18/23 16:56                   | EPA 8260D<br>EPA 8260D |       |
| FMW-163-111523 (A3K1435-07)                              |                  |                    |                    | Matrix: Wate              | r        | Batch:                           | 23K0756                |       |
| Benzene                                                  | 0.750            | 0.100              | 0.200              | ug/L                      | 1        | 11/19/23 23:23                   | EPA 8260D              |       |
| Toluene                                                  | ND               | 0.500              | 1.00               | ug/L                      | 1        | 11/19/23 23:23                   | EPA 8260D              |       |
| Ethylbenzene                                             | ND               | 0.250              | 0.500              | ug/L                      | 1        | 11/19/23 23:23                   | EPA 8260D              |       |
| Xylenes, total                                           | ND               | 0.750              | 1.50               | ug/L                      | 1        | 11/19/23 23:23                   | EPA 8260D              |       |
| Surrogate: 1,4-Difluorobenzene (Surr)                    |                  | Recover            | ry: 104 %          | Limits: 80-120 %          | 1        | 11/19/23 23:23                   | EPA 8260D              |       |
| Toluene-d8 (Surr)                                        |                  |                    | 103 %              | 80-120 %                  | 1        | 11/19/23 23:23                   | EPA 8260D              |       |
| 4-Bromofluorobenzene (Surr)                              |                  |                    | 102 %              | 80-120 %                  | 1        | 11/19/23 23:23                   | EPA 8260D              |       |
| FMW-158-111523 (A3K1435-08)                              |                  |                    |                    | Matrix: Wate              | r        | Batch: 2                         | 23K0756                |       |
| Benzene                                                  | ND               | 0.100              | 0.200              | ug/L                      | 1        | 11/19/23 23:45                   | EPA 8260D              |       |
| Toluene                                                  | ND               | 0.500              | 1.00               | ug/L                      | 1        | 11/19/23 23:45                   | EPA 8260D              |       |
| Ethylbenzene                                             | ND               | 0.250              | 0.500              | ug/L                      | 1        | 11/19/23 23:45                   | EPA 8260D              |       |
| Xylenes, total                                           | ND               | 0.750              | 1.50               | ug/L                      | 1        | 11/19/23 23:45                   | EPA 8260D              |       |
| Surrogate: 1,4-Difluorobenzene (Surr)                    |                  | Recover            | ry: 103 %          | Limits: 80-120 %          | 1        | 11/19/23 23:45                   | EPA 8260D              |       |
| Toluene-d8 (Surr)                                        |                  |                    | 107 %              | 80-120 %                  | 1        | 11/19/23 23:45                   | EPA 8260D              |       |
| 4-Bromofluorobenzene (Surr)                              |                  |                    | 103 %              | 80-120 %                  | 1        | 11/19/23 23:45                   | EPA 8260D              |       |
| FMW-160-111423 (A3K1435-15)                              |                  |                    |                    | Matrix: Wate              | r        | Batch:                           | 23K0756                |       |
| Benzene                                                  | 0.170            | 0.100              | 0.200              | ug/L                      | 1        | 11/20/23 00:07                   | EPA 8260D              | J     |
| Toluene                                                  | ND               | 0.500              | 1.00               | ug/L                      | 1        | 11/20/23 00:07                   | EPA 8260D              |       |
| Ethylbenzene                                             | ND               | 0.250              | 0.500              | ug/L                      | 1        | 11/20/23 00:07                   | EPA 8260D              |       |
| Xylenes, total                                           | ND               | 0.750              | 1.50               | ug/L                      | 1        | 11/20/23 00:07                   | EPA 8260D              |       |
| Surrogate: 1,4-Difluorobenzene (Surr)                    |                  | Recover            | ry: 104 %          | Limits: 80-120 %          | 1        | 11/20/23 00:07                   | EPA 8260D              |       |
| Toluene-d8 (Surr)                                        |                  |                    | 105 %              | 80-120 %                  | 1        | 11/20/23 00:07                   | EPA 8260D              |       |
| 4-Bromofluorobenzene (Surr)                              |                  |                    | 103 %              | 80-120 %                  | 1        | 11/20/23 00:07                   | EPA 8260D              |       |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

# ANALYTICAL SAMPLE RESULTS

|                                       |                  | BTEX Cor           | npounds b          | y EPA 8260D      |          |                  |             |       |
|---------------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|-------------|-------|
| Analyte                               | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| FMW-154-111423 (A3K1435-16)           |                  |                    |                    | Matrix: Wate     | er       | Batch: 2         | 23K0756     |       |
| Benzene                               | ND               | 0.100              | 0.200              | ug/L             | 1        | 11/20/23 00:30   | EPA 8260D   |       |
| Toluene                               | ND               | 0.500              | 1.00               | ug/L             | 1        | 11/20/23 00:30   | EPA 8260D   |       |
| Ethylbenzene                          | ND               | 0.250              | 0.500              | ug/L             | 1        | 11/20/23 00:30   | EPA 8260D   |       |
| Xylenes, total                        | ND               | 0.750              | 1.50               | ug/L             | 1        | 11/20/23 00:30   | EPA 8260D   |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Recover            | y: 106 %           | Limits: 80-120 % | 1        | 11/20/23 00:30   | EPA 8260D   |       |
| Toluene-d8 (Surr)                     |                  |                    | 104 %              | 80-120 %         | 1        | 11/20/23 00:30   | EPA 8260D   |       |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 102 %              | 80-120 %         | 1        | 11/20/23 00:30   | EPA 8260D   |       |
| FMW-155-111423 (A3K1435-17)           |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23K0756     |       |
| Benzene                               | ND               | 0.100              | 0.200              | ug/L             | 1        | 11/20/23 00:52   | EPA 8260D   |       |
| Toluene                               | ND               | 0.500              | 1.00               | ug/L             | 1        | 11/20/23 00:52   | EPA 8260D   |       |
| Ethylbenzene                          | ND               | 0.250              | 0.500              | ug/L             | 1        | 11/20/23 00:52   | EPA 8260D   |       |
| Xylenes, total                        | ND               | 0.750              | 1.50               | ug/L             | 1        | 11/20/23 00:52   | EPA 8260D   |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Recover            | y: 101 %           | Limits: 80-120 % | 1        | 11/20/23 00:52   | EPA 8260D   |       |
| Toluene-d8 (Surr)                     |                  |                    | 104 %              | 80-120 %         | 1        | 11/20/23 00:52   | EPA 8260D   |       |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 100 %              | 80-120 %         | 1        | 11/20/23 00:52   | EPA 8260D   |       |
| FMW-161-111423 (A3K1435-18)           |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23K0756     |       |
| Benzene                               | ND               | 0.100              | 0.200              | ug/L             | 1        | 11/20/23 01:15   | EPA 8260D   |       |
| Toluene                               | ND               | 0.500              | 1.00               | ug/L             | 1        | 11/20/23 01:15   | EPA 8260D   |       |
| Ethylbenzene                          | ND               | 0.250              | 0.500              | ug/L             | 1        | 11/20/23 01:15   | EPA 8260D   |       |
| Xylenes, total                        | ND               | 0.750              | 1.50               | ug/L             | 1        | 11/20/23 01:15   | EPA 8260D   |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Recover            | y: 105 %           | Limits: 80-120 % | 1        | 11/20/23 01:15   | EPA 8260D   |       |
| Toluene-d8 (Surr)                     |                  |                    | 105 %              | 80-120 %         | 1        | 11/20/23 01:15   | EPA 8260D   |       |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 103 %              | 80-120 %         | 1        | 11/20/23 01:15   | EPA 8260D   |       |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Page 10 of 46



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

# ANALYTICAL SAMPLE RESULTS

|                                   | Selected         | Semivolatile       | Organic C          | ompounds by E    | PA 8270  | E                |             |       |
|-----------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|-------------|-------|
| Analyte                           | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| FMW-153-111523 (A3K1435-01RE1)    |                  |                    |                    | Matrix: Wate     | r        | Batch:           | 23K0832     |       |
| 1-Methylnaphthalene               | ND               | 0.0192             | 0.0385             | ug/L             | 1        | 11/21/23 15:21   | EPA 8270E   |       |
| 2-Methylnaphthalene               | ND               | 0.0192             | 0.0385             | ug/L             | 1        | 11/21/23 15:21   | EPA 8270E   |       |
| Naphthalene                       | ND               | 0.0192             | 0.0385             | ug/L             | 1        | 11/21/23 15:21   | EPA 8270E   |       |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recov              | ery: 46 %          | Limits: 44-120 % | I        | 11/21/23 15:21   | EPA 8270E   |       |
| 2-Fluorobiphenyl (Surr)           |                  |                    | 51 %               | 44-120 %         | 1        | 11/21/23 15:21   | EPA 8270E   |       |
| Phenol-d6 (Surr)                  |                  |                    | 12 %               | 10-133 %         | 1        | 11/21/23 15:21   | EPA 8270E   |       |
| p-Terphenyl-d14 (Surr)            |                  |                    | 77 %               | 50-134 %         | 1        | 11/21/23 15:21   | EPA 8270E   |       |
| 2-Fluorophenol (Surr)             |                  |                    | 21 %               | 19-120 %         | 1        | 11/21/23 15:21   | EPA 8270E   |       |
| 2,4,6-Tribromophenol (Surr)       |                  |                    | 99 %               | 43-140 %         | 1        | 11/21/23 15:21   | EPA 8270E   |       |
| FMW-150-111523 (A3K1435-02)       |                  |                    |                    | Matrix: Wate     | r        | Batch:           | 23K0832     |       |
| 1-Methylnaphthalene               | ND               | 0.0192             | 0.0385             | ug/L             | 1        | 11/21/23 15:55   | EPA 8270E   |       |
| 2-Methylnaphthalene               | ND               | 0.0192             | 0.0385             | ug/L             | 1        | 11/21/23 15:55   | EPA 8270E   |       |
| Naphthalene                       | ND               | 0.0192             | 0.0385             | ug/L             | 1        | 11/21/23 15:55   | EPA 8270E   |       |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recov              | ery: 59 %          | Limits: 44-120 % | I        | 11/21/23 15:55   | EPA 8270E   |       |
| 2-Fluorobiphenyl (Surr)           |                  |                    | 55 %               | 44-120 %         | 1        | 11/21/23 15:55   | EPA 8270E   |       |
| Phenol-d6 (Surr)                  |                  |                    | 17 %               | 10-133 %         | 1        | 11/21/23 15:55   | EPA 8270E   |       |
| p-Terphenyl-d14 (Surr)            |                  |                    | 61 %               | 50-134 %         | 1        | 11/21/23 15:55   | EPA 8270E   |       |
| 2-Fluorophenol (Surr)             |                  |                    | 26 %               | 19-120 %         | 1        | 11/21/23 15:55   | EPA 8270E   |       |
| 2,4,6-Tribromophenol (Surr)       |                  |                    | 103 %              | 43-140 %         | 1        | 11/21/23 15:55   | EPA 8270E   |       |
| OW-1-111523 (A3K1435-03)          |                  |                    |                    | Matrix: Wate     | r        | Batch:           | 23K0832     |       |
| 1-Methylnaphthalene               | ND               | 0.0192             | 0.0385             | ug/L             | 1        | 11/21/23 16:28   | EPA 8270E   |       |
| 2-Methylnaphthalene               | ND               | 0.0192             | 0.0385             | ug/L             | 1        | 11/21/23 16:28   | EPA 8270E   |       |
| Naphthalene                       | ND               | 0.0192             | 0.0385             | ug/L             | 1        | 11/21/23 16:28   | EPA 8270E   |       |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recov              | ery: 67%           | Limits: 44-120 % | I        | 11/21/23 16:28   | EPA 8270E   |       |
| 2-Fluorobiphenyl (Surr)           |                  |                    | 71 %               | 44-120 %         | 1        | 11/21/23 16:28   | EPA 8270E   |       |
| Phenol-d6 (Surr)                  |                  |                    | 13 %               | 10-133 %         | 1        | 11/21/23 16:28   | EPA 8270E   |       |
| p-Terphenyl-d14 (Surr)            |                  |                    | 61 %               | 50-134 %         | 1        | 11/21/23 16:28   | EPA 8270E   |       |
| 2-Fluorophenol (Surr)             |                  |                    | 31 %               | 19-120 %         | 1        | 11/21/23 16:28   | EPA 8270E   |       |
| 2,4,6-Tribromophenol (Surr)       |                  |                    | 124 %              | 43-140 %         | 1        | 11/21/23 16:28   | EPA 8270E   |       |
| OW-2-111523 (A3K1435-04)          |                  |                    |                    | Matrix: Wate     | r        | Batch:           | 23K0832     |       |
| 1-Methylnaphthalene               | 0.0322           | 0.0192             | 0.0385             | ug/L             | 1        | 11/21/23 17:02   | EPA 8270E   | J     |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

# ANALYTICAL SAMPLE RESULTS

|                                   | Selected         | Semiyoratile (     | Organic C          | ompounds by E    | .FA 02/U | L                |             |      |
|-----------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|-------------|------|
| Analyte                           | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref. | Note |
| OW-2-111523 (A3K1435-04)          |                  |                    |                    | Matrix: Wate     | r        | Batch:           | 23K0832     |      |
| 2-Methylnaphthalene               | ND               | 0.0192             | 0.0385             | ug/L             | 1        | 11/21/23 17:02   | EPA 8270E   |      |
| Naphthalene                       | 0.387            | 0.0192             | 0.0385             | ug/L             | 1        | 11/21/23 17:02   | EPA 8270E   |      |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recove             | ry: 50 %           | Limits: 44-120 % | 1        | 11/21/23 17:02   | EPA 8270E   |      |
| 2-Fluorobiphenyl (Surr)           |                  |                    | 51 %               | 44-120 %         | 1        | 11/21/23 17:02   | EPA 8270E   |      |
| Phenol-d6 (Surr)                  |                  |                    | 15 %               | 10-133 %         | 1        | 11/21/23 17:02   | EPA 8270E   |      |
| p-Terphenyl-d14 (Surr)            |                  |                    | 58 %               | 50-134 %         | 1        | 11/21/23 17:02   | EPA 8270E   |      |
| 2-Fluorophenol (Surr)             |                  |                    | 23 %               | 19-120 %         | 1        | 11/21/23 17:02   | EPA 8270E   |      |
| 2,4,6-Tribromophenol (Surr)       |                  |                    | 103 %              | 43-140 %         | 1        | 11/21/23 17:02   | EPA 8270E   |      |
| FMW-157-111523 (A3K1435-05)       |                  |                    |                    | Matrix: Wate     | r        | Batch:           | 23K0832     | DCNT |
| 1-Methylnaphthalene               | ND               | 0.0200             | 0.0400             | ug/L             | 1        | 11/21/23 17:36   | EPA 8270E   |      |
| 2-Methylnaphthalene               | ND               | 0.0200             | 0.0400             | ug/L             | 1        | 11/21/23 17:36   | EPA 8270E   |      |
| Naphthalene                       | ND               | 0.0200             | 0.0400             | ug/L             | 1        | 11/21/23 17:36   | EPA 8270E   |      |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recove             | ry: 51%            | Limits: 44-120 % | I        | 11/21/23 17:36   | EPA 8270E   |      |
| 2-Fluorobiphenyl (Surr)           |                  |                    | 53 %               | 44-120 %         | 1        | 11/21/23 17:36   | EPA 8270E   |      |
| Phenol-d6 (Surr)                  |                  |                    | 18 %               | 10-133 %         | 1        | 11/21/23 17:36   | EPA 8270E   |      |
| p-Terphenyl-d14 (Surr)            |                  |                    | 69 %               | 50-134 %         | 1        | 11/21/23 17:36   | EPA 8270E   |      |
| 2-Fluorophenol (Surr)             |                  |                    | 23 %               | 19-120 %         | 1        | 11/21/23 17:36   | EPA 8270E   |      |
| 2,4,6-Tribromophenol (Surr)       |                  |                    | 110 %              | 43-140 %         | 1        | 11/21/23 17:36   | EPA 8270E   |      |
| FMW-156-111523 (A3K1435-06)       |                  |                    |                    | Matrix: Wate     | r        | Batch:           | 23K0832     | DCNT |
| 1-Methylnaphthalene               | ND               | 0.0204             | 0.0408             | ug/L             | 1        | 11/21/23 18:10   | EPA 8270E   |      |
| 2-Methylnaphthalene               | ND               | 0.0204             | 0.0408             | ug/L             | 1        | 11/21/23 18:10   | EPA 8270E   |      |
| Naphthalene                       | 0.0234           | 0.0204             | 0.0408             | ug/L             | 1        | 11/21/23 18:10   | EPA 8270E   | J    |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recove             | ry: 68 %           | Limits: 44-120 % | I        | 11/21/23 18:10   | EPA 8270E   |      |
| 2-Fluorobiphenyl (Surr)           |                  |                    | 71 %               | 44-120 %         | 1        | 11/21/23 18:10   | EPA 8270E   |      |
| Phenol-d6 (Surr)                  |                  |                    | 23 %               | 10-133 %         | 1        | 11/21/23 18:10   | EPA 8270E   |      |
| p-Terphenyl-d14 (Surr)            |                  |                    | 69 %               | 50-134 %         | 1        | 11/21/23 18:10   | EPA 8270E   |      |
| 2-Fluorophenol (Surr)             |                  |                    | 32 %               | 19-120 %         | 1        | 11/21/23 18:10   | EPA 8270E   |      |
| 2,4,6-Tribromophenol (Surr)       |                  |                    | 111 %              | 43-140 %         | 1        | 11/21/23 18:10   | EPA 8270E   |      |
| FMW-163-111523 (A3K1435-07)       |                  |                    |                    | Matrix: Wate     | r        | Batch:           | 23K0832     | DCNT |
| 1-Methylnaphthalene               | ND               | 0.0204             | 0.0408             | ug/L             | 1        | 11/21/23 18:44   | EPA 8270E   |      |
| 2-Methylnaphthalene               | ND               | 0.0204             | 0.0408             | ug/L             | 1        | 11/21/23 18:44   | EPA 8270E   |      |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

# ANALYTICAL SAMPLE RESULTS

|                                   | Selected         | Semivolatile O     | rganic C           | ompounds by E    | PA 8270  | E                |             |       |
|-----------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|-------------|-------|
| Analyte                           | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| FMW-163-111523 (A3K1435-07)       |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23K0832     | DCNT  |
| Naphthalene                       | 0.0755           | 0.0204             | 0.0408             | ug/L             | 1        | 11/21/23 18:44   | EPA 8270E   |       |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recovery           | : 51 %             | Limits: 44-120 % | 1        | 11/21/23 18:44   | EPA 8270E   |       |
| 2-Fluorobiphenyl (Surr)           |                  |                    | 57 %               | 44-120 %         | 1        | 11/21/23 18:44   | EPA 8270E   |       |
| Phenol-d6 (Surr)                  |                  |                    | 19 %               | 10-133 %         | 1        | 11/21/23 18:44   | EPA 8270E   |       |
| p-Terphenyl-d14 (Surr)            |                  |                    | 72 %               | 50-134 %         | 1        | 11/21/23 18:44   | EPA 8270E   |       |
| 2-Fluorophenol (Surr)             |                  |                    | 23 %               | 19-120 %         | 1        | 11/21/23 18:44   | EPA 8270E   |       |
| 2,4,6-Tribromophenol (Surr)       |                  |                    | 106 %              | 43-140 %         | 1        | 11/21/23 18:44   | EPA 8270E   |       |
| FMW-158-111523 (A3K1435-08)       |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23K0832     | DCNT  |
| 1-Methylnaphthalene               | 0.0693           | 0.0200             | 0.0400             | ug/L             | 1        | 11/21/23 19:18   | EPA 8270E   |       |
| 2-Methylnaphthalene               | ND               | 0.0200             | 0.0400             | ug/L             | 1        | 11/21/23 19:18   | EPA 8270E   |       |
| Naphthalene                       | 0.0458           | 0.0200             | 0.0400             | ug/L             | 1        | 11/21/23 19:18   | EPA 8270E   |       |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recovery           | : 71 %             | Limits: 44-120 % | 1        | 11/21/23 19:18   | EPA 8270E   |       |
| 2-Fluorobiphenyl (Surr)           |                  |                    | 66 %               | 44-120 %         | 1        | 11/21/23 19:18   | EPA 8270E   |       |
| Phenol-d6 (Surr)                  |                  |                    | 24 %               | 10-133 %         | 1        | 11/21/23 19:18   | EPA 8270E   |       |
| p-Terphenyl-d14 (Surr)            |                  |                    | 56 %               | 50-134 %         | 1        | 11/21/23 19:18   | EPA 8270E   |       |
| 2-Fluorophenol (Surr)             |                  |                    | 33 %               | 19-120 %         | 1        | 11/21/23 19:18   | EPA 8270E   |       |
| 2,4,6-Tribromophenol (Surr)       |                  |                    | 108 %              | 43-140 %         | 1        | 11/21/23 19:18   | EPA 8270E   |       |
| FMW-159-111523 (A3K1435-09RE1)    |                  |                    |                    | Matrix: Wate     | er       | Batch: 2         | 23K0891     | DCNT  |
| 1-Methylnaphthalene               | ND               | 0.0204             | 0.0408             | ug/L             | 1        | 11/22/23 14:11   | EPA 8270E   |       |
| 2-Methylnaphthalene               | ND               | 0.0204             | 0.0408             | ug/L             | 1        | 11/22/23 14:11   | EPA 8270E   |       |
| Naphthalene                       | ND               | 0.0204             | 0.0408             | ug/L             | 1        | 11/22/23 14:11   | EPA 8270E   |       |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recovery           | ·: 70 %            | Limits: 44-120 % | 1        | 11/22/23 14:11   | EPA 8270E   |       |
| 2-Fluorobiphenyl (Surr)           |                  | -                  | 66 %               | 44-120 %         | 1        | 11/22/23 14:11   | EPA 8270E   |       |
| Phenol-d6 (Surr)                  |                  |                    | 26 %               | 10-133 %         | 1        | 11/22/23 14:11   | EPA 8270E   |       |
| p-Terphenyl-d14 (Surr)            |                  |                    | 72 %               | 50-134 %         | 1        | 11/22/23 14:11   | EPA 8270E   |       |
| 2-Fluorophenol (Surr)             |                  |                    | 39 %               | 19-120 %         | 1        | 11/22/23 14:11   | EPA 8270E   |       |
| 2,4,6-Tribromophenol (Surr)       |                  |                    | 105 %              | 43-140 %         | 1        | 11/22/23 14:11   | EPA 8270E   | Q-41  |
| OW-3-111523 (A3K1435-10RE1)       |                  |                    |                    | Matrix: Wate     | er       | Batch: 2         | 23K0891     | DCNT  |
| 1-Methylnaphthalene               | ND               | 0.0206             | 0.0412             | ug/L             | 1        | 11/22/23 14:45   | EPA 8270E   |       |
| 2-Methylnaphthalene               | ND               | 0.0206             | 0.0412             | ug/L             | 1        | 11/22/23 14:45   | EPA 8270E   |       |
| Naphthalene                       | ND               | 0.0206             | 0.0412             | ug/L             | 1        | 11/22/23 14:45   | EPA 8270E   |       |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

# ANALYTICAL SAMPLE RESULTS

|                                   | Selected         | Semivolatile O     | rganic C           | ompounds by E    | PA 82/0  | <u> </u>         |             |       |
|-----------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|-------------|-------|
| Analyte                           | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| OW-3-111523 (A3K1435-10RE1)       |                  |                    |                    | Matrix: Wate     | r        | Batch: 2         | 23K0891     | DCNT  |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recovery           | v: 41 %            | Limits: 44-120 % | 1        | 11/22/23 14:45   | EPA 8270E   | S-03  |
| 2-Fluorobiphenyl (Surr)           |                  | -                  | 48 %               | 44-120 %         | 1        | 11/22/23 14:45   | EPA 8270E   |       |
| Phenol-d6 (Surr)                  |                  |                    | 18 %               | 10-133 %         | 1        | 11/22/23 14:45   | EPA 8270E   |       |
| p-Terphenyl-d14 (Surr)            |                  |                    | 65 %               | 50-134 %         | 1        | 11/22/23 14:45   | EPA 8270E   |       |
| 2-Fluorophenol (Surr)             |                  |                    | 25 %               | 19-120 %         | 1        | 11/22/23 14:45   | EPA 8270E   |       |
| 2,4,6-Tribromophenol (Surr)       |                  |                    | 89 %               | 43-140 %         | 1        | 11/22/23 14:45   | EPA 8270E   | Q-41  |
| FMW-164-111523 (A3K1435-11)       |                  |                    |                    | Matrix: Wate     | r        | Batch: 2         | 23K0792     |       |
| 1-Methylnaphthalene               | ND               | 0.0189             | 0.0377             | ug/L             | 1        | 11/21/23 09:39   | EPA 8270E   |       |
| 2-Methylnaphthalene               | ND               | 0.0189             | 0.0377             | ug/L             | 1        | 11/21/23 09:39   | EPA 8270E   |       |
| Naphthalene                       | ND               | 0.0189             | 0.0377             | ug/L             | 1        | 11/21/23 09:39   | EPA 8270E   |       |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recovery           | : 37 %             | Limits: 44-120 % | 1        | 11/21/23 09:39   | EPA 8270E   | S-03  |
| 2-Fluorobiphenyl (Surr)           |                  |                    | 31 %               | 44-120 %         | 1        | 11/21/23 09:39   | EPA 8270E   | S-03  |
| Phenol-d6 (Surr)                  |                  |                    | 10 %               | 10-133 %         | 1        | 11/21/23 09:39   | EPA 8270E   |       |
| p-Terphenyl-d14 (Surr)            |                  |                    | 62 %               | 50-134 %         | 1        | 11/21/23 09:39   | EPA 8270E   |       |
| 2-Fluorophenol (Surr)             |                  |                    | 15 %               | 19-120 %         | 1        | 11/21/23 09:39   | EPA 8270E   | S-03  |
| 2,4,6-Tribromophenol (Surr)       |                  |                    | 58 %               | 43-140 %         | 1        | 11/21/23 09:39   | EPA 8270E   |       |
| FMW-162-111523 (A3K1435-12)       |                  |                    |                    | Matrix: Wate     | r        | Batch: 2         | 23K0792     | DCNT  |
| 1-Methylnaphthalene               | ND               | 0.0200             | 0.0400             | ug/L             | 1        | 11/21/23 10:13   | EPA 8270E   |       |
| 2-Methylnaphthalene               | ND               | 0.0200             | 0.0400             | ug/L             | 1        | 11/21/23 10:13   | EPA 8270E   |       |
| Naphthalene                       | ND               | 0.0200             | 0.0400             | ug/L             | 1        | 11/21/23 10:13   | EPA 8270E   |       |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recovery           | : 48 %             | Limits: 44-120 % | 1        | 11/21/23 10:13   | EPA 8270E   |       |
| 2-Fluorobiphenyl (Surr)           |                  | -                  | 41 %               | 44-120 %         | 1        | 11/21/23 10:13   | EPA 8270E   | S-06  |
| Phenol-d6 (Surr)                  |                  |                    | 13 %               | 10-133 %         | 1        | 11/21/23 10:13   | EPA 8270E   |       |
| p-Terphenyl-d14 (Surr)            |                  |                    | 61 %               | 50-134 %         | I        | 11/21/23 10:13   | EPA 8270E   |       |
| 2-Fluorophenol (Surr)             |                  |                    | 21 %               | 19-120 %         | 1        | 11/21/23 10:13   | EPA 8270E   |       |
| 2,4,6-Tribromophenol (Surr)       |                  |                    | 73 %               | 43-140 %         | 1        | 11/21/23 10:13   | EPA 8270E   |       |
| FMW-152-111523 (A3K1435-13)       |                  |                    |                    | Matrix: Wate     | r        | Batch: 2         | 23K0792     | DCNT  |
| 1-Methylnaphthalene               | ND               | 0.0204             | 0.0408             | ug/L             | 1        | 11/21/23 10:47   | EPA 8270E   |       |
| 2-Methylnaphthalene               | ND               | 0.0204             | 0.0408             | ug/L             | 1        | 11/21/23 10:47   | EPA 8270E   |       |
| Naphthalene                       | ND               | 0.0204             | 0.0408             | ug/L             | 1        | 11/21/23 10:47   | EPA 8270E   |       |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recovery           | ·: 70 %            | Limits: 44-120 % | 1        | 11/21/23 10:47   | EPA 8270E   |       |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

# ANALYTICAL SAMPLE RESULTS

|                                    | Selected         | Semivolatile C     | rganic C           | ompounds by E    | :PA 8270 | E                |                |      |  |  |
|------------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|----------------|------|--|--|
| Analyte                            | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref.    | Note |  |  |
| FMW-152-111523 (A3K1435-13)        |                  |                    |                    | Matrix: Wate     | r        | Batch: 2         | 23K0792        | DCNT |  |  |
| Surrogate: 2-Fluorobiphenyl (Surr) |                  | Recovery           | v: 77 %            | Limits: 44-120 % | 1        | 11/21/23 10:47   | EPA 8270E      |      |  |  |
| Phenol-d6 (Surr)                   |                  |                    | 22 %               | 10-133 %         | 1        | 11/21/23 10:47   | EPA 8270E      |      |  |  |
| p-Terphenyl-d14 (Surr)             |                  |                    | 68 %               | 50-134 %         | 1        | 11/21/23 10:47   | EPA 8270E      |      |  |  |
| 2-Fluorophenol (Surr)              |                  |                    | 37 %               | 19-120 %         | 1        | 11/21/23 10:47   | EPA 8270E      |      |  |  |
| 2,4,6-Tribromophenol (Surr)        |                  |                    | 102 %              | 43-140 %         | 1        | 11/21/23 10:47   | EPA 8270E      |      |  |  |
| FMW-151-111523 (A3K1435-14)        |                  |                    |                    | Matrix: Wate     | r        | Batch: 2         | Batch: 23K0792 |      |  |  |
| 1-Methylnaphthalene                | ND               | 0.0189             | 0.0377             | ug/L             | 1        | 11/21/23 11:22   | EPA 8270E      |      |  |  |
| 2-Methylnaphthalene                | ND               | 0.0189             | 0.0377             | ug/L             | 1        | 11/21/23 11:22   | EPA 8270E      |      |  |  |
| Naphthalene                        | ND               | 0.0189             | 0.0377             | ug/L             | 1        | 11/21/23 11:22   | EPA 8270E      |      |  |  |
| Surrogate: Nitrobenzene-d5 (Surr)  |                  | Recovery           | v: 47 %            | Limits: 44-120 % | I        | 11/21/23 11:22   | EPA 8270E      |      |  |  |
| 2-Fluorobiphenyl (Surr)            |                  |                    | 46 %               | 44-120 %         | 1        | 11/21/23 11:22   | EPA 8270E      |      |  |  |
| Phenol-d6 (Surr)                   |                  |                    | 12 %               | 10-133 %         | 1        | 11/21/23 11:22   | EPA 8270E      |      |  |  |
| p-Terphenyl-d14 (Surr)             |                  |                    | 63 %               | 50-134 %         | 1        | 11/21/23 11:22   | EPA 8270E      |      |  |  |
| 2-Fluorophenol (Surr)              |                  |                    | 21 %               | 19-120 %         | 1        | 11/21/23 11:22   | EPA 8270E      |      |  |  |
| 2,4,6-Tribromophenol (Surr)        |                  |                    | 86 %               | 43-140 %         | 1        | 11/21/23 11:22   | EPA 8270E      |      |  |  |
| FMW-160-111423 (A3K1435-15)        |                  |                    |                    | Matrix: Wate     | r        | Batch: 2         | 23K0792        | DCNT |  |  |
| 1-Methylnaphthalene                | ND               | 0.0204             | 0.0408             | ug/L             | 1        | 11/21/23 11:56   | EPA 8270E      |      |  |  |
| 2-Methylnaphthalene                | ND               | 0.0204             | 0.0408             | ug/L             | 1        | 11/21/23 11:56   | EPA 8270E      |      |  |  |
| Naphthalene                        | ND               | 0.0204             | 0.0408             | ug/L             | 1        | 11/21/23 11:56   | EPA 8270E      |      |  |  |
| Surrogate: Nitrobenzene-d5 (Surr)  |                  | Recovery           | v: 65 %            | Limits: 44-120 % | I        | 11/21/23 11:56   | EPA 8270E      |      |  |  |
| 2-Fluorobiphenyl (Surr)            |                  |                    | 66 %               | 44-120 %         | 1        | 11/21/23 11:56   | EPA 8270E      |      |  |  |
| Phenol-d6 (Surr)                   |                  |                    | 20 %               | 10-133 %         | 1        | 11/21/23 11:56   | EPA 8270E      |      |  |  |
| p-Terphenyl-d14 (Surr)             |                  |                    | 74 %               | 50-134 %         | 1        | 11/21/23 11:56   | EPA 8270E      |      |  |  |
| 2-Fluorophenol (Surr)              |                  |                    | 35 %               | 19-120 %         | 1        | 11/21/23 11:56   | EPA 8270E      |      |  |  |
| 2,4,6-Tribromophenol (Surr)        |                  |                    | 108 %              | 43-140 %         | 1        | 11/21/23 11:56   | EPA 8270E      |      |  |  |
| FMW-154-111423 (A3K1435-16)        |                  |                    |                    | Matrix: Wate     | r        | Batch: 2         | 23K0792        |      |  |  |
| 1-Methylnaphthalene                | ND               | 0.0769             | 0.154              | ug/L             | 4        | 11/20/23 19:23   | EPA 8270E      |      |  |  |
| 2-Methylnaphthalene                | ND               | 0.0769             | 0.154              | ug/L             | 4        | 11/20/23 19:23   | EPA 8270E      |      |  |  |
| Naphthalene                        | 0.992            | 0.0769             | 0.154              | ug/L             | 4        | 11/20/23 19:23   | EPA 8270E      |      |  |  |
| Surrogate: Nitrobenzene-d5 (Surr)  |                  | Recover            | v: 45 %            | Limits: 44-120 % | 4        | 11/20/23 19:23   | EPA 8270E      |      |  |  |
| 2-Fluorobiphenyl (Surr)            |                  |                    | 50 %               | 44-120 %         | 4        | 11/20/23 19:23   | EPA 8270E      |      |  |  |

Apex Laboratories

Pogs



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

# ANALYTICAL SAMPLE RESULTS

|                                   | Selected         | Semivolatile       | Organic C          | ompounds by E    | PA 8270  | E                |             |       |
|-----------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|-------------|-------|
| Analyte                           | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| FMW-154-111423 (A3K1435-16)       |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23K0792     |       |
| Surrogate: Phenol-d6 (Surr)       |                  | Recov              | very: 16%          | Limits: 10-133 % | 4        | 11/20/23 19:23   | EPA 8270E   |       |
| p-Terphenyl-d14 (Surr)            |                  |                    | 73 %               | 50-134 %         | 4        | 11/20/23 19:23   | EPA 8270E   |       |
| 2-Fluorophenol (Surr)             |                  |                    | 24 %               | 19-120 %         | 4        | 11/20/23 19:23   | EPA 8270E   |       |
| 2,4,6-Tribromophenol (Surr)       |                  |                    | 109 %              | 43-140 %         | 4        | 11/20/23 19:23   | EPA 8270E   |       |
| FMW-155-111423 (A3K1435-17)       |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23K0792     |       |
| 1-Methylnaphthalene               | ND               | 0.0189             | 0.0377             | ug/L             | 1        | 11/21/23 12:30   | EPA 8270E   |       |
| 2-Methylnaphthalene               | ND               | 0.0189             | 0.0377             | ug/L             | 1        | 11/21/23 12:30   | EPA 8270E   |       |
| Naphthalene                       | ND               | 0.0189             | 0.0377             | ug/L             | 1        | 11/21/23 12:30   | EPA 8270E   |       |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recov              | very: 70 %         | Limits: 44-120 % | 1        | 11/21/23 12:30   | EPA 8270E   |       |
| 2-Fluorobiphenyl (Surr)           |                  |                    | 75 %               | 44-120 %         | 1        | 11/21/23 12:30   | EPA 8270E   |       |
| Phenol-d6 (Surr)                  |                  |                    | 22 %               | 10-133 %         | 1        | 11/21/23 12:30   | EPA 8270E   |       |
| p-Terphenyl-d14 (Surr)            |                  |                    | 58 %               | 50-134 %         | 1        | 11/21/23 12:30   | EPA 8270E   |       |
| 2-Fluorophenol (Surr)             |                  |                    | 35 %               | 19-120 %         | 1        | 11/21/23 12:30   | EPA 8270E   |       |
| 2,4,6-Tribromophenol (Surr)       |                  |                    | 119 %              | 43-140 %         | 1        | 11/21/23 12:30   | EPA 8270E   |       |
| FMW-161-111423 (A3K1435-18)       |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 23K0792     |       |
| 1-Methylnaphthalene               | ND               | 0.0189             | 0.0377             | ug/L             | 1        | 11/21/23 13:04   | EPA 8270E   |       |
| 2-Methylnaphthalene               | ND               | 0.0189             | 0.0377             | ug/L             | 1        | 11/21/23 13:04   | EPA 8270E   |       |
| Naphthalene                       | 0.0503           | 0.0189             | 0.0377             | ug/L             | 1        | 11/21/23 13:04   | EPA 8270E   |       |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recov              | very: 40 %         | Limits: 44-120 % | 1        | 11/21/23 13:04   | EPA 8270E   | S-06  |
| 2-Fluorobiphenyl (Surr)           |                  |                    | 51 %               | 44-120 %         | 1        | 11/21/23 13:04   | EPA 8270E   |       |
| Phenol-d6 (Surr)                  |                  |                    | 12 %               | 10-133 %         | 1        | 11/21/23 13:04   | EPA 8270E   |       |
| p-Terphenyl-d14 (Surr)            |                  |                    | 81 %               | 50-134 %         | 1        | 11/21/23 13:04   | EPA 8270E   |       |
| 2-Fluorophenol (Surr)             |                  |                    | 19 %               | 19-120 %         | 1        | 11/21/23 13:04   | EPA 8270E   |       |
| 2,4,6-Tribromophenol (Surr)       |                  |                    | 104 %              | 43-140 %         | 1        | 11/21/23 13:04   | EPA 8270E   |       |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                           |             | Di                   | esel and/d         | or Oil Hyd  | lrocarbor | ns by NWT       | PH-Dx            |       |                 |     |              |       |
|---------------------------|-------------|----------------------|--------------------|-------------|-----------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                   | Result      | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 23K0934 - EPA 3510C | (Fuels/Acid | d Ext.)              |                    |             |           |                 | Wa               | ter   |                 |     |              |       |
| Blank (23K0934-BLK1)      |             |                      | Prepared           | d: 11/27/23 | 06:15 Ana | lyzed: 11/27/   | 23 19:19         |       |                 |     |              |       |
| NWTPH-Dx LL               |             |                      |                    |             |           |                 |                  |       |                 |     |              |       |
| Diesel                    | ND          |                      | 80.0               | ug/L        | 1         |                 |                  |       |                 |     |              |       |
| Oil                       | ND          |                      | 160                | ug/L        | 1         |                 |                  |       |                 |     |              |       |
| Surr: o-Terphenyl (Surr)  |             | Reco                 | very: 75 %         | Limits: 50  | 0-150 %   | Dilı            | ution: 1x        |       |                 |     |              |       |
| LCS (23K0934-BS1)         |             |                      | Prepared           | d: 11/27/23 | 06:15 Ana | lyzed: 11/27/   | 23 19:39         |       |                 |     |              |       |
| NWTPH-Dx LL               |             |                      |                    |             |           |                 |                  |       |                 |     |              |       |
| Diesel                    | 360         |                      | 80.0               | ug/L        | 1         | 500             |                  | 72    | 36-132%         |     |              |       |
| Surr: o-Terphenyl (Surr)  |             | Reco                 | very: 86 %         | Limits: 50  | 0-150 %   | Dilı            | ution: 1x        |       |                 |     |              |       |
| LCS Dup (23K0934-BSD1)    |             |                      | Prepared           | d: 11/27/23 | 06:15 Ana | lyzed: 11/27/   | 23 19:59         |       |                 |     |              | Q-19  |
| NWTPH-Dx LL               |             |                      |                    |             |           |                 |                  |       |                 |     |              |       |
| Diesel                    | 348         |                      | 80.0               | ug/L        | 1         | 500             |                  | 70    | 36-132%         | 4   | 30%          |       |
| Surr: o-Terphenyl (Surr)  |             | Reco                 | very: 79 %         | Limits: 50  | 0-150 %   | Dilı            | tion: 1x         |       |                 |     |              |       |

Apex Laboratories

(milele fog



Farallon-Seattle

## ANALYTICAL REPORT

AMENDED REPORT

6

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

**Apex Laboratories, LLC** 

ORELAP ID: OR100062

397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

Project:

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                           | Diesel and/or Oil Hydrocarbons by NWTPH-Dx with Silica Gel Column Cleanup |                      |                    |             |           |                 |                  |       |                 |     |              |             |  |  |
|---------------------------|---------------------------------------------------------------------------|----------------------|--------------------|-------------|-----------|-----------------|------------------|-------|-----------------|-----|--------------|-------------|--|--|
| Analyte                   | Result                                                                    | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes       |  |  |
| Batch 23K1067 - EPA 3510C | (Fuels/Acid                                                               | d Ext.) w/SG0        | ;                  |             |           |                 | Wa               | ter   |                 |     |              |             |  |  |
| Blank (23K1067-BLK1)      |                                                                           |                      | Prepare            | d: 11/27/23 | 06:15 Ana | lyzed: 11/29/   | /23 19:01        |       |                 |     |              |             |  |  |
| NWTPH-Dx/SGC              |                                                                           |                      |                    |             |           |                 |                  |       |                 |     |              |             |  |  |
| Diesel                    | ND                                                                        |                      | 80.0               | ug/L        | 1         |                 |                  |       |                 |     |              |             |  |  |
| Oil                       | ND                                                                        |                      | 160                | ug/L        | 1         |                 |                  |       |                 |     |              |             |  |  |
| Surr: o-Terphenyl (Surr)  |                                                                           | Reco                 | very: 87 %         | Limits: 50  | 0-150 %   | Dilı            | ution: 1x        |       |                 |     |              |             |  |  |
| LCS (23K1067-BS1)         |                                                                           |                      | Prepare            | d: 11/27/23 | 06:15 Ana | yzed: 11/29/    | /23 19:21        |       |                 |     |              |             |  |  |
| NWTPH-Dx/SGC              |                                                                           |                      |                    |             |           |                 |                  |       |                 |     |              |             |  |  |
| Diesel                    | 363                                                                       |                      | 80.0               | ug/L        | 1         | 500             |                  | 73    | 36-132%         |     |              |             |  |  |
| Surr: o-Terphenyl (Surr)  |                                                                           | Reco                 | very: 89 %         | Limits: 50  | 0-150 %   | Dilı            | ution: 1x        |       |                 |     |              |             |  |  |
| LCS Dup (23K1067-BSD1)    |                                                                           |                      | Prepare            | d: 11/27/23 | 06:15 Ana | yzed: 11/29/    | /23 19:41        |       |                 |     |              | <b>Q</b> -1 |  |  |
| NWTPH-Dx/SGC              |                                                                           |                      |                    |             |           |                 | ·                |       |                 |     |              |             |  |  |
| Diesel                    | 336                                                                       |                      | 80.0               | ug/L        | 1         | 500             |                  | 67    | 36-132%         | 8   | 30%          |             |  |  |
| Surr: o-Terphenyl (Surr)  |                                                                           | Reco                 | very: 86 %         | Limits: 50  | 0-150 %   | Dilı            | ution: 1x        |       |                 |     |              |             |  |  |

Apex Laboratories



AMENDED REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

1809 7th Ave Suite 1111 Project Number: 397-019

Seattle, WA 98101 Project Manager: Greg Peters

Report ID: A3K1435 - 12 22 23 1832

# **QUALITY CONTROL (QC) SAMPLE RESULTS**

| Diesel and/or Oil Hydrocarbons by NWTPH-Dx with Silica Gel Column Cleanup |             |                      |                    |             |           |                 |                  |       |                 |     |              |            |  |
|---------------------------------------------------------------------------|-------------|----------------------|--------------------|-------------|-----------|-----------------|------------------|-------|-----------------|-----|--------------|------------|--|
| Analyte                                                                   | Result      | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes      |  |
| Batch 23L0687 - EPA 3510C                                                 | (Fuels/Acid | Ext.) w/SGC          | ;                  |             |           |                 | Wa               | ter   |                 |     |              |            |  |
| Blank (23L0687-BLK1)                                                      |             |                      | Prepare            | d: 11/27/23 | 06:15 Ana | lyzed: 12/18/   | /23 18:34        |       |                 |     |              | A-01       |  |
| NWTPH-Dx/SGC                                                              |             |                      |                    |             |           |                 |                  |       |                 |     |              |            |  |
| Diesel                                                                    | ND          |                      | 80.0               | ug/L        | 1         |                 |                  |       |                 |     |              |            |  |
| Oil                                                                       | ND          |                      | 160                | ug/L        | 1         |                 |                  |       |                 |     |              |            |  |
| Surr: o-Terphenyl (Surr)                                                  |             | Reco                 | very: 94%          | Limits: 50  | 0-150 %   | Dilı            | ution: 1x        |       |                 |     |              |            |  |
| LCS (23L0687-BS1)                                                         |             |                      | Prepare            | d: 11/27/23 | 06:15 Ana | lyzed: 12/18/   | /23 18:58        |       |                 |     |              | A-01       |  |
| NWTPH-Dx/SGC                                                              |             |                      |                    |             |           |                 |                  |       |                 |     |              |            |  |
| Diesel                                                                    | 465         |                      | 80.0               | ug/L        | 1         | 500             |                  | 93    | 36-132%         |     |              |            |  |
| Surr: o-Terphenyl (Surr)                                                  |             | Reco                 | very: 93 %         | Limits: 50  | 0-150 %   | Dilı            | ution: 1x        |       |                 |     |              |            |  |
| LCS Dup (23L0687-BSD1)                                                    |             |                      | Prepare            | d: 11/27/23 | 06:15 Ana | lyzed: 12/18/   | /23 19:21        |       |                 |     |              | A-01, Q-19 |  |
| NWTPH-Dx/SGC                                                              |             |                      |                    |             |           |                 |                  |       |                 |     |              |            |  |
| Diesel                                                                    | 463         |                      | 80.0               | ug/L        | 1         | 500             |                  | 93    | 36-132%         | 0.4 | 30%          |            |  |
| Surr: o-Terphenyl (Surr)                                                  |             | Reco                 | very: 91%          | Limits: 50  | 0-150 %   | Dilı            | tion: 1x         |       |                 |     |              |            |  |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

# QUALITY CONTROL (QC) SAMPLE RESULTS

| Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx |           |                      |                    |             |            |                 |                  |       |                 |     |              |       |  |
|-----------------------------------------------------------------------|-----------|----------------------|--------------------|-------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|--|
| Analyte                                                               | Result    | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |  |
| Batch 23K0755 - EPA 5030C                                             |           |                      |                    |             |            |                 | Wa               | ter   |                 |     |              |       |  |
| Blank (23K0755-BLK1)                                                  |           |                      | Prepared           | d: 11/18/23 | 09:29 Anal | lyzed: 11/18/   | /23 12:26        |       |                 |     |              |       |  |
| NWTPH-Gx (MS)                                                         |           |                      |                    |             |            |                 |                  |       |                 |     |              |       |  |
| Gasoline Range Organics                                               | ND        | 50.0                 | 100                | ug/L        | 1          |                 |                  |       |                 |     |              |       |  |
| Surr: 4-Bromofluorobenzene (Sur)                                      |           | Reco                 | very: 87 %         | Limits: 5   | 0-150 %    | Dilı            | ution: 1x        |       |                 |     |              |       |  |
| 1,4-Difluorobenzene (Sur)                                             |           |                      | 98 %               | 5           | 0-150 %    |                 | "                |       |                 |     |              |       |  |
| LCS (23K0755-BS2)<br><u>NWTPH-Gx (MS)</u>                             |           |                      |                    |             | 09:29 Ana  |                 | /23 12:03        |       |                 |     |              |       |  |
| Gasoline Range Organics                                               | 475       | 50.0                 | 100                | ug/L        |            | 500             |                  | 95    | 80-120%         |     |              |       |  |
| Surr: 4-Bromofluorobenzene (Sur)                                      |           | Reco                 | very: 89 %         | Limits: 5   |            | Dilı            | ution: 1x        |       |                 |     |              |       |  |
| 1,4-Difluorobenzene (Sur)                                             |           |                      | 96 %               | 5           | 0-150 %    |                 | "                |       |                 |     |              |       |  |
| Ouplicate (23K0755-DUP1)                                              |           |                      | Prepared           | d: 11/18/23 | 09:29 Ana  | lyzed: 11/18/   | /23 17:19        |       |                 |     |              |       |  |
| QC Source Sample: FMW-156-111                                         | 523 (A3K1 | 435-06)              |                    |             |            |                 |                  |       |                 |     |              |       |  |
| NWTPH-Gx (MS)                                                         |           |                      |                    |             |            |                 |                  |       |                 |     |              |       |  |
| Gasoline Range Organics                                               | ND        | 50.0                 | 100                | ug/L        | 1          |                 | ND               |       |                 |     | 30%          |       |  |
| Surr: 4-Bromofluorobenzene (Sur)                                      |           | Reco                 | verv: 90 %         | Limits: 5   | 0-150 %    | Dilı            | ution: 1x        |       |                 |     |              | _     |  |
|                                                                       |           |                      | -                  |             |            |                 |                  |       |                 |     |              |       |  |

Apex Laboratories

(milale fog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                  | Gasoli    | ne Range H           | lydrocarbo         | ons (Ben    | zene thro  | ugh Naph        | thalene)         | by NWTP | H-Gx            |     |              |       |
|----------------------------------|-----------|----------------------|--------------------|-------------|------------|-----------------|------------------|---------|-----------------|-----|--------------|-------|
| Analyte                          | Result    | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution   | Spike<br>Amount | Source<br>Result | % REC   | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 23K0756 - EPA 5030C        |           |                      |                    |             |            |                 | Wa               | ter     |                 |     |              |       |
| Blank (23K0756-BLK1)             |           |                      | Prepared           | d: 11/19/23 | 14:15 Ana  | yzed: 11/19     | /23 18:55        |         |                 |     |              |       |
| NWTPH-Gx (MS)                    |           |                      |                    |             |            |                 |                  |         |                 |     |              |       |
| Gasoline Range Organics          | ND        | 50.0                 | 100                | ug/L        | 1          |                 |                  |         |                 |     |              |       |
| Surr: 4-Bromofluorobenzene (Sur) |           | Reco                 | very: 81 %         | Limits: 5   | 0-150 %    | Dilı            | ution: 1x        |         |                 |     |              |       |
| 1,4-Difluorobenzene (Sur)        |           |                      | 100 %              | 5(          | 0-150 %    |                 | "                |         |                 |     |              |       |
| LCS (23K0756-BS2)                |           |                      | Prepared           | d: 11/19/23 | 14:15 Anal | lyzed: 11/19/   | /23 18:33        |         |                 |     |              |       |
| NWTPH-Gx (MS)                    |           |                      |                    |             |            |                 |                  |         |                 |     |              |       |
| Gasoline Range Organics          | 503       | 50.0                 | 100                | ug/L        | 1          | 500             |                  | 101     | 80-120%         |     |              |       |
| Surr: 4-Bromofluorobenzene (Sur) |           | Reco                 | very: 87 %         | Limits: 5   | 0-150 %    | Dilı            | ution: 1x        |         |                 |     |              |       |
| 1,4-Difluorobenzene (Sur)        |           |                      | 100 %              | 50          | 0-150 %    |                 | "                |         |                 |     |              |       |
| Duplicate (23K0756-DUP1)         |           |                      | Prepared           | d: 11/19/23 | 14:15 Anal | lyzed: 11/19    | /23 21:54        |         |                 |     |              |       |
| QC Source Sample: Non-SDG (A3    | K1301-01R | <u>(E1)</u>          |                    |             |            |                 |                  |         |                 |     |              |       |
| Gasoline Range Organics          | 1350      | 1000                 | 2000               | ug/L        | 20         |                 | 1430             |         |                 | 5   | 30%          |       |
| Surr: 4-Bromofluorobenzene (Sur) |           | Reco                 | very: 74 %         | Limits: 5   | 0-150 %    | Dilı            | ution: 1x        |         |                 |     |              |       |
| 1,4-Difluorobenzene (Sur)        |           |                      | 91 %               | 50          | 0-150 %    |                 | "                |         |                 |     |              |       |
| Duplicate (23K0756-DUP2)         |           |                      | Prepared           | d: 11/19/23 | 14:15 Anal | lyzed: 11/19    | /23 23:00        |         |                 |     |              |       |
| QC Source Sample: Non-SDG (A3    | K1301-11R | <u>E1)</u>           |                    |             |            |                 |                  |         |                 |     |              |       |
| Gasoline Range Organics          | 1940      | 1000                 | 2000               | ug/L        | 20         |                 | 1920             |         |                 | 1   | 30%          |       |
| Surr: 4-Bromofluorobenzene (Sur) |           | Reco                 | very: 70 %         | Limits: 5   |            | Dilt            | ution: 1x        |         |                 |     |              |       |
| 1,4-Difluorobenzene (Sur)        |           |                      | 88 %               | 50          | 0-150 %    |                 | "                |         |                 |     |              |       |

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                                                     |             |                      | ВТЕХ               | Compou      | ınds by E          | PA 8260D        | )                |       |                 |     |              |       |
|---------------------------------------------------------------------|-------------|----------------------|--------------------|-------------|--------------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                                                             | Result      | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution           | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 23K0755 - EPA 5030C                                           |             |                      |                    |             |                    |                 | Wa               | ter   |                 |     |              |       |
| Blank (23K0755-BLK1)                                                |             |                      | Prepared           | d: 11/18/23 | 09:29 Anal         | lyzed: 11/18/   | /23 12:26        |       |                 |     |              |       |
| EPA 8260D                                                           |             |                      |                    |             |                    |                 |                  |       |                 |     |              |       |
| Benzene                                                             | ND          | 0.100                | 0.200              | ug/L        | 1                  |                 |                  |       |                 |     |              |       |
| Toluene                                                             | ND          | 0.500                | 1.00               | ug/L        | 1                  |                 |                  |       |                 |     |              |       |
| Ethylbenzene                                                        | ND          | 0.250                | 0.500              | ug/L        | 1                  |                 |                  |       |                 |     |              |       |
| Xylenes, total                                                      | ND          | 0.750                | 1.50               | ug/L        | 1                  |                 |                  |       |                 |     |              |       |
| Surr: 1,4-Difluorobenzene (Surr)                                    |             | Recov                | ery: 101 %         | Limits: 80  | 0-120 %            | Dilı            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                                                   |             |                      | 103 %              | 80          | 0-120 %            |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)                                         |             |                      | 103 %              | 80          | 0-120 %            |                 | "                |       |                 |     |              |       |
| LCS (23K0755-BS1)                                                   |             |                      | Prepared           | d: 11/18/23 | 09:29 Anal         | lyzed: 11/18/   | /23 11:34        |       |                 |     |              |       |
| EPA 8260D                                                           |             |                      | -                  |             |                    | -               |                  |       |                 |     |              |       |
| Benzene                                                             | 21.4        | 0.100                | 0.200              | ug/L        | 1                  | 20.0            |                  | 107   | 80-120%         |     |              |       |
| Toluene                                                             | 20.2        | 0.500                | 1.00               | ug/L        | 1                  | 20.0            |                  | 101   | 80-120%         |     |              |       |
| Ethylbenzene                                                        | 21.3        | 0.250                | 0.500              | ug/L        | 1                  | 20.0            |                  | 107   | 80-120%         |     |              |       |
| Xylenes, total                                                      | 55.3        | 0.750                | 1.50               | ug/L        | 1                  | 60.0            |                  | 92    | 80-120%         |     |              |       |
| Surr: 1,4-Difluorobenzene (Surr)                                    |             | Recov                | ery: 102 %         | Limits: 80  | 0-120 %            | Dilı            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                                                   |             |                      | 98 %               | 80          | 0-120 %            |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)                                         |             |                      | 92 %               | 80          | 0-120 %            |                 | "                |       |                 |     |              |       |
| Duplicate (23K0755-DUP1)                                            |             |                      | Prepared           | d: 11/18/23 | 09:29 Anal         | yzed: 11/18/    | /23 17:19        |       |                 |     |              |       |
| QC Source Sample: FMW-156-11                                        | 11523 (A3K1 | 435-06)              |                    |             |                    |                 |                  |       |                 |     |              |       |
| EPA 8260D                                                           |             | <u>.</u>             |                    |             |                    |                 |                  |       |                 |     |              |       |
| Benzene                                                             | ND          | 0.100                | 0.200              | ug/L        | 1                  |                 | ND               |       |                 |     | 30%          |       |
| Toluene                                                             | ND          | 0.500                | 1.00               | ug/L        | 1                  |                 | ND               |       |                 |     | 30%          |       |
| Ethylbenzene                                                        | ND          | 0.250                | 0.500              | ug/L        | 1                  |                 | ND               |       |                 |     | 30%          |       |
| 2                                                                   | ND          | 0.750                | 1.50               | ug/L        | 1                  |                 | ND               |       |                 |     | 30%          |       |
| Xylenes, total                                                      | ND          |                      |                    |             |                    |                 |                  |       |                 |     |              |       |
| Xylenes, total  Surr: 1.4-Difluorobenzene (Surr)                    | ND          |                      | erv: 106 %         |             | 0-120 %            | Dilı            | ution: 1x        |       |                 |     |              |       |
| Xylenes, total  Surr: 1,4-Difluorobenzene (Surr)  Toluene-d8 (Surr) | ND          |                      | ery: 106 %         | Limits: 80  | 0-120 %<br>0-120 % | Dilı            | ution: 1x        |       |                 |     |              |       |

Matrix Spike (23K0755-MS1)

Prepared: 11/18/23 09:29 Analyzed: 11/18/23 17:42

QC Source Sample: FMW-156-111523 (A3K1435-06)

EPA 8260D

Apex Laboratories



4-Bromofluorobenzene (Surr)

## ANALYTICAL REPORT

AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

## QUALITY CONTROL (QC) SAMPLE RESULTS

#### BTEX Compounds by EPA 8260D % REC RPD Detection L Reporting Spike Source Result Units Dilution % REC Limits RPD Analyte Limit Limit Amount Result Limit Notes Batch 23K0755 - EPA 5030C Water Matrix Spike (23K0755-MS1) Prepared: 11/18/23 09:29 Analyzed: 11/18/23 17:42 QC Source Sample: FMW-156-111523 (A3K1435-06) 0.100 20.0 Benzene 21.9 0.200 ug/L 1 ND 109 79-120% Toluene 20.2 0.500 1.00 20.0 80-121% ug/L 1 ND 101 Ethylbenzene 21.7 0.250 20.0 109 79-121% 0.500 ug/L 1 ND Xylenes, total 55.9 0.750 1.50 ug/L 1 60.0 ND 93 79-121% Surr: 1,4-Difluorobenzene (Surr) 105 % Limits: 80-120 % Recovery: Dilution: 1x Toluene-d8 (Surr) 94 % 80-120 %

80-120 %

92 %

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

# QUALITY CONTROL (QC) SAMPLE RESULTS

| BTEX Compounds by EPA 8260D      |           |                      |                    |             |            |                 |                  |       |                 |     |              |       |  |
|----------------------------------|-----------|----------------------|--------------------|-------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|--|
| Analyte                          | Result    | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |  |
| Batch 23K0756 - EPA 5030C        |           |                      |                    |             |            |                 | Wa               | ter   |                 |     |              |       |  |
| Blank (23K0756-BLK1)             |           |                      | Prepared           | 1: 11/19/23 | 14:15 Anal | yzed: 11/19/    | /23 18:55        |       |                 |     |              |       |  |
| EPA 8260D                        |           |                      |                    |             |            |                 |                  |       |                 |     |              |       |  |
| Benzene                          | ND        | 0.100                | 0.200              | ug/L        | 1          |                 |                  |       |                 |     |              |       |  |
| Toluene                          | ND        | 0.500                | 1.00               | ug/L        | 1          |                 |                  |       |                 |     |              |       |  |
| Ethylbenzene                     | ND        | 0.250                | 0.500              | ug/L        | 1          |                 |                  |       |                 |     |              |       |  |
| Xylenes, total                   | ND        | 0.750                | 1.50               | ug/L        | 1          |                 |                  |       |                 |     |              |       |  |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recov                | ery: 102 %         | Limits: 80  | 0-120 %    | Dilı            | ution: 1x        |       |                 |     |              |       |  |
| Toluene-d8 (Surr)                |           |                      | 104 %              | 80          | 0-120 %    |                 | "                |       |                 |     |              |       |  |
| 4-Bromofluorobenzene (Surr)      |           |                      | 103 %              | 80          | )-120 %    |                 | "                |       |                 |     |              |       |  |
| LCS (23K0756-BS1)                |           |                      | Prepared           | d: 11/19/23 | 14:15 Anal | yzed: 11/19/    | /23 17:48        |       |                 |     |              |       |  |
| EPA 8260D                        |           |                      |                    |             |            |                 |                  |       |                 |     |              |       |  |
| Benzene                          | 20.7      | 0.100                | 0.200              | ug/L        | 1          | 20.0            |                  | 104   | 80-120%         |     |              |       |  |
| Toluene                          | 19.2      | 0.500                | 1.00               | ug/L        | 1          | 20.0            |                  | 96    | 80-120%         |     |              |       |  |
| Ethylbenzene                     | 20.3      | 0.250                | 0.500              | ug/L        | 1          | 20.0            |                  | 102   | 80-120%         |     |              |       |  |
| Xylenes, total                   | 52.8      | 0.750                | 1.50               | ug/L        | 1          | 60.0            |                  | 88    | 80-120%         |     |              |       |  |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recov                | ery: 104 %         | Limits: 80  | 0-120 %    | Dilı            | ıtion: 1x        |       |                 |     |              |       |  |
| Toluene-d8 (Surr)                |           |                      | 98 %               | 80          | 0-120 %    |                 | "                |       |                 |     |              |       |  |
| 4-Bromofluorobenzene (Surr)      |           |                      | 91 %               | 80          | )-120 %    |                 | "                |       |                 |     |              |       |  |
| Duplicate (23K0756-DUP1)         |           |                      | Prepared           | d: 11/19/23 | 14:15 Anal | yzed: 11/19/    | /23 21:54        |       |                 |     |              |       |  |
| QC Source Sample: Non-SDG (A3    | K1301-01R | <u>E1)</u>           |                    |             |            |                 |                  |       |                 |     |              |       |  |
| Benzene                          | 286       | 2.00                 | 4.00               | ug/L        | 20         |                 | 286              |       |                 | 0.1 | 30%          |       |  |
| Toluene                          | ND        | 10.0                 | 20.0               | ug/L        | 20         |                 | ND               |       |                 |     | 30%          |       |  |
| Ethylbenzene                     | ND        | 5.00                 | 10.0               | ug/L        | 20         |                 | ND               |       |                 |     | 30%          |       |  |
| Xylenes, total                   | ND        | 15.0                 | 30.0               | ug/L        | 20         |                 | ND               |       |                 |     | 30%          |       |  |
| Surr: 1,4-Difluorobenzene (Surr) |           | Reco                 | very: 96 %         | Limits: 80  | 0-120 %    | Dilı            | ution: 1x        |       |                 |     |              |       |  |
| Toluene-d8 (Surr)                |           |                      | 104 %              | 80          | 0-120 %    |                 | "                |       |                 |     |              |       |  |
| 4-Bromofluorobenzene (Surr)      |           |                      | 104 %              | 80          | 0-120 %    |                 | "                |       |                 |     |              |       |  |
| Duplicate (23K0756-DUP2)         |           |                      | Prepared           | l: 11/19/23 | 14:15 Anal | yzed: 11/19/    | /23 23:00        |       |                 |     |              |       |  |
| QC Source Sample: Non-SDG (A3    | K1301-11R | <u>E1)</u>           |                    |             |            |                 |                  |       |                 |     |              |       |  |
| Benzene                          | 484       | 2.00                 | 4.00               | ug/L        | 20         |                 | 441              |       |                 | 9   | 30%          |       |  |
| Toluene                          | ND        | 10.0                 | 20.0               | ug/L        | 20         |                 | ND               |       |                 |     | 30%          |       |  |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                  |           |                      | BTEX               | Compou      | ınds by E | PA 8260D        | )                |       |                 |     |              |       |
|----------------------------------|-----------|----------------------|--------------------|-------------|-----------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                          | Result    | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 23K0756 - EPA 5030C        |           |                      |                    |             |           |                 | Wa               | ter   |                 |     |              |       |
| Duplicate (23K0756-DUP2)         |           |                      | Prepared           | d: 11/19/23 | 14:15 Ana | lyzed: 11/19/   | /23 23:00        |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A3    | K1301-11R | <u>E1)</u>           |                    |             |           |                 |                  |       |                 |     |              |       |
| Ethylbenzene                     | 11.6      | 5.00                 | 10.0               | ug/L        | 20        |                 | 9.60             |       |                 | 19  | 30%          |       |
| Xylenes, total                   | ND        | 15.0                 | 30.0               | ug/L        | 20        |                 | ND               |       |                 |     | 30%          |       |
| Surr: 1,4-Difluorobenzene (Surr) |           | Reco                 | very: 93 %         | Limits: 80  | 0-120 %   | Dilı            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           |                      | 104 %              | 80          | 0-120 %   |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 103 %              | 80          | )-120 %   |                 | "                |       |                 |     |              |       |
| Matrix Spike (23K0756-MS1)       |           |                      | Prepared           | d: 11/19/23 | 14:15 Ana | lyzed: 11/20/   | /23 01:37        |       |                 |     |              |       |
| QC Source Sample: FMW-161-111    | 423 (A3K1 | 435-18)              |                    |             |           |                 |                  |       |                 |     |              |       |
| EPA 8260D                        |           |                      |                    |             |           |                 |                  |       |                 |     |              |       |
| Benzene                          | 24.3      | 0.100                | 0.200              | ug/L        | 1         | 20.0            | ND               | 121   | 79-120%         |     |              | Q-0   |
| Toluene                          | 23.0      | 0.500                | 1.00               | ug/L        | 1         | 20.0            | ND               | 115   | 80-121%         |     |              |       |
| Ethylbenzene                     | 24.4      | 0.250                | 0.500              | ug/L        | 1         | 20.0            | ND               | 122   | 79-121%         |     |              | Q-0   |
| Xylenes, total                   | 62.7      | 0.750                | 1.50               | ug/L        | 1         | 60.0            | ND               | 104   | 79-121%         |     |              |       |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recov                | very: 102 %        | Limits: 80  | 0-120 %   | Dilı            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           |                      | 94 %               | 80          | 0-120 %   |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 89 %               | 80          | 0-120 %   |                 | "                |       |                 |     |              |       |

Apex Laboratories

(milale fogs



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                              |            | Detection L | Reporting  |             |            | Spike        | Source    |       | % REC   |     | RPD   |       |
|------------------------------|------------|-------------|------------|-------------|------------|--------------|-----------|-------|---------|-----|-------|-------|
| Analyte                      | Result     | Limit       | Limit      | Units       | Dilution   | Amount       | Result    | % REC | Limits  | RPD | Limit | Notes |
| Batch 23K0792 - EPA 3510C (A | Acid Extra | ction)      |            |             |            |              | Wa        | ter   |         |     |       |       |
| Blank (23K0792-BLK1)         |            |             | Prepared   | 1: 11/20/23 | 10:38 Anal | yzed: 11/20/ | /23 17:41 |       |         |     |       |       |
| EPA 8270E                    |            |             |            |             |            |              |           |       |         |     |       |       |
| 1-Methylnaphthalene          | ND         | 0.0200      | 0.0400     | ug/L        | 1          |              |           |       |         |     |       |       |
| 2-Methylnaphthalene          | ND         | 0.0200      | 0.0400     | ug/L        | 1          |              |           |       |         |     |       |       |
| Naphthalene                  | ND         | 0.0200      | 0.0400     | ug/L        | 1          |              |           |       |         |     |       |       |
| Surr: Nitrobenzene-d5 (Surr) |            | Reco        | very: 73 % | Limits: 44  | 1-120 %    | Dilı         | ution: 1x |       |         |     |       |       |
| 2-Fluorobiphenyl (Surr)      |            |             | 63 %       | 44          | -120 %     |              | "         |       |         |     |       |       |
| Phenol-d6 (Surr)             |            |             | 27 %       | 10          | -133 %     |              | "         |       |         |     |       |       |
| p-Terphenyl-d14 (Surr)       |            |             | 84 %       | 50          | -134 %     |              | "         |       |         |     |       |       |
| 2-Fluorophenol (Surr)        |            |             | 41 %       | 19          | -120 %     |              | "         |       |         |     |       |       |
| 2,4,6-Tribromophenol (Surr)  |            |             | 73 %       | 43          | -140 %     |              | "         |       |         |     |       |       |
| LCS (23K0792-BS1)            |            |             | Prepared   | l: 11/20/23 | 10:38 Anal | yzed: 11/20/ | /23 18:15 |       |         |     |       |       |
| EPA 8270E                    |            |             |            |             |            | <u> </u>     |           |       |         |     |       |       |
| 1-Methylnaphthalene          | 2.09       | 0.0800      | 0.160      | ug/L        | 4          | 4.00         |           | 52    | 41-120% |     |       |       |
| 2-Methylnaphthalene          | 2.04       | 0.0800      | 0.160      | ug/L        | 4          | 4.00         |           | 51    | 40-121% |     |       |       |
| Naphthalene                  | 2.05       | 0.0800      | 0.160      | ug/L        | 4          | 4.00         |           | 51    | 40-121% |     |       |       |
| Surr: Nitrobenzene-d5 (Surr) |            | Reco        | very: 79 % | Limits: 44  | 1-120 %    | Dilı         | ution: 4x |       |         |     |       |       |
| 2-Fluorobiphenyl (Surr)      |            |             | 75 %       |             | -120 %     |              | "         |       |         |     |       |       |
| Phenol-d6 (Surr)             |            |             | 29 %       |             | -133 %     |              | "         |       |         |     |       |       |
| p-Terphenyl-d14 (Surr)       |            |             | 96 %       |             | -134 %     |              | "         |       |         |     |       |       |
| 2-Fluorophenol (Surr)        |            |             | 44 %       |             | -120 %     |              | "         |       |         |     |       |       |
| 2,4,6-Tribromophenol (Surr)  |            |             | 96 %       |             | -140 %     |              | "         |       |         |     |       |       |
| LCS Dup (23K0792-BSD1)       |            |             | Prepared   | l: 11/20/23 | 10:38 Anal | yzed: 11/20/ | /23 18:49 |       |         |     |       | Q-    |
| EPA 8270E                    |            |             |            |             |            |              |           |       |         |     |       |       |
| 1-Methylnaphthalene          | 2.09       | 0.0800      | 0.160      | ug/L        | 4          | 4.00         |           | 52    | 41-120% | 0.1 | 30%   |       |
| 2-Methylnaphthalene          | 2.01       | 0.0800      | 0.160      | ug/L        | 4          | 4.00         |           | 50    | 40-121% | 1   | 30%   |       |
| Naphthalene                  | 2.04       | 0.0800      | 0.160      | ug/L        | 4          | 4.00         |           | 51    | 40-121% | 0.2 | 30%   |       |
| Surr: Nitrobenzene-d5 (Surr) |            | Reco        | very: 77 % | Limits: 44  | 1-120 %    | Dilı         | ution: 4x |       |         |     |       |       |
| 2-Fluorobiphenyl (Surr)      |            |             | 73 %       | 44          | -120 %     |              | "         |       |         |     |       |       |
| Phenol-d6 (Surr)             |            |             | 32 %       |             | -133 %     |              | "         |       |         |     |       |       |
| p-Terphenyl-d14 (Surr)       |            |             | 93 %       | 50          | -134 %     |              | "         |       |         |     |       |       |
| 2-Fluorophenol (Surr)        |            |             | 47 %       | 19          | -120 %     |              | "         |       |         |     |       |       |
|                              |            |             |            |             |            |              | "         |       |         |     |       |       |

Apex Laboratories

/ milale fog



AMENDED REPORT

## Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

# QUALITY CONTROL (QC) SAMPLE RESULTS

# Selected Semivolatile Organic Compounds by EPA 8270E

Detection L Reporting Spike Source % REC RPD Limits RPD Result Limit Units Dilution % REC Analyte Limit Amount Result Limit Notes

Batch 23K0792 - EPA 3510C (Acid Extraction) Water

Apex Laboratories

custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

 ${\it The results in this report apply to the samples analyzed in accordance with the chain of}$ 



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

# QUALITY CONTROL (QC) SAMPLE RESULTS

| A 1.                           | D 1        | Detection L | Reporting     | TT 11         | D.1 · ·          | Spike        | Source    | 0/ BEC   | % REC              | DDD | RPD   | NT 4        |
|--------------------------------|------------|-------------|---------------|---------------|------------------|--------------|-----------|----------|--------------------|-----|-------|-------------|
| Analyte                        | Result     | Limit       | Limit         | Units         | Dilution         | Amount       | Result    | % REC    | Limits             | RPD | Limit | Notes       |
| Batch 23K0832 - EPA 3510C (A   | Acid Extra | ction)      |               |               |                  |              | Wa        | ter      |                    |     |       |             |
| Blank (23K0832-BLK1)           |            |             | Prepared      | 1: 11/21/23   | 06:08 Anal       | lyzed: 11/21 | /23 13:38 |          |                    |     |       |             |
| EPA 8270E                      |            |             |               |               |                  |              |           |          |                    |     |       |             |
| 1-Methylnaphthalene            | ND         | 0.0200      | 0.0400        | ug/L          | 1                |              |           |          |                    |     |       |             |
| 2-Methylnaphthalene            | ND         | 0.0200      | 0.0400        | ug/L          | 1                |              |           |          |                    |     |       |             |
| Naphthalene                    | ND         | 0.0200      | 0.0400        | ug/L          | 1                |              |           |          |                    |     |       |             |
| Surr: Nitrobenzene-d5 (Surr)   |            | Reco        | very: 75 %    | Limits: 44    | 1-120 %          | Dilı         | ution: 1x |          |                    |     |       |             |
| 2-Fluorobiphenyl (Surr)        |            |             | 59 %          | 44            | -120 %           |              | "         |          |                    |     |       |             |
| Phenol-d6 (Surr)               |            |             | 26 %          | 10            | -133 %           |              | "         |          |                    |     |       |             |
| p-Terphenyl-d14 (Surr)         |            |             | 74 %          | 50            | -134 %           |              | "         |          |                    |     |       |             |
| 2-Fluorophenol (Surr)          |            |             | 39 %          | 19            | -120 %           |              | "         |          |                    |     |       |             |
| 2,4,6-Tribromophenol (Surr)    |            |             | 91 %          | 43            | -140 %           |              | "         |          |                    |     |       |             |
| I CC (221/0022 DC1)            |            |             | ъ.            | 1 11/01/02    | 06.00 4 1        | 1 11/01      | /22.14.12 |          |                    |     |       |             |
| LCS (23K0832-BS1)              |            |             | Prepared      | 1: 11/21/23 ( | 06:08 Anai       | lyzed: 11/21 | /23 14:12 |          |                    |     |       |             |
| EPA 8270E  1-Methylnaphthalene | 2.37       | 0.0800      | 0.160         | ug/L          | 4                | 4.00         |           | 59       | 41-120%            |     |       |             |
| 2-Methylnaphthalene            | 2.37       | 0.0800      | 0.160         |               |                  | 4.00         |           | 59<br>57 |                    |     |       |             |
| Naphthalene                    | 2.28       | 0.0800      | 0.160         | ug/L<br>ug/L  | 4<br>4           | 4.00         |           | 52       | 40-121%<br>40-121% |     |       |             |
| -                              | 2.08       |             |               |               |                  |              |           | 32       | 40-121/0           |     |       |             |
| Surr: Nitrobenzene-d5 (Surr)   |            | Reco        | very: 94%     | Limits: 44    |                  | Dili         | ution: 4x |          |                    |     |       |             |
| 2-Fluorobiphenyl (Surr)        |            |             | 82 %          |               | -120 %           |              | ,,        |          |                    |     |       |             |
| Phenol-d6 (Surr)               |            |             | 33 %          |               | 1-133 %          |              | ,,        |          |                    |     |       |             |
| p-Terphenyl-d14 (Surr)         |            |             | 95 %          |               | -134 %           |              |           |          |                    |     |       |             |
| 2-Fluorophenol (Surr)          |            |             | 47 %<br>110 % |               | -120 %<br>-140 % |              | "         |          |                    |     |       |             |
| 2,4,6-Tribromophenol (Surr)    |            |             | 110 %         | 43            | -140 %           |              |           |          |                    |     |       |             |
| LCS Dup (23K0832-BSD1)         |            |             | Prepared      | 1: 11/21/23 ( | 06:08 Anal       | yzed: 11/21  | /23 14:46 |          |                    |     |       | <b>Q</b> -1 |
| EPA 8270E                      |            |             |               |               |                  |              |           |          |                    |     |       |             |
| 1-Methylnaphthalene            | 2.05       | 0.0800      | 0.160         | ug/L          | 4                | 4.00         |           | 51       | 41-120%            | 15  | 30%   |             |
| 2-Methylnaphthalene            | 2.01       | 0.0800      | 0.160         | ug/L          | 4                | 4.00         |           | 50       | 40-121%            | 13  | 30%   |             |
| Naphthalene                    | 1.87       | 0.0800      | 0.160         | ug/L          | 4                | 4.00         |           | 47       | 40-121%            | 11  | 30%   |             |
| Surr: Nitrobenzene-d5 (Surr)   |            | Reco        | very: 86 %    | Limits: 44    | 1-120 %          | Dili         | ution: 4x |          |                    |     |       | _           |
| 2-Fluorobiphenyl (Surr)        |            |             | 75 %          | 44            | -120 %           |              | "         |          |                    |     |       |             |
| Phenol-d6 (Surr)               |            |             | 29 %          | 10            | -133 %           |              | "         |          |                    |     |       |             |
| p-Terphenyl-d14 (Surr)         |            |             | 91 %          | 50            | -134 %           |              | "         |          |                    |     |       |             |
| 2-Fluorophenol (Surr)          |            |             | 42 %          | 19            | -120 %           |              | "         |          |                    |     |       |             |
| 2,4,6-Tribromophenol (Surr)    |            |             | 99 %          | 42            | -140 %           |              | ,,        |          |                    |     |       |             |

Apex Laboratories

/ milele fog



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

# QUALITY CONTROL (QC) SAMPLE RESULTS

# Selected Semivolatile Organic Compounds by EPA 8270E

Detection L Reporting Spike Source % REC RPD Units Limits RPD Result Limit Dilution % REC Analyte Limit Amount Result Limit Notes

Batch 23K0832 - EPA 3510C (Acid Extraction) Water

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                                   |             | D-4                  | D                  |              |                    | C:1             | C                |       | % REC    |     | RPD   |             |
|---------------------------------------------------|-------------|----------------------|--------------------|--------------|--------------------|-----------------|------------------|-------|----------|-----|-------|-------------|
| Analyte                                           | Result      | Detection L<br>Limit | Reporting<br>Limit | Units        | Dilution           | Spike<br>Amount | Source<br>Result | % REC |          | RPD | Limit | Notes       |
| Batch 23K0891 - EPA 3510C (                       | Acid Extrac | ction)               |                    |              |                    |                 | Wa               | ter   |          |     |       |             |
| Blank (23K0891-BLK1)                              |             |                      | Prepared           | l: 11/22/23  | 05:49 Anal         | lyzed: 11/22    | /23 12:27        |       |          |     |       |             |
| EPA 8270E                                         |             |                      |                    |              |                    |                 |                  |       |          |     |       |             |
| 1-Methylnaphthalene                               | ND          | 0.0200               | 0.0400             | ug/L         | 1                  |                 |                  |       |          |     |       |             |
| 2-Methylnaphthalene                               | ND          | 0.0200               | 0.0400             | ug/L         | 1                  |                 |                  |       |          |     |       |             |
| Naphthalene                                       | 0.0264      | 0.0200               | 0.0400             | ug/L         | 1                  |                 |                  |       |          |     |       | B-02,       |
| Surr: Nitrobenzene-d5 (Surr)                      |             | Reco                 | very: 79 %         | Limits: 4    | 4-120 %            | Dilt            | ution: 1x        |       |          |     |       |             |
| 2-Fluorobiphenyl (Surr)                           |             |                      | 71 %               | 44           | 4-120 %            |                 | "                |       |          |     |       |             |
| Phenol-d6 (Surr)                                  |             |                      | 32 %               | 10           | 0-133 %            |                 | "                |       |          |     |       |             |
| p-Terphenyl-d14 (Surr)                            |             |                      | 87 %               | 50           | 0-134 %            |                 | "                |       |          |     |       |             |
| 2-Fluorophenol (Surr)                             |             |                      | 50 %               | 19           | 0-120 %            |                 | "                |       |          |     |       |             |
| 2,4,6-Tribromophenol (Surr)                       |             |                      | 87 %               | 43           | 3-140 %            |                 | "                |       |          |     |       | Q-41        |
| LCS (23K0891-BS1)                                 |             |                      | Properce           | l: 11/22/22  | 05:49 Anal         | wzod: 11/22     | /22 12:01        |       |          |     |       |             |
| EPA 8270E                                         |             |                      | Гтерагес           | 1. 11/22/23  | 05.49 Allai        | lyzeu. 11/22/   | /23 13.01        |       |          |     |       |             |
| 1-Methylnaphthalene                               | 2.91        | 0.0800               | 0.160              | ug/L         | 4                  | 4.00            |                  | 73    | 41-120%  |     |       |             |
| 2-Methylnaphthalene                               | 2.92        | 0.0800               | 0.160              | ug/L<br>ug/L | 4                  | 4.00            |                  | 73    | 40-121%  |     |       |             |
| Naphthalene                                       | 2.69        | 0.0800               | 0.160              | ug/L<br>ug/L | 4                  | 4.00            |                  | 67    | 40-121%  |     |       | B-0         |
| Surr: Nitrobenzene-d5 (Surr)                      | 2.07        |                      | very: 84 %         | Limits: 4    |                    |                 | ution: 4x        | 07    | 40-12170 |     |       |             |
| , , ,                                             |             | кесо                 | very: 84 %         |              | 4-120 %<br>4-120 % | Diii            | ution: 4x        |       |          |     |       |             |
| 2-Fluorobiphenyl (Surr)                           |             |                      | 84 %<br>29 %       |              | 1-120 %<br>D-133 % |                 | ,,               |       |          |     |       |             |
| Phenol-d6 (Surr)                                  |             |                      |                    |              |                    |                 | ,,               |       |          |     |       |             |
| p-Terphenyl-d14 (Surr)                            |             |                      | 84 %<br>46 %       |              | 0-134 %<br>0-120 % |                 | ,,               |       |          |     |       |             |
| 2-Fluorophenol (Surr) 2,4,6-Tribromophenol (Surr) |             |                      | 40 %<br>110 %      |              | 3-140 %            |                 | "                |       |          |     |       | <i>Q-41</i> |
| I CC D (231/2001 DCD1)                            |             |                      |                    |              |                    |                 |                  |       |          |     |       | 0.40        |
| LCS Dup (23K0891-BSD1)                            |             |                      | Preparec           | 1: 11/22/23  | 05:49 Anal         | lyzed: 11/22    | /23 13:36        |       |          |     |       | Q-19        |
| EPA 8270E                                         | 2.55        | 0.0000               | 0.160              |              | 4                  | 4.00            |                  | 64    | 41 12007 | 10  | 2007  |             |
| 1-Methylnaphthalene                               | 2.55        | 0.0800               | 0.160              | ug/L         | 4                  | 4.00            |                  | 64    | 41-120%  | 13  | 30%   |             |
| 2-Methylnaphthalene                               | 2.50        | 0.0800               | 0.160              | ug/L         | 4                  | 4.00            |                  | 63    | 40-121%  | 15  | 30%   | Б.          |
| Naphthalene                                       | 2.29        | 0.0800               | 0.160              | ug/L         | 4                  | 4.00            |                  | 57    | 40-121%  | 16  | 30%   | B-0         |
| Surr: Nitrobenzene-d5 (Surr)                      |             | Reco                 | very: 80 %         | Limits: 4    |                    | Dilı            | ution: 4x        |       |          |     |       |             |
| 2-Fluorobiphenyl (Surr)                           |             |                      | 79 %               |              | 1-120 %            |                 | "                |       |          |     |       |             |
| Phenol-d6 (Surr)                                  |             |                      | 27 %               |              | 0-133 %            |                 | "                |       |          |     |       |             |
| p-Terphenyl-d14 (Surr)                            |             |                      | 81 %               |              | 0-134 %            |                 | "                |       |          |     |       |             |
| 2-Fluorophenol (Surr)                             |             |                      | 42 %               | 19           | 0-120 %            |                 | "                |       |          |     |       |             |
| 2,4,6-Tribromophenol (Surr)                       |             |                      | 105 %              | 4            | 3-140 %            |                 | "                |       |          |     |       | O-41        |

Apex Laboratories



AMENDED REPORT

## Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

# QUALITY CONTROL (QC) SAMPLE RESULTS

# Selected Semivolatile Organic Compounds by EPA 8270E

Detection L Reporting Spike Source % REC RPD Units Limits RPD Result Limit Dilution % REC Analyte Limit Amount Result Limit Notes

Batch 23K0891 - EPA 3510C (Acid Extraction) Water

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

## SAMPLE PREPARATION INFORMATION

|                     |                 | Diesel and  | d/or Oil Hydrocarbor | s by NWTPH-Dx  |               |               |         |  |
|---------------------|-----------------|-------------|----------------------|----------------|---------------|---------------|---------|--|
| Prep: EPA 3510C (Fu | uels/Acid Ext.) |             |                      |                | Sample        | Default       | RL Prep |  |
| Lab Number          | Matrix          | Method      | Sampled              | Prepared       | Initial/Final | Initial/Final | Factor  |  |
| Batch: 23K0934      |                 |             |                      |                |               |               |         |  |
| A3K1435-01          | Water           | NWTPH-Dx LL | 11/15/23 17:05       | 11/27/23 10:07 | 1040mL/2mL    | 1000mL/2mL    | 0.96    |  |
| A3K1435-02          | Water           | NWTPH-Dx LL | 11/15/23 15:35       | 11/27/23 10:07 | 1050mL/2mL    | 1000mL/2mL    | 0.95    |  |
| A3K1435-03          | Water           | NWTPH-Dx LL | 11/15/23 14:15       | 11/27/23 10:07 | 1050mL/2mL    | 1000mL/2mL    | 0.95    |  |
| A3K1435-04          | Water           | NWTPH-Dx LL | 11/15/23 12:55       | 11/27/23 10:07 | 1040mL/2mL    | 1000mL/2mL    | 0.96    |  |
| A3K1435-05          | Water           | NWTPH-Dx LL | 11/15/23 11:25       | 11/27/23 10:07 | 1050mL/2mL    | 1000mL/2mL    | 0.95    |  |
| A3K1435-06          | Water           | NWTPH-Dx LL | 11/15/23 10:05       | 11/27/23 06:15 | 1040mL/2mL    | 1000mL/2mL    | 0.96    |  |
| A3K1435-07          | Water           | NWTPH-Dx LL | 11/15/23 08:35       | 11/27/23 06:15 | 1040mL/2mL    | 1000mL/2mL    | 0.96    |  |
| A3K1435-08          | Water           | NWTPH-Dx LL | 11/15/23 08:40       | 11/27/23 06:15 | 1060mL/2mL    | 1000mL/2mL    | 0.94    |  |
| A3K1435-09          | Water           | NWTPH-Dx LL | 11/15/23 10:05       | 11/27/23 06:15 | 1060mL/2mL    | 1000mL/2mL    | 0.94    |  |
| A3K1435-10          | Water           | NWTPH-Dx LL | 11/15/23 11:45       | 11/27/23 06:15 | 1060mL/2mL    | 1000mL/2mL    | 0.94    |  |
| A3K1435-11RE1       | Water           | NWTPH-Dx LL | 11/15/23 13:01       | 11/27/23 06:15 | 1060mL/2mL    | 1000mL/2mL    | 0.94    |  |
| A3K1435-12RE1       | Water           | NWTPH-Dx LL | 11/15/23 14:15       | 11/27/23 06:15 | 1060mL/2mL    | 1000mL/2mL    | 0.94    |  |
| A3K1435-13          | Water           | NWTPH-Dx LL | 11/15/23 15:51       | 11/27/23 06:15 | 1060mL/2mL    | 1000mL/2mL    | 0.94    |  |
| A3K1435-14          | Water           | NWTPH-Dx LL | 11/15/23 18:02       | 11/27/23 06:15 | 1060mL/2mL    | 1000mL/2mL    | 0.94    |  |
| A3K1435-15          | Water           | NWTPH-Dx LL | 11/14/23 14:25       | 11/27/23 06:15 | 1040mL/2mL    | 1000mL/2mL    | 0.96    |  |
| A3K1435-16          | Water           | NWTPH-Dx LL | 11/14/23 12:50       | 11/27/23 06:15 | 1050mL/2mL    | 1000mL/2mL    | 0.95    |  |
| A3K1435-17          | Water           | NWTPH-Dx LL | 11/14/23 12:30       | 11/27/23 06:15 | 1050mL/2mL    | 1000mL/2mL    | 0.95    |  |
| A3K1435-18          | Water           | NWTPH-Dx LL | 11/14/23 14:05       | 11/27/23 06:15 | 1060mL/2mL    | 1000mL/2mL    | 0.94    |  |

|                     | Diesel and/or Oil Hydrocarbons by NWTPH-Dx with Silica Gel Column Cleanup |              |                |                |               |               |         |  |
|---------------------|---------------------------------------------------------------------------|--------------|----------------|----------------|---------------|---------------|---------|--|
| Prep: EPA 3510C (Fu | els/Acid Ext.) w/                                                         | SGC          |                |                | Sample        | Default       | RL Prep |  |
| Lab Number          | Matrix                                                                    | Method       | Sampled        | Prepared       | Initial/Final | Initial/Final | Factor  |  |
| Batch: 23K1067      |                                                                           |              |                |                |               |               |         |  |
| A3K1435-03          | Water                                                                     | NWTPH-Dx/SGC | 11/15/23 14:15 | 11/27/23 10:07 | 1050 mL/2 mL  | 1000mL/2mL    | 0.95    |  |
| A3K1435-16          | Water                                                                     | NWTPH-Dx/SGC | 11/14/23 12:50 | 11/27/23 06:15 | 1050 mL/2 mL  | 1000mL/2mL    | 0.95    |  |
| A3K1435-17          | Water                                                                     | NWTPH-Dx/SGC | 11/14/23 12:30 | 11/27/23 06:15 | 1050 mL/2 mL  | 1000 mL/2 mL  | 0.95    |  |
| Batch: 23L0687      |                                                                           |              |                |                |               |               |         |  |
| A3K1435-08          | Water                                                                     | NWTPH-Dx/SGC | 11/15/23 08:40 | 11/27/23 06:15 | 1060mL/2mL    | 1000mL/2mL    | 0.94    |  |
| A3K1435-09          | Water                                                                     | NWTPH-Dx/SGC | 11/15/23 10:05 | 11/27/23 06:15 | 1060 mL/2 mL  | 1000mL/2mL    | 0.94    |  |
|                     |                                                                           |              |                |                |               |               |         |  |

| Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx |        |        |         |          |               |               |         |
|-----------------------------------------------------------------------|--------|--------|---------|----------|---------------|---------------|---------|
| Prep: EPA 5030C                                                       |        |        |         |          | Sample        | Default       | RL Prep |
| Lab Number                                                            | Matrix | Method | Sampled | Prepared | Initial/Final | Initial/Final | Factor  |
| Batch: 23K0755                                                        |        |        | ·       |          |               |               |         |

Apex Laboratories



## AMENDED REPORT

**Apex Laboratories, LLC** 

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

#### SAMPLE PREPARATION INFORMATION

| Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx |        |               |                |                |               |               |         |  |
|-----------------------------------------------------------------------|--------|---------------|----------------|----------------|---------------|---------------|---------|--|
| Prep: EPA 5030C                                                       |        |               |                |                | Sample        | Default       | RL Prep |  |
| Lab Number                                                            | Matrix | Method        | Sampled        | Prepared       | Initial/Final | Initial/Final | Factor  |  |
| A3K1435-06                                                            | Water  | NWTPH-Gx (MS) | 11/15/23 10:05 | 11/18/23 09:29 | 5mL/5mL       | 5mL/5mL       | 1.00    |  |
| Batch: 23K0756                                                        |        |               |                |                |               |               |         |  |
| A3K1435-07                                                            | Water  | NWTPH-Gx (MS) | 11/15/23 08:35 | 11/19/23 14:15 | 5mL/5mL       | 5mL/5mL       | 1.00    |  |
| A3K1435-08                                                            | Water  | NWTPH-Gx (MS) | 11/15/23 08:40 | 11/19/23 14:15 | 5mL/5mL       | 5mL/5mL       | 1.00    |  |
| A3K1435-15                                                            | Water  | NWTPH-Gx (MS) | 11/14/23 14:25 | 11/19/23 14:15 | 5mL/5mL       | 5mL/5mL       | 1.00    |  |
| A3K1435-16                                                            | Water  | NWTPH-Gx (MS) | 11/14/23 12:50 | 11/19/23 14:15 | 5mL/5mL       | 5mL/5mL       | 1.00    |  |
| A3K1435-17                                                            | Water  | NWTPH-Gx (MS) | 11/14/23 12:30 | 11/19/23 14:15 | 5mL/5mL       | 5mL/5mL       | 1.00    |  |
| A3K1435-18                                                            | Water  | NWTPH-Gx (MS) | 11/14/23 14:05 | 11/19/23 14:15 | 5mL/5mL       | 5mL/5mL       | 1.00    |  |

| BTEX Compounds by EPA 8260D |        |           |                |                |               |               |         |  |
|-----------------------------|--------|-----------|----------------|----------------|---------------|---------------|---------|--|
| Prep: EPA 5030C             |        |           |                |                | Sample        | Default       | RL Prep |  |
| Lab Number                  | Matrix | Method    | Sampled        | Prepared       | Initial/Final | Initial/Final | Factor  |  |
| Batch: 23K0755              |        |           |                |                |               |               |         |  |
| A3K1435-06                  | Water  | EPA 8260D | 11/15/23 10:05 | 11/18/23 09:29 | 5mL/5mL       | 5mL/5mL       | 1.00    |  |
| Batch: 23K0756              |        |           |                |                |               |               |         |  |
| A3K1435-07                  | Water  | EPA 8260D | 11/15/23 08:35 | 11/19/23 14:15 | 5mL/5mL       | 5mL/5mL       | 1.00    |  |
| A3K1435-08                  | Water  | EPA 8260D | 11/15/23 08:40 | 11/19/23 14:15 | 5mL/5mL       | 5mL/5mL       | 1.00    |  |
| A3K1435-15                  | Water  | EPA 8260D | 11/14/23 14:25 | 11/19/23 14:15 | 5mL/5mL       | 5mL/5mL       | 1.00    |  |
| A3K1435-16                  | Water  | EPA 8260D | 11/14/23 12:50 | 11/19/23 14:15 | 5mL/5mL       | 5mL/5mL       | 1.00    |  |
| A3K1435-17                  | Water  | EPA 8260D | 11/14/23 12:30 | 11/19/23 14:15 | 5mL/5mL       | 5mL/5mL       | 1.00    |  |
| A3K1435-18                  | Water  | EPA 8260D | 11/14/23 14:05 | 11/19/23 14:15 | 5mL/5mL       | 5mL/5mL       | 1.00    |  |

|                     |                | Selected Semi | volatile Organic Com | pounds by EPA 827 | 70E           |               |         |
|---------------------|----------------|---------------|----------------------|-------------------|---------------|---------------|---------|
| Prep: EPA 3510C (Ac | id Extraction) |               |                      |                   | Sample        | Default       | RL Prep |
| Lab Number          | Matrix         | Method        | Sampled              | Prepared          | Initial/Final | Initial/Final | Factor  |
| Batch: 23K0792      |                |               |                      |                   |               |               |         |
| A3K1435-11          | Water          | EPA 8270E     | 11/15/23 13:01       | 11/20/23 10:42    | 1060 mL/1 mL  | 1000 mL/1 mL  | 0.94    |
| A3K1435-12          | Water          | EPA 8270E     | 11/15/23 14:15       | 11/20/23 10:42    | 1000 mL/1 mL  | 1000 mL/1 mL  | 1.00    |
| A3K1435-13          | Water          | EPA 8270E     | 11/15/23 15:51       | 11/20/23 10:41    | 980mL/1mL     | 1000 mL/1 mL  | 1.02    |
| A3K1435-14          | Water          | EPA 8270E     | 11/15/23 18:02       | 11/20/23 10:41    | 1060 mL/1 mL  | 1000 mL/1 mL  | 0.94    |
| A3K1435-15          | Water          | EPA 8270E     | 11/14/23 14:25       | 11/20/23 10:41    | 980mL/1mL     | 1000 mL/1 mL  | 1.02    |
| A3K1435-16          | Water          | EPA 8270E     | 11/14/23 12:50       | 11/20/23 10:41    | 1040 mL/1 mL  | 1000 mL/1 mL  | 0.96    |
| A3K1435-17          | Water          | EPA 8270E     | 11/14/23 12:30       | 11/20/23 10:41    | 1060 mL/1 mL  | 1000 mL/1 mL  | 0.94    |
| A3K1435-18          | Water          | EPA 8270E     | 11/14/23 14:05       | 11/20/23 10:41    | 1060 mL/1 mL  | 1000 mL/1 mL  | 0.94    |
|                     |                |               |                      |                   |               |               |         |

Apex Laboratories

Pog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

## SAMPLE PREPARATION INFORMATION

| Prep: EPA 3510C (Ad | cid Extraction) |           |                |                | Sample        | Default       | RL Prep |  |
|---------------------|-----------------|-----------|----------------|----------------|---------------|---------------|---------|--|
| Lab Number          | Matrix          | Method    | Sampled        | Prepared       | Initial/Final | Initial/Final | Factor  |  |
| Batch: 23K0832      |                 |           |                |                |               |               |         |  |
| A3K1435-01RE1       | Water           | EPA 8270E | 11/15/23 17:05 | 11/21/23 06:08 | 1040 mL/1 mL  | 1000 mL/1 mL  | 0.96    |  |
| A3K1435-02          | Water           | EPA 8270E | 11/15/23 15:35 | 11/21/23 06:08 | 1040 mL/1 mL  | 1000 mL/1 mL  | 0.96    |  |
| A3K1435-03          | Water           | EPA 8270E | 11/15/23 14:15 | 11/21/23 06:08 | 1040 mL/1 mL  | 1000 mL/1 mL  | 0.96    |  |
| A3K1435-04          | Water           | EPA 8270E | 11/15/23 12:55 | 11/21/23 06:08 | 1040 mL/1 mL  | 1000 mL/1 mL  | 0.96    |  |
| A3K1435-05          | Water           | EPA 8270E | 11/15/23 11:25 | 11/21/23 06:08 | 1000 mL/1 mL  | 1000 mL/1 mL  | 1.00    |  |
| A3K1435-06          | Water           | EPA 8270E | 11/15/23 10:05 | 11/21/23 06:08 | 980mL/1mL     | 1000mL/1mL    | 1.02    |  |
| A3K1435-07          | Water           | EPA 8270E | 11/15/23 08:35 | 11/21/23 06:08 | 980mL/1mL     | 1000mL/1mL    | 1.02    |  |
| A3K1435-08          | Water           | EPA 8270E | 11/15/23 08:40 | 11/21/23 06:08 | 1000 mL/1 mL  | 1000 mL/1 mL  | 1.00    |  |
| Batch: 23K0891      |                 |           |                |                |               |               |         |  |
| A3K1435-09RE1       | Water           | EPA 8270E | 11/15/23 10:05 | 11/22/23 05:49 | 980mL/1mL     | 1000mL/1mL    | 1.02    |  |
| A3K1435-10RE1       | Water           | EPA 8270E | 11/15/23 11:45 | 11/22/23 05:49 | 970mL/1mL     | 1000mL/1mL    | 1.03    |  |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

# **QUALIFIER DEFINITIONS**

# Client Sample and Quality Control (QC) Sample Qualifier Definitions:

# **Apex Laboratories**

| LA L'abbiat | THIS .                                                                                                                                                                                |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A-01        | QC was re-created for silica gel clean up                                                                                                                                             |
| B-02        | Analyte detected in an associated blank at a level between one-half the MRL and the MRL. (See Notes and Conventions below.)                                                           |
| DCNT        | Sample decanted due to the presence of sediment. Sample bottle not rinsed with solvent.                                                                                               |
| F-03        | The result for this hydrocarbon range is elevated due to the presence of individual analyte peaks in the quantitation range that are not representative of the fuel pattern reported. |
| F-11        | The hydrocarbon pattern indicates possible weathered diesel, mineral oil, or a contribution from a related component.                                                                 |
| J           | Estimated Result. Result detected below the lowest point of the calibration curve, but above the specified MDL.                                                                       |
| Q-01        | Spike recovery and/or RPD is outside acceptance limits.                                                                                                                               |
| Q-19        | Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.                                           |
| Q-41        | Estimated Results. Recovery of Continuing Calibration Verification sample above upper control limit for this analyte. Results are likely biased high.                                 |

|      | biased flight.                                                                                                               |
|------|------------------------------------------------------------------------------------------------------------------------------|
| S-03 | Sample re-extract, or the analysis of an associated Batch QC sample, confirms surrogate failure due to sample matrix effect. |

S-06 Surrogate recovery is outside of established control limits.

Apex Laboratories



AMENDED REPORT

#### **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

#### **REPORTING NOTES AND CONVENTIONS:**

#### **Abbreviations:**

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

#### Detection Limits: Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

#### Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

#### **Reporting Conventions:**

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"\_\_\_" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

#### **QC Source:**

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

#### **Miscellaneous Notes:**

"---" QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

" \*\*\* " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories



AMENDED REPORT

#### Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

#### REPORTING NOTES AND CONVENTIONS (Cont.):

#### Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy.

For further details, please request a copy of this document.

-Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.

'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

#### **Preparation Notes:**

#### Mixed Matrix Samples:

#### Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

#### Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

#### **Sampling and Preservation Notes:**

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold

Apex Laboratories



Farallon-Seattle

#### ANALYTICAL REPORT

## Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

397-019 Block 38 West

AMENDED REPORT

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

#### LABORATORY ACCREDITATION INFORMATION

# ORELAP Certification ID: OR100062 (Primary Accreditation) - EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

Project:

#### **Apex Laboratories**

Matrix Analysis TNI\_ID Analyte TNI\_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

#### **Secondary Accreditations**

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

#### **Subcontract Laboratory Accreditations**

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

#### Field Testing Parameters

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

| Company: Fergilon Consulting                       | -                            | Project  | Mgr: (-      | Sred 6        | Project Mgr. Grey Peters |                        |                 |           | Project                     | Project Name: Block | Blo                            | 3         | 88            |            |                                                                      |                          | ==             | Project #: 397-019         | -019  | -        |                             |
|----------------------------------------------------|------------------------------|----------|--------------|---------------|--------------------------|------------------------|-----------------|-----------|-----------------------------|---------------------|--------------------------------|-----------|---------------|------------|----------------------------------------------------------------------|--------------------------|----------------|----------------------------|-------|----------|-----------------------------|
| Address: 975 3th Ave NW, Issaqueh, WA              | Issaquet                     | 3,00     | 98027        | 1.7           | - A                      | Phone: (495) 395-0900) | (M)             | 295-0     | Q                           | Ema                 | 41: 9P                         | cters(    | િક્           | cflor      | Email: gpeters@farellonconsolting.com                                | ائع. ور                  |                | PO# 797 -                  | -019  |          |                             |
| Sampled by: M. Ysaguire / A. Osman                 | Seman                        |          |              |               |                          |                        |                 |           |                             |                     |                                |           |               | ANAL       | ANALYSIS REQUEST                                                     | TEST                     |                |                            |       |          |                             |
| Site Location:                                     |                              |          | 6<br>8<br>8  |               |                          |                        |                 |           |                             |                     | 15                             |           |               |            | K'<br>GP'                                                            | сгъ                      |                | E                          |       |          | <del> </del>                |
| State Weshington                                   |                              |          |              | INEKS         | aı                       |                        |                 |           |                             |                     | ols Full Li                    |           |               |            | Ba, Be,                                                              | L 'SS                    |                | ECP) 21                    |       |          |                             |
| County King                                        | TAC                          | TIME     | XISTAN       | OF CONTA      | NWTPH-HC                 | NWTPH-Gx               | 8760 BTEX       | 8260 RBDM | 8700 AOC# E<br>8700 Halo AC | A4 MIS 0728         | V-imas 0728                    | 8087 PCBs | bishts 9 1808 | RCRA Metal | L Sb, As, I<br>s, Cr, Co, (g, Mn, Mn, Mn, Mn, Mn, Mn, Mn, Mn, Mn, Mn | o, Ag, Na, Ti<br>IO JATO | TCLP Metal     | yokhhalen<br>2005          |       | i 5 FIV) | fold Sample<br>rozen Archiv |
| FMW-153-111523                                     | 11/15/23                     | `-       | 1 -          | <del></del>   | $\perp$                  | <br> <br>              |                 |           | $\vdash$                    | _                   | i.                             | ş         |               |            | ٧                                                                    | L<br>S                   | <del>[</del> ] |                            |       |          | -                           |
| FMW- 150- 111523                                   | _                            |          | +            |               |                          | <br>  ×                |                 |           | -                           | -                   |                                |           | 1             | +-         |                                                                      |                          | 1              | ×                          |       |          | -                           |
| OW-1-111523                                        |                              | I.       |              |               |                          | ~                      |                 |           |                             |                     |                                |           | -             | -          |                                                                      |                          | Ė              | ×                          |       |          |                             |
| 0W · 2 - 111523                                    |                              | 1255     |              |               |                          | ~                      |                 |           |                             | -                   |                                |           |               | _          |                                                                      |                          | ĺ,             | ×                          |       |          |                             |
| Fmw-157-111523                                     |                              | 1125     |              | -1            |                          |                        |                 |           |                             |                     |                                |           |               |            |                                                                      |                          |                | ×                          |       |          |                             |
| FMW- 156- 111523                                   |                              | 3005     |              | ō             | X                        | X                      | X               |           |                             |                     |                                |           |               |            |                                                                      |                          |                | ×                          |       |          |                             |
| FMW-163-111523                                     |                              | 0835     |              | ō             | ×                        | ×                      | ×               |           |                             |                     |                                |           |               | -          |                                                                      |                          | - }            | ×                          |       |          |                             |
| FMW- 158- 111523                                   |                              | 0840     |              | ō             | X                        | ×                      | ×               | 7         |                             | - (                 |                                |           |               |            |                                                                      |                          | ,              | ン                          |       |          |                             |
| FMW-159-111523                                     |                              | §<br>8   |              | ۲             | <u> </u>                 | ~                      |                 |           |                             |                     |                                |           |               |            |                                                                      |                          | -              | $\times$                   |       |          |                             |
| 0W-3-111523                                        | -1<br>                       | 1143     | 1            | 1             |                          |                        |                 |           |                             |                     |                                |           |               |            |                                                                      |                          | `              | ×                          |       |          |                             |
| Standard Turn Around Time (TAT) = 10 Business Days | m Around T                   | ime (TA) | r) = 10 E    | Susiness      | Days                     |                        |                 |           |                             |                     | SPECIAL INSTRUCTIONS           | INSTR     | UCTR          | :SNC       | ٠                                                                    |                          |                | ,-                         |       |          |                             |
|                                                    | 1 Day                        |          | 2 Day        | _             | 3 Day                    | À                      |                 |           |                             | 王                   | P)C                            | 8         | .5            | SV.        | Hold CUOGS analysis for PM request                                   | á.                       | <u>ت</u><br>ح  | u(lust.                    |       |          |                             |
| TAT Requested (circle)                             | 5 Day                        |          | Standard     | <b>2</b>      | Other:                   | Ľ                      |                 |           |                             |                     |                                |           |               |            |                                                                      |                          |                |                            |       |          |                             |
| SAMPL                                              | SAMPLES ARE HELD FOR 30 DAYS | LD FOR   | 30 DAYS      | _             |                          |                        |                 |           |                             | Τ-                  |                                |           |               |            |                                                                      |                          |                |                            |       |          |                             |
| Signature:                                         | Date:                        | ۲        | Signature:   | IVED BY       | e                        | /#                     | Date: 11/10/1/3 | 8         |                             | R.E.I.              | RELINQUISHED BY:<br>Signature: | SHED      | BY:           |            | Date:                                                                |                          | - 8            | RECEIVED BY:<br>Signature: | Date: | ä        |                             |
| Patho M                                            | Time: 04.25.000              |          | Printed Name | Printed Name: | ا حرا<br>جرا             | >                      | Tig.            | 12.01     | 22                          | Ē                   | Printed Name                   | ×         |               |            | Time:                                                                |                          | †              | Printed Name:              | Time: | ë        |                             |
| ,                                                  |                              |          | Company:     | .in           | 4                        |                        |                 |           |                             | Com                 | Company:                       |           |               |            |                                                                      |                          |                | Company:                   |       |          |                             |

Apex Laboratories

(milele fog



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

| 1902   1904   1905   1904   1905   1904   1905   1904   1905   1904   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905   1905      | Contrage Price In Consulting | ō,          | Project   | Ner. G  | 4 S        | 1 94       |              |          |     | Project | , and     | Project Name: 13/04.14 | %<br>'k | 00       |         |                        |          | ╠                              | Project #: 347-6         | Project#: 347-019 | 6- | ż       |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------|-----------|---------|------------|------------|--------------|----------|-----|---------|-----------|------------------------|---------|----------|---------|------------------------|----------|--------------------------------|--------------------------|-------------------|----|---------|----------|
| 100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100    | Address 975 5" Ave Nu        | ), Issaque  | h, W.A    | 9802    | _          | -          | Pone:        | (98)     | 245 | £       | A         | 85                     | ters.   | fare     | 1       | arsuth                 | 9.50     |                                | 1                        | 0-4               | 0  |         |          |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sampled by: M. Ysaguire / P  | 1. Osman    |           |         |            |            |              |          |     |         |           |                        |         |          |         |                        |          |                                |                          |                   |    |         |          |
| 100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100    | Site Location:               |             |           |         |            |            |              |          |     | -       |           | 1477                   |         |          |         | T K<br>Les<br>Cor      | TCLP     |                                | TAGE                     |                   |    |         |          |
| 12   12   12   12   12   12   12   12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | State Weshington             |             |           |         | NEWS       | <b>(D</b>  |              |          |     |         |           | tol d                  |         |          | (EL) =  | N 'ONI<br>CR' RO'      | '98'     | (g) :                          | P. 1751                  |                   |    |         |          |
| 1933                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | County King                  |             |           | жт      | ATMO       |            |              |          |     |         |           |                        |         | ·····    | Metal ( | And I                  | IG T     | TOOM &                         | HANDER!                  | •                 |    |         |          |
| 1523   11513   1705   1535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAMPLE ID                    | BTAG        | TIME      | STAM    | * OF       |            |              |          |     |         |           |                        |         |          | hohq    | EF W<br>CF CF<br>VF 2P | ATOTA    | TOL                            | My Carolina              |                   |    | 3 7 7 2 |          |
| 1415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FMW-153- 111523              | 11/13/2     |           |         | 1          | 广          | <del> </del> |          |     |         |           |                        |         | -        |         |                        |          | <u> </u>                       |                          |                   |    |         |          |
| 1255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FmW- 150- 111523             | -           | 1535      | _       | _          | 1          | ~            |          |     | -       |           |                        | -       | -        |         |                        |          | ×                              |                          |                   |    |         |          |
| 11.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 0w-1-ms23                  |             | Ī         |         |            |            | X            |          |     | -       |           |                        |         |          |         |                        |          | ×                              | $\otimes$                | ⊗                 |    |         |          |
| 1005   10   X   X   X   X   X   X   X   X   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10m · 2 · m253               |             | 1255      |         |            | ^          | _            |          |     |         |           |                        |         |          |         |                        |          | ×                              |                          |                   |    |         | -        |
| 1005   10   X   X   X   X   X   X   X   X   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Fmu-157-111523               |             | 5711      |         | 1          | $\hat{}$   | ~            |          |     |         |           |                        |         |          |         |                        |          | $\stackrel{\sim}{\vdash}$      |                          |                   |    |         |          |
| 06540   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FMW - 156- 111523            |             | 3005      |         | ٥          | Ž.         | Š            | X        |     |         |           |                        |         |          |         |                        |          | A                              |                          |                   |    |         | -        |
| 1005   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FM.2-163-111523              |             | 0835      |         | ō          | ×          | ×            | $\times$ |     |         |           |                        |         |          |         |                        | $\dashv$ | 긲                              |                          |                   |    |         |          |
| 1005   7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | FMW-155-111523               |             | 0840      |         | ō          | X          | ×            |          | ;   |         |           |                        | _       |          |         |                        |          | ~                              | $\left\{ \cdot \right\}$ |                   |    |         | $\dashv$ |
| L   1145   L   T   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FMW-139-111523               |             | SoS       |         | 7          |            | ×            |          |     |         |           |                        |         |          |         |                        |          | $\Rightarrow$                  | $\otimes$                |                   |    |         | $\dashv$ |
| S Day Standard Other:    1 Day   2 Day   3 Day   3 Day   4 Day   3 Day   4 Day   3 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day |                              | -1          | 1 S 2 S   | -1      | 7          | ×          |              |          |     |         |           |                        |         | _        |         |                        |          | $\stackrel{\sim}{\rightarrow}$ | 8                        |                   |    |         | $\dashv$ |
| 1 Day 2 Day 3 Day 3 Day 3 Day 4 Hold CUCKS Gradues for PM Fequest.  5 Day Standard Other:  Den: Separate No. 2 Day Standard Other:  Den: Separate No. 2 Day Standard Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Shedard                      | Turn Around | Time (TAT | )=10B   | D sections | S.         |              |          |     |         |           | CIAL                   | NSTR    | CE       | 9       | ,                      |          | 1                              | 1                        |                   |    |         |          |
| Standard Other.  Standard Decr. Standard Decr. Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard Standard S |                              | 1 Day       |           | 200     |            | 3.0        | Þ            |          |     |         | 至 (       | ン:<br>ヨ                | 8       | es y     | Tal.    | SS                     | 3        | ē :                            | (SE)                     | .' M              |    |         |          |
| - 6-33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TAT Requested (circle)       | 5 Day       |           | Candar  | 1          | 8          |              |          |     |         | <u>x)</u> | £<br>                  | \$      | <u>_</u> | J       | Ì                      | 2        |                                | -                        |                   |    |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 M                         | MPLES ARE W | ED FOR    | • DAYS  |            |            |              |          |     |         | γ-        | 1                      |         |          |         |                        |          |                                |                          |                   |    |         | ١        |
| 11-16-23 4 L. 11/10/12 There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There There T |                              | ă           |           | NECES I | VED BY:    |            |              | 100      |     |         | E Sec     | INQUID.                | 9       | ä        |         | Zi<br>Zi               |          | 2 S                            | CCETY.                   | D FY:             | Ω  | 16      |          |
| These Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad Names The Philad  | mon                          | 2-91-11     |           | B       | ~          |            | 11           | Ual      | Ñ   |         |           |                        |         |          |         |                        |          |                                |                          |                   |    |         |          |
| Company:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              | Thus:       |           | Ĭã      | Z (        | - <u>-</u> | >            | į        | 6   | 2       | £         | A News                 | 12      |          |         | Ĭ                      |          | <u> </u>                       | Z Popular                | ¥                 | ž  | ¥       |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 5                          |             |           | 8       | in the     | 7          |              |          |     | -       | 5         | ř                      |         |          |         |                        |          | 5                              | Appel                    |                   |    |         |          |

Apex Laboratories

(milale fog



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

| Payer 14   Grey Perers   Payer 14   Grey Perers   Payer 14   Grey Perers   Payer 14   Grey Perers   Payer 14   Grey Perers   Payer 14   Grey Perers   Payer 14   Grey Perers   Payer 14   Grey Perers   Payer 14   Grey Perers   Payer 14   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Grey Perers   Gr   | CHAIN OF CUSTODY  *PON'KED *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1902   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903   1903      | Project Name: Block                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  TOTAL HORSE CONTACTOR  | (475)2N5-(MD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| TICLE MORPH (19)  TO S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SE DAY SEED TO NOT THE SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO SEED TO | 7005, (VOC5, VOC5, |
| 1835   1'05   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15   1'15      | WWITELES ON WATER EN AND THE SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERVICE OF SERV |
| 1535   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1255 X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1005 10 X X X 10 0055 10 X X X 10 0057 10 0 X X X 10 0057 10 0 X X X 10 0 X X X 10 0 X X X 10 0 X X X 10 0 X X X 10 0 X X X 10 0 X X X 10 0 X X X 10 0 X X X 10 0 X X X 10 0 X X X 10 0 X X X 10 0 X X X 10 0 X X X 10 0 X X X 10 0 X X X 10 0 X X X 10 0 X X X 10 0 X X X 10 0 X X X 10 0 X X X 10 0 X X X 10 0 X X 10 0 X X 10 0 X X 10 0 X X 10 0 X X 10 0 X X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0 X 10 0  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1005 10 X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9)××                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1005 10 X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 1005 10 X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | XX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA SERIA  | ×××                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| COS   7   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 Part SDU (2007) 18 | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SDy SDy SDy SDy SDy (G. Added Per Clint Con 11-16-23 MA (1) 10/13 MA (1) 10/13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SD (Street of Co. 1)  SD (Street of Co. 1)  SD (Street of Co. 1)  SD (SD (SD (SD (SD (SD (SD (SD (SD (SD (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 11-16-23 MA 11/10/13 market                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fag. (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 11-16-23 A.A. 11/10/13 miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | * - Added per ediani (no in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11-14-23 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Led expensionalizate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Mrs. 1.14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11/2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Company A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SAME SEN DERING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Apex Laboratories

(milale fog



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

| Company: Farallon Consulting          |                                                    | Project Mgr: | Mgr: (           | Greg                           | Peres                                       | S      |                      |              | Proj        | Project Name: Block | me:                            | 3ock              | 88 3     | 2            |          |                                                           | Pag              | Project #: 397             | 397-019 | 9     |         |
|---------------------------------------|----------------------------------------------------|--------------|------------------|--------------------------------|---------------------------------------------|--------|----------------------|--------------|-------------|---------------------|--------------------------------|-------------------|----------|--------------|----------|-----------------------------------------------------------|------------------|----------------------------|---------|-------|---------|
| Address: 975 Str Ave NW, Issaquen, WA | Sognar                                             | 3,           | 48077            | 77.                            |                                             | Phone: | 55                   | )29E         | - 08°       | Q                   | Email:                         | gpë <del>te</del> | 150      | feralli      | 300      | Phone: (425)295-1980) Email: gpeters@furallonconswhig.com | PO               | PO- FPC # 09               | 019     |       |         |
| Sampled by: M. Ysegorine ( A · Osman  | Sman                                               |              |                  |                                |                                             | r e    |                      |              |             |                     |                                |                   |          |              | (W)      | ANALYSIS REQUEST                                          |                  |                            |         | 94.56 |         |
| Site Location:                        |                                                    |              |                  |                                |                                             |        | -                    |              |             |                     |                                | 15                | -        | <u> </u>     | <u> </u> | CITS<br>K'<br>SP'                                         | C=1              |                            |         |       |         |
| State Weshington                      |                                                    |              |                  | NEKS                           | σ                                           |        |                      | \$00/        | £3          | tsi.I Ilı           |                                | i Full Li         | s        |              |          |                                                           | (8)<br>(ECP) &   | 1.00                       |         |       |         |
| County King                           |                                                    |              | XI               | IATVO                          | эн-нс                                       | xa-H   | H-Cz                 | Maa          | OV olei     | OC2 E               | A4 MI                          |                   | esticide | Metal        | Metal    | Co, C<br>Ma, Ti,<br>Na, Ti,                               | Metals<br>Andrew |                            |         |       | əĮdu    |
| SAMPLE ID                             | DATE                                               | TIME         | ATAM             | # OF C                         | ILMN                                        |        | H 0978               |              | H 09Z8      | V 0928              |                                | 4 Z808<br>S 04Z8  |          |              |          | Ca, Cr,<br>Se, Ag,<br>TOTAL                               |                  | OVVO                       |         |       | se blol |
| FMW-164-111523                        | 52/51/11                                           | 1301         | H <sub>2</sub> 0 | r                              |                                             | ×      |                      |              |             |                     |                                | -                 |          |              | _        |                                                           | ×                |                            |         |       | q       |
| FMW-162- 111523                       | _                                                  | 五元           |                  |                                |                                             | ×      | -                    |              |             |                     |                                |                   | -        | _            |          |                                                           | ×                |                            |         |       |         |
| FMW-152-111523                        |                                                    | 1351         |                  |                                |                                             | ×      | -                    | ļ            |             |                     | $\vdash$                       | -                 | +-       | <u> </u>     | <u> </u> |                                                           | ×                |                            |         |       |         |
| FMW-151-111523                        | 4                                                  | 1,807        | 1                | 4                              | Ĺ                                           | ×      | -                    | ļ            |             |                     | $\vdash$                       |                   | -        | <del> </del> |          |                                                           | ×                |                            |         |       |         |
| FMW-160-111423                        | 11/14/23                                           | 1425         | 071              | ō                              |                                             | ×      | 长                    | <del> </del> |             |                     |                                | +-                | +-       | -            |          |                                                           | ×                |                            |         | -     |         |
| FMW-154-111423                        | _                                                  | 1250         |                  | -                              |                                             | X      | X                    | -            |             |                     |                                | -                 | -        | _            | <u> </u> |                                                           | $ \times $       |                            |         |       |         |
| FMW-155-111423                        |                                                    | 1230         |                  |                                |                                             | (      | ×                    |              |             |                     | -                              | -                 | -        | -            |          |                                                           | ×                |                            |         |       |         |
| FMW-161-111423                        | !                                                  | 50H          | -1               | -1                             |                                             | X      | X                    |              |             |                     |                                |                   |          |              |          |                                                           | ×                |                            |         |       |         |
|                                       |                                                    |              |                  |                                |                                             |        |                      |              |             |                     |                                | -                 |          |              |          |                                                           |                  |                            |         |       |         |
|                                       |                                                    |              |                  |                                |                                             |        |                      |              |             |                     |                                |                   |          |              | ļ        |                                                           | -                |                            |         |       |         |
| Standard Tu                           | Standard Turn Around Time (TAT) = 10 Business Days | ime (TAT     | ) = 101          | Susiness                       | Days                                        |        |                      |              |             |                     | SPECIAL INSTRUCTIONS           | AL IN             | STRU     | É            | Š        |                                                           |                  |                            |         |       | 1       |
| :                                     | 1 Day                                              |              | 2 Day            | _                              | 3.0                                         | 3 Day  |                      |              |             |                     | Hold                           | ゴ                 | 3        | ) <          | M        | Hold CUOCs analysis for PM request                        | ¥.               | regimest                   | y       |       |         |
| TAT Requested (circle)                | 5 Day                                              |              | Standard         | ( P                            | Other:                                      | i.     |                      |              | 1           |                     |                                |                   |          |              |          |                                                           |                  |                            |         |       |         |
| MAS                                   | ES ARE HE                                          | LD FOR 3     | 10 DAYS          | -                              |                                             |        |                      |              |             |                     |                                |                   |          |              |          |                                                           |                  |                            |         |       |         |
| D BY:                                 | RECEIVED BY:  Signature:                           |              | RECE             | IVED B                         | يًا                                         |        | 4                    | <sub> </sub> |             | - s                 | RELINQUISHED BY:<br>Signature: | QUISH             | ED B     | تا           |          | Date:                                                     | REC              | RECEIVED BY:<br>Signature: | ď       | Date: |         |
| a<br>L                                | 11-16-23                                           | 23           | May              | 4                              |                                             |        | $\stackrel{\sim}{=}$ | 11/16/23     | 8           |                     |                                |                   |          |              |          |                                                           |                  |                            |         |       |         |
| Printed Name: [Mackillo] Rec [A]      | Time:<br>A: CS on                                  |              | 1                | Printed Name:<br>Al YSSA W. Bu | - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> | }      | T.                   | <u>"</u>     | Time: 16.22 |                     | Printed Name                   | Name:             |          |              | 3        | Time:                                                     | Pri              | Printed Name:              | Ti      | Time: |         |
| 0,,,                                  | -                                                  |              | Соправу          | my:                            |                                             |        |                      |              |             | Ť                   | Company:                       | 5                 |          |              |          |                                                           | Co               | Company:                   |         |       |         |

Apex Laboratories

( milale Pog.



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

| Company: Face flon Consulting Ingestings Gree Address: 475 ST Ave NW, Independent 45027 Sampled by: M. Yseguire ( A. Osman Sie Location: |                          |               |         |                       |          | ŀ        |                     |                  | 1             |                      |         |                                             | *              | 7          | とすかいなり米            |         |           |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------|---------|-----------------------|----------|----------|---------------------|------------------|---------------|----------------------|---------|---------------------------------------------|----------------|------------|--------------------|---------|-----------|
| Sampled by M. Yseguine I H. Osman Site Location:                                                                                         | Project Mar. Greg Perers | 8             | S       |                       |          | -        | Project Name: Block | -                | 300           | 88                   |         |                                             |                | Ē          | Project #: 397-D19 |         |           |
| Sempled by: M. Yseguirre / M. Osman<br>Site Location:                                                                                    | 4 950                    |               | Ē       | Phone (425)295- (YBY) | 35)2     | 15-Ü     | SOC                 | Erneil           | 3pe+          | 40°C                 | ratio   | Email gpeters & furallanconswhing com       | 8              | Ž          | 910- the "a        |         |           |
| Site Location:                                                                                                                           |                          |               |         |                       |          |          |                     |                  |               |                      |         |                                             |                |            |                    |         | 1         |
| State (1)(s)kingtho                                                                                                                      |                          |               |         |                       |          |          |                     |                  | MAI RAN       |                      | Ú       | NY NY IK<br>Be' CP'<br>13)                  | TCL.P          | (30FX).    |                    |         |           |
| County King                                                                                                                              |                          |               |         |                       |          |          |                     | <del></del>      |               |                      | ) Matel | Alestada (<br>18, 18m,<br>30, Cm,<br>Min, M | Digg           |            |                    |         |           |
| SAMPLE UD                                                                                                                                | XLFTAM                   | * OB CO       | MALEH   | HJLAN                 | 3500 B.L | 8368 Hal | OA 0978             | VIS OLTO         | 2087 PC       | 8081 Pes             | BCBV P  | Triority h                                  | OLVE<br>LCCF M |            | >⊃ĆM               |         | paret bio |
| 2                                                                                                                                        | II.                      | _             | ×       |                       | $\vdash$ | ╂        | Γ                   | $t^-$            | ╀             | 1                    |         | T C                                         | 4-             | _          | 1×<br>2 ©          | 1       | _         |
| FMW-162-111523   1415                                                                                                                    | -                        |               | ×       |                       |          | -        |                     |                  | -             | _                    |         |                                             | ╫              | ×          | (A) X              |         | +         |
| FMW-152-111523                                                                                                                           |                          |               | ×       |                       |          | <u> </u> |                     | T                | ╁             | _                    |         |                                             | ╁              | ×          | <u>।</u>           |         | +-        |
| FMW-151-111523 - 1802                                                                                                                    | 7 7                      | 1             | ×       |                       | $\vdash$ | -        |                     | $\vdash$         | -             |                      |         |                                             | ╁              | X          | )<br>Q             |         | +         |
| FMW-160-111423 1123 1125                                                                                                                 | 07                       | ē             | ×       | X                     | X        | -        |                     |                  | $\vdash$      | L                    |         |                                             | ╁              | ×          |                    | Ė       | +-        |
| FMW-154-111423 1 1250                                                                                                                    | -                        | -             | ×       | X                     | ×        | -        |                     | T                | -             | _                    |         |                                             | ╀              | $\times$   |                    | $\perp$ | $\vdash$  |
| FMW-155-111423                                                                                                                           | 0                        |               | ×       | ×                     | X        | _        |                     | -                | $\vdash$      |                      |         |                                             | $\vdash$       | ×          |                    |         | $\vdash$  |
| FMJ-161-11423 .L. 1405                                                                                                                   | 7 5                      | 1             | ×       | X                     | ×        |          |                     |                  |               |                      |         |                                             | _              | X          |                    |         |           |
|                                                                                                                                          | 1                        |               | +       | $\Box$                | +        | -        |                     |                  | -             |                      |         |                                             | -              |            |                    |         | $\vdash$  |
| D. J. B. B. B. B. B. B. B. B. B. B. B. B. B.                                                                                             |                          | 1             | 4       | コ                     | $\dashv$ | -        |                     | $\dashv$         | -             |                      |         |                                             | $\dashv$       |            |                    |         | $\dashv$  |
| Sentatra Jum Aryand Jume (TAT) = 10 Business Days                                                                                        | (1) = 10 Bm              | Day Day       |         |                       |          |          |                     |                  |               | SPECIAL INSTRUCTIONS |         | ***                                         | ,              | ;          |                    |         |           |
| TAT Decreased (deals)                                                                                                                    | 2 Day                    | ,             | 3 Day   |                       |          |          |                     | 100              | 3             | Š .                  | 8       |                                             | ع ا            | 5 ter My R | aquest.            |         |           |
| S Day                                                                                                                                    |                          | $\overline{}$ | Officer | İ                     |          | ı        |                     | Š                | Ĭ             | 3                    | \$      | (S) = MANON PAC CITY (N                     |                | i<br>=     |                    |         |           |
| BAMPLES ARE NELD FOR 39 DAYS                                                                                                             | 30 DAYS                  |               |         |                       |          |          | T                   |                  |               |                      |         |                                             |                |            |                    |         |           |
| NOTANGUISHIED BY:                                                                                                                        | RECEIV                   | ä.            |         |                       | ,        |          |                     | RELINQUISEED BY: | SUSTEEN STATE | Ë                    |         |                                             |                | 2          | RECEIVED BY:       |         |           |
| in a                                                                                                                                     | ghan                     | لی            |         | - 3                   | 16       | 11/16/23 |                     |                  |               |                      |         | ğ.                                          |                |            | <b>L</b>           |         |           |
| MARKELLO ROCHA CO. X om                                                                                                                  | Mary Mary                | 7             | 134     |                       | )<br>ji  | 22.91    | N                   | Printed Nemes    | ji<br>ji      |                      |         | Tight.                                      |                | £          | Printed Numer.     | Ä       |           |
|                                                                                                                                          | Company                  |               |         |                       |          |          |                     | Conspount        | 1             |                      |         |                                             |                | Company    | ¥.                 |         |           |

Apex Laboratories

/ milale fog



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Greg Peters
 A3K1435 - 12 22 23 1832

| 1   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fortillan Cont. stor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Portulan Contactor |        | 1       |              | S. S.    |          |       |     |                 | ],       | d         |             | 92                                               |                 | ·                 | 2               | 3          | 20             | * \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ |                       |         | 1   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------|---------|--------------|----------|----------|-------|-----|-----------------|----------|-----------|-------------|--------------------------------------------------|-----------------|-------------------|-----------------|------------|----------------|------------------------------------------|-----------------------|---------|-----|
| 19   19   19   19   19   19   19   19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of the continue of th | 7                  | E<br>E | 2       | -            |          |          |       | 7   | No.             | 2        | Š         |             | 8                                                |                 |                   |                 | ğ          | *              | 2-1-0                                    |                       |         | - 1 |
| 19   19   19   19   19   19   19   19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Address: 475 ST Ave Nu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , Issaquen         | 3      | 980     | 5            | -        | DOING:   | (F)   | 385 | 3               | 4        | 용         | cte.        | S. Feet                                          | HEAC            | an gorthogo       | ٤               | 2          | 7              | 7 -019                                   |                       |         |     |
| See   Michight   See   Michight   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See   See      | Statished by: M. Ysaguirre 1 f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 . Osman          |        |         |              |          |          |       |     |                 |          |           |             |                                                  |                 |                   |                 |            |                |                                          |                       |         |     |
| State   Wishington   State   Wishington   State   Wishington   State   Wishington   State   Wishington   State   Wishington   State   Wishington   State   Wishington   State   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishington   Wishingto   | Site Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |        |         |              |          | -        |       |     | $\vdash$        | <u> </u> | 36        |             | <b></b>                                          | -               | 78<br>943<br>79:2 | 475             | C30        |                |                                          |                       | <u></u> |     |
| SAMERIE D   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES   WASTES    | State Washington                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |        |         | MERS         | 0        |          |       |     |                 |          |           |             |                                                  |                 |                   | (s              | 11(3) 8    |                | >+5<br>                                  |                       |         |     |
| Security DATE DATE STORY INVESTS 190 N.25 1 X X X X 100 N.25 1 100 L L X X X X 100 N.25 1 1100 L L X X X X 100 N.25 1 1100 L L X X X X 100 N.25 1 1100 L L X X X X 100 N.25 1 1100 L L X X X X 100 N.25 1 1100 L L X X X X 100 N.25 1 1100 L L X X X X 100 N.25 1 1100 L L X X X X 100 N.25 1 1100 L L X X X X 100 N.25 1 1100 L L X X X X 100 N.25 1 1100 L L X X X X 100 N.25 1 1100 L L X X X X 100 N.25 1 1100 L L X X X X X 100 N.25 1 1100 L L X X X X X 100 N.25 1 1100 L L X X X X X 100 N.25 1 1100 L L X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | County King                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |        | ×       | <b>NATMO</b> |          |          |       |     |                 |          |           | <b>PB</b> 2 |                                                  |                 |                   | ) मध्यम्<br>अत  | andan      | 3.             | /~ 7                                     | · · · · · · · · · · · | əqdo    |     |
| 162 - 1152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | atva               | SDAIT. | MATTE   | O # O #      |          |          |       |     |                 |          |           | 4 2808      |                                                  |                 |                   | TCLP            | Hasi       | DOM            | סא ר                                     |                       | ne blei |     |
| 152 - 1152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FMW-164-11523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1415123            |        | U,H     | _            | ×        | -        |       |     | $\vdash$        | -        | L         |             | T                                                | +               |                   |                 | ×          |                | F                                        | +                     |         |     |
| 150 - 11/23   150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FMW-162-111523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                  | 瓦瓦     | _       | _            | <u> </u> |          |       |     | -               | _        |           |             |                                                  | -               |                   |                 | ×          | ত্ত            | L                                        |                       |         | 1   |
| 154-111423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FMW - 152 - 111523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | 1351   |         |              | ×        |          |       |     |                 | _        |           |             |                                                  | -               |                   |                 | ×          |                |                                          |                       | L       | 1_  |
| 159 - 11/1423   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425   1425    | FMW-151-111523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                  | -802   | 4       | 4            | ×        | -        |       |     | -               | 1        |           |             | -                                                | -               |                   | $oxed{\Box}$    | ×          | d<br>R         | -                                        |                       | _       | _   |
| 155-114423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FMW-160-111423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MH/23              |        | 071     | ō            | ×        | X        | X     |     | -               |          |           |             | T                                                | -               |                   | L               | ×          | $\dagger$      | -                                        | -                     |         | 1   |
| 1975-111423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | FMW-154-111423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    | 1250   | _       | -            | ×        | X        | X     |     | ├-              | 1        |           |             | $\vdash$                                         | +               |                   |                 | $\times$   | 1              | Q                                        |                       | _       | _   |
| Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase Days   Standard Team (TAT) = 10 Basicase D   | FMW- 155-111423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 1230   |         |              | ×        |          | ×     |     | -               |          |           |             | <del>                                     </del> | +-              |                   |                 | X          | 100            | 100                                      |                       |         |     |
| Standard Tens (Artis) = 10 Baciness Days   Standard Tens (Artis) = 10 Baciness Days   Standard (Artis) = 10 Baciness Days   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Christoless   Standard Ch   | FMJ-161-11423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | 140%   | -1      | 4            | ×        | $\geq$   | X     |     |                 |          |           |             |                                                  | -               |                   |                 | X          |                |                                          |                       |         |     |
| Sended Inn Accord The (TAI) = 10 Bay 3 Day   Sended Inn Accord The (TAI) = 10 Bay 3 Day   Bold CUOC, CARBURS, For OM REQUEST.    1 Day 2 Day 3 Day 3 Day   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   COURS   C   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |        | 7       | 7            | $\dashv$ | $\dashv$ |       |     | $\vdash \vdash$ | $\dashv$ |           |             | -                                                | $\vdash \vdash$ |                   |                 |            | $\Box$         |                                          |                       |         |     |
| Sandest Ten Accord Two (According 1987) - 10 Basiness Days 3 Day 1997   10 CUOCS and ally ES for PM requests 1. The sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of the sander of th |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |        |         | 7            | $\dashv$ | $\dashv$ |       | 一   | $\dashv$        | _        |           |             | $\dashv$                                         |                 |                   |                 |            | $\dashv$       |                                          |                       |         |     |
| 1 Day 2 Day 3 Day 10cl CUCC and Market 123  Shay (Samilard) Other:  Samilard Control of CUCC and Market 123  Samilard Control of CUCC and Market 123  Samilard Control of CUCC and Market 123  Market 1110 103  The Samilard Control of CUCC and Market 123  Samilard Control of CUCC and Superior 123  Samilard Control of CUCC and Superior 123  Samilard Cuccount 120  Control of CUCC and Superior 123  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount 120  Samilard Cuccount | Sander                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Turn Arroand Ten   | TAT    | # 10 B  | O Marie      | 14       |          |       |     |                 |          | CIVI      | EST         |                                                  | SNS             |                   | •               |            |                | ب<br>:                                   |                       |         |     |
| S. Day Senderd Other:  SAMPLES ARE HELD FOR 10 DAYS  THE COMPANY  THE COMPANY  COMPANY  SENDER OF CLOSE OF THE FIRST COMPANY  SENDER OF THE COMPANY  SENDER OF THE COMPANY  SENDER OF THE COMPANY  THE COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  COMPANY  CO |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 Day              |        | 2 Day   |              | 3.04     |          |       |     |                 | 10       | つ<br>で    | 2           | S                                                | 3               | allysis to        | <u>د</u><br>د ح | ⊂ ;<br>≺ ; | and a          | Ž                                        |                       |         |     |
| THE CONTROL OF TAXABLE AND METERS OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE OF TAXABLE | twi vegested (street)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 Day              | 3/     |         | $\cap$       | Other    |          |       |     |                 | 8        | )= A2     | 3           | £.                                               |                 | į.                | 4/=             | ]          |                |                                          |                       |         |     |
| TOTAL TOTAL ON 15 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1 Per 1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IPLES ARE HELL     | POR 34 | DAYS    |              |          |          |       |     |                 | 1        |           |             |                                                  |                 |                   |                 |            |                |                                          |                       |         |     |
| 1-18-33 Mech. 11/16/18 Then the the then the the then the the then the then the then the then the then the then the then the the then the the then the the the the the the the the the the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RELINQUISEED BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | à                  | _      | RECEIV  | 20 9Y:       | f        |          | 1     |     |                 |          | INOU      |             | i i                                              |                 | ;                 |                 | RECE       | N.             | <u> </u>                                 |                       |         | i   |
| These Three Name Three (6.22 Prints Name Three Company Company Company Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | andr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11-11-3            |        | Mr.     | ہے           |          |          | 13    | J.  | ~               |          | Í         |             |                                                  |                 | ij                | -               |            | Ĕ              |                                          | ij                    |         |     |
| Company Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | "it Dalin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$ X               |        | NE SE   | 7            | 7        |          | Time: | 0   | 2               |          | N Near    | *           |                                                  |                 | Tidner:           |                 | Print.     | X and a second |                                          | ji<br>Li              |         |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |        | Company |              |          |          |       |     |                 |          | - America |             |                                                  |                 |                   |                 | 0          |                |                                          |                       |         | 1   |

Apex Laboratories

/ milule fog



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Farallon-Seattle

Project:

397-019 Block 38 West

1809 7th Ave Suite 1111 Seattle, WA 98101 Project Number: **397-019**Project Manager: **Greg Peters** 

Report ID: A3K1435 - 12 22 23 1832

| LILLIE. I DW DILLIE Y                                                                                                                                                                              | Element WO#: A3 MH35                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                    | lock 38 397-019                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                    | 1005                                                                                                                                                                                                                                                                                                                                    |
| <u>Delivery Info</u> :                                                                                                                                                                             | Husha a Hayaa Baraa A                                                                                                                                                                                                                                                                                                                   |
| Date/time received: 1/                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                         |
| Delivered by: ApexC                                                                                                                                                                                | Date/time inspected: 11/16/13 @ 116:25 By: APL                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                    | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                   |
| Chain of Custody inclu                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                         |
| Signed/dated by client?                                                                                                                                                                            | Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7                                                                                                                                                                                                                                                                   |
| F (9C)                                                                                                                                                                                             | $\frac{\text{Cooler #1}}{\text{U G}} = \frac{\text{Cooler #2}}{\text{3.1}} = \frac{\text{Cooler #3}}{\text{2.5}} = \frac{\text{Cooler #4}}{\text{5.1}} = \frac{\text{Cooler #6}}{\text{5.3}} = \frac{\text{Cooler #7}}{\text{U.8}}$                                                                                                     |
| Temperature (°C)                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                         |
| Custody seals? (Y/N)                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                         |
| Received on ice? (Y/N                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                         |
| Temp. blanks? (Y/N)                                                                                                                                                                                | land Pack                                                                                                                                                                                                                                                                                                                               |
| ce type: (Gel/Real/Oth                                                                                                                                                                             | TO 10                                                                                                                                                                                                                                                                                                                                   |
| Condition (In/Out):                                                                                                                                                                                | Y/N) Possible reason why:                                                                                                                                                                                                                                                                                                               |
| Sample Inspection:                                                                                                                                                                                 | nples form initiated? Yes No. Date/time inspected: 1111173 @ 1024 By:                                                                                                                                                                                                                                                                   |
| Sample Inspection: All samples intact? You                                                                                                                                                         | Date/time inspected: IIIII/ 2 @ 1024 By:  es No Comments:                                                                                                                                                                                                                                                                               |
| Sample Inspection: All samples intact? You                                                                                                                                                         | Date/time inspected: 11171/2@ 1024 By:                                                                                                                                                                                                                                                                                                  |
| Sample Inspection: All samples intact? Yes                                                                                                                                                         | Date/time inspected:                                                                                                                                                                                                                                                                                                                    |
| Sample Inspection: All samples intact? You Bottle labels/COCs ago COC/container discrep                                                                                                            | Date/time inspected:                                                                                                                                                                                                                                                                                                                    |
| Sample Inspection: All samples intact? You Bottle labels/COCs ago COC/container discrep                                                                                                            | Date/time inspected:                                                                                                                                                                                                                                                                                                                    |
| Sample Inspection: All samples intact? You Bottle labels/COCs age COC/container discrept Containers/volumes re                                                                                     | Date/time inspected:                                                                                                                                                                                                                                                                                                                    |
| Sample Inspection: All samples intact? You Bottle labels/COCs age COC/container discrept Containers/volumes re                                                                                     | Date/time inspected:                                                                                                                                                                                                                                                                                                                    |
| Sample Inspection: All samples intact? You Bottle labels/COCs ago COC/container discrept Containers/volumes re Do VOA vials have vi Comments                                                       | Date/time inspected:                                                                                                                                                                                                                                                                                                                    |
| Sample Inspection: All samples intact? You Bottle labels/COCs ago COC/container discrept Containers/volumes re Do VOA vials have vi Comments                                                       | Date/time inspected:                                                                                                                                                                                                                                                                                                                    |
| Sample Inspection: All samples intact? You Bottle labels/COCs ago COC/container discrep Containers/volumes re Do VOA vials have vi Comments Water samples: pH che                                  | Date/time inspected:                                                                                                                                                                                                                                                                                                                    |
| Sample Inspection: All samples intact? You Bottle labels/COCs ago COC/container discrep Containers/volumes re Do VOA vials have vi Comments Water samples: pH che                                  | Date/time inspected:                                                                                                                                                                                                                                                                                                                    |
| Sample Inspection: All samples intact? You Bottle labels/COCs age COC/container discrep Containers/volumes re Do VOA vials have vi Comments Water samples: pH che                                  | Date/time inspected:                                                                                                                                                                                                                                                                                                                    |
| Sample Inspection: All samples intact? You Bottle labels/COCs ago COC/container discrep Containers/volumes re Do VOA vials have vi Comments Water samples: pH che Comments: Additional information | Date/time inspected: IIIT 1/2 @ 1024 By:  es No Comments:  pancies form initiated? Yes No   pancies form initiated? Yes No Comments:  pancies form initiated? Yes No   paceived appropriate for analysis? Yes No Comments:  pancies form initiated? Yes No No Ph ID: # 231  ecked: Yes No NA ph appropriate? Yes No NA ph ID: # 231  n: |
| Sample Inspection: All samples intact? You Bottle labels/COCs age COC/container discrep Containers/volumes re Do VOA vials have vi Comments Water samples: pH che                                  | Date/time inspected:                                                                                                                                                                                                                                                                                                                    |

Apex Laboratories

(milale fog



Farallon-Seattle

## ANALYTICAL REPORT

AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

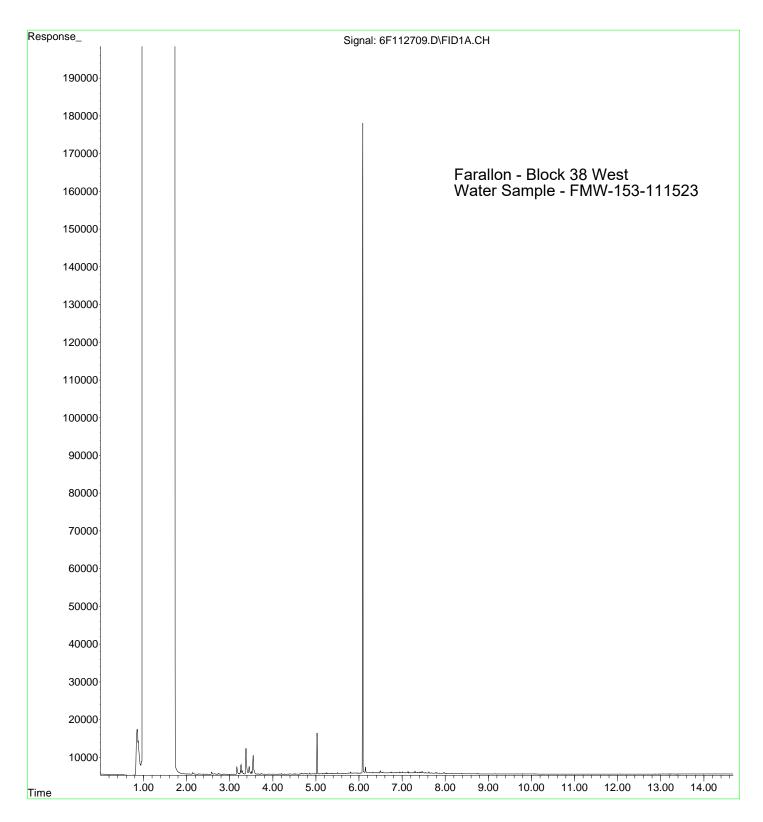
Project: <u>397-019 Block 38 West</u>

1809 7th Ave Suite 1111Project Number: 397-019Seattle, WA 98101Project Manager: Greg Peters

Report ID: A3K1435 - 12 22 23 1832

|                                                                                                        |                                                                          |                        |                        | PAZ                                                |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------|------------------------|----------------------------------------------------|
|                                                                                                        | APEX LABS CO                                                             | <u>OLER RECEIPT FO</u> | <u>ORM</u>             |                                                    |
| Client: Farallon (                                                                                     | Consulting                                                               | Elen                   | ent WO#: A3 11435      | *                                                  |
| Project/Project #: Blo                                                                                 | . /                                                                      |                        |                        |                                                    |
| Delivery Info:                                                                                         |                                                                          |                        |                        |                                                    |
| Date/time received: 11/11/                                                                             | nh7@ 110:22                                                              | Bv: AAW                |                        |                                                    |
| Delivered by: ApexClier                                                                                |                                                                          |                        | SDSEvergreen /         | _Other                                             |
|                                                                                                        | e/time inspected: 11/16/                                                 |                        |                        |                                                    |
| Chain of Custody included                                                                              | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                    |                        |                        |                                                    |
| Signed/dated by client?                                                                                | Yes X No                                                                 |                        |                        |                                                    |
| Temperature (°C) Custody seals? (Y/N)                                                                  | 5.3 4.5                                                                  |                        | 4 Cooler #5 Cooler #6  | (MARIEMANIA AND AND AND AND AND AND AND AND AND AN |
| Received on ice? (Y/N)                                                                                 | U 5                                                                      |                        |                        |                                                    |
| Temp. blanks? (Y/N)                                                                                    | V -                                                                      |                        |                        |                                                    |
| Ice type: (Gel/Real/Other)                                                                             | Real->                                                                   |                        |                        |                                                    |
| Condition (In/Out):                                                                                    | In -7                                                                    |                        |                        |                                                    |
| Green dots applied to out o Out of temperature sample: Sample Inspection: Date All samples intact? Yes | s form initiated? Yes/No<br>e/time inspected:        <br>  No Comments:_ | 23@ 1024               |                        |                                                    |
| Bottle labels/COCs agree?                                                                              | YesNo Com                                                                | ments:                 |                        |                                                    |
| COC/container discrepanci                                                                              |                                                                          |                        | Comments:              |                                                    |
| Do VOA vials have visible                                                                              | e headspace? Yes                                                         | No X NA                |                        | <del></del>                                        |
| Water samples: pH checke                                                                               | / \                                                                      |                        |                        | A23I172                                            |
| Additional information:                                                                                |                                                                          |                        |                        |                                                    |
| T -1 -1 -1 1                                                                                           | Witness:                                                                 |                        | Cooler Inspected by: 1 | 11 1.00                                            |
| Labeled by:                                                                                            | witness.                                                                 | `                      | cooler inspected by.   | orm 1003 R-01                                      |
| <b>D</b> 3)                                                                                            | Ker,                                                                     |                        | X > J511/17            |                                                    |

Apex Laboratories

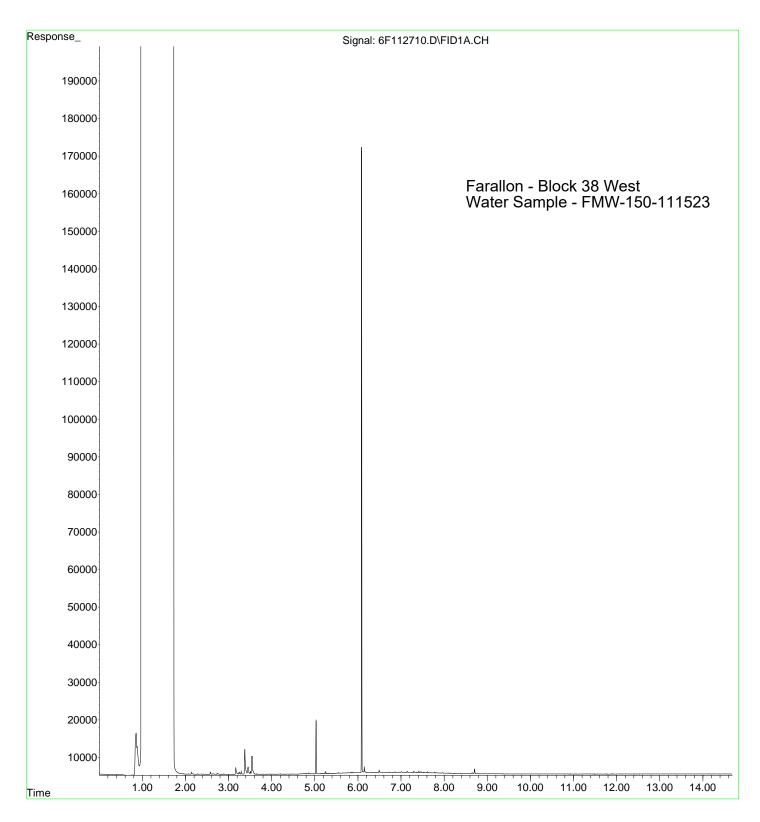

milale Pog

File : C: \gcns\1\data\3K27060\6F112709. D

Operator : BLL

Acquired : 27 Nov 2023 20:19 using AcqMethod 6F71215A. M

Instrument: HP G1530A Sample Name: A3K1435-01

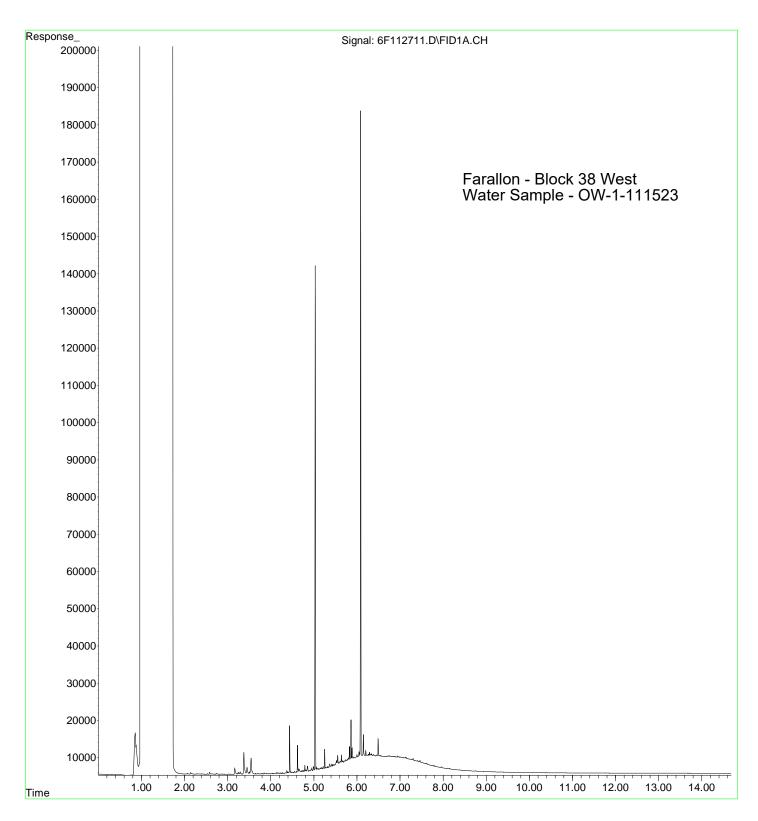



File : C: \gcns\1\data\3K27060\6F112710. D

Operator : BLL

Acquired : 27 Nov 2023 20:40 using AcqMethod 6F71215A. M

Instrument: HP G1530A Sample Name: A3K1435-02

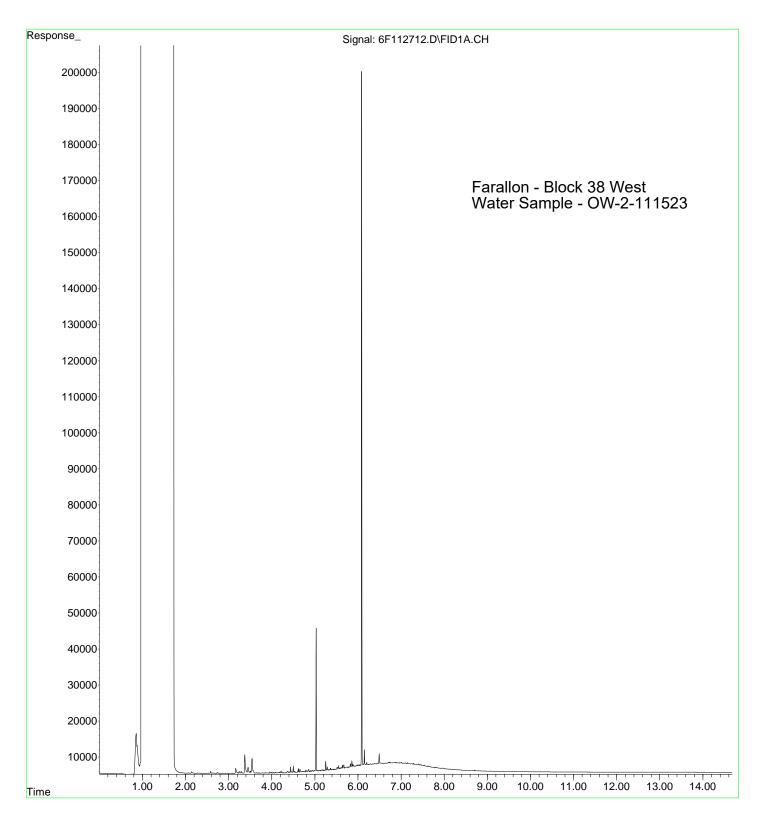



File : C: \gcns\1\data\3K27060\6F112711. D

Operator : BLL

Acquired : 27 Nov 2023 21:00 using AcqMethod 6F71215A. M

Instrument: HP G1530A Sample Name: A3K1435-03

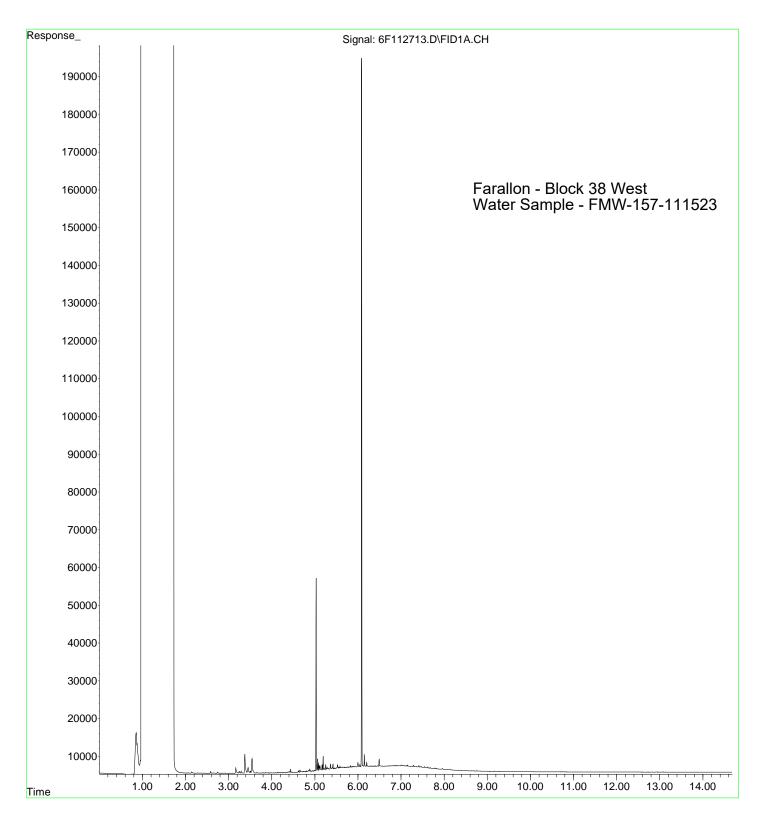



File : C: \gcns\1\data\3K27060\6F112712. D

Operator : BLL

Acquired : 27 Nov 2023 21:20 using AcqMethod 6F71215A. M

Instrument: HP G1530A Sample Name: A3K1435-04

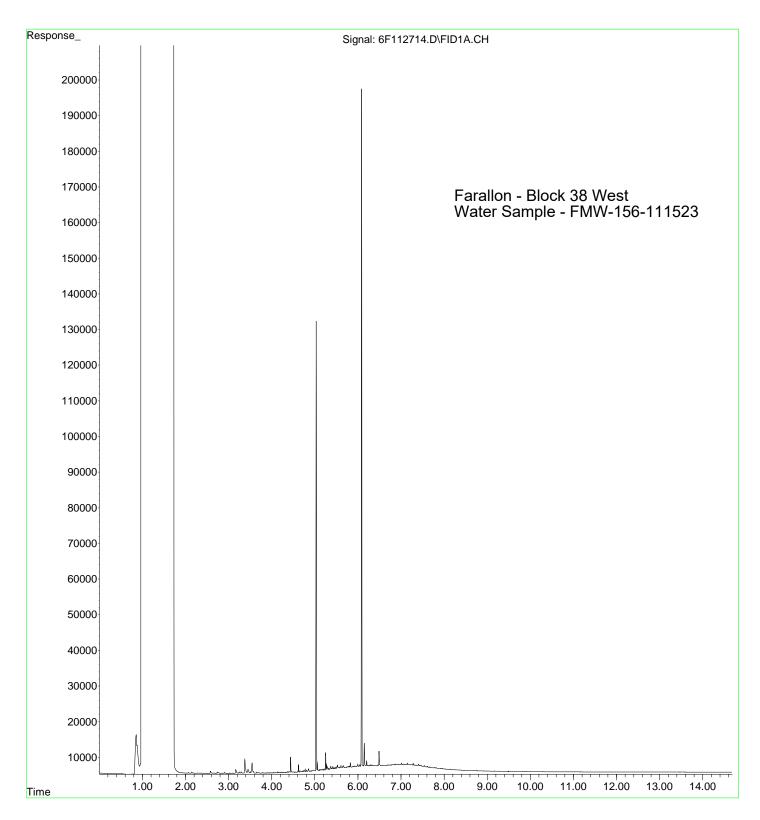



File : C: \gcns\1\data\3K27060\6F112713. D

Operator : BLL

Acquired : 27 Nov 2023 21:40 using AcqMethod 6F71215A. M

Instrument: HP G1530A Sample Name: A3K1435-05

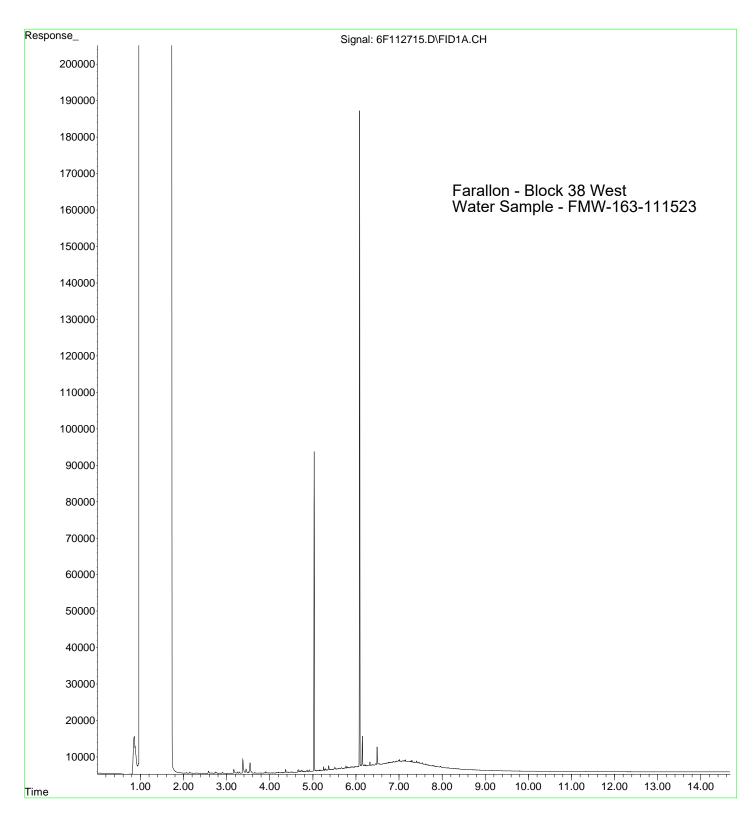



File : C: \gcns\1\data\3K27060\6F112714. D

Operator : BLL

Acquired : 27 Nov 2023 22:00 using AcqMethod 6F71215A. M

Instrument: HP G1530A Sample Name: A3K1435-06

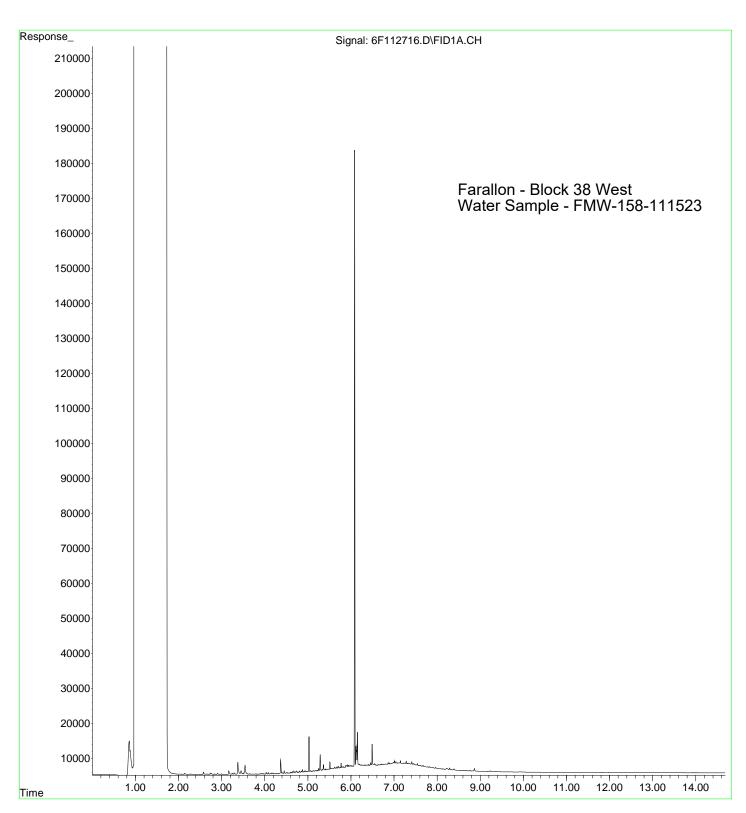



File : C: \gcns\1\data\3K27060\6F112715. D

Operator : BLL

Acquired : 27 Nov 2023 22: 20 using AcqMethod 6F71215A. M

Instrument: HP G1530A Sample Name: A3K1435-07

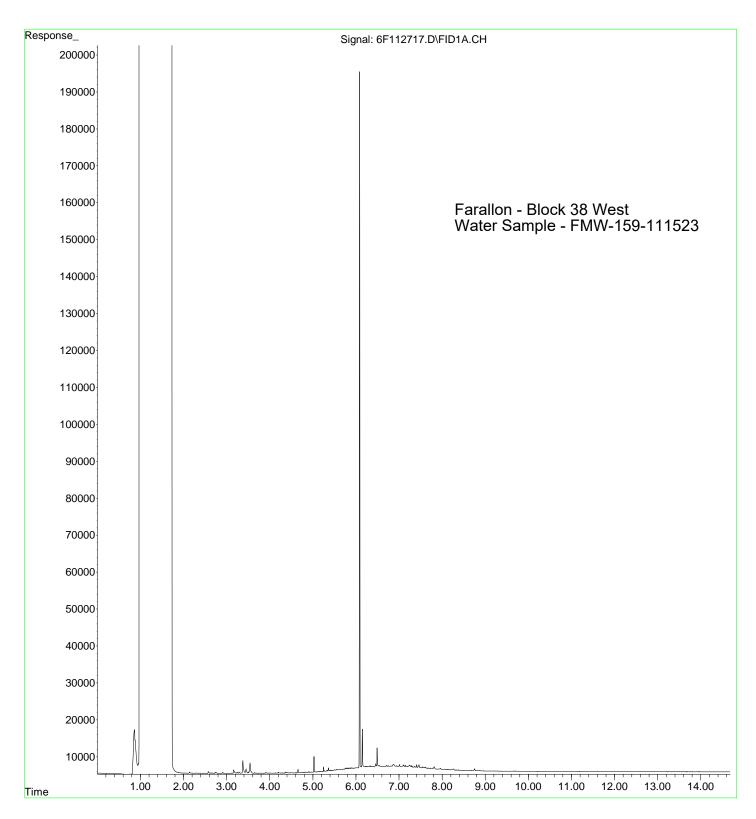



File : C: \gcns\1\data\3K27060\6F112716. D

Operator : BLL

Acquired : 27 Nov 2023 22:41 using AcqMethod 6F71215A. M

Instrument: HP G1530A Sample Name: A3K1435-08

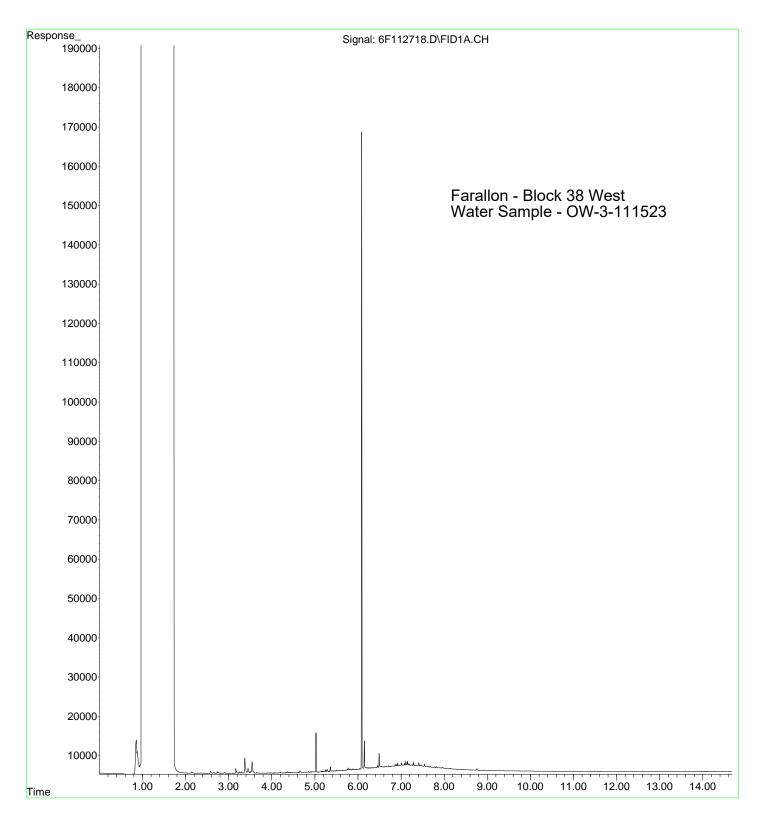



File : C: \gcns\1\data\3K27060\6F112717. D

Operator : BLL

Acquired : 27 Nov 2023 23:01 using AcqMethod 6F71215A. M

Instrument: HP G1530A Sample Name: A3K1435-09

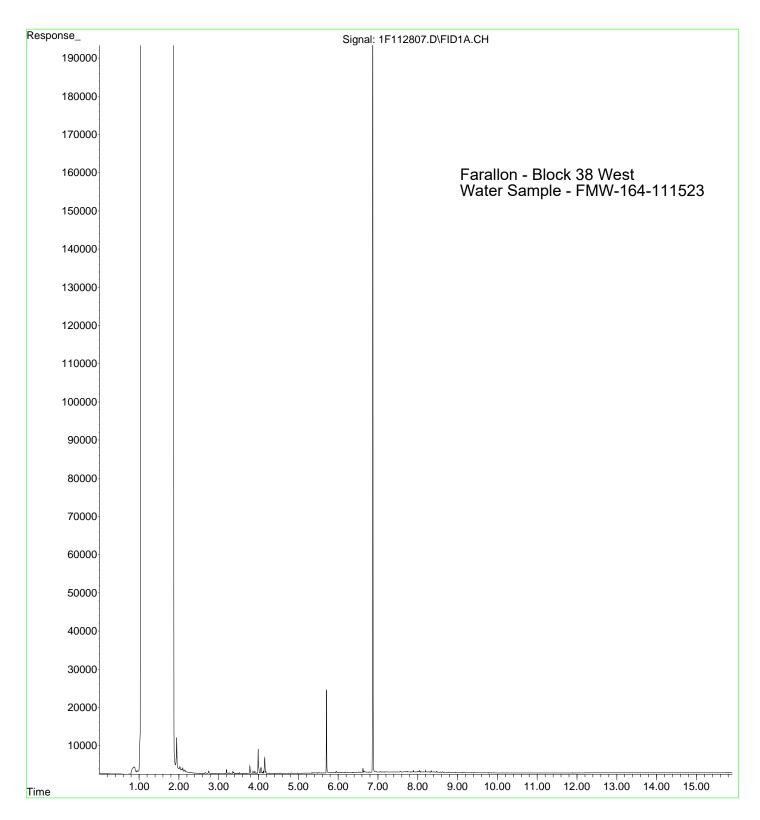



File : C: \gcns\1\data\3K27060\6F112718. D

Operator : BLL

Acquired : 27 Nov 2023 23:21 using AcqMethod 6F71215A. M

Instrument: HP G1530A Sample Name: A3K1435-10

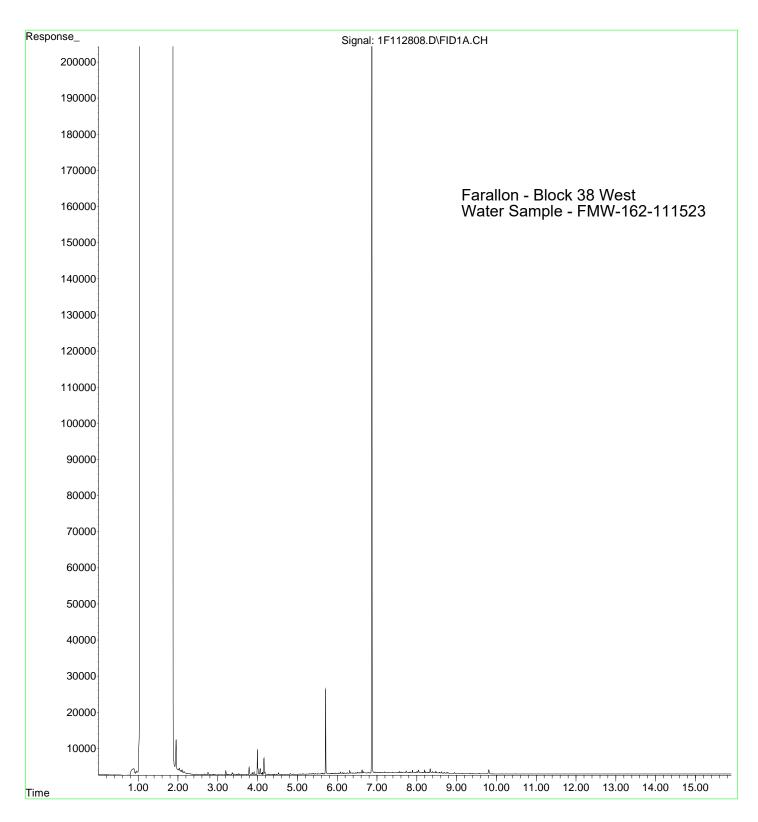



File : C: \gcns\1\data\3K28001\1F112807. D

Operator : BLL

Acquired : 28 Nov 2023 8:50 using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: A3K1435-11RE1

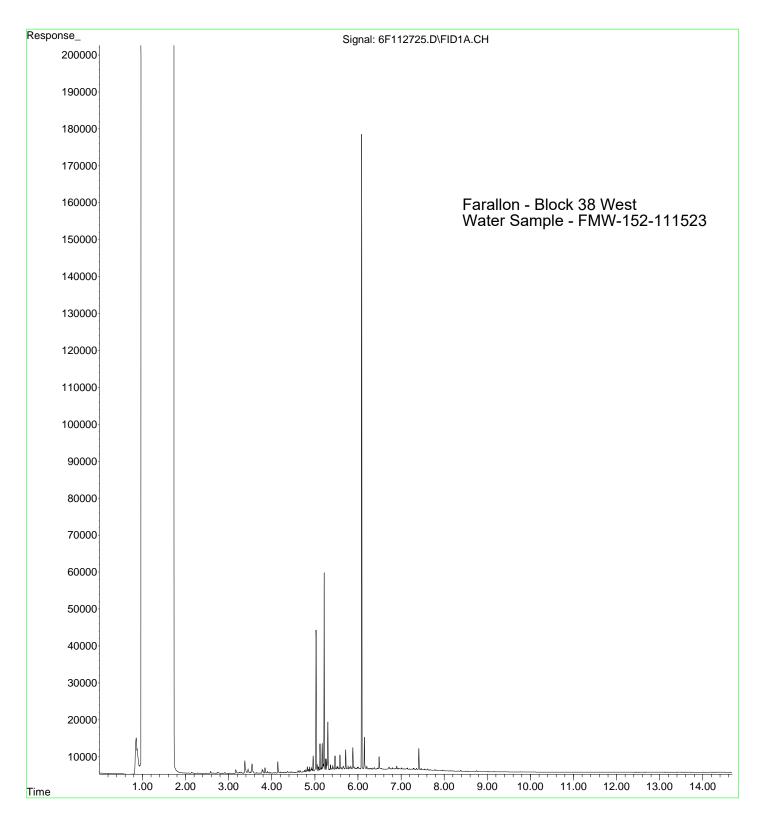



File : C: \gcns\1\data\3K28001\1F112808. D

Operator : BLL

Acquired : 28 Nov 2023 9: 23 using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: A3K1435-12RE1

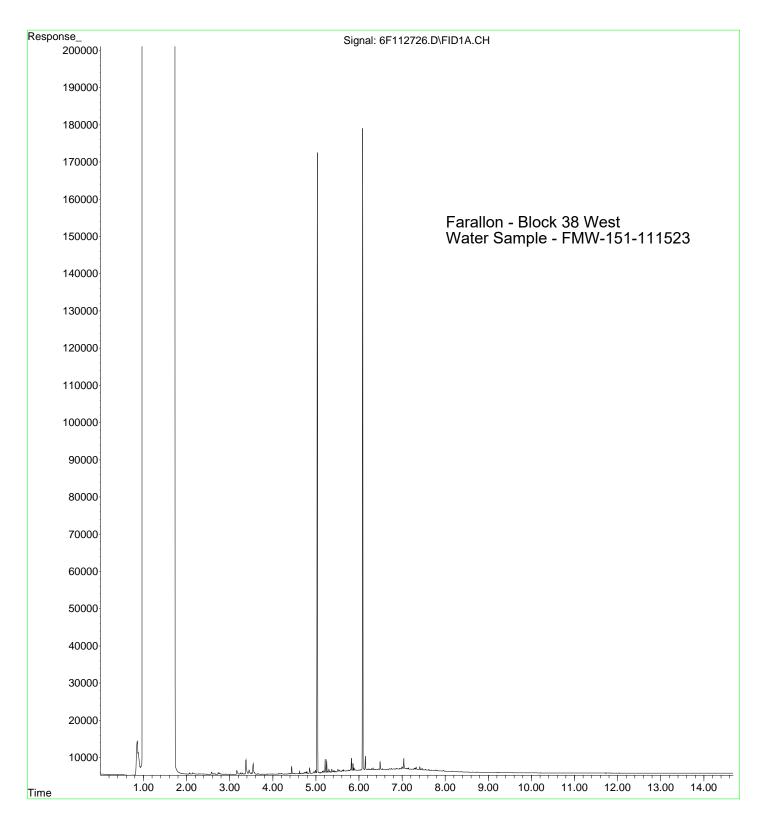



File : C: \gcns\1\data\3K27060\6F112725. D

Operator : BLL

Acquired : 28 Nov 2023 1:43 using AcqMethod 6F71215A. M

Instrument: HP G1530A Sample Name: A3K1435-13

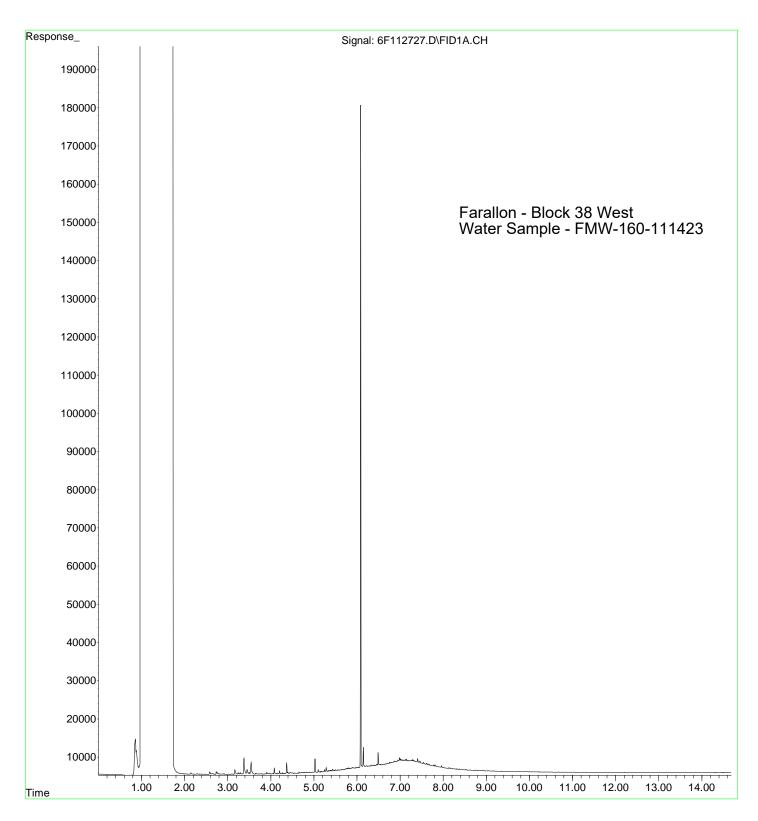



File : C: \gcns\1\data\3K27060\6F112726. D

Operator : BLL

Acquired : 28 Nov 2023 2:03 using AcqMethod 6F71215A. M

Instrument: HP G1530A Sample Name: A3K1435-14

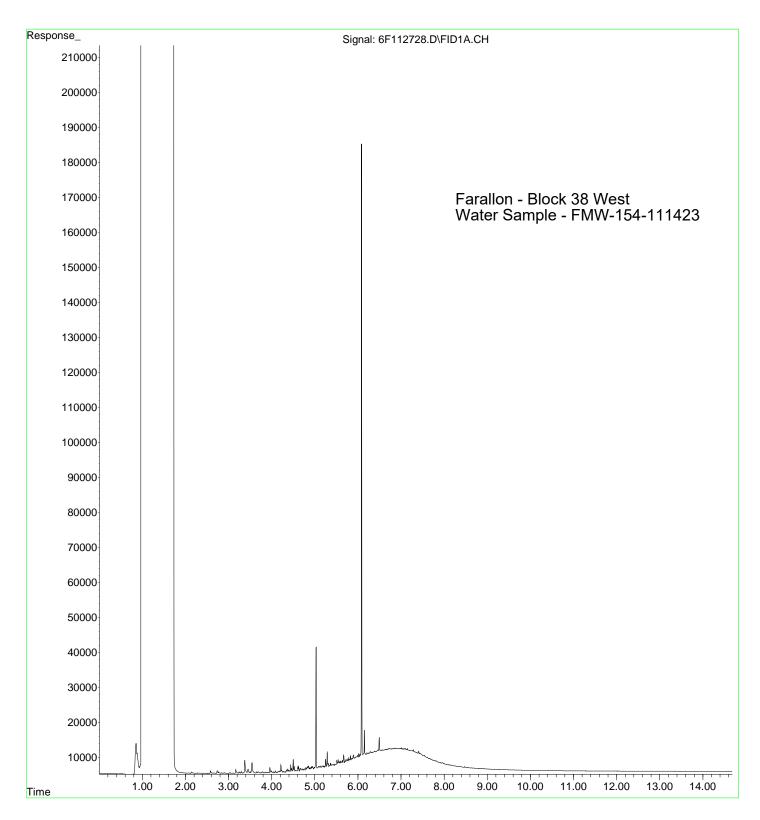



File : C: \gcns\1\data\3K27060\6F112727. D

Operator : BLL

Acquired : 28 Nov 2023 2: 23 using AcqMethod 6F71215A. M

Instrument: HP G1530A Sample Name: A3K1435-15

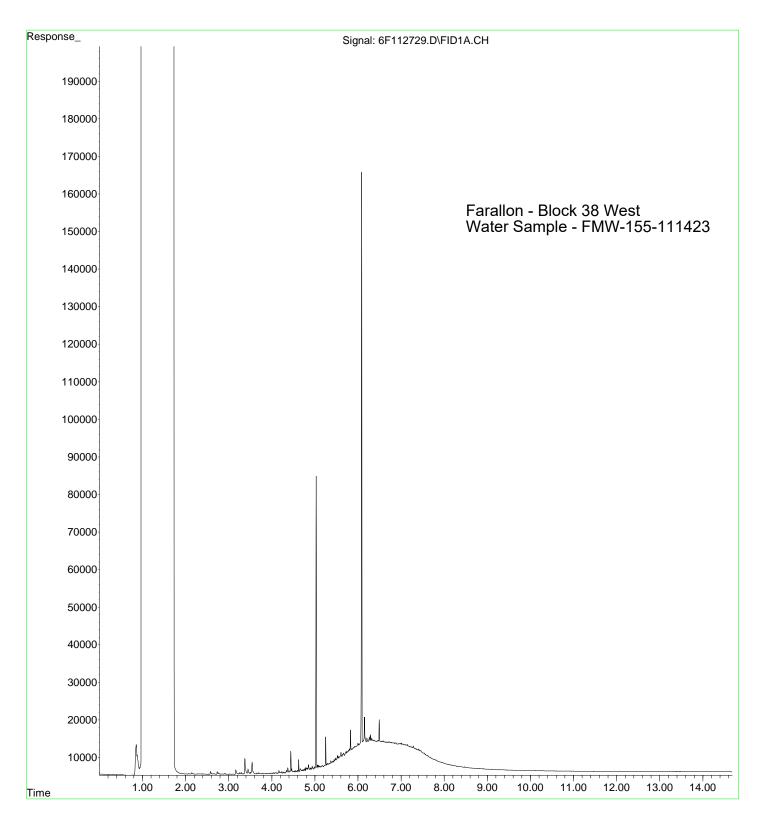



File : C: \gcns\1\data\3K27060\6F112728. D

Operator : BLL

Acquired : 28 Nov 2023 2:43 using AcqMethod 6F71215A. M

Instrument: HP G1530A Sample Name: A3K1435-16

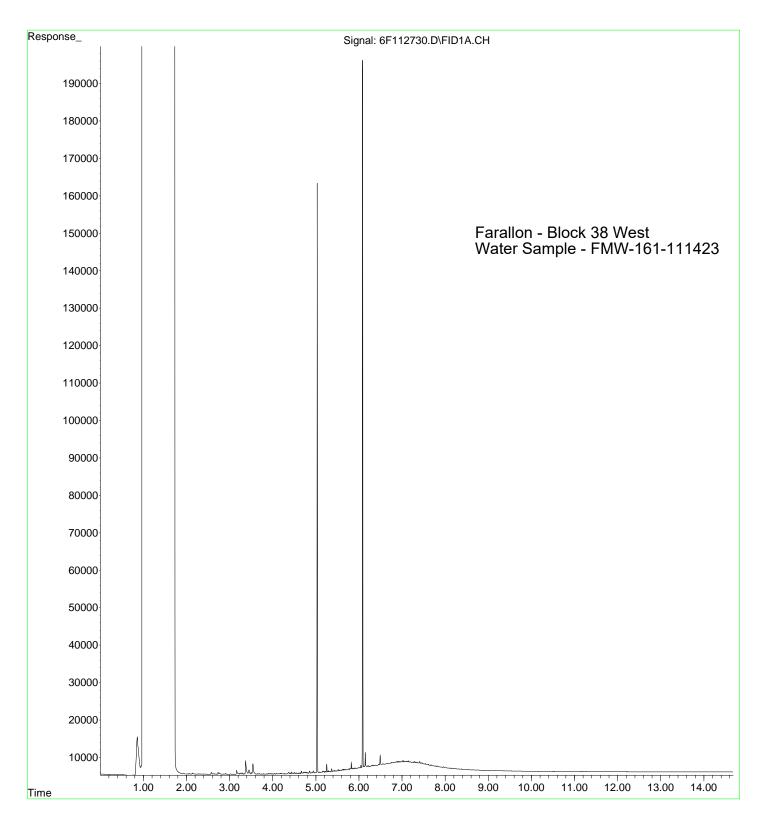



File : C: \gcns\1\data\3K27060\6F112729. D

Operator : BLL

Acquired : 28 Nov 2023 3:04 using AcqNethod 6F71215A.M

Instrument: HP G1530A Sample Name: A3K1435-17

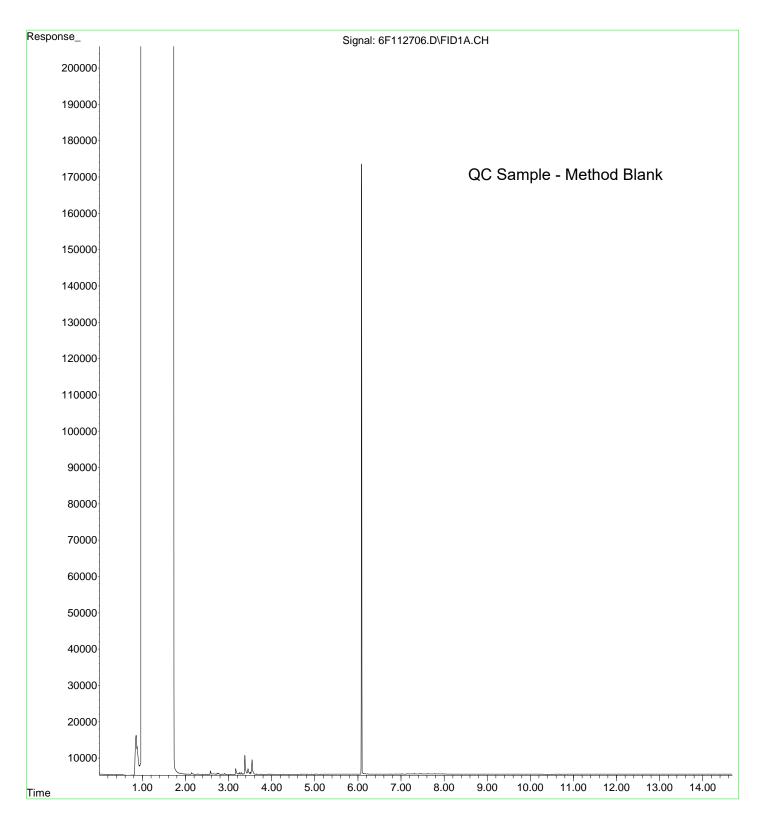



File : C: \gcns\1\data\3K27060\6F112730. D

Operator : BLL

Acquired : 28 Nov 2023 3: 24 using AcqMethod 6F71215A. M

Instrument: HP G1530A Sample Name: A3K1435-18

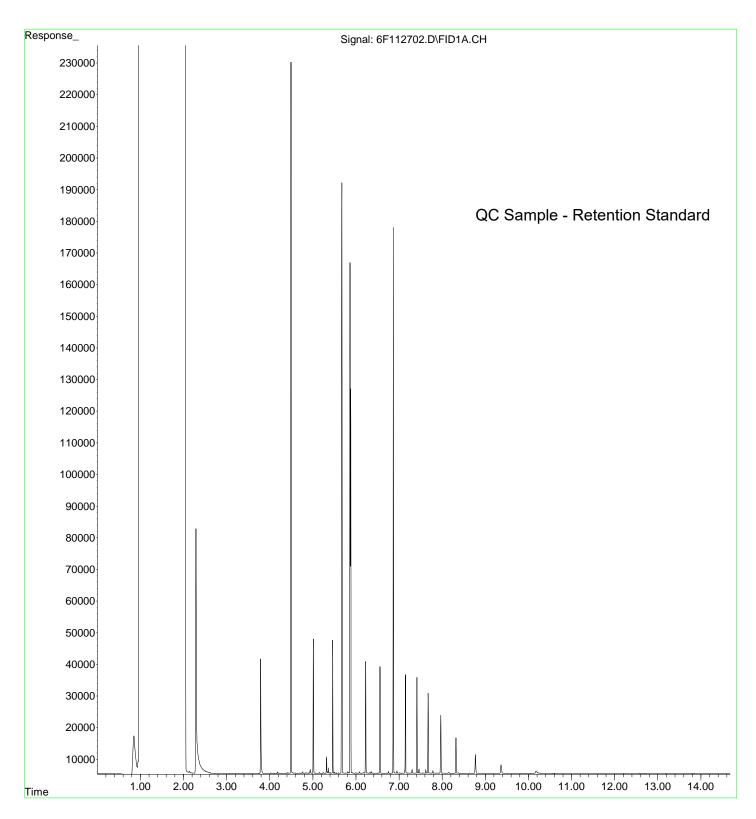



File : C: \gcns\1\data\3K27060\6F112706. D

Operator : BLL

Acquired : 27 Nov 2023 19:19 using AcqMethod 6F71215A. M

Instrument: HP G1530A Sample Name: 23K0934- HLK1

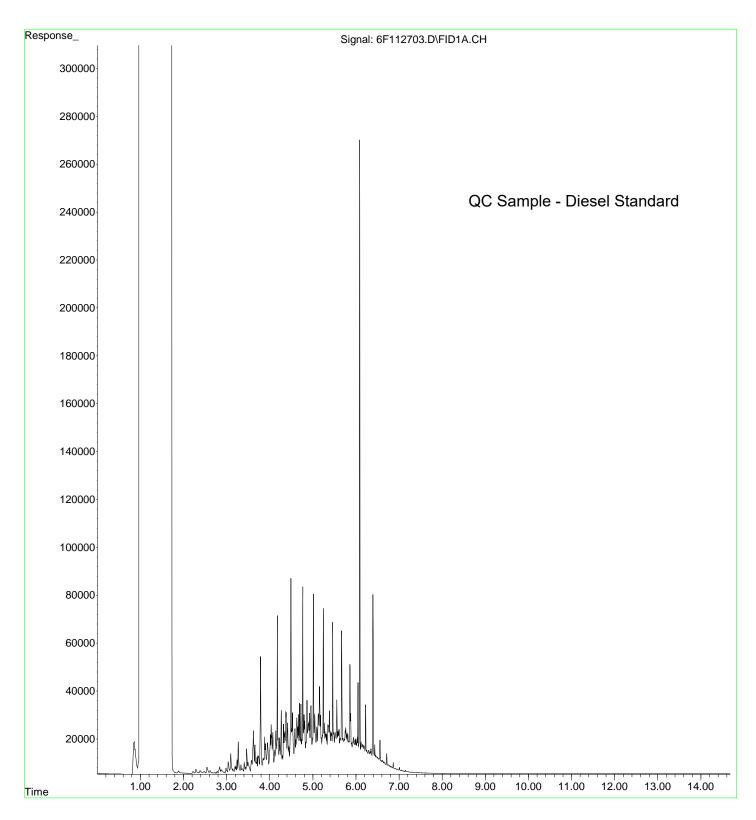



File : C: \gcns\1\data\3K27060\6F112702. D

Operator : BLL

Acquired : 27 Nov 2023 17:43 using AcqMethod 6F71215A. M

Instrument: HP G1530A Sample Name: 3K27060-KES1

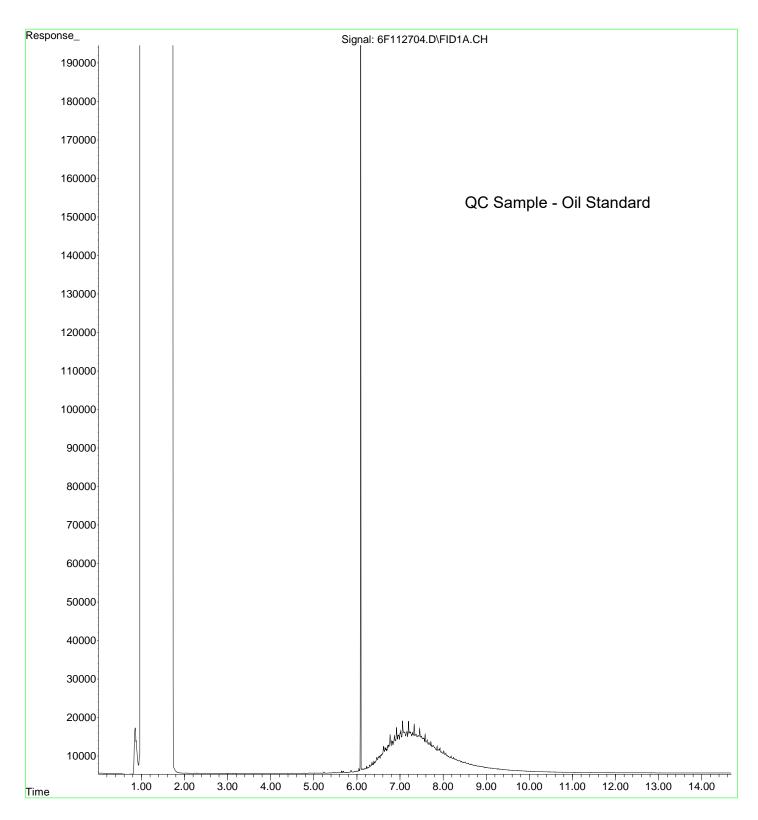



File : C: \gcns\1\data\3K27060\6F112703. D

Operator : BLL

Acquired : 27 Nov 2023 18:03 using AcqMethod 6F71215A. M

Instrument: HP G1530A Sample Name: 3K27060-CCV1

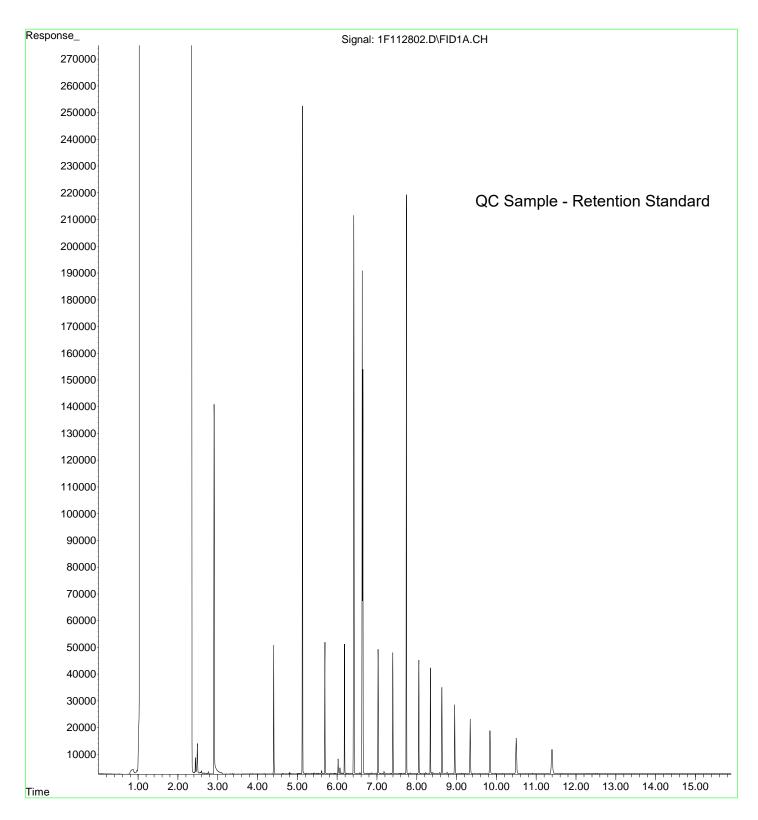



File : C: \gcns\1\data\3K27060\6F112704. D

Operator : BLL

Acquired : 27 Nov 2023 18: 24 using AcqMethod 6F71215A. M

Instrument: HP G1530A Sample Name: 3K27060-CCV2

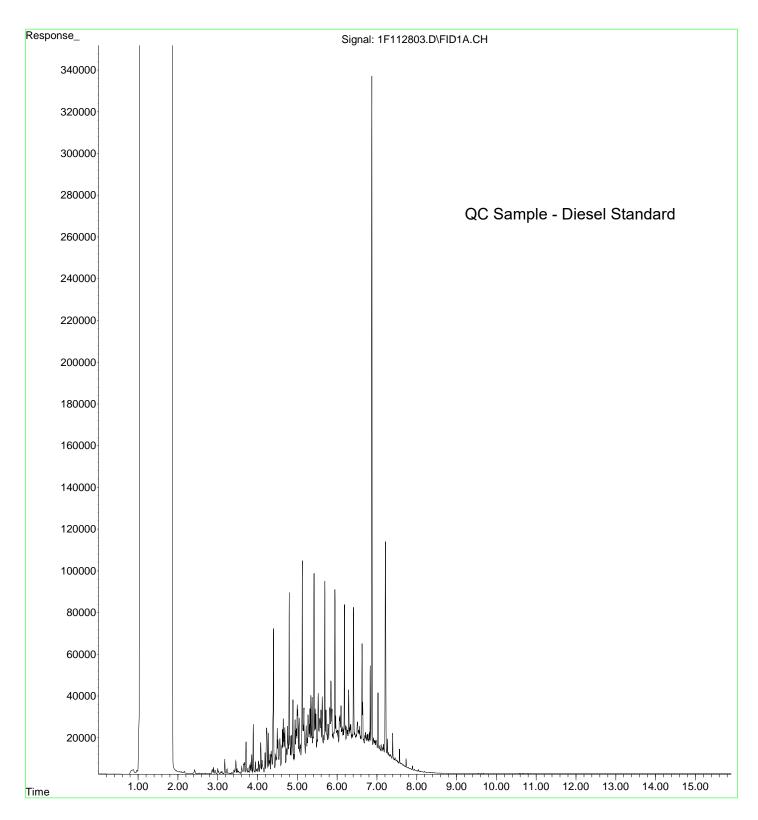



File : C: \gcns\1\data\3K28001\1F112802. D

Operator : BLL

Acquired : 28 Nov 2023 6:04 using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: 3K28001-KES1

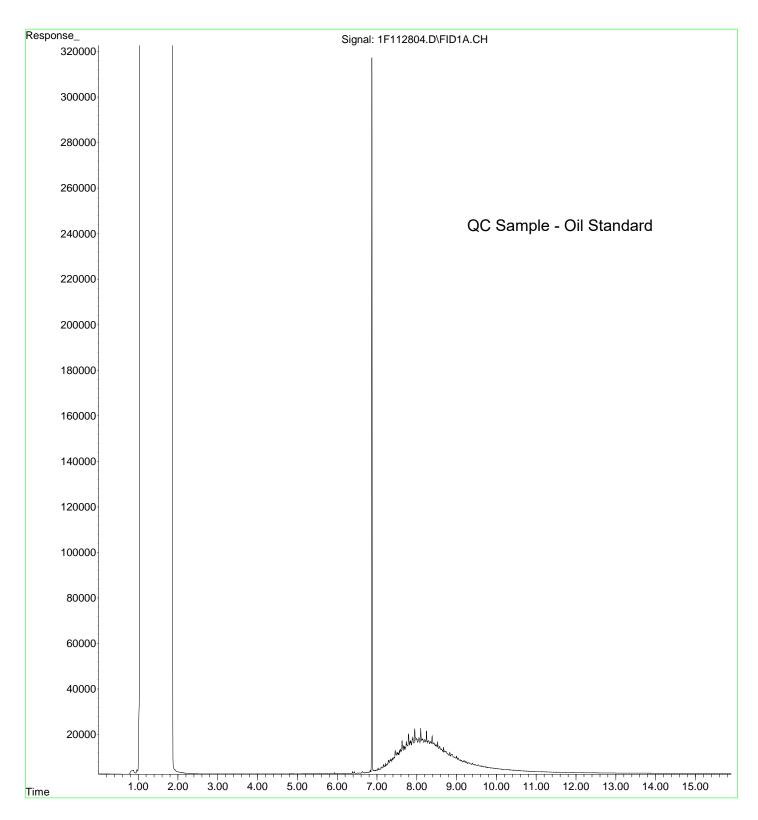



File : C: \gcns\1\data\3K28001\1F112803. D

Operator : BLL

Acquired : 28 Nov 2023 6:27 using AcqNethod A1F40422. M

Instrument: HP G1530A Sample Name: 3K28001-CCV1

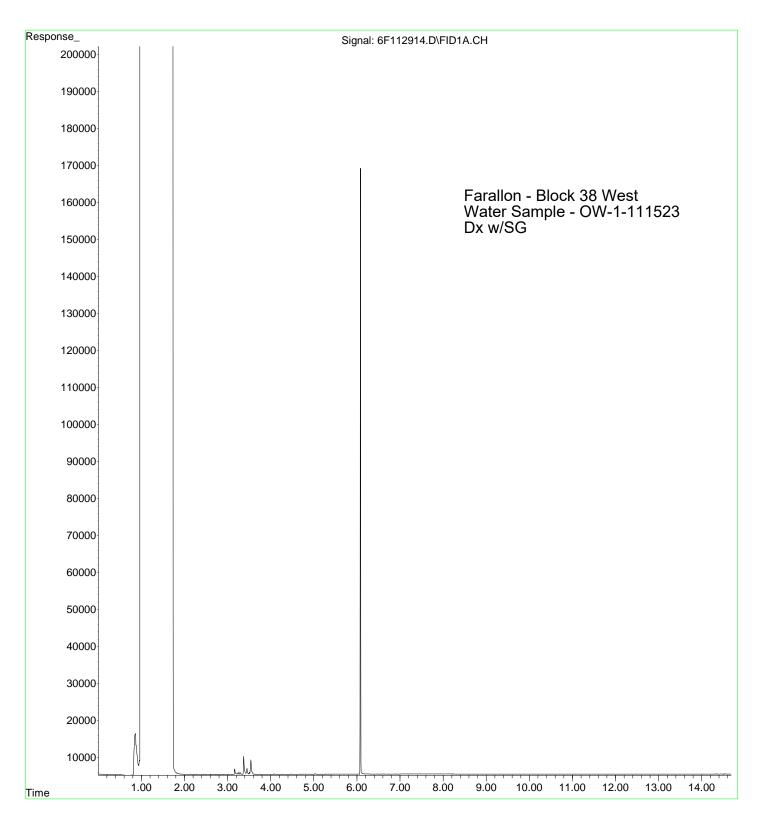



File : C: \gcns\1\data\3K28001\1F112804. D

Operator : BLL

Acquired : 28 Nov 2023 6:50 using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: 3K28001-CCV2

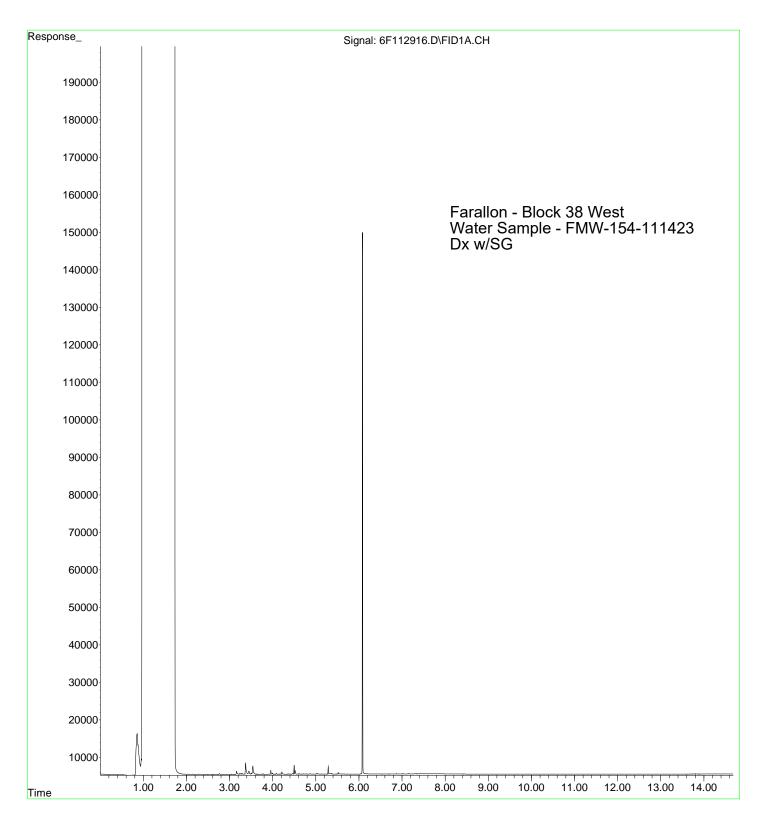



File : C: \gcns\1\data\3K29027\6F112914. D

Operator : BLL

Acquired : 29 Nov 2023 20:02 using AcqMethod 6F71215A. M

Instrument: HP G1530A Sample Name: A3K1435-03

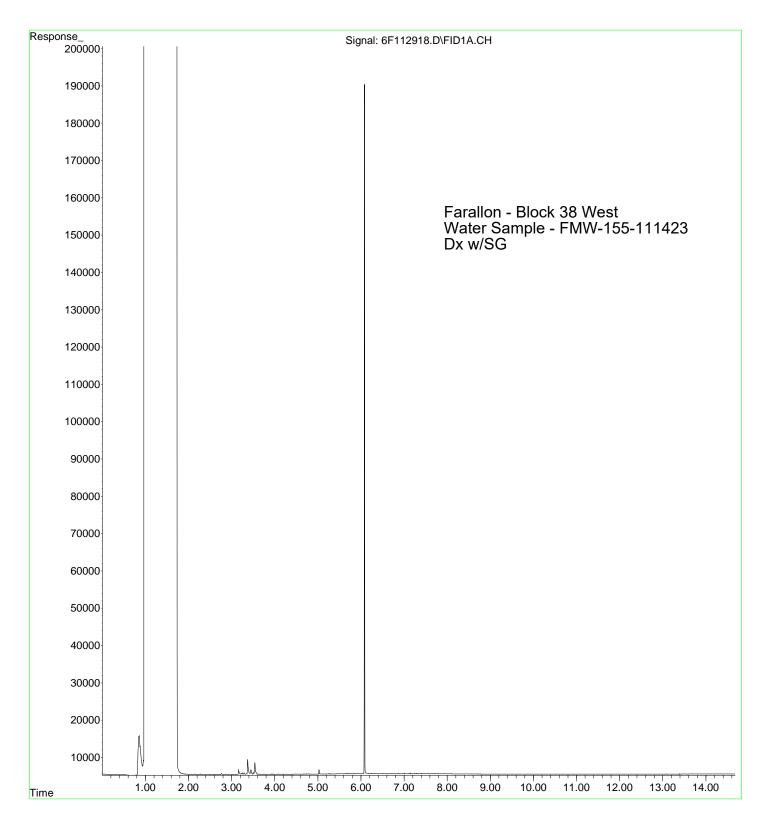



File : C: \gcns\1\data\3K29027\6F112916. D

Operator : BLL

Acquired : 29 Nov 2023 20:42 using AcqMethod 6F71215A. M

Instrument: HP G1530A Sample Name: A3K1435-16

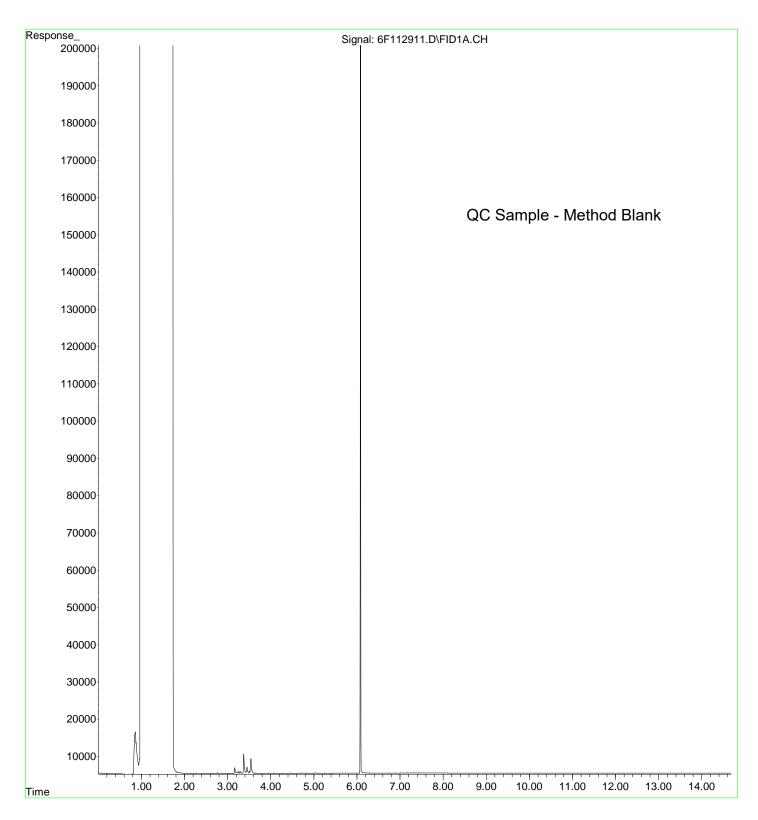



File : C: \gcns\1\data\3K29027\6F112918. D

Operator : BLL

Acquired : 29 Nov 2023 21:23 using AcqMethod 6F71215A. M

Instrument: HP G1530A Sample Name: A3K1435-17

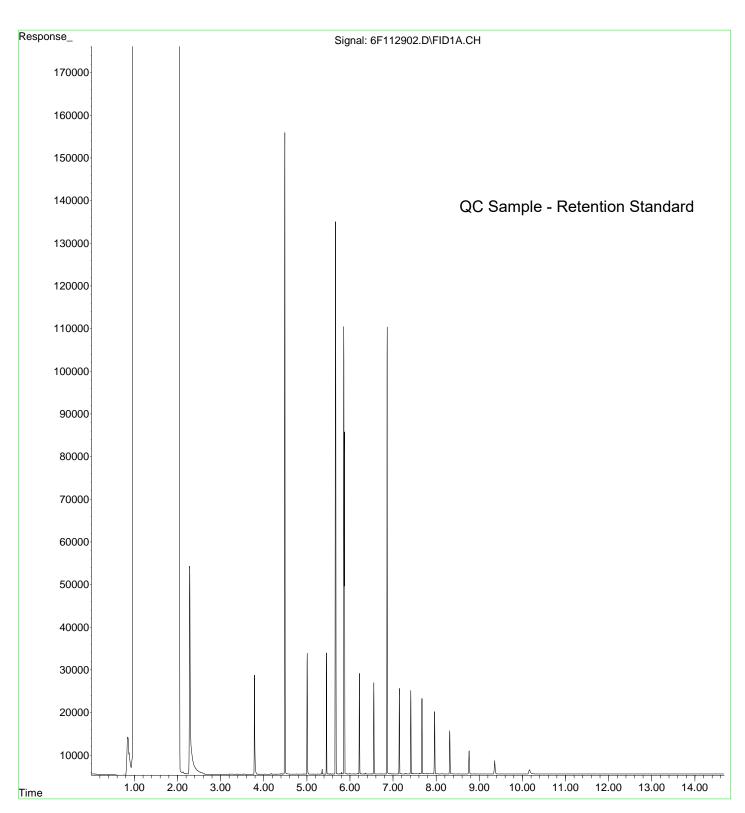



File : C: \gcns\1\data\3K29027\6F112911. D

Operator : BLL

Acquired : 29 Nov 2023 19:01 using AcqMethod 6F71215A. M

Instrument: HP G1530A Sample Name: 23K1067- HLK1

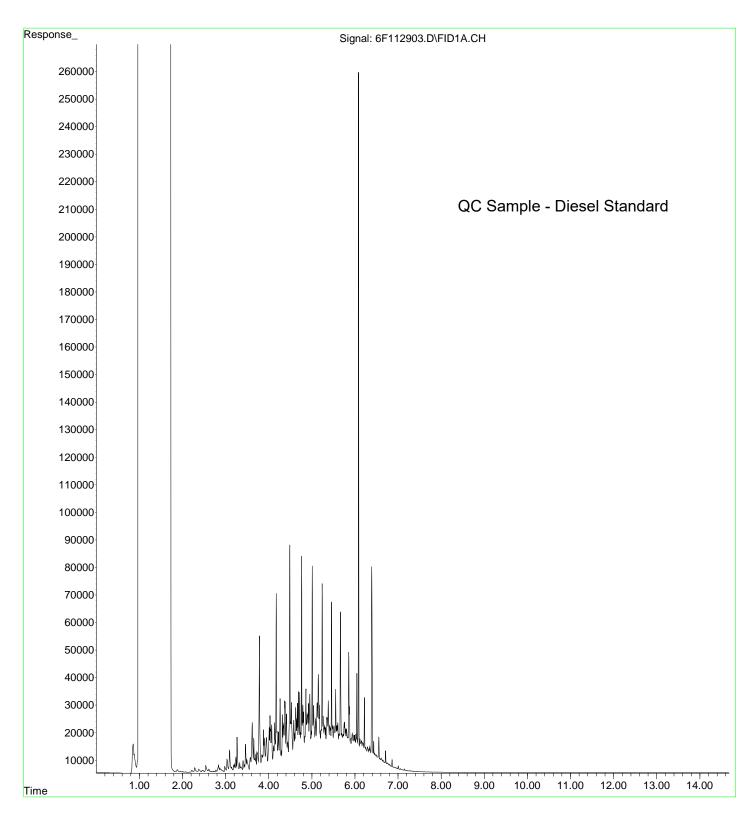



File : C: \gcns\1\data\3K29027\6F112902. D

Operator : BLL

Acquired : 29 Nov 2023 14:14 using AcqMethod 6F71215A. M

Instrument: HP G1530A Sample Name: 3K29027- KES1

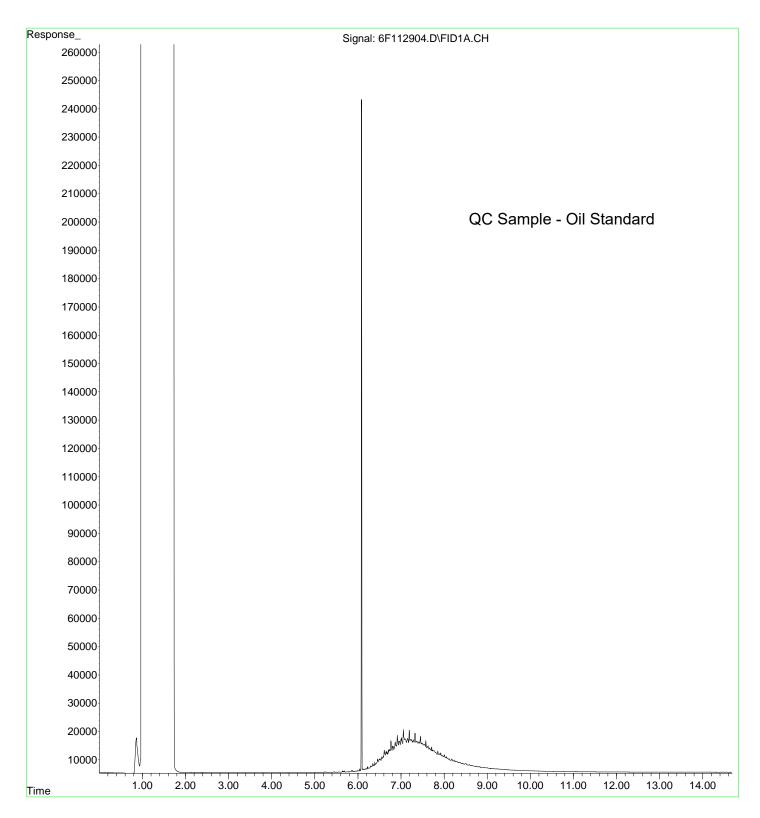



File : C: \gcns\1\data\3K29027\6F112903. D

Operator : BLL

Acquired : 29 Nov 2023 14:35 using AcqMethod 6F71215A. M

Instrument: HP G1530A Sample Name: 3K29027-CCV1

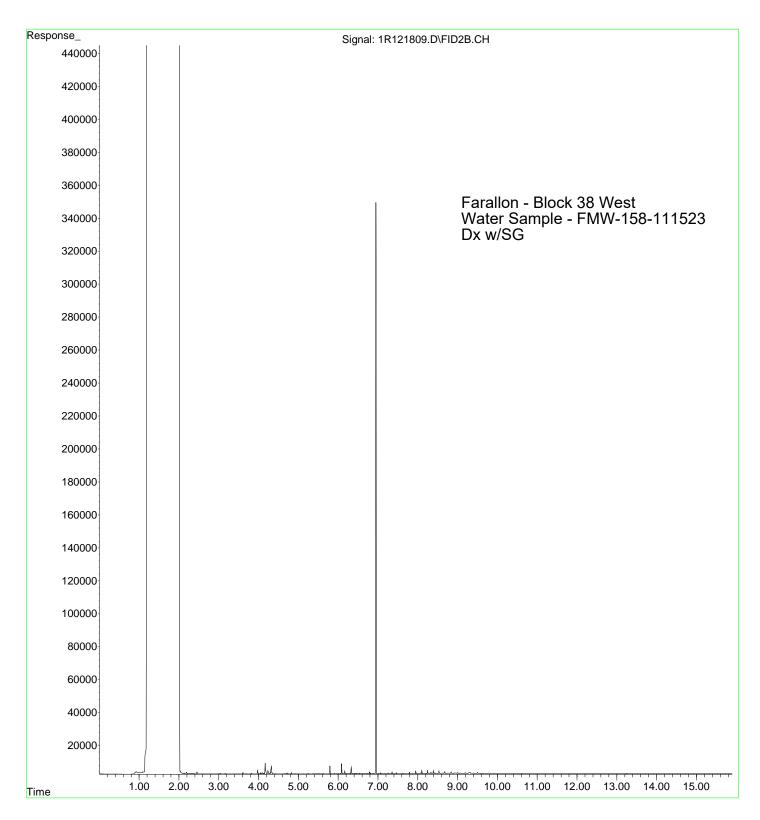



File : C: \gcns\1\data\3K29027\6F112904. D

Operator : BLL

Acquired : 29 Nov 2023 14:55 using AcqMethod 6F71215A. M

Instrument: HP G1530A Sample Name: 3K29027-CCV2

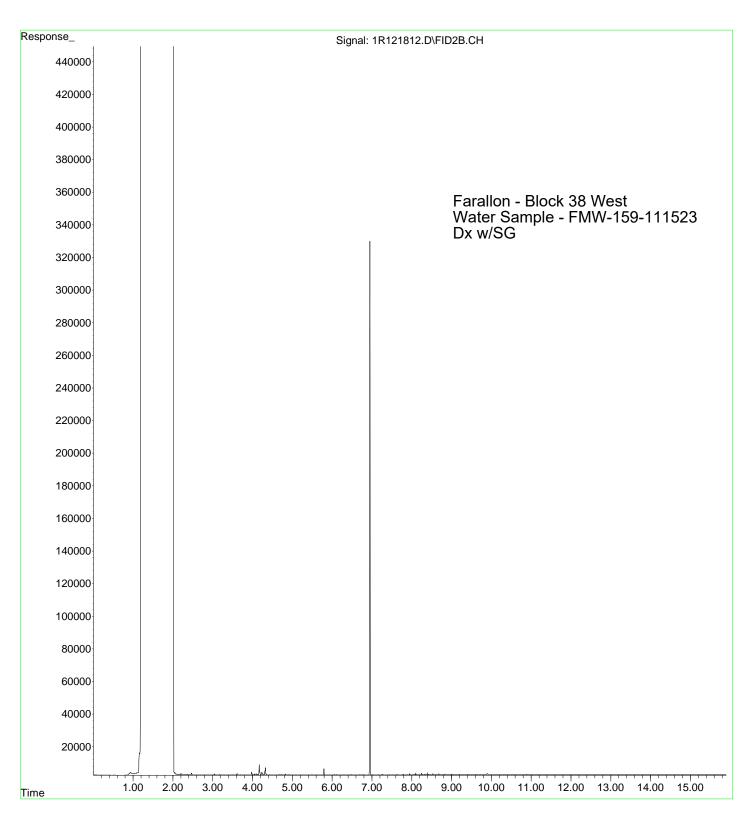



File : C: \gcns\1\data\3L18070\1R121809. D

Operator : BLL

Acquired : 18 Dec 2023 19:44 using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: A3K1435-08

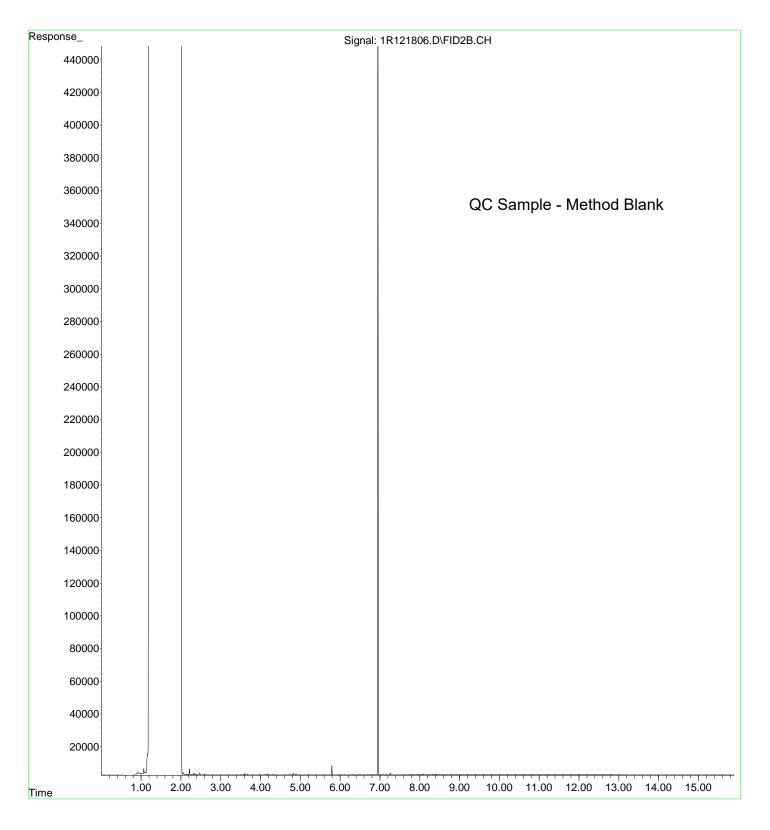



File : C: \gcns\1\data\3L18070\1R121812. D

Operator : BLL

Acquired : 18 Dec 2023 20:55 using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: A3K1435-09

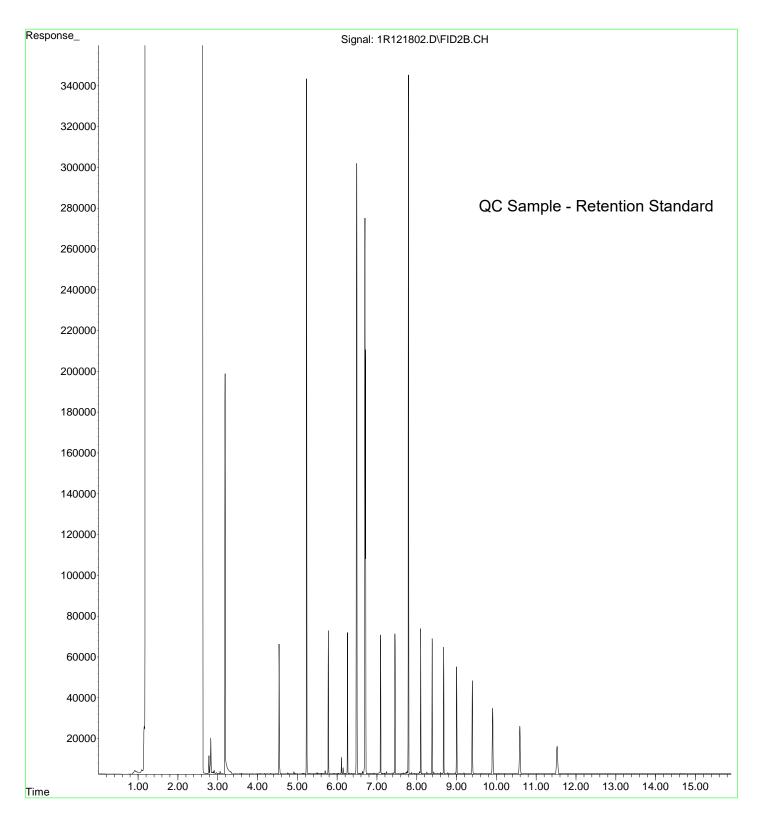



File : C: \gcns\1\data\3L18070\1R121806. D

Operator : BLL

Acquired : 18 Dec 2023 18: 34 using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: 23L0687-HLK1

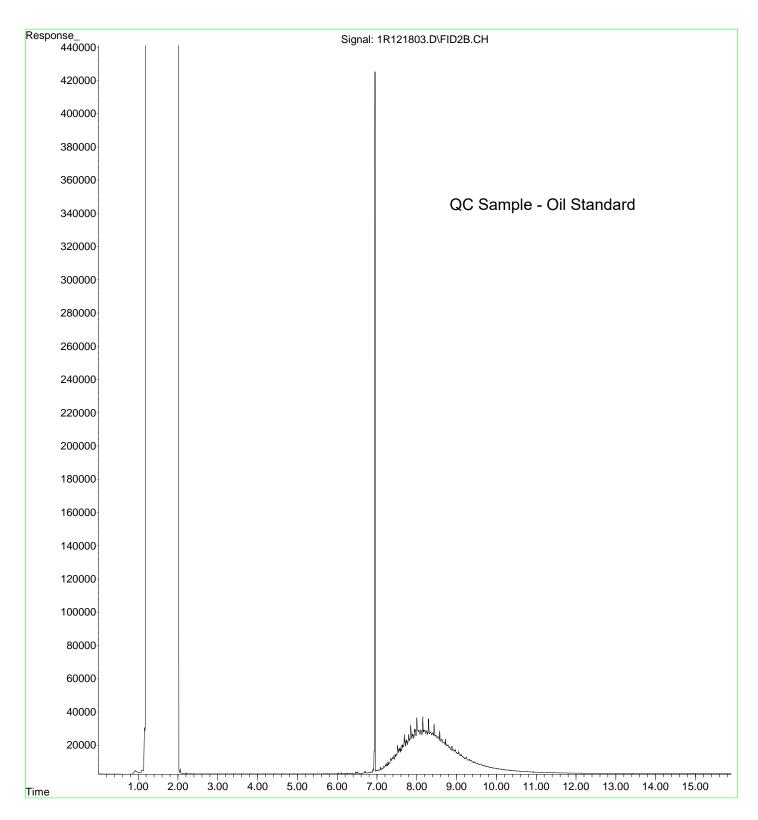



File : C: \gcns\1\data\3L18070\1R121802. D

Operator : BLL

Acquired : 18 Dec 2023 14:39 using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: 3L18070-RES1

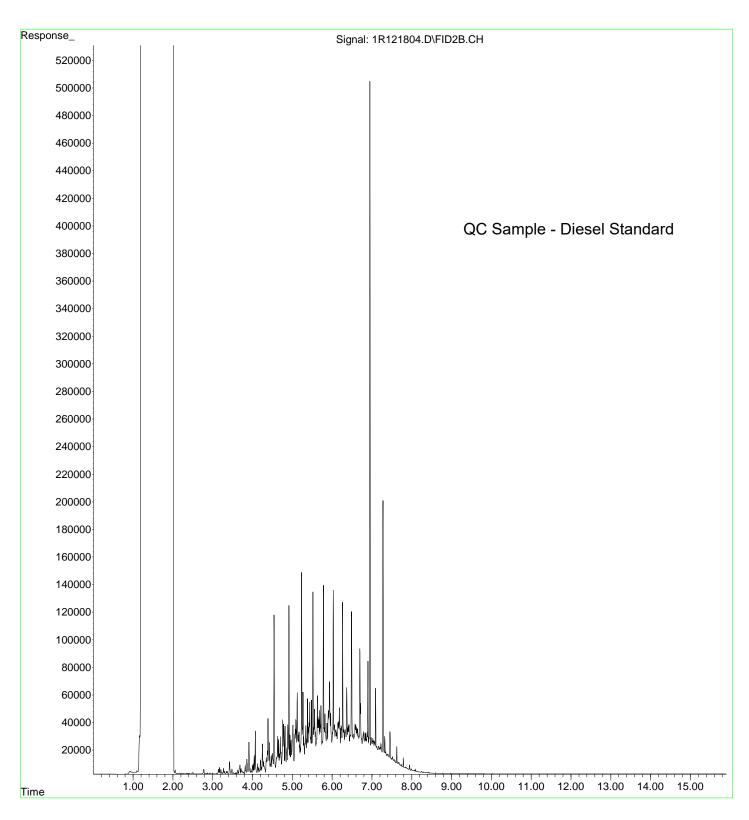



File : C: \gcns\1\data\3L18070\1R121803. D

Operator : BLL

Acquired : 18 Dec 2023 15:03 using AcqNethod A1F40422. M

Instrument: HP G1530A Sample Name: 3L18070-CCV1





File : C: \gcns\1\data\3L18070\1R121804. D

Operator : BLL

Acquired : 18 Dec 2023 15:26 using AcqNethod A1F40422. M

Instrument: HP G1530A Sample Name: 3L18070-CCV2







AMENDED REPORT

**Apex Laboratories, LLC** 

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Friday, March 29, 2024 Suzy Stumpf Farallon-Seattle 1809 7th Ave Suite 1111

Seattle, WA 98101

RE: A4B1607 - 397-019 Block 38 West - 397-019

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A4B1607, which was received by the laboratory on 2/28/2024 at 1:28:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <a href="mailto:mpoquiz@apex-labs.com">mpoquiz@apex-labs.com</a>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

Cooler Receipt Information

Acceptable Receipt Temperature is less than, or equal to, 6 degC (not frozen), or received on ice the same day as sampling.

(See Cooler Receipt Form for details)

Default Cooler 4.9 degC

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.





Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1607 - 03 29 24 1656

## ANALYTICAL REPORT FOR SAMPLES

|                  | SAMPLE INFORMA  | TION                |                |
|------------------|-----------------|---------------------|----------------|
| Client Sample ID | Laboratory ID M | atrix Date Sampled  | Date Received  |
| FMW-158          | A4B1607-01 W    | ater 02/27/24 11:52 | 02/28/24 13:28 |

Apex Laboratories

/ milale fog



AMENDED REPORT

#### **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1607 - 03 29 24 1656

#### ANALYTICAL CASE NARRATIVE

A4B1607 Apex Laboratories

Amended Final Report #1 - This report supercedes all previous reports

#### Methylnaphthalenes and Naphthalene by EPA 8270E Note

The Laboratory Control Sample (LCS/LCSD) recoveries associated with the quantification of naphthalene and methylnaphthalenes by EPA Method 8270E were below acceptance criteria for the sample FMW-158 (A4B1607-01). This sample was re-extracted and re-analyzed with similar results. The investigation into these low LCS recoveries was unable to identify a specific root cause. Analysis of subsequent analytical batches for these analytes by EPA Method 8270E yielded LCS recoveries within acceptance limits. Due to insufficient remaining sample volume for this sample, additional testing for naphthalene and the methylnaphthalenes by EPA Method 8270E could not be completed. The EPA Method 8270E data for methylnaphthalenes was qualified accordingly. Naphthalene was reported by EPA Method 8260D.

Kurt Johnson Director of Forensic Services March 29, 2024

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1607 - 03 29 24 1656

# ANALYTICAL SAMPLE RESULTS

| Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx |                  |                    |                     |                           |          |                                  |                                |       |  |  |  |
|-----------------------------------------------------------------------|------------------|--------------------|---------------------|---------------------------|----------|----------------------------------|--------------------------------|-------|--|--|--|
| Analyte                                                               | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit  | Units                     | Dilution | Date<br>Analyzed                 | Method Ref.                    | Notes |  |  |  |
| FMW-158 (A4B1607-01)                                                  |                  |                    |                     | Matrix: Wate              | er       | Batch:                           | 24B1015                        |       |  |  |  |
| Gasoline Range Organics                                               | ND               |                    | 100                 | ug/L                      | 1        | 02/29/24 16:59                   | NWTPH-Gx (MS)                  |       |  |  |  |
| Surrogate: 4-Bromofluorobenzene (Sur)<br>1,4-Difluorobenzene (Sur)    |                  | Recove             | ery: 105 %<br>113 % | Limits: 50-150 % 50-150 % |          | 02/29/24 16:59<br>02/29/24 16:59 | NWTPH-Gx (MS)<br>NWTPH-Gx (MS) |       |  |  |  |

Apex Laboratories

\_\_\_



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1607 - 03 29 24 1656

# ANALYTICAL SAMPLE RESULTS

| BTEX Compounds by EPA 8260D           |        |           |            |                  |          |                |             |       |  |  |  |  |
|---------------------------------------|--------|-----------|------------|------------------|----------|----------------|-------------|-------|--|--|--|--|
|                                       | Sample | Detection | Reporting  |                  |          | Date           |             |       |  |  |  |  |
| Analyte                               | Result | Limit     | Limit      | Units            | Dilution | Analyzed       | Method Ref. | Notes |  |  |  |  |
| FMW-158 (A4B1607-01)                  | •      | •         |            | Matrix: Wate     | er       | Batch:         | 24B1015     |       |  |  |  |  |
| Benzene                               | ND     |           | 0.200      | ug/L             | 1        | 02/29/24 16:59 | EPA 8260D   |       |  |  |  |  |
| Toluene                               | ND     |           | 1.00       | ug/L             | 1        | 02/29/24 16:59 | EPA 8260D   |       |  |  |  |  |
| Ethylbenzene                          | ND     |           | 0.500      | ug/L             | 1        | 02/29/24 16:59 | EPA 8260D   |       |  |  |  |  |
| Xylenes, total                        | ND     |           | 1.50       | ug/L             | 1        | 02/29/24 16:59 | EPA 8260D   |       |  |  |  |  |
| Surrogate: 1,4-Difluorobenzene (Surr) |        | Recove    | ery: 114 % | Limits: 80-120 % | 6 1      | 02/29/24 16:59 | EPA 8260D   |       |  |  |  |  |
| Toluene-d8 (Surr)                     |        |           | 99 %       | 80-120 %         | 6 I      | 02/29/24 16:59 | EPA 8260D   |       |  |  |  |  |
| 4-Bromofluorobenzene (Surr)           |        |           | 96 %       | 80-120 %         | ó I      | 02/29/24 16:59 | EPA 8260D   |       |  |  |  |  |

Apex Laboratories

me Pog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1607 - 03 29 24 1656

# ANALYTICAL SAMPLE RESULTS

| BTEX+N Compounds by EPA 8260D         |                  |                    |                    |                  |          |                  |             |       |  |  |  |
|---------------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|-------------|-------|--|--|--|
| Analyte                               | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref. | Notes |  |  |  |
| FMW-158 (A4B1607-01)                  |                  |                    |                    | Matrix: Wate     | er       | Batch: 2         | 24B1015     |       |  |  |  |
| Naphthalene                           | ND               |                    | 5.00               | ug/L             | 1        | 02/29/24 16:59   | EPA 8260D   |       |  |  |  |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Recove             | ery: 114 %         | Limits: 80-120 % | 5 1      | 02/29/24 16:59   | EPA 8260D   |       |  |  |  |
| Toluene-d8 (Surr)                     |                  |                    | 99 %               | 80-120 %         | 5 I      | 02/29/24 16:59   | EPA 8260D   |       |  |  |  |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 96 %               | 80-120 %         | 5 1      | 02/29/24 16:59   | EPA 8260D   |       |  |  |  |

Apex Laboratories

/ milale fog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1607 - 03 29 24 1656

# ANALYTICAL SAMPLE RESULTS

|                                   | Selected | Semivolatile C | Organic C | ompounds by E    | s by EPA 8270E |                |             |       |  |  |  |
|-----------------------------------|----------|----------------|-----------|------------------|----------------|----------------|-------------|-------|--|--|--|
|                                   | Sample   | Detection      | Reporting |                  |                | Date           |             |       |  |  |  |
| Analyte                           | Result   | Limit          | Limit     | Units            | Dilution       | Analyzed       | Method Ref. | Notes |  |  |  |
| FMW-158 (A4B1607-01RE1)           |          |                |           | Matrix: Wate     | er             | Batch: 2       | 24C0110     |       |  |  |  |
| 1-Methylnaphthalene               | ND       |                | 0.0377    | ug/L             | 1              | 03/08/24 19:35 | EPA 8270E   | Q-30  |  |  |  |
| 2-Methylnaphthalene               | ND       |                | 0.0377    | ug/L             | 1              | 03/08/24 19:35 | EPA 8270E   | Q-30  |  |  |  |
| Surrogate: Nitrobenzene-d5 (Surr) |          | Recover        | y: 54 %   | Limits: 44-120 % | 5 1            | 03/08/24 19:35 | EPA 8270E   |       |  |  |  |
| 2-Fluorobiphenyl (Surr)           |          |                | 48 %      | 44-120 %         | <i>i</i> 1     | 03/08/24 19:35 | EPA 8270E   |       |  |  |  |
| Phenol-d6 (Surr)                  |          |                | 21 %      | 10-133 %         | <i>i I</i>     | 03/08/24 19:35 | EPA 8270E   |       |  |  |  |
| p-Terphenyl-d14 (Surr)            |          |                | 61 %      | 50-134 %         | <i>I</i>       | 03/08/24 19:35 | EPA 8270E   |       |  |  |  |
| 2-Fluorophenol (Surr)             |          |                | 28 %      | 19-120 %         | 5 1            | 03/08/24 19:35 | EPA 8270E   |       |  |  |  |
| 2,4,6-Tribromophenol (Surr)       |          |                | 83 %      | 43-140 %         | 1              | 03/08/24 19:35 | EPA 8270E   |       |  |  |  |

Apex Laboratories

/ milale fog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1607 - 03 29 24 1656

# ANALYTICAL SAMPLE RESULTS

|                                       | Solid and Moisture Determinations |                    |                    |           |          |                  |             |       |  |  |  |  |
|---------------------------------------|-----------------------------------|--------------------|--------------------|-----------|----------|------------------|-------------|-------|--|--|--|--|
| Analyte                               | Sample<br>Result                  | Detection<br>Limit | Reporting<br>Limit | Units     | Dilution | Date<br>Analyzed | Method Ref. | Notes |  |  |  |  |
| FMW-158 (A4B1607-01)                  |                                   |                    |                    | Matrix: W | ater     |                  |             |       |  |  |  |  |
| Batch: 24C0105 Total Suspended Solids | 48.0                              |                    | 5.00               | mg/L      | 1        | 03/04/24 18:56   | SM 2540 D   |       |  |  |  |  |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1607 - 03 29 24 1656

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                  | Gasoli    | ne Range H           | yarocarbo          | ons (Ben    | zene thro | ugn Napn        | tnaiene)         | by NWTP | H-GX            |     |              |             |
|----------------------------------|-----------|----------------------|--------------------|-------------|-----------|-----------------|------------------|---------|-----------------|-----|--------------|-------------|
| Analyte                          | Result    | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution  | Spike<br>Amount | Source<br>Result | % REC   | % REC<br>Limits | RPD | RPD<br>Limit | Notes       |
| Batch 24B1015 - EPA 5030C        |           |                      |                    |             |           |                 | Wa               | ter     |                 |     |              |             |
| Blank (24B1015-BLK1)             |           |                      | Prepared           | d: 02/29/24 | 12:22 Ana | lyzed: 02/29    | /24 15:10        |         |                 |     |              |             |
| NWTPH-Gx (MS)                    |           |                      |                    |             |           |                 |                  |         |                 |     |              |             |
| Gasoline Range Organics          | ND        |                      | 100                | ug/L        | 1         |                 |                  |         |                 |     |              |             |
| Surr: 4-Bromofluorobenzene (Sur) |           | Recov                | ery: 105 %         | Limits: 5   | 0-150 %   | Dili            | ution: 1x        |         |                 |     |              |             |
| 1,4-Difluorobenzene (Sur)        |           |                      | 114 %              | 50          | 0-150 %   |                 | "                |         |                 |     |              |             |
| LCS (24B1015-BS2)                |           |                      | Prepared           | d: 02/29/24 | 12:22 Ana | lyzed: 02/29    | /24 14:43        |         |                 |     |              |             |
| NWTPH-Gx (MS)                    |           |                      |                    |             |           |                 |                  |         |                 |     |              |             |
| Gasoline Range Organics          | 553       |                      | 100                | ug/L        | 1         | 500             |                  | 111     | 80-120%         |     |              |             |
| Surr: 4-Bromofluorobenzene (Sur) |           | Recov                | ery: 101 %         | Limits: 5   | 0-150 %   | Dili            | ution: 1x        |         |                 |     |              |             |
| 1,4-Difluorobenzene (Sur)        |           |                      | 106 %              | 50          | 0-150 %   |                 | "                |         |                 |     |              |             |
| Duplicate (24B1015-DUP1)         |           |                      | Prepared           | d: 02/29/24 | 12:22 Ana | lyzed: 03/01    | /24 03:00        |         |                 |     |              | T-(         |
| QC Source Sample: Non-SDG (A4    | B1606-01) |                      |                    |             |           |                 |                  |         |                 |     |              |             |
| Gasoline Range Organics          | 28000     |                      | 5000               | ug/L        | 50        |                 | 29500            |         |                 | 5   | 30%          |             |
| Surr: 4-Bromofluorobenzene (Sur) |           | Recov                | ery: 101 %         | Limits: 5   | 0-150 %   | Dili            | ution: 1x        |         |                 |     |              | <del></del> |
| 1,4-Difluorobenzene (Sur)        |           |                      | 107 %              | 50          | 0-150 %   |                 | "                |         |                 |     |              |             |
| Duplicate (24B1015-DUP2)         |           |                      | Prepared           | d: 02/29/24 | 12:22 Ana | lyzed: 03/01    | /24 03:27        |         |                 |     |              | T-          |
| QC Source Sample: Non-SDG (A4    | B1606-03) |                      |                    |             |           |                 |                  |         |                 |     |              |             |
| Gasoline Range Organics          | 39500     |                      | 5000               | ug/L        | 50        |                 | 39400            |         |                 | 0.4 | 30%          |             |
| Surr: 4-Bromofluorobenzene (Sur) |           | Reco                 | very: 99 %         | Limits: 5   | 0-150 %   | Dili            | ution: 1x        |         |                 |     |              |             |
| 1,4-Difluorobenzene (Sur)        |           |                      | 104 %              | 5           | 0-150 %   |                 | "                |         |                 |     |              |             |

Apex Laboratories

me Pog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1607 - 03 29 24 1656

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                  |           |                      | BTEX               | Compou      | ınds by E  | PA 8260D        | )                |       |                 |     |              |             |
|----------------------------------|-----------|----------------------|--------------------|-------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------------|
| Analyte                          | Result    | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes       |
| Batch 24B1015 - EPA 5030C        |           |                      |                    |             |            |                 | Wa               | ter   |                 |     |              |             |
| Blank (24B1015-BLK1)             |           |                      | Prepared           | l: 02/29/24 | 12:22 Anal | lyzed: 02/29/   | /24 15:10        |       |                 |     |              |             |
| EPA 8260D                        |           |                      |                    |             |            |                 |                  |       |                 |     |              |             |
| Benzene                          | ND        |                      | 0.200              | ug/L        | 1          |                 |                  |       |                 |     |              |             |
| Toluene                          | ND        |                      | 1.00               | ug/L        | 1          |                 |                  |       |                 |     |              |             |
| Ethylbenzene                     | ND        |                      | 0.500              | ug/L        | 1          |                 |                  |       |                 |     |              |             |
| Xylenes, total                   | ND        |                      | 1.50               | ug/L        | 1          |                 |                  |       |                 |     |              |             |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recov                | ery: 113 %         | Limits: 80  | 0-120 %    | Dilı            | ution: 1x        |       |                 |     |              | <del></del> |
| Toluene-d8 (Surr)                |           |                      | 99 %               | 80          | 0-120 %    |                 | "                |       |                 |     |              |             |
| 4-Bromofluorobenzene (Surr)      |           |                      | 99 %               | 80          | )-120 %    |                 | "                |       |                 |     |              |             |
| LCS (24B1015-BS1)                |           |                      | Prepared           | l: 02/29/24 | 12:22 Anal | lyzed: 02/29/   | /24 14:04        |       |                 |     |              |             |
| EPA 8260D                        |           |                      | •                  |             |            | -               |                  |       |                 |     |              |             |
| Benzene                          | 21.3      |                      | 0.200              | ug/L        | 1          | 20.0            |                  | 107   | 80-120%         |     |              |             |
| Toluene                          | 18.5      |                      | 1.00               | ug/L        | 1          | 20.0            |                  | 92    | 80-120%         |     |              |             |
| Ethylbenzene                     | 20.1      |                      | 0.500              | ug/L        | 1          | 20.0            |                  | 101   | 80-120%         |     |              |             |
| Xylenes, total                   | 57.3      |                      | 1.50               | ug/L        | 1          | 60.0            |                  | 95    | 80-120%         |     |              |             |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recov                | ery: 108 %         | Limits: 80  | 0-120 %    | Dilı            | ıtion: 1x        |       |                 |     |              |             |
| Toluene-d8 (Surr)                |           |                      | 95 %               | 80          | 0-120 %    |                 | "                |       |                 |     |              |             |
| 4-Bromofluorobenzene (Surr)      |           |                      | 95 %               | 80          | )-120 %    |                 | "                |       |                 |     |              |             |
| Duplicate (24B1015-DUP1)         |           |                      | Prepared           | l: 02/29/24 | 12:22 Anal | lyzed: 03/01    | /24 03:00        |       |                 |     |              | T-0         |
| QC Source Sample: Non-SDG (A4    | B1606-01) |                      |                    |             |            |                 |                  |       |                 |     |              |             |
| Benzene                          | 805       |                      | 10.0               | ug/L        | 50         |                 | 846              |       |                 | 5   | 30%          |             |
| Toluene                          | 310       |                      | 50.0               | ug/L        | 50         |                 | 322              |       |                 | 4   | 30%          |             |
| Ethylbenzene                     | 476       |                      | 25.0               | ug/L        | 50         |                 | 496              |       |                 | 4   | 30%          |             |
| Xylenes, total                   | 2570      |                      | 75.0               | ug/L        | 50         |                 | 2710             |       |                 | 5   | 30%          |             |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recov                | ery: 108 %         | Limits: 80  | 0-120 %    | Dilı            | ution: 1x        |       |                 |     |              |             |
| Toluene-d8 (Surr)                |           |                      | 100 %              | 80          | 0-120 %    |                 | "                |       |                 |     |              |             |
| 4-Bromofluorobenzene (Surr)      |           |                      | 94 %               | 80          | 0-120 %    |                 | "                |       |                 |     |              |             |
| Duplicate (24B1015-DUP2)         |           |                      | Prepared           | l: 02/29/24 | 12:22 Ana  | lyzed: 03/01/   | /24 03:27        |       |                 |     |              | Т-0         |
| QC Source Sample: Non-SDG (A4    | B1606-03) |                      |                    |             |            |                 |                  |       |                 |     |              |             |
| Benzene                          | 2160      |                      | 10.0               | ug/L        | 50         |                 | 2190             |       |                 | 1   | 30%          |             |
| Toluene                          | ND        |                      | 50.0               | ug/L        | 50         |                 | 47.0             |       |                 | *** | 30%          |             |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1607 - 03 29 24 1656

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                  |           |                      | BTEX               | Compou      | ınds by E | PA 8260D        | )                |       |                 |      |              |       |
|----------------------------------|-----------|----------------------|--------------------|-------------|-----------|-----------------|------------------|-------|-----------------|------|--------------|-------|
| Analyte                          | Result    | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD  | RPD<br>Limit | Notes |
| Batch 24B1015 - EPA 5030C        |           |                      |                    |             |           |                 | Wa               | ter   |                 |      |              |       |
| Duplicate (24B1015-DUP2)         |           |                      | Prepared           | d: 02/29/24 | 12:22 Ana | lyzed: 03/01    | /24 03:27        |       |                 |      |              | T-0   |
| QC Source Sample: Non-SDG (A4    | B1606-03) |                      |                    |             |           |                 |                  |       |                 |      |              |       |
| Ethylbenzene                     | 1510      |                      | 25.0               | ug/L        | 50        |                 | 1520             |       |                 | 0.3  | 30%          |       |
| Xylenes, total                   | 5030      |                      | 75.0               | ug/L        | 50        |                 | 5030             |       |                 | 0.02 | 30%          |       |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recov                | very: 105 %        | Limits: 80  | 0-120 %   | Dilı            | ution: 1x        |       |                 |      |              |       |
| Toluene-d8 (Surr)                |           |                      | 99 %               | 80          | -120 %    |                 | "                |       |                 |      |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 93 %               | 80          | 1-120 %   |                 | "                |       |                 |      |              |       |
| Matrix Spike (24B1015-MS1)       |           |                      | Prepared           | d: 02/29/24 | 12:22 Ana | lyzed: 02/29    | /24 16:05        |       |                 |      |              |       |
| QC Source Sample: Non-SDG (A4    | B1612-02) |                      |                    |             |           |                 |                  |       |                 |      |              |       |
| EPA 8260D                        |           |                      |                    |             |           |                 |                  |       |                 |      |              |       |
| Benzene                          | 23.0      |                      | 0.200              | ug/L        | 1         | 20.0            | ND               | 115   | 79-120%         |      |              |       |
| Toluene                          | 19.9      |                      | 1.00               | ug/L        | 1         | 20.0            | ND               | 100   | 80-121%         |      |              |       |
| Ethylbenzene                     | 21.7      |                      | 0.500              | ug/L        | 1         | 20.0            | ND               | 108   | 79-121%         |      |              |       |
| Xylenes, total                   | 60.9      |                      | 1.50               | ug/L        | 1         | 60.0            | ND               | 102   | 79-121%         |      |              |       |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recov                | very: 108 %        | Limits: 80  | 0-120 %   | Dilı            | ution: 1x        |       |                 |      |              |       |
| Toluene-d8 (Surr)                |           |                      | 95 %               | 80          | -120 %    |                 | "                |       |                 |      |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 95 %               | 80          | -120 %    |                 | "                |       |                 |      |              |       |

Apex Laboratories

(milale fogs



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1607 - 03 29 24 1656

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                                     |           |                      | BTEX+              | N Compo       | unds by          | EPA 8260        | D                |       |                 |     |              |       |
|-----------------------------------------------------|-----------|----------------------|--------------------|---------------|------------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                                             | Result    | Detection L<br>Limit | Reporting<br>Limit | Units         | Dilution         | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 24B1015 - EPA 5030C                           |           |                      |                    |               |                  |                 | Wa               | iter  |                 |     |              |       |
| Blank (24B1015-BLK1)                                |           |                      | Prepared           | d: 02/29/24 1 | 2:22 Ana         | yzed: 02/29     | /24 15:10        |       |                 |     |              |       |
| EPA 8260D                                           |           |                      |                    |               |                  |                 |                  |       |                 |     |              |       |
| Naphthalene                                         | ND        |                      | 5.00               | ug/L          | 1                |                 |                  |       |                 |     |              |       |
| Surr: 1,4-Difluorobenzene (Surr)                    |           | Recov                | ery: 113 %         | Limits: 80    | -120 %           | Dilı            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                                   |           |                      | 99 %               | 80-           | -120 %           |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)                         |           |                      | 99 %               | 80-           | -120 %           |                 | "                |       |                 |     |              |       |
| LCS (24B1015-BS1)                                   |           |                      | Prepared           | d: 02/29/24 1 | 2:22 Ana         | yzed: 02/29     | /24 14:04        |       |                 |     |              |       |
| EPA 8260D<br>Naphthalene                            | 16.0      |                      | 5.00               | ug/L          | 1                | 20.0            |                  | 80    | 80-120%         |     |              |       |
|                                                     | 16.0      | P                    | ery: 108 %         | Limits: 80    |                  |                 | ution: lx        | 80    | 80-120%         |     |              |       |
| Surr: 1,4-Difluorobenzene (Surr)  Toluene-d8 (Surr) |           | Kecovi               | ery: 106 %<br>95 % |               | -120 %<br>-120 % | Dili            | ution: 1x        |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)                         |           |                      | 95 %<br>95 %       |               | -120 %<br>-120 % |                 | ,,               |       |                 |     |              |       |
| , Bromojiuorosenzene (burr)                         |           |                      |                    |               |                  |                 |                  |       |                 |     |              |       |
| Duplicate (24B1015-DUP1)                            |           |                      | Prepared           | d: 02/29/24 1 | 2:22 Ana         | yzed: 03/01     | /24 03:00        |       |                 |     |              | T-0   |
| OC Source Sample: Non-SDG (A41                      | B1606-01) |                      |                    |               |                  |                 |                  |       |                 |     |              |       |
| Naphthalene                                         | ND        |                      | 250                | ug/L          | 50               |                 | ND               |       |                 |     | 30%          |       |
| Surr: 1,4-Difluorobenzene (Surr)                    |           | Recove               | ery: 108 %         | Limits: 80    | -120 %           | Dilı            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                                   |           |                      | 100 %              | 80-           | -120 %           |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)                         |           |                      | 94 %               | 80-           | -120 %           |                 | "                |       |                 |     |              |       |
| Duplicate (24B1015-DUP2)                            |           |                      | Prepared           | d: 02/29/24 1 | 2:22 Anal        | yzed: 03/01     | /24 03:27        |       |                 |     |              | T-0   |
| QC Source Sample: Non-SDG (A41                      | B1606-03) |                      |                    |               |                  |                 |                  |       |                 |     |              |       |
| Naphthalene                                         | ND        |                      | 250                | ug/L          | 50               |                 | 183              |       |                 | *** | 30%          |       |
| Surr: 1,4-Difluorobenzene (Surr)                    |           | Recove               | ery: 105 %         | Limits: 80    | -120 %           | Dilı            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                                   |           |                      | 99 %               | 80-           | -120 %           |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)                         |           |                      | 93 %               | 80-           | -120 %           |                 | "                |       |                 |     |              |       |
| Matrix Spike (24B1015-MS1)                          |           |                      | Prepared           | d: 02/29/24 1 | 2:22 Ana         | yzed: 02/29     | /24 16:05        |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A41                      | B1612-02) |                      |                    |               |                  |                 |                  |       |                 |     |              |       |
| EPA 8260D                                           |           |                      |                    |               |                  |                 |                  |       |                 |     |              |       |
| Naphthalene                                         | 16.4      |                      | 5.00               | ug/L          | 1                | 20.0            | ND               | 82    | 61-128%         |     |              |       |
|                                                     |           |                      |                    |               |                  |                 |                  |       |                 |     |              |       |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1607 - 03 29 24 1656

# QUALITY CONTROL (QC) SAMPLE RESULTS

# BTEX+N Compounds by EPA 8260D

|                                |           |                      |                    | остр.       |           |                 |                  |       |                 |     |              |       |
|--------------------------------|-----------|----------------------|--------------------|-------------|-----------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                        | Result    | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 24B1015 - EPA 5030C      |           |                      |                    |             |           |                 | Wat              | er    |                 |     |              |       |
| Matrix Spike (24B1015-MS1)     |           |                      | Prepared           | 1: 02/29/24 | 12:22 Ana | lyzed: 02/29/   | /24 16:05        |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A4) | B1612-02) |                      |                    |             |           |                 |                  |       |                 |     |              |       |
| Surr: Toluene-d8 (Surr)        |           | Reco                 | very: 95 %         | Limits: 80  | 0-120 %   | Dilu            | tion: 1x         |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)    |           |                      | 95 %               | 80          | 0-120 %   |                 | "                |       |                 |     |              |       |

Apex Laboratories

.



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1607 - 03 29 24 1656

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                              |            | Selecte              | d Semivol          | atile Orga  | anic Com  | pounds b        | y EPA 82         | 270E  |                 |     |              |           |
|------------------------------|------------|----------------------|--------------------|-------------|-----------|-----------------|------------------|-------|-----------------|-----|--------------|-----------|
| Analyte                      | Result     | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes     |
| Batch 24C0110 - EPA 3510C (A | Acid Extra | ction)               |                    |             |           |                 | Wa               | ter   |                 |     |              |           |
| Blank (24C0110-BLK1)         |            |                      | Prepared           | 1: 03/05/24 | 06:03 Ana | lyzed: 03/07    | 7/24 18:10       |       |                 |     |              |           |
| EPA 8270E                    |            |                      |                    |             |           |                 |                  |       |                 |     |              |           |
| 1-Methylnaphthalene          | ND         |                      | 0.0400             | ug/L        | 1         |                 |                  |       |                 |     |              | Q-3       |
| 2-Methylnaphthalene          | ND         |                      | 0.0400             | ug/L        | 1         |                 |                  |       |                 |     |              | Q-3       |
| Surr: Nitrobenzene-d5 (Surr) |            | Reco                 | very: 73 %         | Limits: 4   | 4-120 %   | Dil             | ution: 1x        |       |                 |     |              |           |
| 2-Fluorobiphenyl (Surr)      |            |                      | 61 %               | 44          | 1-120 %   |                 | "                |       |                 |     |              |           |
| Phenol-d6 (Surr)             |            |                      | 26 %               | 10          | 0-133 %   |                 | "                |       |                 |     |              |           |
| p-Terphenyl-d14 (Surr)       |            |                      | 77 %               | 50          | )-134 %   |                 | "                |       |                 |     |              |           |
| 2-Fluorophenol (Surr)        |            |                      | 39 %               | 19          | 0-120 %   |                 | "                |       |                 |     |              |           |
| 2,4,6-Tribromophenol (Surr)  |            |                      | 85 %               | 43          | 3-140 %   |                 | "                |       |                 |     |              |           |
| LCS (24C0110-BS1)            |            |                      | Prepared           | 1: 03/05/24 | 06:03 Ana | lyzed: 03/07    | 7/24 18:44       |       |                 |     |              |           |
| EPA 8270E                    |            |                      |                    |             |           |                 |                  |       |                 |     |              |           |
| 1-Methylnaphthalene          | 0.817      |                      | 0.160              | ug/L        | 4         | 4.00            |                  | 20    | 41-120%         |     |              | Q-3       |
| 2-Methylnaphthalene          | 0.754      |                      | 0.160              | ug/L        | 4         | 4.00            |                  | 19    | 40-121%         |     |              | Q-3       |
| Surr: Nitrobenzene-d5 (Surr) |            | Reco                 | very: 55 %         | Limits: 4   | 4-120 %   | Dil             | ution: 4x        |       |                 |     |              |           |
| 2-Fluorobiphenyl (Surr)      |            |                      | 45 %               | 44          | 1-120 %   |                 | "                |       |                 |     |              |           |
| Phenol-d6 (Surr)             |            |                      | 20 %               | 10          | )-133 %   |                 | "                |       |                 |     |              |           |
| p-Terphenyl-d14 (Surr)       |            |                      | 80 %               | 50          | 0-134 %   |                 | "                |       |                 |     |              |           |
| 2-Fluorophenol (Surr)        |            |                      | 31 %               | 19          | 0-120 %   |                 | "                |       |                 |     |              |           |
| 2,4,6-Tribromophenol (Surr)  |            |                      | 72 %               | 43          | 3-140 %   |                 | "                |       |                 |     |              |           |
| LCS Dup (24C0110-BSD1)       |            |                      | Prepared           | 1: 03/05/24 | 06:03 Ana | lyzed: 03/07    | 7/24 19:18       |       |                 |     |              | Q-19      |
| EPA 8270E                    |            |                      |                    |             |           |                 |                  |       |                 |     |              |           |
| 1-Methylnaphthalene          | 1.31       |                      | 0.160              | ug/L        | 4         | 4.00            |                  | 33    | 41-120%         | 47  | 30%          | Q-01, Q-3 |
| 2-Methylnaphthalene          | 1.22       |                      | 0.160              | ug/L        | 4         | 4.00            |                  | 30    | 40-121%         | 47  | 30%          | Q-01, Q-3 |
| Surr: Nitrobenzene-d5 (Surr) |            | Reco                 | very: 79 %         | Limits: 4   | 4-120 %   | Dil             | ution: 4x        |       |                 |     |              | <u> </u>  |
| 2-Fluorobiphenyl (Surr)      |            |                      | 69 %               | 44          | 1-120 %   |                 | "                |       |                 |     |              |           |
| Phenol-d6 (Surr)             |            |                      | 28 %               | 10          | 0-133 %   |                 | "                |       |                 |     |              |           |
| p-Terphenyl-d14 (Surr)       |            |                      | 90 %               | 50          | 0-134 %   |                 | "                |       |                 |     |              |           |
| 2-Fluorophenol (Surr)        |            |                      | 45 %               | 19          | 0-120 %   |                 | "                |       |                 |     |              |           |
| 2,4,6-Tribromophenol (Surr)  |            |                      | 91 %               | 4           | B-140 %   |                 | "                |       |                 |     |              |           |

Apex Laboratories

9-



Farallon-Seattle

## ANALYTICAL REPORT

AMENDED REPORT

Apex Laboratories, LLC 6700 S.W. Sandburg Street

Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1607 - 03 29 24 1656

Project:

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                     |           |                      | Solid a            | nd Moist   | ture Dete | rmination       | s                |       |                 |      |              |           |
|-------------------------------------|-----------|----------------------|--------------------|------------|-----------|-----------------|------------------|-------|-----------------|------|--------------|-----------|
| Analyte                             | Result    | Detection L<br>Limit | Reporting<br>Limit | Units      | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD  | RPD<br>Limit | Notes     |
| Batch 24C0105 - Total Suspen        | ded Solid | ls - 2022            |                    |            |           |                 | Wat              | ter   |                 |      |              |           |
| Blank (24C0105-BLK1)                |           |                      | Prepared           | : 03/04/24 | 18:56 Ana | lyzed: 03/04    | /24 18:56        |       |                 |      |              |           |
| SM 2540 D<br>Total Suspended Solids | ND        |                      | 5.00               | mg/L       | 1         |                 |                  |       |                 |      |              |           |
| Duplicate (24C0105-DUP1)            |           |                      | Prepared           | : 03/04/24 | 18:56 Ana | lyzed: 03/04    | /24 18:56        |       |                 |      |              |           |
| QC Source Sample: Non-SDG (A4       | B1541-01) |                      |                    |            |           |                 |                  |       |                 |      |              |           |
| Total Suspended Solids              | 6.00      |                      | 5.00               | mg/L       | 1         |                 | 5.00             |       |                 | 18.2 | 10%          | Q-05, TSS |
| Duplicate (24C0105-DUP2)            |           |                      | Prepared           | : 03/04/24 | 18:56 Ana | lyzed: 03/04    | /24 18:56        |       |                 |      |              |           |
| QC Source Sample: Non-SDG (A4       | B1597-01) |                      |                    |            |           |                 |                  |       |                 |      |              |           |
| Total Suspended Solids              | 25.0      |                      | 5.00               | mg/L       | 1         |                 | 23.0             |       |                 | 8.33 | 10%          |           |
| Reference (24C0105-SRM1)            |           |                      | Prepared           | : 03/04/24 | 18:56 Ana | lyzed: 03/04    | /24 18:56        |       |                 |      |              |           |
| SM 2540 D<br>Total Suspended Solids | 947       |                      |                    | mg/L       | 1         | 928             |                  | 102   | 85-115%         |      |              |           |

Apex Laboratories

(milale fog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1607 - 03 29 24 1656

## SAMPLE PREPARATION INFORMATION

|                                     | Gaso            | line Range Hydrocarl | oons (Benzene thro  | ugh Naphthalene) by | y NWTPH-Gx    |               |         |
|-------------------------------------|-----------------|----------------------|---------------------|---------------------|---------------|---------------|---------|
| Prep: EPA 5030C                     |                 |                      |                     |                     | Sample        | Default       | RL Prep |
| Lab Number                          | Matrix          | Method               | Sampled             | Prepared            | Initial/Final | Initial/Final | Factor  |
| <u>Batch: 24B1015</u><br>A4B1607-01 | Water           | NWTPH-Gx (MS)        | 02/27/24 11:52      | 02/29/24 12:22      | 5mL/5mL       | 5mL/5mL       | 1.00    |
|                                     |                 | ВТЕ                  | EX Compounds by E   | EPA 8260D           |               |               |         |
| Prep: EPA 5030C                     |                 |                      |                     |                     | Sample        | Default       | RL Prep |
| Lab Number                          | Matrix          | Method               | Sampled             | Prepared            | Initial/Final | Initial/Final | Factor  |
| Batch: 24B1015<br>A4B1607-01        | Water           | EPA 8260D            | 02/27/24 11:52      | 02/29/24 12:22      | 5mL/5mL       | 5mL/5mL       | 1.00    |
|                                     |                 | BTE                  | (+N Compounds by    | EPA 8260D           |               |               |         |
| Prep: EPA 5030C                     |                 |                      |                     |                     | Sample        | Default       | RL Prep |
| Lab Number                          | Matrix          | Method               | Sampled             | Prepared            | Initial/Final | Initial/Final | Factor  |
| <u>Batch: 24B1015</u><br>A4B1607-01 | Water           | EPA 8260D            | 02/27/24 11:52      | 02/29/24 12:22      | 5mL/5mL       | 5mL/5mL       | 1.00    |
|                                     |                 | Selected Semiv       | olatile Organic Com | pounds by EPA 827   | 0E            |               |         |
| Prep: EPA 3510C (Ac                 | id Extraction)  |                      |                     |                     | Sample        | Default       | RL Prep |
| Lab Number                          | Matrix          | Method               | Sampled             | Prepared            | Initial/Final | Initial/Final | Factor  |
| Batch: 24C0110<br>A4B1607-01RE1     | Water           | EPA 8270E            | 02/27/24 11:52      | 03/05/24 06:03      | 1060mL/1mL    | 1000mL/1mL    | 0.94    |
|                                     |                 | Soli                 | d and Moisture Dete | erminations         |               |               |         |
| Prep: Total Suspende                | d Solids - 2022 |                      |                     |                     | Sample        | Default       | RL Prep |
| Lab Number                          | Matrix          | Method               | Sampled             | Prepared            | Initial/Final | Initial/Final | Factor  |
| Batch: 24C0105<br>A4B1607-01        | Water           | SM 2540 D            | 02/27/24 11:52      | 03/04/24 18:56      |               |               | NA      |

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1607 - 03 29 24 1656

## **QUALIFIER DEFINITIONS**

## Client Sample and Quality Control (QC) Sample Qualifier Definitions:

#### Apex Laboratories

- Q-01 Spike recovery and/or RPD is outside acceptance limits.
- Q-05 Analyses are not controlled on RPD values from sample and duplicate concentrations that are below 5 times the reporting level.
- Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
- Q-30 Recovery for Lab Control Spike (LCS) is below the lower control limit. Data may be biased low.
- T-02 This Batch QC sample was analyzed outside of the method specified 12 hour analysis window. Results are estimated.
- TSS Dried residue was less than 2.5mg as specified in the method. Results meet regulatory requirements.

Apex Laboratories

(milele fog



AMENDED REPORT

#### **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1607 - 03 29 24 1656

#### REPORTING NOTES AND CONVENTIONS:

#### **Abbreviations:**

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

#### **Detection Limits:** Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

## Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

#### **Reporting Conventions:**

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

" " Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

#### **QC Source:**

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

### **Miscellaneous Notes:**

" --- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"\*\*\* " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories



AMENDED REPORT

#### Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1607 - 03 29 24 1656

## **REPORTING NOTES AND CONVENTIONS (Cont.):**

#### Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.
- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

#### **Preparation Notes:**

#### Mixed Matrix Samples:

#### Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

#### Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

## **Sampling and Preservation Notes:**

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold

Apex Laboratories



Farallon-Seattle

#### ANALYTICAL REPORT

AMENDED REPORT

# Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1607 - 03 29 24 1656

Project:

#### LABORATORY ACCREDITATION INFORMATION

# ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

## **Apex Laboratories**

Matrix Analysis TNI\_ID Analyte TNI\_ID Accreditation

All reported analytes are included in Apex Laboratories' current ORELAP scope.

## **Secondary Accreditations**

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

#### **Subcontract Laboratory Accreditations**

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

#### **Field Testing Parameters**

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1607 - 03 29 24 1656

| Louis How                               | Course Horn                                        |             | 1                      | 7.5                        | £ 43     | 4                 |           | H             |                     |                     | 31 /                     | ~                              | 0               |                 | 7                    |                                                                                                                                                                                                                                                         | L               |                         | 0            |            |               |
|-----------------------------------------|----------------------------------------------------|-------------|------------------------|----------------------------|----------|-------------------|-----------|---------------|---------------------|---------------------|--------------------------|--------------------------------|-----------------|-----------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------|--------------|------------|---------------|
| are the air                             |                                                    | Project Mgr | - 1                    |                            | -        |                   |           | <u> </u>      | Project Name:       | Name:               |                          | 3                              | $\alpha$        | Web T           |                      |                                                                                                                                                                                                                                                         | Proje           | # C                     | 511-017      |            |               |
| 4                                       |                                                    |             |                        |                            | Phot     | Phone: 415-77-300 | 2.23      | 5             | g                   | E E                 | Email:                   |                                |                 |                 | 0/4                  | mad so and stock to we                                                                                                                                                                                                                                  | <u>#</u>        |                         | ١.١٥-١١      |            |               |
| sampled by: Q CSPILLO                   |                                                    |             |                        | +                          |          | F                 | I         | f             | -                   | ŀ                   |                          |                                |                 |                 | i                    | IS KEQUES!                                                                                                                                                                                                                                              |                 |                         |              |            | _             |
| State Incation: State IVIA County Koleg | DATE                                               | TIME        | # OF CONTAINERS        | NALLH-HCID # OF CONTAINERS | xd-H4TWN | NWTPH-Gx          | 8260 BTEX | 8700 KBDW AOC | 8260 VOCs Enil List | 8Z60 VOCs Full List | 8270 Semi-Vols Full List | 8087 PCBs                      | 8081 Pesticides | RCRA Metals (8) | Priority Metals (13) | TCLP Metals (8)  1. Sh, As, Ba, Be, Cd, Se, Ag, Na, Tl, V, Zn, Se, Ag, Na, Tl, V, Zn, Se, Ag, Na, Tl, V, Zn, Se, Ag, Na, Tl, V, Zn, Se, Ag, Na, Tl, V, Zn, Se, Ag, Na, Tl, V, Zn, Se, Ag, Na, Tl, V, Zn, Se, Ag, Na, Na, Na, Na, Na, Na, Na, Na, Na, Na | Southelindoux   | Sci                     |              | ald Sample | rozen Archive |
| FNW-158                                 | 3/21/by                                            | 162         | 12 12 12               | 7                          | *        | ×                 | ×         |               |                     | -                   |                          |                                |                 |                 | _                    | L<br>S<br>I                                                                                                                                                                                                                                             | ×               | ×                       |              | 1          | 4             |
|                                         |                                                    |             |                        |                            |          |                   |           |               |                     |                     |                          |                                |                 |                 |                      |                                                                                                                                                                                                                                                         |                 |                         |              |            |               |
| - Commonwell                            |                                                    |             |                        |                            |          |                   |           |               |                     |                     |                          |                                |                 |                 | <u> </u>             |                                                                                                                                                                                                                                                         |                 |                         |              |            |               |
|                                         |                                                    |             |                        |                            |          |                   |           |               |                     |                     |                          |                                |                 |                 |                      |                                                                                                                                                                                                                                                         |                 |                         |              |            | ļ             |
|                                         |                                                    |             |                        |                            | +        |                   |           |               |                     | -                   |                          |                                | $\Box$          |                 |                      |                                                                                                                                                                                                                                                         |                 |                         |              |            |               |
|                                         |                                                    |             |                        |                            |          |                   |           | -             | _                   |                     |                          |                                |                 |                 |                      |                                                                                                                                                                                                                                                         |                 |                         |              |            |               |
|                                         |                                                    |             |                        | -                          | -        |                   |           | +             | -                   | -                   | _                        |                                |                 |                 |                      |                                                                                                                                                                                                                                                         |                 |                         |              |            |               |
|                                         |                                                    |             | <u> </u>               |                            | -        |                   |           |               |                     | -                   | -                        |                                |                 |                 |                      |                                                                                                                                                                                                                                                         |                 |                         | -            |            |               |
|                                         |                                                    |             |                        |                            |          |                   |           | $\vdash$      | H                   | $\vdash$            |                          |                                |                 |                 |                      |                                                                                                                                                                                                                                                         |                 |                         |              |            |               |
| Standard Tun                            | Standard Turn Around Time (TAT) = 10 Business Days | e (TAT)     | = 10 Busin             | ess Day:                   | <u>«</u> |                   |           |               |                     | SI<br>T             | ECIAL                    | SPECIAL INSTRUCTIONS           | RUC             | NOL             |                      |                                                                                                                                                                                                                                                         |                 |                         |              |            |               |
| TAT Degreected (circle)                 | 1 Day                                              | 71          | 2 Day                  | -                          | 3 Day    |                   |           |               |                     |                     |                          |                                |                 |                 |                      |                                                                                                                                                                                                                                                         |                 |                         |              |            |               |
| (en ere)                                | 5 Day                                              | <b>32</b>   | Standard               |                            | Other:   |                   |           |               |                     |                     |                          |                                |                 |                 |                      |                                                                                                                                                                                                                                                         |                 |                         |              |            |               |
|                                         | SAMPLES ARE HELD FOR 30 DAYS                       | FOR 30      | DAYS                   |                            |          |                   |           |               |                     | Г                   |                          |                                |                 |                 |                      |                                                                                                                                                                                                                                                         |                 |                         |              |            |               |
| Signature:                              | Date:<br>2 (28/24                                  | - S         | Signature:             |                            | Co       | - 0               | Date:     | 1/2           | 1                   | Sign                | RELINQU<br>Signature:    | KELINQUISHED BY.<br>Signature: | D BY:           |                 | "                    | Date:                                                                                                                                                                                                                                                   | REC:<br>Signath | RECEIVED BY: Signature, | BY:<br>Date: | U          |               |
| Printed Change Peters                   | Time: 0943                                         |             | Printed Name: #Shallen | "                          | i        |                   | 1 1328    | 18            |                     | .E                  | Printed Name             | me:                            |                 |                 | -                    | Time:                                                                                                                                                                                                                                                   | Printe          | Printed Name:           | Time:        |            |               |
| company. Favallon                       |                                                    |             | Company:               | Los                        | X        |                   |           |               |                     | Con                 | Company:                 |                                |                 |                 |                      |                                                                                                                                                                                                                                                         | Company         | any:                    |              |            |               |

Apex Laboratories

milele Poq.



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1607 - 03 29 24 1656

| Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie Dr. Stand In Carlo Marie  | AFEX LABS 5700 SW Sandburg St., Tigard, OR 97223 Ph. 503-718-2323 | 7223 PH: 503   | .718-2323              |                 |           | 5        | Z .      | Z                                       | CHAIN OF CUSTODY paulited | 5                  | ST             | 0        | <b>&gt;</b>     | 3       | 至       | 0                                                                                        | 3            | # F      | 월      | 3     | 4-       | 8            | Lat AUCHOOT COC 1061 |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------|------------------------|-----------------|-----------|----------|----------|-----------------------------------------|---------------------------|--------------------|----------------|----------|-----------------|---------|---------|------------------------------------------------------------------------------------------|--------------|----------|--------|-------|----------|--------------|----------------------|----------|
| Simpled Turn Annual Tree (TAT) - 10 Butters Day (1974)  Simpled Turn Annual Tree (TAT) - 10 Butters Day (1974)  Simpled Turn Annual Tree (TAT) - 10 Butters Day (1974)  Simpled Turn Annual Tree (TAT) - 10 Butters Day (1974)  Simpled Turn Annual Tree (TAT) - 10 Butters Day (1974)  Simpled Turn Annual Tree (TAT) - 10 Butters Day (1974)  Simpled Turn Annual Tree (TAT) - 10 Butters Day (1974)  Simpled Turn Annual Tree (TAT) - 10 Butters Day (1974)  Simpled Turn Annual Tree (TAT) - 10 Butters Day (1974)  Simpled Turn Annual Tree (TAT) - 10 Butters Day (1974)  Simpled Turn Annual Tree (TAT) - 10 Butters Day (1974)  Simpled Turn Annual Tree (TAT) - 10 Butters Day (1974)  Simpled Turn Annual Tree (TAT) - 10 Butters Day (1974)  Simpled Turn Annual Tree (TAT) - 10 Butters Day (1974)  Simpled Turn Annual Tree (TAT) - 10 Butters Day (1974)  Simpled Turn Annual Tree (TAT) - 10 Butters Day (1974)  Simpled Turn Annual Tree (TAT) - 10 Butters Day (1974)  Simpled Turn Annual Tree (TAT) - 10 Butters Day (1974)  Simpled Turn Annual Tree (TAT) - 10 Butters Day (1974)  Simpled Turn Annual Tree (TAT) - 10 Butters Day (1974)  Simpled Turn Annual Tree (TAT) - 10 Butters Day (1974)  Simpled Turn Annual Tree (TAT) - 10 Butters Day (1974)  Simpled Turn Annual Tree (TAT) - 10 Butters Day (1974)  Simpled Turn Annual Tree (TAT) - 10 Butters Day (1974)  Simpled Turn Annual Tree (TAT) - 10 Butters Day (1974)  Simpled Turn Annual Tree (TAT) - 10 Butters Day (1974)  Simpled Turn Annual Tree (TAT) - 10 Butters Day (1974)  Simpled Turn Annual Turn Annual Tree (TAT) - 10 Butters Day (1974)  Simpled Turn Annual Turn Annual Turn Annual Turn Annual Turn Annual Turn Annual Turn Annual Turn Annual Turn Annual Turn Annual Turn Annual Turn Annual Turn Annual Turn Annual Turn Annual Turn Annual Turn Annual Turn Annual Turn Annual Turn Annual Turn Annual Turn Annual Turn Annual Turn Annual Turn Annual Turn Annual Turn Annual Turn Annual Turn Annual Turn Annual Turn Annual Turn Annual Turn Annual Turn Annual Turn Annual Turn Annual Turn Annual Turn Annual Tu | rematter                                                          |                |                        | 542             | - 1       | LE LE    | ان       |                                         | Jo.                       | L Nam              | **             | 200      | - 1             | 50      | 4       |                                                                                          |              | Į.       | # 133  | E     | 1.019    |              |                      |          |
| Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth)  Simple I'm Annual Time (Girth) | 975 SAA AVE NIL                                                   | ,              |                        |                 |           | hone     | 415-     | 295.0                                   | 300                       |                    | Email          |          |                 |         |         |                                                                                          |              | õ        | - 0    | 397-  | 5.0      |              |                      |          |
| Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since)  Simple (since) | ampted by A. Chman                                                |                |                        |                 |           |          |          |                                         |                           |                    |                |          |                 |         | 3       | NS REGIS                                                                                 | 5            |          |        |       | 2        | 90.<br>90.50 |                      |          |
| Subset I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm Acoust I'm  | ion:                                                              |                |                        |                 |           |          |          |                                         |                           |                    |                | 38       |                 |         |         | Kt<br>sp:<br>sq:                                                                         | ď            |          |        |       |          |              |                      | -        |
| Sharked I am Acoust   Time   Company   Sharked I am Acoust   Time   Sharked I am Acoust   Time   Sharked I am Acoust   Time   Sharked I am Acoust   Time   Sharked I am Acoust   Time   Sharked I am Acoust   Time   Sharked I am Acoust   Time   Sharked I am Acoust   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Time   Ti   | uny KMS<br>SAMPLE ID                                              |                |                        | # OF CONTAINERS | MATPILLID |          |          | *************************************** |                           | 8360 VOC+ PAR Like |                |          |                 |         |         | At Sb, As, Ba, Be, Ca, Ca, Ce, Fe, I<br>Hg, Mg, Ma, Mo, Mo, Ni,<br>Se, Ag, Na, Tt, V, Za | I TOTA ANTOI |          | 561    |       |          |              |                      |          |
| Standard Turn Acound Time (TAT) = 10 Business Days   Standard Turn Acound Time (TAT) = 10 Business Days   STECIAL INSTRUCTIONS     Standard Turn Acound Time (TAT) = 10 Business Days   STECIAL INSTRUCTIONS     Standard Turn Acound Time (TAT) = 10 Business Days   STECIAL INSTRUCTIONS     Standard Turn Acound Time (TAT) = 10 Business Days   STECIAL INSTRUCTIONS     Standard Turn Acound Time (TAT) = 12 Business Days     Standard Turn Acound Time (TAT) = 12 Business Days     Standard Turn Acound Time (TAT) = 12 Business Days     Standard Turn Acound Time (TAT) = 12 Business Days     Standard Turn Acound Time (TAT) = 12 Business Days     Standard Turn Acound Time (TAT) = 12 Business Days     Standard Turn Acound Time (TAT) = 12 Business Days     Standard Turn Acound Time (TAT) = 12 Business Days     Standard Turn Acound Time (TAT) = 12 Business Days     Standard Turn Acound Time (TAT) = 12 Business Days     Standard Turn Acound Time (TAT) = 12 Business Days     Standard Turn Acound Time (TAT) = 12 Business Days     Standard Turn Acound Time (TAT) = 12 Business Days     Standard Turn Acound Time (TAT) = 12 Business Days     Standard Turn Acound Time (TAT) = 12 Business Days     Standard Turn Acound Time (TAT) = 12 Business Days     Standard Turn Acound Time (TAT) = 12 Business Days     Standard Turn Acound Time (TAT) = 12 Business Days     Standard Turn Acound Time (TAT) = 12 Business Days     Standard Turn Acound Time (TAT) = 12 Business Days     Standard Turn Acound Time (TAT) = 12 Business Days     Standard Turn Acound Time (TAT) = 12 Business Days     Standard Turn Acound Time (TAT) = 12 Business Days     Standard Turn Acound Time (TAT) = 12 Business Days     Standard Turn Acound Time (TAT) = 12 Business Days     Standard Turn Acound Time (TAT) = 12 Business Days     Standard Turn Acound Time (TAT) = 12 Business Days     Standard Turn Acound Time (TAT) = 12 Business Days     Standard Turn Acound Time (TAT) = 12 Business Days     Standard Turn Acound Time (TAT) = 12 Business Days     Standard Turn Acound Time (TA   | 801-may                                                           |                | _                      | L               |           | +        | 1        | Ļ                                       |                           |                    | T              | ╂        | -               |         |         |                                                                                          | +            | ×        | -      | (%)   | -        | -            |                      |          |
| Sharked Tem Acoust Time (TAT) = 10 Basiness Days   STECIAL INSTRUCTIONS     1 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                   |                | +                      |                 |           |          |          | -                                       | <u> </u>                  |                    | $\vdash$       | -        | ļ               |         |         |                                                                                          | -            | <u> </u> |        |       | $\vdash$ | -            |                      | -        |
| 1 Day   2 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4 Date   4    |                                                                   |                |                        |                 |           | $\Box$   | ++       | $\vdash$                                | $\prod$                   |                    | $  \cdot  $    | $\vdash$ | $\vdash \vdash$ |         |         |                                                                                          | ╂            |          |        |       | +        | +            |                      |          |
| 1 Day   2 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Da   |                                                                   |                |                        |                 |           | $\dashv$ | -        |                                         |                           |                    |                |          |                 |         |         |                                                                                          |              |          |        |       | -        |              |                      | $\dashv$ |
| Sharked Tem Acoust Time (TAT) = 10 Basiness Days   STECIAL INSTRUCTIONS     1 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                   | 1              | +                      |                 |           | $\neg$   | $\dashv$ |                                         | $\bot$                    |                    | $\dashv$       | -        | +               | $\perp$ |         |                                                                                          | $\dashv$     | _        | $\bot$ |       | $\dashv$ | -            |                      |          |
| Standard Turn Anound Time (TAT) = 10 Business Days   STECIOLA INSTRUCTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                   |                | +                      |                 | 1         | _        | $\dashv$ | -                                       |                           |                    | -              | +-       |                 |         | 1       |                                                                                          | -            |          |        |       | +        | +            |                      | +        |
| Shanked Turn Acoust Time (TAT) = 10 Basiness Days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                   |                | -                      |                 |           | 1        | +-       | -                                       |                           |                    | +              | +        | +               |         | $\perp$ |                                                                                          | -            |          |        |       | +        | +            | 1                    | +-       |
| Sharked Turn Around Time (TAT) = 10 Beiness Days  1 Day 2 Day 3 Day  SECIAL INSTRUCTIONS  SPECIAL INSTRUCTIONS  SECIENT AND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND STAND ST |                                                                   |                |                        |                 |           | TT       | +        | $\vdash \vdash$                         | H                         |                    |                | ++       |                 |         |         |                                                                                          | $\vdash$     | $\sqcup$ |        |       | ++       | $\dashv$     |                      | ++       |
| 1 Day   2 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Day   4 Da   | Standard Turn                                                     | Around Time (1 | - TA.                  | Meinere         |           | $\neg$   | $\dashv$ | -                                       | _]                        |                    | SPECIAL STREET | A.       |                 | No      |         |                                                                                          | _            |          | _      |       |          | $\dashv$     |                      |          |
| S Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                   | I Day          | 2 Day                  |                 | 1 5       | ) AR     |          |                                         |                           |                    | 8              | 1        | 460             | 8       |         | 5                                                                                        | A A          | 4        | 7      | 2/20  | 70       |              |                      |          |
| SAMPLES AND HELD FOR 30 DAYS   RECEIVED BY:   RECEIVED BY:   RECEIVED BY:   RECEIVED BY:   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separa   | T Requested (circle)                                              | S Day          | Standar                | . <b>(-)</b>    | ŝ         | ä        |          |                                         | 1                         |                    |                |          |                 | ,       |         |                                                                                          |              | ž        |        |       |          |              |                      |          |
| Dec.   Separate   Dec.   Separate   Dec.   Separate   Separate   Separate   Dec.   Separate   Separate   Dec.   Separate   Dec.   Separate   Separate   Dec.   Separate   Separate   Dec.   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   Separate   |                                                                   | S ARE HELD FO  | R 36 DAYS              |                 |           |          |          |                                         |                           | T                  |                |          |                 |         |         |                                                                                          |              |          |        |       |          |              |                      |          |
| Part of 19   Pasted Name   Time   Pasted Name   Time   Pasted Name   Pasted Name   Pasted Name   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   | SHED BY                                                           | Dire:          | Sugnatura<br>Sugnatura | in and          | 1         | 0-       | 8 7      | 200                                     | 3                         |                    | KELIN          | OCCISH   | ED BY           |         |         | nate:                                                                                    |              | Sterre   | RIVE   | 0 BY: |          | Date         |                      |          |
| Company XXX (company)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | the sta                                                           | Tome COM 3     | 五人                     | 27              | 1         | 1        | 4 E      | 32                                      | 1                         | <del>-</del>       | Printed        | Zume     |                 |         | ,       | jus<br>Jus                                                                               |              | Premi    | nd Na  | ¥     |          | Time         |                      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mon                                                               |                | Compa                  | 1               | 6         | 1        |          |                                         |                           | <u> </u>           | Compan         | 4        |                 |         |         |                                                                                          |              | Comme    | :Auedi |       |          |              |                      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                |                        |                 |           |          |          |                                         |                           |                    |                |          |                 | I.      |         | 1                                                                                        | :            | !        |        |       |          |              |                      |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                   |                |                        |                 |           |          |          |                                         |                           |                    |                |          |                 |         |         |                                                                                          |              |          |        |       |          |              |                      |          |

Apex Laboratories

(milale fog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1607 - 03 29 24 1656

| Sing Mind The State of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Part of the Par | AFEA LADS<br>6700 SW Sandburg St., Tigard, OR 97223 Ph. 503-718-2323 | 97223 Ph. 503    | -718-232. |                 |            | 5        | .            |         |                | Levi Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carrer Carr |              |          |         | $ \mathcal{I} $ | 5        |                                                                       |                                       |                 |                |            |              | ,              | ,             | - | -            |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------|-----------|-----------------|------------|----------|--------------|---------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|---------|-----------------|----------|-----------------------------------------------------------------------|---------------------------------------|-----------------|----------------|------------|--------------|----------------|---------------|---|--------------|----------------|
| 1   Day   1   Day   1   Day   1   Day   1   Day   1   Day   1   Day   1   Day   1   Day   1   Day   1   Day   1   Day   1   Day   1   Day   1   Day   1   Day   1   Day   1   Day   1   Day   1   Day   1   Day   1   Day   1   Day   1   Day   1   Day   1   Day   1   Day   1   Day   1   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Day   Da   | Tewallow                                                             | Proj             | ct Mgr    | Suzy            |            | wat      |              |         | Project        | Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 24       | 39      | Luko            | +        |                                                                       |                                       |                 | Project        |            | 347          | 219            |               |   |              |                |
| Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)  Summing Improved Time (Girle)   | 975 5th AVE NO                                                       |                  |           | ,               |            | home     | 1.5-2        | 30      | 300            | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~            |          |         |                 |          |                                                                       |                                       |                 | # Q4           | 3          | 47-5         | 4              |               |   |              |                |
| Sunding Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actual Lain Actua | sampled by A. Usman                                                  | ŀ                |           |                 | ******     |          |              |         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |         | •               | 3        |                                                                       | 5                                     |                 |                |            |              |                | 36 .4<br>5.12 |   |              | 1000           |
| Sunding I'm Annual Tree (TA) = 10 Backet by 1 20 by 20 by 1 20 by 20 by 1 20 by 20 by 1 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 by 20 | cation:                                                              |                  |           |                 |            |          |              |         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 78j          |          |         |                 |          | K'<br>SP'                                                             | <b>2</b> 13.                          |                 |                |            | -0           | 70             |               |   |              |                |
| Standad Turn Around Time (TAT)   10 Desirence Days   STECIAL DASTRUCTIONS     Standad Turn Around Time (TAT)   10 Desirence Days   STECIAL DASTRUCTIONS     Standad Turn Around Time (TAT)   10 Desirence Days   STECIAL DASTRUCTIONS     Standad Turn Around Time (TAT)   10 Desirence Days   STECIAL DASTRUCTIONS     Standad Turn Around Time (TAT)   10 Desirence Days   STECIAL DASTRUCTIONS     Standad Turn Around Time (TAT)   10 Desirence Days   STECIAL DASTRUCTIONS     Standad Turn Around Time (TAT)   10 Desirence Days   STECIAL DASTRUCTIONS     Standad Turn Around Time (TAT)   10 Desirence Days   STECIAL DASTRUCTIONS     STECIAL DASTRUCTIONS   STECIAL DASTRUCTIONS     STECIAL DASTRUCTIONS   STECIAL DASTRUCTIONS     STECIAL DASTRUCTIONS   STECIAL DASTRUCTIONS     STECIAL DASTRUCTIONS   STECIAL DASTRUCTIONS     STECIAL DASTRUCTIONS   STECIAL DASTRUCTIONS     STECIAL DASTRUCTIONS   STECIAL DASTRUCTIONS     STECIAL DASTRUCTIONS   STECIAL DASTRUCTIONS     STECIAL DASTRUCTIONS   STECIAL DASTRUCTIONS     STECIAL DASTRUCTIONS   STECIAL DASTRUCTIONS     STECIAL DASTRUCTIONS   STECIAL DASTRUCTIONS     STECIAL DASTRUCTIONS   STECIAL DASTRUCTIONS     STECIAL DASTRUCTIONS   STECIAL DASTRUCTIONS     STECIAL DASTRUCTIONS   STECIAL DASTRUCTIONS     STECIAL DASTRUCTIONS   STECIAL DASTRUCTIONS     STECIAL DASTRUCTIONS   STECIAL DASTRUCTIONS     STECIAL DASTRUCTIONS   STECIAL DASTRUCTIONS     STECIAL DASTRUCTIONS   STECIAL DASTRUCTIONS     STECIAL DASTRUCTIONS   STECIAL DASTRUCTIONS     STECIAL DASTRUCTIONS   STECIAL DASTRUCTIONS     STECIAL DASTRUCTIONS   STECIAL DASTRUCTIONS     STECIAL DASTRUCTIONS   STECIAL DASTRUCTIONS     STECIAL DASTRUCTIONS   STECIAL DASTRUCTIONS     STECIAL DASTRUCTIONS   STECIAL DASTRUCTIONS     STECIAL DASTRUCTIONS   STECIAL DASTRUCTIONS     STECIAL DASTRUCTIONS   STECIAL DASTRUCTIONS     STECIAL DASTRUCTIONS   STECIAL DASTRUCTIONS     STECIAL DASTRUCTIONS   STECIAL DASTRUCTIONS     STECIAL DASTRUCTIONS   STECIAL DASTRUCTIONS     STECIAL DASTRUCTIONS   STECIAL DASTRUCTIONS     STECIAL DASTRUCTIONS   STECI   | ounty KMS                                                            |                  |           | # OF CONTAINERS | NWTPH-HCID |          |              |         | 8768 Hate VOCs |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |          |         | RCRA Metata (8) |          | את שם, את מש, שמי<br>כש, כין כין, כין, פין<br>אם, אים, אים, אים, אין, | a S. Ag Na, TI, V. Za<br>T SZIG JATOÌ | TCLP Metals (8) | Straffladeur   | 567        |              | re and mathday |               |   | sigma2 bioli | SvidonA nexert |
| Standard Turn Avenand Time (TAT) = 10 Beaters Days   STECIAL DISTRICTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 80-1                                                                 | -                |           | _               | Г          | -        | <del> </del> | _       | L              | +-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ┼            | <b> </b> |         | İ               | 1        |                                                                       |                                       |                 | -              |            |              | 1              | ╀-            | _ | 4            | •              |
| 1 Day 2 Day 3 Day   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL DISTRICTIONS   STEELIAL   |                                                                      |                  |           |                 |            |          | -            |         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -            |          |         |                 |          |                                                                       |                                       |                 |                | 1          | _            | -              | ļ             | ļ |              |                |
| Standard Turn Arcund Time (TAT) = 10 Bearess Days   SPECIAL INSTRUCTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                  |           |                 |            | $\vdash$ |              |         |                | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -            |          |         |                 |          |                                                                       |                                       |                 |                |            | $\vdash$     | $\vdash$       | $\vdash$      |   |              |                |
| 1 Day 2 Day 3 Day   SPECIAL NSTRUCTIONS     1 Day 2 Day 3 Day   SPECIAL NSTRUCTIONS     1 Day 2 Day 3 Day   SPECIAL NSTRUCTIONS     2 Day 2 Day 3 Day   SPECIAL NSTRUCTIONS     3 Day   Standard   Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |                  |           |                 | $\neg$     | $\dashv$ |              | _       |                | $\dashv$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |          |         |                 |          |                                                                       |                                       |                 |                |            |              |                |               |   |              |                |
| Startled Turn Arrand Time (TAT) = 10 Descrises Days  1 Day 2 Day 3 Day  8 = PACIAL INSTRUCTIONS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  SAMPLES ARE HELD FOR 30 DAYS  |                                                                      |                  | +         |                 | 十          | $\dashv$ | $\dashv$     | $\perp$ |                | $\dashv$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\dashv$     | $\dashv$ |         |                 |          |                                                                       |                                       |                 |                | $\neg$     | $\dashv$     | -              |               | _ |              |                |
| 1 Day   2 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Da   |                                                                      | -                | +         | 1               | 1          | $\dashv$ | +            | $\perp$ |                | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | $\dashv$ |         |                 | $\dashv$ |                                                                       |                                       |                 |                | 1          | +            |                | +             | _ |              |                |
| Standard Turn Arcund Time (TAT) = 10 Basters Days   SPECIAL DSTRUCTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                      |                  | +         |                 | 1          | $\dashv$ |              | 1       |                | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +            | $\perp$  |         |                 | +        |                                                                       |                                       |                 | 1              | $\top$     |              |                | -             | _ |              |                |
| 1 Day   2 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Day   3 Da   |                                                                      |                  | -         | 1               | 1          | +        | +-           | _       |                | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +            | -        | 1       |                 | T        |                                                                       |                                       |                 | 1              | 1          | -            | ┪              | +-            | _ |              |                |
| Sundard Turn Arcund Time (TAT) = 10 Bearess Days  AT Requested (circle)  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  S Day  |                                                                      |                  | -         |                 |            | +        | +-           | _       |                | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del> </del> | ļ        | ļ       |                 | T        |                                                                       |                                       |                 | T              |            | <del> </del> | $\dashv$       | ╁             | _ |              |                |
| ** Trequested (circle) S Day S Day 3 Day \$ Day \$ Day \$ Day \$ Day \$ Day \$ Day \$ Day \$ Day \$ S Day \$ Kinedeal? Other \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Standard Tu                                                          | in Around Time ( | TAT) = 10 | Business I.     | S See      |          | $\  \ $      |         |                | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PECIA        | SET      | RUC     | IONS            | 1        |                                                                       |                                       |                 | 1              | 1          | -            | 1              | -             |   | ]            | 1              |
| *** Requested (circle) S Day (fined and Other: ** * * * * Actor   **   (70.5 3/2 c/2 4)    *** SAMPLES AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** THE AGE HELD FOR 30 DAYS  *** THE AGE HELD FOR 30 DAYS  *** THE AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** THE AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** THE AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** THE AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** THE AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** THE AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** THE AGE HELD FOR 30 DAYS  *** SAMPLES AGE HELD FOR 30 DAYS  *** THE AGE HELD FOR 30 DAYS  *** THE AGE HELD FOR 30 DAYS  *** THE AGE HELD FOR 30 DAYS  *** THE AGE HELD FOR 30 DAYS  *** THE AGE HELD FOR 30 DAYS  *** THE AGE HELD FOR 30 DAYS  *** THE AGE HELD FOR 30 DAYS  *** THE AGE HELD FOR 30 DAYS  *** THE AGE HELD FOR 30 DAYS  *** THE AGE HELD FOR 30 DAYS  *** THE AGE HELD FOR 30 D |                                                                      | 1 Day            | 2 Dr.     | _               | 3.0        | ķ.       |              |         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8            | Pola     | 3       | 8               | 6        | P                                                                     | 3                                     | A               | 8              | 4          | 129          | 7              |               |   |              |                |
| SAMPLES ARE HELD FOR 30 GAYS  RECEIVED BY:  RECEIVED BY:  RECEIVED BY:  RECEIVED BY:  RECEIVED BY:  RECEIVED BY:  RECEIVED BY:  RECEIVED BY:  RECEIVED BY:  Signature  The Algorithm Time Principles  Company:  RECEIVED BY:  Signature  The Algorithm Time Principles  Company:  Company:  RECEIVED BY:  Signature  The Algorithm Time Principles  Company:  Company:  RECEIVED BY:  Signature  Signature  The Algorithm Time  Company:  Company:  Company:  Company:  RECEIVED BY:  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Signature  Sig | fAT Requested (circle)                                               | 5 Day            | dia d     | . <u>Fe</u> \   | Ê          | j<br>¥   |              |         | 1              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *            | Ach      | 100     | Jan J           | 3        | 3                                                                     | 3                                     | 00              | 7              |            |              |                |               |   |              |                |
| 1980 By Date: RECEVED BY: Date Squares Squares Squares Squares Squares Squares Squares Squares Squares Squares Time Protect Name Protect Name (company: Act, 1983 Letter 1984) Company: Act, 1984 Letter 1984 Company: Act, 1984 Letter 1984 Company: Act, 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Letter 1984 Le |                                                                      | ES ARE HELD P    | X 36 DAY  | 8               |            |          |              |         |                | П                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |          |         |                 |          |                                                                       |                                       |                 |                |            |              |                |               |   |              |                |
| 1245 Company. Company. Company. Company. Company.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STEELINGS SHEED BY                                                   | Date:            | Signary 3 |                 | 12         | 0        | Dane         | 181     | m              | ¥ ‰                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ELING        | UISIE    | 30 SEV; |                 | ž.       | à                                                                     |                                       |                 | RECE<br>Signma | IVED<br>re | 87;          |                | Date          |   |              |                |
| Fayallon Company. Alex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Z.                                                                   | Time.            | F 7       | 17              | 1          | 1        | 1            | 132     |                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rated N      | i i      |         |                 | Ě        | P                                                                     |                                       |                 | Prated         | Neg        |              |                | i.            | _ |              |                |
| g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | fara                                                                 |                  | Comp      | 1               | 200        | 1        |              |         |                | ت                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ompany       |          |         |                 |          |                                                                       |                                       |                 | Сопра          | JUN.       |              |                |               |   |              |                |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Farallon-Seattle

1809 7th Ave Suite 1111 Seattle, WA 98101 Project: <u>397-019 Block 38 West</u>

Project Number: **397-019**Project Manager: **Suzy Stumpf** 

Report ID: A4B1607 - 03 29 24 1656

| <i>+</i> ,                                                                                                                                                                                                                                                        |                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| Client: Hundi                                                                                                                                                                                                                                                     | Element WO#: A4B1607                                                 |
| Project/Project #: <u>B/</u> 6                                                                                                                                                                                                                                    | OLK 38 West / 397-019                                                |
| Delivery Info:                                                                                                                                                                                                                                                    | /                                                                    |
| Date/time received: 2/2                                                                                                                                                                                                                                           | 8/24 @ 1328 By: Www                                                  |
|                                                                                                                                                                                                                                                                   | ent_ESS_FedEx_UPS_Radio_Morgan_SDS_Evergreen_Other                   |
| Cooler Inspection Da                                                                                                                                                                                                                                              | nte/time inspected: 2/28/24 @ /328 By:                               |
| Chain of Custody included                                                                                                                                                                                                                                         |                                                                      |
| Signed/dated by client?                                                                                                                                                                                                                                           | Yes No                                                               |
|                                                                                                                                                                                                                                                                   | Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler # |
| Temperature (°C)                                                                                                                                                                                                                                                  | <u> 4.9</u>                                                          |
| Custody seals? (Y/N)                                                                                                                                                                                                                                              |                                                                      |
| Received on ice? (Y/N)                                                                                                                                                                                                                                            | <u> </u>                                                             |
| Temp. blanks? (Y/N)                                                                                                                                                                                                                                               | <u> </u>                                                             |
| Ice type: (Gel/Real/Other)                                                                                                                                                                                                                                        | Peal                                                                 |
| Condition (In/Out):                                                                                                                                                                                                                                               | In                                                                   |
| All samples intact? Ves                                                                                                                                                                                                                                           | es form initiated? Yes Ao te/time inspected: 2/25/24@ 16/3 By: KAB   |
| All samples intact? Yes Y Bottle labels/COCs agree?                                                                                                                                                                                                               | Yes No _X Comments: All (Maners read                                 |
| All samples intact? Yes Y  Bottle labels/COCs agree?  FMW - 158 - 022                                                                                                                                                                                             | Yes No X Comments: All Containers read 2724                          |
| All samples intact? Yes X Bottle labels/COCs agree?  FMW - 158 - Ф22 COC/container discrepance                                                                                                                                                                    | Yes No _X Comments: All (Maners read                                 |
| All samples intact? Yes Y  Bottle labels/COCs agree?  YMW - 158 - 022  COC/container discrepance Containers/volumes receiv                                                                                                                                        | No Comments:                                                         |
| All samples intact? Yes Y  Bottle labels/COCs agree?  YMV - 158 - 022  COC/container discrepance Containers/volumes receiv  Do VOA vials have visible Comments 6/6 See                                                                                            | No Comments:                                                         |
| All samples intact? Yes Y  Bottle labels/COCs agree?  YMV - 158 - 022  COC/container discrepance Containers/volumes receiv  Do VOA vials have visible Comments 6/6 See                                                                                            | No Comments:                                                         |
| All samples intact? Yes Y  Bottle labels/COCs agree?  YMV - 158 - 022  COC/container discrepance  Containers/volumes receiv  Do VOA vials have visible  Comments 6/6 See  Water samples: pH checke                                                                | NoComments:                                                          |
| All samples intact? Yes Y  Bottle labels/COCs agree?  Yes Y  Bottle labels/COCs agree?  Yes Y  Bottle labels/COCs agree?  Yes Y  COC/container discrepance  Containers/volumes receiv  Do VOA vials have visible  Comments Y  Water samples: pH checke  Comments: | NoComments:                                                          |
| All samples intact? Yes Y  Bottle labels/COCs agree?  Yes Y  Bottle labels/COCs agree?  Yes Y  Bottle labels/COCs agree?  Yes Y  COC/container discrepance  Containers/volumes receiv  Do VOA vials have visible  Comments Y  Water samples: pH checke  Comments: | NoComments:                                                          |

Apex Laboratories

(milule fog



**Apex Laboratories, LLC** 

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

AMENDED REPORT

Friday, March 29, 2024 Suzy Stumpf Farallon-Seattle 1809 7th Ave Suite 1111 Seattle, WA 98101

RE: A4B1613 - 397-019 Block 38 West - 397-019

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A4B1613, which was received by the laboratory on 2/28/2024 at 1:28:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <a href="mailto:mpoquiz@apex-labs.com">mpoquiz@apex-labs.com</a>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

| Acceptable Receipt Tel | mperatu | re is less t | Cooler Receipt Information  n, or equal to, 6 degC (not frozen), or received on ice the same day as sampling. |
|------------------------|---------|--------------|---------------------------------------------------------------------------------------------------------------|
|                        |         |              | See Cooler Receipt Form for details)                                                                          |
| Cooler #1              | 4.9     | degC         | Cooler #2 1.8 degC                                                                                            |
| Cooler #3              | 2.9     | degC         |                                                                                                               |
|                        |         |              |                                                                                                               |
|                        |         |              |                                                                                                               |

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.





Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1613 - 03 29 24 1713

# ANALYTICAL REPORT FOR SAMPLES

|                  | SAMPLE INFORMATION |        |                |                |  |  |  |  |  |  |  |  |
|------------------|--------------------|--------|----------------|----------------|--|--|--|--|--|--|--|--|
| Client Sample ID | Laboratory ID      | Matrix | Date Sampled   | Date Received  |  |  |  |  |  |  |  |  |
| FMW-160-022724   | A4B1613-01         | Water  | 02/27/24 12:00 | 02/28/24 13:28 |  |  |  |  |  |  |  |  |
| FMW-161-022724   | A4B1613-02         | Water  | 02/27/24 13:45 | 02/28/24 13:28 |  |  |  |  |  |  |  |  |
| FMW-163-022724   | A4B1613-03         | Water  | 02/27/24 15:30 | 02/28/24 13:28 |  |  |  |  |  |  |  |  |
| FMW-156-022724   | A4B1613-04         | Water  | 02/27/24 14:02 | 02/28/24 13:28 |  |  |  |  |  |  |  |  |
| FMW-155-022724   | A4B1613-05         | Water  | 02/27/24 15:37 | 02/28/24 13:28 |  |  |  |  |  |  |  |  |

Apex Laboratories

milale Pog



AMENDED REPORT

#### Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1613 - 03 29 24 1713

#### ANALYTICAL CASE NARRATIVE

A4B1613 Apex Laboratories

Amended Final Report #2 - This report supercedes all previous reports

#### Methylnaphthalenes and Naphthalene by EPA 8270E Note

The Laboratory Control Sample (LCS/LCSD) recoveries associated with the quantification of naphthalene and methylnaphthalenes by EPA Method 8270E were below acceptance criteria for the samples below. These samples were re-extracted and re-analyzed with similar results. The investigation into these low LCS recoveries was unable to identify a specific root cause. Analysis of subsequent analytical batches for these analytes by EPA Method 8270E yielded LCS recoveries within acceptance limits. Due to insufficient remaining sample volume for these samples, additional testing for naphthalene and the methylnaphthalenes by EPA Method 8270E could not be completed. The EPA Method 8270E data for methylnaphthalenes was qualified accordingly. Naphthalene was reported by EPA Method 8260D.

- FMW-160-022724 (A4B1613-01)
- FMW-161-022724 (A4B1613-02)
- FMW-163-022724 (A4B1613-03)
- FMW-156-022724 (A4B1613-04)
- FMW-155-022724 (A4B1613-05)

Kurt Johnson Director of Forensic Services March 29, 2024

Amended Final Report #1 - This report supersedes all previous reports.

# NWTPH-Dx - WA Diesel Extended - Method Name Change

This report contains modified data for NWTPH-Dx (WA Ext) for all samples.

The reported Analytical Method Reference has changed from "Washington Diesel Range Extended (C10-C40) by EPA 8015D Modified" to "Whole Product Diesel Testing (C10-C40) WDOE/NWTPH-Dx", the Specific Method Reference has changed from "8015DMod (WA\_Ext)" to "NWTPH-Dx (WA Ext)", and a Minimum Reporting Level has been set at 0.250mg/L.

The affected data is flagged in the report with the AMEND qualifier.

David Jack

Technical Manager

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1613 - 03 29 24 1713

# ANALYTICAL CASE NARRATIVE

A4B1613 Apex Laboratories

March 20, 2024

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1613 - 03 29 24 1713

# ANALYTICAL SAMPLE RESULTS

|                                 | Whole Pro        | Whole Product Diesel Testing (C10-C40) by WDOE/NWTPH-Dx |                    |                  |          |                  |                      |       |  |  |  |  |
|---------------------------------|------------------|---------------------------------------------------------|--------------------|------------------|----------|------------------|----------------------|-------|--|--|--|--|
| Analyte                         | Sample<br>Result | Detection<br>Limit                                      | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref.          | Notes |  |  |  |  |
| FMW-160-022724 (A4B1613-01RE1)  |                  |                                                         |                    | Matrix: Wate     | er       | Batch:           | 24C0024              | AMEND |  |  |  |  |
| Diesel Range Organics (C10-C40) | ND               |                                                         | 250                | ug/L             | 1        | 03/07/24 13:24   | NWTPH-DX<br>(WA_Ext) |       |  |  |  |  |
| Surrogate: o-Terphenyl (Surr)   |                  | Recover                                                 | ry: 77%            | Limits: 50-150 % | 5 1      | 03/07/24 13:24   | NWTPH-DX<br>(WA_Ext) |       |  |  |  |  |
| FMW-161-022724 (A4B1613-02RE1)  |                  |                                                         |                    | Matrix: Wate     | er       | Batch:           | 24C0024              | AMEND |  |  |  |  |
| Diesel Range Organics (C10-C40) | ND               |                                                         | 250                | ug/L             | 1        | 03/07/24 13:47   | NWTPH-DX<br>(WA_Ext) |       |  |  |  |  |
| Surrogate: o-Terphenyl (Surr)   |                  | Recover                                                 | y: 72 %            | Limits: 50-150 % | 5 I      | 03/07/24 13:47   | NWTPH-DX<br>(WA_Ext) |       |  |  |  |  |
| FMW-163-022724 (A4B1613-03RE1)  |                  |                                                         |                    | Matrix: Wate     | er       | Batch:           | 24C0024              | AMEND |  |  |  |  |
| Diesel Range Organics (C10-C40) | ND               |                                                         | 250                | ug/L             | 1        | 03/07/24 14:11   | NWTPH-DX<br>(WA_Ext) |       |  |  |  |  |
| Surrogate: o-Terphenyl (Surr)   |                  | Recover                                                 | y: 72 %            | Limits: 50-150 % | 5 I      | 03/07/24 14:11   | NWTPH-DX<br>(WA_Ext) |       |  |  |  |  |
| FMW-156-022724 (A4B1613-04)     |                  |                                                         |                    | Matrix: Wate     | er       | Batch:           | 24C0024              | AMEND |  |  |  |  |
| Diesel Range Organics (C10-C40) | ND               |                                                         | 250                | ug/L             | 1        | 03/06/24 22:39   | NWTPH-DX<br>(WA_Ext) |       |  |  |  |  |
| Surrogate: o-Terphenyl (Surr)   |                  | Recover                                                 | y: 75 %            | Limits: 50-150 % | 5 I      | 03/06/24 22:39   | NWTPH-DX<br>(WA_Ext) |       |  |  |  |  |
| FMW-155-022724 (A4B1613-05)     |                  |                                                         |                    | Matrix: Wate     | er       | Batch:           | 24C0024              | AMEND |  |  |  |  |
| Diesel Range Organics (C10-C40) | 605              |                                                         | 250                | ug/L             | 1        | 03/06/24 23:02   | NWTPH-DX<br>(WA_Ext) |       |  |  |  |  |
| Surrogate: o-Terphenyl (Surr)   |                  | Recover                                                 | y: 85 %            | Limits: 50-150 % | 5 1      | 03/06/24 23:02   | NWTPH-DX<br>(WA_Ext) |       |  |  |  |  |

Apex Laboratories

anal



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1613 - 03 29 24 1713

# ANALYTICAL SAMPLE RESULTS

| Whole Product Diesel Testing (C10-C40) by WDOE/NWTPH-Dx with Silica Gel Column Cleanup |                  |                    |                    |                  |          |                  |                           |       |  |  |
|----------------------------------------------------------------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|---------------------------|-------|--|--|
| Analyte                                                                                | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref.               | Notes |  |  |
| FMW-155-022724 (A4B1613-05)                                                            |                  | Batch:             | 24C0983            |                  |          |                  |                           |       |  |  |
| Diesel Range Organics (C10-C40)                                                        | ND               |                    | 250                | ug/L             | 1        | 03/28/24 12:41   | NWTPH-DX<br>(WA_Ext) wSGC |       |  |  |
| Surrogate: o-Terphenyl (Surr)                                                          |                  | Reco               | very: 72 %         | Limits: 50-150 9 | % 1      | 03/28/24 12:41   | NWTPH-DX<br>(WA_Ext) wSGC |       |  |  |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1613 - 03 29 24 1713

# ANALYTICAL SAMPLE RESULTS

| Analyte                               | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref.   | Notes |
|---------------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|---------------|-------|
| FMW-160-022724 (A4B1613-01)           |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 24B1015       |       |
| Gasoline Range Organics               | ND               |                    | 100                | ug/L             | 1        | 02/29/24 17:27   | NWTPH-Gx (MS) |       |
| Surrogate: 4-Bromofluorobenzene (Sur) |                  | Recovery:          | 106 %              | Limits: 50-150 % | 1        | 02/29/24 17:27   | NWTPH-Gx (MS) |       |
| I,4-Difluorobenzene (Sur)             |                  |                    | 115 %              | 50-150 %         | I        | 02/29/24 17:27   | NWTPH-Gx (MS) |       |
| FMW-161-022724 (A4B1613-02)           |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 24B1015       |       |
| Gasoline Range Organics               | ND               |                    | 100                | ug/L             | 1        | 02/29/24 17:54   | NWTPH-Gx (MS) |       |
| Surrogate: 4-Bromofluorobenzene (Sur) |                  | Recovery:          | 106 %              | Limits: 50-150 % | 1        | 02/29/24 17:54   | NWTPH-Gx (MS) |       |
| 1,4-Difluorobenzene (Sur)             |                  |                    | 115 %              | 50-150 %         | 1        | 02/29/24 17:54   | NWTPH-Gx (MS) |       |
| FMW-163-022724 (A4B1613-03)           |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 24B1015       |       |
| Gasoline Range Organics               | ND               |                    | 100                | ug/L             | 1        | 02/29/24 18:22   | NWTPH-Gx (MS) |       |
| Surrogate: 4-Bromofluorobenzene (Sur) |                  | Recovery:          | 109 %              | Limits: 50-150 % | 1        | 02/29/24 18:22   | NWTPH-Gx (MS) |       |
| 1,4-Difluorobenzene (Sur)             |                  |                    | 116 %              | 50-150 %         | 1        | 02/29/24 18:22   | NWTPH-Gx (MS) |       |
| FMW-156-022724 (A4B1613-04)           |                  |                    |                    | Matrix: Wate     | er       | Batch:           | 24B1015       |       |
| Gasoline Range Organics               | ND               |                    | 100                | ug/L             | 1        | 02/29/24 18:49   | NWTPH-Gx (MS) |       |
| Surrogate: 4-Bromofluorobenzene (Sur) |                  | Recovery:          | 107 %              | Limits: 50-150 % | I        | 02/29/24 18:49   | NWTPH-Gx (MS) |       |
| 1,4-Difluorobenzene (Sur)             |                  |                    | 116 %              | 50-150 %         | 1        | 02/29/24 18:49   | NWTPH-Gx (MS) |       |
| FMW-155-022724 (A4B1613-05RE1)        |                  |                    |                    | Matrix: Wate     | r        | Batch:           | 24C0043       |       |
| Gasoline Range Organics               | ND               |                    | 100                | ug/L             | 1        | 03/01/24 16:42   | NWTPH-Gx (MS) |       |
| Surrogate: 4-Bromofluorobenzene (Sur) |                  | Recovery           | : 97%              | Limits: 50-150 % | 1        | 03/01/24 16:42   | NWTPH-Gx (MS) |       |
| 1,4-Difluorobenzene (Sur)             |                  |                    | 101 %              | 50-150 %         | 1        | 03/01/24 16:42   | NWTPH-Gx (MS) |       |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1613 - 03 29 24 1713

# ANALYTICAL SAMPLE RESULTS

|                                       |        | BTEX Co   | mpounds b  | y EPA 8260D      |          |                |             |       |
|---------------------------------------|--------|-----------|------------|------------------|----------|----------------|-------------|-------|
|                                       | Sample | Detection | Reporting  |                  |          | Date           |             |       |
| Analyte                               | Result | Limit     | Limit      | Units            | Dilution | Analyzed       | Method Ref. | Notes |
| FMW-160-022724 (A4B1613-01)           |        |           |            | Matrix: Wate     | Batch: 2 | 24B1015        |             |       |
| Benzene                               | ND     |           | 0.200      | ug/L             | 1        | 02/29/24 17:27 | EPA 8260D   |       |
| Toluene                               | ND     |           | 1.00       | ug/L             | 1        | 02/29/24 17:27 | EPA 8260D   |       |
| Ethylbenzene                          | ND     |           | 0.500      | ug/L             | 1        | 02/29/24 17:27 | EPA 8260D   |       |
| Xylenes, total                        | ND     |           | 1.50       | ug/L             | 1        | 02/29/24 17:27 | EPA 8260D   |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |        | Recov     | ery: 115 % | Limits: 80-120 % | 1        | 02/29/24 17:27 | EPA 8260D   |       |
| Toluene-d8 (Surr)                     |        |           | 100 %      | 80-120 %         | 1        | 02/29/24 17:27 | EPA 8260D   |       |
| 4-Bromofluorobenzene (Surr)           |        |           | 96 %       | 80-120 %         | 1        | 02/29/24 17:27 | EPA 8260D   |       |
| FMW-161-022724 (A4B1613-02)           |        |           |            | Matrix: Wate     | er       | Batch:         | 24B1015     |       |
| Benzene                               | ND     |           | 0.200      | ug/L             | 1        | 02/29/24 17:54 | EPA 8260D   |       |
| Toluene                               | ND     |           | 1.00       | ug/L             | 1        | 02/29/24 17:54 | EPA 8260D   |       |
| Ethylbenzene                          | ND     |           | 0.500      | ug/L             | 1        | 02/29/24 17:54 | EPA 8260D   |       |
| Xylenes, total                        | ND     |           | 1.50       | ug/L             | 1        | 02/29/24 17:54 | EPA 8260D   |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |        | Recov     | ery: 116%  | Limits: 80-120 % | I        | 02/29/24 17:54 | EPA 8260D   |       |
| Toluene-d8 (Surr)                     |        |           | 100 %      | 80-120 %         | 1        | 02/29/24 17:54 | EPA 8260D   |       |
| 4-Bromofluorobenzene (Surr)           |        |           | 97 %       | 80-120 %         | I        | 02/29/24 17:54 | EPA 8260D   |       |
| FMW-163-022724 (A4B1613-03)           |        |           |            | Matrix: Wate     | er       | Batch:         | 24B1015     |       |
| Benzene                               | 0.420  |           | 0.200      | ug/L             | 1        | 02/29/24 18:22 | EPA 8260D   |       |
| Toluene                               | ND     |           | 1.00       | ug/L             | 1        | 02/29/24 18:22 | EPA 8260D   |       |
| Ethylbenzene                          | ND     |           | 0.500      | ug/L             | 1        | 02/29/24 18:22 | EPA 8260D   |       |
| Xylenes, total                        | ND     |           | 1.50       | ug/L             | 1        | 02/29/24 18:22 | EPA 8260D   |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |        | Recov     | ery: 115 % | Limits: 80-120 % | 1        | 02/29/24 18:22 | EPA 8260D   |       |
| Toluene-d8 (Surr)                     |        |           | 99 %       | 80-120 %         | 1        | 02/29/24 18:22 | EPA 8260D   |       |
| 4-Bromofluorobenzene (Surr)           |        |           | 96 %       | 80-120 %         | 1        | 02/29/24 18:22 | EPA 8260D   |       |
| FMW-156-022724 (A4B1613-04)           |        |           |            | Matrix: Wate     | er       | Batch: 2       | 24B1015     |       |
| Benzene                               | ND     |           | 0.200      | ug/L             | 1        | 02/29/24 18:49 | EPA 8260D   |       |
| Toluene                               | ND     |           | 1.00       | ug/L             | 1        | 02/29/24 18:49 | EPA 8260D   |       |
| Ethylbenzene                          | ND     |           | 0.500      | ug/L             | 1        | 02/29/24 18:49 | EPA 8260D   |       |
| Xylenes, total                        | ND     |           | 1.50       | ug/L             | 1        | 02/29/24 18:49 | EPA 8260D   |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |        | Recov     | ery: 113 % | Limits: 80-120 % | 1        | 02/29/24 18:49 | EPA 8260D   |       |
| Toluene-d8 (Surr)                     |        |           | 99 %       | 80-120 %         | 1        | 02/29/24 18:49 | EPA 8260D   |       |
| 4-Bromofluorobenzene (Surr)           |        |           | 94 %       | 80-120 %         | 1        | 02/29/24 18:49 | EPA 8260D   |       |

Apex Laboratories

milale fog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

1809 7th Ave Suite 1111 Project Number: 397-019 Report ID: Seattle, WA 98101 Project Manager: Suzy Stumpf A4B1613 - 03 29 24 1713

# ANALYTICAL SAMPLE RESULTS

| BTEX Compounds by EPA 8260D           |                                 |        |            |                              |          |                |             |       |  |  |
|---------------------------------------|---------------------------------|--------|------------|------------------------------|----------|----------------|-------------|-------|--|--|
|                                       | Sample Detection Reporting Date |        |            |                              |          |                |             |       |  |  |
| Analyte                               | Result                          | Limit  | Limit      | Units                        | Dilution | Analyzed       | Method Ref. | Notes |  |  |
| FMW-155-022724 (A4B1613-05RE1)        |                                 |        |            | Matrix: Water Batch: 24C0043 |          |                |             |       |  |  |
| Benzene                               | ND                              |        | 0.200      | ug/L                         | 1        | 03/01/24 16:42 | EPA 8260D   |       |  |  |
| Toluene                               | ND                              |        | 1.00       | ug/L                         | 1        | 03/01/24 16:42 | EPA 8260D   |       |  |  |
| Ethylbenzene                          | ND                              |        | 0.500      | ug/L                         | 1        | 03/01/24 16:42 | EPA 8260D   |       |  |  |
| Xylenes, total                        | ND                              |        | 1.50       | ug/L                         | 1        | 03/01/24 16:42 | EPA 8260D   |       |  |  |
| Surrogate: 1,4-Difluorobenzene (Surr) |                                 | Recove | ery: 108 % | Limits: 80-120 %             | 6 I      | 03/01/24 16:42 | EPA 8260D   |       |  |  |
| Toluene-d8 (Surr)                     |                                 |        | 100 %      | 80-120 %                     | 6 I      | 03/01/24 16:42 | EPA 8260D   |       |  |  |
| 4-Bromofluorobenzene (Surr)           |                                 |        | 93 %       | 80-120 %                     | 6 I      | 03/01/24 16:42 | EPA 8260D   |       |  |  |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1613 - 03 29 24 1713

# ANALYTICAL SAMPLE RESULTS

|                                       |                  | BTEX+N Co          | mpounds            | by EPA 8260D     |          |                  |             |       |
|---------------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|-------------|-------|
| Analyte                               | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| FMW-160-022724 (A4B1613-01)           |                  |                    |                    | Matrix: Wate     | er       | Batch: 2         |             |       |
| Naphthalene                           | ND               |                    | 5.00               | ug/L             | 1        | 02/29/24 17:27   | EPA 8260D   |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Recovery           | y: 115 %           | Limits: 80-120 % | 1        | 02/29/24 17:27   | EPA 8260D   |       |
| Toluene-d8 (Surr)                     |                  |                    | 100 %              | 80-120 %         | 1        | 02/29/24 17:27   | EPA 8260D   |       |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 96 %               | 80-120 %         | 1        | 02/29/24 17:27   | EPA 8260D   |       |
| FMW-161-022724 (A4B1613-02)           |                  |                    |                    | Matrix: Wate     | r        | Batch: 2         | 24B1015     |       |
| Naphthalene                           | ND               |                    | 5.00               | ug/L             | 1        | 02/29/24 17:54   | EPA 8260D   |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Recovery           | y: 116 %           | Limits: 80-120 % | 1        | 02/29/24 17:54   | EPA 8260D   |       |
| Toluene-d8 (Surr)                     |                  |                    | 100 %              | 80-120 %         | 1        | 02/29/24 17:54   | EPA 8260D   |       |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 97 %               | 80-120 %         | 1        | 02/29/24 17:54   | EPA 8260D   |       |
| MW-163-022724 (A4B1613-03)            |                  |                    |                    | Matrix: Wate     | r        | Batch: 2         | 24B1015     |       |
| Naphthalene                           | ND               |                    | 5.00               | ug/L             | 1        | 02/29/24 18:22   | EPA 8260D   |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Recover            | y: 115 %           | Limits: 80-120 % | 1        | 02/29/24 18:22   | EPA 8260D   |       |
| Toluene-d8 (Surr)                     |                  |                    | 99 %               | 80-120 %         | 1        | 02/29/24 18:22   | EPA 8260D   |       |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 96 %               | 80-120 %         | I        | 02/29/24 18:22   | EPA 8260D   |       |
| FMW-156-022724 (A4B1613-04)           |                  |                    |                    | Matrix: Wate     | er       | Batch: 2         | 24B1015     |       |
| Naphthalene                           | ND               |                    | 5.00               | ug/L             | 1        | 02/29/24 18:49   | EPA 8260D   |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Recovery           | y: 113 %           | Limits: 80-120 % | I        | 02/29/24 18:49   | EPA 8260D   |       |
| Toluene-d8 (Surr)                     |                  |                    | 99 %               | 80-120 %         | 1        | 02/29/24 18:49   | EPA 8260D   |       |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 94 %               | 80-120 %         | 1        | 02/29/24 18:49   | EPA 8260D   |       |
| FMW-155-022724 (A4B1613-05RE1)        |                  |                    |                    | Matrix: Wate     | r        | Batch: 2         | 24C0043     |       |
| Naphthalene                           | ND               |                    | 5.00               | ug/L             | 1        | 03/01/24 16:42   | EPA 8260D   |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Recovery           | v: 108 %           | Limits: 80-120 % | 1        | 03/01/24 16:42   | EPA 8260D   |       |
| Toluene-d8 (Surr)                     |                  |                    | 100 %              | 80-120 %         | 1        | 03/01/24 16:42   | EPA 8260D   |       |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 93 %               | 80-120 %         | 1        | 03/01/24 16:42   | EPA 8260D   |       |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1613 - 03 29 24 1713

# ANALYTICAL SAMPLE RESULTS

|                                   | Selected         | l Semivolatile C   | rganic C           | ompounds by E    | PA 62/U  | <u> </u>         |             |       |
|-----------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|-------------|-------|
| Analyte                           | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| FMW-160-022724 (A4B1613-01)       |                  |                    |                    | Matrix: Wate     | er       | Batch: 2         |             |       |
| 1-Methylnaphthalene               | ND               |                    | 0.0400             | ug/L             | 1        | 03/08/24 11:24   | EPA 8270E   | Q-30  |
| 2-Methylnaphthalene               | ND               |                    | 0.0400             | ug/L             | 1        | 03/08/24 11:24   | EPA 8270E   | Q-30  |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recovery           | ): 70 %            | Limits: 44-120 % | 1        | 03/08/24 11:24   | EPA 8270E   |       |
| 2-Fluorobiphenyl (Surr)           |                  |                    | 58 %               | 44-120 %         | 1        | 03/08/24 11:24   | EPA 8270E   |       |
| Phenol-d6 (Surr)                  |                  |                    | 26 %               | 10-133 %         | 1        | 03/08/24 11:24   | EPA 8270E   |       |
| p-Terphenyl-d14 (Surr)            |                  |                    | 65 %               | 50-134 %         | 1        | 03/08/24 11:24   | EPA 8270E   |       |
| 2-Fluorophenol (Surr)             |                  |                    | 37 %               | 19-120 %         | 1        | 03/08/24 11:24   | EPA 8270E   |       |
| 2,4,6-Tribromophenol (Surr)       |                  |                    | 105 %              | 43-140 %         | 1        | 03/08/24 11:24   | EPA 8270E   |       |
| FMW-161-022724 (A4B1613-02)       |                  |                    |                    | Matrix: Wate     | er       | Batch: 2         | 24C0110     |       |
| 1-Methylnaphthalene               | ND               |                    | 0.0430             | ug/L             | 1        | 03/08/24 11:59   | EPA 8270E   | Q-30  |
| 2-Methylnaphthalene               | ND               |                    | 0.0430             | ug/L             | 1        | 03/08/24 11:59   | EPA 8270E   | Q-30  |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recovery           | ): 56 %            | Limits: 44-120 % | 1        | 03/08/24 11:59   | EPA 8270E   |       |
| 2-Fluorobiphenyl (Surr)           |                  |                    | 52 %               | 44-120 %         | 1        | 03/08/24 11:59   | EPA 8270E   |       |
| Phenol-d6 (Surr)                  |                  |                    | 23 %               | 10-133 %         | 1        | 03/08/24 11:59   | EPA 8270E   |       |
| p-Terphenyl-d14 (Surr)            |                  |                    | 64 %               | 50-134 %         | 1        | 03/08/24 11:59   | EPA 8270E   |       |
| 2-Fluorophenol (Surr)             |                  |                    | 32 %               | 19-120 %         | 1        | 03/08/24 11:59   | EPA 8270E   |       |
| 2,4,6-Tribromophenol (Surr)       |                  |                    | 90 %               | 43-140 %         | 1        | 03/08/24 11:59   | EPA 8270E   |       |
| FMW-163-022724 (A4B1613-03)       |                  |                    |                    | Matrix: Wate     | er       | Batch: 2         | 24C0110     |       |
| 1-Methylnaphthalene               | ND               |                    | 0.0417             | ug/L             | 1        | 03/08/24 12:33   | EPA 8270E   | Q-30  |
| 2-Methylnaphthalene               | ND               |                    | 0.0417             | ug/L             | 1        | 03/08/24 12:33   | EPA 8270E   | Q-30  |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recovery           | : 64 %             | Limits: 44-120 % | 1        | 03/08/24 12:33   | EPA 8270E   |       |
| 2-Fluorobiphenyl (Surr)           |                  |                    | 55 %               | 44-120 %         | 1        | 03/08/24 12:33   | EPA 8270E   |       |
| Phenol-d6 (Surr)                  |                  |                    | 24 %               | 10-133 %         | 1        | 03/08/24 12:33   | EPA 8270E   |       |
| p-Terphenyl-d14 (Surr)            |                  |                    | 67 %               | 50-134 %         | 1        | 03/08/24 12:33   | EPA 8270E   |       |
| 2-Fluorophenol (Surr)             |                  |                    | 34 %               | 19-120 %         | 1        | 03/08/24 12:33   | EPA 8270E   |       |
| 2,4,6-Tribromophenol (Surr)       |                  |                    | 98 %               | 43-140 %         | 1        | 03/08/24 12:33   | EPA 8270E   |       |
| FMW-156-022724 (A4B1613-04)       |                  |                    |                    | Matrix: Wate     | er       | Batch: 2         | 24C0110     |       |
| 1-Methylnaphthalene               | ND               |                    | 0.0381             | ug/L             | 1        | 03/08/24 13:07   | EPA 8270E   | Q-30  |
| 2-Methylnaphthalene               | ND               |                    | 0.0381             | ug/L             | 1        | 03/08/24 13:07   | EPA 8270E   | Q-30  |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recovery           | ): 96 %            | Limits: 44-120 % | 1        | 03/08/24 13:07   | EPA 8270E   |       |
| 2-Fluorobiphenyl (Surr)           |                  |                    | 84 %               | 44-120 %         | 1        | 03/08/24 13:07   | EPA 8270E   |       |
| Phenol-d6 (Surr)                  |                  |                    | 31 %               | 10-133 %         | 1        | 03/08/24 13:07   | EPA 8270E   |       |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1613 - 03 29 24 1713

# ANALYTICAL SAMPLE RESULTS

|                                   | Selected Semivolatile Organic Compounds by EPA 8270E |                    |                    |                              |          |                  |             |       |  |  |
|-----------------------------------|------------------------------------------------------|--------------------|--------------------|------------------------------|----------|------------------|-------------|-------|--|--|
| Analyte                           | Sample<br>Result                                     | Detection<br>Limit | Reporting<br>Limit | Units                        | Dilution | Date<br>Analyzed | Method Ref. | Notes |  |  |
| FMW-156-022724 (A4B1613-04)       |                                                      |                    | Batch:             | Batch: 24C0110               |          |                  |             |       |  |  |
| Surrogate: p-Terphenyl-d14 (Surr) |                                                      | Recovery           | y: 121 %           | Limits: 50-134 %             | % 1      | 03/08/24 13:07   | EPA 8270E   |       |  |  |
| 2-Fluorophenol (Surr)             |                                                      |                    | 52 %               | 19-120 9                     | % I      | 03/08/24 13:07   | EPA 8270E   |       |  |  |
| 2,4,6-Tribromophenol (Surr)       |                                                      |                    | 166 %              | 43-140 %                     | % I      | 03/08/24 13:07   | EPA 8270E   | S-06  |  |  |
| FMW-155-022724 (A4B1613-05)       |                                                      |                    |                    | Matrix: Water Batch: 24C0110 |          |                  |             |       |  |  |
| 1-Methylnaphthalene               | ND                                                   |                    | 0.0377             | ug/L                         | 1        | 03/08/24 13:41   | EPA 8270E   | Q-30  |  |  |
| 2-Methylnaphthalene               | ND                                                   |                    | 0.0377             | ug/L                         | 1        | 03/08/24 13:41   | EPA 8270E   | Q-30  |  |  |
| Surrogate: Nitrobenzene-d5 (Surr) |                                                      | Recove             | ry: 63 %           | Limits: 44-120 %             | % 1      | 03/08/24 13:41   | EPA 8270E   |       |  |  |
| 2-Fluorobiphenyl (Surr)           |                                                      |                    | 57 %               | 44-120 9                     | % I      | 03/08/24 13:41   | EPA 8270E   |       |  |  |
| Phenol-d6 (Surr)                  |                                                      |                    | 24 %               | 10-133 9                     | % I      | 03/08/24 13:41   | EPA 8270E   |       |  |  |
| p-Terphenyl-d14 (Surr)            |                                                      |                    | 52 %               | 50-134 9                     | % I      | 03/08/24 13:41   | EPA 8270E   |       |  |  |
| 2-Fluorophenol (Surr)             |                                                      |                    | 33 %               | 19-120 9                     | % I      | 03/08/24 13:41   | EPA 8270E   |       |  |  |
| 2,4,6-Tribromophenol (Surr)       |                                                      |                    | 101 %              | 43-140 9                     | 6 1      | 03/08/24 13:41   | EPA 8270E   |       |  |  |

Apex Laboratories

\_\_\_\_



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1613 - 03 29 24 1713

# QUALITY CONTROL (QC) SAMPLE RESULTS

#### Whole Product Diesel Testing (C10-C40) by WDOE/NWTPH-Dx % REC RPD Detection L Reporting Spike Source Dilution % REC Limits RPD Analyte Result Limit Limit Units Amount Result Limit Notes Batch 24C0024 - EPA 3510C (Fuels/Acid Ext.) Water Blank (24C0024-BLK1) Prepared: 03/01/24 10:42 Analyzed: 03/06/24 19:32 AMEND NWTPH-DX (WA Ext) Diesel Range Organics (C10-C40) ug/L Surr: o-Terphenyl (Surr) Recovery: 83 % Limits: 50-150 % Dilution: 1x LCS (24C0024-BS1) Prepared: 03/01/24 10:42 Analyzed: 03/06/24 19:55 AMEND NWTPH-DX (WA Ext) Diesel Range Organics (C10-C40) 38-132% Surr: o-Terphenyl (Surr) Recovery: 81 % Limits: 50-150 % Dilution: 1x LCS Dup (24C0024-BSD1) Prepared: 03/01/24 10:42 Analyzed: 03/06/24 20:19 AMEND, Q-19 NWTPH-DX (WA\_Ext) Diesel Range Organics (C10-C40) 200 38-132% 30% ug/L Surr: o-Terphenyl (Surr) Recovery: 89 % Limits: 50-150 % Dilution: 1x

Apex Laboratories

(milele fog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1613 - 03 29 24 1713

# **QUALITY CONTROL (QC) SAMPLE RESULTS**

| Whole P                         | roduc   | Diesel Tes           | ting (C10-         | C40) by V   | VDOE/NW   | TPH-Dx w        | ith Silic        | a Gel Coli | umn Cle         | anup |              |       |
|---------------------------------|---------|----------------------|--------------------|-------------|-----------|-----------------|------------------|------------|-----------------|------|--------------|-------|
| Analyte                         | Result  | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution  | Spike<br>Amount | Source<br>Result | % REC      | % REC<br>Limits | RPD  | RPD<br>Limit | Notes |
| Batch 24C0983 - EPA 3510C (Fu   | els/Aci | d Ext.)              |                    |             |           |                 | Wa               | ter        |                 |      |              |       |
| Blank (24C0983-BLK1)            |         |                      | Prepared           | d: 03/01/24 | 10:42 Ana | lyzed: 03/28/   | 24 11:31         |            |                 |      |              |       |
| NWTPH-DX (WA Ext) wSGC          |         |                      |                    |             |           |                 |                  |            |                 |      |              |       |
| Diesel Range Organics (C10-C40) | ND      |                      | 250                | ug/L        | 1         |                 |                  |            |                 |      |              |       |
| Surr: o-Terphenyl (Surr)        |         | Reco                 | very: 82 %         | Limits: 50  | 0-150 %   | Dilu            | tion: 1x         |            |                 |      |              |       |
| LCS (24C0983-BS1)               |         |                      | Prepared           | d: 03/01/24 | 10:42 Ana | lyzed: 03/28/   | 24 11:54         |            |                 |      |              |       |
| NWTPH-DX (WA Ext) wSGC          |         |                      |                    |             |           |                 |                  |            |                 |      |              |       |
| Diesel Range Organics (C10-C40) | 296     |                      | 250                | ug/L        | 1         | 500             |                  | 59         | 38-132%         |      |              |       |
| Surr: o-Terphenyl (Surr)        |         | Reco                 | very: 87 %         | Limits: 50  | 0-150 %   | Dilu            | tion: 1x         |            |                 |      |              |       |
| LCS Dup (24C0983-BSD1)          |         |                      | Prepared           | d: 03/01/24 | 10:42 Ana | lyzed: 03/28/   | 24 12:18         |            |                 |      |              | Q-19  |
| NWTPH-DX (WA_Ext) wSGC          |         |                      |                    |             |           |                 |                  |            |                 |      |              |       |
| Diesel Range Organics (C10-C40) | 289     |                      | 250                | ug/L        | 1         | 500             |                  | 58         | 38-132%         | 2    | 30%          |       |
| Surr: o-Terphenyl (Surr)        |         | Reco                 | very: 87 %         | Limits: 50  | 0-150 %   | Dilu            | tion: 1x         |            |                 |      |              |       |

Apex Laboratories

(milele fog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1613 - 03 29 24 1713

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                  | Gasoli    | ne Range H           | yarocarbo          | ons (Ben    | zene thro | ugn Napn        | tnaiene)         | by NWTP | H-GX            |     |              |             |
|----------------------------------|-----------|----------------------|--------------------|-------------|-----------|-----------------|------------------|---------|-----------------|-----|--------------|-------------|
| Analyte                          | Result    | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution  | Spike<br>Amount | Source<br>Result | % REC   | % REC<br>Limits | RPD | RPD<br>Limit | Notes       |
| Batch 24B1015 - EPA 5030C        |           |                      |                    |             |           |                 | Wa               | ter     |                 |     |              |             |
| Blank (24B1015-BLK1)             |           |                      | Prepared           | d: 02/29/24 | 12:22 Ana | lyzed: 02/29    | /24 15:10        |         |                 |     |              |             |
| NWTPH-Gx (MS)                    |           |                      |                    |             |           |                 |                  |         |                 |     |              |             |
| Gasoline Range Organics          | ND        |                      | 100                | ug/L        | 1         |                 |                  |         |                 |     |              |             |
| Surr: 4-Bromofluorobenzene (Sur) |           | Recov                | ery: 105 %         | Limits: 5   | 0-150 %   | Dili            | ution: 1x        |         |                 |     |              |             |
| 1,4-Difluorobenzene (Sur)        |           |                      | 114 %              | 50          | 0-150 %   |                 | "                |         |                 |     |              |             |
| LCS (24B1015-BS2)                |           |                      | Prepared           | d: 02/29/24 | 12:22 Ana | lyzed: 02/29    | /24 14:43        |         |                 |     |              |             |
| NWTPH-Gx (MS)                    |           |                      |                    |             |           |                 |                  |         |                 |     |              |             |
| Gasoline Range Organics          | 553       |                      | 100                | ug/L        | 1         | 500             |                  | 111     | 80-120%         |     |              |             |
| Surr: 4-Bromofluorobenzene (Sur) |           | Recov                | ery: 101 %         | Limits: 5   | 0-150 %   | Dilt            | ution: 1x        |         |                 |     |              |             |
| 1,4-Difluorobenzene (Sur)        |           |                      | 106 %              | 50          | 0-150 %   |                 | "                |         |                 |     |              |             |
| Duplicate (24B1015-DUP1)         |           |                      | Prepared           | d: 02/29/24 | 12:22 Ana | lyzed: 03/01    | /24 03:00        |         |                 |     |              | T-(         |
| QC Source Sample: Non-SDG (A4    | B1606-01) |                      |                    |             |           |                 |                  |         |                 |     |              |             |
| Gasoline Range Organics          | 28000     |                      | 5000               | ug/L        | 50        |                 | 29500            |         |                 | 5   | 30%          |             |
| Surr: 4-Bromofluorobenzene (Sur) |           | Recov                | ery: 101 %         | Limits: 5   | 0-150 %   | Dili            | ution: 1x        |         |                 |     |              | <del></del> |
| 1,4-Difluorobenzene (Sur)        |           |                      | 107 %              | 50          | 0-150 %   |                 | "                |         |                 |     |              |             |
| Duplicate (24B1015-DUP2)         |           |                      | Prepared           | d: 02/29/24 | 12:22 Ana | lyzed: 03/01    | /24 03:27        |         |                 |     |              | T-          |
| QC Source Sample: Non-SDG (A4    | B1606-03) |                      |                    |             |           |                 |                  |         |                 |     |              |             |
| Gasoline Range Organics          | 39500     |                      | 5000               | ug/L        | 50        |                 | 39400            |         |                 | 0.4 | 30%          |             |
| Surr: 4-Bromofluorobenzene (Sur) |           | Reco                 | very: 99 %         | Limits: 5   | 0-150 %   | Dili            | ution: 1x        |         |                 |     |              |             |
| 1,4-Difluorobenzene (Sur)        |           |                      | 104 %              | 5           | 0-150 %   |                 | "                |         |                 |     |              |             |

Apex Laboratories

/ milale Pog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1613 - 03 29 24 1713

# QUALITY CONTROL (QC) SAMPLE RESULTS

| Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx |           |                      |                    |             |           |                 |                  |       |                 |     |              |       |  |
|-----------------------------------------------------------------------|-----------|----------------------|--------------------|-------------|-----------|-----------------|------------------|-------|-----------------|-----|--------------|-------|--|
| Analyte                                                               | Result    | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |  |
| Batch 24C0043 - EPA 5030C                                             |           |                      |                    |             |           |                 | Wa               | ter   |                 |     |              |       |  |
| Blank (24C0043-BLK1)                                                  |           |                      | Prepared           | d: 03/01/24 | 14:12 Ana | lyzed: 03/01    | /24 16:20        |       |                 |     |              |       |  |
| NWTPH-Gx (MS)                                                         |           |                      |                    |             |           |                 |                  |       |                 |     |              |       |  |
| Gasoline Range Organics                                               | ND        |                      | 100                | ug/L        | 1         |                 |                  |       |                 |     |              |       |  |
| Surr: 4-Bromofluorobenzene (Sur)                                      |           | Reco                 | very: 96 %         | Limits: 5   | 0-150 %   | Dilı            | ution: 1x        |       |                 |     |              |       |  |
| 1,4-Difluorobenzene (Sur)                                             |           |                      | 99 %               | 5           | 0-150 %   |                 | "                |       |                 |     |              |       |  |
| LCS (24C0043-BS2)                                                     |           |                      | Prepared           | d: 03/01/24 | 14:12 Ana | lyzed: 03/01    | /24 15:59        |       |                 |     |              |       |  |
| NWTPH-Gx (MS)                                                         |           |                      |                    |             |           |                 |                  |       |                 |     |              |       |  |
| Gasoline Range Organics                                               | 472       |                      | 100                | ug/L        | 1         | 500             |                  | 94    | 80-120%         |     |              |       |  |
| Surr: 4-Bromofluorobenzene (Sur)                                      |           | Reco                 | very: 96 %         | Limits: 5   | 0-150 %   | Dilı            | ution: 1x        |       |                 |     |              |       |  |
| 1,4-Difluorobenzene (Sur)                                             |           |                      | 97 %               | 50          | 0-150 %   |                 | "                |       |                 |     |              |       |  |
| Duplicate (24C0043-DUP1)                                              |           |                      | Prepared           | d: 03/01/24 | 14:12 Ana | lyzed: 03/01    | /24 19:12        |       |                 |     |              |       |  |
| QC Source Sample: Non-SDG (A4                                         | B1618-16R | E1)                  |                    |             |           |                 |                  |       |                 |     |              |       |  |
| Gasoline Range Organics                                               | 68200     |                      | 5000               | ug/L        | 50        |                 | 67900            |       |                 | 0.3 | 30%          |       |  |
| Surr: 4-Bromofluorobenzene (Sur)                                      |           | Reco                 | very: 94 %         | Limits: 5   | 0-150 %   | Dilı            | ution: 1x        |       |                 |     |              |       |  |
| 1,4-Difluorobenzene (Sur)                                             |           |                      | 89 %               | 50          | 0-150 %   |                 | "                |       |                 |     |              |       |  |
| Duplicate (24C0043-DUP2)                                              |           |                      | Prepared           | d: 03/01/24 | 14:12 Ana | lyzed: 03/01    | /24 20:38        |       |                 |     |              |       |  |
| QC Source Sample: Non-SDG (A4                                         | C0837-01) |                      |                    |             |           |                 |                  |       |                 |     |              |       |  |
| Gasoline Range Organics                                               | ND        |                      | 100                | ug/L        | 1         |                 | ND               |       |                 |     | 30%          |       |  |
| Surr: 4-Bromofluorobenzene (Sur)                                      |           | Reco                 | very: 96 %         | Limits: 5   |           | Dilt            | ution: 1x        |       |                 |     |              |       |  |
| 1,4-Difluorobenzene (Sur)                                             |           |                      | 96 %               | 5           | 0-150 %   |                 | "                |       |                 |     |              |       |  |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1613 - 03 29 24 1713

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                  |           |                      | BTEX               | Compou      | ınds by E | PA 8260D        | )                |       |                 |     |              |       |
|----------------------------------|-----------|----------------------|--------------------|-------------|-----------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                          | Result    | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 24B1015 - EPA 5030C        |           |                      |                    |             |           |                 | Wa               | ter   |                 |     |              |       |
| Blank (24B1015-BLK1)             |           |                      | Prepared           | 1: 02/29/24 | 12:22 Ana | lyzed: 02/29    | /24 15:10        |       |                 |     |              |       |
| EPA 8260D                        |           |                      |                    |             |           |                 |                  |       |                 |     |              |       |
| Benzene                          | ND        |                      | 0.200              | ug/L        | 1         |                 |                  |       |                 |     |              |       |
| Toluene                          | ND        |                      | 1.00               | ug/L        | 1         |                 |                  |       |                 |     |              |       |
| Ethylbenzene                     | ND        |                      | 0.500              | ug/L        | 1         |                 |                  |       |                 |     |              |       |
| Xylenes, total                   | ND        |                      | 1.50               | ug/L        | 1         |                 |                  |       |                 |     |              |       |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recov                | ery: 113 %         | Limits: 80  | 0-120 %   | Dilı            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           |                      | 99 %               | 80          | 0-120 %   |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 99 %               | 80          | 0-120 %   |                 | "                |       |                 |     |              |       |
| LCS (24B1015-BS1)                |           |                      | Prepared           | l: 02/29/24 | 12:22 Ana | lyzed: 02/29    | /24 14:04        |       |                 |     |              |       |
| EPA 8260D                        |           |                      |                    |             |           |                 |                  |       |                 |     |              |       |
| Benzene                          | 21.3      |                      | 0.200              | ug/L        | 1         | 20.0            |                  | 107   | 80-120%         |     |              |       |
| Toluene                          | 18.5      |                      | 1.00               | ug/L        | 1         | 20.0            |                  | 92    | 80-120%         |     |              |       |
| Ethylbenzene                     | 20.1      |                      | 0.500              | ug/L        | 1         | 20.0            |                  | 101   | 80-120%         |     |              |       |
| Xylenes, total                   | 57.3      |                      | 1.50               | ug/L        | 1         | 60.0            |                  | 95    | 80-120%         |     |              |       |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recov                | ery: 108 %         | Limits: 80  | 0-120 %   | Dilı            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           |                      | 95 %               | 80          | 0-120 %   |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 95 %               | 80          | 0-120 %   |                 | "                |       |                 |     |              |       |
| Duplicate (24B1015-DUP1)         |           |                      | Prepared           | 1: 02/29/24 | 12:22 Ana | lyzed: 03/01    | /24 03:00        |       |                 |     |              | T-0   |
| QC Source Sample: Non-SDG (A4)   | B1606-01) |                      |                    |             |           |                 |                  |       |                 |     |              |       |
| Benzene                          | 805       |                      | 10.0               | ug/L        | 50        |                 | 846              |       |                 | 5   | 30%          |       |
| Toluene                          | 310       |                      | 50.0               | ug/L        | 50        |                 | 322              |       |                 | 4   | 30%          |       |
| Ethylbenzene                     | 476       |                      | 25.0               | ug/L        | 50        |                 | 496              |       |                 | 4   | 30%          |       |
| Xylenes, total                   | 2570      |                      | 75.0               | ug/L        | 50        |                 | 2710             |       |                 | 5   | 30%          |       |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recov                | ery: 108 %         | Limits: 80  | 0-120 %   | Dilı            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           |                      | 100 %              |             | 0-120 %   |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 94 %               | 80          | 0-120 %   |                 | "                |       |                 |     |              |       |
| Duplicate (24B1015-DUP2)         | ·         |                      | Prepared           | 1: 02/29/24 | 12:22 Ana | lyzed: 03/01    | /24 03:27        |       |                 |     | ·            | T-0   |
| QC Source Sample: Non-SDG (A4)   | B1606-03) |                      |                    |             |           |                 |                  |       |                 |     |              |       |
| Benzene                          | 2160      |                      | 10.0               | ug/L        | 50        |                 | 2190             |       |                 | 1   | 30%          |       |
| Toluene                          | ND        |                      | 50.0               | ug/L        | 50        |                 | 47.0             |       |                 | *** | 30%          |       |

Apex Laboratories



Farallon-Seattle

# ANALYTICAL REPORT

AMENDED REPORT

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

**Apex Laboratories, LLC** 

ORELAP ID: OR100062

397-019 Block 38 West

1809 7th Ave Suite 1111 Project Number: 397-019 Report ID: Seattle, WA 98101 Project Manager: Suzy Stumpf A4B1613 - 03 29 24 1713

Project:

# QUALITY CONTROL (QC) SAMPLE RESULTS

| BTEX Compounds by EPA 8260D      |           |                      |                    |             |           |                 |                  |       |                 |      |              |       |  |
|----------------------------------|-----------|----------------------|--------------------|-------------|-----------|-----------------|------------------|-------|-----------------|------|--------------|-------|--|
| Analyte                          | Result    | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD  | RPD<br>Limit | Notes |  |
| Batch 24B1015 - EPA 5030C        |           |                      |                    |             |           |                 | Wa               | ter   |                 |      |              |       |  |
| Duplicate (24B1015-DUP2)         |           |                      | Prepared           | d: 02/29/24 | 12:22 Ana | lyzed: 03/01    | /24 03:27        |       |                 |      |              | T-0   |  |
| QC Source Sample: Non-SDG (A4    | B1606-03) |                      |                    |             |           |                 |                  |       |                 |      |              |       |  |
| Ethylbenzene                     | 1510      |                      | 25.0               | ug/L        | 50        |                 | 1520             |       |                 | 0.3  | 30%          |       |  |
| Xylenes, total                   | 5030      |                      | 75.0               | ug/L        | 50        |                 | 5030             |       |                 | 0.02 | 30%          |       |  |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recov                | very: 105 %        | Limits: 80  | 0-120 %   | Dilı            | tion: 1x         |       |                 |      |              |       |  |
| Toluene-d8 (Surr)                |           |                      | 99 %               | 80          | 0-120 %   |                 | "                |       |                 |      |              |       |  |
| 4-Bromofluorobenzene (Surr)      |           |                      | 93 %               | 80          | )-120 %   |                 | "                |       |                 |      |              |       |  |
| Matrix Spike (24B1015-MS1)       |           |                      | Prepared           | d: 02/29/24 | 12:22 Ana | lyzed: 02/29/   | /24 16:05        |       |                 |      |              |       |  |
| QC Source Sample: Non-SDG (A4    | B1612-02) |                      |                    |             |           |                 |                  |       |                 |      |              |       |  |
| EPA 8260D                        |           |                      |                    |             |           |                 |                  |       |                 |      |              |       |  |
| Benzene                          | 23.0      |                      | 0.200              | ug/L        | 1         | 20.0            | ND               | 115   | 79-120%         |      |              |       |  |
| Toluene                          | 19.9      |                      | 1.00               | ug/L        | 1         | 20.0            | ND               | 100   | 80-121%         |      |              |       |  |
| Ethylbenzene                     | 21.7      |                      | 0.500              | ug/L        | 1         | 20.0            | ND               | 108   | 79-121%         |      |              |       |  |
| Xylenes, total                   | 60.9      |                      | 1.50               | ug/L        | 1         | 60.0            | ND               | 102   | 79-121%         |      |              |       |  |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recov                | very: 108 %        | Limits: 80  | 0-120 %   | Dilı            | tion: 1x         |       |                 |      |              |       |  |
| Toluene-d8 (Surr)                |           |                      | 95 %               | 80          | 0-120 %   |                 | "                |       |                 |      |              |       |  |
| 4-Bromofluorobenzene (Surr)      |           |                      | 95 %               | 80          | 0-120 %   |                 | "                |       |                 |      |              |       |  |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1613 - 03 29 24 1713

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                  |           |                      | BTEX               | Compou      | ınds by E  | PA 8260D        | )                |       |                 |     |              |       |
|----------------------------------|-----------|----------------------|--------------------|-------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                          | Result    | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 24C0043 - EPA 5030C        |           |                      |                    |             |            |                 | Wa               | ter   |                 |     |              |       |
| Blank (24C0043-BLK1)             |           |                      | Prepared           | 1: 03/01/24 | 14:12 Ana  | yzed: 03/01     | /24 16:20        |       |                 |     |              |       |
| EPA 8260D                        |           |                      |                    |             |            |                 |                  |       |                 |     |              |       |
| Benzene                          | ND        |                      | 0.200              | ug/L        | 1          |                 |                  |       |                 |     |              |       |
| Toluene                          | ND        |                      | 1.00               | ug/L        | 1          |                 |                  |       |                 |     |              |       |
| Ethylbenzene                     | ND        |                      | 0.500              | ug/L        | 1          |                 |                  |       |                 |     |              |       |
| Xylenes, total                   | ND        |                      | 1.50               | ug/L        | 1          |                 |                  |       |                 |     |              |       |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recov                | very: 106 %        | Limits: 80  | 0-120 %    | Dilt            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           |                      | 101 %              | 80          | 0-120 %    |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 94 %               | 80          | )-120 %    |                 | "                |       |                 |     |              |       |
| LCS (24C0043-BS1)                |           |                      | Prepared           | 1: 03/01/24 | 14:12 Anal | yzed: 03/01     | /24 15:29        |       |                 |     |              |       |
| EPA 8260D                        |           |                      |                    |             |            |                 |                  |       |                 |     |              |       |
| Benzene                          | 20.1      |                      | 0.200              | ug/L        | 1          | 20.0            |                  | 100   | 80-120%         |     |              |       |
| Toluene                          | 18.9      |                      | 1.00               | ug/L        | 1          | 20.0            |                  | 94    | 80-120%         |     |              |       |
| Ethylbenzene                     | 19.7      |                      | 0.500              | ug/L        | 1          | 20.0            |                  | 99    | 80-120%         |     |              |       |
| Xylenes, total                   | 61.2      |                      | 1.50               | ug/L        | 1          | 60.0            |                  | 102   | 80-120%         |     |              |       |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recov                | very: 107 %        | Limits: 80  | 0-120 %    | Dilı            | ıtion: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           |                      | 99 %               | 80          | 0-120 %    |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 95 %               | 80          | )-120 %    |                 | "                |       |                 |     |              |       |
| Duplicate (24C0043-DUP1)         |           |                      | Prepared           | 1: 03/01/24 | 14:12 Anal | yzed: 03/01     | /24 19:12        |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A4    | B1618-16R | E1)                  |                    |             |            |                 |                  |       |                 |     |              |       |
| Benzene                          | 3680      |                      | 10.0               | ug/L        | 50         |                 | 3650             |       |                 | 0.7 | 30%          |       |
| Toluene                          | 1230      |                      | 50.0               | ug/L        | 50         |                 | 1220             |       |                 | 1   | 30%          |       |
| Ethylbenzene                     | 3830      |                      | 25.0               | ug/L        | 50         |                 | 3770             |       |                 | 1   | 30%          |       |
| Xylenes, total                   | 10900     |                      | 75.0               | ug/L        | 50         |                 | 10800            |       |                 | 0.7 | 30%          |       |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recov                | very: 100 %        | Limits: 80  | 0-120 %    | Dilı            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           |                      | 99 %               | 80          | 0-120 %    |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 98 %               | 80          | 0-120 %    |                 | "                |       |                 |     |              |       |
| Duplicate (24C0043-DUP2)         |           |                      | Prepared           | 1: 03/01/24 | 14:12 Anal | yzed: 03/01     | /24 20:38        |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A4    | C0837-01) |                      |                    |             |            |                 |                  |       |                 |     |              |       |
| Benzene                          | ND        |                      | 0.200              | ug/L        | 1          |                 | ND               |       |                 |     | 30%          |       |
| Toluene                          | ND        |                      | 1.00               | ug/L        | 1          |                 | ND               |       |                 |     | 30%          |       |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1613 - 03 29 24 1713

# QUALITY CONTROL (QC) SAMPLE RESULTS

| BTEX Compounds by EPA 8260D      |           |                      |                    |             |           |                 |                  |       |                 |     |              |       |  |
|----------------------------------|-----------|----------------------|--------------------|-------------|-----------|-----------------|------------------|-------|-----------------|-----|--------------|-------|--|
| Analyte                          | Result    | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |  |
| Batch 24C0043 - EPA 5030C        |           |                      |                    |             |           |                 | Wa               | ter   |                 |     |              |       |  |
| Duplicate (24C0043-DUP2)         |           |                      | Prepared           | 1: 03/01/24 | 14:12 Ana | lyzed: 03/01    | /24 20:38        |       |                 |     |              |       |  |
| QC Source Sample: Non-SDG (A4    | C0837-01) |                      |                    |             |           |                 |                  |       |                 |     |              |       |  |
| Ethylbenzene                     | ND        |                      | 0.500              | ug/L        | 1         |                 | ND               |       |                 |     | 30%          |       |  |
| Xylenes, total                   | ND        |                      | 1.50               | ug/L        | 1         |                 | ND               |       |                 |     | 30%          |       |  |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recov                | very: 107 %        | Limits: 80  | )-120 %   | Dilı            | tion: 1x         |       |                 |     |              |       |  |
| Toluene-d8 (Surr)                |           |                      | 100 %              | 80          | -120 %    |                 | "                |       |                 |     |              |       |  |
| 4-Bromofluorobenzene (Surr)      |           |                      | 95 %               | 80          | -120 %    |                 | "                |       |                 |     |              |       |  |
| Matrix Spike (24C0043-MS1)       |           |                      | Prepared           | 1: 03/01/24 | 14:12 Ana | lyzed: 03/02    | /24 01:18        |       |                 |     |              |       |  |
| QC Source Sample: Non-SDG (A4    | C0837-13) |                      |                    |             |           |                 |                  |       |                 |     |              |       |  |
| EPA 8260D                        |           |                      |                    |             |           |                 |                  |       |                 |     |              |       |  |
| Benzene                          | 21.6      |                      | 0.200              | ug/L        | 1         | 20.0            | ND               | 108   | 79-120%         |     |              |       |  |
| Toluene                          | 20.7      |                      | 1.00               | ug/L        | 1         | 20.0            | ND               | 103   | 80-121%         |     |              |       |  |
| Ethylbenzene                     | 21.9      |                      | 0.500              | ug/L        | 1         | 20.0            | ND               | 110   | 79-121%         |     |              |       |  |
| Xylenes, total                   | 67.4      |                      | 1.50               | ug/L        | 1         | 60.0            | ND               | 112   | 79-121%         |     |              |       |  |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recov                | very: 107 %        | Limits: 80  | 0-120 %   | Dilı            | ution: 1x        |       |                 |     |              |       |  |
| Toluene-d8 (Surr)                |           |                      | 97 %               | 80          | -120 %    |                 | "                |       |                 |     |              |       |  |
| 4-Bromofluorobenzene (Surr)      |           |                      | 97 %               | 80          | -120 %    |                 | "                |       |                 |     |              |       |  |

Apex Laboratories

(milele fog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1613 - 03 29 24 1713

# QUALITY CONTROL (QC) SAMPLE RESULTS BTEX+N Compounds by EPA 8260D

|                                  |           |                      | DIEA               | TN Comp     | ourius by | EFA 0200        | טי               |       |                 |     |              |       |
|----------------------------------|-----------|----------------------|--------------------|-------------|-----------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                          | Result    | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 24B1015 - EPA 5030C        |           |                      |                    |             |           |                 | Wa               | ater  |                 |     |              |       |
| Blank (24B1015-BLK1)             |           |                      | Prepare            | d: 02/29/24 | 12:22 Ana | lyzed: 02/29    | /24 15:10        |       |                 |     |              |       |
| EPA 8260D                        |           |                      |                    |             |           |                 |                  |       |                 |     |              |       |
| Naphthalene                      | ND        |                      | 5.00               | ug/L        | 1         |                 |                  |       |                 |     |              |       |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recon                | very: 113 %        | Limits: 8   | 0-120 %   | Dilı            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           |                      | 99 %               | 80          | 0-120 %   |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 99 %               | 80          | 0-120 %   |                 | "                |       |                 |     |              |       |
| LCS (24B1015-BS1)                |           |                      | Prepare            | d: 02/29/24 | 12:22 Ana | lyzed: 02/29    | /24 14:04        |       |                 |     |              |       |
| EPA 8260D                        |           |                      |                    |             |           |                 |                  |       |                 |     |              |       |
| Naphthalene                      | 16.0      |                      | 5.00               | ug/L        | 1         | 20.0            |                  | 80    | 80-120%         |     |              |       |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recov                | very: 108 %        | Limits: 8   | 0-120 %   | Dilı            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           |                      | 95 %               | 80          | 0-120 %   |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 95 %               | 80          | 0-120 %   |                 | "                |       |                 |     |              |       |
| Duplicate (24B1015-DUP1)         |           |                      | Prepare            | d: 02/29/24 | 12:22 Ana | llyzed: 03/01   | /24 03:00        |       |                 |     |              | T-0   |
| OC Source Sample: Non-SDG (A4    | B1606-01) |                      |                    |             |           |                 |                  |       |                 |     |              |       |
| Naphthalene                      | ND        |                      | 250                | ug/L        | 50        |                 | ND               |       |                 |     | 30%          |       |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recov                | very: 108 %        | Limits: 8   |           | Dilı            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           |                      | 100 %              | 80          | 0-120 %   |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 94 %               | 80          | 0-120 %   |                 | "                |       |                 |     |              |       |
| Duplicate (24B1015-DUP2)         |           |                      | Prepare            | d: 02/29/24 | 12:22 Ana | llyzed: 03/01   | /24 03:27        |       |                 |     |              | T-0   |
| QC Source Sample: Non-SDG (A4    | B1606-03) |                      |                    |             |           |                 |                  |       |                 |     |              |       |
| Naphthalene                      | ND        |                      | 250                | ug/L        | 50        |                 | 183              |       |                 | *** | 30%          |       |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recov                | very: 105 %        | Limits: 8   | 0-120 %   | Dilı            | ution: 1x        |       |                 |     |              | _     |
| Toluene-d8 (Surr)                |           |                      | 99 %               | 80          | 0-120 %   |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 93 %               | 80          | 0-120 %   |                 | "                |       |                 |     |              |       |
| Matrix Spike (24B1015-MS1)       |           |                      | Prepare            | d: 02/29/24 | 12:22 Ana | llyzed: 02/29   | /24 16:05        |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A4    | B1612-02) |                      |                    |             |           |                 |                  |       |                 |     |              |       |
| EPA 8260D                        |           |                      |                    |             |           |                 |                  |       |                 |     |              |       |
| Naphthalene                      | 16.4      |                      | 5.00               | ug/L        | 1         | 20.0            | ND               | 82    | 61-128%         |     |              |       |
| Surr: 1,4-Difluorobenzene (Surr) | 10.4      | Recov                | very: 108 %        | Limits: 8   |           |                 | ution: lx        | 02    | 01-12070        |     |              |       |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1613 - 03 29 24 1713

# QUALITY CONTROL (QC) SAMPLE RESULTS

# BTEX+N Compounds by EPA 8260D

|                               |           |                      | DILX.              | N Oom      | pourius b  | y LI A 0200     |                  |       |                 |     |              |       |
|-------------------------------|-----------|----------------------|--------------------|------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                       | Result    | Detection L<br>Limit | Reporting<br>Limit | Units      | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 24B1015 - EPA 5030C     |           |                      |                    |            |            |                 | Wa               | ter   |                 |     |              |       |
| Matrix Spike (24B1015-MS1)    |           |                      | Prepared           | d: 02/29/2 | 4 12:22 Ar | nalyzed: 02/29  | /24 16:05        |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A4 | B1612-02) |                      |                    |            |            |                 |                  |       |                 |     |              |       |
| Surr: Toluene-d8 (Surr)       |           | Reco                 | very: 95 %         | Limits:    | 80-120 %   | Dilı            | ution: 1x        |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)   |           |                      | 95 %               |            | 80-120 %   |                 | "                |       |                 |     |              |       |

Apex Laboratories

( milule fog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1613 - 03 29 24 1713

# QUALITY CONTROL (QC) SAMPLE RESULTS BTEX+N Compounds by EPA 8260D

|                  | N Compc       | Julius by  | EFA 0200        |                  |       |                 |     |              |       |
|------------------|---------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| porting<br>Limit | Units         | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
|                  |               |            |                 | Wa               | iter  |                 |     |              |       |
| Prepared         | : 03/01/24    | 14:12 Anal | yzed: 03/01/    | 24 16:20         |       |                 |     |              |       |
|                  |               |            |                 |                  |       |                 |     |              |       |
| 5.00             | ug/L          | 1          |                 |                  |       |                 |     |              |       |
| 106 %            | Limits: 80    | 0-120 %    | Dilu            | tion: 1x         |       |                 |     |              |       |
| 101 %            | 80            | 0-120 %    |                 | "                |       |                 |     |              |       |
| 94 %             | 80            | )-120 %    |                 | "                |       |                 |     |              |       |
| Prepared         | : 03/01/24    | 14:12 Anal | yzed: 03/01/    | 24 15:29         |       |                 |     |              |       |
|                  |               |            |                 |                  |       |                 |     |              |       |
| 5.00             | ug/L          | 1          | 20.0            |                  | 87    | 80-120%         |     |              |       |
| 107 %            | Limits: 80    | 0-120 %    | Dilu            | tion: 1x         |       |                 |     |              |       |
| 99 %             | 80            | 0-120 %    |                 | "                |       |                 |     |              |       |
| 95 %             | 80            | )-120 %    |                 | "                |       |                 |     |              |       |
| Prepared         | : 03/01/24    | 14:12 Anal | yzed: 03/01/    | 24 19:12         |       |                 |     |              |       |
|                  |               |            |                 |                  |       |                 |     |              |       |
| 250              | ug/L          | 50         |                 | 634              |       |                 | 0.9 | 30%          |       |
| 100 %            | Limits: 80    | 0-120 %    | Dilu            | tion: 1x         |       |                 |     |              |       |
| 99 %             | 80            | 0-120 %    |                 | "                |       |                 |     |              |       |
| 98 %             | 80            | )-120 %    |                 | "                |       |                 |     |              |       |
| Prepared         | : 03/01/24    | 14:12 Anal | yzed: 03/01/    | 24 20:38         |       |                 |     |              |       |
|                  |               |            |                 |                  |       |                 |     |              |       |
| 5.00             | ug/L          | 1          |                 | ND               |       |                 |     | 30%          |       |
| 107 %            | Limits: 80    | 0-120 %    | Dilu            | tion: 1x         |       |                 |     |              |       |
| 100 %            | 80            | 0-120 %    |                 | "                |       |                 |     |              |       |
| 95 %             | 80            | )-120 %    |                 | "                |       |                 |     |              |       |
| Prepared         | : 03/01/24    | 14:12 Anal | yzed: 03/02/    | 24 01:18         |       |                 |     |              |       |
|                  |               |            |                 |                  |       |                 |     |              |       |
|                  |               |            |                 |                  |       |                 |     |              |       |
| 5.00             | ug/L          | 1          | 20.0            | ND               | 94    | 61-128%         |     |              |       |
|                  | 5.00<br>107 % |            | 8               |                  |       |                 |     |              |       |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1613 - 03 29 24 1713

# QUALITY CONTROL (QC) SAMPLE RESULTS BTEX+N Compounds by EPA 8260D

#### Reporting % REC RPD Detection L Spike Source Analyte Result Units Dilution % REC Limits RPD Limit Limit Amount Result Limit Notes Batch 24C0043 - EPA 5030C Water

Matrix Spike (24C0043-MS1) Prepared: 03/01/24 14:12 Analyzed: 03/02/24 01:18

QC Source Sample: Non-SDG (A4C0837-13)

 Surr:
 Toluene-d8 (Surr)
 Recovery:
 97 %
 Limits:
 80-120 %
 Dilution:
 1x

 4-Bromofluorobenzene (Surr)
 97 %
 80-120 %
 "

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1613 - 03 29 24 1713

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                              |            | Selecte              | d Semivol          | atile Orga  | anic Com  | pounds b        | y EPA 82         | 270E  |                 |     |              |           |
|------------------------------|------------|----------------------|--------------------|-------------|-----------|-----------------|------------------|-------|-----------------|-----|--------------|-----------|
| Analyte                      | Result     | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes     |
| Batch 24C0110 - EPA 3510C (A | Acid Extra | ction)               |                    |             |           |                 | Wa               | ter   |                 |     |              |           |
| Blank (24C0110-BLK1)         |            |                      | Prepared           | 1: 03/05/24 | 06:03 Ana | lyzed: 03/07    | /24 18:10        |       |                 |     |              |           |
| EPA 8270E                    |            |                      |                    |             |           |                 |                  |       |                 |     |              |           |
| 1-Methylnaphthalene          | ND         |                      | 0.0400             | ug/L        | 1         |                 |                  |       |                 |     |              | Q-3       |
| 2-Methylnaphthalene          | ND         |                      | 0.0400             | ug/L        | 1         |                 |                  |       |                 |     |              | Q-3       |
| Surr: Nitrobenzene-d5 (Surr) |            | Reco                 | very: 73 %         | Limits: 4   | 4-120 %   | Dili            | ution: 1x        |       |                 |     |              |           |
| 2-Fluorobiphenyl (Surr)      |            |                      | 61 %               | 44          | 4-120 %   |                 | "                |       |                 |     |              |           |
| Phenol-d6 (Surr)             |            |                      | 26 %               | 10          | 0-133 %   |                 | "                |       |                 |     |              |           |
| p-Terphenyl-d14 (Surr)       |            |                      | 77 %               | 50          | 0-134 %   |                 | "                |       |                 |     |              |           |
| 2-Fluorophenol (Surr)        |            |                      | 39 %               | 19          | 9-120 %   |                 | "                |       |                 |     |              |           |
| 2,4,6-Tribromophenol (Surr)  |            |                      | 85 %               | 43          | 3-140 %   |                 | "                |       |                 |     |              |           |
| LCS (24C0110-BS1)            |            |                      | Prepared           | 1: 03/05/24 | 06:03 Ana | lyzed: 03/07    | /24 18:44        |       |                 |     |              |           |
| EPA 8270E                    |            |                      |                    |             |           |                 |                  |       |                 |     |              |           |
| 1-Methylnaphthalene          | 0.817      |                      | 0.160              | ug/L        | 4         | 4.00            |                  | 20    | 41-120%         |     |              | Q-3       |
| 2-Methylnaphthalene          | 0.754      |                      | 0.160              | ug/L        | 4         | 4.00            |                  | 19    | 40-121%         |     |              | Q-3       |
| Surr: Nitrobenzene-d5 (Surr) |            | Reco                 | very: 55 %         | Limits: 4   | 4-120 %   | Dila            | ution: 4x        |       |                 |     |              |           |
| 2-Fluorobiphenyl (Surr)      |            |                      | 45 %               | 44          | 4-120 %   |                 | "                |       |                 |     |              |           |
| Phenol-d6 (Surr)             |            |                      | 20 %               | 10          | 0-133 %   |                 | "                |       |                 |     |              |           |
| p-Terphenyl-d14 (Surr)       |            |                      | 80 %               | 50          | 0-134 %   |                 | "                |       |                 |     |              |           |
| 2-Fluorophenol (Surr)        |            |                      | 31 %               | 19          | 9-120 %   |                 | "                |       |                 |     |              |           |
| 2,4,6-Tribromophenol (Surr)  |            |                      | 72 %               | 43          | 3-140 %   |                 | "                |       |                 |     |              |           |
| LCS Dup (24C0110-BSD1)       |            |                      | Prepared           | 1: 03/05/24 | 06:03 Ana | lyzed: 03/07    | /24 19:18        |       |                 |     |              | Q-19      |
| EPA 8270E                    |            |                      |                    |             |           |                 |                  |       |                 |     |              |           |
| 1-Methylnaphthalene          | 1.31       |                      | 0.160              | ug/L        | 4         | 4.00            |                  | 33    | 41-120%         | 47  | 30%          | Q-01, Q-3 |
| 2-Methylnaphthalene          | 1.22       |                      | 0.160              | ug/L        | 4         | 4.00            |                  | 30    | 40-121%         | 47  | 30%          | Q-01, Q-3 |
| Surr: Nitrobenzene-d5 (Surr) |            | Reco                 | very: 79 %         | Limits: 4   | 4-120 %   | Dili            | ution: 4x        |       |                 |     |              |           |
| 2-Fluorobiphenyl (Surr)      |            |                      | 69 %               | 44          | 4-120 %   |                 | "                |       |                 |     |              |           |
| Phenol-d6 (Surr)             |            |                      | 28 %               | 10          | 0-133 %   |                 | "                |       |                 |     |              |           |
| p-Terphenyl-d14 (Surr)       |            |                      | 90 %               | 50          | 0-134 %   |                 | "                |       |                 |     |              |           |
| 2-Fluorophenol (Surr)        |            |                      | 45 %               | 19          | 9-120 %   |                 | "                |       |                 |     |              |           |
| 2,4,6-Tribromophenol (Surr)  |            |                      | 91 %               | 43          | 3-140 %   |                 | "                |       |                 |     |              |           |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1613 - 03 29 24 1713

# SAMPLE PREPARATION INFORMATION

|                     | Whole Product Diesel Testing (C10-C40) by WDOE/NWTPH-Dx |                                  |                |                |               |               |         |  |  |  |  |  |  |  |
|---------------------|---------------------------------------------------------|----------------------------------|----------------|----------------|---------------|---------------|---------|--|--|--|--|--|--|--|
| Prep: EPA 3510C (Fu | els/Acid Ext.)                                          |                                  |                |                | Sample        | Default       | RL Prep |  |  |  |  |  |  |  |
| Lab Number          | Matrix                                                  | Method                           | Sampled        | Prepared       | Initial/Final | Initial/Final | Factor  |  |  |  |  |  |  |  |
| Batch: 24C0024      |                                                         |                                  |                |                |               |               |         |  |  |  |  |  |  |  |
| A4B1613-01RE1       | Water                                                   | NWTPH-DX<br>(WA Ext)             | 02/27/24 12:00 | 03/01/24 10:42 | 960mL/2mL     | 1000mL/2mL    | 1.04    |  |  |  |  |  |  |  |
| A4B1613-02RE1       | Water                                                   | (WA_Ext)<br>NWTPH-DX<br>(WA Ext) | 02/27/24 13:45 | 03/01/24 10:42 | 980mL/2mL     | 1000mL/2mL    | 1.02    |  |  |  |  |  |  |  |
| A4B1613-03RE1       | Water                                                   | NWTPH-DX<br>(WA Ext)             | 02/27/24 15:30 | 03/01/24 10:42 | 960mL/2mL     | 1000mL/2mL    | 1.04    |  |  |  |  |  |  |  |
| A4B1613-04          | Water                                                   | NWTPH-DX<br>(WA Ext)             | 02/27/24 14:02 | 03/01/24 10:42 | 1040mL/2mL    | 1000mL/2mL    | 0.96    |  |  |  |  |  |  |  |
| A4B1613-05          | Water                                                   | NWTPH-DX<br>(WA_Ext)             | 02/27/24 15:37 | 03/01/24 10:42 | 1040mL/2mL    | 1000mL/2mL    | 0.96    |  |  |  |  |  |  |  |

|                     | Whole Produc    | ct Diesel Testing (C10    | -C40) by WDOE/NV | WTPH-Dx with Silica | Gel Column Clea | anup          |         |
|---------------------|-----------------|---------------------------|------------------|---------------------|-----------------|---------------|---------|
| Prep: EPA 3510C (Fu | uels/Acid Ext.) |                           |                  |                     | Sample          | Default       | RL Prep |
| Lab Number          | Matrix          | Method                    | Sampled          | Prepared            | Initial/Final   | Initial/Final | Factor  |
| Batch: 24C0983      |                 |                           |                  |                     |                 |               |         |
| A4B1613-05          | Water           | NWTPH-DX<br>(WA_Ext) wSGC | 02/27/24 15:37   | 03/01/24 10:42      | 1040mL/2mL      | 1000mL/5mL    | 0.39    |

|                 | Gas    | oline Range Hydrocart | oons (Benzene thro | ugh Naphthalene) b | y NWTPH-Gx    |               |         |
|-----------------|--------|-----------------------|--------------------|--------------------|---------------|---------------|---------|
| Prep: EPA 5030C |        |                       |                    |                    | Sample        | Default       | RL Prep |
| Lab Number      | Matrix | Method                | Sampled            | Prepared           | Initial/Final | Initial/Final | Factor  |
| Batch: 24B1015  |        |                       |                    |                    |               |               |         |
| A4B1613-01      | Water  | NWTPH-Gx (MS)         | 02/27/24 12:00     | 02/29/24 12:22     | 5mL/5mL       | 5mL/5mL       | 1.00    |
| A4B1613-02      | Water  | NWTPH-Gx (MS)         | 02/27/24 13:45     | 02/29/24 12:22     | 5mL/5mL       | 5mL/5mL       | 1.00    |
| A4B1613-03      | Water  | NWTPH-Gx (MS)         | 02/27/24 15:30     | 02/29/24 12:22     | 5mL/5mL       | 5mL/5mL       | 1.00    |
| A4B1613-04      | Water  | NWTPH-Gx (MS)         | 02/27/24 14:02     | 02/29/24 12:22     | 5mL/5mL       | 5mL/5mL       | 1.00    |
| Batch: 24C0043  |        |                       |                    |                    |               |               |         |
| A4B1613-05RE1   | Water  | NWTPH-Gx (MS)         | 02/27/24 15:37     | 03/01/24 14:19     | 5mL/5mL       | 5mL/5mL       | 1.00    |

|                 |        | ВТ        | EX Compounds by E | EPA 8260D      |               |               |         |
|-----------------|--------|-----------|-------------------|----------------|---------------|---------------|---------|
| Prep: EPA 5030C |        |           |                   |                | Sample        | Default       | RL Prep |
| Lab Number      | Matrix | Method    | Sampled           | Prepared       | Initial/Final | Initial/Final | Factor  |
| Batch: 24B1015  |        |           |                   |                |               |               |         |
| A4B1613-01      | Water  | EPA 8260D | 02/27/24 12:00    | 02/29/24 12:22 | 5mL/5mL       | 5mL/5mL       | 1.00    |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1613 - 03 29 24 1713

#### SAMPLE PREPARATION INFORMATION

|                                 |        | ВТ        | EX Compounds by E | EPA 8260D      |                         |                          |                   |
|---------------------------------|--------|-----------|-------------------|----------------|-------------------------|--------------------------|-------------------|
| Prep: EPA 5030C  Lab Number     | Matrix | Method    | Sampled           | Prepared       | Sample<br>Initial/Final | Default<br>Initial/Final | RL Prep<br>Factor |
| A4B1613-02                      | Water  | EPA 8260D | 02/27/24 13:45    | 02/29/24 12:22 | 5mL/5mL                 | 5mL/5mL                  | 1.00              |
| A4B1613-03                      | Water  | EPA 8260D | 02/27/24 15:30    | 02/29/24 12:22 | 5mL/5mL                 | 5mL/5mL                  | 1.00              |
| A4B1613-04                      | Water  | EPA 8260D | 02/27/24 14:02    | 02/29/24 12:22 | 5mL/5mL                 | 5mL/5mL                  | 1.00              |
| Batch: 24C0043<br>A4B1613-05RE1 | Water  | EPA 8260D | 02/27/24 15:37    | 03/01/24 14:19 | 5mL/5mL                 | 5mL/5mL                  | 1.00              |

|                 |        | BTE       | X+N Compounds by | EPA 8260D      |               |               |         |
|-----------------|--------|-----------|------------------|----------------|---------------|---------------|---------|
| Prep: EPA 5030C |        |           |                  |                | Sample        | Default       | RL Prep |
| Lab Number      | Matrix | Method    | Sampled          | Prepared       | Initial/Final | Initial/Final | Factor  |
| Batch: 24B1015  |        |           |                  |                |               |               |         |
| A4B1613-01      | Water  | EPA 8260D | 02/27/24 12:00   | 02/29/24 12:22 | 5mL/5mL       | 5mL/5mL       | 1.00    |
| A4B1613-02      | Water  | EPA 8260D | 02/27/24 13:45   | 02/29/24 12:22 | 5mL/5mL       | 5mL/5mL       | 1.00    |
| A4B1613-03      | Water  | EPA 8260D | 02/27/24 15:30   | 02/29/24 12:22 | 5mL/5mL       | 5mL/5mL       | 1.00    |
| A4B1613-04      | Water  | EPA 8260D | 02/27/24 14:02   | 02/29/24 12:22 | 5mL/5mL       | 5mL/5mL       | 1.00    |
| Batch: 24C0043  |        |           |                  |                |               |               |         |
| A4B1613-05RE1   | Water  | EPA 8260D | 02/27/24 15:37   | 03/01/24 14:19 | 5mL/5mL       | 5mL/5mL       | 1.00    |

|                    |                  | Selected Semi | volatile Organic Com | pounds by EPA 827 | '0E           |               |         |
|--------------------|------------------|---------------|----------------------|-------------------|---------------|---------------|---------|
| Prep: EPA 3510C (A | Acid Extraction) |               |                      |                   | Sample        | Default       | RL Prep |
| Lab Number         | Matrix           | Method        | Sampled              | Prepared          | Initial/Final | Initial/Final | Factor  |
| Batch: 24C0110     |                  |               |                      |                   |               |               |         |
| A4B1613-01         | Water            | EPA 8270E     | 02/27/24 12:00       | 03/05/24 06:03    | 1000 mL/1 mL  | 1000 mL/1 mL  | 1.00    |
| A4B1613-02         | Water            | EPA 8270E     | 02/27/24 13:45       | 03/05/24 06:03    | 930mL/1mL     | 1000 mL/1 mL  | 1.08    |
| A4B1613-03         | Water            | EPA 8270E     | 02/27/24 15:30       | 03/05/24 06:03    | 960mL/1mL     | 1000 mL/1 mL  | 1.04    |
| A4B1613-04         | Water            | EPA 8270E     | 02/27/24 14:02       | 03/05/24 06:03    | 1050 mL/1 mL  | 1000 mL/1 mL  | 0.95    |
| A4B1613-05         | Water            | EPA 8270E     | 02/27/24 15:37       | 03/05/24 06:03    | 1060mL/1mL    | 1000mL/1mL    | 0.94    |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1613 - 03 29 24 1713

# **QUALIFIER DEFINITIONS**

#### Client Sample and Quality Control (QC) Sample Qualifier Definitions:

#### **Apex Laboratories**

| <b>AMEND</b> | The Result, Reporting Level, Recovery and/or RPD has changed. Note: Batch QC marked as AMENDED may or may not have been issued |
|--------------|--------------------------------------------------------------------------------------------------------------------------------|
|              | prior to the change. Case Narrative included if client data is affected.                                                       |

- Q-01 Spike recovery and/or RPD is outside acceptance limits.
- Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
- Q-30 Recovery for Lab Control Spike (LCS) is below the lower control limit. Data may be biased low.
- **S-06** Surrogate recovery is outside of established control limits.
- T-02 This Batch QC sample was analyzed outside of the method specified 12 hour analysis window. Results are estimated.

Apex Laboratories

/ milale fog



AMENDED REPORT

#### **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1613 - 03 29 24 1713

#### **REPORTING NOTES AND CONVENTIONS:**

#### **Abbreviations:**

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

#### **Detection Limits:** Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

# Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

#### **Reporting Conventions:**

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

" " Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

#### **QC Source:**

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

#### **Miscellaneous Notes:**

" --- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"\*\*\* Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories



AMENDED REPORT

#### Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1613 - 03 29 24 1713

#### **REPORTING NOTES AND CONVENTIONS (Cont.):**

#### Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.
- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

#### **Preparation Notes:**

#### Mixed Matrix Samples:

#### Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

#### Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

# **Sampling and Preservation Notes:**

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold

Apex Laboratories



Farallon-Seattle

#### ANALYTICAL REPORT

397-019 Block 38 West

# Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Project:

AMENDED REPORT

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1613 - 03 29 24 1713

#### LABORATORY ACCREDITATION INFORMATION

# ORELAP Certification ID: OR100062 (Primary Accreditation) -EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

# **Apex Laboratories**

| Matrix | Analysis               | TNI_ID                        | Analyte                             | TNI_ID | Accreditation |
|--------|------------------------|-------------------------------|-------------------------------------|--------|---------------|
| Water  | NWTPH-DX (WA_Ext)      | FLS-W-01                      | Diesel Range Organics (C10-C40)     | 9369   |               |
| Water  | NWTPH-DX (WA_Ext) wSGC | FLS-W-01                      | Diesel Range Organics (C10-C40)     | 9369   |               |
|        | All reported an        | alytes are included in Apex l | Laboratories' current ORELAP scope. |        |               |

# **Secondary Accreditations**

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

# **Subcontract Laboratory Accreditations**

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

# **Field Testing Parameters**

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1613 - 03 29 24 1713

|                                        |                                                    |             | 1               |            | WW.      |               |               | 3              |                |                                          |             | 3               | 200             |                      |                                                                                                                            |                 | . Z 100 C               | 10      |       |            |               |
|----------------------------------------|----------------------------------------------------|-------------|-----------------|------------|----------|---------------|---------------|----------------|----------------|------------------------------------------|-------------|-----------------|-----------------|----------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------|---------|-------|------------|---------------|
| Address 975 5th AVE NW                 | lasaguah                                           | the vi      |                 |            | Phone: 4 | 4,5-295-250   | 20,50         |                | E              | la.                                      |             |                 |                 |                      |                                                                                                                            |                 | PO # 397-0/4            | 347-014 |       |            |               |
| ampled by: A. (Sman / 1).              | Lee. 3                                             | V.m.        |                 |            |          |               |               |                | 1              |                                          |             |                 | ¥               | IE VE                | ANAL YSIS REQUEST                                                                                                          |                 |                         |         |       |            |               |
| Site Location:  State W f  County King | DATE                                               | TIME        | # OF CONTAINERS | MATPH-HCID | xQ-H4TWN | 8760 BLEX     | 8700 KBDW AOC | 8760 Halo VOCs | 8270 SIM PAHs  | sIN SIM PAHs<br>s270 Semi-Vols Full List | 8087 PCBs   | 8081 Pesticides | RCRA Metals (8) | Priority Metals (13) | NI, Sb, As, Bs, Bc, Cd,<br>Cs, Cr, Co, Cu, Fc, Pb,<br>Ig, Mg, Mn, Mio, Ni, K,<br>ic, Ag, Ns, Tl, V, Zn<br>TOTAL DISS, TCLP | TCLP Metals (8) | emstanthapt 25t         |         |       | old Sample | rozen Archive |
| 426-03174M                             | 2/21/24                                            | 1000 linger | 7               |            | ×        | <i>&gt;</i> ≺ |               |                | $\vdash$       | <u> </u>                                 | -           |                 |                 |                      | L<br>S<br>H                                                                                                                |                 | <br> ×                  |         |       | H          | <u> </u>      |
| For 4 - 161-02724                      | 2)                                                 | 1345        | _               |            | ×        | ×<br>>        |               |                |                |                                          |             |                 |                 | <u> </u>             |                                                                                                                            |                 | ×                       |         |       | -          | 1             |
| FMW-163-022724                         | *                                                  | 1630        |                 |            | ×        | ×<br>×        |               |                |                |                                          |             |                 |                 |                      |                                                                                                                            | 1               | *                       |         |       | -          |               |
| FMY-156-022724                         | 7                                                  | 7041        |                 |            | ×        | ×<br>~        |               |                |                |                                          |             |                 |                 |                      |                                                                                                                            |                 |                         |         |       | $\vdash$   |               |
| FAIW 155-022724                        | )                                                  | 137         |                 |            | ×<br>×   | ×             |               |                | -              | _                                        |             |                 |                 |                      |                                                                                                                            |                 | ~                       |         |       | -          |               |
| View 1970                              |                                                    |             |                 |            |          |               |               |                |                |                                          |             |                 |                 |                      |                                                                                                                            |                 |                         |         |       | -          |               |
|                                        |                                                    |             |                 |            |          |               |               |                |                |                                          |             |                 |                 |                      |                                                                                                                            | <u> </u>        |                         |         |       | -          |               |
|                                        |                                                    |             |                 |            |          |               |               |                |                |                                          |             |                 |                 |                      |                                                                                                                            |                 |                         |         |       |            |               |
|                                        |                                                    | +           |                 |            | +        | _             |               |                |                |                                          |             |                 |                 |                      |                                                                                                                            |                 |                         |         |       |            |               |
| Standard T                             | Standard Turn Around Time (TAT) = 10 Business Davs | (TAT) = 10  | Business        | Javs       |          | _             |               |                | 18             | SPECIAL INSTRIBCTIONS                    | INST        | RIICT           | SNOT            | -                    |                                                                                                                            | 7               |                         |         |       | _          |               |
| 5.6                                    | 1 Day                                              | 2 Day       | ž.              | 3 Day      | , a      |               |               |                | $\overline{1}$ | 3                                        | ===         | 12              | 3               | mal                  | 1613 to 155 pendery Callis                                                                                                 | . ~             | graphs &                | A The   | Samle | 3          |               |
| 1A1 Kequested (circle)                 | 5 Day                                              | Standard    | £               | Other:     | ااي      |               |               |                |                | ne)                                      | (sutoutert- | 4               |                 |                      |                                                                                                                            |                 |                         |         |       |            |               |
|                                        | SAMPLES ARE HELD FOR 30 DAYS                       | FOR 30 DA   | 8               |            |          |               |               |                | +              |                                          |             |                 |                 |                      |                                                                                                                            |                 |                         |         |       |            |               |
| Signature:                             | Date: ,2/18(17                                     | Signature:  | Signature:      | 7          | 2        | Date.         | 14            |                | Sign           | RELINQUISHED BY; Signature:              | ISHED       | BY;             |                 | Date.                | pg.                                                                                                                        | R S             | RECEIVED BY: Signature: | 2       | Date  |            |               |
| Printed Name: Jetes                    | Time: 943                                          | Prints      | Printed Name:   | 5          |          | , Time:       | de            |                | Pri            | Printed Name                             | me:         |                 |                 | Time:                | .02                                                                                                                        | а.              | Printed Name:           |         | Time: |            |               |
| ompany: towardow                       |                                                    | Company     | /               | Bux        |          |               |               |                | Ŝ              | Company:                                 |             |                 |                 |                      |                                                                                                                            | 0               | Company:                |         |       |            |               |

Apex Laboratories

ilale fog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle

Project:

397-019 Block 38 West

1809 7th Ave Suite 1111 Seattle, WA 98101 Project Number: 397-019

Project Manager: Suzy Stumpf

Report ID: A4B1613 - 03 29 24 1713

| RCRA Metab (3)  RCRA Metab (3)  At Sh, Ar Sh, Re, Ph, E Sh, Ar Sh, Re, Ph, E Sh, Ar Ch, Ar TL V, Zh  TOTAL DISS TCLP T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Samuel Control of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two parties of the two partie | - 1                                                                     |
| 1   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ANALONG KÄRIPINI                                                        |
| TOTE STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STREET STRE | <b>7718</b>                                                             |
| 10   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8c., 16, N. Za, 13)                                                     |
| 10   10   10   10   10   10   10   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34 (384)<br>Ca<br>a, M<br>fl, 1<br>115S<br>115S<br>115S<br>115S<br>115S |
| 1   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AL.                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Priority  2, 95,  4, 55,  7, 07AI  TCLP                                 |
| 1345   X Y X   X X X   X X X X   X X X X   X X X X   X X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | × ×                                                                     |
| 1530   X   X   X   X   X   X   X   X   X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                         |
| 14,52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I                                                                       |
| Adard Turn Anound Turns (TAT) = 10 Steriness Days  1 Day 2 Day 3 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *                                                                       |
| odard Turn Around Turns (TAT) = 10 Sustness Days 1 Day 2 Day 3 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |
| of Jun. Acoust Tarse (TAX) = 10 Suppress Days 1 Day 2 Day 3 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 朱                                                                       |
| of Jun Award Time (TAD) = 10 Bustness Days  1 Day 2 Day 3 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |
| id Turn Around Time (TAT) = 10 Susiness Days S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                         |
| d Jun Accord Time (IAT) = 10 Susiness Days  1 Day 2 Day 3 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |
| to Turn Around Time (TAT) = 10 Business Days  1 Day 2 Day 3 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |
| i Day 2 Day 3 Day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nding labs analysing the                                                |
| 5 Day Standards Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D 57 57 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7                                 |
| A HANDER POR TO SICE (B): Added On One 12 for (B):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cod 12 feet ( 10 3/20/24                                                |
| RECEIVED BY: RELINQUISHED BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RECEIVED BY:                                                            |
| Date. Superiore. Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date Saperture. Date                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |
| Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Company                                                                 |

Apex Laboratories

(milule fogs



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Farallon-Seattle

Project:

397-019 Block 38 West

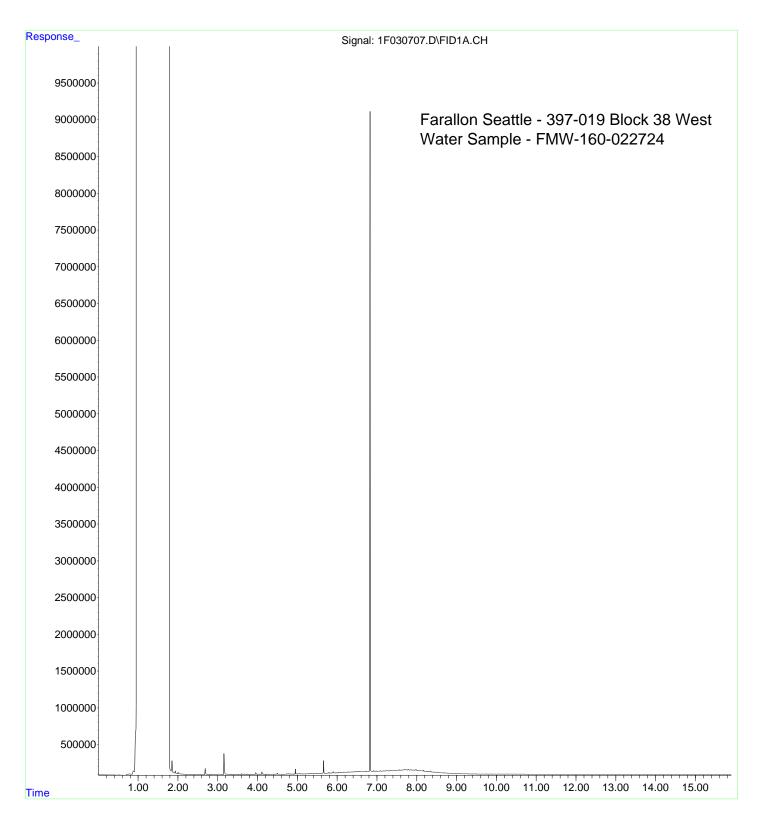
1809 7th Ave Suite 1111 Seattle, WA 98101 Project Number: **397-019**Project Manager: **Suzy Stumpf** 

Report ID: A4B1613 - 03 29 24 1713

|                             | APEX LABS COOLER RECEIPT FORM                                                |
|-----------------------------|------------------------------------------------------------------------------|
| Client: Fainflow            | Element WO#: A4B1013                                                         |
| Project/Project #:          | 10CK 38 West /397-019                                                        |
| Delivery Info:              |                                                                              |
| Date/time received: 1/28/   | 124 @ 1328 By: KPS                                                           |
| Delivered by: ApexClient    | ESS_FedEx_UPS_Radio_Morgan_SDS_Evergreen_Other_X                             |
| Cooler Inspection Date      | /time inspected: 2/28/24@ /328 By: <u>KJ25</u>                               |
| Chain of Custody included?  | Yes No                                                                       |
| Signed/dated by client?     | Yes No                                                                       |
|                             | <u>Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7</u> |
| Temperature (°C)            | <u>4.9 1.8 2.9</u>                                                           |
| Custody seals? (Y/N)        | <u> </u>                                                                     |
| Received on ice? (Y/N)      | 9                                                                            |
| Temp. blanks? (Y/N)         | 9>                                                                           |
| Ice type: (Gel/Real/Other)  | Rul -                                                                        |
| Condition (ln/Out):         | In ->                                                                        |
|                             | No Comments:                                                                 |
| COC/container discrepancie  | s form initiated? Yes No No Comments:                                        |
| Do VOA vials have visible h | neadspace? Yes No _X NA                                                      |
|                             | Yes No_NA_ pH appropriate? Yes No_NA_ pH ID: A231172                         |
| Additional information:     |                                                                              |
|                             |                                                                              |
| Labeled by: LAB             | Witness: Cooler Inspected by: WAB Form Y-003 R-01                            |

Apex Laboratories

(milale fog

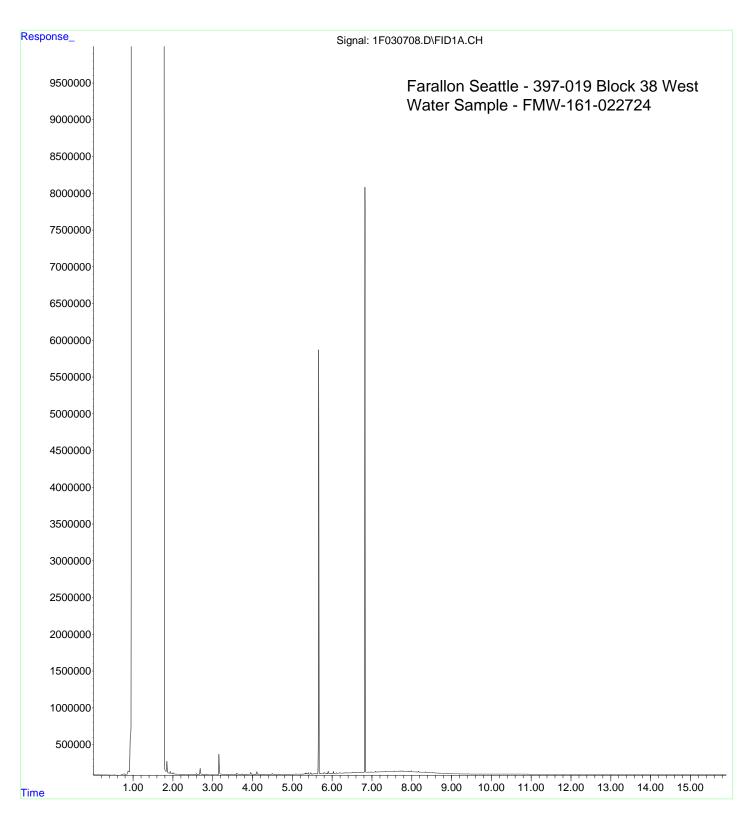

File : C: \msdchem1\copied data\4C07040\1F030707. D

Operator : BLL

Acquired: 07 Mar 2024 1:24 pm using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: A4B1613-01RE1

Msc Info : Vial Number: 3

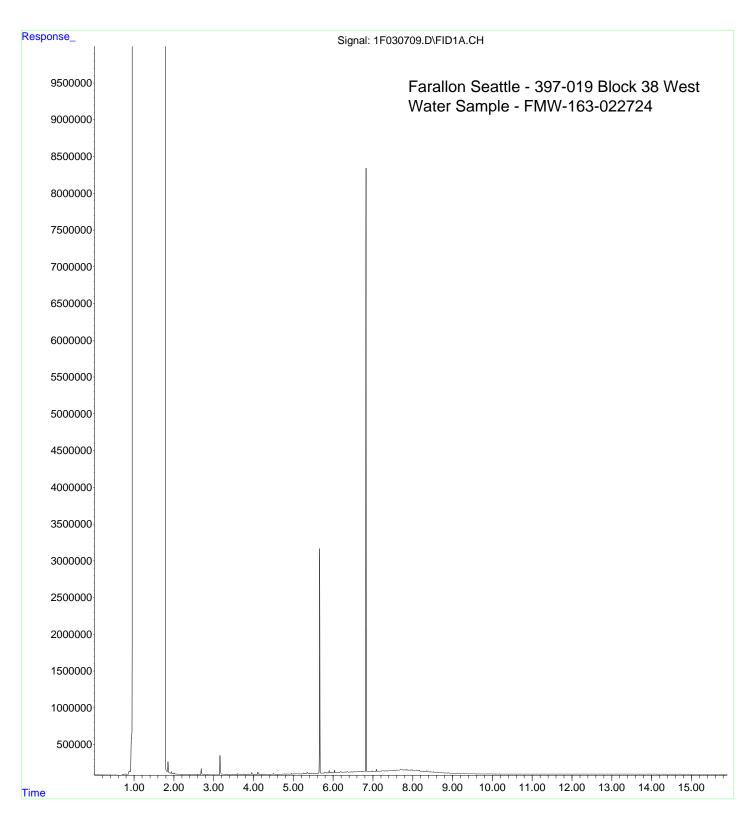



File : C: \msdchem\1\copied data\4C07040\1F030708. D

Operator : BLL

Acquired: 07 Mar 2024 1:47 pm using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: A4B1613-02RE1

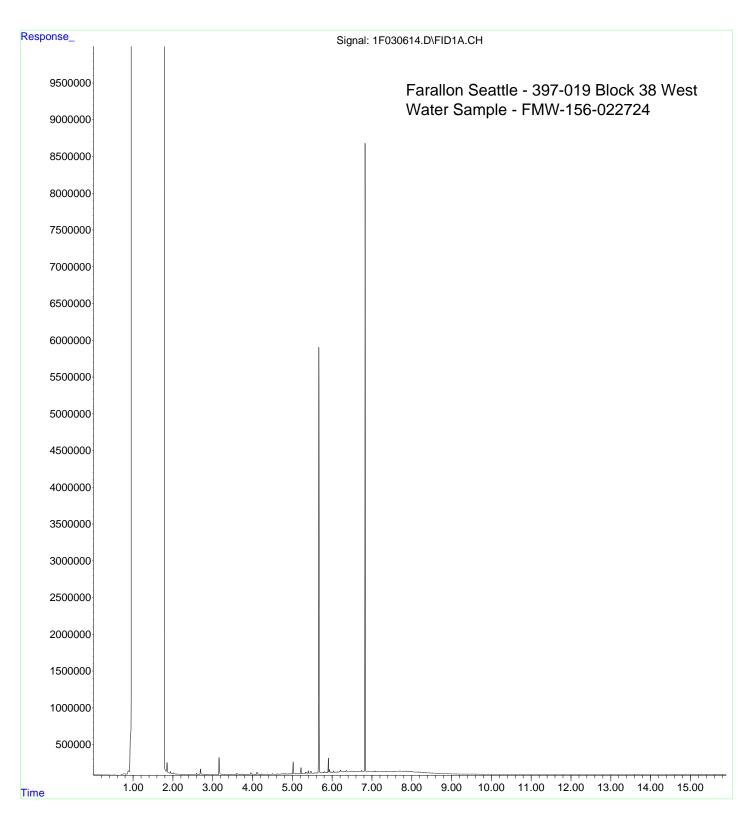



File : C: \msdchem\1\copied data\4C07040\1F030709. D

Operator : BLL

Acquired: 07 Mar 2024 2:11 pm using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: A4B1613-03RE1

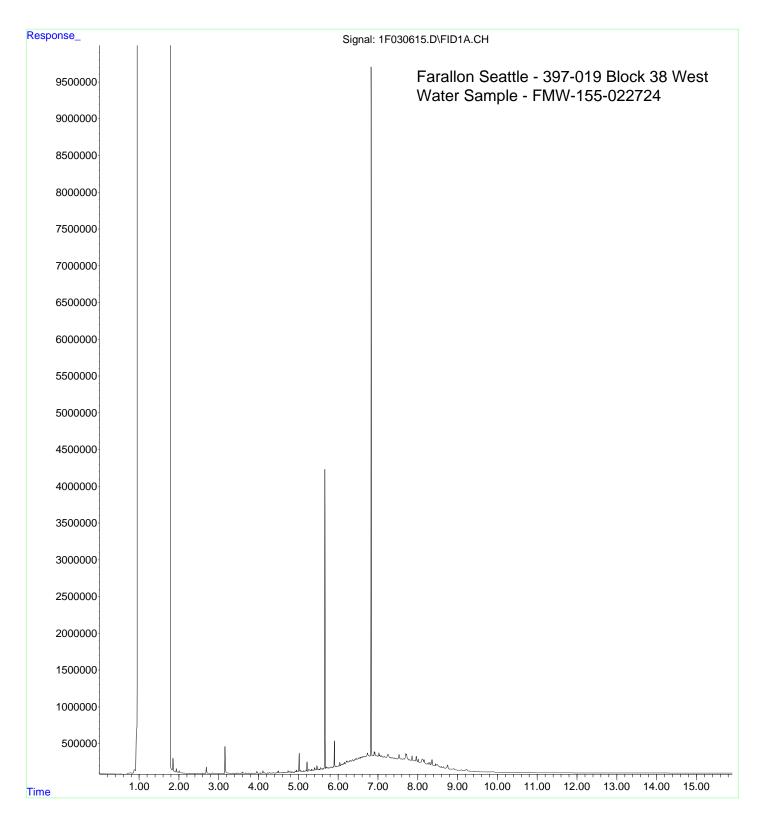



File : C: \msdchem\1\copied data\4C06060\1F030614. D

Operator : BLL

Acquired : 06 Mar 2024 10:39 pm using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: A4B1613-04

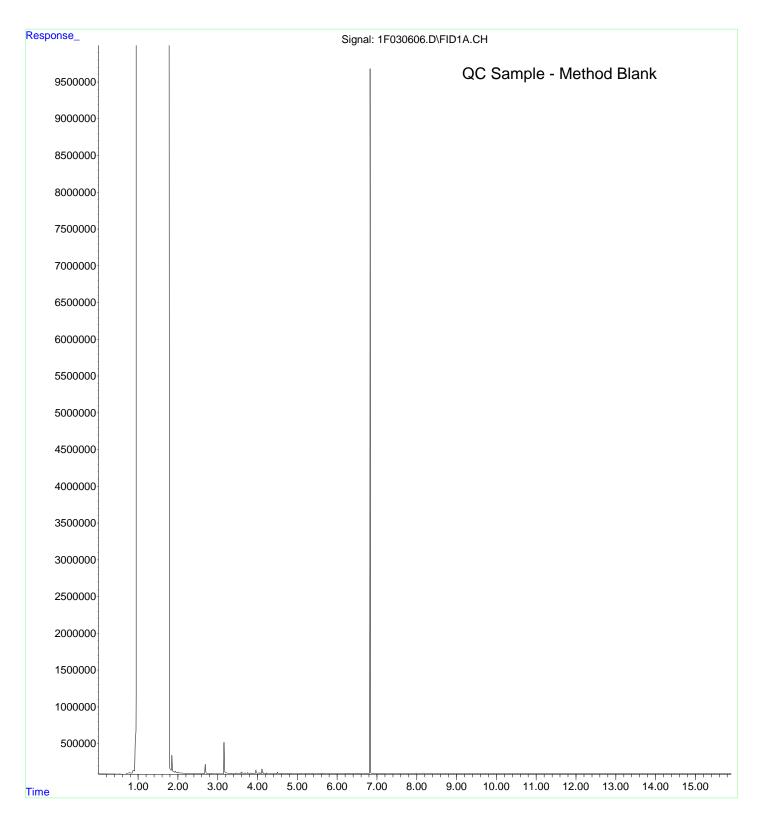



File : C: \msdchem\1\copied data\4C06060\1F030615. D

Operator : BLL

Acquired : 06 Mar 2024 11:02 pm using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: A4B1613-05

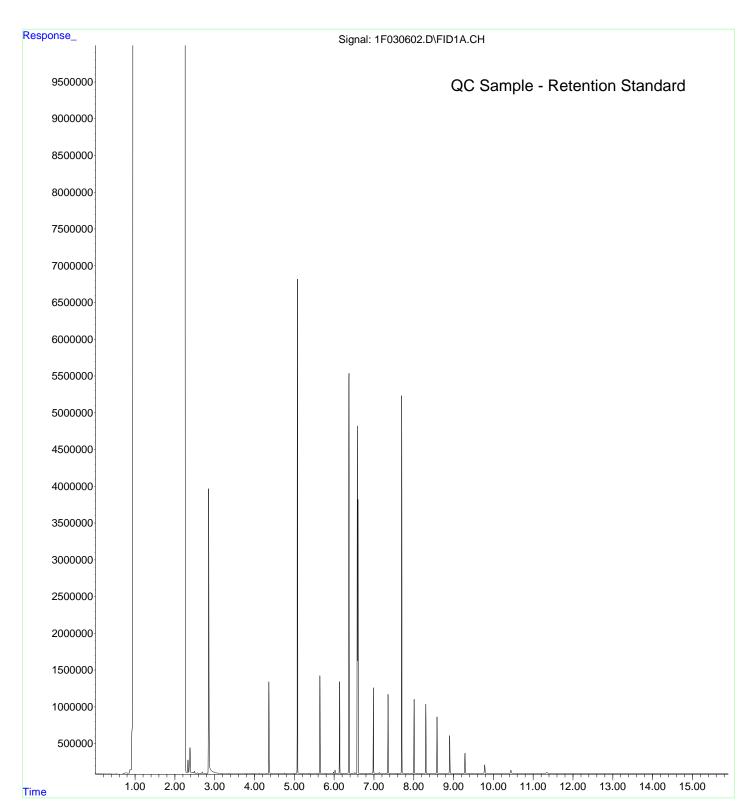



File : C: \msdchem\1\copied data\4C06060\1F030606. D

Operator : BLL

Acquired : 06 Mar 2024 7: 32 pm using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: 24C0024-HLK1

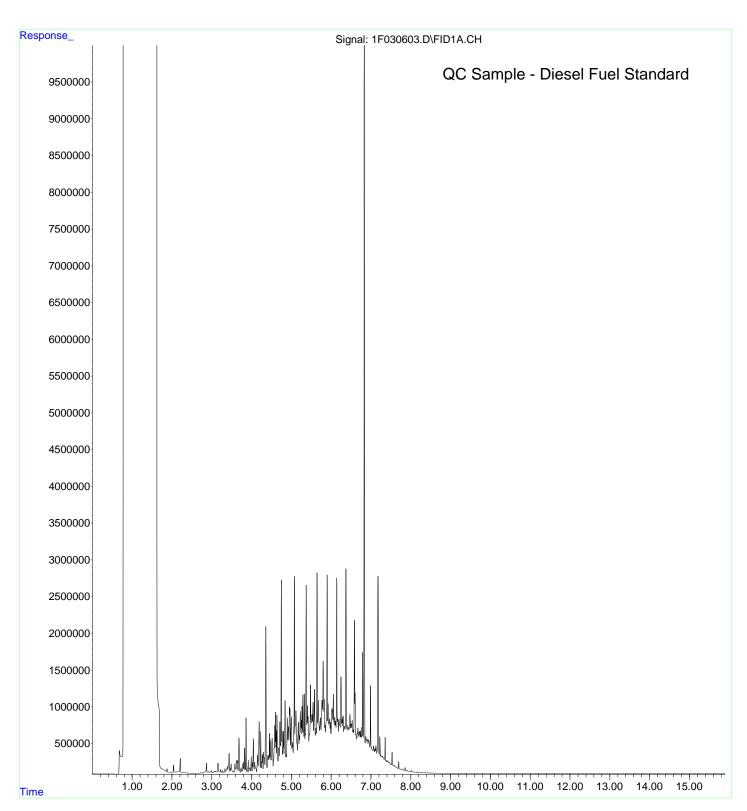



File : C: \msdchem\1\copied data\4C06060\1F030602. D

Operator : BLL

Acquired: 06 Mar 2024 4:51 pm using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: 4C06060-RES1

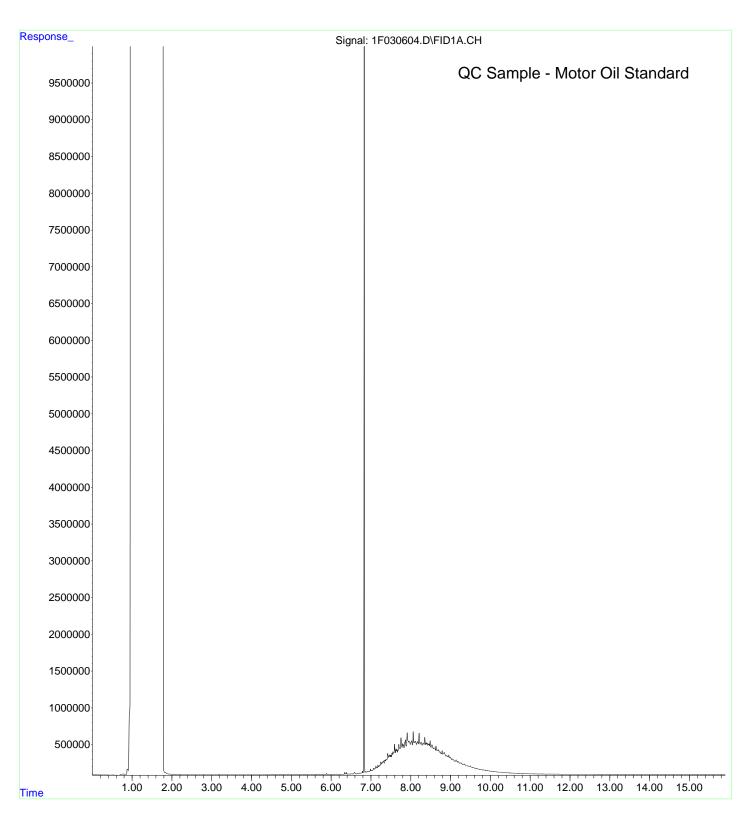



File : C: \msdchem\1\copied data\4C06060\1F030603. D

Operator : BLL

Acquired : 06 Mar 2024 5:14 pm using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: 4C06060-CCV1

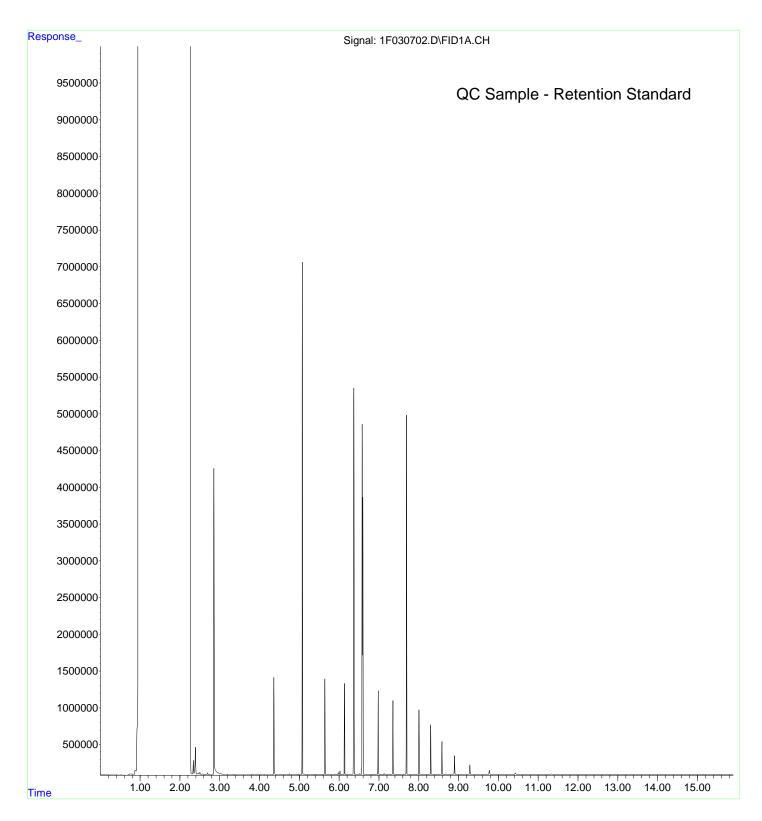



File : C: \msdchem\1\copied data\4C06060\1F030604. D

Operator : BLL

Acquired : 06 Mar 2024 5: 37 pm using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: 4C06060-CCV2

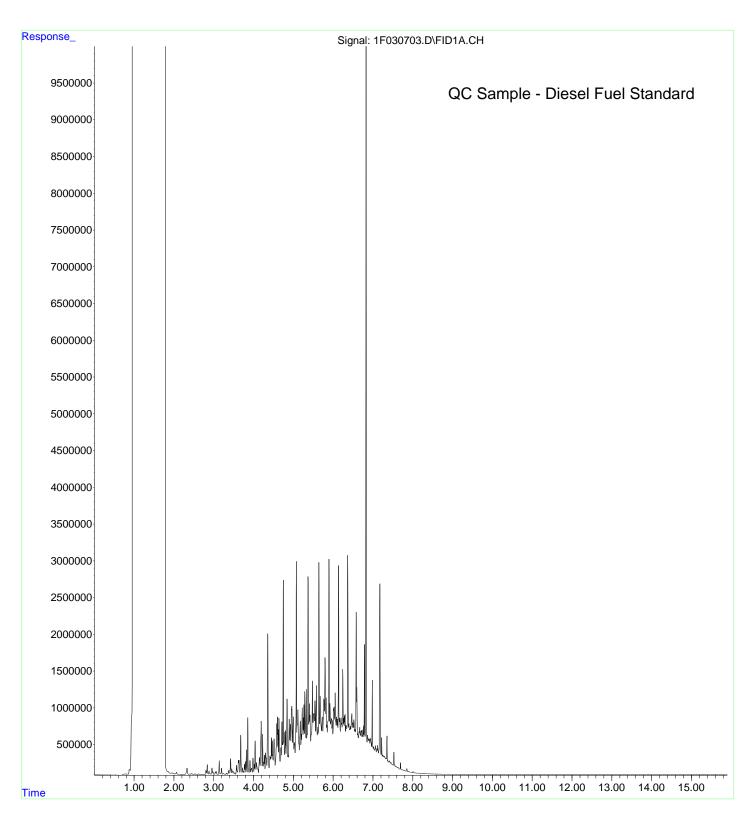



File : C: \msdchem1\copied data\4C07040\1F030702. D

Operator : BLL

Acquired : 07 Mar 2024 11:27 amusing AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: 4C07040-RES1

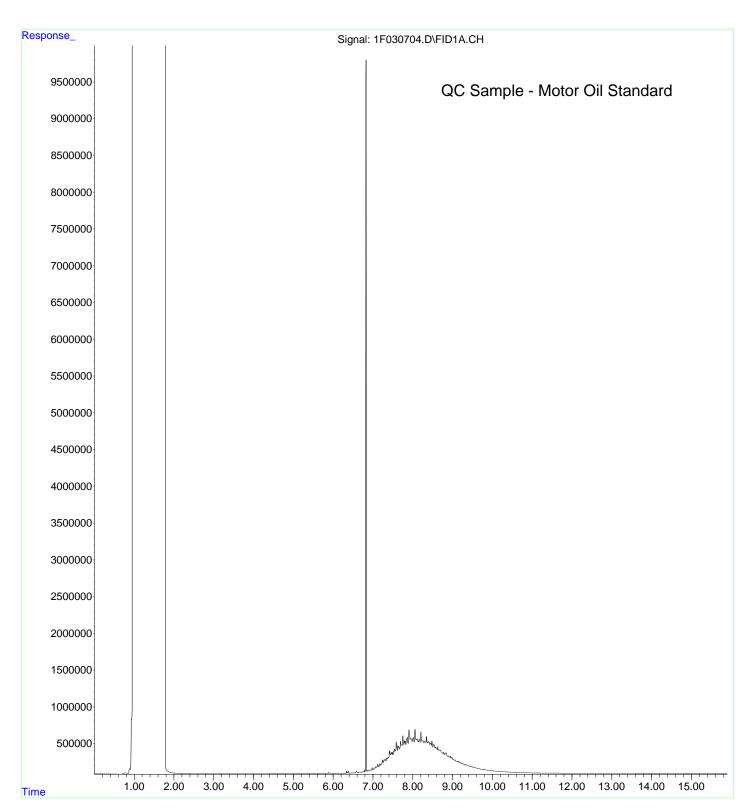



File : C: \msdchem\1\copied data\4C07040\1F030703. D

Operator : BLL

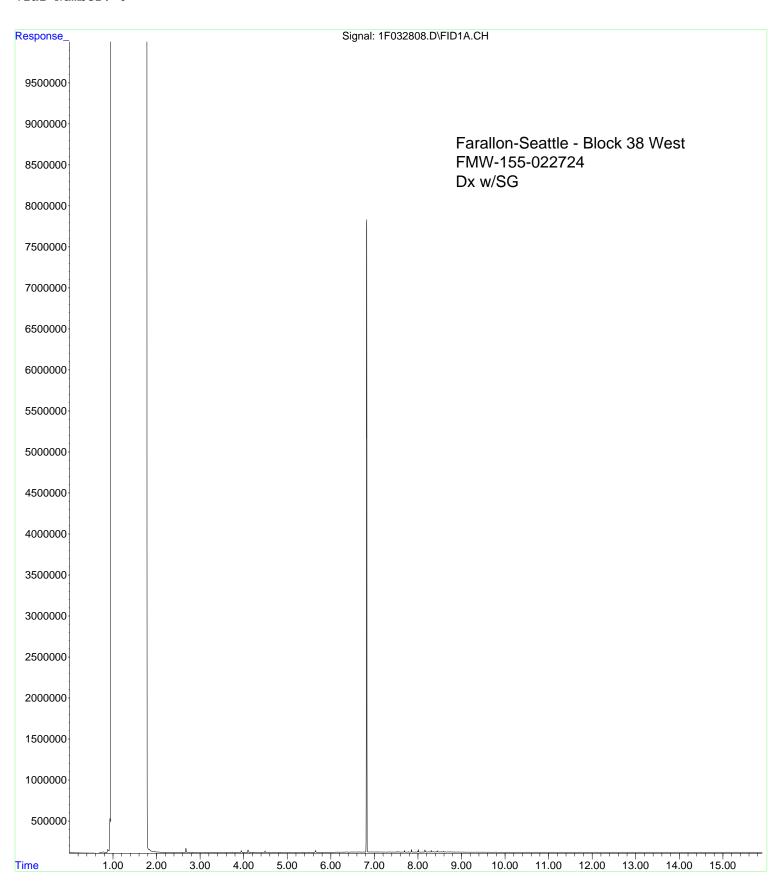
Acquired : 07 Mar 2024 11:50 amusing AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: 4C07040-CCV1




File : C: \msdchem1\copied data\4C07040\1F030704. D

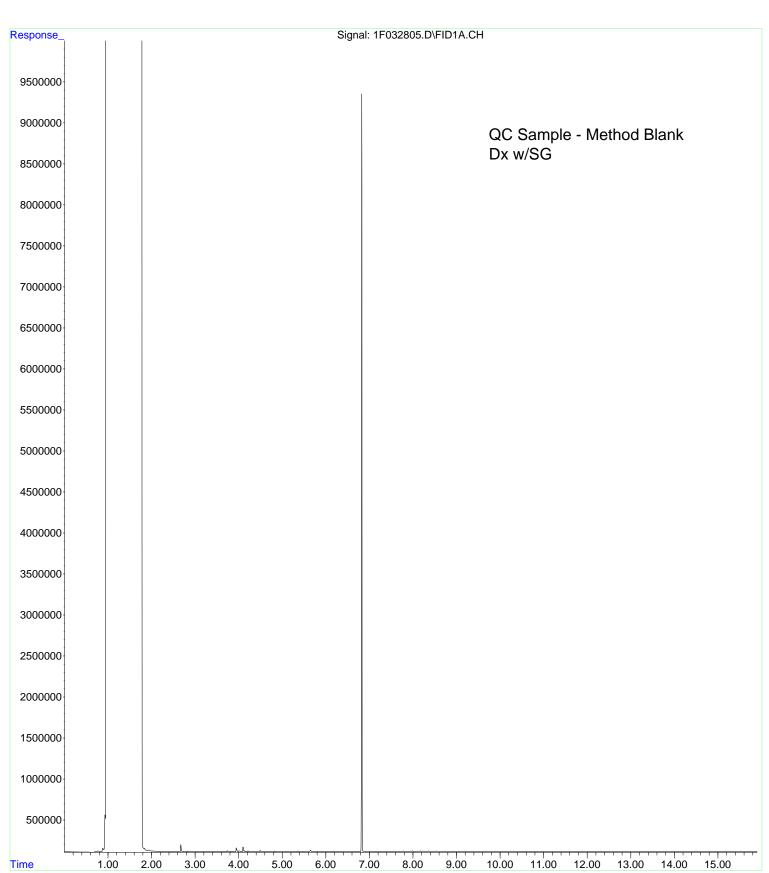
Operator : BLL


Acquired : 07 Mar 2024 12:13 pm using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: 4C07040-CCV2



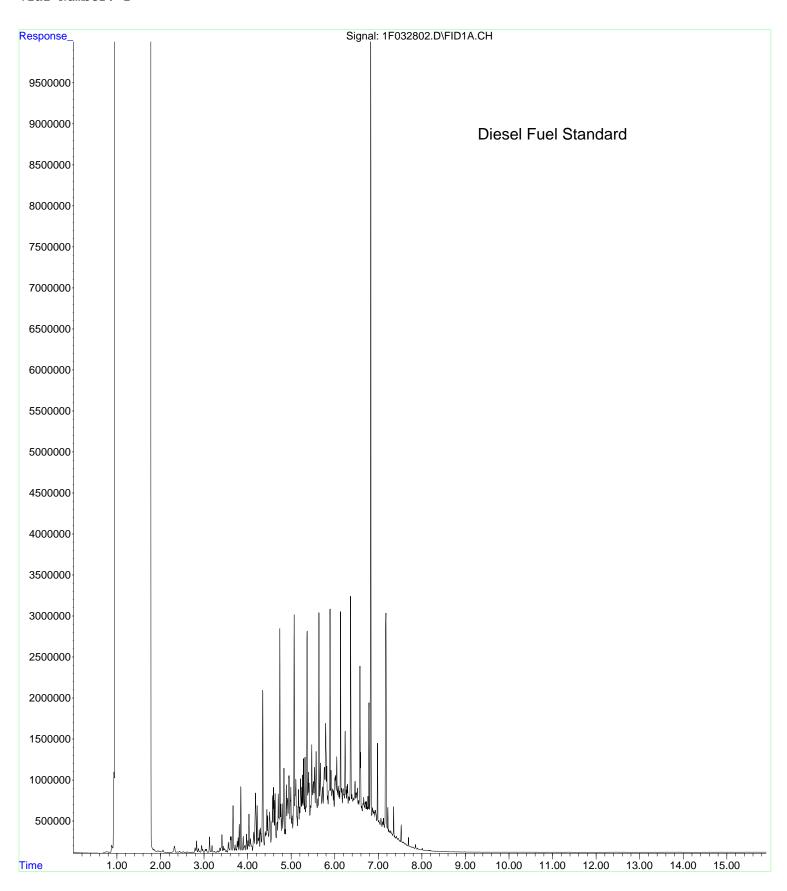
File :C:\msdchem\1\data\4C28038\1F032808.D
Operator : BLL/BJY
Acquired : 28 Mar 2024 12:41 pm using AcqMethod A1F40422.M
Instrument : HP G1530A


Sample Name: A4B1613-05



File :C:\msdchem\1\data\4C28038\1F032805.D

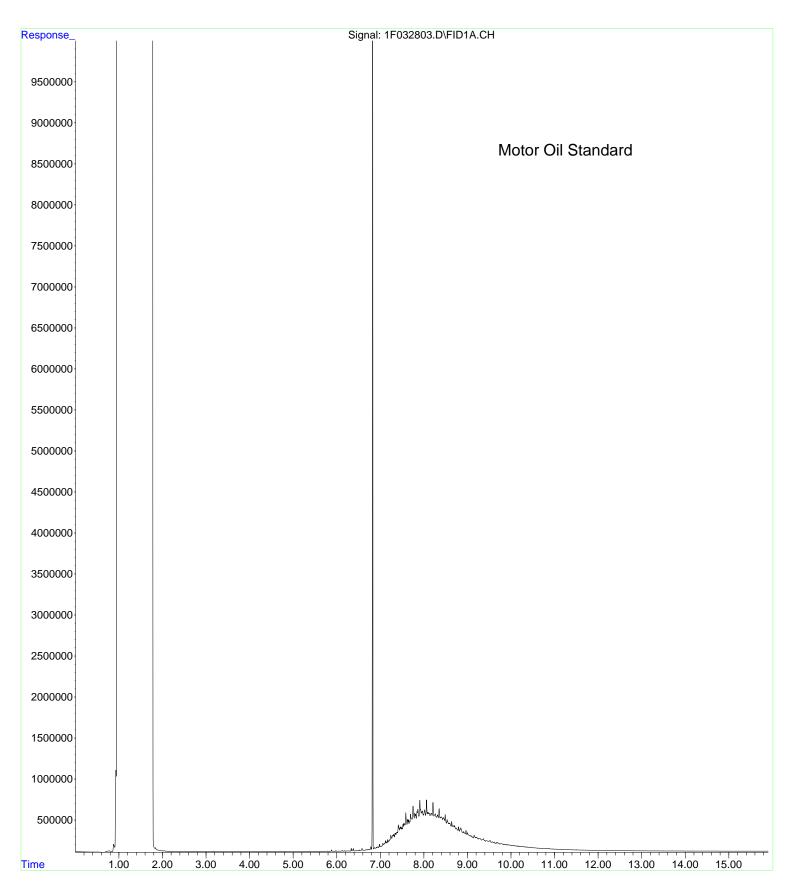
Operator : BLL/BJY
Acquired : 28 Mar 2024 11:31 am using AcqMethod A1F40422.M
Instrument : HP G1530A


Sample Name: 24C0983-BLK1



File :C:\msdchem\1\data\4C28038\1F032802.D

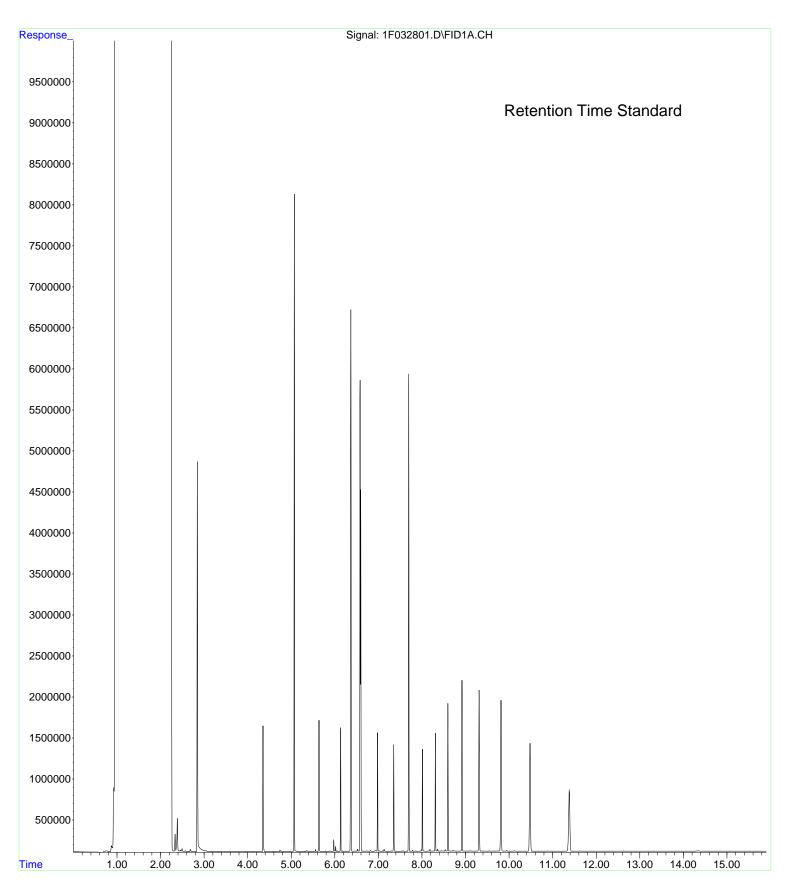
Operator : BLL/BJY
Acquired : 28 Mar 2024 10:21 am using AcqMethod A1F40422.M
Instrument : HP G1530A


Sample Name: 4C28038-CCV1



File :C:\msdchem\1\data\4C28038\1F032803.D

Operator : BLL/BJY
Acquired : 28 Mar 2024 10:44 am using AcqMethod A1F40422.M
Instrument : HP G1530A


Sample Name: 4C28038-CCV2



File :C:\msdchem\1\data\4C28038\1F032801.D

9:57 am using AcqMethod A1F40422.M

Operator : BLL/BJY
Acquired : 28 Mar 2024
Instrument : HP G1530A Sample Name: 4C28038-RES1





**Apex Laboratories, LLC** 

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

AMENDED REPORT

Friday, March 29, 2024 Suzy Stumpf Farallon-Seattle 1809 7th Ave Suite 1111 Seattle, WA 98101

RE: A4B1637 - 397-019 Block 38 West - 397-019

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A4B1637, which was received by the laboratory on 2/29/2024 at 1:40:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: <a href="mailto:mpoquiz@apex-labs.com">mpoquiz@apex-labs.com</a>, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

|   |                                                                                                                             |                                       |      | Cooler Receip | ot Information |     |      |  |  |  |  |  |  |
|---|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------|---------------|----------------|-----|------|--|--|--|--|--|--|
|   | Acceptable Receipt Temperature is less than, or equal to, 6 degC (not frozen), or received on ice the same day as sampling. |                                       |      |               |                |     |      |  |  |  |  |  |  |
|   |                                                                                                                             | (See Cooler Receipt Form for details) |      |               |                |     |      |  |  |  |  |  |  |
|   |                                                                                                                             |                                       |      |               |                |     |      |  |  |  |  |  |  |
|   | Cooler #1                                                                                                                   | 2.6                                   | degC |               | Cooler #2      | 1.3 | degC |  |  |  |  |  |  |
|   | Cooler #3                                                                                                                   | 1.9                                   | degC |               |                |     |      |  |  |  |  |  |  |
| • |                                                                                                                             |                                       |      | _             |                |     |      |  |  |  |  |  |  |
|   |                                                                                                                             |                                       |      |               |                |     |      |  |  |  |  |  |  |
|   |                                                                                                                             |                                       |      |               |                |     |      |  |  |  |  |  |  |

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.





Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1637 - 03 29 24 1739

## ANALYTICAL REPORT FOR SAMPLES

|                  | SAMPLE INFORMATION |        |                |                |  |  |  |  |  |  |  |  |
|------------------|--------------------|--------|----------------|----------------|--|--|--|--|--|--|--|--|
| Client Sample ID | Laboratory ID      | Matrix | Date Sampled   | Date Received  |  |  |  |  |  |  |  |  |
| FMW-154-022824   | A4B1637-01         | Water  | 02/28/24 09:50 | 02/29/24 13:40 |  |  |  |  |  |  |  |  |
| FMW-157-022824   | A4B1637-02         | Water  | 02/28/24 14:17 | 02/29/24 13:40 |  |  |  |  |  |  |  |  |
| FMW-162-022824   | A4B1637-03         | Water  | 02/28/24 15:49 | 02/29/24 13:40 |  |  |  |  |  |  |  |  |
| FMW-159-022824   | A4B1637-04         | Water  | 02/28/24 15:25 | 02/29/24 13:40 |  |  |  |  |  |  |  |  |
| OW-1-022824      | A4B1637-05         | Water  | 02/28/24 12:49 | 02/29/24 13:40 |  |  |  |  |  |  |  |  |
| OW-2-022824      | A4B1637-06         | Water  | 02/28/24 11:09 | 02/29/24 13:40 |  |  |  |  |  |  |  |  |
| OW-3-022824      | A4B1637-07         | Water  | 02/28/24 14:25 | 02/29/24 13:40 |  |  |  |  |  |  |  |  |

Apex Laboratories

(milele fog



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1637 - 03 29 24 1739

#### ANALYTICAL CASE NARRATIVE

A4B1637 Apex Laboratories

Amended Final Report #2 - This report supercedes all previous reports

#### Methylnaphthalenes and Naphthalene by EPA 8270E Note

The Laboratory Control Sample (LCS/LCSD) recoveries associated with the quantification of naphthalene and methylnaphthalenes by EPA Method 8270E were below acceptance criteria for the samples below. These samples were re-extracted and re-analyzed with similar results. The investigation into these low LCS recoveries was unable to identify a specific root cause. Analysis of subsequent analytical batches for these analytes by EPA Method 8270E yielded LCS recoveries within acceptance limits. Due to insufficient remaining sample volume for these samples, additional testing for naphthalene and the methylnaphthalenes by EPA Method 8270E could not be completed. The EPA Method 8270E data for methylnaphthalenes was qualified accordingly. Naphthalene was reported by EPA Method 8260D.

- FMW-154-022824 (A4B1637-01)
- FMW-157-022824 (A4B1637-02)
- FMW-162-022824 (A4B1637-03)
- FMW-159-022824 (A4B1637-04)
- OW-1-022824 (A4B1637-05)
- OW-2-022824 (A4B1637-06)
- OW-3-022824 (A4B1637-07)

Kurt Johnson Director of Forensic Services March 29, 2024

Amended Final Report #1 - This report supersedes all previous reports.

#### **Subcontract**

This report is not complete without the attached subcontract laboratory report for total organic carbon (TOC) from ALS.

Michele Poquiz Forensics Project Manager March 25, 2024

## NWTPH-Dx - WA Diesel Extended - Method Name Change

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1637 - 03 29 24 1739

#### ANALYTICAL CASE NARRATIVE

A4B1637 Apex Laboratories

This report contains modified data for NWTPH-Dx (WA Ext) for all samples.

The reported Analytical Method Reference has changed from "Washington Diesel Range Extended (C10-C40) by EPA 8015D Modified" to "Whole Product Diesel Testing (C10-C40) WDOE/NWTPH-Dx", the Specific Method Reference has changed from "8015DMod (WA\_Ext)" to "NWTPH-Dx (WA Ext)", and a Minimum Reporting Level has been set at 0.250mg/L.

The affected data is flagged in the report with the AMEND qualifier.

David Jack Technical Manager March 22, 2024

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1637 - 03 29 24 1739

# ANALYTICAL SAMPLE RESULTS

|                                 | C1               | Datastis           | Dti                | -                |                    | D-4-             |                      |       |
|---------------------------------|------------------|--------------------|--------------------|------------------|--------------------|------------------|----------------------|-------|
| Analyte                         | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution           | Date<br>Analyzed | Method Ref.          | Notes |
| FMW-154-022824 (A4B1637-01)     |                  |                    |                    | Matrix: Wate     | er                 | Batch:           | 24C0024              |       |
| Diesel Range Organics (C10-C40) | 435              |                    | 250                | ug/L             | 1                  | 03/06/24 23:49   | NWTPH-DX<br>(WA_Ext) |       |
| Surrogate: o-Terphenyl (Surr)   |                  | Reco               | very: 93 %         | Limits: 50-150 % | Limits: 50-150 % 1 |                  | NWTPH-DX<br>(WA_Ext) |       |
| FMW-157-022824 (A4B1637-02)     |                  |                    | Matrix: Water      |                  |                    | Batch:           | 24C0024              |       |
| Diesel Range Organics (C10-C40) | ND               |                    | 250                | ug/L             | 1                  | 03/07/24 00:35   | NWTPH-DX<br>(WA_Ext) |       |
| Surrogate: o-Terphenyl (Surr)   |                  | Reco               | very: 96 %         | Limits: 50-150 % | 6 I                | 03/07/24 00:35   | NWTPH-DX<br>(WA_Ext) |       |
| FMW-162-022824 (A4B1637-03RE1)  |                  |                    |                    | Matrix: Wate     | er                 | Batch:           | 24C0024              |       |
| Diesel Range Organics (C10-C40) | ND               |                    | 250                | ug/L             | 1                  | 03/07/24 14:34   | NWTPH-DX<br>(WA_Ext) |       |
| Surrogate: o-Terphenyl (Surr)   |                  | Reco               | very: 73 %         | Limits: 50-150 % | 6 I                | 03/07/24 14:34   | NWTPH-DX<br>(WA_Ext) |       |
| FMW-159-022824 (A4B1637-04)     |                  |                    |                    | Matrix: Wate     | er                 | Batch: 24C0024   |                      |       |
| Diesel Range Organics (C10-C40) | ND               |                    | 250                | ug/L             | 1                  | 03/07/24 01:45   | NWTPH-DX<br>(WA_Ext) |       |
| Surrogate: o-Terphenyl (Surr)   |                  | Reco               | very: 83 %         | Limits: 50-150 % | 6 I                | 03/07/24 01:45   | NWTPH-DX<br>(WA_Ext) |       |
| OW-1-022824 (A4B1637-05RE1)     |                  |                    |                    | Matrix: Wate     | er                 | Batch:           | 24C0024              |       |
| Diesel Range Organics (C10-C40) | 391              |                    | 250                | ug/L             | 1                  | 03/07/24 14:58   | NWTPH-DX<br>(WA_Ext) |       |
| Surrogate: o-Terphenyl (Surr)   |                  | Reco               | very: 75 %         | Limits: 50-150 % | 6 I                | 03/07/24 14:58   | NWTPH-DX<br>(WA_Ext) |       |
| OW-2-022824 (A4B1637-06)        |                  |                    |                    | Matrix: Wate     | ər                 | Batch:           | 24C0024              |       |
| Diesel Range Organics (C10-C40) | ND               |                    | 250                | ug/L             | 1                  | 03/07/24 02:55   | NWTPH-DX<br>(WA_Ext) |       |
| Surrogate: o-Terphenyl (Surr)   |                  | Recove             | ery: 107%          | Limits: 50-150 % | 6 I                | 03/07/24 02:55   | NWTPH-DX<br>(WA_Ext) |       |
| OW-3-022824 (A4B1637-07RE1)     |                  |                    |                    | Matrix: Wate     | er                 | Batch:           | 24C0024              |       |
| Diesel Range Organics (C10-C40) | ND               |                    | 250                | ug/L             | 1                  | 03/07/24 15:21   | NWTPH-DX<br>(WA_Ext) |       |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1637 - 03 29 24 1739

# ANALYTICAL SAMPLE RESULTS

|                               | Whole Product Diesel Testing (C10-C40) by WDOE/NWTPH-Dx |                    |                              |            |          |          |                  |                      |       |  |  |  |
|-------------------------------|---------------------------------------------------------|--------------------|------------------------------|------------|----------|----------|------------------|----------------------|-------|--|--|--|
| Analyte                       | Sample<br>Result                                        | Detection<br>Limit | Reporting<br>Limit           | Units      | <b>S</b> | Dilution | Date<br>Analyzed | Method Ref.          | Notes |  |  |  |
| OW-3-022824 (A4B1637-07RE1)   |                                                         |                    | Matrix: Water Batch: 24C0024 |            |          |          | 24C0024          |                      |       |  |  |  |
| Surrogate: o-Terphenyl (Surr) |                                                         | Reco               | very: 67 %                   | Limits: 50 | )-150 %  | 1        | 03/07/24 15:21   | NWTPH-DX<br>(WA_Ext) |       |  |  |  |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1637 - 03 29 24 1739

# ANALYTICAL SAMPLE RESULTS

| Whole Produ                     | ıct Diesel Testi | ng (C10-C40        | ) by WDOE/         | NWTPH-Dx wit     | th Silica C | Sel Column Cle   | eanup                     |       |
|---------------------------------|------------------|--------------------|--------------------|------------------|-------------|------------------|---------------------------|-------|
| Analyte                         | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution    | Date<br>Analyzed | Method Ref.               | Notes |
| FMW-159-022824 (A4B1637-04)     |                  |                    |                    | Matrix: Wat      | er          | Batch: 24C0983   |                           |       |
| Diesel Range Organics (C10-C40) | ND               |                    | 250                | ug/L             | 1           | 03/28/24 13:04   | NWTPH-DX<br>(WA_Ext) wSGC |       |
| Surrogate: o-Terphenyl (Surr)   |                  | Reco               | very: 64%          | Limits: 50-150 % | % 1         | 03/28/24 13:04   | NWTPH-DX<br>(WA_Ext) wSGC |       |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1637 - 03 29 24 1739

# ANALYTICAL SAMPLE RESULTS

| Gasol                                                              | Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx |                    |                     |                           |          |                                  |                                |       |  |  |  |  |  |
|--------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------|---------------------|---------------------------|----------|----------------------------------|--------------------------------|-------|--|--|--|--|--|
| Analyte                                                            | Sample<br>Result                                                      | Detection<br>Limit | Reporting<br>Limit  | Units                     | Dilution | Date<br>Analyzed                 | Method Ref.                    | Notes |  |  |  |  |  |
| FMW-154-022824 (A4B1637-01)                                        |                                                                       |                    |                     | Matrix: Wate              | er       | Batch:                           | Batch: 24C0013                 |       |  |  |  |  |  |
| Gasoline Range Organics                                            | ND                                                                    |                    | 100                 | ug/L                      | 1        | 03/01/24 12:19                   | NWTPH-Gx (MS)                  |       |  |  |  |  |  |
| Surrogate: 4-Bromofluorobenzene (Sur)<br>1,4-Difluorobenzene (Sur) |                                                                       | Recove             | ery: 108 %<br>117 % | Limits: 50-150 % 50-150 % |          | 03/01/24 12:19<br>03/01/24 12:19 | NWTPH-Gx (MS)<br>NWTPH-Gx (MS) |       |  |  |  |  |  |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1637 - 03 29 24 1739

# ANALYTICAL SAMPLE RESULTS

| BTEX Compounds by EPA 8260D           |                                 |       |           |                  |          |                |             |       |  |  |  |  |
|---------------------------------------|---------------------------------|-------|-----------|------------------|----------|----------------|-------------|-------|--|--|--|--|
|                                       | Sample Detection Reporting Date |       |           |                  |          |                |             |       |  |  |  |  |
| Analyte                               | Result                          | Limit | Limit     | Units            | Dilution | Analyzed       | Method Ref. | Notes |  |  |  |  |
| FMW-154-022824 (A4B1637-01)           |                                 |       |           | Matrix: Wate     | ər       | Batch:         |             |       |  |  |  |  |
| Benzene                               | ND                              |       | 0.200     | ug/L             | 1        | 03/01/24 12:19 | EPA 8260D   |       |  |  |  |  |
| Toluene                               | ND                              |       | 1.00      | ug/L             | 1        | 03/01/24 12:19 | EPA 8260D   |       |  |  |  |  |
| Ethylbenzene                          | ND                              |       | 0.500     | ug/L             | 1        | 03/01/24 12:19 | EPA 8260D   |       |  |  |  |  |
| Xylenes, total                        | ND                              |       | 1.50      | ug/L             | 1        | 03/01/24 12:19 | EPA 8260D   |       |  |  |  |  |
| Surrogate: 1,4-Difluorobenzene (Surr) |                                 | Recov | ery: 116% | Limits: 80-120 % | 6 I      | 03/01/24 12:19 | EPA 8260D   |       |  |  |  |  |
| Toluene-d8 (Surr)                     |                                 |       | 100 %     | 80-120 %         | 6 I      | 03/01/24 12:19 | EPA 8260D   |       |  |  |  |  |
| 4-Bromofluorobenzene (Surr)           |                                 |       | 95 %      | 80-120 %         | 6 I      | 03/01/24 12:19 | EPA 8260D   |       |  |  |  |  |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1637 - 03 29 24 1739

# ANALYTICAL SAMPLE RESULTS

|                                       |                  | BTEX+N Co          | mpounds            | by EPA 8260D     |           |                  |             |       |
|---------------------------------------|------------------|--------------------|--------------------|------------------|-----------|------------------|-------------|-------|
| Analyte                               | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution  | Date<br>Analyzed | Method Ref. | Notes |
| FMW-154-022824 (A4B1637-01)           |                  |                    |                    | Matrix: Wate     | r         | Batch: 2         | 24C0013     |       |
| Naphthalene                           | ND               |                    | 5.00               | ug/L             | 1         | 03/01/24 12:19   | EPA 8260D   |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Recovery           | ): 116 %           | Limits: 80-120 % | 1         | 03/01/24 12:19   | EPA 8260D   |       |
| Toluene-d8 (Surr)                     |                  |                    | 100 %              | 80-120 %         | 1         | 03/01/24 12:19   | EPA 8260D   |       |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 95 %               | 80-120 %         | I         | 03/01/24 12:19   | EPA 8260D   |       |
| FMW-157-022824 (A4B1637-02)           |                  |                    |                    | Matrix: Wate     | r         | Batch: 2         | 24C0338     |       |
| Naphthalene                           | ND               |                    | 5.00               | ug/L             | 1         | 03/11/24 12:46   | EPA 8260D   | Q-54a |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Recovery           | : 115 %            | Limits: 80-120 % | I         | 03/11/24 12:46   | EPA 8260D   |       |
| Toluene-d8 (Surr)                     |                  |                    | 100 %              | 80-120 %         | 1         | 03/11/24 12:46   | EPA 8260D   |       |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 98 %               | 80-120 %         | 1         | 03/11/24 12:46   | EPA 8260D   |       |
| FMW-162-022824 (A4B1637-03)           |                  |                    |                    | Matrix: Wate     | r         | Batch: 2         | 24C0338     |       |
| Naphthalene                           | ND               |                    | 5.00               | ug/L             | 1         | 03/11/24 13:14   | EPA 8260D   | Q-54a |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Recovery           | v: 115 %           | Limits: 80-120 % | 1         | 03/11/24 13:14   | EPA 8260D   |       |
| Toluene-d8 (Surr)                     |                  |                    | 101 %              | 80-120 %         | 1         | 03/11/24 13:14   | EPA 8260D   |       |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 98 %               | 80-120 %         | I         | 03/11/24 13:14   | EPA 8260D   |       |
| OW-1-022824 (A4B1637-05RE1)           |                  |                    |                    | Matrix: Wate     | er        | Batch: 2         | 24C0407     | V-13  |
| Naphthalene                           | ND               |                    | 25.0               | ug/L             | 5         | 03/12/24 17:13   | EPA 8260D   |       |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Recovery           | : 119 %            | Limits: 80-120 % | 1         | 03/12/24 17:13   | EPA 8260D   |       |
| Toluene-d8 (Surr)                     |                  |                    | 100 %              | 80-120 %         | 1         | 03/12/24 17:13   | EPA 8260D   |       |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 97 %               | 80-120 %         | 1         | 03/12/24 17:13   | EPA 8260D   |       |
| OW-2-022824 (A4B1637-06)              |                  |                    |                    | Matrix: Wate     | er Batch: |                  | 24C0338     |       |
| Naphthalene                           | ND               |                    | 5.00               | ug/L             | 1         | 03/11/24 13:41   | EPA 8260D   | Q-54a |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Recovery           | : 116 %            | Limits: 80-120 % | I         | 03/11/24 13:41   | EPA 8260D   |       |
| Toluene-d8 (Surr)                     |                  |                    | 100 %              | 80-120 %         | 1         | 03/11/24 13:41   | EPA 8260D   |       |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 97 %               | 80-120 %         | 1         | 03/11/24 13:41   | EPA 8260D   |       |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1637 - 03 29 24 1739

# ANALYTICAL SAMPLE RESULTS

|                                   | Selected         | l Semivolatile O   | rganic C           | ompounds by E    | :PA 8270 | E                |             |       |
|-----------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|-------------|-------|
| Analyte                           | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref. | Notes |
| FMW-154-022824 (A4B1637-01)       |                  |                    |                    | Matrix: Wate     | er       | Batch: 2         | 24C0110     | R-04  |
| 1-Methylnaphthalene               | ND               |                    | 0.151              | ug/L             | 4        | 03/08/24 14:15   | EPA 8270E   | Q-30  |
| 2-Methylnaphthalene               | ND               |                    | 0.151              | ug/L             | 4        | 03/08/24 14:15   | EPA 8270E   | Q-30  |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recovery           | : 69 %             | Limits: 44-120 % | 4        | 03/08/24 14:15   | EPA 8270E   |       |
| 2-Fluorobiphenyl (Surr)           |                  |                    | 64 %               | 44-120 %         | 4        | 03/08/24 14:15   | EPA 8270E   |       |
| Phenol-d6 (Surr)                  |                  |                    | 19 %               | 10-133 %         | 4        | 03/08/24 14:15   | EPA 8270E   |       |
| p-Terphenyl-d14 (Surr)            |                  |                    | 72 %               | 50-134 %         | 4        | 03/08/24 14:15   | EPA 8270E   |       |
| 2-Fluorophenol (Surr)             |                  |                    | 33 %               | 19-120 %         | 4        | 03/08/24 14:15   | EPA 8270E   |       |
| 2,4,6-Tribromophenol (Surr)       |                  |                    | 118 %              | 43-140 %         | 4        | 03/08/24 14:15   | EPA 8270E   |       |
| FMW-157-022824 (A4B1637-02)       |                  |                    |                    | Matrix: Wate     | er       | Batch: 2         | 24C0110     |       |
| 1-Methylnaphthalene               | ND               |                    | 0.0377             | ug/L             | 1        | 03/08/24 14:49   | EPA 8270E   | Q-30  |
| 2-Methylnaphthalene               | ND               |                    | 0.0377             | ug/L             | 1        | 03/08/24 14:49   | EPA 8270E   | Q-30  |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recovery           | : 48 %             | Limits: 44-120 % | I        | 03/08/24 14:49   | EPA 8270E   |       |
| 2-Fluorobiphenyl (Surr)           |                  |                    | 45 %               | 44-120 %         | 1        | 03/08/24 14:49   | EPA 8270E   |       |
| Phenol-d6 (Surr)                  |                  |                    | 13 %               | 10-133 %         | 1        | 03/08/24 14:49   | EPA 8270E   |       |
| p-Terphenyl-d14 (Surr)            |                  |                    | 64 %               | 50-134 %         | 1        | 03/08/24 14:49   | EPA 8270E   |       |
| 2-Fluorophenol (Surr)             |                  |                    | 25 %               | 19-120 %         | 1        | 03/08/24 14:49   | EPA 8270E   |       |
| 2,4,6-Tribromophenol (Surr)       |                  |                    | 90 %               | 43-140 %         | 1        | 03/08/24 14:49   | EPA 8270E   |       |
| FMW-162-022824 (A4B1637-03)       |                  |                    |                    | Matrix: Wate     | er       | Batch: 2         | 24C0110     |       |
| 1-Methylnaphthalene               | ND               |                    | 0.0377             | ug/L             | 1        | 03/08/24 15:22   | EPA 8270E   | Q-30  |
| 2-Methylnaphthalene               | ND               |                    | 0.0377             | ug/L             | 1        | 03/08/24 15:22   | EPA 8270E   | Q-30  |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recovery           | : 61 %             | Limits: 44-120 % | 1        | 03/08/24 15:22   | EPA 8270E   |       |
| 2-Fluorobiphenyl (Surr)           |                  |                    | 51 %               | 44-120 %         | 1        | 03/08/24 15:22   | EPA 8270E   |       |
| Phenol-d6 (Surr)                  |                  |                    | 16 %               | 10-133 %         | 1        | 03/08/24 15:22   | EPA 8270E   |       |
| p-Terphenyl-d14 (Surr)            |                  |                    | 64 %               | 50-134 %         | 1        | 03/08/24 15:22   | EPA 8270E   |       |
| 2-Fluorophenol (Surr)             |                  |                    | 29 %               | 19-120 %         | 1        | 03/08/24 15:22   | EPA 8270E   |       |
| 2,4,6-Tribromophenol (Surr)       |                  |                    | 83 %               | 43-140 %         | 1        | 03/08/24 15:22   | EPA 8270E   |       |
| FMW-159-022824 (A4B1637-04)       |                  |                    |                    | Matrix: Wate     | er       | Batch: 2         | 24C0110     |       |
| 1-Methylnaphthalene               | ND               |                    | 0.0400             | ug/L             | 1        | 03/08/24 15:56   | EPA 8270E   | Q-30  |
| 2-Methylnaphthalene               | ND               |                    | 0.0400             | ug/L             | 1        | 03/08/24 15:56   | EPA 8270E   | Q-30  |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recovery           | y: 58 %            | Limits: 44-120 % | I        | 03/08/24 15:56   | EPA 8270E   |       |
| 2-Fluorobiphenyl (Surr)           |                  |                    | 54 %               | 44-120 %         | 1        | 03/08/24 15:56   | EPA 8270E   |       |
| Phenol-d6 (Surr)                  |                  |                    | 17 %               | 10-133 %         | 1        | 03/08/24 15:56   | EPA 8270E   |       |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1637 - 03 29 24 1739

# ANALYTICAL SAMPLE RESULTS

|                                   | Selected Semivolatile Organic Compounds by EPA 8270E |          |           |                  |          |                |             |       |  |  |  |
|-----------------------------------|------------------------------------------------------|----------|-----------|------------------|----------|----------------|-------------|-------|--|--|--|
| A 14                              | Sample                                               |          | Reporting | TT '             | D.1 4.   | Date           | M.d. ID.S   | N.    |  |  |  |
| Analyte                           | Result                                               | Limit    | Limit     | Units            | Dilution | Analyzed       | Method Ref. | Notes |  |  |  |
| FMW-159-022824 (A4B1637-04)       |                                                      |          |           | Matrix: Wate     | r        | Batch:         | 24C0110     |       |  |  |  |
| Surrogate: p-Terphenyl-d14 (Surr) |                                                      | Recovery | : 62 %    | Limits: 50-134 % | 1        | 03/08/24 15:56 | EPA 8270E   |       |  |  |  |
| 2-Fluorophenol (Surr)             |                                                      |          | 29 %      | 19-120 %         | 1        | 03/08/24 15:56 | EPA 8270E   |       |  |  |  |
| 2,4,6-Tribromophenol (Surr)       |                                                      |          | 102 %     | 43-140 %         | I        | 03/08/24 15:56 | EPA 8270E   |       |  |  |  |
| OW-1-022824 (A4B1637-05)          |                                                      |          |           | Matrix: Wate     | r        | Batch:         | 24C0110     |       |  |  |  |
| 1-Methylnaphthalene               | ND                                                   |          | 0.0377    | ug/L             | 1        | 03/08/24 16:31 | EPA 8270E   | Q-30  |  |  |  |
| 2-Methylnaphthalene               | ND                                                   |          | 0.0377    | ug/L             | 1        | 03/08/24 16:31 | EPA 8270E   | Q-30  |  |  |  |
| Surrogate: Nitrobenzene-d5 (Surr) |                                                      | Recovery | : 51 %    | Limits: 44-120 % | I        | 03/08/24 16:31 | EPA 8270E   |       |  |  |  |
| 2-Fluorobiphenyl (Surr)           |                                                      |          | 54 %      | 44-120 %         | 1        | 03/08/24 16:31 | EPA 8270E   |       |  |  |  |
| Phenol-d6 (Surr)                  |                                                      |          | 8 %       | 10-133 %         | 1        | 03/08/24 16:31 | EPA 8270E   | S-06  |  |  |  |
| p-Terphenyl-d14 (Surr)            |                                                      |          | 59 %      | 50-134 %         | 1        | 03/08/24 16:31 | EPA 8270E   |       |  |  |  |
| 2-Fluorophenol (Surr)             |                                                      |          | 27 %      | 19-120 %         | 1        | 03/08/24 16:31 | EPA 8270E   |       |  |  |  |
| 2,4,6-Tribromophenol (Surr)       |                                                      |          | 108 %     | 43-140 %         | 1        | 03/08/24 16:31 | EPA 8270E   |       |  |  |  |
| OW-2-022824 (A4B1637-06)          |                                                      |          |           | Matrix: Wate     | r        | Batch:         | 24C0110     |       |  |  |  |
| 1-Methylnaphthalene               | ND                                                   |          | 0.0377    | ug/L             | 1        | 03/08/24 17:05 | EPA 8270E   | Q-30  |  |  |  |
| 2-Methylnaphthalene               | ND                                                   |          | 0.0377    | ug/L             | 1        | 03/08/24 17:05 | EPA 8270E   | Q-30  |  |  |  |
| Surrogate: Nitrobenzene-d5 (Surr) |                                                      | Recovery | : 53 %    | Limits: 44-120 % | 1        | 03/08/24 17:05 | EPA 8270E   |       |  |  |  |
| 2-Fluorobiphenyl (Surr)           |                                                      |          | 52 %      | 44-120 %         | 1        | 03/08/24 17:05 | EPA 8270E   |       |  |  |  |
| Phenol-d6 (Surr)                  |                                                      |          | 15 %      | 10-133 %         | 1        | 03/08/24 17:05 | EPA 8270E   |       |  |  |  |
| p-Terphenyl-d14 (Surr)            |                                                      |          | 59 %      | 50-134 %         | 1        | 03/08/24 17:05 | EPA 8270E   |       |  |  |  |
| 2-Fluorophenol (Surr)             |                                                      |          | 25 %      | 19-120 %         | 1        | 03/08/24 17:05 | EPA 8270E   |       |  |  |  |
| 2,4,6-Tribromophenol (Surr)       |                                                      |          | 103 %     | 43-140 %         | I        | 03/08/24 17:05 | EPA 8270E   |       |  |  |  |
| OW-3-022824 (A4B1637-07)          |                                                      |          |           | Matrix: Wate     | r        | Batch:         | 24C0110     |       |  |  |  |
| 1-Methylnaphthalene               | ND                                                   |          | 0.0417    | ug/L             | 1        | 03/08/24 17:39 | EPA 8270E   | Q-30  |  |  |  |
| 2-Methylnaphthalene               | ND                                                   |          | 0.0417    | ug/L             | 1        | 03/08/24 17:39 | EPA 8270E   | Q-30  |  |  |  |
| Surrogate: Nitrobenzene-d5 (Surr) |                                                      | Recovery | : 59 %    | Limits: 44-120 % | I        | 03/08/24 17:39 | EPA 8270E   |       |  |  |  |
| 2-Fluorobiphenyl (Surr)           |                                                      |          | 50 %      | 44-120 %         | 1        | 03/08/24 17:39 | EPA 8270E   |       |  |  |  |
| Phenol-d6 (Surr)                  |                                                      |          | 18 %      | 10-133 %         | 1        | 03/08/24 17:39 | EPA 8270E   |       |  |  |  |
| p-Terphenyl-d14 (Surr)            |                                                      |          | 69 %      | 50-134 %         | 1        | 03/08/24 17:39 | EPA 8270E   |       |  |  |  |
| 2-Fluorophenol (Surr)             |                                                      |          | 31 %      | 19-120 %         | 1        | 03/08/24 17:39 | EPA 8270E   |       |  |  |  |
| 2,4,6-Tribromophenol (Surr)       |                                                      |          | 93 %      | 43-140 %         | 1        | 03/08/24 17:39 | EPA 8270E   |       |  |  |  |

Apex Laboratories

\_\_\_



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1637 - 03 29 24 1739

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                 |         | Whole Pro            | duct Dies          | el Testin   | g (C10-C4 | 10) by WD       | OE/NWT           | PH-Dx |                 |     |              |            |
|---------------------------------|---------|----------------------|--------------------|-------------|-----------|-----------------|------------------|-------|-----------------|-----|--------------|------------|
| Analyte                         | Result  | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes      |
| Batch 24C0024 - EPA 3510C (Fu   | els/Aci | d Ext.)              |                    |             |           |                 | Wa               | ter   |                 |     |              |            |
| Blank (24C0024-BLK1)            |         |                      | Prepare            | d: 03/01/24 | 10:42 Ana | lyzed: 03/06    | /24 19:32        |       |                 |     |              | AMEND      |
| NWTPH-DX (WA Ext)               |         |                      |                    |             |           |                 |                  |       |                 |     |              |            |
| Diesel Range Organics (C10-C40) | ND      |                      | 200                | ug/L        | 1         |                 |                  |       |                 |     |              |            |
| Surr: o-Terphenyl (Surr)        |         | Reco                 | very: 83 %         | Limits: 50  | 0-150 %   | Dilt            | ution: 1x        |       |                 |     |              |            |
| LCS (24C0024-BS1)               |         |                      | Prepare            | d: 03/01/24 | 10:42 Ana | lyzed: 03/06    | /24 19:55        |       |                 |     |              | AMEND      |
| NWTPH-DX (WA Ext)               |         |                      |                    |             |           |                 |                  |       |                 |     |              |            |
| Diesel Range Organics (C10-C40) | 269     |                      | 200                | ug/L        | 1         | 500             |                  | 54    | 38-132%         |     |              |            |
| Surr: o-Terphenyl (Surr)        |         | Reco                 | very: 81 %         | Limits: 50  | 0-150 %   | Dilt            | ution: 1x        |       |                 |     |              |            |
| LCS Dup (24C0024-BSD1)          |         |                      | Prepare            | d: 03/01/24 | 10:42 Ana | lyzed: 03/06    | /24 20:19        |       |                 |     | A            | MEND, Q-19 |
| NWTPH-DX (WA_Ext)               |         |                      |                    |             |           |                 |                  |       |                 |     |              |            |
| Diesel Range Organics (C10-C40) | 291     |                      | 200                | ug/L        | 1         | 500             |                  | 58    | 38-132%         | 8   | 30%          |            |
| Surr: o-Terphenyl (Surr)        |         | Reco                 | very: 89 %         | Limits: 5   | 0-150 %   | Dilı            | ution: 1x        |       |                 |     |              |            |

Apex Laboratories

(milule fog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1637 - 03 29 24 1739

# QUALITY CONTROL (QC) SAMPLE RESULTS

| Whole P                         | roduc   | t Diesel Tes         | ting (C10-         | C40) by V   | VDOE/NW    | TPH-Dx v        | vith Silic       | a Gel Colu | umn Cle         | anup |              |       |
|---------------------------------|---------|----------------------|--------------------|-------------|------------|-----------------|------------------|------------|-----------------|------|--------------|-------|
| Analyte                         | Result  | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution   | Spike<br>Amount | Source<br>Result | % REC      | % REC<br>Limits | RPD  | RPD<br>Limit | Notes |
| Batch 24C0983 - EPA 3510C (Fu   | els/Aci | d Ext.)              |                    |             |            |                 | Wa               | ter        |                 |      |              |       |
| Blank (24C0983-BLK1)            |         |                      | Prepared           | d: 03/01/24 | 10:42 Ana  | lyzed: 03/28    | /24 11:31        |            |                 |      |              |       |
| NWTPH-DX (WA Ext) wSGC          |         |                      |                    |             |            |                 |                  |            |                 |      |              |       |
| Diesel Range Organics (C10-C40) | ND      |                      | 250                | ug/L        | 1          |                 |                  |            |                 |      |              |       |
| Surr: o-Terphenyl (Surr)        |         | Reco                 | overy: 82 %        | Limits: 50  | 0-150 %    | Dilı            | ution: 1x        |            |                 |      |              |       |
| LCS (24C0983-BS1)               |         |                      | Prepared           | d: 03/01/24 | 10:42 Ana  | lyzed: 03/28    | /24 11:54        |            |                 |      |              |       |
| NWTPH-DX (WA Ext) wSGC          |         |                      |                    |             |            |                 |                  |            |                 |      |              |       |
| Diesel Range Organics (C10-C40) | 296     |                      | 250                | ug/L        | 1          | 500             |                  | 59         | 38-132%         |      |              |       |
| Surr: o-Terphenyl (Surr)        |         | Reco                 | overy: 87 %        | Limits: 50  | 0-150 %    | Dilı            | ution: 1x        |            |                 |      |              |       |
| LCS Dup (24C0983-BSD1)          |         |                      | Prepared           | d: 03/01/24 | 10:42 Anal | lyzed: 03/28    | /24 12:18        |            |                 |      |              | Q-1   |
| NWTPH-DX (WA_Ext) wSGC          |         |                      |                    |             |            |                 |                  |            | •               |      | •            |       |
| Diesel Range Organics (C10-C40) | 289     |                      | 250                | ug/L        | 1          | 500             |                  | 58         | 38-132%         | 2    | 30%          |       |
| Surr: o-Terphenyl (Surr)        |         | Reco                 | overy: 87 %        | Limits: 50  | 0-150 %    | Dilı            | ution: 1x        |            |                 |      |              |       |

Apex Laboratories

(milele fog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1637 - 03 29 24 1739

# QUALITY CONTROL (QC) SAMPLE RESULTS

| Gasoline Range Hydrocarbons (Benzene through Naphthalene) by NWTPH-Gx |           |                      |                    |             |           |                 |                  |       |                 |     |              |       |
|-----------------------------------------------------------------------|-----------|----------------------|--------------------|-------------|-----------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                                                               | Result    | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 24C0013 - EPA 5030C                                             |           |                      |                    |             |           |                 | Wat              | ter   |                 |     |              |       |
| Blank (24C0013-BLK1)                                                  |           |                      | Prepared           | 1: 03/01/24 | 07:48 Ana | lyzed: 03/01/   | 24 11:25         |       |                 |     |              |       |
| NWTPH-Gx (MS)                                                         |           |                      |                    |             |           |                 |                  |       |                 |     |              |       |
| Gasoline Range Organics                                               | ND        |                      | 100                | ug/L        | 1         |                 |                  |       |                 |     |              |       |
| Surr: 4-Bromofluorobenzene (Sur)                                      |           | Recov                | ery: 106 %         | Limits: 5   | 0-150 %   | Dilu            | tion: 1x         |       |                 |     |              |       |
| 1,4-Difluorobenzene (Sur)                                             |           |                      | 118 %              | 50          | 0-150 %   |                 | "                |       |                 |     |              |       |
| LCS (24C0013-BS2)                                                     |           |                      | Prepared           | 1: 03/01/24 | 07:48 Ana | lyzed: 03/01/   | 24 10:57         |       |                 |     |              |       |
| NWTPH-Gx (MS)                                                         |           |                      |                    |             |           |                 |                  |       |                 |     |              |       |
| Gasoline Range Organics                                               | 471       |                      | 100                | ug/L        | 1         | 500             |                  | 94    | 80-120%         |     |              |       |
| Surr: 4-Bromofluorobenzene (Sur)                                      |           | Recov                | ery: 101 %         | Limits: 5   | 0-150 %   | Dilu            | tion: 1x         |       |                 |     |              |       |
| 1,4-Difluorobenzene (Sur)                                             |           |                      | 107 %              | 50          | 0-150 %   |                 | "                |       |                 |     |              |       |
| Duplicate (24C0013-DUP1)                                              |           |                      | Prepared           | 1: 03/01/24 | 07:48 Ana | lyzed: 03/01/   | 24 16:53         |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A4                                         | B1651-04) |                      |                    |             |           |                 |                  |       |                 |     |              |       |
| Gasoline Range Organics                                               | 955       |                      | 100                | ug/L        | 1         |                 | 995              |       |                 | 4   | 30%          |       |
| Surr: 4-Bromofluorobenzene (Sur)                                      |           | Recov                | erv: 106 %         | Limits: 5   | 0-150 %   | Dilu            | tion: 1x         |       |                 |     |              |       |
| burr. 4-bromojiuorobenzene (bur)                                      |           |                      |                    |             |           |                 |                  |       |                 |     |              |       |

Apex Laboratories

(milale fog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1637 - 03 29 24 1739

# QUALITY CONTROL (QC) SAMPLE RESULTS

| BTEX Compounds by EPA 8260D      |           |                      |                    |             |            |                 |                  |       |                 |     |              |             |
|----------------------------------|-----------|----------------------|--------------------|-------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------------|
| Analyte                          | Result    | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes       |
| Batch 24C0013 - EPA 5030C        | Water     |                      |                    |             |            |                 |                  |       |                 |     |              |             |
| Blank (24C0013-BLK1)             |           |                      | Prepared           | 1: 03/01/24 | 07:48 Anal | yzed: 03/01     | /24 11:25        |       |                 |     |              |             |
| EPA 8260D                        |           |                      |                    |             |            |                 |                  |       |                 |     |              |             |
| Benzene                          | ND        |                      | 0.200              | ug/L        | 1          |                 |                  |       |                 |     |              |             |
| Toluene                          | ND        |                      | 1.00               | ug/L        | 1          |                 |                  |       |                 |     |              |             |
| Ethylbenzene                     | ND        |                      | 0.500              | ug/L        | 1          |                 |                  |       |                 |     |              |             |
| Xylenes, total                   | ND        |                      | 1.50               | ug/L        | 1          |                 |                  |       |                 |     |              |             |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recov                | ery: 117 %         | Limits: 80  | 0-120 %    | Dilı            | ution: 1x        |       |                 |     |              | <del></del> |
| Toluene-d8 (Surr)                |           |                      | 100 %              |             | 0-120 %    |                 | "                |       |                 |     |              |             |
| 4-Bromofluorobenzene (Surr)      |           |                      | 96 %               | 80          | 0-120 %    |                 | "                |       |                 |     |              |             |
| LCS (24C0013-BS1)                |           |                      | Prepared           | 1: 03/01/24 | 07:48 Anal | yzed: 03/01     | /24 09:58        |       |                 |     |              |             |
| EPA 8260D                        |           |                      |                    |             |            |                 |                  |       |                 |     |              |             |
| Benzene                          | 20.7      |                      | 0.200              | ug/L        | 1          | 20.0            |                  | 104   | 80-120%         |     |              |             |
| Toluene                          | 18.4      |                      | 1.00               | ug/L        | 1          | 20.0            |                  | 92    | 80-120%         |     |              |             |
| Ethylbenzene                     | 19.8      |                      | 0.500              | ug/L        | 1          | 20.0            |                  | 99    | 80-120%         |     |              |             |
| Xylenes, total                   | 55.3      |                      | 1.50               | ug/L        | 1          | 60.0            |                  | 92    | 80-120%         |     |              |             |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recov                | ery: 108 %         | Limits: 80  | 0-120 %    | Dilı            | ution: 1x        |       |                 |     |              |             |
| Toluene-d8 (Surr)                |           |                      | 96 %               | 80          | 0-120 %    |                 | "                |       |                 |     |              |             |
| 4-Bromofluorobenzene (Surr)      |           |                      | 95 %               | 80          | )-120 %    |                 | "                |       |                 |     |              |             |
| Duplicate (24C0013-DUP1)         |           |                      | Prepared           | 1: 03/01/24 | 07:48 Anal | yzed: 03/01     | /24 16:53        |       |                 |     |              |             |
| QC Source Sample: Non-SDG (A4    | B1651-04) |                      |                    |             |            |                 |                  |       |                 |     |              |             |
| Benzene                          | ND        |                      | 0.200              | ug/L        | 1          |                 | ND               |       |                 |     | 30%          |             |
| Toluene                          | ND        |                      | 1.00               | ug/L        | 1          |                 | ND               |       |                 |     | 30%          |             |
| Ethylbenzene                     | ND        |                      | 0.500              | ug/L        | 1          |                 | ND               |       |                 |     | 30%          |             |
| Xylenes, total                   | ND        |                      | 1.50               | ug/L        | 1          |                 | ND               |       |                 |     | 30%          |             |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recov                |                    | Limits: 80  |            | Dilı            | ution: 1x        |       |                 |     |              |             |
| Toluene-d8 (Surr)                |           | necov                | 99 %               |             | 0-120 %    | Diii            | # "              |       |                 |     |              |             |
| 4-Bromofluorobenzene (Surr)      |           |                      | 92 %               |             | 0-120 %    |                 | "                |       |                 |     |              |             |
| , zromojmoroveniene (surr)       |           |                      |                    |             | -2070      |                 |                  |       |                 |     |              |             |
| Matrix Spike (24C0013-MS1)       |           |                      | Prepared           | 1: 03/01/24 | 07:48 Anal | yzed: 03/02     | /24 00:37        |       |                 |     |              | T-0         |
| QC Source Sample: Non-SDG (A4    | B1620-07) |                      |                    |             |            |                 |                  |       |                 |     |              |             |
| EPA 8260D                        |           |                      |                    |             |            |                 |                  |       |                 |     |              |             |
| Benzene                          | 58.5      |                      | 0.500              | ug/L        | 2.5        | 50.0            | 0.325            | 116   | 79-120%         |     |              |             |

Apex Laboratories

The results in this report apply to the samples analyzed in accordance with the chain of custody document(s) and updated by any subsequent written communications. This analytical report must be reproduced in its entirety.

Page 16 of 30



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1637 - 03 29 24 1739

# QUALITY CONTROL (QC) SAMPLE RESULTS

#### BTEX Compounds by EPA 8260D % REC RPD Detection L Reporting Spike Source Result Units Dilution % REC Limits RPD Analyte Limit Limit Amount Result Limit Notes Batch 24C0013 - EPA 5030C Water Matrix Spike (24C0013-MS1) Prepared: 03/01/24 07:48 Analyzed: 03/02/24 00:37 T-02 QC Source Sample: Non-SDG (A4B1620-07) 50.0 100 Toluene 50.2 2.50 ug/L 2.5 ND 80-121% Ethylbenzene 53.8 1.25 ND 108 ug/L 2.5 50.0 79-121% Xylenes, total 149 3.75 150 79-121% ug/L 2.5 ND Surr: 1,4-Difluorobenzene (Surr) Recovery: 111 % Limits: 80-120 % Dilution: 1x Toluene-d8 (Surr) 95 % 80-120 % 4-Bromofluorobenzene (Surr) 92 % 80-120 %

Apex Laboratories

(milale fog



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

1809 7th Ave Suite 1111 Project Number: 397-019 Report ID: Seattle, WA 98101 Project Manager: Suzy Stumpf A4B1637 - 03 29 24 1739

# QUALITY CONTROL (QC) SAMPLE RESULTS

| BTEX+N Compounds by EPA 8260D    |           |               |                    |             |           |                 |                  |       |                 |     |              |       |
|----------------------------------|-----------|---------------|--------------------|-------------|-----------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                          | Result    | Detection L I | Reporting<br>Limit | Units       | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 24C0013 - EPA 5030C        |           |               |                    |             |           |                 | Wa               | iter  |                 |     |              |       |
| Blank (24C0013-BLK1)             |           |               | Prepare            | d: 03/01/24 | 07:48 Ana | lyzed: 03/01    | /24 11:25        |       |                 |     |              |       |
| EPA 8260D                        |           |               |                    |             |           |                 |                  |       |                 |     |              |       |
| Naphthalene                      | ND        |               | 5.00               | ug/L        | 1         |                 |                  |       |                 |     |              |       |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recover       | v: 117 %           | Limits: 80  | 0-120 %   | Dili            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           |               | 100 %              | 80          | -120 %    |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |               | 96 %               | 80          | 1-120 %   |                 | "                |       |                 |     |              |       |
| LCS (24C0013-BS1)                |           |               | Prepare            | d: 03/01/24 | 07:48 Ana | lyzed: 03/01    | /24 09:58        |       |                 |     |              |       |
| EPA 8260D                        |           |               |                    |             |           |                 |                  |       |                 |     |              |       |
| Naphthalene                      | 14.3      |               | 5.00               | ug/L        | 1         | 20.0            |                  | 72    | 80-120%         |     |              | Q-5   |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recovery      | : 108 %            | Limits: 80  | 0-120 %   | Dilt            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           |               | 96 %               | 80          | -120 %    |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |               | 95 %               | 80          | 1-120 %   |                 | "                |       |                 |     |              |       |
| Duplicate (24C0013-DUP1)         |           |               | Prepare            | d: 03/01/24 | 07:48 Ana | lyzed: 03/01    | /24 16:53        |       |                 |     |              |       |
| OC Source Sample: Non-SDG (A4    | B1651-04) |               |                    |             |           |                 |                  |       |                 |     |              |       |
| Naphthalene                      | ND        |               | 5.00               | ug/L        | 1         |                 | ND               |       |                 |     | 30%          |       |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recovery      | v: 114 %           | Limits: 80  | 0-120 %   | Dili            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           |               | 99 %               | 80          | -120 %    |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |               | 92 %               | 80          | )-120 %   |                 | "                |       |                 |     |              |       |
| Matrix Spike (24C0013-MS1)       |           |               | Prepare            | d: 03/01/24 | 07:48 Ana | lyzed: 03/02    | /24 00:37        |       |                 |     |              | T-02  |
| QC Source Sample: Non-SDG (A4    | B1620-07) |               |                    |             |           |                 |                  |       |                 |     |              |       |
| EPA 8260D                        |           |               |                    |             |           |                 |                  |       |                 |     |              |       |
| Naphthalene                      | 38.6      |               | 12.5               | ug/L        | 2.5       | 50.0            | ND               | 77    | 61-128%         |     |              | Q-54  |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recover       | y: 111 %           | Limits: 80  |           | Dili            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           |               | 95 %               | 80          | -120 %    |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |               | 92 %               | 80          | -120 %    |                 | "                |       |                 |     |              |       |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1637 - 03 29 24 1739

# QUALITY CONTROL (QC) SAMPLE RESULTS

| BTEX+N Compounds by EPA 8260D    |           |                                   |                     |                      |              |       |                 |     |              |       |  |
|----------------------------------|-----------|-----------------------------------|---------------------|----------------------|--------------|-------|-----------------|-----|--------------|-------|--|
| Analyte                          | Result    | Detection L Reporting Limit Limit |                     | Spike<br>ution Amour |              | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |  |
| Batch 24C0338 - EPA 5030C        |           |                                   |                     |                      | Wa           | iter  |                 |     |              |       |  |
| Blank (24C0338-BLK1)             |           | Prepa                             | red: 03/11/24 10:00 | Analyzed: 03/        | 11/24 12:19  |       |                 |     |              |       |  |
| EPA 8260D                        |           |                                   |                     |                      |              |       |                 |     |              |       |  |
| Naphthalene                      | ND        | 5.00                              | ug/L                | 1                    |              |       |                 |     |              | Q-54  |  |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recovery: 115 %                   | Limits: 80-120      | %                    | Dilution: 1x |       |                 |     |              |       |  |
| Toluene-d8 (Surr)                |           | 100 %                             | 80-120              | %                    | "            |       |                 |     |              |       |  |
| 4-Bromofluorobenzene (Surr)      |           | 99 %                              | 80-120              | %                    | "            |       |                 |     |              |       |  |
| LCS (24C0338-BS1)                |           | Prepa                             | red: 03/11/24 09:30 | Analyzed: 03/        | /11/24 11:08 |       |                 |     |              |       |  |
| EPA 8260D                        |           |                                   |                     |                      |              |       |                 |     |              |       |  |
| Naphthalene                      | 12.9      | 5.00                              | ug/L                | 1 20.0               |              | 65    | 80-120%         |     |              | Q-54  |  |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recovery: 106 %                   | Limits: 80-120      | %                    | Dilution: 1x |       |                 |     |              |       |  |
| Toluene-d8 (Surr)                |           | 97 %                              | 80-120              | %                    | "            |       |                 |     |              |       |  |
| 4-Bromofluorobenzene (Surr)      |           | 94 %                              | 80-120              | 2%                   | "            |       |                 |     |              |       |  |
| Duplicate (24C0338-DUP1)         |           | Prepa                             | red: 03/11/24 14:00 | Analyzed: 03/        | 11/24 20:03  |       |                 |     |              |       |  |
| OC Source Sample: Non-SDG (A4    | C1027-01R | <u>E1)</u>                        |                     |                      |              |       |                 |     |              |       |  |
| Naphthalene                      | ND        | 100                               | ug/L                | 20                   | ND           |       |                 |     | 30%          | Q-54  |  |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recovery: 119 %                   | Limits: 80-120      | %                    | Dilution: 1x |       |                 |     |              |       |  |
| Toluene-d8 (Surr)                |           | 100 %                             |                     | %                    | "            |       |                 |     |              |       |  |
| 4-Bromofluorobenzene (Surr)      |           | 96 %                              | 80-120              | %                    | "            |       |                 |     |              |       |  |
| Matrix Spike (24C0338-MS1)       |           | Prepa                             | red: 03/11/24 12:00 | Analyzed: 03/        | 11/24 21:52  |       |                 |     |              |       |  |
| QC Source Sample: FMW-157-022    | 824 (A4B1 | (637-02)                          |                     |                      |              |       |                 |     |              |       |  |
| EPA 8260D                        |           |                                   |                     |                      |              |       |                 |     |              |       |  |
| Naphthalene                      | 14.0      | 5.00                              | ug/L                | 1 20.0               | ND           | 70    | 61-128%         |     |              | Q-54  |  |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recovery: 107 %                   | Limits: 80-120      | %                    | Dilution: 1x |       |                 |     |              |       |  |
| Toluene-d8 (Surr)                |           | 95 %                              | 80-120              | %                    | "            |       |                 |     |              |       |  |
| 4-Bromofluorobenzene (Surr)      |           | 93 %                              | 80-120              | %                    | "            |       |                 |     |              |       |  |

Apex Laboratories



AMENDED REPORT

# **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1637 - 03 29 24 1739

# QUALITY CONTROL (QC) SAMPLE RESULTS

|                                  |           |                      | BTEX+              | N Comp      | ounds by   | EPA 8260        | D                |       |                 |     |              |       |
|----------------------------------|-----------|----------------------|--------------------|-------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                          | Result    | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 24C0407 - EPA 5030C        |           |                      |                    |             |            |                 | Wa               | ter   |                 |     |              |       |
| Blank (24C0407-BLK1)             |           |                      | Prepared           | d: 03/12/24 | 14:07 Ana  | yzed: 03/12     | /24 15:24        |       |                 |     |              |       |
| EPA 8260D                        |           |                      |                    |             |            |                 |                  |       |                 |     |              |       |
| Naphthalene                      | ND        |                      | 5.00               | ug/L        | 1          |                 |                  |       |                 |     |              |       |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recove               | ery: 116 %         | Limits: 8   | 0-120 %    | Dilı            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           |                      | 100 %              | 80          | 0-120 %    |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 99 %               | 80          | 0-120 %    |                 | "                |       |                 |     |              |       |
| LCS (24C0407-BS1)                |           |                      | Prepared           | d: 03/12/24 | 14:07 Anal | yzed: 03/12     | /24 14:20        |       |                 |     |              |       |
| EPA 8260D                        |           |                      |                    |             |            |                 |                  |       |                 |     |              |       |
| Naphthalene                      | 13.7      |                      | 5.00               | ug/L        | 1          | 20.0            |                  | 69    | 80-120%         |     |              | Q     |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recove               | ery: 108 %         | Limits: 8   | 0-120 %    | Dilı            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           |                      | 96 %               | 80          | 0-120 %    |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 94 %               | 80          | 0-120 %    |                 | "                |       |                 |     |              |       |
| Duplicate (24C0407-DUP1)         |           |                      | Prepared           | d: 03/12/24 | 14:07 Anal | yzed: 03/12     | /24 22:40        |       |                 |     |              |       |
| OC Source Sample: Non-SDG (A4    | C1074-06) |                      |                    |             |            |                 |                  |       |                 |     |              |       |
| Naphthalene                      | ND        |                      | 12.5               | ug/L        | 2.5        |                 | ND               |       |                 |     | 30%          |       |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recove               | ery: 123 %         | Limits: 8   | 0-120 %    | Dilı            | ution: 1x        |       |                 |     |              | S-06  |
| Toluene-d8 (Surr)                |           |                      | 98 %               | 80          | 0-120 %    |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 97 %               | 80          | 0-120 %    |                 | "                |       |                 |     |              |       |
| Matrix Spike (24C0407-MS1)       |           |                      | Prepared           | d: 03/12/24 | 14:07 Anal | yzed: 03/13     | /24 02:45        |       |                 |     |              | T-02  |
| QC Source Sample: Non-SDG (A4    | C1120-06) |                      |                    |             |            |                 |                  |       |                 |     |              |       |
| EPA 8260D                        |           |                      |                    |             |            |                 |                  |       |                 |     |              |       |
| Naphthalene                      | 140       |                      | 50.0               | ug/L        | 10         | 200             | ND               | 70    | 61-128%         |     |              | Q     |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recove               | ery: 108 %         | Limits: 8   | 0-120 %    | Dilı            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           |                      | 95 %               | 80          | 0-120 %    |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 94 %               | 80          | 0-120 %    |                 | "                |       |                 |     |              |       |

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1637 - 03 29 24 1739

## QUALITY CONTROL (QC) SAMPLE RESULTS

|                              |            | Selecte              | d Semivol          | atile Orga  | anic Com  | pounds b        | y EPA 82         | 270E  |                 |     |              |           |
|------------------------------|------------|----------------------|--------------------|-------------|-----------|-----------------|------------------|-------|-----------------|-----|--------------|-----------|
| Analyte                      | Result     | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes     |
| Batch 24C0110 - EPA 3510C (A | Acid Extra | ction)               |                    |             |           |                 | Wa               | ter   |                 |     |              |           |
| Blank (24C0110-BLK1)         |            |                      | Prepared           | 1: 03/05/24 | 06:03 Ana | lyzed: 03/07    | /24 18:10        |       |                 |     |              |           |
| EPA 8270E                    |            |                      |                    |             |           |                 |                  |       |                 |     |              |           |
| 1-Methylnaphthalene          | ND         |                      | 0.0400             | ug/L        | 1         |                 |                  |       |                 |     |              | Q-3       |
| 2-Methylnaphthalene          | ND         |                      | 0.0400             | ug/L        | 1         |                 |                  |       |                 |     |              | Q-3       |
| Surr: Nitrobenzene-d5 (Surr) |            | Reco                 | very: 73 %         | Limits: 4   | 4-120 %   | Dili            | ution: 1x        |       |                 |     |              |           |
| 2-Fluorobiphenyl (Surr)      |            |                      | 61 %               | 44          | 4-120 %   |                 | "                |       |                 |     |              |           |
| Phenol-d6 (Surr)             |            |                      | 26 %               | 10          | 0-133 %   |                 | "                |       |                 |     |              |           |
| p-Terphenyl-d14 (Surr)       |            |                      | 77 %               | 50          | 0-134 %   |                 | "                |       |                 |     |              |           |
| 2-Fluorophenol (Surr)        |            |                      | 39 %               | 19          | 9-120 %   |                 | "                |       |                 |     |              |           |
| 2,4,6-Tribromophenol (Surr)  |            |                      | 85 %               | 43          | 3-140 %   |                 | "                |       |                 |     |              |           |
| LCS (24C0110-BS1)            |            |                      | Prepared           | 1: 03/05/24 | 06:03 Ana | lyzed: 03/07    | /24 18:44        |       |                 |     |              |           |
| EPA 8270E                    |            |                      |                    |             |           |                 |                  |       |                 |     |              |           |
| 1-Methylnaphthalene          | 0.817      |                      | 0.160              | ug/L        | 4         | 4.00            |                  | 20    | 41-120%         |     |              | Q-3       |
| 2-Methylnaphthalene          | 0.754      |                      | 0.160              | ug/L        | 4         | 4.00            |                  | 19    | 40-121%         |     |              | Q-3       |
| Surr: Nitrobenzene-d5 (Surr) |            | Reco                 | very: 55 %         | Limits: 4   | 4-120 %   | Dila            | ution: 4x        |       |                 |     |              |           |
| 2-Fluorobiphenyl (Surr)      |            |                      | 45 %               | 44          | 4-120 %   |                 | "                |       |                 |     |              |           |
| Phenol-d6 (Surr)             |            |                      | 20 %               | 10          | 0-133 %   |                 | "                |       |                 |     |              |           |
| p-Terphenyl-d14 (Surr)       |            |                      | 80 %               | 50          | 0-134 %   |                 | "                |       |                 |     |              |           |
| 2-Fluorophenol (Surr)        |            |                      | 31 %               | 19          | 9-120 %   |                 | "                |       |                 |     |              |           |
| 2,4,6-Tribromophenol (Surr)  |            |                      | 72 %               | 43          | 3-140 %   |                 | "                |       |                 |     |              |           |
| LCS Dup (24C0110-BSD1)       |            |                      | Prepared           | 1: 03/05/24 | 06:03 Ana | lyzed: 03/07    | /24 19:18        |       |                 |     |              | Q-19      |
| EPA 8270E                    |            |                      |                    |             |           |                 |                  |       |                 |     |              |           |
| 1-Methylnaphthalene          | 1.31       |                      | 0.160              | ug/L        | 4         | 4.00            |                  | 33    | 41-120%         | 47  | 30%          | Q-01, Q-3 |
| 2-Methylnaphthalene          | 1.22       |                      | 0.160              | ug/L        | 4         | 4.00            |                  | 30    | 40-121%         | 47  | 30%          | Q-01, Q-3 |
| Surr: Nitrobenzene-d5 (Surr) |            | Reco                 | very: 79 %         | Limits: 4   | 4-120 %   | Dili            | ution: 4x        |       |                 |     |              |           |
| 2-Fluorobiphenyl (Surr)      |            |                      | 69 %               | 44          | 4-120 %   |                 | "                |       |                 |     |              |           |
| Phenol-d6 (Surr)             |            |                      | 28 %               | 10          | 0-133 %   |                 | "                |       |                 |     |              |           |
| p-Terphenyl-d14 (Surr)       |            |                      | 90 %               | 50          | 0-134 %   |                 | "                |       |                 |     |              |           |
| 2-Fluorophenol (Surr)        |            |                      | 45 %               | 19          | 9-120 %   |                 | "                |       |                 |     |              |           |
| 2,4,6-Tribromophenol (Surr)  |            |                      | 91 %               | 43          | 3-140 %   |                 | "                |       |                 |     |              |           |

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1637 - 03 29 24 1739

#### SAMPLE PREPARATION INFORMATION

| Prep: EPA 3510C (Fu                                                                                                   | uels/Acid Ext.)                     |                                                                              |                                                                                             |                                                                                 | Sample                                                                             | Default                                                                    | RL Prep                      |
|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------|
| Lab Number                                                                                                            | Matrix                              | Method                                                                       | Sampled                                                                                     | Prepared                                                                        | Initial/Final                                                                      | Initial/Final                                                              | Factor                       |
| Batch: 24C0024                                                                                                        | 111001111                           | 1,104104                                                                     | Sumpled                                                                                     | Tropurou                                                                        |                                                                                    |                                                                            |                              |
| A4B1637-01                                                                                                            | Water                               | NWTPH-DX                                                                     | 02/28/24 09:50                                                                              | 03/01/24 10:42                                                                  | 1040mL/2mL                                                                         | 1000mL/2mL                                                                 | 0.96                         |
| 11111037 01                                                                                                           | water                               | (WA Ext)                                                                     | 02/20/21 09:50                                                                              | 03/01/21 10:12                                                                  | TO TOME/ ZINE                                                                      | 1000me/2me                                                                 | 0.70                         |
| A4B1637-02                                                                                                            | Water                               | NWTPH-DX                                                                     | 02/28/24 14:17                                                                              | 03/01/24 10:42                                                                  | 1040mL/2mL                                                                         | 1000mL/2mL                                                                 | 0.96                         |
|                                                                                                                       |                                     | (WA_Ext)                                                                     |                                                                                             |                                                                                 |                                                                                    |                                                                            |                              |
| A4B1637-03RE1                                                                                                         | Water                               | NWTPH-DX                                                                     | 02/28/24 15:49                                                                              | 03/01/24 10:42                                                                  | 1040mL/2mL                                                                         | 1000mL/2mL                                                                 | 0.96                         |
|                                                                                                                       |                                     | (WA_Ext)                                                                     |                                                                                             |                                                                                 |                                                                                    |                                                                            |                              |
| A4B1637-04                                                                                                            | Water                               | NWTPH-DX                                                                     | 02/28/24 15:25                                                                              | 03/01/24 10:42                                                                  | 980mL/2mL                                                                          | 1000 mL/2 mL                                                               | 1.02                         |
|                                                                                                                       |                                     | (WA_Ext)                                                                     |                                                                                             |                                                                                 |                                                                                    |                                                                            |                              |
| A4B1637-05RE1                                                                                                         | Water                               | NWTPH-DX                                                                     | 02/28/24 12:49                                                                              | 03/01/24 10:42                                                                  | 1040 mL/2 mL                                                                       | 1000mL/2mL                                                                 | 0.96                         |
|                                                                                                                       |                                     | (WA_Ext)                                                                     |                                                                                             |                                                                                 |                                                                                    |                                                                            |                              |
| A4B1637-06                                                                                                            | Water                               | NWTPH-DX                                                                     | 02/28/24 11:09                                                                              | 03/01/24 10:42                                                                  | 1040mL/2mL                                                                         | 1000mL/2mL                                                                 | 0.96                         |
| 4D1 (27 05D51                                                                                                         | ***                                 | (WA_Ext)                                                                     | 00/00/04/14/05                                                                              | 02/01/24 10 12                                                                  | 000 1/2 1                                                                          | 1000 7 7 -                                                                 | 1.02                         |
| A4B1637-07RE1                                                                                                         | Water                               | NWTPH-DX<br>(WA Ext)                                                         | 02/28/24 14:25                                                                              | 03/01/24 10:42                                                                  | 980mL/2mL                                                                          | 1000mL/2mL                                                                 | 1.02                         |
|                                                                                                                       |                                     |                                                                              |                                                                                             |                                                                                 |                                                                                    |                                                                            |                              |
|                                                                                                                       | Whole Produ                         | act Diesel Testing (C10                                                      | LC40) by WDOE/NI                                                                            | NTPH-Dy with Silics                                                             | a Gel Column Cle                                                                   | anun                                                                       |                              |
| 5D4 05400 /5                                                                                                          |                                     | uct Diesel Testing (C10                                                      | -C40) by WDOE/N\                                                                            | VTPH-Dx with Silica                                                             |                                                                                    | ·                                                                          |                              |
| Prep: EPA 3510C (Fu                                                                                                   |                                     | uct Diesel Testing (C10                                                      | -C40) by WDOE/N\                                                                            | NTPH-Dx with Silica                                                             | Sample                                                                             | Default                                                                    | RL Prep                      |
|                                                                                                                       |                                     | uct Diesel Testing (C10                                                      | -C40) by WDOE/N\<br>Sampled                                                                 | NTPH-Dx with Silica                                                             |                                                                                    | ·                                                                          | RL Prep                      |
|                                                                                                                       | uels/Acid Ext.)                     |                                                                              | · •                                                                                         |                                                                                 | Sample                                                                             | Default                                                                    |                              |
| Lab Number  Batch: 24C0983                                                                                            | uels/Acid Ext.)                     |                                                                              | · •                                                                                         |                                                                                 | Sample                                                                             | Default                                                                    |                              |
| Lab Number  Batch: 24C0983                                                                                            | uels/Acid Ext.)<br>Matrix           | Method                                                                       | Sampled                                                                                     | Prepared                                                                        | Sample<br>Initial/Final                                                            | Default<br>Initial/Final                                                   | Factor                       |
| Lab Number Batch: 24C0983                                                                                             | Matrix Water                        | Method NWTPH-DX                                                              | Sampled 02/28/24 15:25                                                                      | Prepared 03/01/24 10:42                                                         | Sample<br>Initial/Final<br>980mL/2mL                                               | Default<br>Initial/Final                                                   | Factor                       |
| Lab Number <u>Batch: 24C0983</u> A4B1637-04                                                                           | Matrix Water                        | Method  NWTPH-DX (WA_Ext) wSGC                                               | Sampled 02/28/24 15:25                                                                      | Prepared 03/01/24 10:42                                                         | Sample Initial/Final  980mL/2mL  y NWTPH-Gx                                        | Default<br>Initial/Final                                                   | Factor 0.41                  |
| Lab Number <u>Batch: 24C0983</u> A4B1637-04  Prep: EPA 5030C                                                          | uels/Acid Ext.)  Matrix  Water  Gas | Method  NWTPH-DX (WA_Ext) wSGC  oline Range Hydrocarl                        | Sampled 02/28/24 15:25 bons (Benzene thro                                                   | Prepared 03/01/24 10:42 ugh Naphthalene) b                                      | Sample Initial/Final  980mL/2mL  y NWTPH-Gx  Sample                                | Default Initial/Final  1000mL/5mL  Default                                 | Factor  0.41  RL Prep        |
| A4B1637-04  Prep: EPA 5030C  Lab Number                                                                               | Matrix Water                        | Method  NWTPH-DX (WA_Ext) wSGC                                               | Sampled 02/28/24 15:25                                                                      | Prepared 03/01/24 10:42                                                         | Sample Initial/Final  980mL/2mL  y NWTPH-Gx                                        | Default<br>Initial/Final<br>1000mL/5mL                                     | Factor 0.41                  |
| Lab Number  Batch: 24C0983  A4B1637-04  Prep: EPA 5030C  Lab Number  Batch: 24C0013                                   | Matrix Water Gas Matrix             | Method  NWTPH-DX (WA_Ext) wSGC  oline Range Hydrocarl                        | Sampled 02/28/24 15:25 Doons (Benzene through Sampled                                       | Prepared 03/01/24 10:42  ugh Naphthalene) b                                     | Sample Initial/Final  980mL/2mL  y NWTPH-Gx  Sample Initial/Final                  | Default Initial/Final  1000mL/5mL  Default Initial/Final                   | Factor  0.41  RL Prep Factor |
| Lab Number  Batch: 24C0983  A4B1637-04  Prep: EPA 5030C  Lab Number  Batch: 24C0013                                   | uels/Acid Ext.)  Matrix  Water  Gas | Method  NWTPH-DX (WA_Ext) wSGC  oline Range Hydrocarl                        | Sampled 02/28/24 15:25 bons (Benzene thro                                                   | Prepared 03/01/24 10:42 ugh Naphthalene) b                                      | Sample Initial/Final  980mL/2mL  y NWTPH-Gx  Sample                                | Default Initial/Final  1000mL/5mL  Default                                 | Factor  0.41  RL Prep        |
| Lab Number <u>Batch: 24C0983</u> A4B1637-04  Prep: EPA 5030C  Lab Number                                              | Matrix Water Gas Matrix             | Method  NWTPH-DX (WA_Ext) wSGC  oline Range Hydrocarl  Method  NWTPH-Gx (MS) | Sampled 02/28/24 15:25 Doons (Benzene through Sampled                                       | Prepared 03/01/24 10:42  ugh Naphthalene) b  Prepared 03/01/24 07:48            | Sample Initial/Final  980mL/2mL  y NWTPH-Gx  Sample Initial/Final                  | Default Initial/Final  1000mL/5mL  Default Initial/Final                   | Factor  0.41  RL Prep Factor |
| Prep: EPA 5030C  Lab Number  Batch: 24C0983  A4B1637-04  Prep: EPA 5030C  Lab Number  Batch: 24C0013  A4B1637-01      | Matrix Water Gas Matrix             | Method  NWTPH-DX (WA_Ext) wSGC  oline Range Hydrocarl  Method  NWTPH-Gx (MS) | Sampled 02/28/24 15:25  bons (Benzene throi Sampled 02/28/24 09:50                          | Prepared 03/01/24 10:42  ugh Naphthalene) b  Prepared 03/01/24 07:48            | Sample Initial/Final  980mL/2mL  y NWTPH-Gx  Sample Initial/Final                  | Default Initial/Final  1000mL/5mL  Default Initial/Final                   | RL Prep<br>Factor            |
| Prep: EPA 5030C  Batch: 24C0983  A4B1637-04  Prep: EPA 5030C  Lab Number  Batch: 24C0013  A4B1637-01  Prep: EPA 5030C | Matrix Water Gas Matrix             | Method  NWTPH-DX (WA_Ext) wSGC  oline Range Hydrocarl  Method  NWTPH-Gx (MS) | Sampled 02/28/24 15:25  bons (Benzene throi Sampled 02/28/24 09:50                          | Prepared 03/01/24 10:42  ugh Naphthalene) b  Prepared 03/01/24 07:48            | Sample Initial/Final  980mL/2mL  y NWTPH-Gx Sample Initial/Final  5mL/5mL          | Default Initial/Final  1000mL/5mL  Default Initial/Final  5mL/5mL          | RL Prep<br>Factor            |
| Lab Number  Batch: 24C0983  A4B1637-04  Prep: EPA 5030C  Lab Number  Batch: 24C0013                                   | Matrix Water  Gas  Matrix  Water    | Method  NWTPH-DX (WA_Ext) wSGC  oline Range Hydrocarl  Method  NWTPH-Gx (MS) | Sampled  02/28/24 15:25  Doons (Benzene through Sampled)  02/28/24 09:50  EX Compounds by E | Prepared 03/01/24 10:42  ugh Naphthalene) b  Prepared 03/01/24 07:48  EPA 8260D | Sample Initial/Final  980mL/2mL  y NWTPH-Gx  Sample Initial/Final  5mL/5mL  Sample | Default Initial/Final  1000mL/5mL  Default Initial/Final  5mL/5mL  Default | RL Prep<br>Factor            |

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1637 - 03 29 24 1739

#### SAMPLE PREPARATION INFORMATION

|                 |        | BTE       | X+N Compounds by | EPA 8260D      |               |               |         |
|-----------------|--------|-----------|------------------|----------------|---------------|---------------|---------|
| Prep: EPA 5030C |        |           |                  |                | Sample        | Default       | RL Prep |
| Lab Number      | Matrix | Method    | Sampled          | Prepared       | Initial/Final | Initial/Final | Factor  |
| Batch: 24C0013  |        |           |                  |                |               |               |         |
| A4B1637-01      | Water  | EPA 8260D | 02/28/24 09:50   | 03/01/24 07:48 | 5mL/5mL       | 5mL/5mL       | 1.00    |
| Batch: 24C0338  |        |           |                  |                |               |               |         |
| A4B1637-02      | Water  | EPA 8260D | 02/28/24 14:17   | 03/11/24 12:00 | 5mL/5mL       | 5mL/5mL       | 1.00    |
| A4B1637-03      | Water  | EPA 8260D | 02/28/24 15:49   | 03/11/24 12:00 | 5mL/5mL       | 5mL/5mL       | 1.00    |
| A4B1637-06      | Water  | EPA 8260D | 02/28/24 11:09   | 03/11/24 12:00 | 5mL/5mL       | 5mL/5mL       | 1.00    |
| Batch: 24C0407  |        |           |                  |                |               |               |         |
| A4B1637-05RE1   | Water  | EPA 8260D | 02/28/24 12:49   | 03/12/24 14:07 | 5mL/5mL       | 5mL/5mL       | 1.00    |

| Dran: FDA 3510C (Asid I |             |           |                |                |               | D-flt DI      |         |  |  |  |  |  |  |
|-------------------------|-------------|-----------|----------------|----------------|---------------|---------------|---------|--|--|--|--|--|--|
| Prep: EPA 3510C (Acid I | Extraction) |           |                |                | Sample        | Default       | RL Prep |  |  |  |  |  |  |
| Lab Number              | Matrix      | Method    | Sampled        | Prepared       | Initial/Final | Initial/Final | Factor  |  |  |  |  |  |  |
| Batch: 24C0110          |             |           |                |                |               |               |         |  |  |  |  |  |  |
| A4B1637-01              | Water       | EPA 8270E | 02/28/24 09:50 | 03/05/24 11:43 | 1060 mL/1 mL  | 1000 mL/1 mL  | 0.94    |  |  |  |  |  |  |
| A4B1637-02              | Water       | EPA 8270E | 02/28/24 14:17 | 03/05/24 11:43 | 1060 mL/1 mL  | 1000 mL/1 mL  | 0.94    |  |  |  |  |  |  |
| A4B1637-03              | Water       | EPA 8270E | 02/28/24 15:49 | 03/05/24 11:43 | 1060 mL/1 mL  | 1000 mL/1 mL  | 0.94    |  |  |  |  |  |  |
| A4B1637-04              | Water       | EPA 8270E | 02/28/24 15:25 | 03/05/24 11:43 | 1000 mL/1 mL  | 1000 mL/1 mL  | 1.00    |  |  |  |  |  |  |
| A4B1637-05              | Water       | EPA 8270E | 02/28/24 12:49 | 03/05/24 11:43 | 1060 mL/1 mL  | 1000 mL/1 mL  | 0.94    |  |  |  |  |  |  |
| A4B1637-06              | Water       | EPA 8270E | 02/28/24 11:09 | 03/05/24 11:43 | 1060 mL/1 mL  | 1000 mL/1 mL  | 0.94    |  |  |  |  |  |  |
| A4B1637-07              | Water       | EPA 8270E | 02/28/24 14:25 | 03/05/24 11:43 | 960mL/1mL     | 1000 mL/1 mL  | 1.04    |  |  |  |  |  |  |

Apex Laboratories

(milele fog



AMENDED REPORT

#### **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1637 - 03 29 24 1739

#### **QUALIFIER DEFINITIONS**

## Client Sample and Quality Control (QC) Sample Qualifier Definitions:

## Apex Laboratories

V-13

| pex Laborat | <u>ories</u>                                                                                                                                                                                            |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AMEND       | The Result, Reporting Level, Recovery and/or RPD has changed. Note: Batch QC marked as AMENDED may or may not have been issued prior to the change. Case Narrative included if client data is affected. |
| Q-01        | Spike recovery and/or RPD is outside acceptance limits.                                                                                                                                                 |
| Q-19        | Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.                                                             |
| Q-30        | Recovery for Lab Control Spike (LCS) is below the lower control limit. Data may be biased low.                                                                                                          |
| Q-54        | Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -11%. The results are reported as Estimated Values.                    |
| Q-54a       | Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -15%. The results are reported as Estimated Values.                    |
| Q-54b       | Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -8%. The results are reported as Estimated Values.                     |
| Q-55        | Daily CCV/LCS recovery for this analyte was below the +/-20% criteria listed in EPA 8260, however there is adequate sensitivity to ensure detection at the reporting level.                             |
| R-04        | Reporting levels elevated due to preparation and/or analytical dilution necessary for analysis.                                                                                                         |
| S-06        | Surrogate recovery is outside of established control limits.                                                                                                                                            |
| T-02        | This Batch QC sample was analyzed outside of the method specified 12 hour analysis window. Results are estimated.                                                                                       |

Reporting levels raised due to dilution necessary for analysis due to sample foaming in sparge vessel.

Apex Laboratories



AMENDED REPORT

#### **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1637 - 03 29 24 1739

#### REPORTING NOTES AND CONVENTIONS:

#### **Abbreviations:**

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

#### **Detection Limits:** Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

#### Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

#### **Reporting Conventions:**

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as "dry", "wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

" " Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

#### **QC Source:**

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

#### Miscellaneous Notes:

" --- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"\*\*\* " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories



AMENDED REPORT

#### Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1637 - 03 29 24 1739

#### **REPORTING NOTES AND CONVENTIONS (Cont.):**

#### Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.
- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

#### **Preparation Notes:**

#### Mixed Matrix Samples:

#### Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

#### Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

#### **Sampling and Preservation Notes:**

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold

Apex Laboratories



Farallon-Seattle

#### ANALYTICAL REPORT

AMENDED REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1637 - 03 29 24 1739

Project:

#### LABORATORY ACCREDITATION INFORMATION

## ORELAP Certification ID: OR100062 (Primary Accreditation) - EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

## **Apex Laboratories**

| Matrix | Analysis               | TNI_ID                         | Analyte                             | TNI_ID | Accreditation |
|--------|------------------------|--------------------------------|-------------------------------------|--------|---------------|
| Water  | NWTPH-DX (WA_Ext)      | FLS-W-01                       | Diesel Range Organics (C10-C40)     | 9369   |               |
| Water  | NWTPH-DX (WA_Ext) wSGC | FLS-W-01                       | Diesel Range Organics (C10-C40)     | 9369   |               |
|        | All reported an        | nalytes are included in Apex 1 | Laboratories' current ORELAP scope. |        |               |

#### **Secondary Accreditations**

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

## **Subcontract Laboratory Accreditations**

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

#### **Field Testing Parameters**

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1637 - 03 29 24 1739

| Company: Fauelland Project Mgr. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | Project  | Project Mgr. Su24 |                | Hungt         | *      |               |         | Project | Project Name: |                     | Slort                          | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38 W.F   | 1                      |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -      | oiect #           | Project #: 397.019         | 7.019 | _         |     |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------|-------------------|----------------|---------------|--------|---------------|---------|---------|---------------|---------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------|----------------------------|-------|-----------|-----|----------|
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stagged.                     | ah is    | Traff Alm         |                | <u></u>       | Phone: |               | 1       |         | Email:        | 1 🚜                 |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 =    | , po              | 37-019                     | 00    |           |     |          |
| Sampled by: A. Brise / M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |          |                   |                |               |        |               |         | 1000    |               |                     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ANA      | 1,751                  | ANALYSIS REGITS                            | 184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |                   |                            | 100   |           | ,   |          |
| Site Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              |          |                   |                |               |        |               |         |         | -             | 11                  |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 'P;                    | K' '                                       | ď                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _      | F                 |                            |       |           |     |          |
| State WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |          |                   |                |               |        |               | \$30    |         |               |                     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (8       | ) 98                   | Fe, F                                      | n's 'v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (      | Conton            |                            |       |           |     |          |
| County King                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |          |                   |                |               |        | EX            | DM NO   |         |               |                     |                                | ticides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | fetals ( | eH ≥,                  | 00, Cu.                                    | SSIG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                   | /                          |       |           |     | əlq      |
| SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DATE                         | TIME     | MATRIX            | # OF COI       | NWTPH         | NATER  | T8 0928       | 8260 RB | BH 0928 | OA 0978       | 8270 Sen            | 8087 PC                        | 8081 Pes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | KCKY N   | Priority A<br>AL Sb, A | Ca, Cr, C<br>Ig, Mg,<br>Se, Ag, N<br>FOTAL | TATOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TCLP M | Naphball 3.       | 554                        |       |           |     | ms2 bioi |
| 428120-451 MW}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | theht                        | 05/20    | When              | =              | ~             | ×      | ×             |         | -       | $\vdash$      | ļ                   |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        | +                      |                                            | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ×      | 1                 |                            |       | $\dagger$ | -   | I        |
| HARLED-LSI -MULL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                            | TIHI     | _                 | 90             | ×             |        |               |         |         | -             | ļ                   |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | <del> </del>           |                                            | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ~      | <b> </b>          |                            |       | -         | -   |          |
| FMW-162-022874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                              | 1549     |                   | .90            | ×             |        |               | -       |         | _             |                     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×      | _                 |                            |       |           |     |          |
| For 169-0224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              | 1525     |                   | و.             | *             |        |               |         |         |               |                     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×      | ×                 |                            |       |           |     |          |
| NW-1-022824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              | 642      |                   | 00             | *             |        |               |         |         |               |                     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ~      |                   |                            |       |           |     |          |
| DW2-072824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              | 1109     |                   | 80             | ×             |        |               |         |         |               |                     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                        | 3                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×      | -                 |                            |       |           |     |          |
| 043-027824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7                            | 52 M     | -                 | 5              | ×             |        |               |         |         |               |                     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *      | _                 |                            |       |           |     |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |          |                   |                |               | -      |               |         |         |               | arranding the first |                                | A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLUMN TO A COLU |          |                        | and the grade to the st                    | CONTRACTOR OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE |        | $\vdash$          |                            |       | +         |     |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |          | 4                 | and the second | C I bernaming |        | 1             |         |         |               |                     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                   |                            |       |           |     |          |
| Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission of the Commission o |                              |          |                   |                |               |        |               |         |         |               |                     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | -                 |                            |       |           |     |          |
| Shandard Turn Around Time (TAT) = 10 Business Days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | m Around T                   | ime (TAT | ) = 10 Bt         | isiness Da     | iys           |        |               |         |         | B             | BCIAL               | SPECIAL INSTRUCTIONS:          | RUCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IONS     |                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                   |                            | 1     |           |     |          |
| 200 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 Day                        |          | 2 Day             |                | 3 Day         |        |               |         |         | <u>~</u>      | of de               | 1184 -the tollowing            | Hone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4        | 400                    |                                            | لعنابهما                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | さ      | )<br>)            | pakadad CVOC endugos.      | Š     |           |     |          |
| TAT Requested (circle)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 Day                        | V        | Standard          | $\sim$         | Other:        | إ      |               |         |         | - 7           | Cha W               | -671 W. 157                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00     | 7 2                    |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                   |                            |       |           |     |          |
| SAMPL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SAMPLES ARE HELD FOR 30 DAYS | LD FOR 3 | 0 DAYS            |                | '             |        |               |         |         | 1,            | - From 134          | 35                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000     | ۲,                     |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                   |                            |       |           |     |          |
| Signature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date: 2/24/24                | h        | RECEIVED BY       | RECEIVED BY:   | T             |        | Date: 2/24/24 | 2/2     | 1/2/20  |               | LINQL<br>atture:    | RELINQUISHED BY:<br>Signature: | B.K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | Dades                  | <u></u>                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S. N.  | ECEIVI<br>nature: | RECEIVED BY:<br>Signature: |       | Date:     | l s |          |
| Printed Name: PeterS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Time:                        |          | Anted Name:       | Finted Name:   | 3             |        | 7mm 1240      | 3       | 0       | F             | Printed Name        | ä                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Time:                  | ij                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 조      | Printed Name:     | ä                          |       | Time;     | ij. |          |
| Company:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |          | Company:          | , A            | 100           | 7      |               |         |         | <u> క</u>     | Company:            |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                        |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ರ      | Company:          |                            |       |           |     |          |

Apex Laboratories



## AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4B1637 - 03 29 24 1739

|                                                |                                                   |            |                 | thank       | `\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |           |           |                                     |               |                              |                |                 |                      |                                                                                                                                                                                                                                                                                    | _                                                 |              | *                      | 1                 | 2                                                                |                 |          |
|------------------------------------------------|---------------------------------------------------|------------|-----------------|-------------|----------------------------------------|-----------|-----------|-------------------------------------|---------------|------------------------------|----------------|-----------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------|------------------------|-------------------|------------------------------------------------------------------|-----------------|----------|
| La delinera                                    | 7                                                 | dur min    | 7               | <b>;</b>  - |                                        |           | 1         | Poloci                              | Troject Name: | 1000                         | <b>9</b>       | 15.57           |                      |                                                                                                                                                                                                                                                                                    | 1                                                 | Toject       | Project # 37 / 9/7     |                   |                                                                  |                 |          |
| Address: 175 5Th -175 AM                       | (Stagent with 9807                                | W. A.      | 27              | - 8         | Phone                                  |           | SECOND    | 2000                                | Ermi          | 1                            |                | AND THE PERSON  |                      |                                                                                                                                                                                                                                                                                    |                                                   | *            | 15-15<br>15-15         | 10                |                                                                  | usmustasie.     | 13       |
| Sampled by A. Vanzur                           | d pe                                              |            |                 | 2012        |                                        |           |           |                                     |               |                              |                |                 |                      |                                                                                                                                                                                                                                                                                    |                                                   |              |                        | . 4               |                                                                  |                 |          |
| Sine Location: State V/A County L'A3 SAMFLE ID | HIVG                                              | MATRIX     | # OF CONTAINERS | MALLE-HCID  | NALLED!                                | X31# 092# | STEP MOCE | STOR ANCE BUT THE<br>STOR SUPP ANCE | *HY4 WIS 6/28 | M.J. But alov-imas Ovis      | 2021 Pericides | RCRA Metala (8) | Priority Metals (13) | AL SB, AL BR, BR, CL. CB, CT, CB, CU, FG, FB, GB, Mg, Ma, Mg, Mg, K, GB, Mg, Mg, Mg, Mg, K, GB, Mg, Mg, Mg, Mg, K, GB, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, Mg, | TCLP Meab (8)                                     | Nophalanes   | 70/61 Chyperic Conton. | Naphtalene ty was | 795/~ 7740- HAIMI                                                | Pold Semple     |          |
| + 18120-451 MWY                                | Wehy OF                                           | OASO Moder | 11 /            | ~           | ×                                      | ×         | $\vdash$  | +                                   |               | T                            | +              | -               |                      | 3                                                                                                                                                                                                                                                                                  | †                                                 |              | 1                      | *                 | -                                                                | *               | 1_       |
| France 157-02784                               | THI I                                             | 7 1        | 8               | ×           | <u>.</u>                               |           | 100       | (×)                                 |               | T                            | -              | _               |                      |                                                                                                                                                                                                                                                                                    |                                                   | ×            | _                      | *                 | -                                                                | -               | _        |
| 4.00.00 191 May                                | 1549                                              | 0          | 90              |             |                                        |           | 12        | B                                   |               |                              | -              | <u> </u>        |                      |                                                                                                                                                                                                                                                                                    | Ê                                                 | ×            |                        | *                 |                                                                  |                 |          |
| irim 169-032824                                | 1525                                              | 5          | e.              | ×           |                                        |           | -         |                                     | - 1           |                              | -              | _               |                      |                                                                                                                                                                                                                                                                                    |                                                   | ×            |                        |                   | (**                                                              | <u> </u>        | <u> </u> |
| PW-1-072824                                    | 642                                               | 4          | æ               | **          |                                        |           | (2)       | 8                                   |               | -                            |                | _               |                      |                                                                                                                                                                                                                                                                                    |                                                   | _            |                        | *                 |                                                                  | <u> </u>        |          |
| PW 2-072874                                    | 1104                                              | 2          | 83              | ×           |                                        |           | 2         | (X)                                 |               |                              |                |                 |                      |                                                                                                                                                                                                                                                                                    |                                                   | 124          |                        | *                 | -                                                                | L               | L_       |
| 5w.3-027874                                    | - W25                                             | 7          | 5               | ×           |                                        |           | Н         |                                     |               |                              | $\vdash$       |                 |                      |                                                                                                                                                                                                                                                                                    |                                                   | <b>*</b>     |                        |                   |                                                                  | -               |          |
|                                                |                                                   |            |                 |             |                                        |           |           |                                     |               | -                            |                |                 |                      |                                                                                                                                                                                                                                                                                    |                                                   | +            | Ц                      |                   | +                                                                |                 |          |
|                                                |                                                   |            |                 | +           | -                                      |           |           | $\dashv$                            |               | $\vdash \vdash$              | $\vdash$       |                 |                      |                                                                                                                                                                                                                                                                                    |                                                   |              |                        |                   |                                                                  | $\vdash \vdash$ | $\sqcup$ |
| Standard Tr.                                   | Sandard Turn Arcend Time (TAT) = 10 Business Days | (AT) = 10  |                 | -           | 4                                      |           | $\dashv$  | _                                   | S P P         | PECIAL INSTRUCTIONS:         |                | _ Ř             | $\square_{\omega}$   | 8                                                                                                                                                                                                                                                                                  |                                                   | <b>-</b>   i | $\exists i$            |                   | <b></b> '                                                        | - [             |          |
|                                                | 1 Day                                             | 2 Day      |                 | 3 Day       |                                        |           |           |                                     | 1.5           | I dd the Apllowing           | 18             | in'n'           | 5                    | to plant cool andros.                                                                                                                                                                                                                                                              | potential CVOC anadros.                           | ໃຊ້          | 1.3                    | 7 7               | . , .                                                            |                 |          |
| TAT Requested (circle)                         | S Day                                             | Standard   | (Z)             | Other:      |                                        |           | 1         |                                     | £ 1           | - Francy 157                 |                | - 040-          | 3 0                  |                                                                                                                                                                                                                                                                                    | holded per 163. Amelyze<br>vepritring, Inc 3/8/24 | 1 8          | 3 8                    | 3/E               | (K)= holded per tes. Analyze tust help to yeorthing. ( no 3/8/24 | 6               |          |
|                                                | BANFLES ARE HELD FOR 36 DAYS                      | R 30 DAY   |                 | 1           |                                        |           | ,         |                                     | 12            | + Firm 159                   |                | 10 m/2          | 4                    | *                                                                                                                                                                                                                                                                                  | MARA PO PO                                        | 77           | 3                      | ۶                 | reports or                                                       |                 |          |
| PETALNQUISMEDD BY:                             | Date:                                             |            | CAN A           | A.          |                                        | į         | 2/4       | ha/pa/2                             |               | MELINQUISHED BY:<br>Separan: | 8              | 2.              | -                    | Dete:                                                                                                                                                                                                                                                                              | # #                                               | RECEIVED BY: | ě                      |                   | Date                                                             |                 | I        |
| Cours Johns                                    | Time: 678.5                                       | Į va       | FIR COM         | 3           |                                        | Į.        | 1240      |                                     | Printed Name  | Name                         |                |                 |                      | Tane.                                                                                                                                                                                                                                                                              | κ.                                                | Printed Name | ¥                      |                   | Ä                                                                |                 | -        |
| Committee                                      |                                                   | 3          | ·<br>XX<br>0EX  | 14.         | 204                                    |           |           |                                     | r c           | i i                          |                |                 |                      |                                                                                                                                                                                                                                                                                    | ٥                                                 | Company      |                        |                   |                                                                  |                 | 1        |

Apex Laboratories

milale Pog



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Farallon-Seattle

Project:

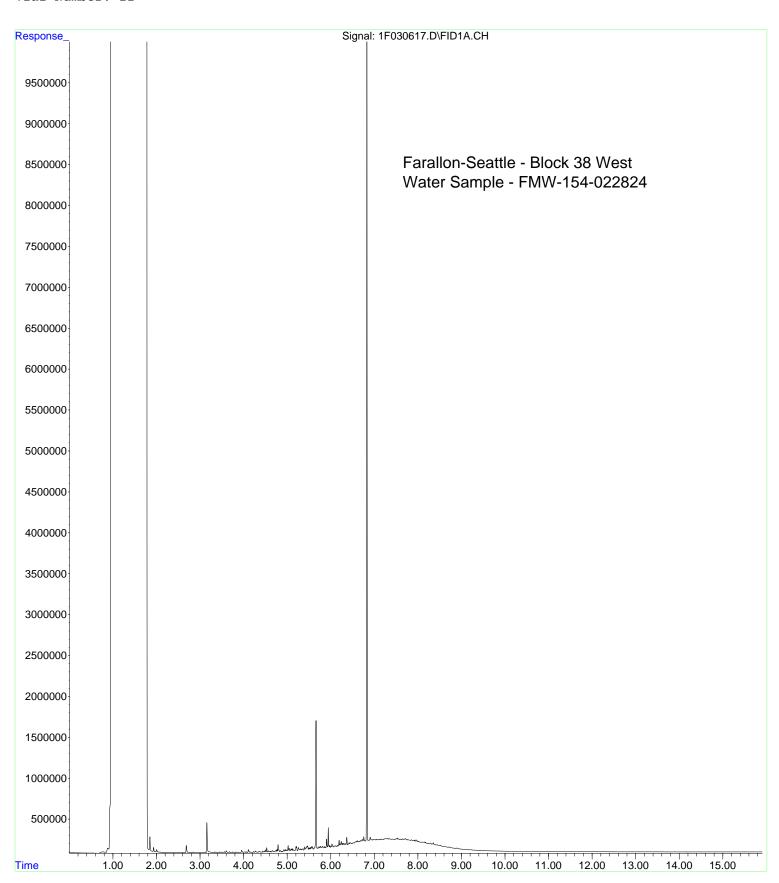
397-019 Block 38 West

1809 7th Ave Suite 1111 Seattle, WA 98101 Project Number: **397-019**Project Manager: **Suzy Stumpf** 

Report ID: A4B1637 - 03 29 24 1739

| Client: FAVALLON Element WO#: A4 B 16 3 T  Project/Project #: BIX F 38 West 347 OLG  Delivery Info: Delivery Info: Delivered by: Apex Client ESS FedEx JPS, Radio Morgan SDS Evergreen Other  Cooler Inspection Date/time inspected: 2/2/24 @ 7340 By: E5T  Chain of Custody included? Yes No Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7  Temperature (°C) 2 D 1.3 1.9  Custody seals? (Y/N) N N N N N N N N N N N N N N N N N N | APEX LABS COOLER RECEIPT FORM                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project/Project #: Block 38 west 37019  Delivery Info: Date/time received: 2/24/24                                                                                                                                                                                                                                                                                                                                                                          | 21 CV Element WO#: A4 8 16 3 7                                                                                                                                        |
| Date/time received: 2/29/24 @ 13 UO By: E5T  Delivered by: Apex_Client_ESS_FedEx_UPS_Radio_Morgan_SDS_Evergreen_Other  Cooler Inspection Date/time inspected: 2/29/24 @ 73 UO By: E5T  Chain of Custody included? Yes No_ Signed/dated by client? Yes No_ Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7  Temperature (°C) 2 D 1.9 1.9  Custody seals? (Y/N) N N N N N N N N N N N N N N N N N N                                     |                                                                                                                                                                       |
| Delivered by: Apex Client ESS FedEx UPS Radio Morgan SDS Evergreen Other Cooler Inspection Date/time inspected: 2/29/24 @ 734/0 By: E5T  Chain of Custody included? Yes No Signed/dated by client? Yes No Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7  Temperature (°C) 2/0 1.3 1.9                                                                                                                                               |                                                                                                                                                                       |
| Cooler Inspection  Date/time inspected: 2/29/24 @ 73LIO By: E5T  Chain of Custody included? Yes No Signed/dated by client? Yes No Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7  Temperature (°C)                                                                                                                                                                                                                                             | z/zq/zy @ 1340 By: EST                                                                                                                                                |
| Cooler Inspection  Date/time inspected: 2/29/24 @ 73LIO By: E5T  Chain of Custody included? Yes No Signed/dated by client? Yes No Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #6 Cooler #7  Temperature (°C)                                                                                                                                                                                                                                             | Client_ESSFedEx_UPS_RadioMorganSDSEvergreenOther                                                                                                                      |
| Signed/dated by client? Yes No Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #6 Cooler #7  Temperature (°C) 2.0 1.3 1.9  Custody seals? (Y/N) N N N N N N N N N N N N N N N N N N                                                                                                                                                                                                                                                                          | Date/time inspected: $2/29/24$ @ 1340 By: E5T                                                                                                                         |
| Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #6 Cooler #7  Temperature (°C)                                                                                                                                                                                                                                                                                                                                                                               | luded? Yes No                                                                                                                                                         |
| Temperature (°C)  Custody seals? (Y/N)  Received on ice? (Y/N)  Temp. blanks? (Y/N)  Let type: (Gel/Real/Other)  Zeal  Zeal  Zeal  Zeal  Condition (In/Out):  Cooler out of temp? (Y/N) Possible reason why:  Green dots applied to out of temperature samples? Yes/No  Out of temperature samples form initiated? Yes/No  Sample Inspection:  Date/time inspected: 121/14@ 1415  By:                                                                       | nt? Yes No                                                                                                                                                            |
| COC/container discrepancies form initiated? Yes No Containers/volumes received appropriate for analysis? Yes No Comments: Do VOA vials have visible headspace? Yes No NA DH ID: 122113  Water samples: pH checked: Yes No NA pH appropriate? Yes No NA pH ID: 122113                                                                                                                                                                                        | 2.6 1.3 1.9  N N N  N)  Pother) Peal Peal Peal  Ev Ev Ev  cour of temperature samples? Yes/No amples form initiated? Yes/No Date/time inspected: 111 14 @ 1415 By: Ms |
| Water samples: pH checked: Yes No_NA_ pH appropriate? Yes No_NA_ pH ID: 125117                                                                                                                                                                                                                                                                                                                                                                              | received appropriate for analysis? Yes No Comments:                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                       |
| Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                   | hecked: Yes No NA pH appropriate? Yes No NA pH ID: 1251172                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                       |
| Additional information:                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                       |
| Labeled by: Witness: Cooler Inspected by:                                                                                                                                                                                                                                                                                                                                                                                                                   | on:                                                                                                                                                                   |
| Form Y-003 R-01                                                                                                                                                                                                                                                                                                                                                                                                                                             | Witness: Cooler Inspected by:                                                                                                                                         |

Apex Laboratories

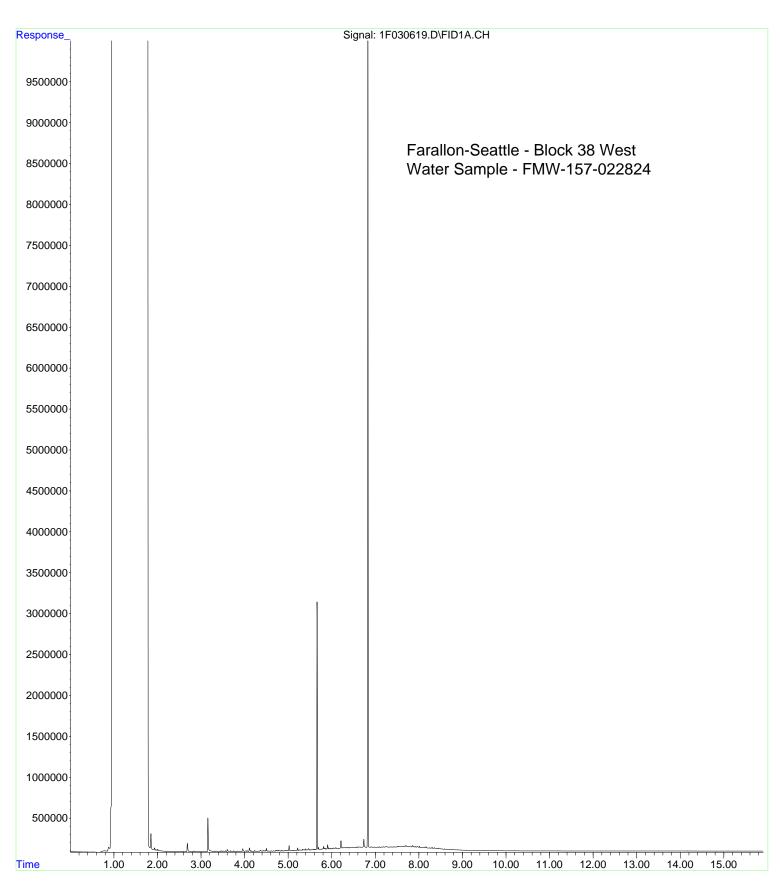

(milule fog

File :C:\msdchem\1\data\4C06060\1F030617.D

Operator : BLL

Acquired : 06 Mar 2024 11:49 pm using AcqMethod A1F40422.M

Instrument : HP G1530A
Sample Name: A4B1637-01

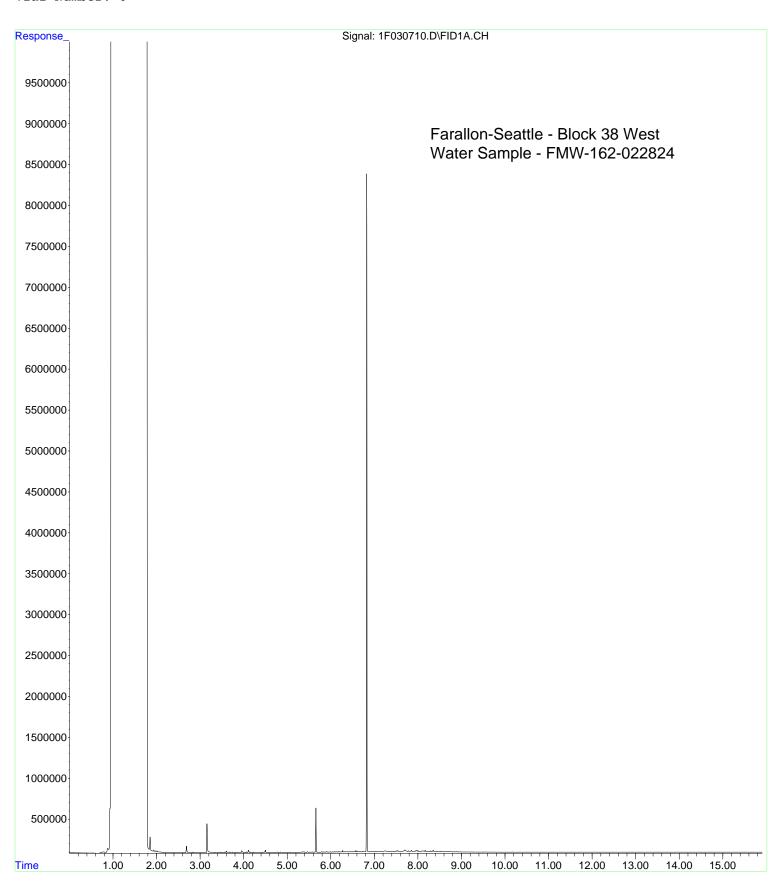



File :C:\msdchem\1\data\4C06060\1F030619.D

Operator : BLL

Acquired : 07 Mar 2024 12:35 am using AcqMethod A1F40422.M

Instrument: HP G1530A Sample Name: A4B1637-02

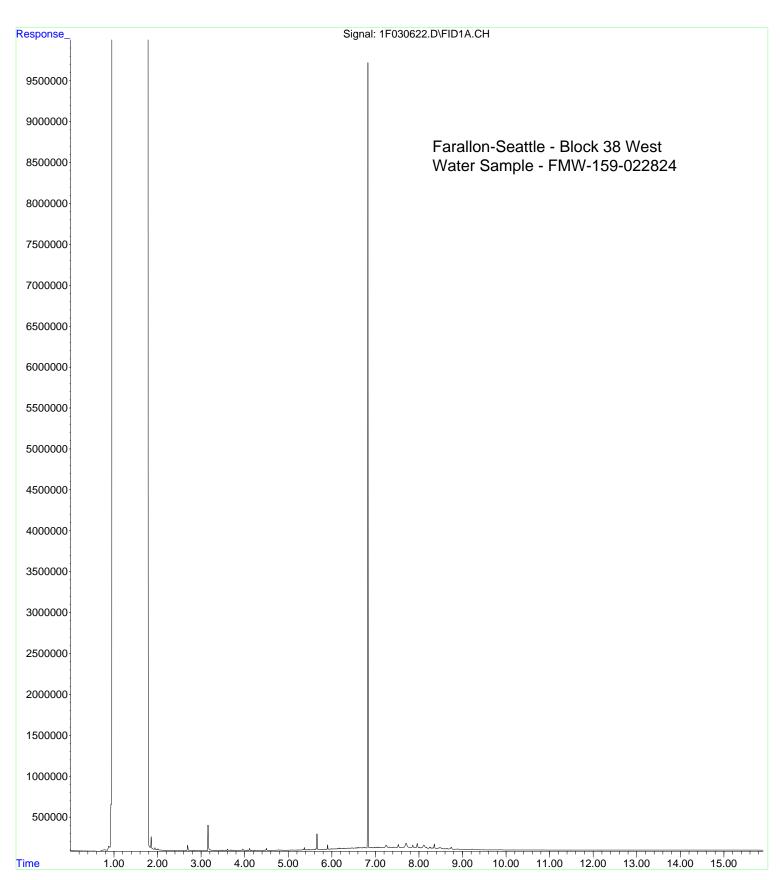



File :C:\msdchem\1\data\4C07040\1F030710.D

Operator : BLL

Acquired : 07 Mar 2024 2:34 pm using AcqMethod A1F40422.M

Instrument: HP G1530A Sample Name: A4B1637-03RE1

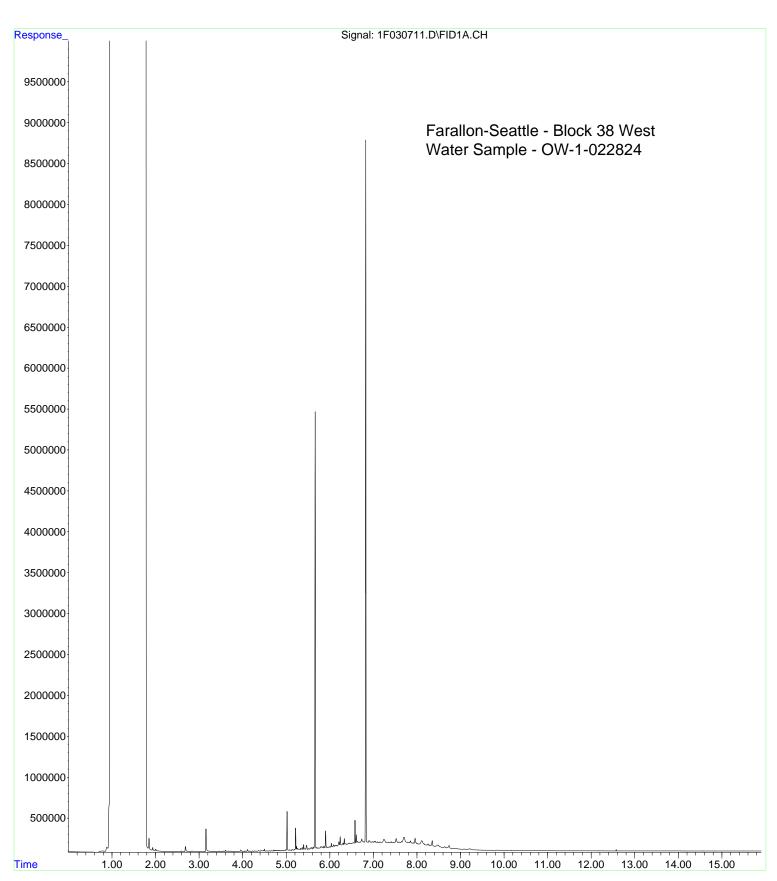



File :C:\msdchem\1\data\4C06060\1F030622.D

Operator : BLL

Acquired : 07 Mar 2024 1:45 am using AcqMethod A1F40422.M

Instrument : HP G1530A
Sample Name: A4B1637-04

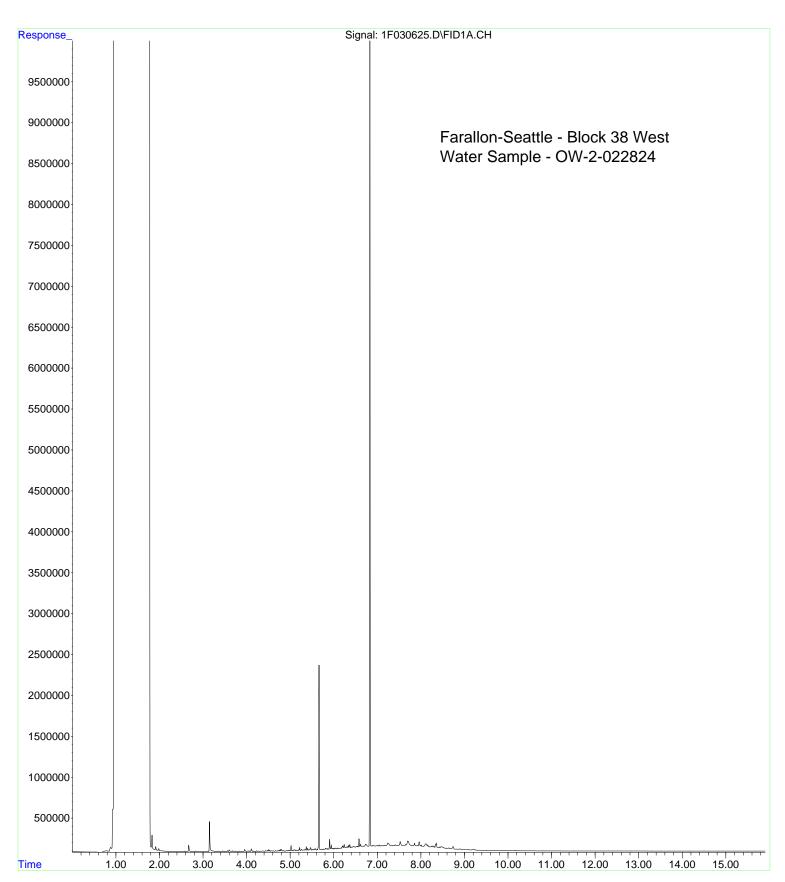



File :C:\msdchem\1\data\4C07040\1F030711.D

Operator : BLL

Acquired : 07 Mar 2024 2:58 pm using AcqMethod A1F40422.M

Instrument: HP G1530A Sample Name: A4B1637-05RE1

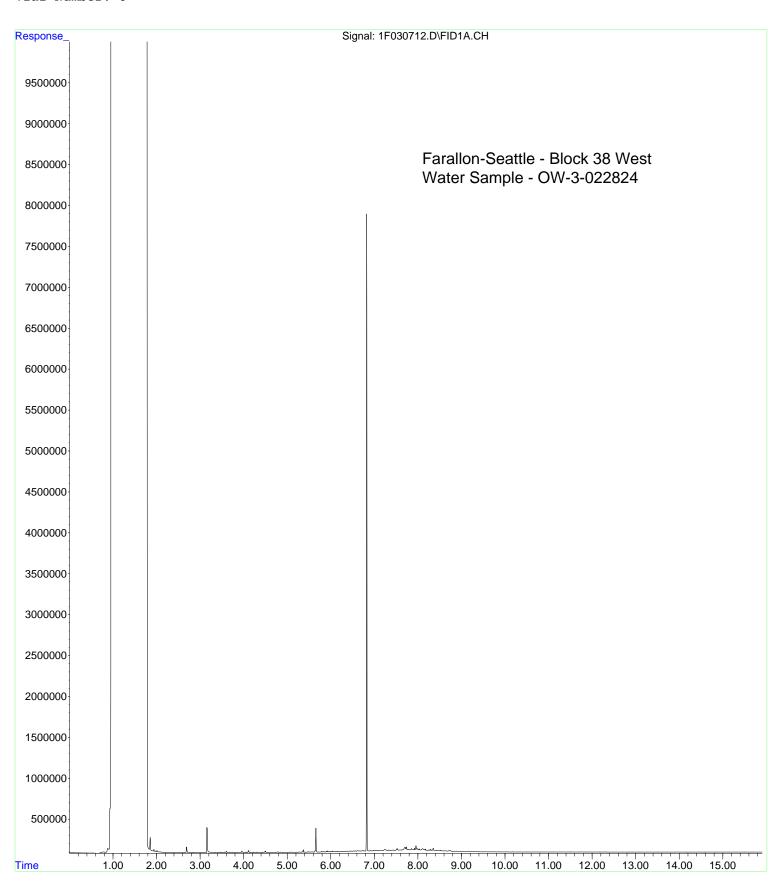



File :C:\msdchem\1\data\4C06060\1F030625.D

Operator : BLL

Acquired : 07 Mar 2024 2:55 am using AcqMethod A1F40422.M

Instrument : HP G1530A
Sample Name: A4B1637-06

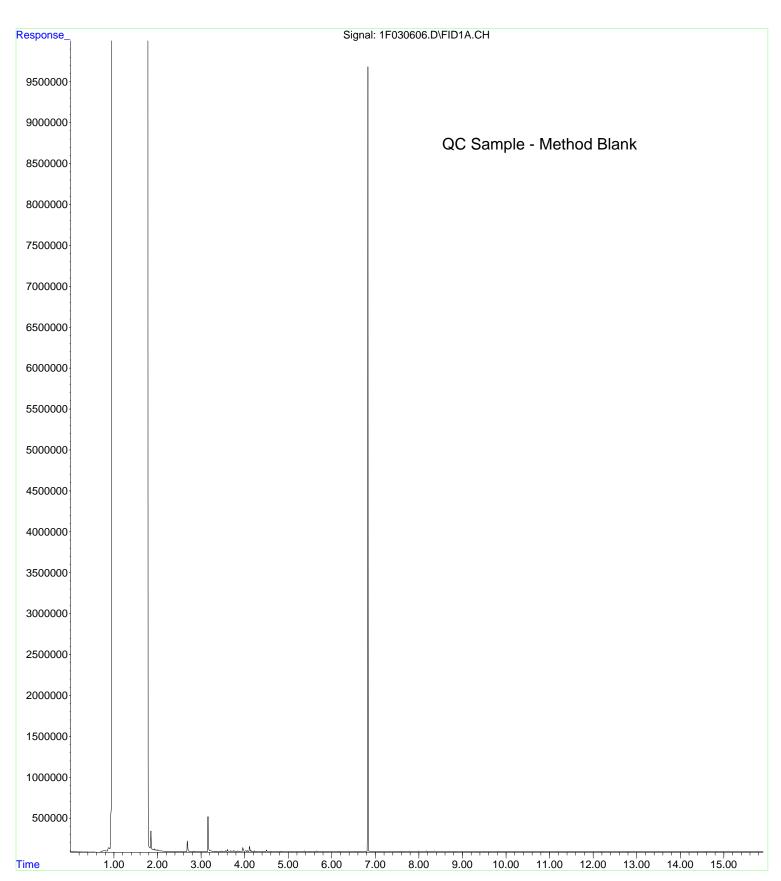



File :C:\msdchem\1\data\4C07040\1F030712.D

Operator : BLL

Acquired : 07 Mar 2024 3:21 pm using AcqMethod A1F40422.M

Instrument: HP G1530A Sample Name: A4B1637-07RE1

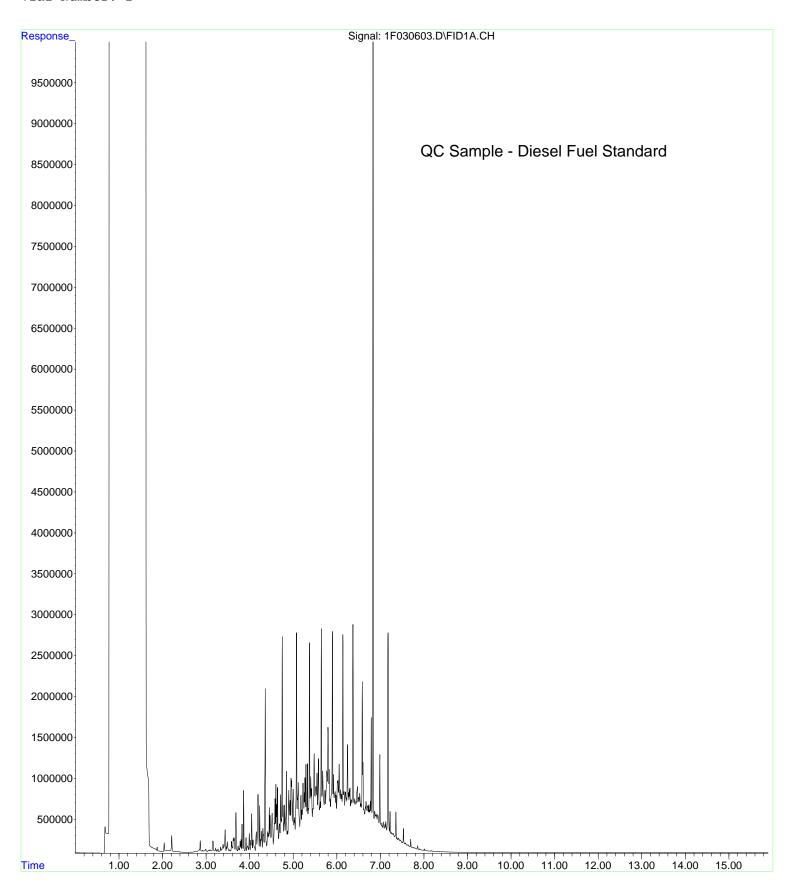



File :C:\msdchem\1\data\4C06060\1F030606.D

Operator : BLL

Acquired : 06 Mar 2024 7:32 pm using AcqMethod A1F40422.M

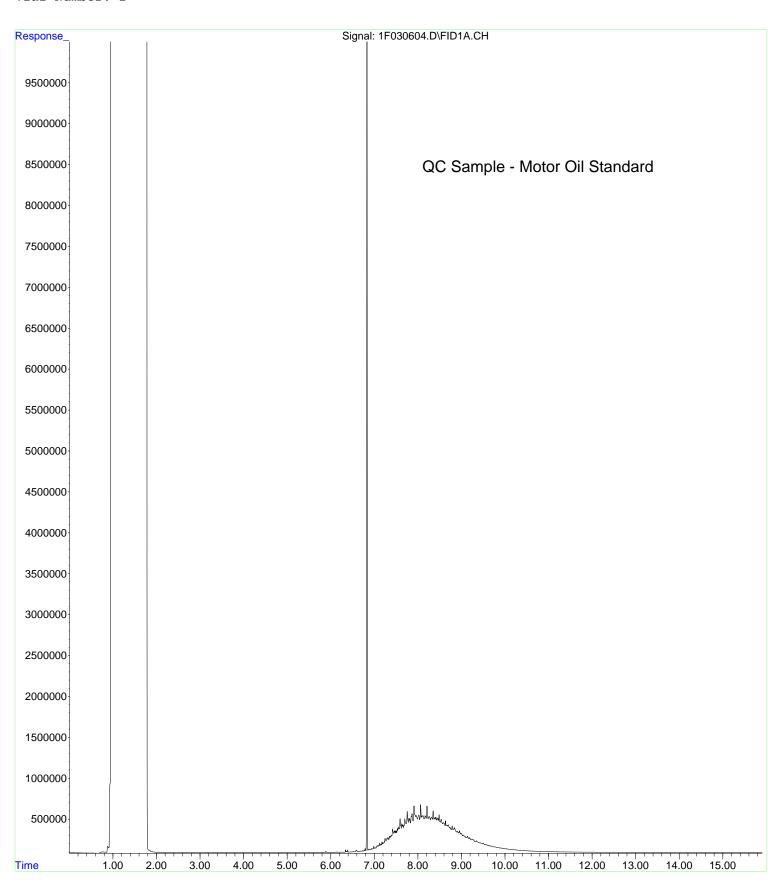
Instrument: HP G1530A Sample Name: 24C0024-BLK1




File :C:\msdchem\1\data\4C06060\1F030603.D

Operator : BLL

Acquired : 06 Mar 2024 5:14 pm using AcqMethod A1F40422.M

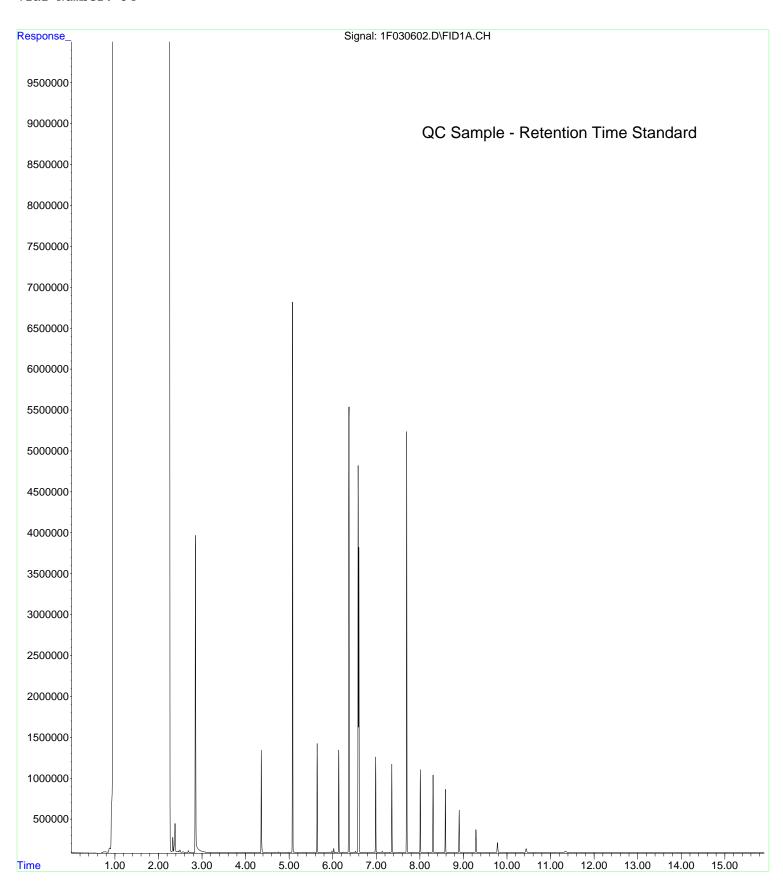

Instrument: HP G1530A Sample Name: 4C06060-CCV1



File :C:\msdchem\1\data\4C06060\1F030604.D

Operator : BLL Acquired : 06 Mar 2024 5:37 pm using AcqMethod A1F40422.M

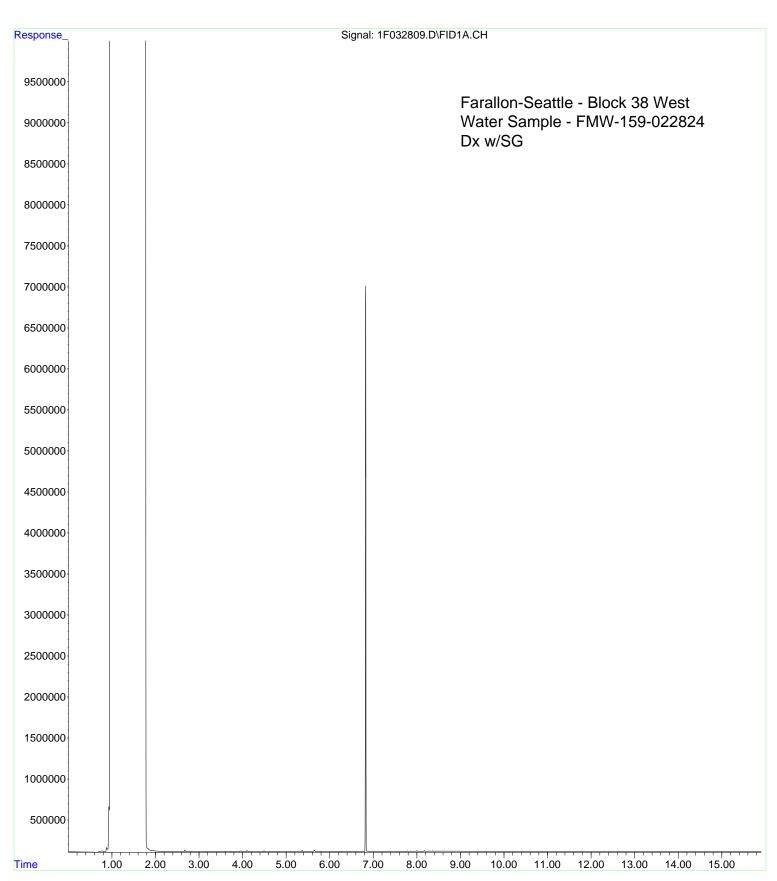
Instrument : HP G1530A Sample Name: 4C06060-CCV2




File :C:\msdchem\1\data\4C06060\1F030602.D

Operator : BLL

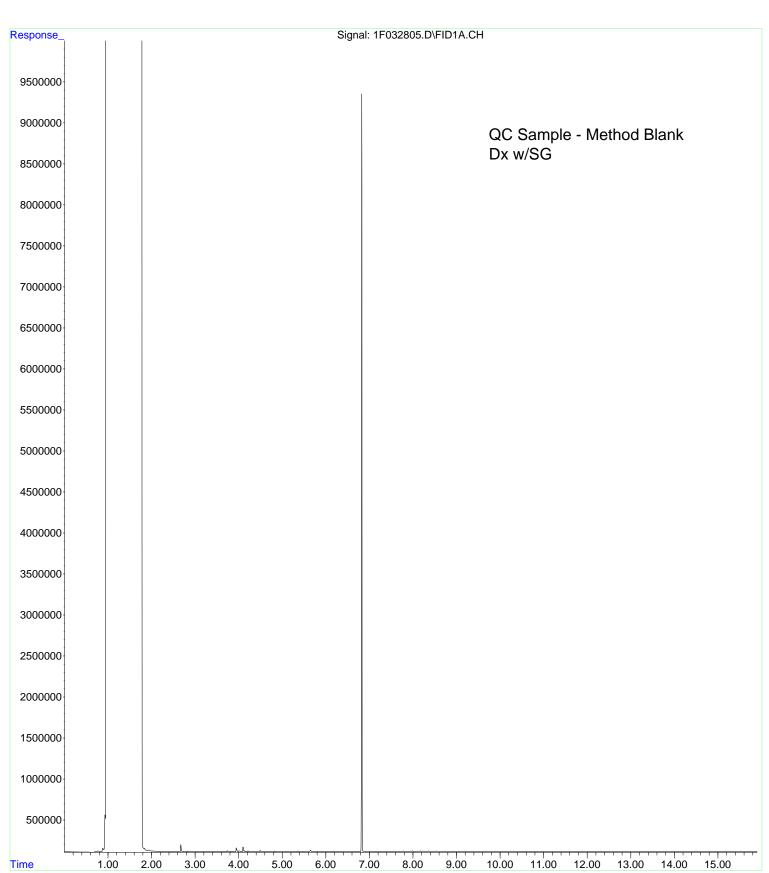
Acquired : 06 Mar 2024 4:51 pm using AcqMethod A1F40422.M


Instrument: HP G1530A Sample Name: 4C06060-RES1



File :C:\msdchem\1\data\4C28038\1F032809.D

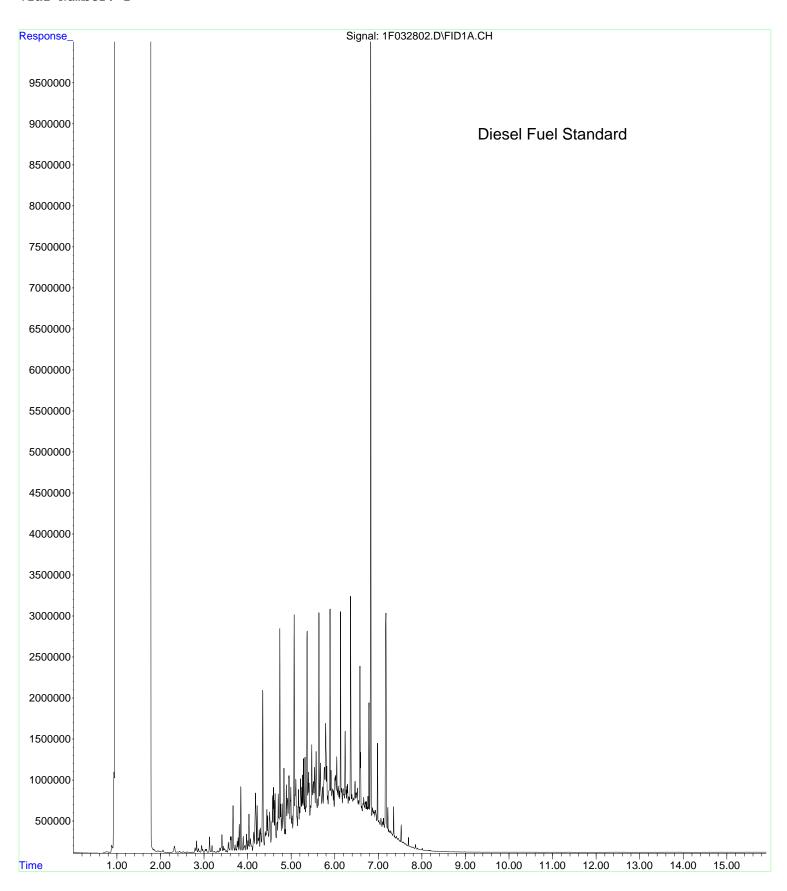
1:04 pm using AcqMethod A1F40422.M


Operator : BLL/BJY
Acquired : 28 Mar 2024
Instrument : HP G1530A Sample Name: A4B1637-04



File :C:\msdchem\1\data\4C28038\1F032805.D

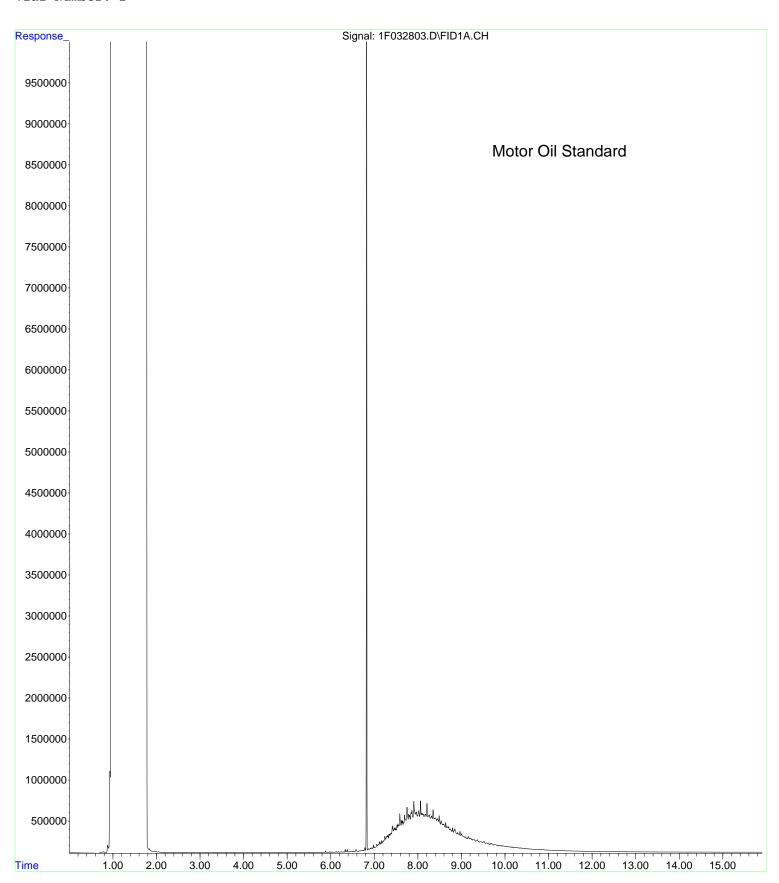
Operator : BLL/BJY
Acquired : 28 Mar 2024 11:31 am using AcqMethod A1F40422.M
Instrument : HP G1530A


Sample Name: 24C0983-BLK1



File :C:\msdchem\1\data\4C28038\1F032802.D

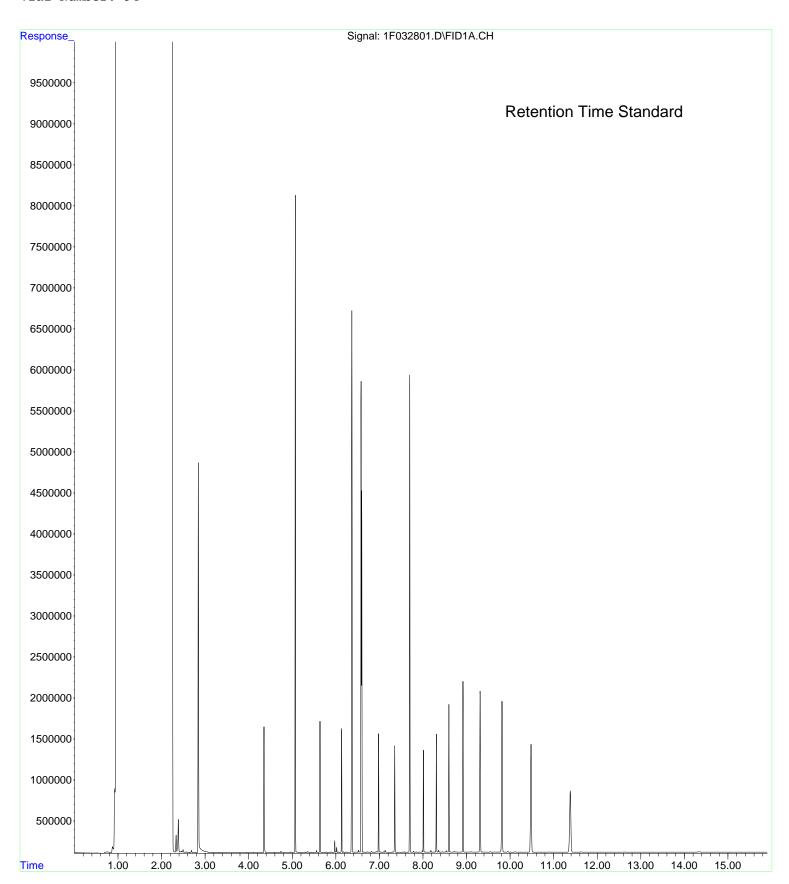
Operator : BLL/BJY
Acquired : 28 Mar 2024 10:21 am using AcqMethod A1F40422.M
Instrument : HP G1530A


Sample Name: 4C28038-CCV1



File :C:\msdchem\1\data\4C28038\1F032803.D

Operator : BLL/BJY
Acquired : 28 Mar 2024 10:44 am using AcqMethod A1F40422.M
Instrument : HP G1530A


Sample Name: 4C28038-CCV2



File :C:\msdchem\1\data\4C28038\1F032801.D

9:57 am using AcqMethod A1F40422.M

Operator : BLL/BJY
Acquired : 28 Mar 2024
Instrument : HP G1530A Sample Name: 4C28038-RES1







Michele Poquiz
Apex Laboratories
6700 SW Sandburg St.
Tigard, OR 97223

Laboratory Results for: A4B1637

Dear Michele,

Enclosed are the results of the sample(s) submitted to our laboratory March 01, 2024 For your reference, these analyses have been assigned our service request number **K2402254**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3364. You may also contact me via email at howard.holmes@alsglobal.com.

Respectfully submitted,

Howaldblum

ALS Group USA, Corp. dba ALS Environmental

Howard Holmes Project Manager



# **Narrative Documents**

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com



Client: Apex Laboratories Service Request: K2402254

Project: A4B1637 Date Received: 03/01/2024

Sample Matrix: Water

#### **CASE NARRATIVE**

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

#### **Sample Receipt:**

One water sample was received for analysis at ALS Environmental on 03/01/2024. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

## **General Chemistry:**

No significant anomalies were noted with this analysis.

Approved by

Date 03/12/2024



## **SAMPLE DETECTION SUMMARY**

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

| CLIENT ID: FME-159-022824 |         | Lab  | ID: K2402 | 254-001 |       |           |
|---------------------------|---------|------|-----------|---------|-------|-----------|
| Analyte                   | Results | Flag | MDL       | MRL     | Units | Method    |
| Carbon, Total Organic     | 4.20    |      | 0.08      | 0.50    | mg/L  | SM 5310 C |



# Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com Client: Apex Laboratories Service Request: K2402254

Project: A4B1637

## **SAMPLE CROSS-REFERENCE**

<u>SAMPLE # CLIENT SAMPLE ID</u> <u>DATE</u> <u>TIME</u> K2402254-001 FME-159-022824 2/28/2024 1525

#### SUBCONTRACT ORDER

Apex Laboratories
A4B1637

KM

(2402254

#### **SENDING LABORATORY:**

Apex Laboratories

6700 S.W. Sandburg Street

Tigard, OR 97223

Phone: (503) 718-2323 Fax: (503) 336-0745

Project Manager:

Michele Poquiz

**RECEIVING LABORATORY:** 

ALS Group USA - Kelso 1317 S 13th Avenue Kelso, WA 98626

Phone :(360) 577-7222 Fax: (360) 636-1068

| Sample Name: FME-159-022824        |                | Water          | Sampled: 02/28/24 15:25 | (A4B1637-04)                            |
|------------------------------------|----------------|----------------|-------------------------|-----------------------------------------|
| Analysis                           | Due            | Expires        | Comments                |                                         |
| Total Organic Carbon - H2O (5310C) | 03/13/24 17:00 | 03/27/24 15:25 |                         | *************************************** |
| Containers Supplied:               |                |                |                         |                                         |
| (A)250 mL Poly - Sulfuric (H2SO4)  |                |                |                         |                                         |

Released By Date

Released By Date

Released By Date

Released By Date

Received By Date

Received By Date

|                |                                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |           |                  |          | f                                         | <b>O</b> · | PM        | ttl                                    |
|----------------|------------------------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------|-----------|------------------|----------|-------------------------------------------|------------|-----------|----------------------------------------|
| An             | 1 V lahra                                            | yories                                | Cooler Receipt a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nd P        | reser                                  |           |                  |          | 31                                        | 151        | 1         |                                        |
| Client 1       | 1/24                                                 |                                       | 2/1/24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | 7/                                     | _Serv     | ice Request      | 27       | 1211                                      | 109        | PN        | $\overline{\triangleright}$            |
| Received: 3/   | 1/2/                                                 | Opened: <u> </u>                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | By:         | 1 1                                    |           | _Unloaded: _     | 9//      | 129                                       | By:        | 127       |                                        |
| -              | ere received via?                                    | USPS                                  | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s | PS/         | DE                                     | HL        | PDX              | Cour     | rier H                                    | and Deli   |           |                                        |
| -              | ere received in: (cir                                | •                                     | oler Box<br>NA Y N If                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | velope                                 |           | Other            |          |                                           |            | NA        |                                        |
|                | <u>ly seals</u> оп coolers?<br>vere custody seals it |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -           | -                                      |           | here?            | ?        |                                           | Y          | (N        | )                                      |
| p              | T                                                    |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p. cocine   |                                        | 2107 316  | 7                | ·        |                                           | *          |           | <i></i>                                |
|                |                                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | Out of                                 | temp      | PM<br>Notifie    | d d      |                                           | er e       |           |                                        |
| Temp Blank     | Sample Temp                                          | IR Gun                                | Cooler #/COC ID / NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | idicate                                |           | ' If out of      | temp     | Tracking                                  |            | ,         | Filed                                  |
|                | 7.0                                                  | JRUG                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _           | ····                                   |           | _                | /        | <u> 2 CIBO</u>                            | 650        | 1.308     | 33/2                                   |
|                |                                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |           | <u> </u>         |          |                                           |            |           |                                        |
|                |                                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |           |                  |          |                                           |            |           |                                        |
|                |                                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _           | ·                                      |           |                  |          |                                           |            |           |                                        |
| Was a T        | erature Blank prese                                  | nt in conle-9                         | NA Y (N) If                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/07 =      | 101- 1L-                               |           | rature in the a  |          | a ool1 -                                  | *:01       |           |                                        |
| -              | -                                                    |                                       | sample bottle contained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -           |                                        | -         |                  |          |                                           | ve:        |           |                                        |
|                | -                                                    | -                                     | sample bottle contained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | me co                                  | oier; n   | otate in the cor | uiiii Sa |                                           | (Y)        | NI        |                                        |
| -              |                                                      | _                                     | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | cooler :                               | # abau    | and notify th    | o DM     | NA<br>(NA)                                | Y          | N         |                                        |
|                | ssue samples were                                    | •                                     | as collected? If not, not<br>Frozen Partially That                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | Cooler :<br>Thawe                      |           | e and notity us  | e Pivi.  | (NA)                                      | Y          | N         |                                        |
| т аррисаотс, п | ssue samples were                                    | - P                                   | rozen Furnany Ind                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | weu<br>/^?  |                                        | u         |                  |          |                                           |            |           |                                        |
| 5. Packing ma  | aterial: Inserts                                     | Baggies Bul                           | bble Wrap Gel Packs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wet         | lce D                                  | ry Ice    | Sleeves          |          |                                           |            |           |                                        |
| 7. Were custo  | dy papers properly                                   | filled out (ink,                      | signed, etc.)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -           |                                        |           |                  |          | NA                                        | Y          | N         |                                        |
| •              | les received in good                                 | •                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |           |                  |          | NA                                        | (Y)        | N         |                                        |
|                | mpie labels compie<br>ple labels and tags            |                                       | , preservation, etc.)?<br>tody papers?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                        |           |                  |          | NA<br>NA                                  | X          | N<br>N    |                                        |
|                |                                                      |                                       | mes received for the tes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ts indica   | ated?                                  |           |                  |          | NA                                        | Ý          | N         |                                        |
| • •            | -                                                    |                                       | N SOP) received at the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                                        | ? Indi    | cate in the tabl | le below | NA                                        | (Y)        | N         |                                        |
| 13. Were VOA   | vials received with                                  | out headspace                         | ? Indicate in the table b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | elow.       |                                        |           |                  |          | (NA)                                      | Y          | N         |                                        |
| 14. Was C12/R  | es negative?                                         |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |           |                  |          | (NA)                                      | Y          | N         |                                        |
| 15. Were samp  | les received within                                  | the method sp                         | ecified time limit? If no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t, notate   | the em                                 | or belo   | ow and notify t  | he PM    | (NA)                                      | Y          | N         |                                        |
| 16. Were 100m  | nl sterile microbiolo                                | gy bottles fille                      | ed exactly to the 100ml i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mark?       | N/                                     | <b>3</b>  | Y N              |          | Underfi                                   | lled       | Overfille | d                                      |
|                |                                                      | f_                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D 6         |                                        |           |                  |          | l al a cadi di a al                       | <b></b>    |           |                                        |
| 29             | ample ID on Bott                                     | le                                    | Sample I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D on C      | <u>.UL</u> _                           |           |                  |          | Identified                                | by:        |           |                                        |
| ļ              |                                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |           |                  | _        | , and and and and and and and and and and |            | ·         |                                        |
| <u> </u>       | ······································               |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,,c.vu      | ······································ |           |                  |          |                                           |            | <u> </u>  |                                        |
| <u></u>        |                                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del> |                                        | ··· · · · |                  |          |                                           |            |           |                                        |
|                |                                                      |                                       | Bottle Count                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Head-       |                                        |           |                  | Volume   | Reagent                                   | Lot        |           | -                                      |
| <u> </u>       | Sample ID                                            |                                       | Bottle Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | space       | Broke                                  | рH        | Reagent          | added    | Numb                                      |            | initials  | Time                                   |
|                | ······································               | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |           |                  |          |                                           |            |           | ······································ |
|                |                                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |           |                  | <u> </u> |                                           |            |           |                                        |
|                |                                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |           |                  |          |                                           |            |           |                                        |
|                |                                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                                        |           |                  |          | ,                                         |            |           |                                        |

Page 8 of 20

SOP: SMO-GEN

Reviewed: NP 1/3/2024

Notes, Discrepancies, Resolutions:

G:\SMO\2024 Forms



# **Miscellaneous Forms**

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

#### **Inorganic Data Qualifiers**

- \* The result is an outlier. See case narrative.
- # The control limit criteria is not applicable.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
  DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

#### **Metals Data Qualifiers**

- # The control limit criteria is not applicable.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### **Organic Data Qualifiers**

- \* The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
  DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.

#### **Additional Petroleum Hydrocarbon Specific Qualifiers**

- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

## ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

| Agency                   | Web Site                                                                                                                                        | Number      |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Alaska DEH               | http://dec.alaska.gov/eh/lab/cs/csapproval.htm                                                                                                  | UST-040     |
| Arizona DHS              | http://www.azdhs.gov/lab/license/env.htm                                                                                                        | AZ0339      |
| Arkansas - DEQ           | http://www.adeq.state.ar.us/techsvs/labcert.htm                                                                                                 | 88-0637     |
| California DHS (ELAP)    | http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx                                                                                             | 2795        |
| DOD ELAP                 | http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm                                                                                  | L16-58-R4   |
| Florida DOH              | http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm                                                                                         | E87412      |
| Hawaii DOH               | http://health.hawaii.gov/                                                                                                                       | -           |
| ISO 17025                | http://www.pjlabs.com/                                                                                                                          | L16-57      |
| Louisiana DEQ            | http://www.deq.louisiana.gov/page/la-lab-accreditation                                                                                          | 03016       |
| Maine DHS                | http://www.maine.gov/dhhs/                                                                                                                      | WA01276     |
| Minnesota DOH            | http://www.health.state.mn.us/accreditation                                                                                                     | 053-999-457 |
| Nevada DEP               | http://ndep.nv.gov/bsdw/labservice.htm                                                                                                          | WA01276     |
| New Jersey DEP           | http://www.nj.gov/dep/enforcement/oqa.html                                                                                                      | WA005       |
| New York - DOH           | https://www.wadsworth.org/regulatory/elap                                                                                                       | 12060       |
|                          | https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- |             |
| North Carolina DEQ       | certification                                                                                                                                   | 605         |
| Oklahoma DEQ             | http://www.deq.state.ok.us/CSDnew/labcert.htm                                                                                                   | 9801        |
| Oregon – DEQ (NELAP)     | http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx                                        | WA100010    |
| South Carolina DHEC      | http://www.scdhec.gov/environment/EnvironmentalLabCertification/                                                                                | 61002       |
| Texas CEQ                | http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html                                                                                   | T104704427  |
| Washington DOE           | http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html                                                                                  | C544        |
| Wyoming (EPA Region 8)   | https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-                                                                     | -           |
| Kelso Laboratory Website | www.alsglobal.com                                                                                                                               | NA          |

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

#### Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOO Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

## ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

Client: Apex Laboratories

**Project:** A4B1637/

 Sample Name:
 FME-159-022824

 Date Collected:
 02/28/24

**Lab Code:** K2402254-001 **Date Received:** 03/1/24

Sample Matrix: Water

Analysis Method Extracted/Digested By Analyzed By

SM 5310 C MSPECHT

Service Request: K2402254



# Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com



# **General Chemistry**

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

## ALS Group USA, Corp. dba ALS Environmental

Analytical Report

**Client:** Apex Laboratories

**Project:** A4B1637

**Service Request:** K2402254 **Date Collected:** 02/28/24 15:25

**Date Received:** 03/01/24 09:35

Basis: NA

Sample Matrix: V

Water

Date Received: 03/01/24

Sample Name:

FME-159-022824

Lab Code:

K2402254-001

## **General Chemistry Parameters**

Analysis

| Analyte Name          | Method    | Result | Units | MRL  | MDL  | Dil. | <b>Date Analyzed</b> | Q |
|-----------------------|-----------|--------|-------|------|------|------|----------------------|---|
| Carbon, Total Organic | SM 5310 C | 4.20   | mg/L  | 0.50 | 0.08 | 1    | 03/07/24 15:55       |   |



# **QC Summary Forms**

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com



# **General Chemistry**

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

## ALS Group USA, Corp. dba ALS Environmental

Analytical Report

Client: Apex Laboratories

pex Laboratories

Service Request: K2402254

B1637

Date Collected: NA

Project: A4B1637 Date Collected: NA
Sample Matrix: Water Date Received: NA

Sample Name: Method Blank Basis: NA

**Lab Code:** K2402254-MB

## **General Chemistry Parameters**

Analysis **Analyte Name** Method Result Units MRL **MDL** Dil. **Date Analyzed** Q SM 5310 C 03/07/24 15:55 Carbon, Total Organic ND U mg/L 0.50 0.08

## ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

**Client:** Apex Laboratories

A4B1637

**Service Request: Date Analyzed:** 

K2402254

Water

**Date Extracted:** 

03/07/24 NA

**Lab Control Sample Summary** 

Carbon, Total Organic

**Analysis Method:** SM 5310 C **Prep Method:** 

**Project:** 

Sample Matrix:

None

**Units:** 

mg/L

**Basis:** 

NA

**Analysis Lot:** 

834150

|                    |              |        | Spike  |       | % Rec  |
|--------------------|--------------|--------|--------|-------|--------|
| Sample Name        | Lab Code     | Result | Amount | % Rec | Limits |
| Lab Control Sample | K2402254-LCS | 23.9   | 25.0   | 96    | 83-117 |



AMENDED REPORT

**Apex Laboratories, LLC** 

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Friday, March 29, 2024 Suzy Stumpf Farallon-Seattle 1809 7th Ave Suite 1111 Seattle, WA 98101

RE: A4C0878 - 397-019 Block 38 West - 397-019

Thank you for using Apex Laboratories. We greatly appreciate your business and strive to provide the highest quality services to the environmental industry.

Enclosed are the results of analyses for work order A4C0878, which was received by the laboratory on 3/1/2024 at 12:37:00PM.

If you have any questions concerning this report or the services we offer, please feel free to contact me by email at: mpoquiz@apex-labs.com, or by phone at 503-718-2323.

Please note: All samples will be disposed of within 30 days of sample receipt, unless prior arrangements have been made.

| Acceptable Receipt Te                 | mperature is less | Cooler Receipt Information than, or equal to, 6 degC (not frozen), |              | ice the same day as sampling. |
|---------------------------------------|-------------------|--------------------------------------------------------------------|--------------|-------------------------------|
| · · · · · · · · · · · · · · · · · · · |                   | (See Cooler Receipt Form for details                               |              | <u> </u>                      |
| Cooler #1                             | 2.6 degC          | Co                                                                 | ooler #2 5.6 | 6 degC                        |
| Cooler #3                             | 5.1 degC          |                                                                    |              |                               |
|                                       |                   |                                                                    |              |                               |
|                                       |                   |                                                                    |              |                               |

This Final Report is the official version of the data results for this sample submission, unless superseded by a subsequent, labeled amended report.

All other deliverables derived from this data, including Electronic Data Deliverables (EDDs), CLP-like forms, client requested summary sheets, and all other products are considered secondary to this report.





Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4C0878 - 03 29 24 1757

#### ANALYTICAL REPORT FOR SAMPLES

|                  | SAMPLE INFO   | ORMATION |                |                |
|------------------|---------------|----------|----------------|----------------|
| Client Sample ID | Laboratory ID | Matrix   | Date Sampled   | Date Received  |
| FMW-150-022924   | A4C0878-01    | Water    | 02/29/24 11:03 | 03/01/24 12:37 |
| FMW-151-022924   | A4C0878-02    | Water    | 02/29/24 14:06 | 03/01/24 12:37 |
| FMW-152-022924   | A4C0878-03    | Water    | 02/29/24 09:32 | 03/01/24 12:37 |
| FMW-153-022924   | A4C0878-04    | Water    | 02/29/24 12:29 | 03/01/24 12:37 |
| FMW-164-022924   | A4C0878-05    | Water    | 02/29/24 10:45 | 03/01/24 12:37 |
| FMW-158-022924   | A4C0878-06    | Water    | 02/29/24 12:40 | 03/01/24 12:37 |
| OW3-022824       | A4C0878-07    | Water    | 02/29/24 09:50 | 03/01/24 12:37 |
| FMW-159-022824   | A4C0878-08    | Water    | 02/29/24 09:15 | 03/01/24 12:37 |

Apex Laboratories

(milale fog



AMENDED REPORT

#### Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4C0878 - 03 29 24 1757

#### ANALYTICAL CASE NARRATIVE

A4C0878 Apex Laboratories

Amended Final Report #2 - This report supercedes all previous reports.

#### **Subcontract**

This report is not complete without the attached subcontract laboratory report for total organic carbon ( TOC) from ALS.

Michele Poquiz Forensics Project Manager March 29, 2024

Amended Final Report #1 - This report supersedes all previous reports.

#### NWTPH-Dx - WA Diesel Extended - Method Name Change

This report contains modified data for NWTPH-Dx (WA Ext) for all samples.

The reported Analytical Method Reference has changed from "Washington Diesel Range Extended (C10-C40) by EPA 8015D Modified" to "Whole Product Diesel Testing (C10-C40) WDOE/NWTPH-Dx", the Specific Method Reference has changed from "8015DMod (WA\_Ext)" to "NWTPH-Dx (WA Ext)", and a Minimum Reporting Level has been set at 0.250mg/L.

The affected data is flagged in the report with the AMEND qualifier.

David Jack Technical Manager March 22, 2024

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4C0878 - 03 29 24 1757

## ANALYTICAL SAMPLE RESULTS

|                                 | Whole Pro        | Whole Product Diesel Testing (C10-C40) by WDOE/NWTPH-Dx |                    |                  |            |                  |                      |       |  |  |  |  |
|---------------------------------|------------------|---------------------------------------------------------|--------------------|------------------|------------|------------------|----------------------|-------|--|--|--|--|
| Analyte                         | Sample<br>Result | Detection<br>Limit                                      | Reporting<br>Limit | Units            | Dilution   | Date<br>Analyzed | Method Ref.          | Notes |  |  |  |  |
| FMW-150-022924 (A4C0878-01)     |                  |                                                         |                    | Matrix: Water    |            | Batch:           |                      |       |  |  |  |  |
| Diesel Range Organics (C10-C40) | ND               |                                                         | 250                | ug/L             | 1          | 03/07/24 20:16   | NWTPH-DX<br>(WA_Ext) |       |  |  |  |  |
| Surrogate: o-Terphenyl (Surr)   |                  | Recov                                                   | very: 78 %         | Limits: 50-150 % | 6 I        | 03/07/24 20:16   | NWTPH-DX<br>(WA_Ext) |       |  |  |  |  |
| FMW-151-022924 (A4C0878-02)     |                  |                                                         |                    | Matrix: Wate     | er         | Batch:           | 24C0221              |       |  |  |  |  |
| Diesel Range Organics (C10-C40) | ND               |                                                         | 250                | ug/L             | 1          | 03/07/24 20:39   | NWTPH-DX<br>(WA_Ext) |       |  |  |  |  |
| Surrogate: o-Terphenyl (Surr)   |                  | Recov                                                   | very: 79 %         | Limits: 50-150 % | 6 I        | 03/07/24 20:39   | NWTPH-DX<br>(WA_Ext) |       |  |  |  |  |
| FMW-152-022924 (A4C0878-03)     |                  |                                                         |                    | Matrix: Wate     | er         | Batch:           | 24C0221              |       |  |  |  |  |
| Diesel Range Organics (C10-C40) | ND               |                                                         | 250                | ug/L             | 1          | 03/07/24 21:03   | NWTPH-DX<br>(WA_Ext) |       |  |  |  |  |
| Surrogate: o-Terphenyl (Surr)   |                  | Recov                                                   | very: 77 %         | Limits: 50-150 % | 6 I        | 03/07/24 21:03   | NWTPH-DX<br>(WA_Ext) |       |  |  |  |  |
| FMW-153-022924 (A4C0878-04)     |                  |                                                         |                    | Matrix: Wate     | ər         | Batch:           | 24C0221              |       |  |  |  |  |
| Diesel Range Organics (C10-C40) | ND               |                                                         | 250                | ug/L             | 1          | 03/07/24 21:26   | NWTPH-DX<br>(WA_Ext) |       |  |  |  |  |
| Surrogate: o-Terphenyl (Surr)   |                  | Recov                                                   | very: 76%          | Limits: 50-150 % | 6 I        | 03/07/24 21:26   | NWTPH-DX<br>(WA_Ext) |       |  |  |  |  |
| FMW-164-022924 (A4C0878-05)     |                  |                                                         |                    | Matrix: Wate     | er         | Batch:           | 24C0221              |       |  |  |  |  |
| Diesel Range Organics (C10-C40) | ND               |                                                         | 250                | ug/L             | 1          | 03/07/24 21:49   | NWTPH-DX<br>(WA_Ext) |       |  |  |  |  |
| Surrogate: o-Terphenyl (Surr)   |                  | Recov                                                   | very: 80 %         | Limits: 50-150 % | <i>5</i> 1 | 03/07/24 21:49   | NWTPH-DX<br>(WA_Ext) |       |  |  |  |  |
| FMW-158-022924 (A4C0878-06)     |                  |                                                         |                    | Matrix: Wate     | er         | Batch:           | 24C0221              |       |  |  |  |  |
| Diesel Range Organics (C10-C40) | ND               |                                                         | 250                | ug/L             | 1          | 03/07/24 22:13   | NWTPH-DX<br>(WA_Ext) |       |  |  |  |  |
| Surrogate: o-Terphenyl (Surr)   |                  | Recov                                                   | very: 79 %         | Limits: 50-150 % | <i>5</i> 1 | 03/07/24 22:13   | NWTPH-DX<br>(WA_Ext) |       |  |  |  |  |

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4C0878 - 03 29 24 1757

## ANALYTICAL SAMPLE RESULTS

| Whole Produ                     | ıct Diesel Testi | ng (C10-C40        | ) by WDOE/         | NWTPH-Dx wit     | th Silica C | Gel Column Cle   | eanup                     |       |
|---------------------------------|------------------|--------------------|--------------------|------------------|-------------|------------------|---------------------------|-------|
| Analyte                         | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution    | Date<br>Analyzed | Method Ref.               | Notes |
| FMW-158-022924 (A4C0878-06)     |                  |                    |                    | Matrix: Wat      | er          | Batch:           | 24C0984                   |       |
| Diesel Range Organics (C10-C40) | ND               |                    | 250                | ug/L             | 1           | 03/28/24 15:01   | NWTPH-DX<br>(WA_Ext) wSGC |       |
| Surrogate: o-Terphenyl (Surr)   |                  | Reco               | very: 78 %         | Limits: 50-150 9 | 6 I         | 03/28/24 15:01   | NWTPH-DX<br>(WA_Ext) wSGC |       |

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4C0878 - 03 29 24 1757

## ANALYTICAL SAMPLE RESULTS

|                                       |                  | BTEX+N C           | ompounds           | by EPA 8260D     |            |                  |             | •     |
|---------------------------------------|------------------|--------------------|--------------------|------------------|------------|------------------|-------------|-------|
| Analyte                               | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution   | Date<br>Analyzed | Method Ref. | Notes |
| OW3-022824 (A4C0878-07)               |                  |                    |                    | Matrix: Wate     | Batch: 2   | 24C0338          |             |       |
| Naphthalene                           | ND               |                    | 5.00               | ug/L             | 1          | 03/11/24 17:47   | EPA 8260D   | Q-54  |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Recove             | ery: 119 %         | Limits: 80-120 % | 6 I        | 03/11/24 17:47   | EPA 8260D   |       |
| Toluene-d8 (Surr)                     |                  |                    | 100 %              | 80-120 %         | 6 1        | 03/11/24 17:47   | EPA 8260D   |       |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 96 %               | 80-120 %         | 6 I        | 03/11/24 17:47   | EPA 8260D   |       |
| FMW-159-022824 (A4C0878-08)           |                  |                    |                    | Matrix: Wate     | er         | Batch: 2         | 24C0338     |       |
| Naphthalene                           | ND               |                    | 5.00               | ug/L             | 1          | 03/11/24 14:36   | EPA 8260D   | Q-54  |
| Surrogate: 1,4-Difluorobenzene (Surr) |                  | Recove             | ery: 114%          | Limits: 80-120 % | 6 I        | 03/11/24 14:36   | EPA 8260D   |       |
| Toluene-d8 (Surr)                     |                  |                    | 100 %              | 80-120 %         | 6 <i>1</i> | 03/11/24 14:36   | EPA 8260D   |       |
| 4-Bromofluorobenzene (Surr)           |                  |                    | 98 %               | 80-120 %         | 6 <i>1</i> | 03/11/24 14:36   | EPA 8260D   |       |

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4C0878 - 03 29 24 1757

## ANALYTICAL SAMPLE RESULTS

|                                   | Selected         | Semivolatile O     | rganic C           | ompounds by E    | :PA 8270 | E                |             |       |
|-----------------------------------|------------------|--------------------|--------------------|------------------|----------|------------------|-------------|-------|
| Analyte                           | Sample<br>Result | Detection<br>Limit | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref. | Note: |
| FMW-150-022924 (A4C0878-01)       |                  |                    |                    | Matrix: Wate     | r        | Batch: 2         | 24C0220     |       |
| 1-Methylnaphthalene               | ND               |                    | 0.0377             | ug/L             | 1        | 03/08/24 19:55   | EPA 8270E   |       |
| 2-Methylnaphthalene               | ND               |                    | 0.0377             | ug/L             | 1        | 03/08/24 19:55   | EPA 8270E   |       |
| Naphthalene                       | ND               |                    | 0.0377             | ug/L             | 1        | 03/08/24 19:55   | EPA 8270E   |       |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recovery           | : 52 %             | Limits: 44-120 % | 1        | 03/08/24 19:55   | EPA 8270E   |       |
| 2-Fluorobiphenyl (Surr)           |                  |                    | 44 %               | 44-120 %         | 1        | 03/08/24 19:55   | EPA 8270E   |       |
| Phenol-d6 (Surr)                  |                  |                    | 16 %               | 10-133 %         | 1        | 03/08/24 19:55   | EPA 8270E   |       |
| p-Terphenyl-d14 (Surr)            |                  |                    | 72 %               | 50-134 %         | 1        | 03/08/24 19:55   | EPA 8270E   |       |
| 2-Fluorophenol (Surr)             |                  |                    | 29 %               | 19-120 %         | 1        | 03/08/24 19:55   | EPA 8270E   |       |
| 2,4,6-Tribromophenol (Surr)       |                  |                    | 86 %               | 43-140 %         | 1        | 03/08/24 19:55   | EPA 8270E   |       |
| FMW-151-022924 (A4C0878-02)       |                  |                    |                    | Matrix: Wate     | er       | Batch: 2         | 24C0220     |       |
| 1-Methylnaphthalene               | ND               |                    | 0.0377             | ug/L             | 1        | 03/08/24 20:28   | EPA 8270E   |       |
| 2-Methylnaphthalene               | ND               |                    | 0.0377             | ug/L             | 1        | 03/08/24 20:28   | EPA 8270E   |       |
| Naphthalene                       | ND               |                    | 0.0377             | ug/L             | 1        | 03/08/24 20:28   | EPA 8270E   |       |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recovery           | : 49 %             | Limits: 44-120 % | 1        | 03/08/24 20:28   | EPA 8270E   |       |
| 2-Fluorobiphenyl (Surr)           |                  |                    | 48 %               | 44-120 %         | 1        | 03/08/24 20:28   | EPA 8270E   |       |
| Phenol-d6 (Surr)                  |                  |                    | 15 %               | 10-133 %         | 1        | 03/08/24 20:28   | EPA 8270E   |       |
| p-Terphenyl-d14 (Surr)            |                  |                    | 66 %               | 50-134 %         | 1        | 03/08/24 20:28   | EPA 8270E   |       |
| 2-Fluorophenol (Surr)             |                  |                    | 26 %               | 19-120 %         | 1        | 03/08/24 20:28   | EPA 8270E   |       |
| 2,4,6-Tribromophenol (Surr)       |                  |                    | 91 %               | 43-140 %         | 1        | 03/08/24 20:28   | EPA 8270E   |       |
| FMW-152-022924 (A4C0878-03)       |                  |                    |                    | Matrix: Wate     | er       | Batch: 2         | 24C0220     |       |
| 1-Methylnaphthalene               | ND               |                    | 0.0377             | ug/L             | 1        | 03/08/24 21:02   | EPA 8270E   |       |
| 2-Methylnaphthalene               | ND               |                    | 0.0377             | ug/L             | 1        | 03/08/24 21:02   | EPA 8270E   |       |
| Naphthalene                       | ND               |                    | 0.0377             | ug/L             | 1        | 03/08/24 21:02   | EPA 8270E   |       |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recovery           | : 51 %             | Limits: 44-120 % | 1        | 03/08/24 21:02   | EPA 8270E   |       |
| 2-Fluorobiphenyl (Surr)           |                  |                    | 46 %               | 44-120 %         | 1        | 03/08/24 21:02   | EPA 8270E   |       |
| Phenol-d6 (Surr)                  |                  |                    | 16 %               | 10-133 %         | 1        | 03/08/24 21:02   | EPA 8270E   |       |
| p-Terphenyl-d14 (Surr)            |                  |                    | 70 %               | 50-134 %         | 1        | 03/08/24 21:02   | EPA 8270E   |       |
| 2-Fluorophenol (Surr)             |                  |                    | 27 %               | 19-120 %         | 1        | 03/08/24 21:02   | EPA 8270E   |       |
| 2,4,6-Tribromophenol (Surr)       |                  |                    | 99 %               | 43-140 %         | 1        | 03/08/24 21:02   | EPA 8270E   |       |
| FMW-153-022924 (A4C0878-04)       |                  |                    |                    | Matrix: Wate     | er       | Batch: 24C0220   |             |       |
| 1-Methylnaphthalene               | ND               |                    | 0.0377             | ug/L             | 1        | 03/08/24 21:35   | EPA 8270E   |       |
| * *                               | ND               |                    |                    | ug/L             |          |                  |             |       |

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

1809 7th Ave Suite 1111 Project Number: 397-019 Report ID: Seattle, WA 98101 Project Manager: Suzy Stumpf A4C0878 - 03 29 24 1757

## ANALYTICAL SAMPLE RESULTS

|                                   | Selected         | Selected Semivolatile Organic Compounds by EPA 8270E |                    |                  |          |                  |             |       |  |  |  |  |
|-----------------------------------|------------------|------------------------------------------------------|--------------------|------------------|----------|------------------|-------------|-------|--|--|--|--|
| Analyte                           | Sample<br>Result | Detection<br>Limit                                   | Reporting<br>Limit | Units            | Dilution | Date<br>Analyzed | Method Ref. | Notes |  |  |  |  |
| FMW-153-022924 (A4C0878-04)       |                  |                                                      |                    | Matrix: Wate     | er       | Batch: 2         | 24C0220     |       |  |  |  |  |
| Naphthalene                       | ND               |                                                      | 0.0377             | ug/L             | 1        | 03/08/24 21:35   | EPA 8270E   |       |  |  |  |  |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recovery                                             | v: 51 %            | Limits: 44-120 % | 1        | 03/08/24 21:35   | EPA 8270E   |       |  |  |  |  |
| 2-Fluorobiphenyl (Surr)           |                  |                                                      | 45 %               | 44-120 %         | 1        | 03/08/24 21:35   | EPA 8270E   |       |  |  |  |  |
| Phenol-d6 (Surr)                  |                  |                                                      | 16 %               | 10-133 %         | 1        | 03/08/24 21:35   | EPA 8270E   |       |  |  |  |  |
| p-Terphenyl-d14 (Surr)            |                  |                                                      | 62 %               | 50-134 %         | 1        | 03/08/24 21:35   | EPA 8270E   |       |  |  |  |  |
| 2-Fluorophenol (Surr)             |                  |                                                      | 28 %               | 19-120 %         | 1        | 03/08/24 21:35   | EPA 8270E   |       |  |  |  |  |
| 2,4,6-Tribromophenol (Surr)       |                  |                                                      | 73 %               | 43-140 %         | 1        | 03/08/24 21:35   | EPA 8270E   |       |  |  |  |  |
| FMW-164-022924 (A4C0878-05)       |                  |                                                      |                    | Matrix: Wate     | er       | Batch: 2         | 24C0220     |       |  |  |  |  |
| 1-Methylnaphthalene               | ND               |                                                      | 0.0408             | ug/L             | 1        | 03/08/24 22:08   | EPA 8270E   |       |  |  |  |  |
| 2-Methylnaphthalene               | ND               |                                                      | 0.0408             | ug/L             | 1        | 03/08/24 22:08   | EPA 8270E   |       |  |  |  |  |
| Naphthalene                       | ND               |                                                      | 0.0408             | ug/L             | 1        | 03/08/24 22:08   | EPA 8270E   |       |  |  |  |  |
| Surrogate: Nitrobenzene-d5 (Surr) |                  | Recovery                                             | ): 58 %            | Limits: 44-120 % | 1        | 03/08/24 22:08   | EPA 8270E   |       |  |  |  |  |
| 2-Fluorobiphenyl (Surr)           |                  |                                                      | 48 %               | 44-120 %         | I        | 03/08/24 22:08   | EPA 8270E   |       |  |  |  |  |
| Phenol-d6 (Surr)                  |                  |                                                      | 19 %               | 10-133 %         | 1        | 03/08/24 22:08   | EPA 8270E   |       |  |  |  |  |
| p-Terphenyl-d14 (Surr)            |                  |                                                      | 67 %               | 50-134 %         | 1        | 03/08/24 22:08   | EPA 8270E   |       |  |  |  |  |
| 2-Fluorophenol (Surr)             |                  |                                                      | 32 %               | 19-120 %         | 1        | 03/08/24 22:08   | EPA 8270E   |       |  |  |  |  |
| 2,4,6-Tribromophenol (Surr)       |                  |                                                      | 75 %               | 43-140 %         | 1        | 03/08/24 22:08   | EPA 8270E   |       |  |  |  |  |

Apex Laboratories



AMENDED REPORT

#### **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4C0878 - 03 29 24 1757

#### QUALITY CONTROL (QC) SAMPLE RESULTS

#### Whole Product Diesel Testing (C10-C40) by WDOE/NWTPH-Dx % REC RPD Detection L Reporting Spike Source Units Dilution % REC Limits RPD Analyte Result Limit Limit Amount Result Limit Notes Batch 24C0221 - EPA 3510C (Fuels/Acid Ext.) Water Blank (24C0221-BLK1) Prepared: 03/07/24 06:07 Analyzed: 03/07/24 19:06 NWTPH-DX (WA Ext) Diesel Range Organics (C10-C40) ug/L Surr: o-Terphenyl (Surr) Recovery: 83 % Limits: 50-150 % Dilution: 1x LCS (24C0221-BS1) Prepared: 03/07/24 06:07 Analyzed: 03/07/24 19:30 NWTPH-DX (WA Ext) Diesel Range Organics (C10-C40) 38-132% Surr: o-Terphenyl (Surr) Recovery: 83 % Limits: 50-150 % Dilution: 1x LCS Dup (24C0221-BSD1) Prepared: 03/07/24 06:07 Analyzed: 03/07/24 19:53 Q-19 NWTPH-DX (WA\_Ext) Diesel Range Organics (C10-C40) 200 38-132% 30% ug/L Surr: o-Terphenyl (Surr) Recovery: 82 % Limits: 50-150 % Dilution: 1x

Apex Laboratories

(milele fog



AMENDED REPORT

#### **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4C0878 - 03 29 24 1757

#### QUALITY CONTROL (QC) SAMPLE RESULTS

#### Whole Product Diesel Testing (C10-C40) by WDOE/NWTPH-Dx with Silica Gel Column Cleanup Reporting % REC RPD Detection L Spike Source Dilution % REC Limits RPD Analyte Result Limit Limit Units Amount Result Limit Notes Batch 24C0984 - EPA 3510C (Fuels/Acid Ext.) Water Blank (24C0984-BLK1) Prepared: 03/07/24 06:07 Analyzed: 03/28/24 13:51 NWTPH-DX (WA Ext) wSGC Diesel Range Organics (C10-C40) 250 ug/L Surr: o-Terphenyl (Surr) Recovery: 89 % Limits: 50-150 % Dilution: 1x LCS (24C0984-BS1) Prepared: 03/07/24 06:07 Analyzed: 03/28/24 14:14 NWTPH-DX (WA Ext) wSGC Diesel Range Organics (C10-C40) 38-132% Surr: o-Terphenyl (Surr) Recovery: 92 % Limits: 50-150 % Dilution: 1x LCS Dup (24C0984-BSD1) Prepared: 03/07/24 06:07 Analyzed: 03/28/24 14:38 Q-19 NWTPH-DX (WA\_Ext) wSGC Diesel Range Organics (C10-C40) 250 38-132% 30% ug/L Surr: o-Terphenyl (Surr) Recovery: 83 % Limits: 50-150 % Dilution: 1x

Apex Laboratories

(milele fog



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4C0878 - 03 29 24 1757

## QUALITY CONTROL (QC) SAMPLE RESULTS

|                                  |           |                      | BTEX+              | N Compo     | ounds by  | EPA 8260        | D                |       |                 |     |              |       |
|----------------------------------|-----------|----------------------|--------------------|-------------|-----------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                          | Result    | Detection L<br>Limit | Reporting<br>Limit | Units       | Dilution  | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 24C0338 - EPA 5030C        |           |                      |                    |             |           |                 | Wa               | ter   |                 |     |              |       |
| Blank (24C0338-BLK1)             |           |                      | Prepare            | d: 03/11/24 | 10:00 Ana | lyzed: 03/11/   | /24 12:19        |       |                 |     |              |       |
| EPA 8260D                        |           |                      |                    |             |           |                 |                  |       |                 |     |              |       |
| Naphthalene                      | ND        |                      | 5.00               | ug/L        | 1         |                 |                  |       |                 |     |              | Q-5   |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recove               | ry: 115 %          | Limits: 80  | 0-120 %   | Dilı            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           |                      | 100 %              | 80          | -120 %    |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 99 %               | 80          | 1-120 %   |                 | "                |       |                 |     |              |       |
| LCS (24C0338-BS1)                |           |                      | Prepare            | d: 03/11/24 | 09:30 Ana | lyzed: 03/11    | /24 11:08        |       |                 |     |              |       |
| EPA 8260D                        |           |                      |                    |             |           |                 |                  |       |                 |     |              |       |
| Naphthalene                      | 12.9      |                      | 5.00               | ug/L        | 1         | 20.0            |                  | 65    | 80-120%         |     |              | Q-54  |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recover              | ry: 106 %          | Limits: 80  | 0-120 %   | Dilı            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           |                      | 97 %               | 80          | -120 %    |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 94 %               | 80          | )-120 %   |                 | "                |       |                 |     |              |       |
| Duplicate (24C0338-DUP1)         |           |                      | Prepare            | d: 03/11/24 | 14:00 Ana | lyzed: 03/11/   | /24 20:03        |       |                 |     |              |       |
| OC Source Sample: Non-SDG (A4    | C1027-01R | <u>E1)</u>           |                    |             |           |                 |                  |       |                 |     |              |       |
| Naphthalene                      | ND        |                      | 100                | ug/L        | 20        |                 | ND               |       |                 |     | 30%          | Q-54  |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recove               | ry: 119 %          | Limits: 80  | 0-120 %   | Dilı            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           |                      | 100 %              | 80          | -120 %    |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 96 %               | 80          | )-120 %   |                 | "                |       |                 |     |              |       |
| Matrix Spike (24C0338-MS1)       |           |                      | Prepare            | d: 03/11/24 | 12:00 Ana | lyzed: 03/11/   | /24 21:52        |       |                 |     |              |       |
| QC Source Sample: Non-SDG (A4    | B1637-02) |                      |                    |             |           |                 |                  |       |                 |     |              |       |
| EPA 8260D                        |           |                      |                    |             |           |                 |                  |       |                 |     |              |       |
| Naphthalene                      | 14.0      |                      | 5.00               | ug/L        | 1         | 20.0            | ND               | 70    | 61-128%         |     |              | Q-54  |
| Surr: 1,4-Difluorobenzene (Surr) |           | Recover              | ry: 107 %          | Limits: 80  | 0-120 %   | Dilı            | ution: 1x        |       |                 |     |              |       |
| Toluene-d8 (Surr)                |           |                      | 95 %               | 80          | -120 %    |                 | "                |       |                 |     |              |       |
| 4-Bromofluorobenzene (Surr)      |           |                      | 93 %               | 80          | -120 %    |                 | "                |       |                 |     |              |       |

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

<u>Farallon-Seattle</u> Project: <u>397-019 Block 38 West</u>

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4C0878 - 03 29 24 1757

## QUALITY CONTROL (QC) SAMPLE RESULTS

|                                  |            | Selecte              | d Semivol          | atile Orga   | anic Com   | pounds b        | y EPA 82         | 270E  |                 |     |              |       |
|----------------------------------|------------|----------------------|--------------------|--------------|------------|-----------------|------------------|-------|-----------------|-----|--------------|-------|
| Analyte                          | Result     | Detection L<br>Limit | Reporting<br>Limit | Units        | Dilution   | Spike<br>Amount | Source<br>Result | % REC | % REC<br>Limits | RPD | RPD<br>Limit | Notes |
| Batch 24C0220 - EPA 3510C (A     | Acid Extra | ction)               |                    |              |            |                 | Wa               | ter   |                 |     |              |       |
| Blank (24C0220-BLK1)             |            |                      | Prepared           | 1: 03/07/24  | 06:02 Anal | yzed: 03/08     | 3/24 18:13       |       |                 |     |              |       |
| EPA 8270E                        |            |                      |                    |              |            |                 |                  |       |                 |     |              |       |
| 1-Methylnaphthalene              | ND         |                      | 0.0400             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| 2-Methylnaphthalene              | ND         |                      | 0.0400             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Naphthalene                      | ND         |                      | 0.0400             | ug/L         | 1          |                 |                  |       |                 |     |              |       |
| Surr: Nitrobenzene-d5 (Surr)     |            | Reco                 | very: 73 %         | Limits: 44   | 4-120 %    | Dili            | ution: 1x        |       |                 |     |              |       |
| 2-Fluorobiphenyl (Surr)          |            |                      | 65 %               | 44           | 4-120 %    |                 | "                |       |                 |     |              |       |
| Phenol-d6 (Surr)                 |            |                      | 24 %               | 10           | 0-133 %    |                 | "                |       |                 |     |              |       |
| p-Terphenyl-d14 (Surr)           |            |                      | 80 %               | 50           | 0-134 %    |                 | "                |       |                 |     |              |       |
| 2-Fluorophenol (Surr)            |            |                      | 39 %               | 19           | 0-120 %    |                 | "                |       |                 |     |              |       |
| 2,4,6-Tribromophenol (Surr)      |            |                      | 91 %               | 43           | 3-140 %    |                 | "                |       |                 |     |              |       |
| LCS (24C0220-BS1)                |            |                      | D                  | 1. 02/07/24  | 06.02      | <b>1.</b> 02/00 | 0/24 10.47       |       |                 |     |              |       |
|                                  |            |                      | Preparec           | 1. 03/07/24  | 06:02 Anal | lyzeu. 03/08    | 5/24 16.4/       |       |                 |     |              |       |
| EPA 8270E<br>1-Methylnaphthalene | 1.83       |                      | 0.160              | ug/L         | 4          | 4.00            |                  | 46    | 41-120%         |     |              |       |
| 2-Methylnaphthalene              | 1.72       |                      | 0.160              | ug/L<br>ug/L | 4          | 4.00            |                  | 43    | 40-121%         |     |              |       |
| Naphthalene                      | 1.72       |                      | 0.160              | -            | 4          | 4.00            |                  | 43    | 40-121%         |     |              |       |
|                                  | 1./3       |                      |                    | ug/L         |            |                 |                  | 44    | 40-12170        |     |              |       |
| Surr: Nitrobenzene-d5 (Surr)     |            | Reco                 | very: 78 %         | Limits: 44   |            | Dili            | ution: 4x        |       |                 |     |              |       |
| 2-Fluorobiphenyl (Surr)          |            |                      | 74 %               |              | 1-120 %    |                 | "                |       |                 |     |              |       |
| Phenol-d6 (Surr)                 |            |                      | 26 %               |              | 0-133 %    |                 | "                |       |                 |     |              |       |
| p-Terphenyl-d14 (Surr)           |            |                      | 87 %               |              | 0-134 %    |                 |                  |       |                 |     |              |       |
| 2-Fluorophenol (Surr)            |            |                      | 44 %               |              | 0-120 %    |                 | "                |       |                 |     |              |       |
| 2,4,6-Tribromophenol (Surr)      |            |                      | 91 %               | 43           | 3-140 %    |                 |                  |       |                 |     |              |       |
| LCS Dup (24C0220-BSD1)           |            |                      | Prepared           | 1: 03/07/24  | 06:02 Anal | yzed: 03/08     | 3/24 19:21       |       |                 |     |              | Q-1   |
| EPA 8270E                        |            |                      |                    |              |            |                 |                  |       |                 |     |              |       |
| 1-Methylnaphthalene              | 1.84       |                      | 0.160              | ug/L         | 4          | 4.00            |                  | 46    | 41-120%         | 0.6 | 30%          |       |
| 2-Methylnaphthalene              | 1.82       |                      | 0.160              | ug/L         | 4          | 4.00            |                  | 46    | 40-121%         | 6   | 30%          |       |
| Naphthalene                      | 1.81       |                      | 0.160              | ug/L         | 4          | 4.00            |                  | 45    | 40-121%         | 3   | 30%          |       |
| Surr: Nitrobenzene-d5 (Surr)     |            | Reco                 | very: 76 %         | Limits: 44   | 4-120 %    | Dili            | ution: 4x        |       |                 |     |              |       |
| 2-Fluorobiphenyl (Surr)          |            |                      | 74 %               | 44           | 1-120 %    |                 | "                |       |                 |     |              |       |
| Phenol-d6 (Surr)                 |            |                      | 25 %               | 10           | 0-133 %    |                 | "                |       |                 |     |              |       |
| p-Terphenyl-d14 (Surr)           |            |                      | 89 %               |              | 0-134 %    |                 | "                |       |                 |     |              |       |
| 2-Fluorophenol (Surr)            |            |                      | 44 %               | 19           | 0-120 %    |                 | "                |       |                 |     |              |       |
| 2,4,6-Tribromophenol (Surr)      |            |                      | 91 %               |              | 3-140 %    |                 | ,,               |       |                 |     |              |       |

Apex Laboratories

/ milale fog



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4C0878 - 03 29 24 1757

## QUALITY CONTROL (QC) SAMPLE RESULTS

#### Selected Semivolatile Organic Compounds by EPA 8270E

Reporting Spike Detection L Source % REC RPD Dilution Limits RPD Analyte Result Limit Units % REC Limit Amount Result Limit Notes

Batch 24C0220 - EPA 3510C (Acid Extraction) Water

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4C0878 - 03 29 24 1757

#### SAMPLE PREPARATION INFORMATION

|                     |                 | Whole Product Di | esel Testing (C10-C4 | 10) by WDOE/NWTF | PH-Dx         |               | ·       |
|---------------------|-----------------|------------------|----------------------|------------------|---------------|---------------|---------|
| Prep: EPA 3510C (Fu | ıels/Acid Ext.) |                  |                      |                  | Sample        | Default       | RL Prep |
| Lab Number          | Matrix          | Method           | Sampled              | Prepared         | Initial/Final | Initial/Final | Factor  |
| Batch: 24C0221      |                 |                  |                      |                  |               |               |         |
| A4C0878-01          | Water           | NWTPH-DX         | 02/29/24 11:03       | 03/07/24 06:07   | 1050mL/2mL    | 1000mL/2mL    | 0.95    |
|                     |                 | (WA_Ext)         |                      |                  |               |               |         |
| A4C0878-02          | Water           | NWTPH-DX         | 02/29/24 14:06       | 03/07/24 06:07   | 1050 mL/2 mL  | 1000 mL/2 mL  | 0.95    |
|                     |                 | (WA_Ext)         |                      |                  |               |               |         |
| A4C0878-03          | Water           | NWTPH-DX         | 02/29/24 09:32       | 03/07/24 06:07   | 1060mL/2mL    | 1000mL/2mL    | 0.94    |
|                     |                 | (WA_Ext)         |                      |                  |               |               |         |
| A4C0878-04          | Water           | NWTPH-DX         | 02/29/24 12:29       | 03/07/24 06:07   | 1060mL/2mL    | 1000 mL/2 mL  | 0.94    |
|                     |                 | (WA_Ext)         |                      |                  |               |               |         |
| A4C0878-05          | Water           | NWTPH-DX         | 02/29/24 10:45       | 03/07/24 06:07   | 1060mL/2mL    | 1000 mL/2 mL  | 0.94    |
|                     |                 | (WA_Ext)         |                      |                  |               |               |         |
| A4C0878-06          | Water           | NWTPH-DX         | 02/29/24 12:40       | 03/07/24 06:07   | 1000 mL/2 mL  | 1000mL/2mL    | 1.00    |
|                     |                 | (WA_Ext)         |                      |                  |               |               |         |

|                     | Whole Produc    | ct Diesel Testing (C10    | -C40) by WDOE/NV | WTPH-Dx with Silica | a Gel Column Clea | anup          |         |
|---------------------|-----------------|---------------------------|------------------|---------------------|-------------------|---------------|---------|
| Prep: EPA 3510C (Fu | uels/Acid Ext.) |                           |                  |                     | Sample            | Default       | RL Prep |
| Lab Number          | Matrix          | Method                    | Sampled          | Prepared            | Initial/Final     | Initial/Final | Factor  |
| Batch: 24C0984      |                 |                           |                  |                     |                   |               |         |
| A4C0878-06          | Water           | NWTPH-DX<br>(WA_Ext) wSGC | 02/29/24 12:40   | 03/07/24 06:07      | 1000mL/2mL        | 1000mL/5mL    | 0.40    |

|                 |        | ВТЕ       | X+N Compounds by | EPA 8260D      |               |               |         |
|-----------------|--------|-----------|------------------|----------------|---------------|---------------|---------|
| Prep: EPA 5030C |        |           |                  |                | Sample        | Default       | RL Prep |
| Lab Number      | Matrix | Method    | Sampled          | Prepared       | Initial/Final | Initial/Final | Factor  |
| Batch: 24C0338  |        |           |                  |                |               |               |         |
| A4C0878-07      | Water  | EPA 8260D | 02/29/24 09:50   | 03/11/24 14:00 | 5mL/5mL       | 5mL/5mL       | 1.00    |
| A4C0878-08      | Water  | EPA 8260D | 02/29/24 09:15   | 03/11/24 14:00 | 5mL/5mL       | 5mL/5mL       | 1.00    |

|                    |                 | Selected Semi | volatile Organic Com | pounds by EPA 827 | '0E           |               |         |
|--------------------|-----------------|---------------|----------------------|-------------------|---------------|---------------|---------|
| Prep: EPA 3510C (A | cid Extraction) |               |                      |                   | Sample        | Default       | RL Prep |
| Lab Number         | Matrix          | Method        | Sampled              | Prepared          | Initial/Final | Initial/Final | Factor  |
| Batch: 24C0220     |                 |               |                      |                   |               |               |         |
| A4C0878-01         | Water           | EPA 8270E     | 02/29/24 11:03       | 03/07/24 06:02    | 1060 mL/1 mL  | 1000 mL/1 mL  | 0.94    |
| A4C0878-02         | Water           | EPA 8270E     | 02/29/24 14:06       | 03/07/24 06:02    | 1060 mL/1 mL  | 1000 mL/1 mL  | 0.94    |
| A4C0878-03         | Water           | EPA 8270E     | 02/29/24 09:32       | 03/07/24 06:02    | 1060 mL/1 mL  | 1000 mL/1 mL  | 0.94    |

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4C0878 - 03 29 24 1757

#### SAMPLE PREPARATION INFORMATION

|                   |                  | Selected Semi | volatile Organic Com | pounds by EPA 827 | '0E           |               |         |
|-------------------|------------------|---------------|----------------------|-------------------|---------------|---------------|---------|
| Prep: EPA 3510C ( | Acid Extraction) |               |                      |                   | Sample        | Default       | RL Prep |
| Lab Number        | Matrix           | Method        | Sampled              | Prepared          | Initial/Final | Initial/Final | Factor  |
| A4C0878-04        | Water            | EPA 8270E     | 02/29/24 12:29       | 03/07/24 06:02    | 1060mL/1mL    | 1000mL/1mL    | 0.94    |
| A4C0878-05        | Water            | EPA 8270E     | 02/29/24 10:45       | 03/07/24 06:02    | 980 mL/1 mL   | 1000 mL/1 mL  | 1.02    |

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4C0878 - 03 29 24 1757

#### **QUALIFIER DEFINITIONS**

#### Client Sample and Quality Control (QC) Sample Qualifier Definitions:

#### **Apex Laboratories**

- Q-19 Blank Spike Duplicate (BSD) sample analyzed in place of Matrix Spike/Duplicate samples due to limited sample amount available for analysis.
- Q-54 Daily Continuing Calibration Verification recovery for this analyte failed the +/-20% criteria listed in EPA method 8260/8270 by -15%. The results are reported as Estimated Values.

Apex Laboratories

(milale fog



AMENDED REPORT

#### **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4C0878 - 03 29 24 1757

#### **REPORTING NOTES AND CONVENTIONS:**

#### **Abbreviations:**

DET Analyte DETECTED at or above the detection or reporting limit.

ND Analyte NOT DETECTED at or above the detection or reporting limit.

NR Result Not Reported

RPD Relative Percent Difference. RPDs for Matrix Spikes and Matrix Spike Duplicates are based on concentration, not recovery.

#### **Detection Limits:** Limit of Detection (LOD)

Limits of Detection (LODs) are normally set at a level of one half the validated Limit of Quantitation (LOQ).

If no value is listed ('----'), then the data has not been evaluated below the Reporting Limit.

#### Reporting Limits: Limit of Quantitation (LOQ)

Validated Limits of Quantitation (LOQs) are reported as the Reporting Limits for all analyses where the LOQ, MRL, PQL or CRL are requested. The LOQ represents a level at or above the low point of the calibration curve, that has been validated according to Apex Laboratories' comprehensive LOQ policies and procedures.

#### **Reporting Conventions:**

Basis: Results for soil samples are generally reported on a 100% dry weight basis.

The Result Basis is listed following the units as " dry", " wet", or " " (blank) designation.

"dry" Sample results and Reporting Limits are reported on a dry weight basis. (i.e. "ug/kg dry")

See Percent Solids section for details of dry weight analysis.

"wet" Sample results and Reporting Limits for this analysis are normally dry weight corrected, but have not been modified in this case.

"\_\_\_" Results without 'wet' or 'dry' designation are not normally dry weight corrected. These results are considered 'As Received'.

Results for Volatiles analyses on soils and sediments that are reported on a "dry weight" basis include the water miscible solvent (WMS) correction referenced in the EPA 8000 Method guidance documents. Solid and Liquid samples reported on an "As Received" basis do not have the WMS correction applied, as dry weight was not performed.

#### **QC Source:**

In cases where there is insufficient sample provided for Sample Duplicates and/or Matrix Spikes, a Lab Control Sample Duplicate (LCS Dup) may be analyzed to demonstrate accuracy and precision of the extraction batch.

Non-Client Batch QC Samples (Duplicates and Matrix Spike/Duplicates) may not be included in this report. Please request a Full QC report if this data is required.

#### **Miscellaneous Notes:**

" --- " QC results are not applicable. For example, % Recoveries for Blanks and Duplicates, % RPD for Blanks, Blank Spikes and Matrix Spikes, etc.

"\*\*\* " Used to indicate a possible discrepancy with the Sample and Sample Duplicate results when the %RPD is not available. In this case, either the Sample or the Sample Duplicate has a reportable result for this analyte, while the other is Non Detect (ND).

Apex Laboratories



AMENDED REPORT

#### Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4C0878 - 03 29 24 1757

#### **REPORTING NOTES AND CONVENTIONS (Cont.):**

#### Blanks:

Standard practice is to evaluate the results from Blank QC Samples down to a level equal to ½ the Reporting Limit (RL).

- -For Blank hits falling between ½ the RL and the RL (J flagged hits), the associated sample and QC data will receive a 'B-02' qualifier.
- -For Blank hits above the RL, the associated sample and QC data will receive a 'B' qualifier, per Apex Laboratories' Blank Policy. For further details, please request a copy of this document.
- -Sample results flagged with a 'B' or 'B-02' qualifier are potentially biased high if the sample results are less than ten times the level found in the blank for inorganic analyses, or less than five times the level found in the blank for organic analyses.
- 'B' and 'B-02' qualifications are only applied to sample results detected above the Reporting Level, if results are not reported to the MDL.

#### **Preparation Notes:**

#### Mixed Matrix Samples:

#### Water Samples:

Water samples containing significant amounts of sediment are decanted or separated prior to extraction, and only the water portion analyzed, unless otherwise directed by the client.

#### Soil and Sediment Samples:

Soil and Sediment samples containing significant amounts of water are decanted prior to extraction, and only the solid portion analyzed, unless otherwise directed by the client.

#### **Sampling and Preservation Notes:**

Certain regulatory programs, such as National Pollutant Discharge Elimination System (NPDES), require that activities such as sample filtration (for dissolved metals, orthophosphate, hexavalent chromium, etc.) and testing of short hold analytes (pH, Dissolved Oxygen, etc.) be performed in the field (on-site) within a short time window. In addition, sample matrix spikes are required for some analyses, and sufficient volume must be provided, and billable site specific QC requested, if this is required. All regulatory permits should be reviewed to ensure that these requirements are being met.

Data users should be aware of which regulations pertain to the samples they submit for testing. If related sample collection activities are not approved for a particular regulatory program, results should be considered estimates. Apex Laboratories will qualify these analytes according to the most stringent requirements, however results for samples that are for non-regulatory purposes may be acceptable.

Samples that have been filtered and preserved at Apex Laboratories per client request are listed in the preparation section of the report with the date and time of filtration listed.

Apex Laboratories maintains detailed records on sample receipt, including client label verification, cooler temperature, sample preservation, hold

Apex Laboratories



Farallon-Seattle

#### ANALYTICAL REPORT

Apex Laboratories, LLC

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4C0878 - 03 29 24 1757

Project:

AMENDED REPORT

#### LABORATORY ACCREDITATION INFORMATION

## ORELAP Certification ID: OR100062 (Primary Accreditation) - EPA ID: OR01039

All methods and analytes reported from work performed at Apex Laboratories are included on Apex Laboratories' ORELAP Scope of Certification, with the <u>exception</u> of any analyte(s) listed below:

## **Apex Laboratories**

| Matrix | Analysis               | TNI_ID                        | Analyte                             | TNI_ID | Accreditation |
|--------|------------------------|-------------------------------|-------------------------------------|--------|---------------|
| Water  | NWTPH-DX (WA_Ext)      | FLS-W-01                      | Diesel Range Organics (C10-C40)     | 9369   |               |
| Water  | NWTPH-DX (WA_Ext) wSGC | FLS-W-01                      | Diesel Range Organics (C10-C40)     | 9369   |               |
|        | All reported an        | alytes are included in Apex I | Laboratories' current ORELAP scope. |        |               |

#### **Secondary Accreditations**

Apex Laboratories also maintains reciprocal accreditation with non-TNI states (Washington DOE), as well as other state specific accreditations not listed here.

## **Subcontract Laboratory Accreditations**

Subcontracted data falls outside of Apex Laboratories' Scope of Accreditation.

Please see the Subcontract Laboratory report for full details, or contact your Project Manager for more information.

#### **Field Testing Parameters**

Results for Field Tested data are provded by the client or sampler, and fall outside of Apex Laboratories' Scope of Accreditation.

Apex Laboratories



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Farallon-Seattle Project: 397-019 Block 38 West

 1809 7th Ave Suite 1111
 Project Number: 397-019
 Report ID:

 Seattle, WA 98101
 Project Manager: Suzy Stumpf
 A4C0878 - 03 29 24 1757

| 6700 SW Sandburg St., 11gard, UK 97223 Pri: 203-116-2343 Company: [24/4]/Pri | /223 FR. 50.                                       | Project Mgr. | 50 m                    | 7                | Rungt   | 7              |                |             | Project Name: | ame:        | 10             | look         | 38                           | -Jean          | 1          |                                                     |            | Proj       | Project #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P10-19   | 2/0 |       |      |            |
|------------------------------------------------------------------------------|----------------------------------------------------|--------------|-------------------------|------------------|---------|----------------|----------------|-------------|---------------|-------------|----------------|--------------|------------------------------|----------------|------------|-----------------------------------------------------|------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|-------|------|------------|
| 1 00                                                                         | 38                                                 | 3            |                         |                  | Phone:  | ۔ ۔            |                |             |               | Email:      |                |              |                              |                |            |                                                     |            | PO#        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 397-019  | 8   |       |      |            |
| 0                                                                            | M. Lee                                             |              |                         |                  |         |                |                | access.     |               |             | 194            |              |                              | NAL            | SIS R      | ANALYSIS REQUEST                                    | E          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | -   | 100   |      |            |
| Site Location:                                                               |                                                    |              | ЕКЅ                     |                  |         |                | -50            |             |               | s           | Full List      |              |                              |                | , Be, Cd,  | A' Xu                                               | S. ICEL    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |       |      |            |
| County Line                                                                  | ATE                                                | WE           | ATRIX<br>OF CONTAIN     | WTPH-HCID        | xQ-H4TW | WTPH-Gx        | 260 BTEX       | 790 KBDW AC | 790 AOC# E41  | HA9 MIS 072 | sloV-ima8 072  | 087 beriefer | 081 Pesticides<br>CRA Metals | riority Metals | Sb, As, Ba | Cr, Co, Cr, Co, Cr, Ra, Ma, Ma, Ma, Tr, As, Ma, Tr, | OTAL DIS   | Naphinales | SSI_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 201      |     |       |      | old Sample |
| SAMPLE ID                                                                    | 1                                                  |              | 30                      |                  | N >     | N.             |                | _           |               | 8           |                |              | -                            | +              | V          | H                                                   | T          | ×          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | -   |       |      | H          |
| France 151-622014                                                            |                                                    | -            |                         | -                | ×       |                | +              | -           | -             |             |                | T            | $\vdash$                     |                | <u> </u>   |                                                     | -          | ×          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | -   |       |      |            |
| Fine 162-10000                                                               |                                                    | 932          | a                       |                  | ×       |                | -              | $\vdash$    |               |             |                | -            | -                            | -              |            |                                                     |            | `*<        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |       |      |            |
| France, 153-002924                                                           | 2                                                  | 123          | do                      | -                | ~       |                |                |             | <u> </u>      |             |                |              |                              |                |            |                                                     | $\vdash$   | ×          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |       |      |            |
| Pm. 164-02924                                                                |                                                    | 124.5        | 0                       | $\vdash$         | *       |                |                |             |               |             |                |              |                              | $\dashv$       |            |                                                     | $\dashv$   | ×          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +        | -   | 4     |      | +          |
| FMU- 158-1029 24                                                             | 1,                                                 | 343          | 7                       | -0               | _       |                |                | -+          | _             |             |                | $\dashv$     | -                            | -              | _          |                                                     |            | _          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        |     |       |      |            |
|                                                                              |                                                    |              |                         |                  | _       |                | <b></b>        | +           | ++            |             |                | +            | +                            | +              |            |                                                     | $+\!\!\!+$ | 1          | Ţ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | -   | -     |      |            |
|                                                                              |                                                    | 1            | +                       | 1                | 1       |                |                | $\vdash$    | -             |             |                |              |                              |                |            |                                                     |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |       |      |            |
|                                                                              |                                                    |              |                         |                  |         |                |                |             |               |             |                | $\dashv$     |                              |                | _          |                                                     | $\dashv$   | $\dashv$   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\dashv$ |     | _     |      |            |
| Standard Tur                                                                 | Standard Turn Around Time (TAT) = 10 Business Days | (TAT)=       | = 10 Busin              | ess Days         |         |                |                |             |               | ES :        | CIAL           | INSTR        | ICII                         | SNS            | tut        | 7                                                   | 300        | ż          | SPECIAL INSTRUCTIONS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3        |     |       |      |            |
|                                                                              | 1 Day                                              | ~            | 2 Day                   | 374              | 3 Day   |                |                |             |               | 2           | Ŗ<br>B         | 1            | +                            |                | ,          |                                                     | 0200       | 3          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |       |      |            |
| TAT Requested (circle)                                                       | 5 Day                                              | Sta          | Standard                |                  | Other:  |                |                | - 1         |               | 3           | 18 +           | \$           | house                        | 3              | FMW.       | 3- FMW-139014<br>- OW3-022824                       | 7.70       | ž,         | NONS for paymes form. 1375 con included in la. Cooless.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Z.       | · E | 100)  | E.S. |            |
| SAMP                                                                         | SAMPLES ARE HELD FOR 30 DAYS                       | 88           | DAYS                    |                  |         |                |                |             |               | ,           | . 1/0/d Sample | 4            | unce                         |                | Wet        | FMM-158-038M                                        | 280        | . 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |     |       |      |            |
| RELINQUISHED BY: Signature:                                                  | Date:                                              | - 8          | RECEIVED BY: Signature: | 10 E             | 1       |                | Date: 03/03/24 | 0<br>0<br>0 | 42/5          |             | Signature:     | SHED         | BY:                          |                | Date:      | 03/0                                                | 2/5        | S. S. R.   | Date: 03/03/24 Signature: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date: Date | , W.     | Z   | 19 gg | 74   |            |
| Printed Name:                                                                | Time:                                              |              | Printed Name:           | ///              | 375     |                | Time: 12:37pm  | 12:3        | 124           | E           | Printed Name:  |              | VIEW                         | _              | Time:      | 35                                                  | JZ:37pm    | 是一         | Mitring Marifosa 12:37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , Me     | 3   | Time  | 2.2  |            |
| ١.                                                                           | 5                                                  |              | Company:                | THE PORT CONSIER | 8       | NSIER<br>SAIER |                |             |               | 2           | Company:       |              |                              |                |            |                                                     |            | රී         | Company:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1        | -   |       |      |            |

Apex Laboratories

/ milule fog



AMENDED REPORT

#### **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323

ORELAP ID: OR100062

Report ID:

Farallon-Seattle

Project:

397-019 Block 38 West

1809 7th Ave Suite 1111 Seattle, WA 98101 Project Number: **397-019**Project Manager: **Suzy Stumpf** 

A4C0878 - 03 29 24 1757

Form Y-002 R-00 VMTH-DXLL J/16C Maphillace by 886 GP 3/1 200 Nophh CHAIN OF CUSTODY 1095 LCB\* 11.5/4 \$ \*HV4 PHS 6478 STED AOC! LOS I'PS 8366 EMP VOC 32 GP 3/1/2024 STEE HEDW AOC X3TE 6928 KO-HALLAN TO-BILAN MALLE HCID \* OF CONTAINERS 5700 SW Sandburg St., Tigard, OR 97223 Ph.: 503-718-2323 XISTAM 3 2 432 250 TIME SDey BLVQ 48650-651-MWH TAT Requested (circle) FMW- 159-02924 428660- EWG MERCO- OSI -MULL pand 151-073944 Film~ 162-02824 my- 164-021 24 FM-158-528-34 4PEX LABS

Apex Laboratories

/ milale Pog



AMENDED REPORT

## **Apex Laboratories, LLC**

6700 S.W. Sandburg Street Tigard, OR 97223 503-718-2323 ORELAP ID: OR100062

Farallon-Seattle

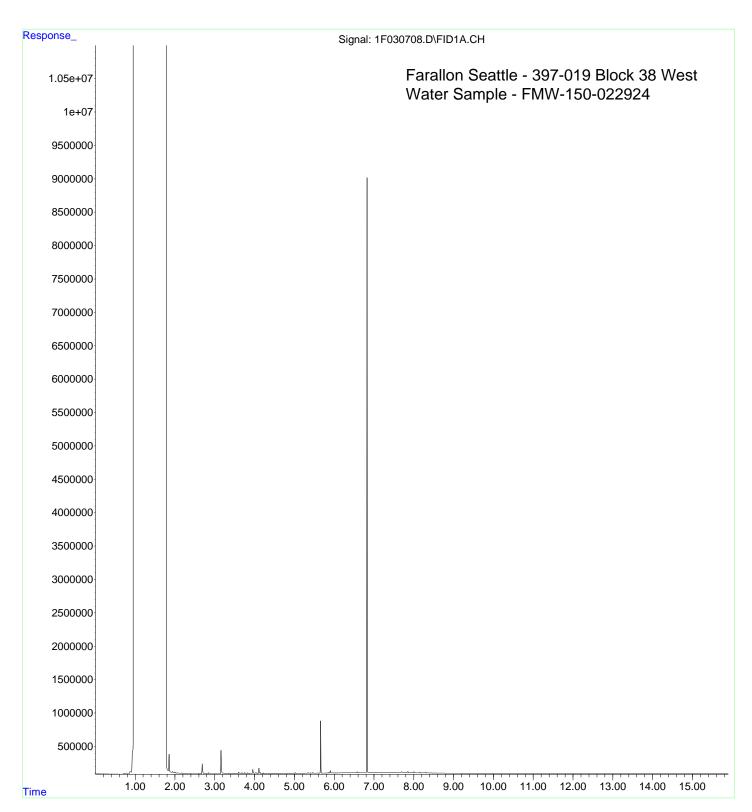
1809 7th Ave Suite 1111 Seattle, WA 98101 Project: <u>397-019 Block 38 West</u>

Project Number: **397-019**Project Manager: **Suzy Stumpf** 

Report ID: A4C0878 - 03 29 24 1757

| Client: Fava \\omega\omega Element WO#: A4 COB                                                                                                                                                                                                                                            |                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Client: 1 W W ( ( 0 V ) Element W O #: A4 CC/2                                                                                                                                                                                                                                            | 78                 |
| Project/Project #: Block 28 west   397-019                                                                                                                                                                                                                                                | B3/4/24            |
| Delivery Info:                                                                                                                                                                                                                                                                            |                    |
| Date/time received: 311/M @ 1237 By: KAM                                                                                                                                                                                                                                                  |                    |
| Delivered by: Apex_Client_ESSFedEx_UPS_RadioMorganSDSEvergreen_                                                                                                                                                                                                                           | ∠Other             |
| From USDA Regulated Origin? Yes No                                                                                                                                                                                                                                                        |                    |
| Cooler Inspection Date/time inspected: 2112 @ 1240 By: KAM                                                                                                                                                                                                                                |                    |
| Chain of Custody included? Yes No                                                                                                                                                                                                                                                         |                    |
| Signed/dated by client? Yes Yes No                                                                                                                                                                                                                                                        |                    |
| Contains USDA Reg. Soils? Yes No Unsure (email RegSoils)                                                                                                                                                                                                                                  |                    |
| Cooler #1 Cooler #2 Cooler #3 Cooler #4 Cooler #5 Cooler #                                                                                                                                                                                                                                | 6 Cooler #7        |
| Temperature (°C) 2.4 5.4 5.1                                                                                                                                                                                                                                                              |                    |
| Custody seals? (Y/N) N — — — — — — — — — — — — — — — — — —                                                                                                                                                                                                                                |                    |
| Received on ice? (Y/N)                                                                                                                                                                                                                                                                    |                    |
| Temp. blanks? (Y/N)                                                                                                                                                                                                                                                                       | _                  |
| Ice type: (Gel/Real/Other)                                                                                                                                                                                                                                                                |                    |
| Condition (In/Out):                                                                                                                                                                                                                                                                       |                    |
| Green dots applied to out of temperature samples? Yes No Out of temperature samples form initiated? Yes/No Sample Inspection: Date/time inspected: 7   11   1   2   3   1   3   3   4   3   4   3   4   3   4   3   4   3   4   3   4   3   4   3   4   3   4   3   4   3   4   3   4   4 |                    |
| All samples intact? Yes X No Comments:                                                                                                                                                                                                                                                    |                    |
| All samples intact? Yes X No Comments:  Bottle labels/COCs agree? Yes No X Comments: T on FMW-15D reads  FD 1D 1T reads 0w3-0229 24 222 24 2950 & FMW-159-0                                                                                                                               | 229242129          |
| Bottle labels/COCs agree? Yes No _X Comments: _T on FMW-150 weads                                                                                                                                                                                                                         | 229242129          |
| Bottle labels/COCs agree? Yes No X Comments: Ton FMW-15D reads  ID  D T reads 0W3-022924 U2914Q950 & FMW-159-0                                                                                                                                                                            | 279742174<br>(a)   |
| Bottle labels/COCs agree? Yes No _X Comments: _T on FMW-15D veads<br>ID  D T veads OW3-0229 24 U29 24@950 & FMW-159-0<br>COC/container discrepancies form initiated? Yes No _X                                                                                                            | 279742/24<br>(a) 0 |
| Bottle labels/COCs agree? Yes No _X Comments: _T on FMW-15D read& FD   D   T read& OW 3-0229 24 U2q 24@95D & FMW-159-0COC/container discrepancies form initiated? Yes No Comments:                                                                                                        | 229242124          |
| Bottle labels/COCs agree? Yes No _X Comments: _T on FMW-15D weads  ID  D T weads Owb-0229 24                                                                                                                                                                                              | 229242144<br>(4) ° |

Apex Laboratories

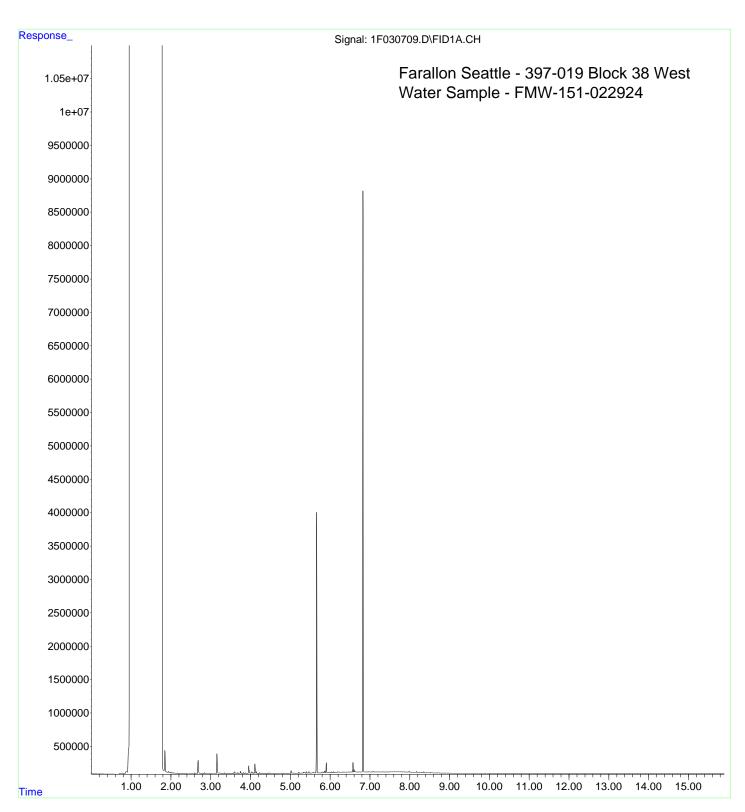

( withle fog

File : C: \msdchem\1\copied data\4C07057\1F030708. D

Operator : BLL

Acquired: 07 Mar 2024 8:16 pm using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: A4C0878-01

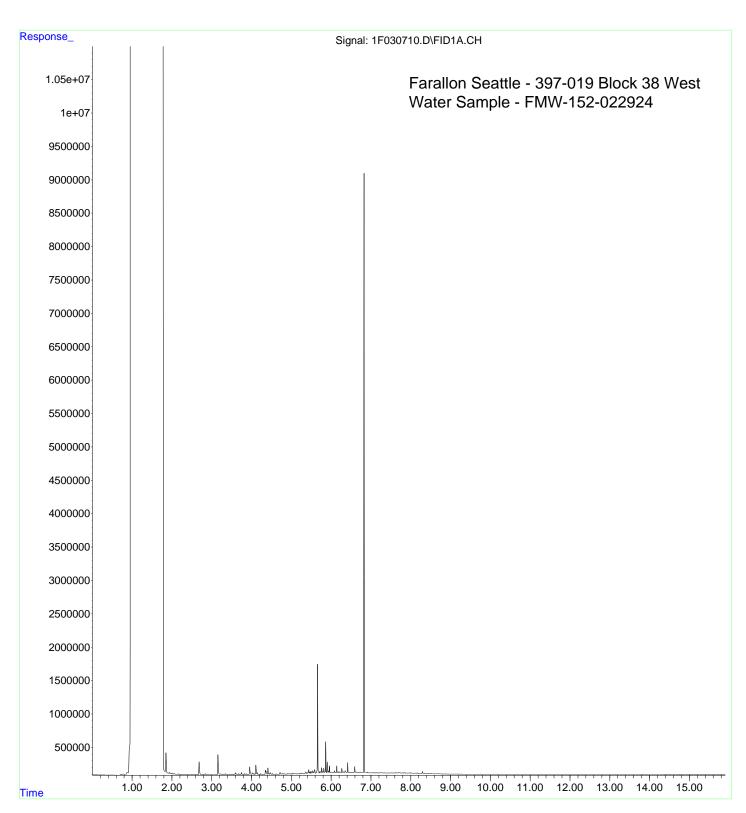



File : C: \msdchem\1\copied data\4C07057\1F030709. D

Operator : BLL

Acquired: 07 Mar 2024 8: 39 pm using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: A4C0878-02

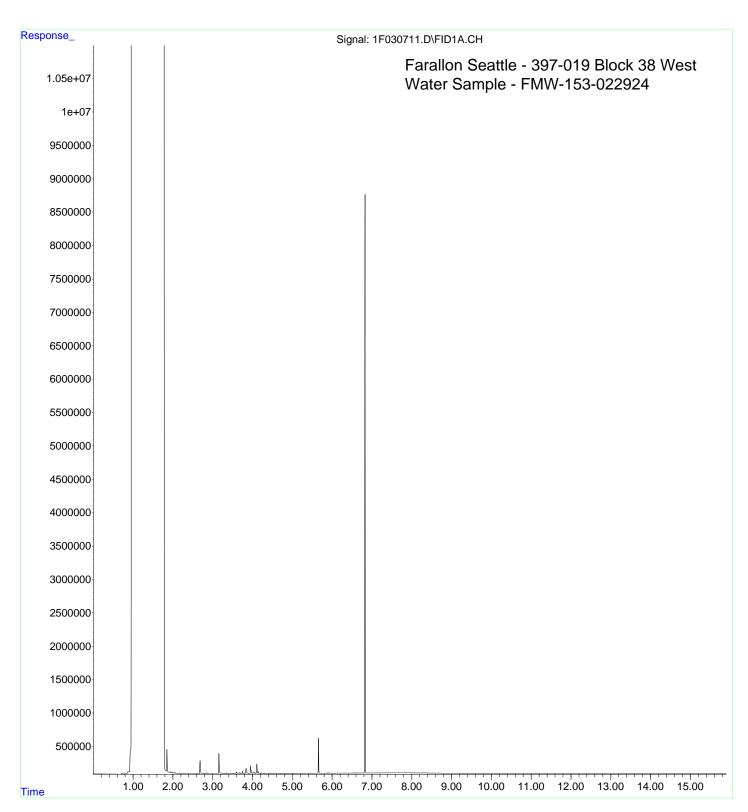



File : C: \msdchem\1\copied data\4C07057\1F030710. D

Operator : BLL

Acquired: 07 Mar 2024 9: 03 pm using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: A4C0878-03

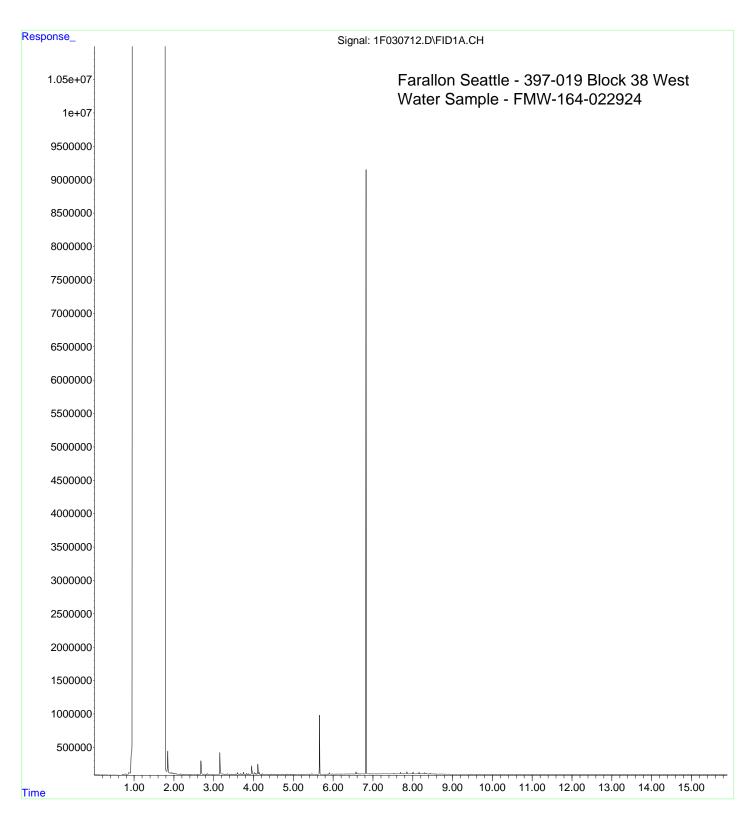



File : C: \msdchem1\copied data\4C07057\1F030711. D

Operator : BLL

Acquired: 07 Mar 2024 9: 26 pm using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: A4C0878-04

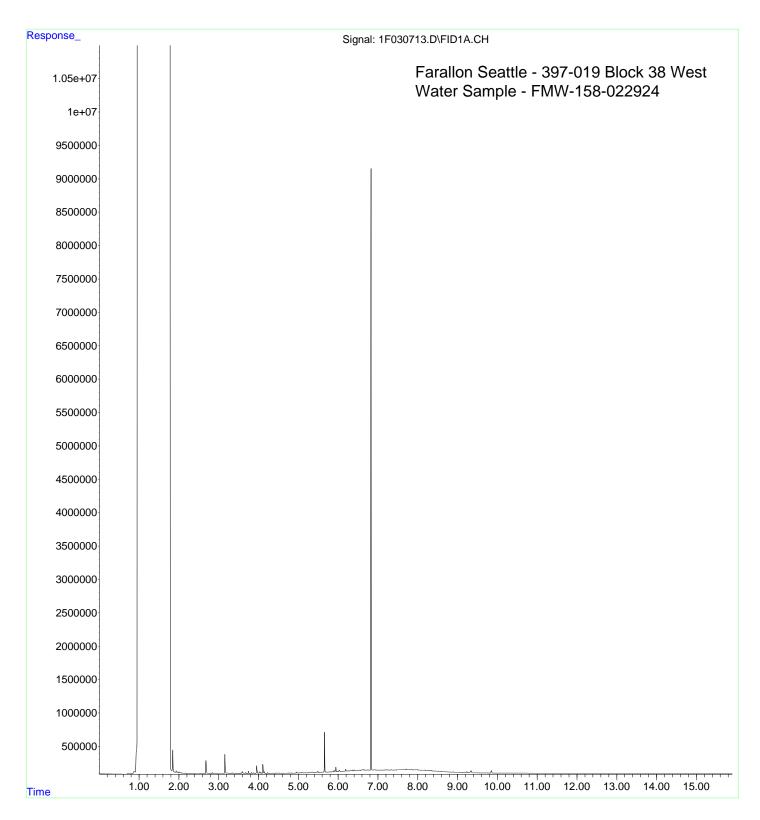



File : C: \msdchem1\copied data\4C07057\1F030712. D

Operator : BLL

Acquired: 07 Mar 2024 9: 49 pm using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: A4C0878-05

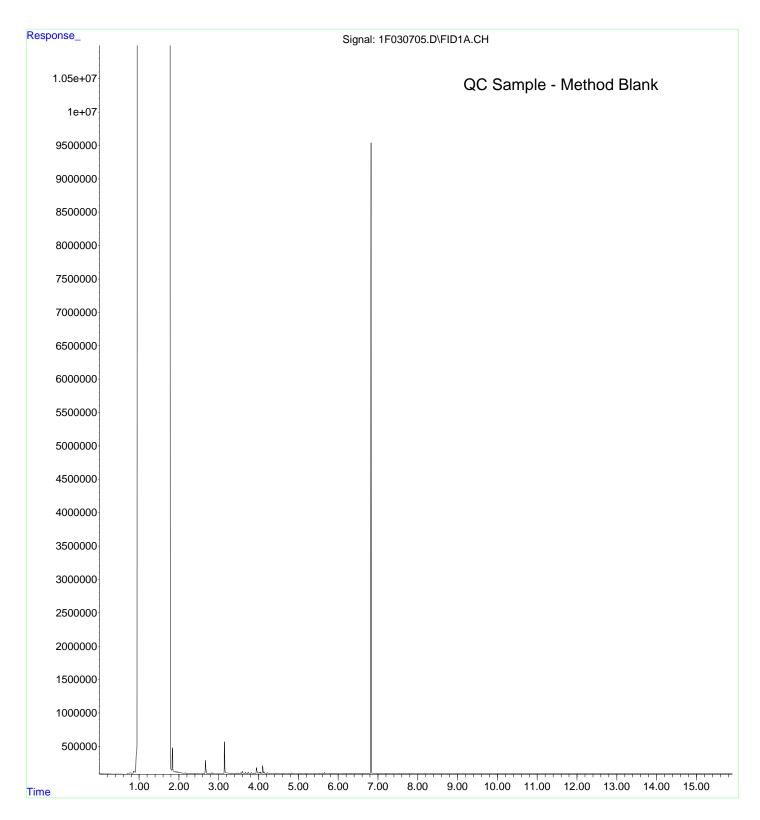



File : C: \msdchem\1\copied data\4C07057\1F030713. D

Operator : BLL

Acquired : 07 Mar 2024 10:13 pm using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: A4C0878-06

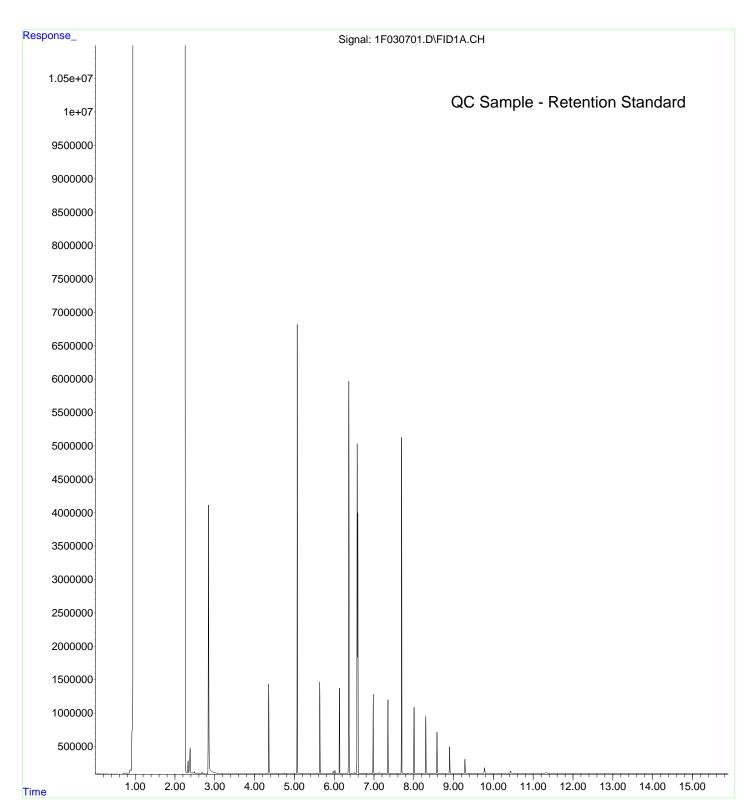



File : C: \msdchem\1\copied data\4C07057\1F030705. D

Operator : BLL

Acquired: 07 Mar 2024 7:06 pm using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: 24C0221-HLK1

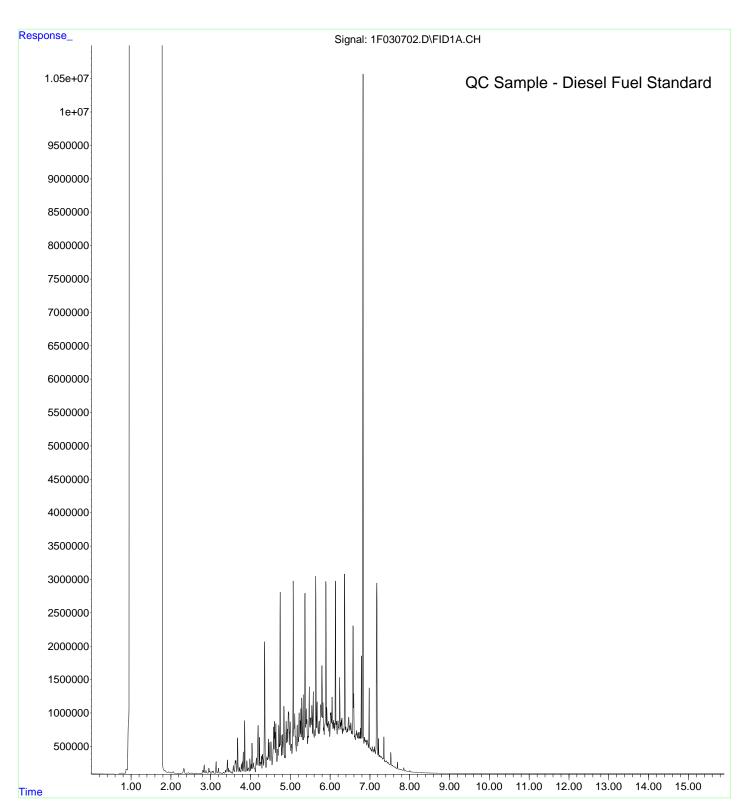



File : C: \msdchem1\copied data\4C07057\1F030701. D

Operator : BLL

Acquired: 07 Mar 2024 5: 04 pm using AcqMethod A1F40422. M

Instrument: HP G1530A Sample Name: 4C07057-RES1

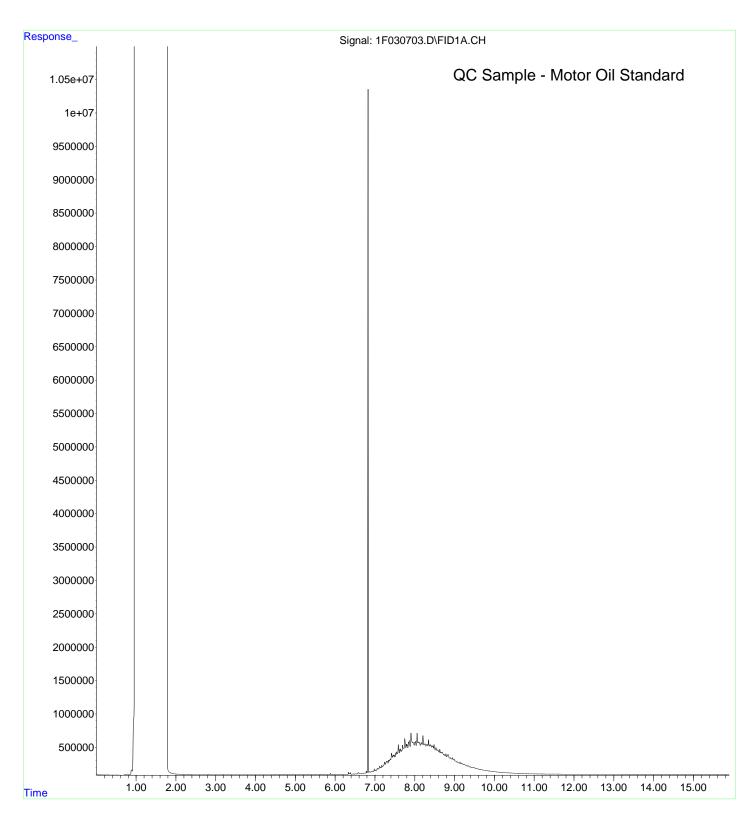



File : C: \msdchem1\copied data\4C07057\1F030702. D

Operator : BLL

Acquired : 07 Mar 2024 5: 27 pm using AcqMethod A1F40422. M

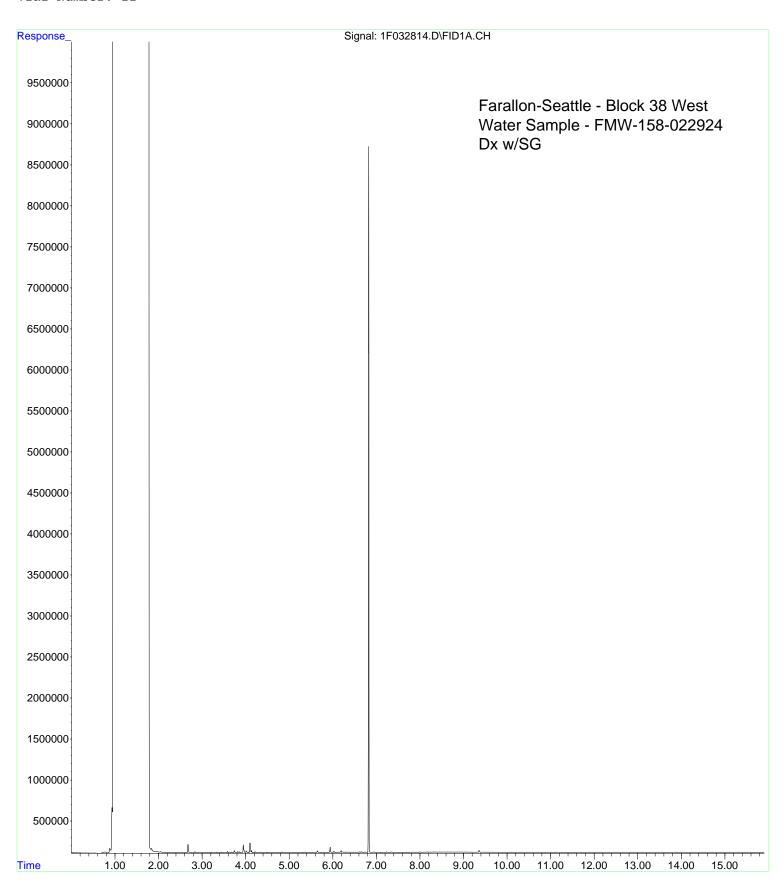
Instrument: HP G1530A Sample Name: 4C07057-CCV1




File : C: \msdchem\1\copied data\4C07057\1F030703. D

Operator : BLL

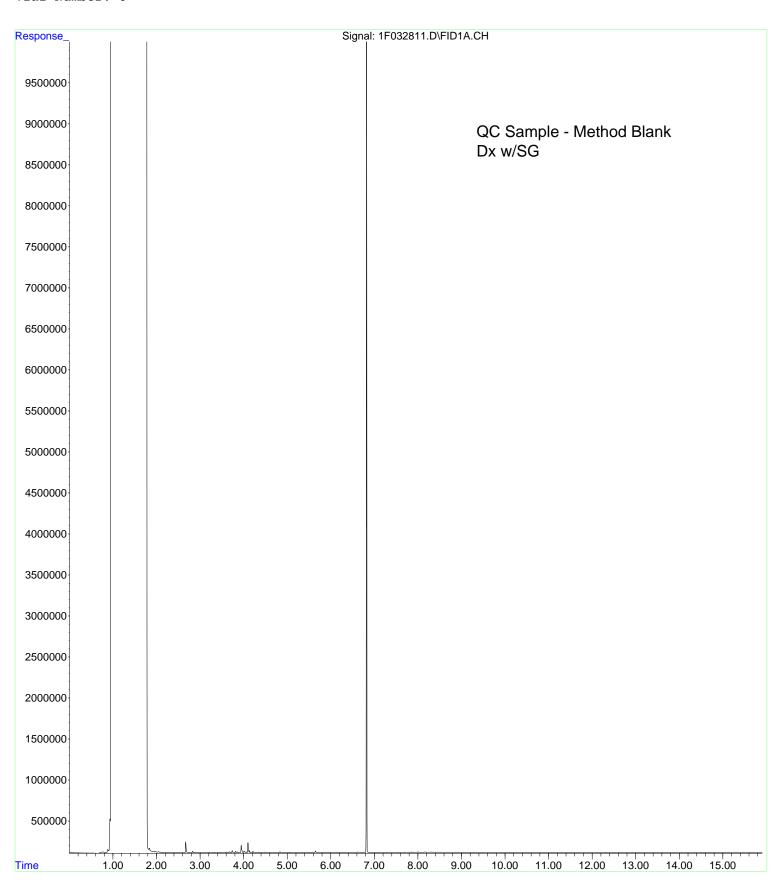
Acquired: 07 Mar 2024 5:51 pm using AcqMethod A1F40422. M


Instrument: HP G1530A Sample Name: 4C07057-CCV2



File :C:\msdchem\1\data\4C28038\1F032814.D

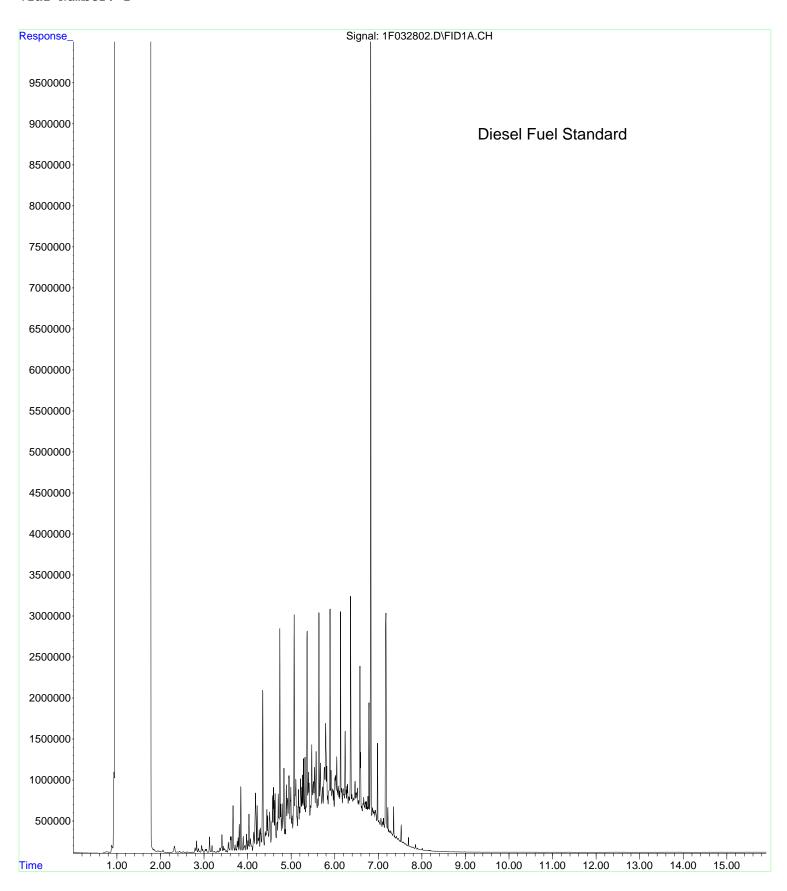
3:01 pm using AcqMethod A1F40422.M


Operator : BLL/BJY
Acquired : 28 Mar 2024
Instrument : HP G1530A Sample Name: A4C0878-06



File :C:\msdchem\1\data\4C28038\1F032811.D

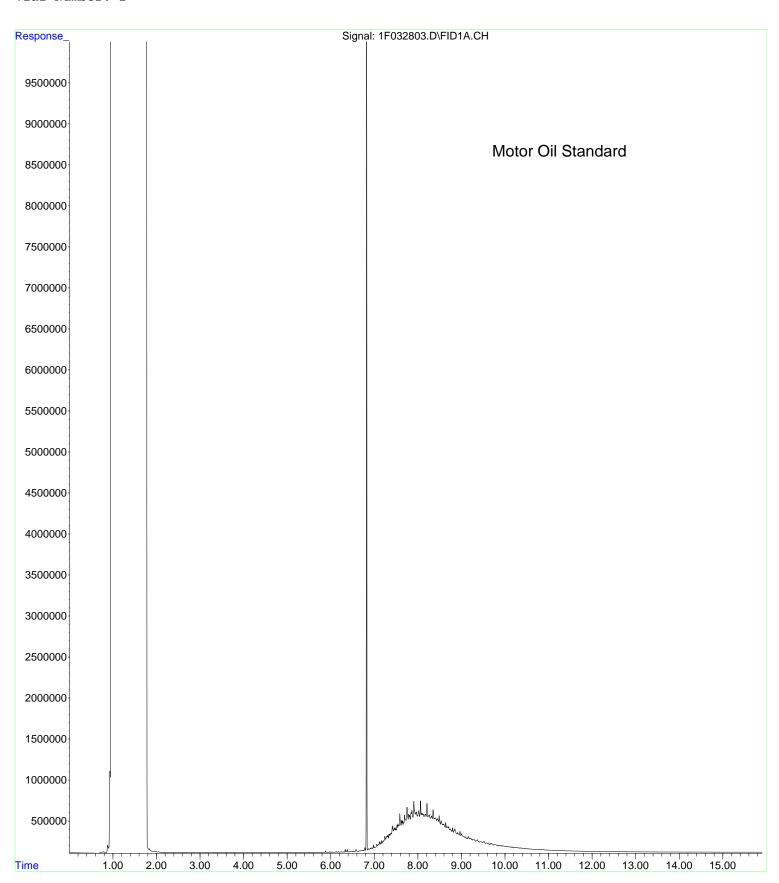
1:51 pm using AcqMethod A1F40422.M


Operator : BLL/BJY
Acquired : 28 Mar 2024
Instrument : HP G1530A Sample Name: 24C0984-BLK1



File :C:\msdchem\1\data\4C28038\1F032802.D

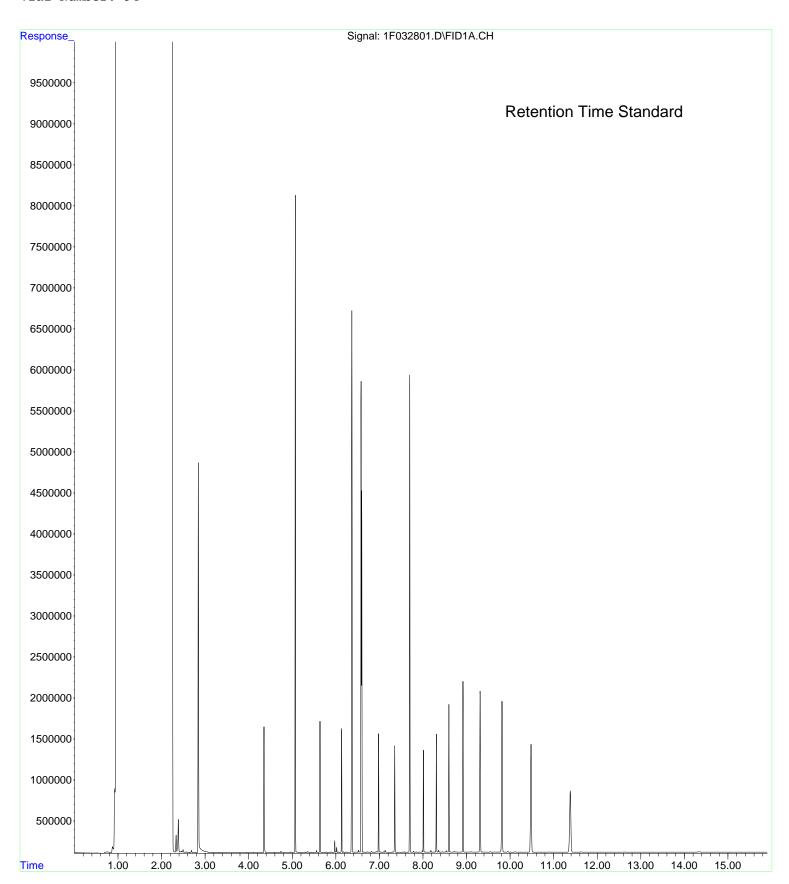
Operator : BLL/BJY
Acquired : 28 Mar 2024 10:21 am using AcqMethod A1F40422.M
Instrument : HP G1530A

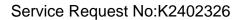

Sample Name: 4C28038-CCV1



File :C:\msdchem\1\data\4C28038\1F032803.D

Operator : BLL/BJY
Acquired : 28 Mar 2024 10:44 am using AcqMethod A1F40422.M
Instrument : HP G1530A


Sample Name: 4C28038-CCV2




File :C:\msdchem\1\data\4C28038\1F032801.D

Operator : BLL/BJY
Acquired : 28 Mar 2024
Instrument : HP G1530A 9:57 am using AcqMethod A1F40422.M

Sample Name: 4C28038-RES1







Michele Poquiz
Apex Laboratories
6700 SW Sandburg St.
Tigard, OR 97223

**Laboratory Results for: A4C0878** 

Dear Michele,

Enclosed are the results of the sample(s) submitted to our laboratory March 04, 2024 For your reference, these analyses have been assigned our service request number **K2402326**.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.alsglobal.com. All results are intended to be considered in their entirety, and ALS Group USA Corp. dba ALS Environmental (ALS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 3364. You may also contact me via email at howard.holmes@alsglobal.com.

Respectfully submitted,

Howaldblum

ALS Group USA, Corp. dba ALS Environmental

Howard Holmes Project Manager



## **Narrative Documents**

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com



Client: Apex Laboratories Service Request: K2402326

Project: A4C0878 Date Received: 03/04/2024

Sample Matrix: Water

### **CASE NARRATIVE**

All analyses were performed consistent with the quality assurance program of ALS Environmental. This report contains analytical results for samples for the Tier II level requested by the client.

### **Sample Receipt:**

One water sample was received for analysis at ALS Environmental on 03/04/2024. Any discrepancies upon initial sample inspection are annotated on the sample receipt and preservation form included within this report. The samples were stored at minimum in accordance with the analytical method requirements.

### **General Chemistry:**

No significant anomalies were noted with this analysis.

Approved by Approved by

Date 03/15/2024



### **SAMPLE DETECTION SUMMARY**

This form includes only detections above the reporting levels. For a full listing of sample results, continue to the Sample Results section of this Report.

| CLIENT ID: FMW-158-022924 | Lab ID: K2402326-001 |      |      |      |       |           |  |
|---------------------------|----------------------|------|------|------|-------|-----------|--|
| Analyte                   | Results              | Flag | MDL  | MRL  | Units | Method    |  |
| Carbon, Total Organic     | 8.80                 |      | 0.08 | 0.50 | mg/L  | SM 5310 C |  |



## Sample Receipt Information

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com Client: Apex Laboratories Service Request: K2402326

Project: A4C0878

### **SAMPLE CROSS-REFERENCE**

<u>SAMPLE # CLIENT SAMPLE ID</u> <u>DATE</u> <u>TIME</u> K2402326-001 FMW-158-022924 2/29/2024 1240

### SUBCONTRACT ORDER

### Apex Laboratories

### A4C0878



Arac 3/1m

**SENDING LABORATORY:** 

Apex Laboratories

6700 S.W. Sandburg Street

Tigard, OR 97223

Phone: (503) 718-2323 Fax: (503) 336-0745

Project Manager:

Michele Poquiz

**RECEIVING LABORATORY:** 

ALS Group USA - Kelso 1317 S 13th Avenue

Kelso, WA 98626

Phone :(360) 577-7222

Fax: (360) 636-1068

K2402326

Sample Name: FMW-158-022924

Sampled: 02/29/24 12:40

(A4C0878-06)

| Analysis                                               | Due            | Expires        | Comments |  |
|--------------------------------------------------------|----------------|----------------|----------|--|
| Total Organic Carbon - H2O (5310C)                     | 03/14/24 17:00 | 03/28/24 12:40 |          |  |
| Containers Supplied: (E)250 mL Poly - Sulfuric (H2SO4) |                |                |          |  |

Stundard TAT

Released By B/4/24 1100 Dr. 8 8-4-24 Not Pate

2nd Sny 3424 1240 Received By Date

Peleased By Date

Received By Date

Received By Date

PM HH

| 2             | la M                                      |                                       | Cooler Receipt                        | and Pro          |              |                                         |                                        | 70(              |                |       |
|---------------|-------------------------------------------|---------------------------------------|---------------------------------------|------------------|--------------|-----------------------------------------|----------------------------------------|------------------|----------------|-------|
| Client        | Y X                                       |                                       |                                       |                  | Ser          | vice Requ                               | est <i>K24<u>0</u>7</i>                | 5L6              |                | 2     |
| Received: 🟂   | 14124                                     | Opened: _                             | 3/4/24                                | _ By:/           | N            | _ Unloade                               |                                        | 124 By:          | NI             |       |
| . Samples we  | ere received via?                         | USPS                                  | Fed ExU                               | PS .             | DHL.         | PDX                                     | Couri                                  | Hand Del         | livered        |       |
| . Samples we  | ere received in: (ci                      | rcle) C                               | ooler Box                             | Enve             | elope        | Other_                                  |                                        |                  | NA             |       |
| . Were custoo | ly seals on coolers'                      | ?                                     | NA Y N I                              | f yes, how       | many and     | where?                                  |                                        |                  |                |       |
| If present, w | ere custody seals i                       | intact?                               | Y N I                                 | f present,       | were they si | gned and d                              | ated?                                  | Y                | N              |       |
|               |                                           |                                       |                                       | <del>- T -</del> | 22 J. 200    |                                         |                                        |                  |                |       |
|               |                                           |                                       | ele 1880 este                         |                  | Out of temp  |                                         | PM<br>stifled                          |                  |                | _     |
| Temp Blank    | Sample Temp                               | IR Gun                                | Cooler #/COC ID / NA                  |                  | dicate with  |                                         | of temp                                | Tracking Numb    | er NA          | Filed |
|               | 4.7                                       | 1806                                  | <u> </u>                              |                  |              |                                         |                                        |                  | $\underline{}$ |       |
|               |                                           | 7                                     |                                       |                  |              |                                         |                                        |                  |                |       |
|               |                                           |                                       |                                       |                  |              |                                         |                                        |                  |                |       |
| <del></del>   |                                           |                                       |                                       | 1                |              |                                         |                                        |                  |                |       |
|               |                                           |                                       |                                       |                  | <u> </u>     |                                         |                                        |                  |                | -     |
| . Was a Temp  | i<br>erature Blank prese                  | ent in cooler?                        | NA Y /N )I                            | f yes, not       | ate the temp | erature in ti                           | he appropriate                         | column above:    |                |       |
| -             | •                                         |                                       | e sample bottle containe              | •                |              |                                         |                                        |                  |                |       |
| ·             | •                                         | •                                     | cified temperature rang               |                  |              |                                         |                                        | NA Y             | ) N            |       |
| •             |                                           | •                                     | y as collected? If not, no            |                  | ooler#abov   | e and notif                             | v the PM.                              | NA Y             | N              |       |
|               | ssue samples were                         | •                                     | Frozen Partially The                  |                  | Thawed       | • • • • • • • • • • • • • • • • • • • • | <i>y</i> ====                          |                  |                |       |
|               | -                                         |                                       |                                       |                  | •            |                                         |                                        |                  |                |       |
| **            | aterial: Inserts                          |                                       | bble Wrap) Gel Packs                  | Wet Ic           | e Dry Ice    | Sleeves                                 | ,                                      |                  |                |       |
|               | dy papers properly                        | ,                                     | - ·                                   |                  |              |                                         |                                        | NA (Y)           | ) N            |       |
| •             | les received in goo                       |                                       | •                                     |                  |              |                                         |                                        | NA (Y)           | N              |       |
|               | mpie labels compie<br>ple labels and tags |                                       | s, preservation, etc.)?               |                  |              |                                         |                                        | NA (Y)<br>NA (Y) | ) N            |       |
|               |                                           | <del></del>                           | umes received for the te              | sts indicat      | ted?         |                                         |                                        | NA (Y)           | ) N            |       |
| • •           | -                                         |                                       | EN SOP) received at the               |                  |              | licate in the                           | table below                            | NA Y             | ) N            |       |
| -             | -                                         | •                                     | e? Indicate in the table              |                  |              |                                         |                                        | NA) Y            | N              |       |
| 14. Was C12/R |                                           |                                       |                                       |                  |              |                                         |                                        | NA Y             | N              |       |
|               |                                           | the method s                          | pecified time limit? If no            | nt notate        | the error be | low and not                             | ify the PM                             | NA Y             | N              |       |
| _             |                                           |                                       | ed exactly to the 100ml               |                  | (NA)         |                                         | N                                      | Underfilled      | Overfille      | :d    |
| 10. WCIC TOOM | is sterile anteropion                     | ogy bottles in                        | T T T T T T T T T T T T T T T T T T T | mur.             |              |                                         | * 1                                    |                  |                |       |
| S             | ample ID on Bot                           | tle                                   | Sample                                | ID on C          | oc           |                                         |                                        | Identified by:   |                |       |
|               | -                                         |                                       |                                       |                  |              |                                         |                                        |                  |                |       |
|               |                                           |                                       |                                       |                  |              |                                         |                                        |                  |                |       |
|               |                                           |                                       |                                       |                  |              |                                         |                                        |                  |                |       |
| L             |                                           |                                       |                                       |                  |              |                                         |                                        |                  |                |       |
|               |                                           | · · · · · · · · · · · · · · · · · · · | Bottle Count                          | Head-            |              |                                         | Volume                                 | Reagent Lot      |                |       |
|               | Sample ID                                 | <del></del>                           | Bottle Type                           | space B          | roke pH      | Reagen                                  | t added                                | Number           | Initials       | Time  |
|               |                                           |                                       |                                       |                  |              |                                         |                                        |                  |                |       |
|               | <u></u>                                   |                                       |                                       |                  |              |                                         |                                        |                  | <u> </u>       |       |
|               |                                           |                                       |                                       |                  |              |                                         |                                        |                  |                | L     |
|               |                                           |                                       |                                       |                  |              |                                         |                                        |                  |                |       |
| Notes. Disc   | repancies, Resc                           | olutions:                             |                                       |                  | <del></del>  |                                         |                                        |                  | ·              |       |
|               |                                           |                                       |                                       | ~~~              |              |                                         | ······································ | S                | . ND 4/2       | /2024 |
| G:\SMO        | \2024 Forms                               |                                       |                                       | SOP: SM          | IU-GEN       |                                         |                                        | Reviewed         | . NP 1/3       | /2024 |



## **Miscellaneous Forms**

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

#### **Inorganic Data Qualifiers**

- \* The result is an outlier. See case narrative.
- # The control limit criteria is not applicable.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- F. The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated value.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
  DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- Q See case narrative. One or more quality control criteria was outside the limits.
- H The holding time for this test is immediately following sample collection. The samples were analyzed as soon as possible after receipt by the laboratory.

#### **Metals Data Qualifiers**

- # The control limit criteria is not applicable.
- J The result is an estimated value.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL. DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL or LOQ/LOD is elevated due to a matrix interference.
- X See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.
- Q See case narrative. One or more quality control criteria was outside the limits.

### **Organic Data Qualifiers**

- \* The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result as defined by the DOD or NELAC standards.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimated value.
- J The result is an estimated value.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results.
- U The analyte was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
  DOD-QSM 4.2 definition: Analyte was not detected and is reported as less than the LOD or as defined by the project. The detection limit is adjusted for dilution.
- i The MRL/MDL or LOQ/LOD is elevated due to a chromatographic interference.
- X See case narrative.
- $\boldsymbol{Q}$   $\;\;$  See case narrative. One or more quality control criteria was outside the limits.

### **Additional Petroleum Hydrocarbon Specific Qualifiers**

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

## ALS Group USA Corp. dba ALS Environmental (ALS) - Kelso State Certifications, Accreditations, and Licenses

| Agency                   | Web Site                                                                                                                                        | Number      |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Alaska DEH               | http://dec.alaska.gov/eh/lab/cs/csapproval.htm                                                                                                  | UST-040     |
| Arizona DHS              | http://www.azdhs.gov/lab/license/env.htm                                                                                                        | AZ0339      |
| Arkansas - DEQ           | http://www.adeq.state.ar.us/techsvs/labcert.htm                                                                                                 | 88-0637     |
| California DHS (ELAP)    | http://www.cdph.ca.gov/certlic/labs/Pages/ELAP.aspx                                                                                             | 2795        |
| DOD ELAP                 | http://www.denix.osd.mil/edqw/Accreditation/AccreditedLabs.cfm                                                                                  | L16-58-R4   |
| Florida DOH              | http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm                                                                                         | E87412      |
| Hawaii DOH               | http://health.hawaii.gov/                                                                                                                       | -           |
| ISO 17025                | http://www.pjlabs.com/                                                                                                                          | L16-57      |
| Louisiana DEQ            | http://www.deq.louisiana.gov/page/la-lab-accreditation                                                                                          | 03016       |
| Maine DHS                | http://www.maine.gov/dhhs/                                                                                                                      | WA01276     |
| Minnesota DOH            | http://www.health.state.mn.us/accreditation                                                                                                     | 053-999-457 |
| Nevada DEP               | http://ndep.nv.gov/bsdw/labservice.htm                                                                                                          | WA01276     |
| New Jersey DEP           | http://www.nj.gov/dep/enforcement/oqa.html                                                                                                      | WA005       |
| New York - DOH           | https://www.wadsworth.org/regulatory/elap                                                                                                       | 12060       |
|                          | https://deq.nc.gov/about/divisions/water-resources/water-resources-data/water-sciences-home-page/laboratory-certification-branch/non-field-lab- |             |
| North Carolina DEQ       | certification                                                                                                                                   | 605         |
| Oklahoma DEQ             | http://www.deq.state.ok.us/CSDnew/labcert.htm                                                                                                   | 9801        |
| Oregon – DEQ (NELAP)     | http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaboratoryAccreditation/Pages/index.aspx                                        | WA100010    |
| South Carolina DHEC      | http://www.scdhec.gov/environment/EnvironmentalLabCertification/                                                                                | 61002       |
| Texas CEQ                | http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html                                                                                   | T104704427  |
| Washington DOE           | http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html                                                                                  | C544        |
| Wyoming (EPA Region 8)   | https://www.epa.gov/region8-waterops/epa-region-8-certified-drinking-water-                                                                     | -           |
| Kelso Laboratory Website | www.alsglobal.com                                                                                                                               | NA          |

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. A complete listing of specific NELAP-certified analytes, can be found in the certification section at www.ALSGlobal.com or at the accreditation bodies web site.

Please refer to the certification and/or accreditation body's web site if samples are submitted for compliance purposes. The states highlighted above, require the analysis be listed on the state certification if used for compliance purposes and if the method/anlayte is offered by that state.

### Acronyms

ASTM American Society for Testing and Materials

A2LA American Association for Laboratory Accreditation

CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit

DEC Department of Environmental Conservation

DEQ Department of Environmental Quality

DHS Department of Health Services

DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

LOD Limit of Detection
LOQ Limit of Quantitation

LUFT Leaking Underground Fuel Tank

M Modified

MCL Maximum Contaminant Level is the highest permissible concentration of a substance

allowed in drinking water as established by the USEPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

NA Not Applicable
NC Not Calculated

NCASI National Council of the Paper Industry for Air and Stream Improvement

ND Not Detected

NIOSH National Institute for Occupational Safety and Health

PQL Practical Quantitation Limit

RCRA Resource Conservation and Recovery Act

SIM Selected Ion Monitoring

TPH Total Petroleum Hydrocarbons

tr Trace level is the concentration of an analyte that is less than the PQL but greater than or

equal to the MDL.

## ALS Group USA, Corp. dba ALS Environmental

Analyst Summary report

**Client:** Apex Laboratories

**Project:** A4C0878/

Service Request: K2402326

**Sample Name:** FMW-158-022924 **Lab Code:** K2402326-001

Sample Matrix: Water

**Date Collected:** 02/29/24

**Date Received:** 03/4/24

Analysis Method Extracted/Digested By Analyzed By

SM 5310 C MSPECHT



## Sample Results

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com



## **General Chemistry**

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

## ALS Group USA, Corp. dba ALS Environmental

Analytical Report

**Client:** Apex Laboratories

**Project:** A4C0878 **Sample Matrix:** Water

Service Request: K2402326

**Date Collected:** 02/29/24 12:40

Basis: NA

**Date Received:** 03/04/24 12:40

Sample Name:

FMW-158-022924

Lab Code:

K2402326-001

### **General Chemistry Parameters**

Analysis

| <b>Analyte Name</b>   | Method    | Result | Units | MRL  | MDL  | Dil. | <b>Date Analyzed</b> | Q |
|-----------------------|-----------|--------|-------|------|------|------|----------------------|---|
| Carbon, Total Organic | SM 5310 C | 8.80   | mg/L  | 0.50 | 0.08 | 1    | 03/11/24 18:43       |   |



# **QC Summary Forms**

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com



## **General Chemistry**

ALS Environmental—Kelso Laboratory 1317 South 13th Avenue, Kelso, WA 98626 Phone (360) 577-7222 Fax (360) 425-9096 www.alsglobal.com

## ALS Group USA, Corp. dba ALS Environmental

Analytical Report

**Client:** Apex Laboratories

Service Request: K2402326

**Project:** A4C0878

**Date Collected:** NA

Sample Matrix: W

Water

**Date Received:** NA

**Sample Name:** 

Method Blank

Basis: NA

**Lab Code:** K2402326-MB

### **General Chemistry Parameters**

Analysis

| Analyte Name          | Method    | Result | Units | MRL  | MDL  | Dil. | <b>Date Analyzed</b> | Q |
|-----------------------|-----------|--------|-------|------|------|------|----------------------|---|
| Carbon, Total Organic | SM 5310 C | ND U   | mg/L  | 0.50 | 0.08 | 1    | 03/11/24 18:43       |   |

### ALS Group USA, Corp. dba ALS Environmental

QA/QC Report

**Client:** Apex Laboratories **Service Request:** K2402326

**Project:** A4C0878 **Date Analyzed:** 

03/11/24

Sample Matrix:

Water

**Date Extracted:** 

NA

**Lab Control Sample Summary** Carbon, Total Organic

**Analysis Method:** 

SM 5310 C

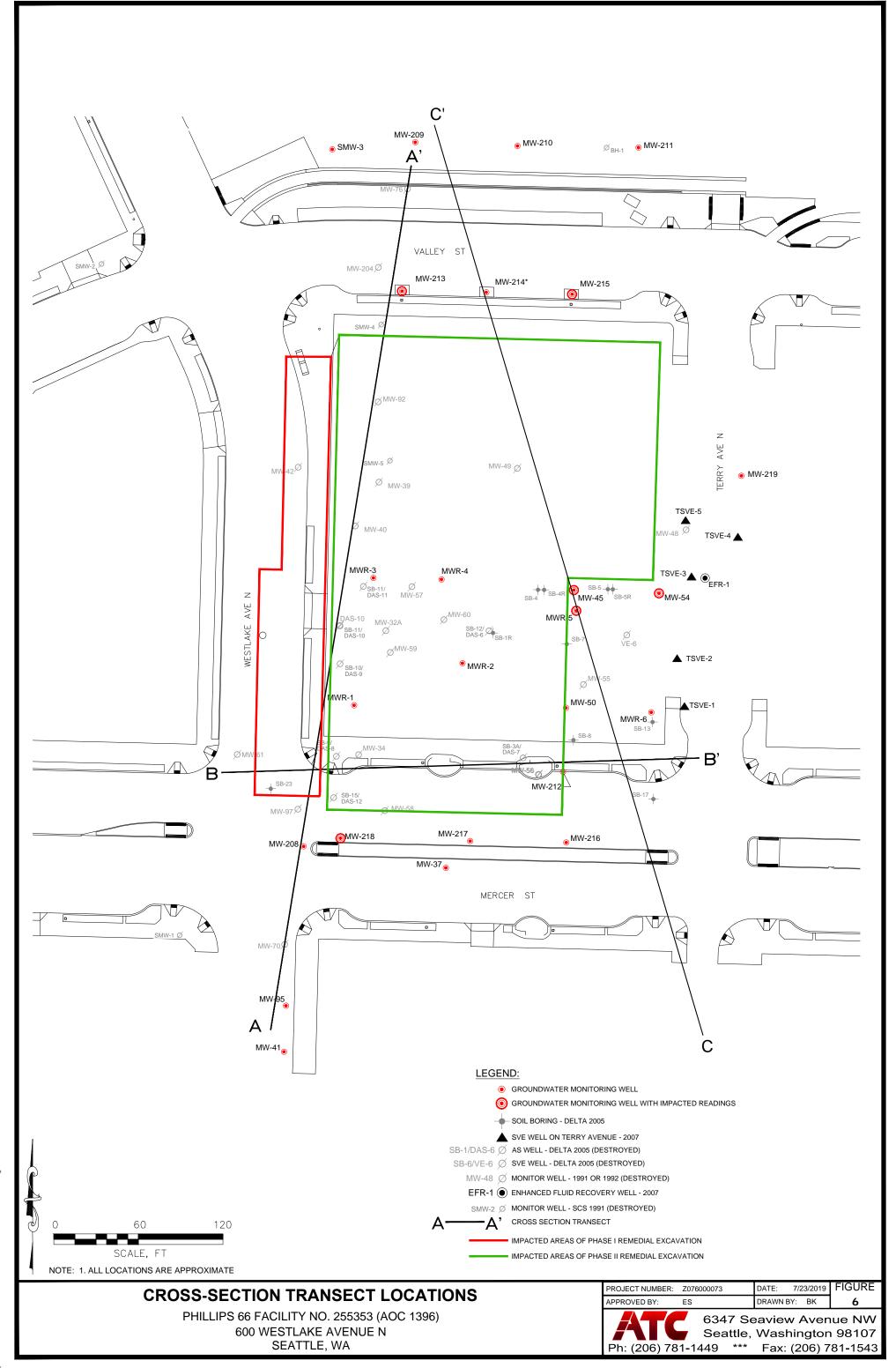
**Units:** 

mg/L

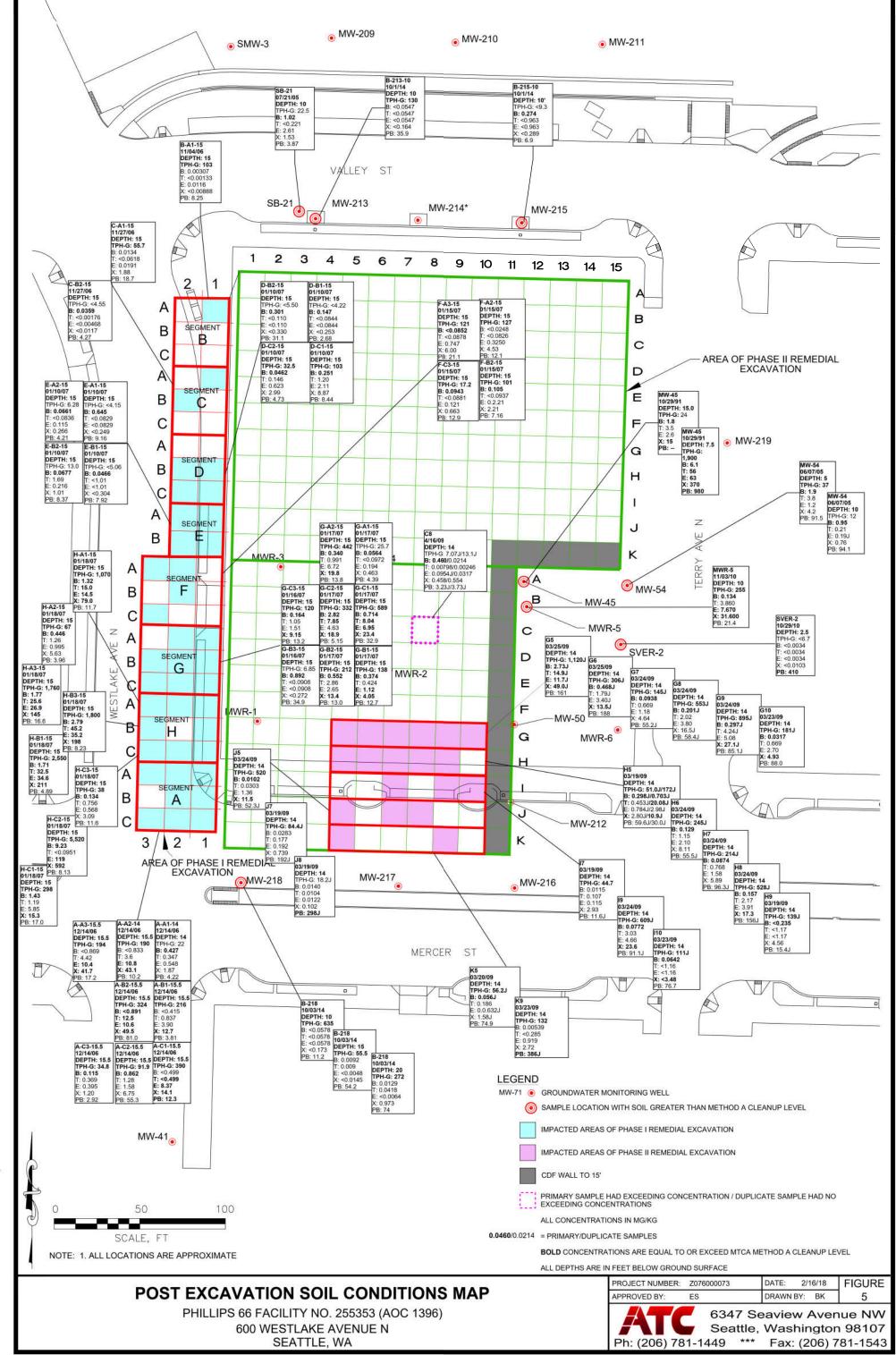
**Prep Method:** None **Basis:** 

NA

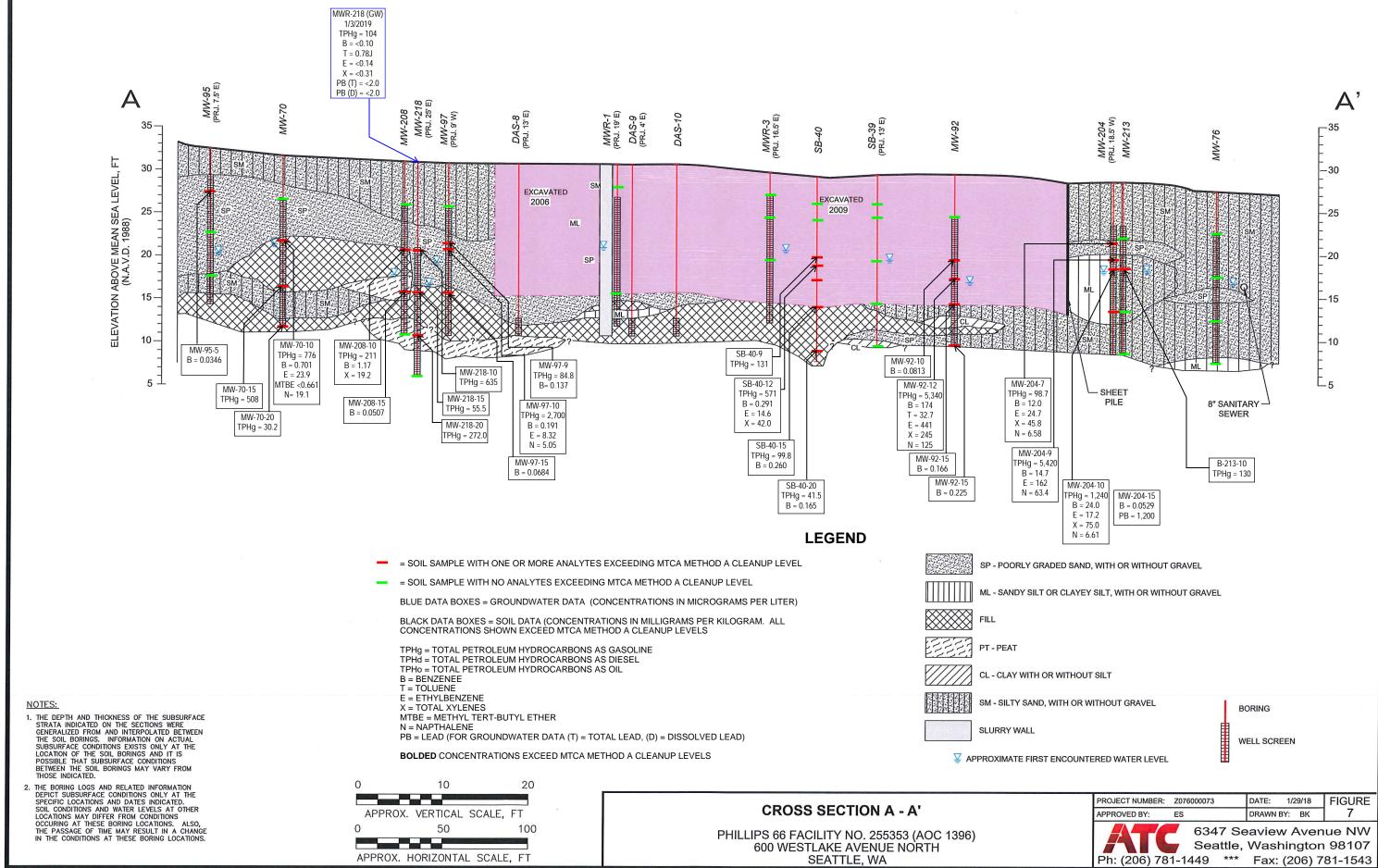
**Analysis Lot:** 


834642

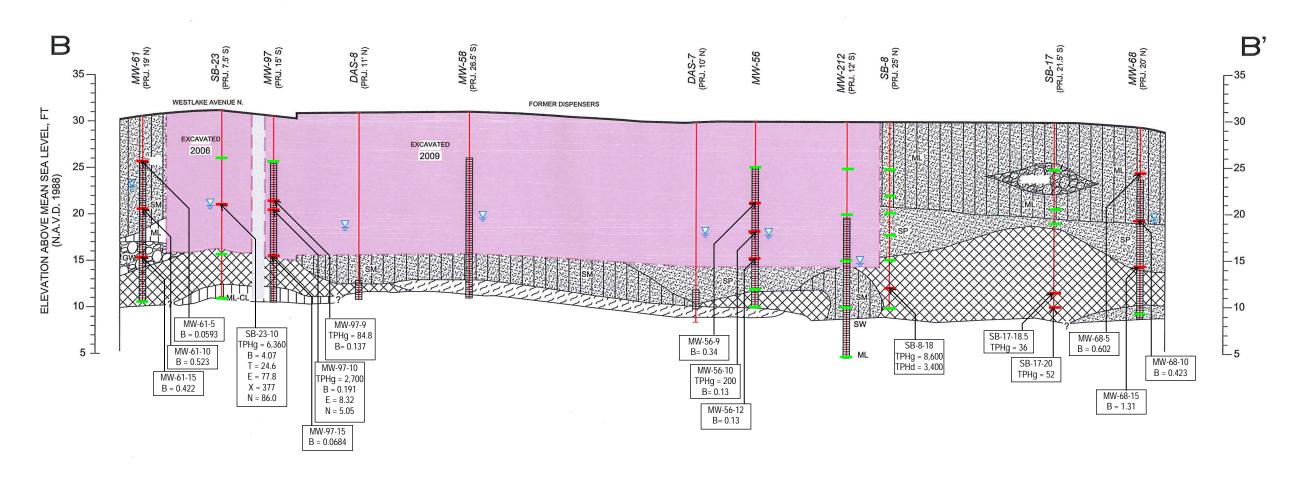
|                    |              |        | Spike  |       | % Rec  |
|--------------------|--------------|--------|--------|-------|--------|
| Sample Name        | Lab Code     | Result | Amount | % Rec | Limits |
| Lab Control Sample | K2402326-LCS | 23.9   | 25.0   | 96    | 83-117 |


## APPENDIX D ATC CLEANUP ACTION SUMMARY

REMEDIAL INVESTIGATION/FOCUSED FEASIBILITY STUDY
Block 38 West Site
500 through 536 Westlake Avenue North
Seattle, Washington


Farallon PN: 397-019




rojects\76\75000 COP\1396 SEATTLE\G-4 G-5 - Standard\XSECTLOCS.dwg



Projects/76/75000 COP\1396 SEATTLE\G-4 G-5 - Standard\PESO\L



S:\Projects\76\75000 COP\1396 SEATTLE\SECTAA.



### **LEGEND**

- = SOIL SAMPLE WITH ONE OR MORE ANALYTES EXCEEDING MTCA METHOD A CLEANUP LEVEL
- = SOIL SAMPLE WITH NO ANALYTES EXCEEDING MTCA METHOD A CLEANUP LEVEL

BLACK DATA BOXES = SOIL DATA (CONCENTRATIONS IN MILLIGRAMS PER KILOGRAM. ALL CONCENTRATIONS SHOWN EXCEED MTCA METHOD A CLEANUP LEVELS

TPHg = TOTAL PETROLEUM HYDROCARBONS AS GASOLINE TPHd = TOTAL PETROLEUM HYDROCARBONS AS DIESEL TPHo = TOTAL PETROLEUM HYDROCARBONS AS OIL

T = TOLUENE

 $\mathsf{E} = \mathsf{ETHYLBENZENE}$ 

X = TOTAL XYLENES

N = NAPTHALENE

**BOLDED CONCENTRATIONS EXCEED MTCA METHOD A CLEANUP LEVELS** 

### SP - POORLY GRADED SAND, WITH OR WITHOUT GRAVEL

| | | | | | ML - SANDY SILT OR CLAYEY SILT, WITH OR WITHOUT GRAVEL

CL - CLAY WITH OR WITHOUT SILT

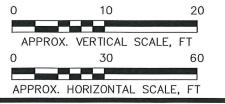
SM - SILTY SAND, WITH OR WITHOUT GRAVEL

GW, GM - WELL GRADED GRAVEL, WITH OR WITHOUT SILT SLURRY WALL

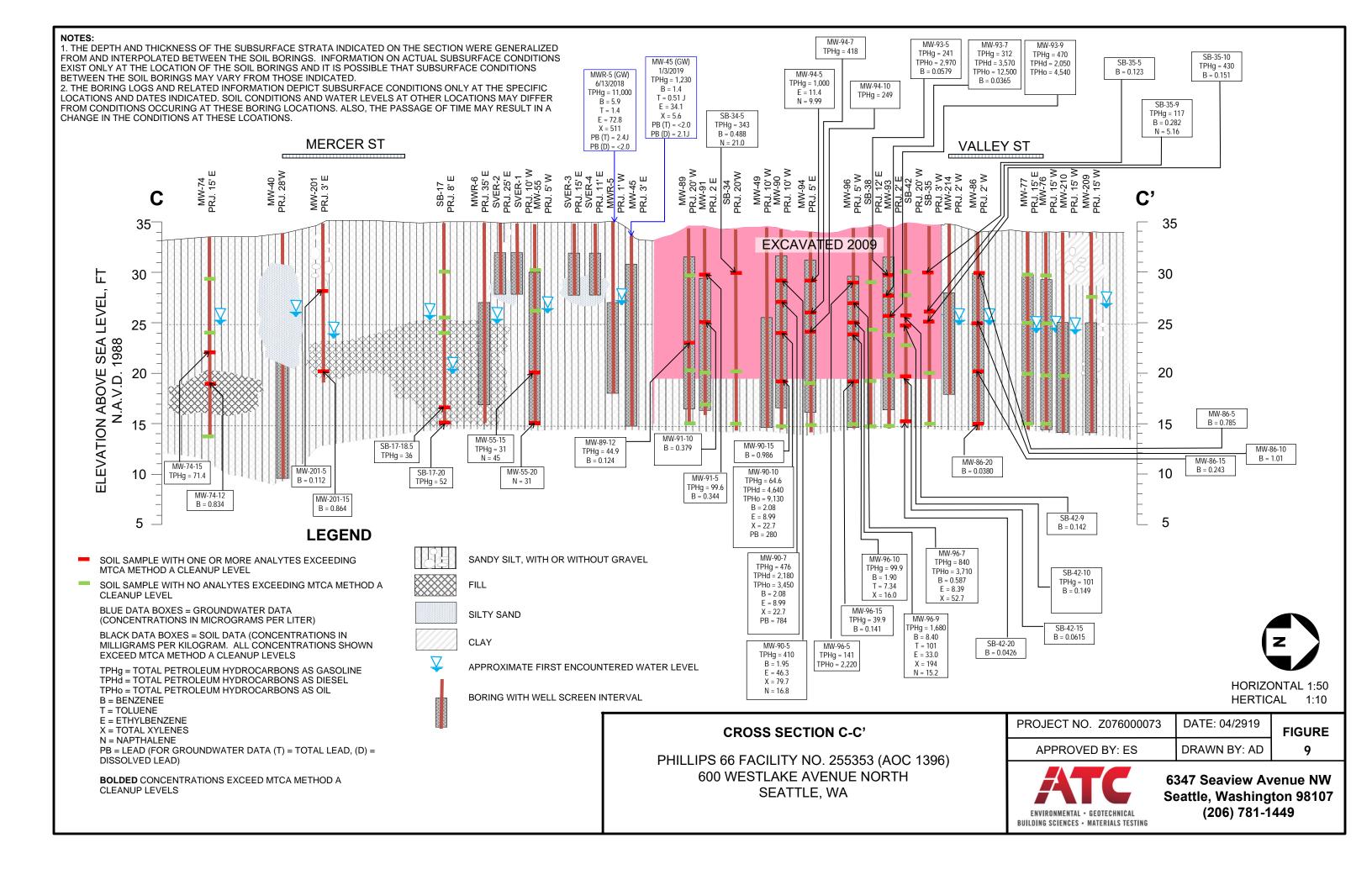
¥ APPROXIMATE FIRST ENCOUNTERED WATER LEVEL

PROJECT NUMBER: Z076000073 DATE: 1/29/18 FIGURE DRAWN BY: BK

**BORING** 

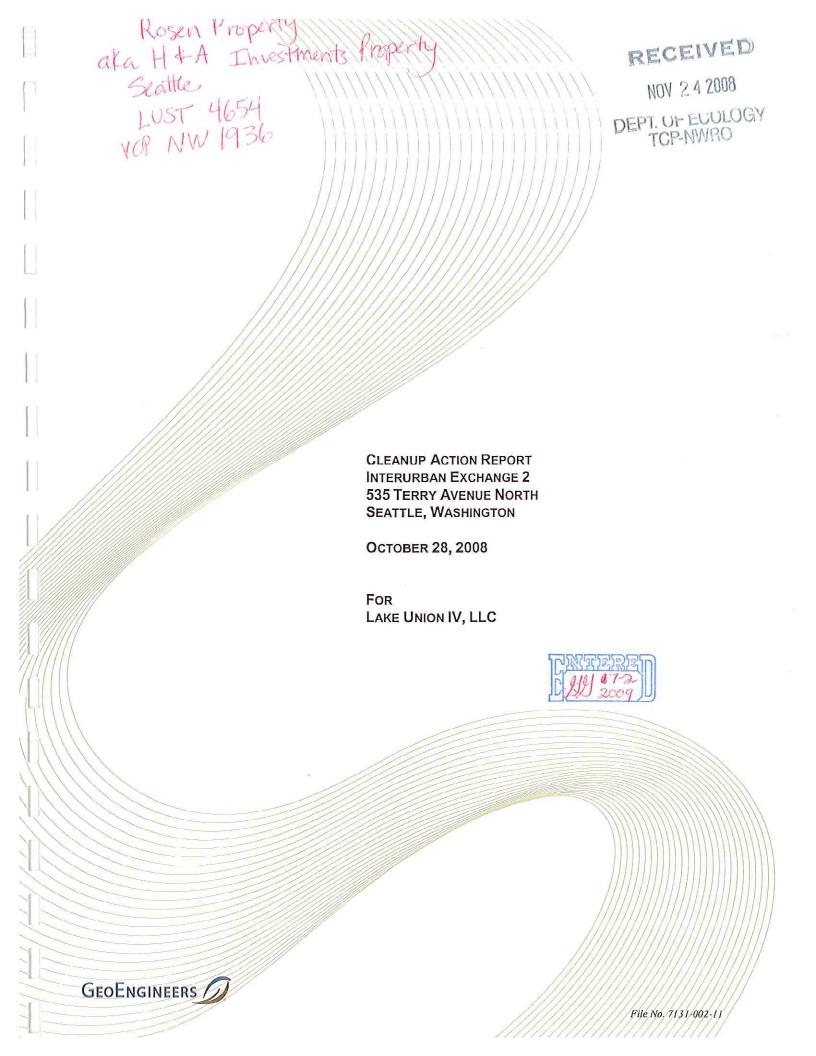

WELL SCREEN




6347 Seaview Avenue NW Seattle, Washington 98107 Ph: (206) 781-1449 \*\*\* Fax: (206) 781-1543

### NOTES:

- 1. THE DEPTH AND THICKNESS OF THE SUBSURFACE STRATA INDICATED ON THE SECTIONS WERE GENERALIZED FROM AND INTERPOLATED BETWEEN THE SOIL BORINGS. INFORMATION ON ACTUAL SUBSURFACE CONDITIONS EXISTS ONLY AT THE LOCATION OF THE SOIL BORINGS AND IT IS POSSIBLE THAT SUBSURFACE CONDITIONS BETWEEN THE SOIL BORINGS MAY VARY FROM THOSE INDICATED.
- 2. THE BORING LOGS AND RELATED INFORMATION DEPICT SUBSURFACE CONDITIONS ONLY AT THE SPECIFIC LOCATIONS AND DATES INDICATED. SOIL CONDITIONS AND WATER LEVELS AT OTHER LOCATIONS MAY DIFFER FROM CONDITIONS OCCURING AT THESE BORING LOCATIONS. ALSO, THE PASSAGE OF TIME MAY RESULT IN A CHANGE IN THE CONDITIONS AT THESE BORING LOCATIONS. IN THE CONDITIONS AT THESE BORING LOCATIONS.




PHILLIPS 66 FACILITY NO. 255353 (AOC 1396) 600 WESTLAKE AVENUE NORTH SEATTLE, WA



### APPENDIX E GEOENGINEERS CLEANUP ACTION SUMMARY

REMEDIAL INVESTIGATION/FOCUSED FEASIBILITY STUDY
Block 38 West Site
500 through 536 Westlake Avenue North
Seattle, Washington



#### TABLE 1

### LOTS 1 AND 2 REMEDIAL EXCAVATION SOIL CHEMICAL ANALYTICAL DATA PETROLEUM HYDROCARBONS, BENZENE, ETHYLBENZENE, TOLUENE AND XYLENES

#### INTERURBAN EXCHANGE 2

535 TERRY AVENUE NORTH, SEATTLE, WASHINGTON

|                            |                 |                                                                                                                                                                                                                                   |                   | Field S            | creening           |                                | (m                           | Hydrocarbo<br>ig/kg)            |                                   |             | BE <sup>*</sup> | anavao. |       |
|----------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------|--------------------|--------------------------------|------------------------------|---------------------------------|-----------------------------------|-------------|-----------------|---------|-------|
| Sample ID <sup>1, 2</sup>  | Sample Date     | Elevation                                                                                                                                                                                                                         | Depth<br>(ft bgs) | Sheen              | Headspace<br>(ppm) | Gasoline<br>Range <sup>3</sup> | Diesel<br>Range <sup>4</sup> | Heavy Oil<br>Range <sup>4</sup> | Mineral Oil<br>Range <sup>4</sup> | В           | E               | т       | ×     |
| Waste Disposal A           | uthorization Ch | aracterizati                                                                                                                                                                                                                      | on Soil Sar       | nples <sup>5</sup> |                    |                                |                              |                                 |                                   | January II. |                 |         |       |
| TP-11-9 <sup>6</sup>       | 05/05/08        | NA                                                                                                                                                                                                                                | 9                 | SS                 | =                  | <10                            | <20                          | <50                             | <40                               |             |                 |         |       |
| HA-1-6                     | 05/13/08        | NA                                                                                                                                                                                                                                | 6                 | NS                 |                    | <10                            | <20                          | <50                             | <40                               | <0.02       | <0.05           | <0.05   | <0.15 |
| HA-2-2                     | 05/13/08        | NA                                                                                                                                                                                                                                | 2                 | NS                 | -                  | <10                            | <20                          | <50                             | <40                               | <0.02       | <0.05           | <0.05   | <0.15 |
| EX-1-9.0 <sup>7</sup>      | 06/24/08        | NA                                                                                                                                                                                                                                | 9                 | SS                 |                    | 40                             | 30                           | <200                            | <400                              | 1           |                 |         |       |
| Confirmation Soil          | Samples         | la gradina di paga di paga di paga di paga di paga di paga di paga di paga di paga di paga di paga di paga di p<br>Paga di paga di paga di paga di paga di paga di paga di paga di paga di paga di paga di paga di paga di paga d |                   |                    |                    |                                |                              |                                 |                                   |             |                 |         |       |
| Base Confirmation          | n Soil Samples  |                                                                                                                                                                                                                                   |                   |                    |                    |                                |                              |                                 |                                   |             |                 |         |       |
| EX-2-EL15                  | 06/26/08        | 15                                                                                                                                                                                                                                | 14                | NS                 | 2                  | <10                            | <20                          | <50                             | <40                               | <0.02       | <0.05           | <0.05   | <0.15 |
| EX-21-EL16                 | 07/11/08        | 16                                                                                                                                                                                                                                | 17.5              | MS                 | 36                 | 55                             | 730                          | <50                             | <40                               | <0.02       | 0.11            | <0.05   | 0.17  |
| EX-22-EL16                 | 07/11/08        | 16                                                                                                                                                                                                                                | 17.5              | SS                 | 170                | 70                             | <20                          | <50                             | 28                                | <0.02       | 1.3             | <0.05   | 0.66  |
| EX-23-EL16 <sup>5</sup>    | 07/11/08        | 16                                                                                                                                                                                                                                | 17.5              | SS                 | >300               | 250                            | <20                          | <50                             | <b>&lt;</b> 40                    | <0.02       | 2.4             | 0.21    | 4.7   |
| EX-23-EL15                 | 07/15/08        | 15                                                                                                                                                                                                                                | 16.5              | NS                 | 0                  | <10                            | <20                          | <50                             | <40                               | <0.02       | <0.05           | <0.05   | <0.15 |
| EX-24-EL16 <sup>5</sup>    | 07/11/08        | 16                                                                                                                                                                                                                                | 17.5              | SS                 | >300               | 290                            | <20                          | <50                             | <40                               | <0.02       | 1.1             | 0.11    | 3.5   |
| EX-24-EL15                 | 07/16/08        | 15                                                                                                                                                                                                                                | 16.5              | NS                 | 0                  | <10                            | <20                          | <50                             | <40                               | <0.02       | <0.05           | <0.05   | <0.15 |
| EX-25-EL16                 | 07/14/08        | 16                                                                                                                                                                                                                                | 17.5              | NS                 | 13                 | 15                             | <20                          | <50                             | <40                               | <0.02       | 0.08            | <0.05   | 0.15  |
| EX-26-EL16                 | 07/14/08        | 16                                                                                                                                                                                                                                | 17.5              | NS                 | 0                  | <10                            | <20                          | <50                             | <40                               | <0.02       | <0.05           | <0.05   | <0.15 |
| EX-27-EL16 <sup>10</sup>   | 07/14/08        | 16                                                                                                                                                                                                                                | 17.5              | NS                 | 0                  | <10                            | <20                          | <50                             | <40                               | <0.02       | <0.05           | <0.05   | <0.15 |
| EX-28-EL16                 | 07/14/08        | 16                                                                                                                                                                                                                                | 17.5              | NS                 | 0                  | <10                            | <20                          | <50                             | <40                               | <0.02       | <0.05           | <0.05   | <0.15 |
| EX-30-EL19 <sup>10</sup>   | 07/15/08        | 19                                                                                                                                                                                                                                | 11                | NS                 | 0                  | <10                            | <20                          | <50                             | <40                               | <0.02       | <0.05           | <0.05   | <0.15 |
| EX-31-EL20 <sup>10</sup>   | 07/15/08        | 20                                                                                                                                                                                                                                | 10                | NS                 | 0                  | <10                            | <20                          | <50                             | <40                               | <0.02       | <0.05           | <0.05   | <0.15 |
| EX-43-EL15.5               | 07/22/08        | 15.5                                                                                                                                                                                                                              | 17                | NS                 | 0                  | <10                            | <20                          | <50                             | <40                               | <0.02       | <0.05           | <0.05   | <0.15 |
| EX-44-EL17.5 <sup>10</sup> | 07/22/08        | 17.5                                                                                                                                                                                                                              | 16                | NS                 | 0                  | <10                            | <20                          | <50                             | <40                               | <0.02       | <0.05           | <0.05   | <0.15 |

|                           |                  |           |                   | Field S | Screening          | ı                              |                              | Hydrocarbong/kg)    | ons                               |                  |       | TX <sup>3</sup><br>/kg) |       |
|---------------------------|------------------|-----------|-------------------|---------|--------------------|--------------------------------|------------------------------|---------------------|-----------------------------------|------------------|-------|-------------------------|-------|
| Sample ID <sup>1, 2</sup> | Sample Date      | Elevation | Depth<br>(ft bgs) | Sheen   | Headspace<br>(ppm) | Gasoline<br>Range <sup>3</sup> | Diesel<br>Range <sup>4</sup> | Heavy Oil<br>Range⁴ | Mineral Oil<br>Range <sup>4</sup> | В                | E     | т                       | ×     |
| idewall Confirma          | ation Soil Samp  | les 🔭 🔭   |                   |         |                    |                                |                              |                     |                                   | ritagi sa rigari |       |                         |       |
| EX-3-E3                   | 06/30/08         | 22        | 8                 | MS      | >200               | 64                             | 230                          | <50                 | <40                               | <0.02            | 0.13  | <0.05                   | 0.25  |
| EX-4-N13.5 <sup>8</sup>   | 06/30/08         | 22        | 8                 | MS      | >400               | 145                            | <20                          | <50                 | <40                               | <0.02            | 1.6   | 1.0                     | 5.2   |
| EX-5-N10 <sup>8</sup>     | 06/30/08         | 21        | 9                 | SS      | >400               | 340                            | <20                          | <50                 | <40                               | 0.1              | 5.4   | 2.4                     | 19    |
| EX-6-N6 <sup>8</sup>      | 06/30/08         | 23        | 7                 | HS      | >400               | 280                            | <20                          | 320                 | <40                               | 0.11             | 4.2   | 2.2                     | 7.4   |
| EX-10-N2 <sup>8</sup>     | 07/01/08         | 22        | 8                 | HS      | >400               | 1100                           | <20                          | 430                 | <40                               | 0.05             | 3.8   | 2.3                     | 12    |
| EX-11-W21                 | 07/02/08         | 21        | 9.5               | NS      | 15                 | 11                             | <20                          | <50                 | <40                               | <0.02            | <0.05 | <0.05                   | <0.15 |
| EX-12-W16.5               | 07/02/08         | 22        | 7                 | NS      | 0                  | <10                            | <20                          | <50                 | <40                               | <0.02            | <0.05 | <0.05                   | <0.15 |
| EX-13-E15                 | 07/02/08         | 23        | 11                | NS      | 0                  | <10                            | <20                          | <50                 | <40                               | <0.02            | <0.05 | <0.05                   | <0.15 |
| EX-15-E11                 | 07/02/08         | 21        | 12                | NS      | 0                  | <10                            | <20                          | <50                 | <40                               | <0.02            | <0.05 | <0.05                   | <0.15 |
| EX-16-E7                  | 07/02/08         | 21        | 12                | NS      | 0                  | <10                            | <20                          | <50                 | <40                               | <0.02            | <0.05 | <0.05                   | <0.15 |
| EX-17-W13                 | 07/03/08         | 20        | 6.5               | NS      | 0                  | <10                            | <20                          | <50                 | <40                               | <0.02            | <0.05 | <0.05                   | <0.15 |
| EX-18-W9                  | 07/03/08         | 19.5      | 6                 | NS      | 0                  | <10                            | <20                          | <50                 | <40                               | <0.02            | <0.05 | <0.05                   | <0.15 |
| ITCA Method A or          | r B Cleanup Leve | els       |                   |         |                    | 100/30 <sup>9</sup>            | 2000                         | 2000                | 4000                              | 0.03             | 6     | 7                       | 9     |

#### Notes:

mg/kg = milligrams per kilogram

-- = Not Tested

MTCA = Model Toxic Control Act

bgs = below ground surface

NA = Not applicable.

NS = no sheen, SS = slight sheen, MS = moderate sheen, HS = heavy sheen

Bolding indicates analyte was detected. Shading indicates that analyte was detected at concentrations greater than MTCA Method A cleanup levels.

GEOENGINEERS (7)

<sup>&</sup>lt;sup>1</sup>Sample locations shown on the attached site plan.

<sup>&</sup>lt;sup>2</sup>GeoEngineers samples submitted to Fremont Analytical, Seattle, Washington.

<sup>&</sup>lt;sup>3</sup>Analyzed by Ecology Method NWTPH-Gx and 8021B.

<sup>&</sup>lt;sup>4</sup>Analyzed by Ecology Method NWTPH-Dx or NWTPH-Dx Extended with a silica gel cleanup.

<sup>&</sup>lt;sup>5</sup>Contaminated soil represented by this sample was subsequently excavated and removed from the site for permitted disposal.

<sup>&</sup>lt;sup>6</sup>This sample was also analyzed for Volatile Organic Compounds (VOCs) by EPA Method 8260 and RCRA 8 Metals. VOCs were not detected in the sample. Metals either were not detected or were detected at concentrations less than the MTCA Method A cleanup levels. See the laboratory report for the full list of analytes tested.

<sup>&</sup>lt;sup>7</sup>This sample was also analyzed for Polycyclic Aromatic Hydrocarbons (PAHs), lead and PCBs. PAHs and PCBs were not detected (less than 0.5 mg/kg). Lead was detected at a concentration less than the MTCA Method A cleanup level. See the laboratory report for the full list of analytes tested.

<sup>&</sup>lt;sup>8</sup>Contaminated soil represented by this sample was left in place because it extends into the right-of-way and was not accessible.

<sup>&</sup>lt;sup>9</sup>When benzene is present, the gasoline range cleanup level is 30 mg/kg. When benzene is not present the gasoline range cleanup level is 100 mg/kg.

<sup>&</sup>lt;sup>10</sup>This sample was also submitted for chemical analysis of lead, cadmium and/or PAHs. These results are presented in Table 3. See the laboratory report for the full list of analytes tested.

#### TABLE 2

## LOTS 3, 4 AND 5 REMEDIAL EXCAVATION SOIL CHEMICAL ANALYTICAL DATA CADMIUM, LEAD AND POLYCYCLIC AROMATIC HYDROCARBONS INTERURBAN EXCHANGE 2

535 TERRY AVENUE NORTH, SEATTLE, WASHINGTON

| Charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and the charles and th |                            |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Field    | Screening          | Total M<br>(mg/l      |            |                    | No                  | n-carcino         | genic Pol                                            | ycyclic Ar<br>(mg/kg) | omatic H        | ydrocark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | oons <sup>\$</sup>    |                                       |                         |                                       | Carcinoge                 |                           | c Aromatic<br>ig/kg)                     | Hydrocarbon                 | s <sup>5</sup>             | comments and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|--------------------|-----------------------|------------|--------------------|---------------------|-------------------|------------------------------------------------------|-----------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------|-------------------------|---------------------------------------|---------------------------|---------------------------|------------------------------------------|-----------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample ID <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Consultant <sup>2, 3</sup> | Sample<br>Date          | Elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Depth<br>(ft bgs) | Sheen    | Headspace<br>(ppm) | Cadmium               | Lead       | Naph-<br>thalenes  | Acenaph-<br>thylene | Acenaph-<br>thenc | Fluorene                                             | Phenan-<br>threne     | Anthra-<br>cene | Fluoran-<br>thene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pyrene                | Benzo(g,h,i)-<br>perylene             | Benzo(a)-<br>anthracene | Chrysene                              | Benzo(b)-<br>fluoranthene | Benzo(k)-<br>fluoranthene | 51 100000 100 100 100 100 100 100 100 10 | Indeno(1,2,3-<br>-cd)Pyrene | Dibenz(a,h)-<br>anthracene | Total cPAHs<br>(TEQ)"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Waste Charact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | erization Soil S           | amples <sup>7, 12</sup> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |          |                    |                       |            |                    |                     |                   |                                                      | -//                   |                 | 5-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and the second second |                                       |                         |                                       |                           |                           |                                          |                             |                            | the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |
| TP-10-4 <sup>8</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | 05/05/08                | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                 | SS       | 53<br>53           | 2.4                   | 1,900      | <0.03              | <0.03               | <0.03             | 0.04                                                 | <0.03                 | <0.03           | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.33                  | 0.1                                   | 0.17                    | 0.29                                  | 0.25                      | 0.36                      | 0.16                                     | <0.03                       | <0.03                      | 0.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| HA-3-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GeoEngineers               | 05/13/08                | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                 | NS       |                    | <2                    | 56         | 14                 |                     | 124               |                                                      |                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                       |                         |                                       | ••                        |                           | ••                                       |                             |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HA-4-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | 05/13/08                | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                 | NS       |                    | <2                    | 21         | -                  | () <del></del>      | 188               |                                                      | 77                    | 17              | 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | ==                                    |                         |                                       | đđ)                       | ( <del>()</del> ()        |                                          |                             | <b>-</b>                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Confirmation S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | amples                     |                         | representation of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o |                   |          |                    |                       |            |                    | ęriana ir           |                   | Part of particular print annual contract of the con- |                       |                 | and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t | erall very Establish  |                                       |                         |                                       |                           |                           |                                          |                             |                            | at (1 manual experience) and the manual experience of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Base Confirma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tion Soil Sampl            | es                      | 00 20 0k 00TS 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |          | ,                  | 1000<br>1000<br>1000  |            |                    |                     |                   |                                                      |                       | ,               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                     | · · · · · · · · · · · · · · · · · · · |                         | ·                                     | y                         | P                         | · · · · · · · · · · · · · · · · · · ·    |                             | r                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EX-27-EL16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | 07/14/08                | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17.5              | NS       | 0                  |                       | 18.5       | <0.05              | <0.05               | <0.05             | <0.05                                                | <0.05                 | <0.05           | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.05                 | <0.05                                 | <0.01                   | <0.01                                 | <0.01                     | <0.01                     | <0.01                                    | <0.01                       | <0.01                      | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EX-30-EL19 <sup>12</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | 07/15/08                | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                 | NS       | 0                  | <2.0                  | 52         | <0.05              | <0.05               | <0.05             | <0.05                                                | 0.15                  | 0.14            | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.22                  | 0.12                                  | 0.24                    | 0.16                                  | <0.01                     | 0.15                      | 0.10                                     | 0.09                        | 0.07                       | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EX-30-EL18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Î                          | 07/18/08                | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                 | NS       | 0                  | <2.0                  | 15         | <0.05              | <0.05               | <0.05             | <0.05                                                | <0.05                 | <0.05           | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.05                 | <0.05                                 | <0.01                   | <0.01                                 | <0.01                     | <0.01                     | <0.01                                    | <0.01                       | <0.01                      | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EX-31-EL20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                          | 07/15/08                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                 | NS       | 0                  | <2.0                  | 12         | <0.05              | <0.05               | <0.05             | <0.05                                                | <0.05                 | <0.05           | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <0.05                 | <0.05                                 | 0.13                    | <0.01                                 | <0.01                     | <0.01                     | <0.01                                    | <0.01                       | <0.01                      | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EX-32-EL19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GeoEngineers               | 07/16/08                | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.0               | NS       | 0                  | <2.0                  | 44         | <0.05              | <0.05               | <0.05             | <0.05                                                | <0.05                 | <0.05           | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.05                 | <0.05                                 | <0.01                   | <0.01                                 | <0.01                     | <0.01                     | <0.01                                    | <0.01                       | <0.01                      | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EX-34-EL20 <sup>12</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                          | 07/17/08                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.5               | NS       | 0                  | <2.0                  | 110        | 1.75               | 0.11                | 0.09              | 0.17                                                 | 0.49                  | 0.23            | 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.45                  | 0.17                                  | 0.23                    | 0.15                                  | 0.19                      | 0.13                      | 0.17                                     | 0.10                        | 0.10                       | 0,11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EX-34-EL19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | 07/21/08                | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.5               | NS       | 0                  |                       |            | <0.05              | <0.05               | <0.05             | <0.05                                                | <0.05                 | <0.05           | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.05                 | <0.05                                 | <0.01                   | <0.01                                 | <0.01                     | <0.01                     | <0.01                                    | <0.01                       | <0.01                      | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EX-42-EL21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | 07/18/08                | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.5               | NS       | 0                  | <2.0                  | 37         | <0.05              | <0.05               | <0.05             | <0.05                                                | <0.05                 | <0.05           | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.05                 | 0.05                                  | 0.14                    | 0.09                                  | 0.09                      | 0.10                      | 0.05                                     | 0.06                        | <0.01                      | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EX-44-EL17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | 07/22/08                | 17.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16                | NS       | 0                  | <2.0                  | 115        | <0.05              | <0.05               | <0.05             | <0.05                                                | <0.05                 | <0.05           | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.05                 | <0.05                                 | <0.01                   | <0.01                                 | <0.01                     | <0.01                     | <0.01                                    | <0.01                       | <0.01                      | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Base Confirma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tion Wood Sam              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100000            |          |                    |                       | (411)      |                    | 0.001               |                   |                                                      | 10                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                       |                         |                                       |                           |                           |                                          |                             |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ATP-1 (7.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | 08/12/06                | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.5               | NA       | NA                 |                       |            | 3. <del>3.5.</del> |                     | 15.7              | 100                                                  |                       | 202             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | 2.                                    | 0.0042                  | 0.0048                                | 0.0067                    | ND                        | 0.0053                                   | ND                          | ND                         | 0.0044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ATP-2 (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | 08/12/06                | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                 | NA       | NA                 |                       |            |                    |                     | 22                |                                                      | 1200                  | 22              | **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                       | 0.0038                  | 0.0067                                | 0.0064                    | 0.0028                    | 0.0045                                   | ND                          | ND                         | 0.0048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ATP-3 (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | 08/12/06                | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7                 | NA       | NA                 |                       | -          | 1.2                |                     |                   |                                                      |                       |                 | ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                       | 0.0052                  | 0.0050                                | 0.0070                    | ND                        | 0.0050                                   | ND                          | ND                         | 0.0035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ATP-4 (4.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | 08/12/06                | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.5               | NA       | NA                 |                       |            |                    |                     |                   |                                                      |                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                       | 0.0240                  | 0.0390                                | 0.0770                    | 0.0220                    | 0.0550                                   | 0.0130                      | ND                         | 0.0223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ATP-5 (5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.0                        | 08/12/06                | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                 | NA       | NA                 |                       |            |                    |                     |                   | -=                                                   |                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                       | 0.1500                  | 0.1500                                | 0.1400                    | ND                        | ND                                       | ND                          | ND                         | 0.0417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ATP-6 (8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Adapt                      | 08/12/06                | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8                 | NA       | NA                 |                       |            |                    |                     |                   | _=                                                   | 22                    | 22              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                       | 0.0070                  | 0.0100                                | 0.0140                    | 0.0059                    | 0.0088                                   | 0.0024                      | ND                         | 0.0059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ATP-7 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ;                          | 08/13/06                | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                 | NA       | NA                 | 112                   |            |                    |                     | 122               | - LU                                                 |                       | 14.             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                       | ND                      | 0.0046                                | 0.0130                    | 0.0110                    | 0.0080                                   | 0.0210                      | ND                         | 0.0188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ATP-8 (6.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | 08/13/06                | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.5               | NA       | NA                 | 10000000<br>100000000 | **         | TW.                |                     | 100               |                                                      |                       |                 | aret .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                                       | 0.0130                  | 0.0140                                | 0.0390                    | 0.0170                    | 0.0280                                   | 0.0130                      | ND                         | 0.0293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ATP-9 (6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | 08/13/06                | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                 | NA       | NA                 |                       |            |                    |                     |                   |                                                      |                       | 155             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                       | ND                      | ND                                    | ND                        | ND                        | ND                                       | ND                          | ND                         | 0.0276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ATP-10 (5.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | 08/13/06                | NA -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.5               | NA       | NA                 |                       |            | ) <del></del>      |                     |                   |                                                      |                       | <i>9==</i> -    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                       | . ND                    | ND                                    | ND                        | ND                        | ND                                       | ND                          | ND                         | 0.0181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sidewall Confir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mation Soil Sai            |                         | 3.0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0               |          | 177.6              | •                     |            |                    |                     |                   |                                                      |                       |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                       |                         | · · · · · · · · · · · · · · · · · · · | N                         |                           |                                          |                             |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EX-7-E31.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | 07/01/08                | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                | NS       | 0                  | <2.0                  | 12         | <0.05              | <0.05               | <0.05             | <0.05                                                | < 0.05                | 0.13            | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.11                  | <0.05                                 | <0.01                   | <0.01                                 | <0.01                     | <0.01                     | <0.01                                    | <0.01                       | <0.01                      | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EX-8-E27.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <i>x</i>                   | 07/01/08                | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                | NS       | 0                  | <2.0                  | <4.0       | <0.05              | <0.05               | <0.05             | <0.05                                                | <0.05                 | <0.05           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.05                 | <0.05                                 | <0.01                   | <0.01                                 | <0.01                     | <0.01                     | <0.01                                    | <0.01                       | <0.01                      | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EX-9-E23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | 07/01/08                | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                | NS       | 0                  | <2.0                  | <4.0       | <0.05              | <0.05               | <0.05             | <0.05                                                | <0.05                 | <0.05           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.05                 | <0.05                                 | <0.01                   | <0.01                                 | <0.01                     | <0.01                     | <0.01                                    | <0.01                       | <0.01                      | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EX-14-E19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | 07/02/08                | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                | NS       | 0                  | <2.0                  | 12         | <0.05              | <0.05               | <0.05             | <0.05                                                | <0.05                 | <0.05           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.05                 | <0.05                                 | <0.01                   | <0.01                                 | <0.01                     | <0.01                     | <0.01                                    | <0.01                       | <0.01                      | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EX-19-W5 <sup>10, 11</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8                          | 07/03/08                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5                 | NS       | 0                  | <2.0                  | 64         | 0.07               | 0.11                | 0.42              | 0.30                                                 | 2.3                   | 0.98            | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.6                   | 2.0                                   | 0.97                    | 0.88                                  | 1.3                       | 0.55                      | 1.7                                      | 0.78                        | 0.50                       | 2.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EX-20-W1.5 <sup>11</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | 07/03/08                | 19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.5               | NS       | 0                  | <2.0                  | 120        | 0.13               | 0.12                | 0.63              | 0.42                                                 | 4.2                   | 1.5             | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.5                   | 3.0                                   | 1.2                     | 1.2                                   | 2.1                       | 0.75                      | 2.3                                      | 1.2                         | 0.76                       | 2.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EX-29-EL16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | 07/14/08                | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | NS       | 0                  | <2.0                  | 29         | <0.05              | <0.05               | <0.05             | <0.05                                                | <0.05                 | <0.05           | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.05                 | <0.05                                 | <0.01                   | <0.01                                 | <0.01                     | <0.01                     | <0.01                                    | <0.01                       | <0.01                      | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GeoEngineers               | 07/16/08                | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.0               | NS<br>NS | 0                  | <2.0                  | 27         | <0.05              | <0.05               | <0.05             | <0.05                                                | <0.05                 | <0.05           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | <0.05                                 | <0.01                   | <0.01                                 | <0.01                     | <0.01                     | <0.01                                    | <0.01                       | <0.01                      | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EX-35-EL21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Geochgmeets                |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |          | 62                 | 0.000                 | A CONTRACT | N                  |                     |                   | <0.05                                                | <0.05                 | <0.05           | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | <0.05                                 | 0.19                    | 0.08                                  | 0.11                      | 0.15                      | 0.06                                     | 0.08                        | <0.01                      | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | 07/17/08                | 22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.5               | NS       | 0                  | <2.0                  | 7.7        | <0.05              | <0.05               | <0.05             | 7 - 10 W                                             | 8 0                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                       | 0.19                    | 0.16                                  | 0.33                      | 0.13                      | 0.16                                     | 0.17                        | <0.01                      | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EX-36-EL23 <sup>11</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | 07/18/08                | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5               | NS       | 0                  | <2.0                  | 35         | <0.05              | <0.05               | <0.05             | <0.05                                                | 0.28                  | 0.28            | 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.56                  | 0.34                                  |                         |                                       |                           |                           |                                          |                             | <0.01                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EX-37-EL23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            | 07/18/08                | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.5               | NS       | 0                  | <2.0                  | <4.0       | <0.05              | <0.05               | <0.05             | <0.05                                                | <0.05                 | <0.05           | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.05                 | <0.05                                 | <0.01                   | <0.01                                 | <0.01                     | <0.01                     | <0.01                                    | <0.01                       |                            | <0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EX-38-EL23 <sup>11</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | 07/18/08                | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0               | NS       | 0                  | <2.0                  | 160        | <0.05              | 0.14                | <0.05             | 0.43                                                 | 4.2                   | 1.7             | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.8                   | 2.9                                   | 2.7                     | 1.4                                   | 1.6                       | 1.7                       | 2.9                                      | 1.1                         | 1.0                        | 3.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EX-39-EL23 <sup>11</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | 07/18/08                | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0               | NS       | 0                  | <2.0                  | 86         | <0.05              | 0.11                | <0.05             | 0.13                                                 | 0.27                  | 0.27            | 0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                   | 0.39                                  | 0.73                    | 0.21                                  | 0.23                      | 0.31                      | 0.32                                     | 0.18                        | <0.01                      | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EX-40-EL22 <sup>11</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | 07/18/08                | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.0               | NS       | 0                  | <2.0                  | 1,800      | 6                  | 7.2                 | 0.61              | 4.9                                                  | 53                    | 40              | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53                    | 12                                    | 17                      | 9.4                                   | 17                        | 20                        | 19.00                                    | 5.7                         | 1.40                       | 25.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EX-41-EL22 <sup>11</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | 07/18/08                | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.0               | NS       | 0                  | <2.0                  | 1,200      | 0.56               | 0.49                | 0.16              | 0.31                                                 | 3.3                   | 1.4             | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.7                   | 1.7                                   | 2.9                     | 2.1                                   | 1.3                       | 1.1                       | 2.30                                     | 0.69                        | 0.62                       | 3.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MTCA Method A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | or B Cleanup L             | evels                   | Section 10 May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500000            | - 312    |                    | 2                     | 250        | 5                  | NE                  | 4,800             | 3,200                                                | NE                    | 24,000          | 3,200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,400                 | NE                                    | NA                      | NA                                    | NA                        | NA                        | NA                                       | NA                          | NA                         | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

#### Notes:

<sup>1</sup>Sample locations shown on the attached site plan.

<sup>2</sup>GeoEngineers samples submitted to Fremont Analytical in Seattle, Washington.

<sup>3</sup>Adapt Engineering, Inc. (Adapt) samples submitted to Friedman and Bruya Inc. in Seattle, Washington.

<sup>4</sup>Analyzed by EPA Method 6020

<sup>5</sup>Analyzed by EPA Method 8270C (SIM).

<sup>6</sup>Calculated using the toxicity equivalency (TEQ) methodology specified in WAC 173-340-780(8), cPAHs that were not detected were assigned half the value of the detection limit for these calculations. Total cPAHs for the Adapt samples was calculated using the wood Ecology and using the sampling method approved by Toxicity Equivalency Factors (TEF).

<sup>7</sup>Each of the characterization soil samples were also analyzed for RCRA 8 Metals and gasoline-, diesel-, and lubc oil-range petroleum hydrocarbons and BETX using Ecology methods NWTPH-Ox and EPA Method 8021B. Petroleum hydrocarbons, BETX and metals other than cadmium and lead were either not detected or were detected at concentrations less than the MTCA Method A cleanup level. See the laboratory report for the full list of analytes tested.

<sup>8</sup>Mercury was detected in this sample at a concentration of 4 mg/kg, which is greater than the MTCA Method A cleanup level. Soil represented by this sample was subsequently excavated and a new sample (EX-19-W5) was obtained in its place. Mercury was not detected in EX-10-W5. Lead and cadmium toxicity characteristic leaching procedure (TCLP) was also conducted on this sample for disposal characterization purposes.

<sup>9</sup>This sample was subsequently re-analyzed for lead. The second time lead was detected at 370 parts per million.

<sup>10</sup>This sample was also submitted for chemical analysis of mercury using EPA Method 6020. Mercury was not detected (<1.0 parts per million).

<sup>11</sup>Contaminated soil represented by this sample was left in place because it extends into the right-of-way and was not accessible.

<sup>12</sup>Contaminated soil represented by this sample was subsequently excavated and removed from the site for permitted disposal.

mg/kg = milligrams per kilogram

bgs = below ground surface

-- = Not Tested

NA = Not applicable.

MTCA - Model Toxic Control Act

Bolding indicates analyte was detected. Shading indicates that analyte was detected at concentrations greater than MTCA Method A cleanup levels.

REDM:\P\11\Finals\713100211Tables T2.xls

#### TABLE 3

### SOIL CHEMICAL ANALYTICAL DATA - TEQ CALCULATIONS INTERURBAN EXCHANGE 2

#### 535 TERRY AVENUE NORTH, SEATTLE, WASHINGTON

| Sample ID              | TP-10-4                               |                                         |                |              |
|------------------------|---------------------------------------|-----------------------------------------|----------------|--------------|
| Analyte                | Detected<br>Concentrations<br>(mg/kg) | Cal TEF                                 | TEQ<br>(mg/kg) | Comments     |
| benzo(a)anthracene     | 0,17                                  | 0.1                                     | 0.017          | Detected     |
| chrysene               | 0.29                                  | 0.01                                    | 0.003          | Detected     |
| benzo(b)fluoranthene   | 0.25                                  | 0.1                                     | 0.025          | Detected     |
| benzo(k)fluoranthene   | 0.36                                  | 0.1                                     | 0.036          | Detected     |
| benzo(a)pyrene         | 0.16                                  | 1.0                                     | 0.160          | Detected     |
| indeno(1,2,3-cd)pyrene | 0.015                                 | 0.1                                     | 0.002          | Not Detected |
| dibenzo(a,h)anthracene | 0.015                                 | 0.4                                     | 0.003          | Not Detected |
| Total                  |                                       | *************************************** | 0,245          | 7.000.00000  |

| Sample ID              | EX-19-W5                |         |         |          |
|------------------------|-------------------------|---------|---------|----------|
|                        | Detected Concentrations | 8       | TEQ     |          |
| Analyte                | (mg/kg)                 | Cal TEF | (mg/kg) | Comments |
| benzo(a)anthracene     | 0.97                    | 0.1     | 0.097   | Detected |
| chrysene               | 0.88                    | 0.01    | 0.009   | Detected |
| benzo(b)fluoranthene   | 1.3                     | 0.1     | 0.130   | Detected |
| benzo(k)fluoranthene   | 0.55                    | 0.1     | 0.055   | Detected |
| benzo(a)pyrene         | 1.7                     | 1.0     | 1.700   | Detected |
| indeno(1,2,3-cd)pyrene | 0.78                    | 0.1     | 0.078   | Detected |
| dibenzo(a,h)anthracene | 0.50                    | 0.4     | 0.100   | Detected |
| Total -                |                         | 3       | 2.169   |          |

| Sample ID              | EX-20-W1.5              |                                        |         | 300 May 200 |
|------------------------|-------------------------|----------------------------------------|---------|-------------|
|                        | Detected Concentrations | ************************************** | TEQ     |             |
| Analyte                | (mg/kg)                 | Cal TEF                                | (mg/kg) | Comments    |
| benzo(a)anthracene     | 1.2                     | 0.1                                    | 0.120   | Detected    |
| chrysene               | 1.2                     | 0.01                                   | 0.012   | Detected    |
| benzo(b)fluoranthene   | 2.1                     | 0.1                                    | 0.210   | Detected    |
| benzo(k)fluoranthene   | 0.75                    | 0.1                                    | 0.075   | Detected    |
| benzo(a)pyrene         | 2.3                     | 1.0                                    | 2.300   | Detected    |
| indeno(1,2,3-cd)pyrene | 1.2                     | 0.1                                    | 0.120   | Detected    |
| dibenzo(a,h)anthracene | 0.76                    | 0.4                                    | 0.152   | Detected    |
| Total                  |                         |                                        | 2,989   |             |

| Sample ID              | EX-30-EL19                            | ev 20 20 2000 |                |              |
|------------------------|---------------------------------------|---------------|----------------|--------------|
| Analyte                | Detected<br>Concentrations<br>(mg/kg) | CalTEF        | TEQ<br>(mg/kg) | Comments     |
| benzo(a)anthracene     | 0.24                                  | 0.1           | 0.024          | Detected     |
| chrysene               | 0.16                                  | 0.01          | 0.002          | Detected     |
| benzo(b)fluoranthene   | 0.005                                 | 0.1           | 0.001          | Not Detected |
| benzo(k)fluoranthene   | 0.15                                  | 0.1           | 0.015          | Detected     |
| benzo(a)pyrene         | 0.1                                   | 1.0           | 0.100          | Detected     |
| indeno(1,2,3-cd)pyrene | 0.09                                  | 0.1           | 0.009          | Detected     |
| dibenzo(a,h)anthracene | 0.07                                  | 0.4           | 0.014          | Detected     |
| Total                  |                                       |               | 0.164          | N000000      |



| Sample ID              | EX-31-EL20              |         | W       |              |
|------------------------|-------------------------|---------|---------|--------------|
|                        | Detected Concentrations |         | TEQ     |              |
| Analyte                | (mg/kg)                 | Cal TEF | (mg/kg) | Comments     |
| benzo(a)anthracenc     | 0.13                    | 0.1     | 0.013   | Detected     |
| chrysene               | 0.005                   | 0.01    | 0.000   | Not Detected |
| benzo(b)fluoranthene   | 0.005                   | 0.1     | 0.001   | Not Detected |
| benzo(k)fluoranthene   | 0.005                   | 0.1     | 0.001   | Not Detected |
| benzo(a)pyrene         | 0.005                   | 1.0     | 0.005   | Not Detected |
| indeno(1,2,3-cd)pyrene | 0.005                   | 0.1     | 0.001   | Not Detected |
| dibenzo(a,h)anthracene | 0.005                   | 0.4     | 0.001   | Not Detected |
| Total                  |                         |         | 0.021   | é            |

| Sample ID              | EX-34-EL20              |         |         | N 100 10 (000000 100000) |
|------------------------|-------------------------|---------|---------|--------------------------|
|                        | Detected Concentrations |         | TEQ     |                          |
| Analyte                | (mg/kg)                 | Cal TEF | (mg/kg) | Comments                 |
| benzo(a)anthracene     | 0.23                    | 0.1     | 0.023   | Detected                 |
| chrysene               | 0.15                    | 0.01    | 0.002   | Detected                 |
| benzo(b)fluoranthene   | 0.19                    | 0.1     | 0.019   | Detected                 |
| benzo(k)fluoranthene   | 0.13                    | 0.1     | 0.013   | Detected                 |
| benzo(a)pyrene         | 0.17                    | 1.0     | 0.170   | Detected                 |
| indeno(1,2,3-cd)pyrene | 0.1                     | 0.1     | 0.010   | Detected                 |
| dibenzo(a,h)anthracene | 0.1                     | 0.4     | 0.020   | Detected                 |
| Total                  |                         |         | 0.257   |                          |

| Sample ID              | EX-35-EL22.5            |         |         |          |
|------------------------|-------------------------|---------|---------|----------|
| A2752                  | Detected Concentrations |         | TEQ     |          |
| Analyte                | (mg/kg)                 | Cal TEF | (mg/kg) | Comments |
| benzo(a)anthracene     | 0.19                    | 0.1     | 0.019   | Detected |
| chrysene               | 0.08                    | 0.01    | 0.001   | Detected |
| benzo(b)fluoranthene   | 0.11                    | 0.1     | 0.011   | Detected |
| benzo(k)fluoranthene   | 0.15                    | 0.1     | 0.015   | Detected |
| benzo(a)pyrene         | 0.06                    | 1.0     | 0.060   | Detected |
| indeno(1,2,3-cd)pyrene | 0.08                    | 0.1     | 0.008   | Detected |
| dibenzo(a,h)anthracene | 0.01                    | 0.4     | 0.001   | Detected |
| Total                  |                         |         | 0.115   | ****     |

| Sample ID              | EX-36-EL23              |         | 10.00   |          |
|------------------------|-------------------------|---------|---------|----------|
|                        | Detected Concentrations |         | TEQ     |          |
| Analyte                | (mg/kg)                 | Cal TEF | (mg/kg) | Comments |
| benzo(a)anthracene     | 0.47                    | 0.1     | 0.047   | Detected |
| chrysene               | 0.16                    | 0.01    | 0.002   | Detected |
| benzo(b)fluoranthene   | 0.33                    | 0.1     | 0.033   | Detected |
| benzo(k)fluoranthene   | 0.24                    | 0.1     | 0.024   | Detected |
| benzo(a)pyrene         | 0.16                    | 1.0     | 0.160   | Detected |
| indeno(1,2,3-cd)pyrene | 0.17                    | 0.1     | 0.017   | Detected |
| dibenzo(a,h)anthracene | 0.00                    | 0.4     | 0.000   | Detected |
| Total                  |                         |         | 0.283   |          |

| Sample ID              | EX-38-EL23              |         | 10 00°F |          |
|------------------------|-------------------------|---------|---------|----------|
|                        | Detected Concentrations | ***     | TEQ     |          |
| Analyte                | (mg/kg)                 | Cal TEF | (mg/kg) | Comments |
| benzo(a)anthracene     | 2.7                     | 0.1     | 0.270   | Detected |
| chrysene               | 1.4                     | 0.01    | 0.014   | Detected |
| benzo(b)fluoranthene   | 1.6                     | 0.1     | 0.160   | Detected |
| benzo(k)fluoranthene   | 1.7                     | 0.1     | 0.170   | Detected |
| benzo(a)pyrene         | 2.9                     | 1.0     | 2.900   | Delected |
| indeno(1,2,3-cd)pyrene | 1.1                     | 0.1     | 0.110   | Detected |
| dibenzo(a,h)anthracene | 1.0                     | 0.4     | 0.200   | Detected |
| Total                  |                         |         | 3.824   |          |

| Sample ID              | EX-39-EL23              |         |         | 10/10 10 10 100 10000 Perk 101 |
|------------------------|-------------------------|---------|---------|--------------------------------|
|                        | Detected Concentrations |         | TEQ     |                                |
| Analyte                | (mg/kg)                 | Cal TEF | (mg/kg) | Comments                       |
| benzo(a)anthracene     | 0.73                    | 0.1     | 0.073   | Detected                       |
| chrysene               | 0.21                    | 0.01    | 0.002   | Detected                       |
| benzo(b)fluoranthene   | 0.23                    | 0.1     | 0.023   | Detected                       |
| benzo(k)fluoranthene   | 0.31                    | 0.1     | 0.031   | Detected                       |
| benzo(a)pyrene         | 0.32                    | 1.0     | 0.320   | Detected                       |
| indeno(1,2,3-cd)pyrene | 0.18                    | 0.1     | 0.018   | Detected                       |
| dibenzo(a,h)anthracene | 0.01                    | 0.4     | 0.001   | Detected                       |
| Total                  |                         |         | 0.468   |                                |

| Sample ID              | EX-40-EL22              |         | 2022    | 2000     |
|------------------------|-------------------------|---------|---------|----------|
|                        | Detected Concentrations |         | TEQ     |          |
| Analyte                | (mg/kg)                 | Cal TEF | (mg/kg) | Comments |
| benzo(a)anthracene     | 17                      | 0.1     | 1.700   | Detected |
| chrysene               | 9.4                     | 0.01    | 0.094   | Detected |
| benzo(b)fluoranthene   | 17                      | 0.1     | 1.700   | Detected |
| benzo(k)fluoranthene   | 20                      | 0.1     | 2.000   | Detected |
| benzo(a)pyrene         | 19.0                    | 1.0     | 19.000  | Detected |
| indeno(1,2,3-cd)pyrene | 5.7                     | 0.1     | 0.570   | Detected |
| dibenzo(a,h)anthracene | 1.4                     | 0.4     | 0.280   | Detected |
| Total                  |                         |         | 25.344  |          |

| Sample ID              | EX-41-EL22              |         |         |          |
|------------------------|-------------------------|---------|---------|----------|
|                        | Detected Concentrations | 20 -    | TEQ     |          |
| Analyte                | (mg/kg)                 | Cal TEF | (mg/kg) | Comments |
| benzo(a)anthracene     | 2.9                     | 0.1     | 0.290   | Detected |
| chrysene               | 2.1                     | 0.01    | 0.021   | Detected |
| benzo(b)fluoranthene   | 1.3                     | 0.1     | 0.130   | Detected |
| benzo(k)fluoranthene   | 1.1                     | 0.1     | 0.110   | Detected |
| benzo(a)pyrene         | 2.3                     | 1.0     | 2.300   | Detected |
| indeno(1,2,3-cd)pyrene | 0.69                    | 0.1     | 0.069   | Detected |
| dibenzo(a,h)anthracene | 0.6                     | 0.4     | 0.124   | Detected |
| Total                  |                         |         | 3.044   |          |

| Sample ID              | EX-42-EL21              | *       |         |              |
|------------------------|-------------------------|---------|---------|--------------|
|                        | Detected Concentrations |         | TEQ     |              |
| Analyte                | (mg/kg)                 | Cal TEF | (mg/kg) | Comments     |
| benzo(a)anthracene     | 0.14                    | 0.1     | 0.014   | Detected     |
| chrysene               | 0.009                   | 0.01    | 0.000   | Detected     |
| benzo(b)fluoranthene   | 0.009                   | 0.1     | 0.001   | Detected     |
| benzo(k)fluoranthene   | 0.1                     | 0.1     | 0.010   | Detected     |
| benzo(a)pyrene         | 0.005                   | 1.0     | 0.005   | Not Detected |
| indeno(1,2,3-cd)pyrene | 0.006                   | 0.1     | 0.001   | Detected     |
| dibenzo(a,h)anthracene | 0.005                   | 0.4     | 0.001   | Not Detected |
| Total                  |                         |         | 0.032   |              |

#### Notes:

Table 3

Calculated using the toxicity equivalency (TEQ) methodology specified in WAC 173-340-780(8). cPAHs that were not detected were assigned half the value of the detection limit for these calculations.

REDM:\P\11\Finals\713100211Tables T3.xls

GEOENGINEERS

## TABLE 4 GROUNDWATER DISCHARGE SCREENING LEVELS AND DETECTED ANALYTE CONCENTRATIONS INTERURBAN EXCHANGE 2 535 TERRY AVENUE NORTH, SEATTLE, WASHINGTON

|                        |                                    | <b>D</b>                |      | BETX ( | μg/L)² |       | Pet                | roleum Hydr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ocarbons (μ        | g/L)                      | Total Meta    | ıls⁴ (μg/L) |
|------------------------|------------------------------------|-------------------------|------|--------|--------|-------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------|---------------|-------------|
|                        |                                    | Depth to<br>Groundwater |      |        |        |       | Diesel             | TOTAL TREATMENT OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF | Mineral Oil        | Gasoline                  |               |             |
| Sample ID <sup>1</sup> | Sample Date                        | (ft)                    | В    | E      | T      | X     | Range <sup>3</sup> | Range <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Range <sup>3</sup> | Range <sup>2</sup>        | Cadmium       | Lead        |
| Dewatering Well (      | ewatering Well Groundwater Samples |                         |      |        |        |       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                           | 1000          |             |
| DN1-050808             | 05/08/08                           | 11.63                   | <1 " | <1     | 2.8    | <2    | <200               | <500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <400               | <100                      |               | 52          |
| DN5-050808             | 05/08/08                           | 11.92                   | . <1 | <1     | 1.5    | 1.9   | <200               | <500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <400               | <100                      |               | 10          |
| DN10-050708            | 05/07/08                           | 12                      | 20   | 16     | 19     | 23    | <200               | <500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <400               | 1,100                     |               | 5           |
| DN14-050808            | 05/08/08                           | 13.03                   | 24   | 16     | 28     | 33    | <200               | <500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <400               | 1,700                     |               | <2          |
| Dewatering Efflue      | nt Discharge Sa                    | ımples                  |      |        |        |       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                           |               |             |
| Baker-1 <sup>5</sup>   | 05/13/08                           | NA                      | 1.7  | <1.0   | <1.0   | <2.0  | <200               | <500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <400               | 120                       |               | 3           |
| Baker-2 <sup>6</sup>   | 06/23/08                           | NA                      | <1.0 | <1.0   | <1.0   | <1.0  | <200               | <500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <400               | <100                      | <2            | <2          |
| Baker-3                | 06/24/08                           | NA                      | <1.0 | <1.0   | <1.0   | <1.0  | <200               | <500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <400               | <100                      | <2            | <2          |
| Baker-4                | 06/25/08                           | NA                      | <1.0 | <1.0   | <2.0   | <2.0  | <200               | <500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <400               | <100                      | <2            | <2          |
| Baker -5               | 06/26/08                           | NA                      | 1.3  | <1.0   | <2.0   | <2.0  | <200               | <500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <400               | <100                      | <2            | <2          |
| Baker -6               | 06/27/08                           | NA                      | <1.0 | <1.0   | <2.0   | <2.0  | <200               | <500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <400               | 150                       | <2            | <2          |
| Baker -7               | 07/02/08                           | NA                      | <1.0 | <1.0   | <2.0   | <2.0  | <200               | <500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <400               | 110                       | <2            | <2          |
| Baker -8               | 07/09/08                           | NA                      | <1.0 | <1.0   | <2.0   | <2.0  | <200               | <500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <400               | <100                      | <2            | <2          |
| Baker -9               | 07/16/08                           | NA                      | <1.0 | <1.0   | <2.0   | <2.0  | <200               | <500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <400               | <100                      | <2            | 5.3         |
| Baker -10              | 07/23/08                           | NA                      | <1.0 | <1.0   | <2.0   | <2.0  | <200               | <500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <400               | <100                      | <b>&lt;</b> 5 | <4          |
| Baker -11              | 07/30/08                           | NA                      | <1.0 | <1.0   | <2.0   | <2.0  | <200               | <500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <400               | <100                      | <5            | <4          |
| Baker -12              | 08/26/08                           | NA                      | <1.0 | <1.0   | <2.0   | <2.0  | <200               | <500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <400               | <100                      | <5            | <4          |
| Baker -13              | 09/30/08                           | NA                      | <1.0 | <1.0   | <2.0   | <2.0  | <200               | <500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <400               | <100                      | <5            | <4          |
| King County Disc       | harge Screening                    | g Levels <sup>7</sup>   | 70   | 1,700  | 1,400  | 2,200 | 2000 W No          | 100,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 000 8              | se to to to stivilization | 600           | 4,000       |

#### Notes:

<sup>1</sup>GeoEngineers Samples submitted to Fremont Analytical in Seattle, Washington.

<sup>2</sup>Analyzed by ecology Method NWTPH-Gx and 8021B.

<sup>3</sup>Analyzed by Ecology Method NWTPH-Dx.

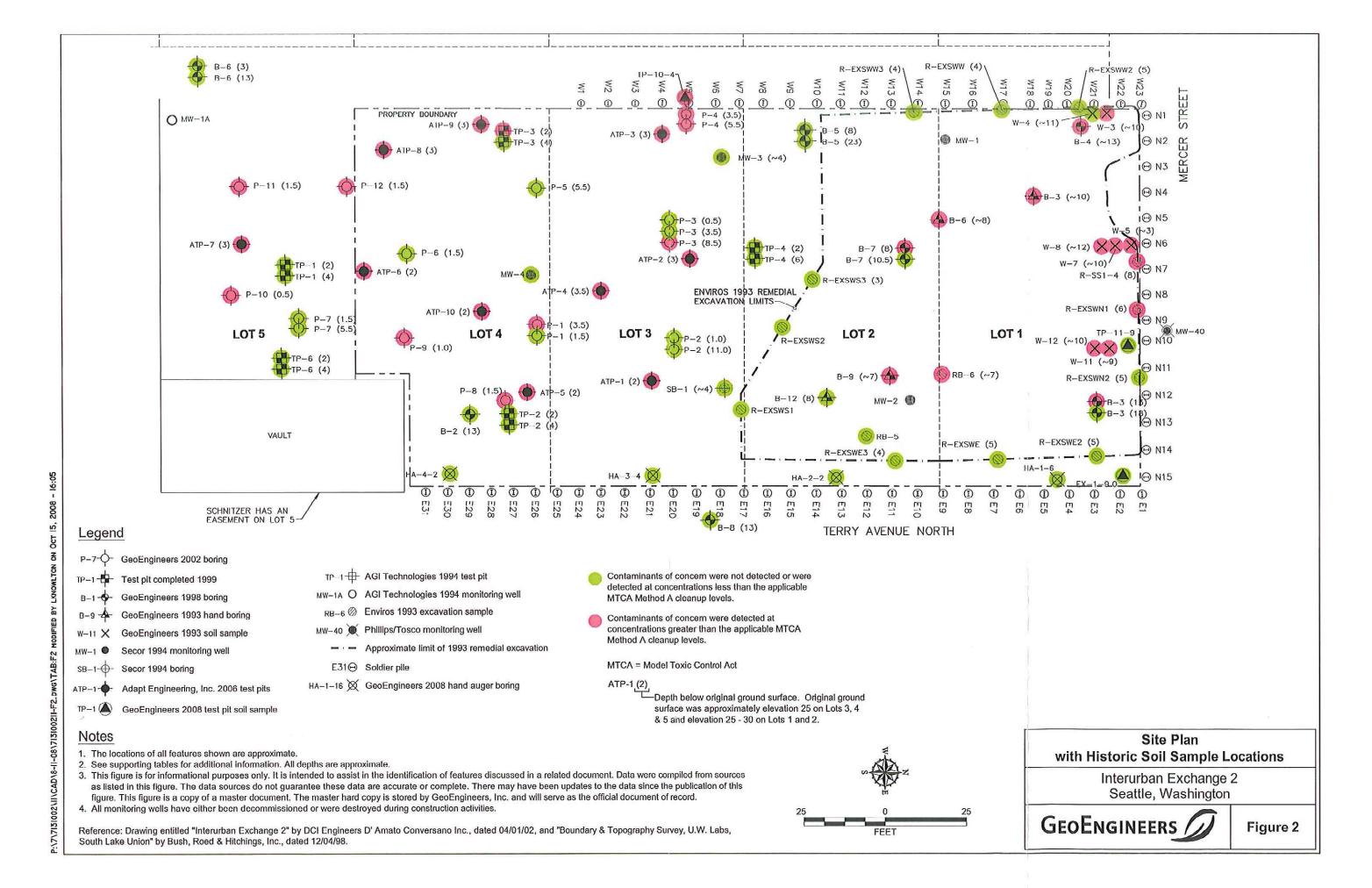
<sup>4</sup>Analyzed by EPA Method 6020.

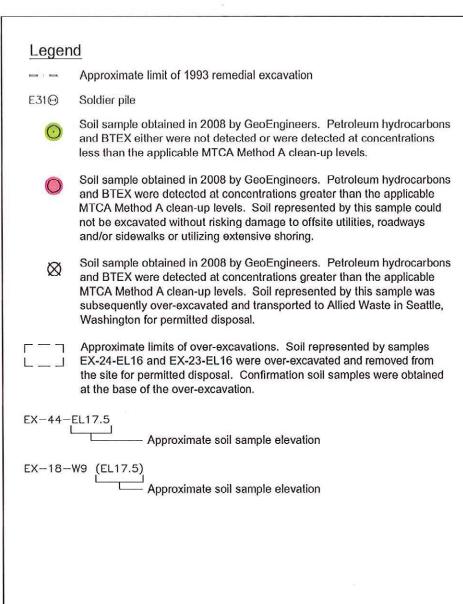
<sup>5</sup>This sample is referred to as BAY-051308 in the laboratory report.

<sup>6</sup>This sample was also analyzed for naphthalenes, EDB, EDC and MTBE. These compounds were not detected (less than the applicable clean up levels).

<sup>7</sup>According to our King County Wastewater Discharge Authorization Number 4147-01

<sup>6</sup>This is the King County Discharge Screening Level for FOG and refers to the sum of all of the detected petroleum hydrocarbons in the sample.

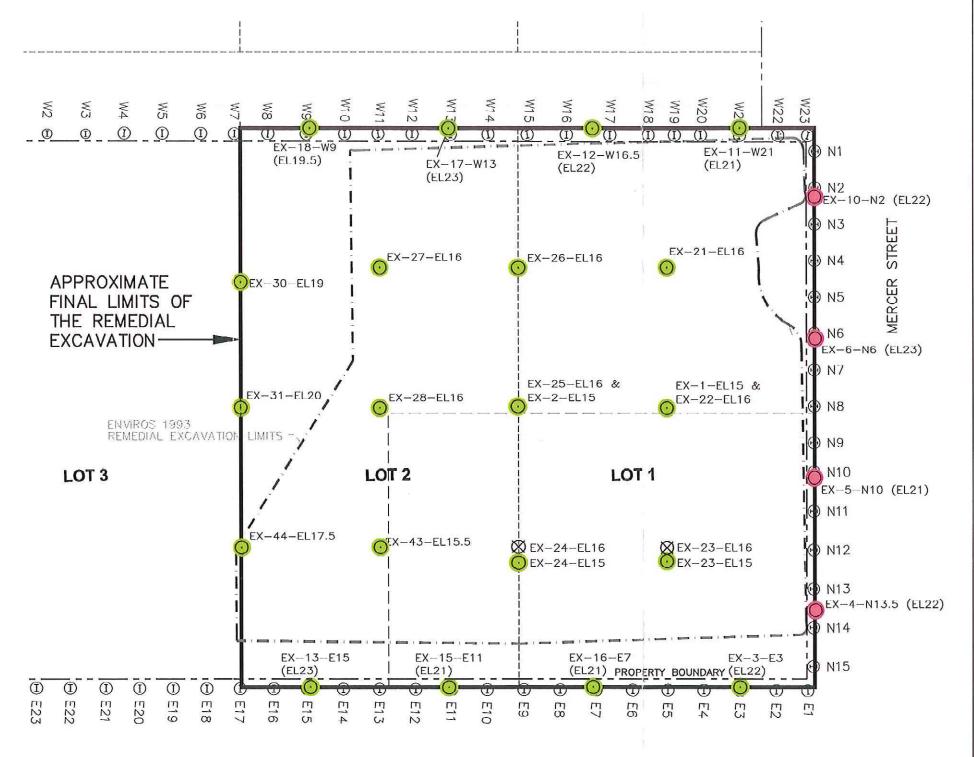

μg/L = micrograms per liter

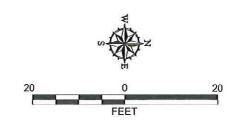

-- = Not Tested

MTCA - Model Toxic Control Act

Bolding indicates analyte was detected

REDM:\P\11\Finals\713100211Tables T4.xls




#### Notes

- 1. The locations of all features shown are approximate.
- 2. See supporting tables for additional information. All depths are approximate.
- 3. This figure is for informational purposes only. It is intended to assist in the identification of features discussed in a related document. Data were compiled from sources as listed in this figure. The data sources do not guarantee these data are accurate or complete. There may have been updates to the data since the publication of this figure. This figure is a copy of a master document. The master hard copy is stored by GeoEngineers, Inc. and will serve as the official document of record.
- Confirmation soil samples were obtained in 2008 by GeoEngineers and were submitted for chemical analysis of petroleum hydrocarbons and associated constituents. Analytical data is summarized in Table 2.

Reference: Drawing entitled "Interurban Exchange 2" by DCI Engineers D' Amato Conversano Inc., dated 04/01/02, and "Boundary & Topography Survey, U.W. Labs, South Lake Union" by Bush, Roed & Hitchings, Inc., dated 12/04/98.





Petroleum Hydrocarbon Remedial Excavation and Confirmation Soll Sample Locations
Lots 1 and 2

Interurban Exchange 2
Seattle, Washington



Figure 3

### APPENDIX F DEEP OUTWASH AQUIFER MONITORING

REMEDIAL INVESTIGATION/FOCUSED FEASIBILITY STUDY
Block 38 West Site
500 through 536 Westlake Avenue North
Seattle, Washington

Oakland | Folsom | Irvine



#### TECHNICAL MEMORANDUM

**TO:** Tena Seeds – Washington State Department of Ecology Toxics Cleanup Program

cc: Jim Broadlick – City Investors XI L.L.C.

**FROM:** Clifford Schmitt, L.G., L.H.G., Principal Hydrogeologist

Eric Buer, L.G., L.H.G., P.G., Senior Hydrogeologist

**DATE:** January 13, 2020

RE: GROUNDWATER MONITORING PROGRAM

SOUTH LAKE UNION BLOCK 38 WEST PROPERTY

SEATTLE, WASHINGTON FARALLON PN: 397-061

Farallon Consulting, L.L.C. (Farallon) has prepared this Technical Memorandum to provide the rationale for selection of monitoring locations and sampling frequency for the Deep Outwash Aquifer Groundwater Performance Monitoring Program (Groundwater Monitoring Program) that will be conducted prior to, in conjunction with, and after completion of construction dewatering to facilitate mass excavation and building construction at the Block 38 West Property at 500 Westlake Avenue North in Seattle, Washington (Block 38 West) (Figure 1). The Groundwater Monitoring Program is a component of the interim action cleanup activities and is described in Section 8.4 of the *Interim Action Work Plan, Block 38 West Property, 500 through 536 Westlake Avenue North, Seattle, Washington* dated November 8, 2019, prepared by Farallon for City Investors IX L.L.C. (Interim Action Work Plan). The Groundwater Monitoring Program is being implemented in response to historical releases of the dry cleaning solvent tetrachloroethene (PCE) at the property at 700 Dexter Avenue North (BMR-Dexter Property), which resulted in a regional plume of chlorinated volatile organic compounds (CVOCs)<sup>1</sup> that has migrated through multiple water-bearing zones in the South Lake Union area (BMR-Dexter CVOC Plume).

Concentrations of CVOCs, specifically cDCE and vinyl chloride, that are attributable to the BMR-Dexter CVOC Plume are known to be present at, and/or immediately north-northwest of, Block

<sup>&</sup>lt;sup>1</sup> The CVOCs include PCE; trichloroethene (TCE); isomers of dichloroethene, primarily cis-1,2-dichloroethene (cDCE); and vinyl chloride.



38 West. This Technical Memorandum provides a general overview of hydrogeologic units in the vicinity of Block 38 West, groundwater flow under static<sup>2</sup> (e.g. non-pumping) and pumping conditions, distribution of the BMR-Dexter CVOC Plume, and other information pertinent to development of the Groundwater Monitoring Program.

#### GROUNDWATER ZONES PRESENT IN SOUTH LAKE UNION AREA

Previous investigations in the South Lake Union area have described three water-bearing zones based on the lithologic unit in which they are encountered. These zones have varying degrees of hydraulic interconnection dependent on the location. The water-bearing zones at Block 38 West are summarized as follows:

- The uppermost water-bearing zone encountered on Block 38 West is the Shallow Water-Bearing Zone. The Shallow Water-Bearing Zone comprises fill and underlying recent deposits. At Block 38 West, the Shallow Water-Bearing Zone varies in thickness from approximately 5 to 15 feet and is first encountered at elevations between 22 and 25 feet North American Vertical Datum 1988 (NAVD88).
- The Intermediate Water-Bearing Zone<sup>3</sup> refers to groundwater encountered in consolidated glacial deposits. Typically, these deposits comprise dense silty sands and stiff sandy silts. The Intermediate Water-Bearing Zone is first encountered at approximate elevations of 5 to 10 feet NAVD88. Based on previous subsurface investigations, the Shallow Water-Bearing Zone is in direct communication with the Intermediate Water-Bearing Zone on Block 38 West.
- The Deep Outwash Aquifer refers to groundwater first encountered at approximate elevations of -30 to -40 feet NAVD88 in outwash sands with minor silt content below the consolidated glacial deposits.

At Block 38 West, the vertical gradient between the water-bearing zones is relatively small (e.g., approximately 1 foot downward) and groundwater levels have ranged from 16 to 18 feet NAVD88.

#### GROUNDWATER FLOW UNDER STATIC CONDITIONS

Under static conditions, there is typically a downward vertical gradient present from the Shallow Water-Bearing Zone to the Intermediate Water-Bearing Zone and from the Intermediate Water-Bearing Zone to the Deep Outwash Aquifer in the South Lake Union area. In the area west of Terry Avenue North where no aquitard is present between the Shallow and Intermediate Water-Bearing Zones or between the Intermediate Water-Bearing Zone and the Deep Outwash Aquifer, groundwater from the Shallow Water-Bearing Zone discharges to the Intermediate Water-Bearing Zone and from the Intermediate Water-Bearing Zone to the Deep Outwash Aquifer as groundwater flows from west to east. A detailed description of the evidence supporting this conceptual model

Static conditions in this Technical Memorandum refers to periods when no groundwater extraction is occurring for the purposes of construction dewatering or groundwater treatment, or for other purposes.

<sup>&</sup>lt;sup>3</sup> The Intermediate Water-Bearing Zone is sometimes further divided into an "A" and "B" units. For the purposes of this Technical Memorandum, this subdivision was not considered necessary.



of groundwater flow under static conditions is not presented in this Technical Memorandum but can be provided upon request<sup>4</sup>.

#### DISTRIBUTION OF BMR-DEXTER CVOC PLUME

The BMR-Dexter CVOC Plume currently extends more than 1,000 feet from the BMR-Dexter Property to the east-southeast as shown on Figure 2<sup>5</sup>. While construction dewatering associated with neighboring properties has had short-term, temporary impacts on the BMR-Dexter CVOC Plume, its current footprint is the result of significant releases of CVOCs to groundwater at the BMR Dexter Property beginning in 1966, followed by decades of down-gradient migration under static conditions (i.e., west to east).

Construction dewatering events were limited in duration and are relatively recent compared to the decades since dry cleaning services started at the BMR-Dexter Property and releases of PCE occurred to the subsurface. During most of the period when the BMR-Dexter CVOC Plume was migrating down-gradient of BMR-Dexter Property source areas, groundwater flow occurred under static conditions from west to east, including in the Intermediate Water-Bearing Zone and Deep Outwash Aquifer. Temporary variations in groundwater flow in the Intermediate Water-Bearing Zone and/or Deep Outwash Aquifer may have occurred during some construction dewatering or other groundwater extraction events for limited periods of time.

#### OVERVIEW OF CONSTRUCTION DEWATERING AT BMR-DEXTER PROPERTY

It is Farallon's understanding based upon submissions to Ecology by BMR-Dexter LLC that construction dewatering at the BMR-Dexter Property commenced on August 9, 2019<sup>6</sup>, and will continue for approximately 14 months during construction of two 14-story towers above three levels of subgrade parking<sup>7</sup>. The purpose of the construction dewatering system is to lower the groundwater table to an elevation below the base of the BMR-Dexter Property parking garage foundation (i.e., to below 1.6 feet NAVD88), which is up to 35 feet below the static groundwater level, prior to construction.

During the period of construction dewatering, groundwater beneath the BMR-Dexter Property and surrounding properties, including Block 79 to the east and Blocks 49 and 84 (City Mega Block) to

<sup>&</sup>lt;sup>4</sup> Briefly, comparison of groundwater elevations between appropriately screened wells that progress along the static-condition groundwater flow line from the BMR-Dexter Property to the east show positive head differences from the Shallow to Intermediate Water-Bearing Zones and from the Intermediate Water-Bearing Zone to the Deep Outwash Aquifer.

<sup>&</sup>lt;sup>5</sup> Approximate extent is based on groundwater data reported in the *Revised Agency Review Draft Remedial Investigation/Feasibility Study Work Plan, American Linen Supply Co – Dexter Avenue Site, 700 Dexter Avenue North, Seattle, Washington dated April 15, 2019, prepared by PES Environmental, Inc. for the Washington State Department of Ecology (Ecology) (Draft RI/FS Report).* 

<sup>&</sup>lt;sup>6</sup> Letter regarding Progress Report No. 22 – August 2019, American Linen Supply Co – Dexter Ave Site, Agreed Order No. DE 14302 dated September 13, 2019, from Mr. Daniel A. Balbiani of PES Environmental, Inc. to Ms. Tamara Cardona of Ecology.

Pumping started on the northwestern leg of the BMR-Dexter Property dewatering system on August 6, 2019 and on the southern and eastern legs on August 19, 2019. An estimated 14-month construction period would result in system shut-down on or approximately on October 2020.



the south, will be within the radius of influence of the construction dewatering system. As a result, the direction of groundwater flow will be altered to flow radially toward the BMR-Dexter Property (e.g., groundwater at Block 79 will reverse from the static condition west-to-east flow direction and will flow east-to-west toward the BMR-Dexter Property).

#### OVERVIEW OF CONSTRUCTION DEWATERING AT BLOCK 38 WEST

Construction dewatering at Block 38 West will commence on approximately on December 30, 2019 and will continue for approximately 9 months during construction of a multistory mixed-use building with five stories above street level and four levels of parking below street level<sup>8</sup>. The objective of the construction dewatering system is to lower the groundwater table to an elevation below the base of the Block 38 West parking garage foundation (i.e., to below -10 feet NAVD88<sup>9</sup>), which is just over 25 feet below the static groundwater level prior to construction. During the period of construction dewatering, groundwater beneath Block 38 West and surrounding properties, including Block 37 to the north and Block 43 to the northwest, will be within the radius of influence of the construction dewatering system. As a result, the direction of groundwater flow will be altered to flow radially toward Block 38 West.

Although the current concentrations of CVOCs in the Deep Outwash Aquifer at Block 38 West (less than 1 microgram per liter of cDCE at monitoring wells FMW-137 and FMW-138) are less than the proposed screening levels for the American Linen Supply Co. – Dexter Avenue Site, concentrations of CVOCs exceeding the screening levels are present at distal end of the BMR-Dexter CVOC Plume on the western portion of Block 37 to the north (Figure 2). It is expected that much of the BMR-Dexter CVOC Plume mass presently located within approximately 400 to 500 feet<sup>10</sup> of Block 38 West will be extracted during the period of construction dewatering system operation. The extracted BMR-Dexter CVOC Plume mass will be treated prior to discharge in accordance with the Interim Action Work Plan and applicable permit requirements, including Administrative Order Docket No. 16592.

#### EFFECTS OF CONCURRENT CONSTRUCTION DEWATERING

As stated above, construction dewatering at the BMR-Dexter Property will lower the groundwater table up to 35 feet, while construction dewatering at Block 38 West will lower the groundwater table approximately 26 to 28 feet below static groundwater levels. Because both systems will have similar cones of depression (e.g., depressions in the water table surface associated with groundwater withdrawal), it is anticipated that contamination at, and proximate to, each property will not be drawn toward the other property. As a result of concurrent construction dewatering at the BMR-Dexter Property and Block 38 West, a temporary groundwater divide will develop centered in the vicinity of the intersection of Valley Street and 9<sup>th</sup> Avenue North, oriented

<sup>8</sup> The estimated 9-month dewatering schedule will result in system shut-down beginning in early September 2020.

<sup>&</sup>lt;sup>9</sup> Groundwater Control Plan, Block 38, Seattle, Washington dated October 17, 2018, prepared for GLY Construction by Middour Consulting, LLC.

<sup>&</sup>lt;sup>10</sup> The distance from Block 38 West that CVOC mass will be captured is dependent on the groundwater extraction rate during dewatering; the length of the dewatering at Block 38 West; the presence of a groundwater divide during concurrent construction dewatering at the both the BMR-Dexter Property and Block 38 West; and other hydrogeologic and fate and transport factors.



approximately north-northeast to south-southwest (Figure 2). Groundwater north and west of the divide will flow toward the BMR-Dexter Property construction dewatering system. Groundwater south and east of the divide will flow toward the Block 38 West construction dewatering system.

This condition is shown schematically on Figure 2 both in plan view and in profile. On the plan view, the approximate presently known extent of the BMR-Dexter CVOC Plume is shown in red shading <sup>11</sup> and the blue arrows depict the radial inward groundwater flow direction during construction dewatering at the BMR-Dexter Property and Block 38 West. The profile A-A'-A' depicts the static and depressed groundwater levels and the groundwater divide that will temporarily be present between the properties during concurrent construction dewatering events.

The Block 38 West construction dewatering system is expected to capture groundwater at the distal end of the BMR-Dexter CVOC Plume located south and east of the groundwater divide (Figure 2). As the Block 38 West construction dewatering system operates, radial flow toward Block 38 West will develop. This radial flow will include a slightly more south-southeastern groundwater flow in the area of Block 43 on the southeastern side of the groundwater divide compared to static conditions.

#### RATIONALE FOR GROUNDWATER MONITORING PROGRAM

The purpose of the Groundwater Monitoring Program is to monitor groundwater with measurable concentrations of CVOCs that are associated with the BMR-Dexter CVOC Plume that will be affected by construction dewatering. Figure 3 shows the locations of the wells that will be sampled in conjunction with the Groundwater Monitoring Program proximate to the BMR-Dexter CVOC Plume, and summarizes analytical results for prior monitoring events at each well for which data are available.

Table 1 presents detailed information for each of the wells selected for inclusion in the Groundwater Monitoring Program and the rationale for selection as a monitoring point. The south-southeastern flow direction during construction dewatering in the area of the distal portion of the BMR-Dexter CVOC Plume is referred to as a "temporary flow path" in Table 1. With the exception of monitoring well FMW-141, located west of the temporary groundwater divide, and monitoring well MW113, located in the approximate vicinity of the temporary groundwater divide, the current concentrations of CVOCs at selected Groundwater Monitoring Program wells are low compared to CVOC concentrations within the radius of influence of the BMR-Dexter Property dewatering system.

The frequency of sampling at each well has been selected based on the location of the well along the temporary flow paths and proximity to the BMR-Dexter CVOC Plume. All wells will be sampled prior to start-up and after shut-down of the Block 38 West construction dewatering system to obtain baseline and completion groundwater quality data.

<sup>&</sup>lt;sup>11</sup> Based on data reported in the Draft RI/FS Report.



Sampling frequencies for selected wells included in the Groundwater Monitoring Program are described below:

- Monthly Sampling Events (dewatering wells DW-16, DW-17, and DW-18; interim action
  well IA-1; and geotechnical well GEI-2): These wells are located adjacent to Block 38
  West or immediately up-gradient of Block 38 West on Block 37. This frequency of
  monitoring will support near-term decision making for treatment options of the extracted
  groundwater.
- Monthly and/or Bimonthly Sampling Events (monitoring wells MW113, MW119, FMW-129, FMW-140, and FMW-141): These wells are located within the current footprint of the BMR-Dexter CVOC Plume in areas further from Block 38 West than the wells to be sampled monthly.
  - O CVOC mass<sup>12</sup> migrating on temporary flow paths passing monitoring wells MW119, FMW-129, and FMW-140 during the first few months of Block 38 West construction dewatering system operation will reach Block 38 West. CVOC mass migrating on temporary flow paths passing these wells after approximately 4 to 5 months of operation will not reach the Block 38 West construction dewatering system before it is turned off; therefore, the frequency of monitoring will be decreased during the latter half of operation of the Block 38 West construction dewatering system.
  - O CVOC mass at monitoring well MW113 may not be captured by the Block 38 West construction dewatering system because of its position relative to the temporary groundwater divide, where the gradient will be relatively flat and the groundwater flow velocity correspondingly low.
  - CVOC mass<sup>13</sup> at monitoring well FMW-141 will be within the radius of influence of the BMR-Dexter Property construction dewatering system and will not migrate toward Block 38 West during concurrent dewatering at both properties.
- Bimonthly Sampling Events (monitoring wells MW128 and FMW-131, and interim action well IA-4): These wells are located at the northeastern edge of the current BMR-Dexter CVOC Plume footprint. The temporary flow paths at these wells will be southerly during operation of the Block 38 West construction dewatering system. It is expected that CVOC concentrations to the north of these wells will be less than the proposed screening levels for the American Linen Supply Co. Dexter Avenue Site and may be less than laboratory reporting limits. As Block 38 West construction dewatering progresses, CVOC concentrations are expected to decline at monitoring wells MW128 and FMW-131 and remain reported non-detect at interim action well IA-4. A bimonthly sampling frequency for these wells will be sufficient to confirm the expected trend of CVOC concentrations at this area of the BMR-Dexter CVOC Plume.

<sup>&</sup>lt;sup>12</sup> CVOCs, including cDCE and vinyl chloride. TCE may potentially reach the Block 38 West construction dewatering system. PCE is not anticipated to reach the Block 38 West construction dewatering system.

<sup>&</sup>lt;sup>13</sup> Including PCE and PCE breakdown products.



• No Sampling During Construction Dewatering (monitoring wells FMW-137 and FMW-138): Groundwater monitoring at other wells near monitoring well FMW-137 make it unnecessary to collect groundwater samples at this location during dewatering. The temporary flow path at monitoring well FMW-138 will be from south to north and is not associated with the area of the BMR-Dexter CVOC Plume that currently exceeds screening levels (Figure 2). Monitoring wells FMW-137 and FMW-138 will be sampled prior to start-up and after shut-down of the Block 38 West construction dewatering system to obtain baseline and completion groundwater quality data.

The data collected during the Groundwater Monitoring Program will be used to make any necessary modifications to the dewatering treatment system to maintain compliance with established Indicator Levels as required under Administrative Order Docket No. 16592. Groundwater monitoring data will also document the anticipated reduction in CVOC mass within the eastern portion of the BMR-Dexter CVOC Plume.

Shallow groundwater will not be monitored during the Groundwater Monitoring Program because no residual source of CVOCs to shallow groundwater has been identified in the area northwest of Block 38 West and east-southeast of the BMR-Dexter Property within the footprint of the BMR-Dexter CVOC Plume. Documentation supporting this finding is in preparation and will be provided to Ecology under separate cover.

Attachments: Figure 1, South Lake Union Vicinity

Figure 2, Schematic of Groundwater Flow Concurrent Construction Dewatering Figure 3, Historical Groundwater CVOC Results Groundwater Performance

Monitoring Well Network

Table 1, Groundwater Monitoring Rationale

EB/CS:mm



#### **FIGURES**

GROUNDWATER MONITORING PROGRAM South Lake Union Block 38 West Property Seattle, Washington





KING COUNTY PARCEL BOUNDARY

**52** BLOCK DESIGNATION

150 SCALE IN FEET

FARALLON

Drawn By: jjones

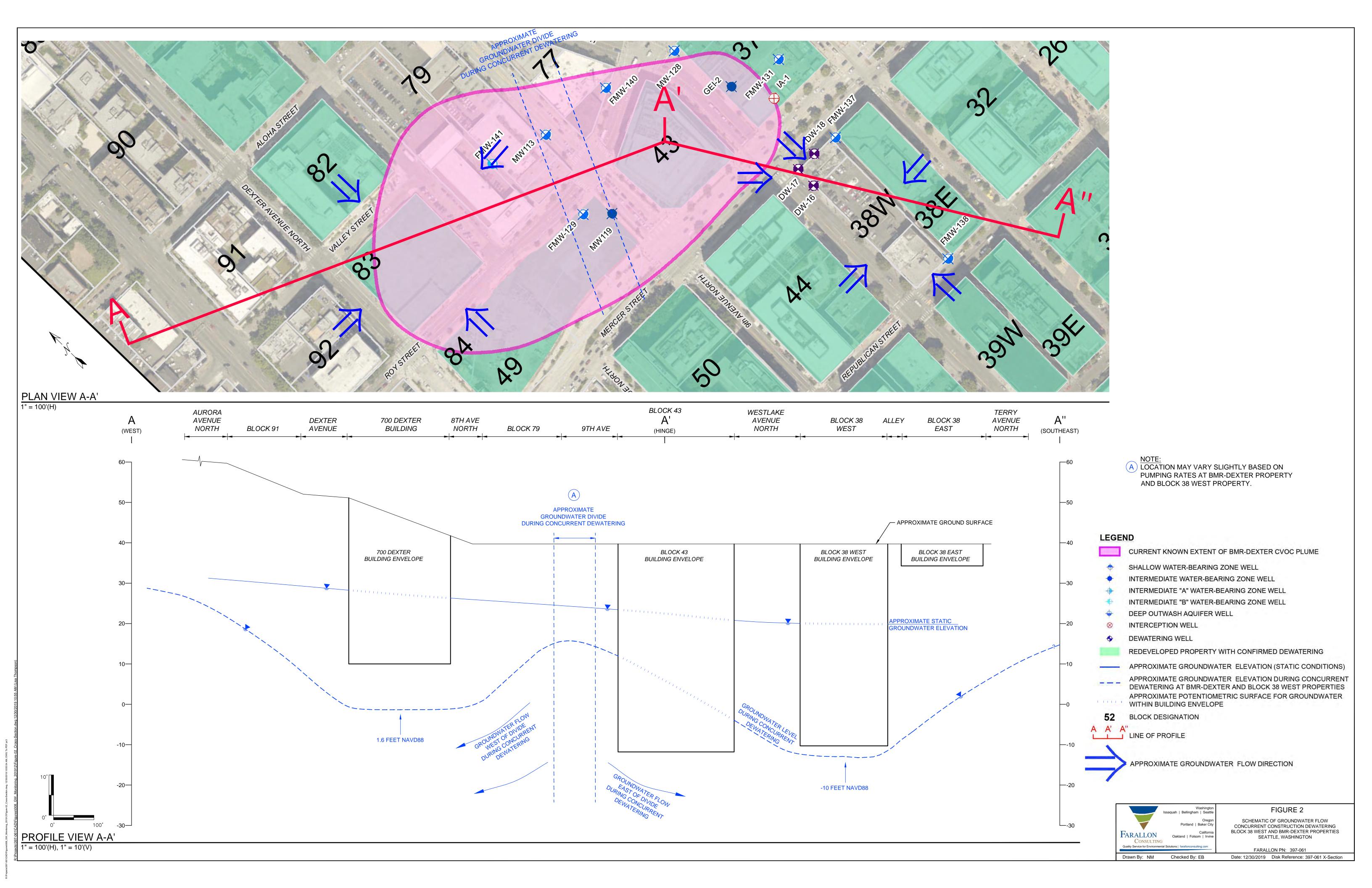
Consulting

Issaquah | Bellingham | Seattle

Oregon Portland | Baker City

California Oakland | Folsom | Irvine

Washington


Quality Service for Environmental Solutions | farallonconsulting.com

#### FIGURE 1

SOUTH LAKE UNION VICINITY GROUNDWATER PERFORMANCE MONITORING PROGRAM RATIONALE BLOCK 38 WEST PROPERTY AREA SEATTLE, WASHINGTON

FARALLON PN: 397-061

Checked By: EB Date: 12/30/2019 Disc Reference:  $Path: \verb|\edge| fs02\GIS\Projects| 397\VULCAN | 061\Block | 38\CVOCs\\Mapfiles| 008\_GW\_Monitoring\\ | Figure-01\_SLU\_Vicinity\\ Map.mxd | 190.008\_GW\_Monitoring\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_Vicinity\\ | Figure-01\_SLU\_$ 





- **DEWATERING WELL** 
  - KING COUNTY PARCEL BOUNDARY

cis-1,2-DCE = cis-1,2-DICHLOROETHENE VC = VINYL CHLORIDE

NAVD88 = NORTH AMERICAN VERTICAL DATUM OF 1988 MTCA = WASHINGTON STATE MODEL TOXICS CONTROL ACT

**CLEANUP REGULATION** 

**FARALLON** CONSULTING

Drawn By: jjones

Oregon Portland | Baker City

California Oakland | Folsom | Irvine

SEATTLE, WASHINGTON FARALLON PN: 397-061

Date: 12/30/2019 Disc Reference:

MONITORING WELL NETWORK

**BLOCK 38 WEST PROPERTY AREA** 

Quality Service for Environmental Solutions | farallonconsulting.com

Checked By: EB

Path: Q:\Projects\397 VULCAN\061 Block 38 CVOCs\Mapfiles\008 GW Monitoring\Figure-03 GW CVOCs.mxc

#### **TABLE**

GROUNDWATER MONITORING PROGRAM South Lake Union Block 38 West Property Seattle, Washington

#### Table 1

#### Rationale Deep Outwash Aquifer Groundwater Performance Monitoring South Lake Union Area Block 38 West Property Seattle, Washington

| Farallo  | n PN:         | 397-061 |
|----------|---------------|---------|
| I al all | )II I I 1 4 • | 377-001 |

| Well No.           | Well Screen<br>Completion Depth<br>(feet bgs)                                | Well Screen<br>Completion<br>Elevation<br>(feet) | Well Classification | Selection Rationale                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|--------------------|------------------------------------------------------------------------------|--------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                    | City Mega Block (Southwest of 9 <sup>th</sup> Avenue North and Broad Street) |                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| MW119              | 35.0 to 45.0                                                                 | 2.74 to -7.26                                    | Intermediate        | Intermediate monitoring well located on a temporary southeasterly flow path within the predicted radius of influence of the Block 38 West construction dewatering system.                                                                                                                                                                                                                                    |  |  |  |  |  |
| FMW-129            | 84.2 to 89.2                                                                 | -45.56 to -50.56                                 | Deep                | Deep Outwash Aquifer monitoring well located on a temporary southeasterly flow path within the predicted radius of influence of construction dewatering system at Block 38 West. Monitoring well FMW-129 is anticipated to be beyond the radius of influence of the BMR-Dexter Property construction dewatering system during concurrent dewatering with Block 38 West.                                      |  |  |  |  |  |
|                    |                                                                              |                                                  |                     | Block 37 Property                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| GEI-2              | 50.5 to 60.5                                                                 | -21.12 to -31.12                                 | Intermediate/Deep   | Intermediate/Deep Outwash Aquifer monitoring well within the predicted radius of influence of the Block 38 West construction dewatering system. Groundwater will temporarily flow more directly south relative to static conditions.                                                                                                                                                                         |  |  |  |  |  |
| MW128              | 60 to 70                                                                     | -30.80 to -40.80                                 | Deep                | Deep Outwash Aquifer monitoring well within the predicted radius of influence of the Block 38 West construction dewatering system. Groundwater will temporarily flow more directly south relative to static conditions.                                                                                                                                                                                      |  |  |  |  |  |
| FMW-131            | 62.5 to 72.5                                                                 | -34.65 to -44.65                                 | Deep                | Deep Outwash Aquifer monitoring well within the predicted radius of influence of the Block 38 West construction dewatering system. Groundwater flow direction during construction dewatering at Block 38 West will be similar to static conditions.                                                                                                                                                          |  |  |  |  |  |
| IA-1 <sup>2</sup>  | 32 to 92                                                                     | 0.59 to -59.41                                   | Deep                | Interim action well within the predicted radius of influence of the Block 38 West construction dewatering system. The screened interval of this well allows for reconnaissance sampling of Intermediate Water-Bearing Zone and Deep Outwash Aquifer groundwater proximate to Block 38 West. Groundwater flow direction during construction dewatering at Block 38 West will be similar to static conditions. |  |  |  |  |  |
| IA-4 <sup>2</sup>  | 32 to 92                                                                     | -0.84 to -60.84                                  | Deep                | Interim action well within the predicted radius of influence of the Block 38 West construction dewatering system. The screened interval of this well allows for reconnaissance sampling of Intermediate Water-Bearing Zone and Deep Outwash Aquifer groundwater slightly beyond the northeastern boundary of the current footprint of the BMR-Dexter CVOC Plume.                                             |  |  |  |  |  |
|                    |                                                                              |                                                  |                     | Block 38 Property                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| FMW-137            | 72.0 to 85.0                                                                 | -44.9 to -57.9                                   | Deep                | Deep Outwash Aquifer monitoring well northeast-adjacent to the Block 38 West construction dewatering system.                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| FMW-138            | 90.0 to 100.0                                                                | -45.96 to -55.96                                 | Deep                | Deep Outwash Aquifer monitoring well southeast-adjacent to the Block 38 West construction dewatering system.                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| DW-16 <sup>3</sup> | 24 to 64                                                                     | 10 to -30                                        | Llowestoring        | Dewatering well at the northern end of the western edge of Block 38 West. Samples collected from this and adjacent dewatering wells are expected to quantify some of the highest relative impacts from the BMR-Dexter CVOC Plume, if observed.                                                                                                                                                               |  |  |  |  |  |
| DW-17 <sup>3</sup> | 22 to 62                                                                     | 10 to -30                                        | Dewatering          | Dewatering well at the northwestern corner of Block 38 West. Samples collected from this and adjacent dewatering wells are expected to quantify the highest relative impacts from the BMR-Dexter CVOC Plume, if observed.                                                                                                                                                                                    |  |  |  |  |  |
| DW-18 <sup>3</sup> | 21 to 61                                                                     | 10 to -30                                        | Dewatering          | Dewatering well on the northern portion of Block 38 West. Samples collected from this and adjacent dewatering wells are expected to quantify some of the highest relative impacts from the BMR-Dexter CVOC Plume, if observed.                                                                                                                                                                               |  |  |  |  |  |

#### Table 1

#### Rationale Deep Outwash Aquifer Groundwater Performance Monitoring South Lake Union Area Block 38 West Property Seattle, Washington Farallon PN: 397-061

Well Screen Well Screen Completion **Completion Depth** Elevation (feet bgs) (feet) Well Classification **Selection Rationale** Well No. **Block 77 Property** Deep Outwash Aquifer monitoring well near the edge of the predicted radius of influence of the Block 38 West construction dewatering system during concurrent FMW-140 70.0 to 80.0 -38.0 to -48.0 Deep dewatering at the 700 Dexter Property. Block 38 West construction dewatering influence on groundwater flow direction is expected to be limited. **Block 79 Property** Intermediate Zone monitoring well within the radius of influence of the BMR-Dexter Property construction dewatering system and beyond the radius of influence of the

Deep Outwash Aquifer monitoring well at the outer limit of the estimated radius of influence of the Block 38 West construction dewatering system during concurrent

dewatering at the 700 Dexter Property. Block 38 West construction dewatering influence on groundwater flow direction is expected to be limited.

Block 38 West construction dewatering system.

#### NOTES:

FMW-141

MW113

47.6 to 57.5

70.0 to 80.0

-12.45 to -22.35

-36.80 to -46.80

Intermediate

Deep

Intermediate = Intermediate Water-Bearing Zone

Deep = Deep Outwash Aquifer

<sup>&</sup>lt;sup>1</sup> Construction dewatering at Block 38 West is scheduled to begin in late December 2019.

<sup>&</sup>lt;sup>2</sup> Low-flow samples to be collected at top, middle, and bottom of interim action well screen (60-foot total installed length).

<sup>&</sup>lt;sup>3</sup> Groundwater collected from sampling port installed at well header during construction dewatering.

# Table F-2 Groundwater Elevations Deep Outwash Aquifer Groundwater Performance Monitoring Program Seattle, Washington Farallon PN: 397-061

| Location | Screened Interval (feet bgs) <sup>1</sup> | Screened Interval<br>(feet NAVD88) <sup>2</sup> | Top of Casing<br>Elevation<br>(feet NAVD88) <sup>2</sup> | Monitoring Date        | Depth to Water (feet) <sup>3</sup> | Water Level<br>Elevation<br>(feet NAVD88) <sup>2</sup> |
|----------|-------------------------------------------|-------------------------------------------------|----------------------------------------------------------|------------------------|------------------------------------|--------------------------------------------------------|
|          |                                           | City Mega Block (south                          | west of 9th Avenue N                                     | North and Broad Street | )                                  |                                                        |
|          |                                           |                                                 |                                                          | 11/11/2019             | 21.81                              | 16.50                                                  |
|          |                                           |                                                 |                                                          | 12/18/2019             | 21.90                              | 16.41                                                  |
|          |                                           |                                                 |                                                          | 3/24/2020              | 27.41                              | 10.90                                                  |
|          |                                           |                                                 |                                                          | 4/27/2020              | 29.19                              | 9.12                                                   |
| FMW-129  | 84.2 to 89.2                              | -45.56 to -50.56                                | 38.31                                                    | 5/19/2020              | 29.42                              | 8.89                                                   |
|          |                                           |                                                 |                                                          | 7/28/2020              | 29.05                              | 9.26                                                   |
|          |                                           |                                                 |                                                          | 9/17/2020              | 30.06                              | 8.25                                                   |
|          |                                           |                                                 |                                                          | 12/3/2020              | 29.45                              | 8.86                                                   |
|          |                                           |                                                 |                                                          | 2/14/2022              | 20.30                              | 18.01                                                  |
|          |                                           |                                                 |                                                          | 11/11/2019             | 20.74                              | 16.68                                                  |
|          |                                           |                                                 |                                                          | 1/14/2020              | 22.51                              | 14.91                                                  |
|          |                                           |                                                 |                                                          | 2/18/2020              | 25.60                              | 11.82                                                  |
|          |                                           |                                                 |                                                          | 3/24/2020              | 28.36                              | 9.06                                                   |
|          |                                           |                                                 |                                                          | 4/27/2020              | 29.24                              | 8.18                                                   |
| MW-119   | 35.0 to 45.0                              | 2.74 to -7.26                                   | 37.42                                                    | 5/19/2020              | 29.53                              | 7.89                                                   |
|          |                                           |                                                 |                                                          | 7/28/2020              | 30.07                              | 7.35                                                   |
|          |                                           |                                                 |                                                          | 9/17/2020              | 32.21                              | 5.21                                                   |
|          |                                           |                                                 |                                                          | 12/3/2020              | 29.40                              | 8.02                                                   |
|          |                                           |                                                 |                                                          | 2/10/2021              | 24.85                              | 12.57                                                  |
|          |                                           |                                                 |                                                          | 2/14/2022              | 18.83                              | 18.59                                                  |

Table F-2
Groundwater Elevations
Deep Outwash Aquifer Groundwater
Performance Monitoring Program
Seattle, Washington
Farallon PN: 397-061

| Location | Screened Interval (feet bgs) <sup>1</sup> | Screened Interval<br>(feet NAVD88) <sup>2</sup> | Top of Casing<br>Elevation<br>(feet NAVD88) <sup>2</sup> | Monitoring Date | Depth to Water (feet) <sup>3</sup> | Water Level Elevation (feet NAVD88) <sup>2</sup> |
|----------|-------------------------------------------|-------------------------------------------------|----------------------------------------------------------|-----------------|------------------------------------|--------------------------------------------------|
|          |                                           |                                                 | Block 37 Property                                        |                 |                                    |                                                  |
|          |                                           |                                                 |                                                          | 11/11/2019      | 13.82                              | 15.56                                            |
|          |                                           |                                                 |                                                          | 12/18/2019      | 14.00                              | 15.38                                            |
|          |                                           |                                                 |                                                          | 1/14/2020       | 16.50                              | 12.88                                            |
|          |                                           |                                                 |                                                          | 2/17/2020       | 20.78                              | 8.60                                             |
|          |                                           |                                                 |                                                          | 3/24/2020       | 22.52                              | 6.86                                             |
|          |                                           |                                                 |                                                          | 4/27/2020       | 23.01                              | 6.37                                             |
| GEI-2    | 50.5 to 60.5                              | -21.12 to -31.12                                | 29.38                                                    | 6/29/2020       | 22.98                              | 6.40                                             |
|          |                                           |                                                 |                                                          | 7/29/2020       | 23.53                              | 5.85                                             |
|          |                                           |                                                 |                                                          | 8/26/2020       | 23.51                              | 5.87                                             |
|          |                                           |                                                 |                                                          | 9/17/2020       | 23.32                              | 6.06                                             |
|          |                                           |                                                 |                                                          | 12/3/2020       | 22.85                              | 6.53                                             |
|          |                                           |                                                 |                                                          | 2/10/2021       | 18.20                              | 11.18                                            |
|          |                                           |                                                 |                                                          | 2/14/2022       | 12.02                              | 17.36                                            |

# Table F-2 Groundwater Elevations Deep Outwash Aquifer Groundwater Performance Monitoring Program Seattle, Washington

| Location | Screened Interval | Screened Interval<br>(feet NAVD88) <sup>2</sup> | Top of Casing<br>Elevation<br>(feet NAVD88) <sup>2</sup> | Monitoring Date | Depth to Water (feet) <sup>3</sup> | Water Level<br>Elevation<br>(feet NAVD88) <sup>2</sup> |
|----------|-------------------|-------------------------------------------------|----------------------------------------------------------|-----------------|------------------------------------|--------------------------------------------------------|
|          |                   |                                                 |                                                          | 11/11/2019      | 16.85                              | 15.74                                                  |
|          |                   |                                                 |                                                          | 1/14/2020       | 19.91                              | 12.68                                                  |
|          |                   |                                                 |                                                          | 2/17/2020       | 25.38                              | 7.21                                                   |
|          |                   |                                                 |                                                          | 3/24/2020       | 27.15                              | 5.44                                                   |
|          |                   |                                                 |                                                          | 4/27/2020       | 27.24                              | 5.35                                                   |
|          |                   |                                                 |                                                          | 6/29/2020       | 27.45                              | 5.14                                                   |
| IA-1     | 32.0 to 92.0      | 0.59 to -59.41                                  | 32.59                                                    | 7/28/2020       | 28.06                              | 4.53                                                   |
|          |                   |                                                 |                                                          | 8/26/2020       | 28.05                              | 4.54                                                   |
|          |                   |                                                 |                                                          | 9/17/2020       | 27.71                              | 4.88                                                   |
|          |                   |                                                 |                                                          | 12/3/2020       | 26.92                              | 5.67                                                   |
|          |                   |                                                 |                                                          | 2/10/2021       | 21.26                              | 11.33                                                  |
|          |                   |                                                 |                                                          | 2/14/2022       | 14.3                               | 18.29                                                  |
|          |                   |                                                 |                                                          | 5/16/2022       | 13.56                              | 19.03                                                  |
|          |                   |                                                 |                                                          | 11/11/2019      | 14.35                              | 16.81                                                  |
|          |                   |                                                 |                                                          | 2/17/2020       | 19.61                              | 11.55                                                  |
|          |                   |                                                 |                                                          | 4/27/2020       | 21.81                              | 9.35                                                   |
|          |                   |                                                 |                                                          | 6/29/2020       | 21.25                              | 9.91                                                   |
| IA-4     | 32.0 to 92.0      | -0.84 to -60.84                                 | 31.16                                                    | 8/26/2020       | 22.05                              | 9.11                                                   |
|          |                   |                                                 |                                                          | 12/3/2020       | 21.74                              | 9.42                                                   |
|          |                   |                                                 |                                                          | 2/10/2021       | 18.11                              | 13.05                                                  |
|          |                   |                                                 |                                                          | 2/14/2022       | 12.91                              | 18.25                                                  |
|          |                   |                                                 |                                                          | 5/16/2022       | 12.04                              | 19.12                                                  |

# Table F-2 Groundwater Elevations Deep Outwash Aquifer Groundwater Performance Monitoring Program Seattle, Washington

| Location | Screened Interval (feet bgs) <sup>1</sup> | Screened Interval (feet NAVD88) <sup>2</sup> | Top of Casing<br>Elevation<br>(feet NAVD88) <sup>2</sup> | Monitoring Date | Depth to Water (feet) <sup>3</sup> | Water Level Elevation (feet NAVD88) <sup>2</sup> |
|----------|-------------------------------------------|----------------------------------------------|----------------------------------------------------------|-----------------|------------------------------------|--------------------------------------------------|
|          |                                           |                                              |                                                          | 11/11/2019      | 12.49                              | 16.10                                            |
|          |                                           |                                              |                                                          | 2/17/2020       | 18.11                              | 10.48                                            |
|          |                                           |                                              |                                                          | 4/27/2020       | 20.15                              | 8.44                                             |
| NUV 100  | 20.80 4- 40.80                            | 29.50                                        | 6/29/2020                                                | 20.13           | 8.46                               |                                                  |
| MW-128   | 60 to 70                                  | -30.80 to -40.80                             | 28.59                                                    | 8/26/2020       | 20.55                              | 8.04                                             |
|          |                                           |                                              |                                                          | 12/3/2020       | 20.21                              | 8.38                                             |
|          |                                           |                                              |                                                          | 2/10/2021       | 16.38                              | 12.21                                            |
|          |                                           |                                              |                                                          | 2/14/2022       | 11.00                              | 17.59                                            |
|          |                                           |                                              |                                                          | 11/11/2019      | 12.13                              | 15.72                                            |
|          |                                           |                                              |                                                          | 12/18/2019      | 12.31                              | 17.78                                            |
|          |                                           |                                              |                                                          | 2/17/2020       | 20.13                              | 7.72                                             |
|          |                                           |                                              |                                                          | 4/27/2020       | 22.45                              | 5.40                                             |
| FMW-131  | 62.5 to 72.5                              | -34.65 to -44.65                             | 27.85                                                    | 6/29/2020       | 22.34                              | 5.51                                             |
|          |                                           |                                              |                                                          | 8/26/2020       | 23.55                              | 4.30                                             |
|          |                                           |                                              |                                                          | 12/3/2020       | 22.11                              | 5.74                                             |
|          |                                           |                                              |                                                          | 2/10/2021       | 17.24                              | 10.61                                            |
|          |                                           |                                              |                                                          | 2/14/2022       | 10.37                              | 17.48                                            |

# Table F-2 Groundwater Elevations Deep Outwash Aquifer Groundwater Performance Monitoring Program Seattle, Washington Farallon PN: 397-061

| Location | Screened Interval (feet bgs) <sup>1</sup> | Screened Interval<br>(feet NAVD88) <sup>2</sup> | Top of Casing<br>Elevation<br>(feet NAVD88) <sup>2</sup> | Monitoring Date | Depth to Water (feet) <sup>3</sup> | Water Level<br>Elevation<br>(feet NAVD88) <sup>2</sup> |
|----------|-------------------------------------------|-------------------------------------------------|----------------------------------------------------------|-----------------|------------------------------------|--------------------------------------------------------|
|          |                                           |                                                 | Block 38 Property                                        |                 |                                    |                                                        |
|          |                                           |                                                 |                                                          | 11/20/2018      | 13.02                              | 17.07                                                  |
|          | FMW-137 72.0 to 85.0                      |                                                 |                                                          | 12/28/2018      | 12.74                              | 17.35                                                  |
|          |                                           |                                                 |                                                          | 3/14/2019       | 12.56                              | 17.53                                                  |
|          |                                           |                                                 |                                                          | 5/6/2019        | 12.08                              | 18.01                                                  |
| FMW-137  |                                           | -44.9 to -57.9                                  | 30.09                                                    | 7/8/2019        | 12.25                              | 17.84                                                  |
|          |                                           |                                                 |                                                          | 10/14/2019      | 12.95                              | 17.14                                                  |
|          |                                           |                                                 |                                                          | 11/11/2019      | 14.04                              | 16.05                                                  |
|          |                                           |                                                 |                                                          | 12/18/2019      | 14.16                              | 15.93                                                  |
|          |                                           |                                                 |                                                          | 2/14/2022       | 12.85                              | 17.24                                                  |
|          |                                           |                                                 |                                                          | 11/20/2018      | 24.50                              | 15.94                                                  |
|          |                                           |                                                 |                                                          | 12/28/2018      | 24.38                              | 16.06                                                  |
|          |                                           |                                                 |                                                          | 3/14/2019       | 24.14                              | 16.30                                                  |
|          |                                           |                                                 |                                                          | 5/6/2019        | 23.80                              | 16.64                                                  |
| EMW 120  | 00.0 / 100.0                              | 45.06 + 55.06                                   | 40.44                                                    | 7/8/2019        | 23.84                              | 16.60                                                  |
| FMW-138  | 90.0 to 100.0                             | -45.96 to -55.96                                | 40.44                                                    | 10/14/2019      | 24.04                              | 16.40                                                  |
|          |                                           |                                                 |                                                          | 11/11/2019      | 24.55                              | 15.89                                                  |
|          |                                           |                                                 |                                                          | 12/18/2019      | 24.51                              | 5.58                                                   |
|          |                                           |                                                 |                                                          | 2/14/2022       | 24.31                              | 5.78                                                   |
|          |                                           |                                                 |                                                          | 5/16/2022       | 24.00                              | 6.09                                                   |

Table F-2
Groundwater Elevations
Deep Outwash Aquifer Groundwater
Performance Monitoring Program
Seattle, Washington
Farallon PN: 397-061

| Location | Screened Interval (feet bgs) <sup>1</sup> | Screened Interval (feet NAVD88) <sup>2</sup> | Top of Casing<br>Elevation<br>(feet NAVD88) <sup>2</sup> | Monitoring Date | Depth to Water (feet) <sup>3</sup> | Water Level Elevation (feet NAVD88) <sup>2</sup> |
|----------|-------------------------------------------|----------------------------------------------|----------------------------------------------------------|-----------------|------------------------------------|--------------------------------------------------|
|          |                                           |                                              | Block 77 Property                                        |                 |                                    |                                                  |
|          |                                           |                                              |                                                          | 11/11/2019      | 15.36                              | 16.35                                            |
|          |                                           |                                              |                                                          | 12/18/2019      | 15.54                              | 16.17                                            |
|          |                                           |                                              |                                                          | 1/14/2020       | 17.22                              | 14.49                                            |
|          |                                           |                                              |                                                          | 2/17/2020       | 20.28                              | 11.43                                            |
|          |                                           |                                              |                                                          | 3/24/2020       | 22.04                              | 9.67                                             |
| FMW-140  | 70.0 to 80.0                              | -38.29 to -48.29                             | 31.71                                                    | 4/27/2020       | 22.43                              | 9.28                                             |
|          |                                           |                                              |                                                          | 7/28/2020       | 23.07                              | 8.64                                             |
|          |                                           |                                              |                                                          | 9/17/2020       | 23.23                              | 8.48                                             |
|          |                                           |                                              |                                                          | 12/3/2020       | 22.70                              | 9.01                                             |
|          |                                           |                                              |                                                          | 2/10/2021       | 19.05                              | 12.66                                            |
|          |                                           |                                              |                                                          | 2/14/2022       | 13.83                              | 17.88                                            |

Table F-2
Groundwater Elevations
Deep Outwash Aquifer Groundwater
Performance Monitoring Program
Seattle, Washington
Farallon PN: 397-061

| Location | Screened Interval (feet bgs) <sup>1</sup> | Screened Interval<br>(feet NAVD88) <sup>2</sup> | Top of Casing<br>Elevation<br>(feet NAVD88) <sup>2</sup> | Monitoring Date | Depth to Water (feet) <sup>3</sup> | Water Level<br>Elevation<br>(feet NAVD88) <sup>2</sup> |
|----------|-------------------------------------------|-------------------------------------------------|----------------------------------------------------------|-----------------|------------------------------------|--------------------------------------------------------|
|          |                                           |                                                 | Block 79 Property                                        |                 |                                    |                                                        |
|          |                                           |                                                 |                                                          | 11/11/2019      | 18.63                              | 16.52                                                  |
|          |                                           |                                                 |                                                          | 12/18/2019      | 18.84                              | 16.31                                                  |
|          |                                           |                                                 |                                                          | 1/14/2020       | 20.03                              | 15.12                                                  |
|          |                                           |                                                 |                                                          | 2/17/2020       | 22.42                              | 12.73                                                  |
|          |                                           |                                                 |                                                          | 3/24/2020       | 24.47                              | 10.68                                                  |
| FMW-141  | 47.5 to 57.5                              | -12.35 to -22.35                                | 35.15                                                    | 4/27/2020       | 25.19                              | 9.96                                                   |
|          |                                           |                                                 |                                                          | 7/28/2020       | 25.51                              | 9.64                                                   |
|          |                                           |                                                 |                                                          | 9/17/2020       | 25.66                              | 9.49                                                   |
|          |                                           |                                                 |                                                          | 12/3/2020       | 24.79                              | 10.36                                                  |
|          |                                           |                                                 |                                                          | 2/10/2021       | 21.30                              | 13.85                                                  |
|          |                                           |                                                 |                                                          | 2/14/2022       | 16.45                              | 18.70                                                  |

# Table F-2 Groundwater Elevations Deep Outwash Aquifer Groundwater Performance Monitoring Program Seattle, Washington

Farallon PN: 397-061

| Location | Screened Interval (feet bgs) <sup>1</sup> | Screened Interval<br>(feet NAVD88) <sup>2</sup> | Top of Casing<br>Elevation<br>(feet NAVD88) <sup>2</sup> | Monitoring Date | Depth to Water (feet) <sup>3</sup> | Water Level<br>Elevation<br>(feet NAVD88) <sup>2</sup> |
|----------|-------------------------------------------|-------------------------------------------------|----------------------------------------------------------|-----------------|------------------------------------|--------------------------------------------------------|
|          |                                           |                                                 |                                                          | 11/11/2019      | 16.41                              | 16.49                                                  |
|          |                                           |                                                 |                                                          | 1/14/2020       | 18.04                              | 14.86                                                  |
|          |                                           |                                                 |                                                          | 2/17/2020       | 20.79                              | 12.11                                                  |
|          |                                           |                                                 |                                                          | 3/24/2020       | 22.72                              | 10.18                                                  |
|          |                                           |                                                 |                                                          | 4/27/2020       | 23.19                              | 9.71                                                   |
| MW-113   | 70.0 to 80.0                              | -36.80 to -46.80                                | 32.90                                                    | 5/19/2020       | 23.38                              | 9.52                                                   |
|          |                                           |                                                 |                                                          | 7/28/2020       | 23.72                              | 9.18                                                   |
|          |                                           |                                                 |                                                          | 9/17/2020       | 23.89                              | 9.01                                                   |
|          |                                           |                                                 |                                                          | 12/3/2020       | 23.34                              | 9.56                                                   |
|          |                                           |                                                 |                                                          | 2/10/2021       | 19.80                              | 13.10                                                  |
|          |                                           |                                                 |                                                          | 2/14/2022       | 14.58                              | 18.32                                                  |

Notes:

bgs = below ground surface

NS = not surveyed

<sup>&</sup>lt;sup>1</sup>Depth in feet below ground surface.

<sup>&</sup>lt;sup>2</sup>In feet North American Vertical Datum of 1988.

<sup>&</sup>lt;sup>3</sup>In feet below top of well casing.

Seattle, Washington Farallon PN: 397-061

|                    |                                           |                                           |                        |            |                           |                                      |                                                   |           | Analytical R           | esults (microgra | ms per liter) <sup>3</sup> |                |                              |
|--------------------|-------------------------------------------|-------------------------------------------|------------------------|------------|---------------------------|--------------------------------------|---------------------------------------------------|-----------|------------------------|------------------|----------------------------|----------------|------------------------------|
| Sample<br>Location | Screened Interval (feet bgs) <sup>1</sup> | Screened Interval (feet msl) <sup>2</sup> | Sample Date            | Sampled By | Sample Identification     | Sample Depth (feet bgs) <sup>1</sup> | Sample<br>Elevation<br>(feet NAVD88) <sup>2</sup> | PCE       | ТСЕ                    | cDCE             | tDCE                       | Vinyl Chloride | cDCE/Vinyl<br>Chloride Ratio |
|                    |                                           |                                           |                        |            | Monitoring V              | Vell Groundwa                        | ter Samples                                       |           |                        |                  |                            |                |                              |
|                    |                                           |                                           |                        |            | City Mega Block (southwes | t of 9th Avenu                       | e North and Broa                                  | d Street) |                        |                  |                            |                |                              |
|                    |                                           |                                           | 5/23/2014              | Farallon   | F-MW-129-052314           |                                      | 48.06 <sup>4</sup>                                | 0.40      | 0.57                   | 17               | < 0.20                     | 7.6            | 2.2                          |
|                    |                                           |                                           | 10/20/2015             | SES        |                           |                                      | 48.06 <sup>4</sup>                                | 25        | 39                     | 250              | < 1                        | < 0.2          |                              |
|                    |                                           |                                           | 2/2/2016               | SES        |                           |                                      | 48.06 <sup>4</sup>                                | 13        | 61                     | 240              | < 1                        | 0.33           | 727                          |
|                    |                                           |                                           | 4/10/2017              | PES        |                           |                                      | 48.06 <sup>4</sup>                                | 194       | 492                    | 1,420            | 5.05                       | 0.885 J        | 1,605                        |
|                    |                                           |                                           | 6/23/2017              | PES        |                           |                                      | 48.06 <sup>4</sup>                                | 81.1      | 182                    | 474              | 1.21                       | 0.413          | 1,148                        |
|                    |                                           |                                           | 5/1/2019               | PES        |                           |                                      | 48.06 <sup>4</sup>                                | 101       | 166                    | 372              | 1.22                       | < 0.59         |                              |
|                    |                                           |                                           | 7/16/2019              | PES        |                           |                                      | 48.06 <sup>4</sup>                                | 159       | 84.1                   | 272              | 1.61                       | <b>0.296</b> J | 919                          |
|                    |                                           |                                           | 10/21/2019             | PES        |                           |                                      | 48.06 <sup>4</sup>                                | 114       | 198                    | 350              | 1.61                       | <b>0.259</b> J | 1,351                        |
|                    |                                           |                                           | 11/12/2019             | Farallon   | FMW-129-111219            | 86.7                                 | -48.06                                            | 79        | 130                    | 340              | < 2.0                      | < 2.0          |                              |
| FMW-129            | 84.2 to 89.2                              | -45.56 to -50.56                          | 1/14/2020 <sup>5</sup> | Farallon   | FMW-129-011420            | 86.7                                 | -48.06                                            | 130       | 170                    | 290              | < 2.0                      | < 2.0          |                              |
|                    |                                           |                                           | 1/14/2020              | PES        |                           |                                      | 48.06 <sup>4</sup>                                | 113       | 170                    | 385              | 1.60                       | < 1.18         |                              |
|                    |                                           |                                           | 2/18/2020              | Farallon   | FMW-129-021820            | 86.7                                 | -48.06                                            | 110       | 170                    | 310              | < 2.0                      | < 2.0          |                              |
|                    |                                           |                                           | 3/25/2020              | Farallon   | FMW-129-032520            | 86.7                                 | -48.06                                            | 88        | 140                    | 290              | < 2.0                      | 2.6            | 111.5                        |
|                    |                                           |                                           | 4/27/2020              | Farallon   | FMW-129-042720            | 86.7                                 | -48.06                                            | 74        | 88                     | 190              | < 1.0                      | < 1.0          |                              |
|                    |                                           |                                           | 5/19/2020              | Farallon   | FMW-129-051920            | 86.7                                 | -48.06                                            | 18        | 42                     | 120              | < 1.0                      | 6.5            | 18.5                         |
|                    |                                           |                                           | 7/28/2020              | Farallon   | MW-129-072820             | 86.7                                 | -48.06                                            | 5.4       | 11                     | 100              | < 0.80                     | < 0.80         |                              |
|                    |                                           |                                           | 9/17/2020              | Farallon   | FMW-129-091720            | 86.7                                 | -48.06                                            | 6.1       | 13                     | 70               | < 0.40                     | 0.85           | 82.4                         |
|                    |                                           |                                           | 12/3/2020              | Farallon   | FMW-129-120320            | 86.7<br>86.7                         | -48.06                                            | 9.0       | 14                     | 57               | < 0.40                     | < 0.40         |                              |
|                    |                                           |                                           | 2/10/2021              | Farallon   | MW-129-021021             | -48.06                               | 1.9                                               | 4.6       | 31                     | < 0.20           | < 0.20                     |                |                              |
| MTCA Cleanu        | p Levels for Ground                       | lwater <sup>6</sup>                       |                        |            |                           |                                      | 5                                                 | 5         | <b>16</b> <sup>7</sup> | 160 <sup>7</sup> | 0.2                        |                |                              |

Seattle, Washington Farallon PN: 397-061

|                    |                                           |                                           |             | <b>I</b>   |                              |                                  | -001<br>                             |                 |              | T. ( •            | 3                |                |                              |
|--------------------|-------------------------------------------|-------------------------------------------|-------------|------------|------------------------------|----------------------------------|--------------------------------------|-----------------|--------------|-------------------|------------------|----------------|------------------------------|
|                    |                                           |                                           |             |            |                              | Sample                           | Sample                               |                 | Analytical R | esults (micrograi | ms per liter)    | 1              | 4                            |
| Sample<br>Location | Screened Interval (feet bgs) <sup>1</sup> | Screened Interval (feet msl) <sup>2</sup> | Sample Date | Sampled By | Sample Identification        | Depth<br>(feet bgs) <sup>1</sup> | Elevation (feet NAVD88) <sup>2</sup> | PCE             | TCE          | cDCE              | tDCE             | Vinyl Chloride | cDCE/Vinyl<br>Chloride Ratio |
|                    |                                           |                                           |             | City N     | Mega Block (southwest of 9th | h Avenue Nort                    | th and Broad Stre                    | et) (continued) |              |                   |                  |                |                              |
|                    |                                           |                                           | 3/25/2013   | SES        |                              |                                  | -2.264                               | < 1             | < 1          | 3.3               | < 1              | < 0.2          |                              |
|                    |                                           |                                           | 12/19/2013  | SES        |                              |                                  | -2.264                               | < 1             | < 1          | 2.5               | < 1              | 0.76           | 3.3                          |
|                    |                                           | -                                         | 4/21/2015   | SES        |                              |                                  | -2.264                               | 34              | 42           | 50                | < 1              | 3.1            | 16                           |
|                    |                                           | =                                         | 6/17/2015   | SES        |                              |                                  | -2.264                               | 4.9             | 7.1          | 52                | < 1              | 2.7            | 19                           |
|                    |                                           | -                                         | 10/20/2015  | SES        |                              |                                  | -2.264                               | 15              | 22           | 74                | < 1              | 0.45           | 164                          |
|                    |                                           | =                                         | 2/2/2016    | SES        |                              |                                  | -2.264                               | 7.3             | 24           | 100               | < 1              | 0.45           | 222                          |
|                    |                                           | -                                         | 3/29/2017   | PES        |                              |                                  | -2.264                               | 5.47            | 10.7         | 42.9              | 0.334 J          | <b>0.272</b> J | 158                          |
|                    |                                           | -                                         | 6/28/2017   | PES        |                              |                                  | -2.264                               | 19.0            | 12.4         | 5.99              | 0.167 J          | < 0.118        |                              |
|                    |                                           | -                                         | 4/5/2018    | PES        |                              |                                  | -2.264                               | 2.14            | 3.02         | 18.3              | 0.203 J          | < 0.118        |                              |
| MW-119             | 35.0 to 45.0                              | 2.74 to -7.26                             | 1/21/2019   | PES        |                              |                                  | -2.264                               | 1.24            | < 0.153      | < 0.0933          | < 0.152          | < 0.118        |                              |
|                    |                                           | · · · · · ·                               | 11/11/2019  | Farallon   | MW-119-111119                | 40.0                             | -2.26                                | 3.7             | 9.5          | 10                | < 0.20           | < 0.20         |                              |
|                    |                                           |                                           | 1/14/2020   | Farallon   | MW119-011420                 | 40.0                             | -2.26                                | 4.8             | 5.1          | 7.4               | < 0.20           | < 0.20         |                              |
|                    |                                           |                                           | 2/18/2020   | Farallon   | MW-119-021820                | 40.0                             | -2.26                                | 1.3             | 2.5          | 6.6               | < 0.20           | < 0.20         |                              |
|                    |                                           | _                                         | 3/24/2020   | Farallon   | MW119-032420                 | 40.0                             | -2.26                                | 0.24            | 0.87         | 4.7               | < 0.20           | < 0.20         |                              |
|                    |                                           | _                                         | 4/27/2020   | Farallon   | MW-119-042720                | 40.0                             | -2.26                                | 0.32            | 1.3          | 5.1               | < 0.20           | < 0.20         |                              |
|                    |                                           | _                                         | 5/19/2020   | Farallon   | MW-119-051920                | 40.0                             | -2.26                                | 0.91            | 2.8          | 6.1               | < 0.20           | < 0.20         |                              |
|                    |                                           |                                           | 7/28/2020   | Farallon   | MW-119-072820                | 40.0                             | -2.26                                | 0.92            | 2.6          | 7.5               | < 0.20           | < 0.20         |                              |
|                    |                                           | _                                         | 9/17/2020   | Farallon   | MW-119-091720                | 40.0                             | -2.26                                | 0.27            | 1.8          | 7.8               | < 0.20           | < 0.20         |                              |
|                    |                                           | _                                         | 12/3/2020   | Farallon   | MW-119-120320                | 40.0                             | -2.26                                | 0.28            | 1.2          | 6.6               | < 0.20           | < 0.20         |                              |
|                    |                                           |                                           | 2/10/2021   | Farallon   | MW-119-021021                | 40.0                             | -2.26                                | < 0.20          | 0.46         | 5.0               | < 0.20           | < 0.20         |                              |
| ATCA Cleanu        | p Levels for Ground                       | water <sup>6</sup>                        |             |            |                              |                                  |                                      | 5               | 5            | 16 <sup>7</sup>   | 160 <sup>7</sup> | 0.2            |                              |

|                    |                                           |                                           |             |            |                       |                                            |                                                   |         | Analytical R | esults (microgra | ms per liter) <sup>3</sup> |                |                              |
|--------------------|-------------------------------------------|-------------------------------------------|-------------|------------|-----------------------|--------------------------------------------|---------------------------------------------------|---------|--------------|------------------|----------------------------|----------------|------------------------------|
| Sample<br>Location | Screened Interval (feet bgs) <sup>1</sup> | Screened Interval (feet msl) <sup>2</sup> | Sample Date | Sampled By | Sample Identification | Sample<br>Depth<br>(feet bgs) <sup>1</sup> | Sample<br>Elevation<br>(feet NAVD88) <sup>2</sup> | PCE     | TCE          | cDCE             | tDCE                       | Vinyl Chloride | cDCE/Vinyl<br>Chloride Ratio |
|                    |                                           |                                           |             |            | Blo                   | ock 37 Propert                             | y                                                 |         |              |                  |                            |                |                              |
|                    |                                           |                                           | 3/24/2017   | PES        |                       |                                            | -26.12 <sup>4</sup>                               | < 0.199 | < 0.153      | 2.25             | < 0.152                    | 6.94           | 0.3                          |
|                    |                                           |                                           | 6/23/2017   | PES        |                       |                                            | -26.12 <sup>4</sup>                               | < 0.199 | < 0.153      | 16.3             | < 0.152                    | 127            | 0.1                          |
|                    |                                           |                                           | 12/29/2018  | Farallon   | GEI-2-122918          | 56.0                                       | -26.62                                            | < 0.40  | < 0.40       | 6.7              | < 0.40                     | 60             | 0.1                          |
|                    |                                           |                                           | 4/22/2019   | PES        |                       |                                            | -26.12 <sup>4</sup>                               | < 0.199 | < 0.153      | 11.5             | < 0.152                    | <b>57.7</b> J  | 0.2                          |
|                    |                                           |                                           | 7/16/2019   | PES        |                       |                                            | -26.12 <sup>4</sup>                               | < 0.199 | < 0.153      | 1.37             | < 0.152                    | 46.4           | 0.03                         |
|                    |                                           |                                           | 10/21/2019  | PES        |                       |                                            | -26.12 <sup>4</sup>                               | < 0.199 | < 0.153      | 20.1             | < 0.152                    | 88.2           | 0.2                          |
|                    |                                           |                                           | 11/11/2019  | Farallon   | GEI-2-111119          | 56.0                                       | -26.62                                            | < 1.0   | < 1.0        | 18               | < 1.0                      | 92             | 0.2                          |
|                    |                                           |                                           | 1/14/2020   | Farallon   | GEI-2-011420          | 56.0                                       | -26.62                                            | < 0.20  | < 0.20       | 2.0              | < 0.20                     | 36             | 0.1                          |
|                    |                                           |                                           | 1/22/2020   | PES        |                       |                                            | -26.12 <sup>4</sup>                               | < 0.199 | 0.192 J      | 0.308 J          | < 0.152                    | < 0.118        |                              |
| GEI-2              | 50.5 to 60.5                              | -21.12 to -31.12                          | 2/17/2020   | Farallon   | GE1-2-021720          | 56.0                                       | -26.62                                            | < 0.20  | < 0.20       | 5.6              | < 0.20                     | 34             | 0.2                          |
|                    |                                           |                                           | 3/25/2020   | Farallon   | GEI-2-032520          | 56.0                                       | -26.62                                            | < 0.40  | < 0.40       | 4.3              | < 0.40                     | 52             | 0.1                          |
|                    |                                           |                                           | 4/27/2020   | Farallon   | GEI-2-042720          | 56.0                                       | -26.62                                            | < 0.40  | < 0.40       | 3.2              | < 0.40                     | 50             | 0.1                          |
|                    |                                           |                                           | 5/19/2020   | Farallon   | GEI-2-051920          | 56.0                                       | -26.62                                            | < 0.40  | < 0.40       | 2.7              | < 0.40                     | 55             | 0.05                         |
|                    |                                           |                                           | 6/29/2020   | Farallon   | GEI-2-062920          | 56.0                                       | -26.62                                            | < 0.20  | < 0.20       | 1.6              | < 0.20                     | 33             | 0.05                         |
|                    |                                           |                                           | 7/29/2020   | Farallon   | GEI-2-072920          | 56.0                                       | -26.62                                            | < 0.20  | < 0.20       | 1.3              | < 0.20                     | 46             | 0.03                         |
|                    |                                           |                                           | 8/26/2020   | Farallon   | GEI-2-082620          | 56.0                                       | -26.62                                            | < 0.20  | < 0.20       | < 0.20           | < 0.20                     | < 0.20         |                              |
|                    |                                           |                                           | 9/17/2020   | Farallon   | GEI-2-091720          | 56.0                                       | -26.62                                            | < 0.40  | < 0.40       | 1.0              | < 0.40                     | 48             | 0.02                         |
|                    |                                           |                                           | 12/4/2020   | Farallon   | GEI-2-120420          | 56.0                                       | -26.62                                            | < 0.20  | < 0.20       | 0.52             | < 0.20                     | 21             | 0.02                         |
|                    |                                           |                                           | 2/11/2021   | Farallon   | GEI-2-021121          | 56.0                                       | -26.62                                            | < 0.20  | < 0.20       | 0.43             | < 0.20                     | 16             | 0.03                         |
| MTCA Cleanu        | p Levels for Ground                       | water <sup>6</sup>                        |             |            |                       |                                            |                                                   | 5       | 5            | 16 <sup>7</sup>  | 160 <sup>7</sup>           | 0.2            |                              |

Seattle, Washington Farallon PN: 397-061

|              | 1                       |                         |                        |                      |                                      | 10n PN: 397-  |                            |                  | Analytical D     | esults (micrograi  | ma nou litou) <sup>3</sup> |                |                |
|--------------|-------------------------|-------------------------|------------------------|----------------------|--------------------------------------|---------------|----------------------------|------------------|------------------|--------------------|----------------------------|----------------|----------------|
|              |                         |                         |                        |                      |                                      | Sample        | Sample                     |                  | Alialytical K    | esuits (inicrograf | ns per nter)               | Ī              | <b>!</b>       |
| Sample       |                         |                         |                        |                      |                                      | Depth         | Elevation                  |                  |                  |                    |                            |                | cDCE/Vinyl     |
| Location     | (feet bgs) <sup>1</sup> | (feet msl) <sup>2</sup> | Sample Date            | Sampled By           | Sample Identification                |               | (feet NAVD88) <sup>2</sup> | PCE              | TCE              | cDCE               | tDCE                       | Vinyl Chloride | Chloride Ratio |
|              |                         |                         |                        |                      | Block 37                             | Property (con | tinued)                    |                  |                  |                    |                            |                |                |
|              |                         | -                       | 12/29/2018             | Farallon             | IA1-48-122918                        | 48.0          | -15.41                     | < 0.20           | < 0.20           | 43                 | < 0.20                     | 36             | 1.2            |
|              |                         | _                       | 12/29/2018             | Farallon             | IA1-62-122918                        | 62.0          | -29.41                     | < 0.20           | < 0.20           | 46                 | < 0.20                     | 40             | 1.2            |
|              |                         | _                       | 12/29/2018             | Farallon             | IA1-76-122918                        | 76.0          | -43.41                     | < 0.20           | < 0.20           | 48                 | < 0.20                     | 41             | 1.2            |
|              |                         |                         | 12/29/2018             | Farallon             | IA1-90-122918                        | 90.0          | -57.41                     | < 0.20           | < 0.20           | 48                 | < 0.20                     | 37             | 1.3            |
|              |                         | -                       | 11/11/2019             | Farallon             | IA-1-111119-32.0                     | 32.0          | 0.59                       | < 1.0            | < 1.0            | 140                | < 1.0                      | 2.9            | 48.3           |
|              |                         | -                       | 11/11/2019             | Farallon             | IA-1-111119-62.0                     | 62.0          | -29.41                     | < 1.0            | < 1.0            | 120                | < 1.0                      | 2.3            | 52.2           |
|              |                         |                         | 11/12/2019             | Farallon             | IA-1-111219-92.0                     | 92.0          | -59.41                     | < 0.20           | < 0.20           | 6.9                | < 0.20                     | 6.2            | 1.1            |
|              |                         | =                       | 1/14/2020              | Farallon             | IA-1-011420-32.0                     | 32.0          | 0.59                       | < 0.40           | < 0.40           | 72                 | < 0.40                     | 30             | 2.4            |
|              |                         | =                       | 1/14/2020              | Farallon             | IA-1-011420-62.0                     | 62.0          | -29.41                     | < 1.0            | < 1.0            | 89                 | < 1.0                      | 130            | 0.7            |
|              |                         |                         | 1/14/2020              | Farallon             | IA-1-011420-92.0                     | 92.0          | -59.41                     | < 1.0            | < 1.0            | 89                 | < 1.0                      | 130            | 0.7            |
|              |                         | -                       | 2/17/2020              | Farallon             | IA-1-021720-32.0                     | 32.0          | 0.59                       | < 0.40           | < 0.40           | 45                 | < 0.40                     | 3.1            | 14.5           |
|              |                         | -                       | 2/17/2020              | Farallon             | IA-1-021720-62.0                     | 62.0          | -29.41                     | < 0.40           | < 0.40           | 49                 | < 0.40                     | 3.5            | 14.0           |
|              |                         | -                       | 2/17/2020              | Farallon             | IA-1-021720-92.0                     | 92.0          | -59.41                     | < 1.0            | < 1.0            | 100                | < 1.0                      | 100            | 1.0            |
|              |                         | -                       | 3/25/2020              | Farallon             | IA-1-32.0-032520                     | 32.0          | 0.59                       | < 0.20           | < 0.20           | 38                 | < 0.20                     | 5.6            | 6.8            |
|              |                         | =                       | 3/25/2020              | Farallon<br>Farallon | IA-1-62.0-032520                     | 62.0<br>92.0  | -29.41                     | < 0.40<br>< 0.40 | < 0.40           | 88                 | < 0.40                     | 78             | 1.1            |
|              |                         | -                       | 3/25/2020<br>4/27/2020 | Farallon             | IA-1-92.0-032520<br>IA-1-32.0-042720 | 32.0          | -59.41<br>0.59             | < 0.40           | < 0.40<br>< 0.20 | 92<br>32           | < 0.40<br>< 0.20           | 1.3            | 1.1<br>24.6    |
|              |                         | -                       | 4/27/2020              | Farallon             | IA-1-62-042720                       | 62.0          | -29.41                     | < 0.40           | < 0.40           | 73                 | < 0.40                     | 36             | 24.0           |
|              |                         | -                       | 4/27/2020              | Farallon             | IA-1-92-042720                       | 92.0          | -59.41                     | < 0.40           | < 0.40           | 62                 | < 0.40                     | 39             | 1.6            |
|              |                         | -                       | 5/19/2020              | Farallon             | IA-1-32.0-051920                     | 32.0          | 0.59                       | < 0.40           | < 0.40           | 32                 | < 0.40                     | 1.1            | 29.1           |
| IA-1         | 32.0 to 92.0            | 0.59 to -59.41          | 5/19/2020              | Farallon             | IA-1-62.0-051920                     | 62.0          | -29.41                     | < 0.40           | < 0.40           | 66                 | < 0.40                     | 37             | 1.8            |
|              |                         | -                       | 5/19/2020              | Farallon             | IA-1-92.0-051920                     | 92.0          | -59.41                     | < 0.40           | < 0.40           | 54                 | < 0.40                     | 29             | 1.9            |
|              |                         |                         | 6/29/2020              | Farallon             | IA-1-32.0-062920                     | 32.0          | 0.59                       | < 0.20           | < 0.20           | 22                 | < 0.20                     | 0.87           | 25.3           |
|              |                         | -                       | 6/29/2020              | Farallon             | IA-1-62.0-062920                     | 62.0          | -29.41                     | < 0.20           | < 0.20           | 39                 | < 0.20                     | 14             | 2.8            |
|              |                         | -                       | 7/1/2020               | Farallon             | IA1-92.0-07012020                    | 92.0          | -59.41                     | < 0.20           | < 0.20           | 36                 | < 0.20                     | 13             | 2.8            |
|              |                         |                         | 7/29/2020              | Farallon             | IA-1-072920-32                       | 32.0          | 0.59                       | < 0.20           | < 0.20           | 25                 | < 0.20                     | 1.2            | 20.8           |
|              |                         |                         | 7/29/2020              | Farallon             | IA-1-072920-62                       | 62.0          | -29.41                     | < 0.20           | < 0.20           | 27                 | < 0.20                     | 12             | 2.3            |
|              |                         |                         | 7/29/2020              | Farallon             | IA-1-072920-92                       | 92.0          | -59.41                     | < 0.20           | < 0.20           | 32                 | < 0.20                     | 14             | 2.3            |
|              |                         |                         | 8/26/2020              | Farallon             | IA1-32.0-082620                      | 32.0          | 0.59                       | < 0.20           | < 0.20           | 32                 | < 0.20                     | 1.2            | 26.7           |
|              |                         | -                       | 8/26/2020              | Farallon             | IA1-62.0-082620                      | 62.0          | -29.41                     | < 0.20           | < 0.20           | 37                 | < 0.20                     | 14             | 2.6            |
|              |                         | -                       | 8/26/2020              | Farallon             | IA1-92.0-082620                      | 92.0          | -59.41                     | < 0.20           | < 0.20           | 31                 | < 0.20                     | 13             | 2.4            |
|              |                         |                         | 9/17/2020              | Farallon             | IA-1-32.0-091720                     | 32.0          | 0.59                       | < 0.20           | < 0.20           | 35                 | < 0.20                     | 1.1            | 31.8           |
|              |                         |                         | 9/17/2020              | Farallon             | IA-1-62.0-091720                     | 62.0          | -29.41                     | < 0.20           | < 0.20           | 26                 | < 0.20                     | 11             | 2.4            |
|              |                         |                         | 9/17/2020              | Farallon             | IA-1-92.0-091720                     | 92.0          | -59.41                     | < 0.20           | < 0.20           | 24                 | < 0.20                     | 11             | 2.2            |
|              |                         |                         | 12/4/2020              | Farallon             | IA1-32.0-120420                      | 32.0          | 0.59                       | < 0.20           | < 0.20           | 9.8                | < 0.20                     | 0.58           | 16.9           |
|              |                         |                         | 12/4/2020              | Farallon             | IA1-62.0-120420                      | 62.0          | -29.41                     | < 0.20           | < 0.20           | 13                 | < 0.20                     | 8.1            | 1.6            |
|              |                         |                         | 12/4/2020              | Farallon             | IA1-92.0-120420                      | 92.0          | -59.41                     | < 0.20           | < 0.20           | 15                 | < 0.20                     | 9.6            | 1.6            |
|              |                         | [                       | 2/11/2021              | Farallon             | IA1-32.0-021120                      | 32.0          | 0.59                       | < 0.20           | < 0.20           | 11                 | < 0.20                     | 0.75           | 14.7           |
|              |                         |                         | 2/11/2021              | Farallon             | IA1-62.0-021120                      | 62.0          | -29.41                     | < 0.20           | < 0.20           | 11                 | < 0.20                     | 0.81           | 13.6           |
|              |                         |                         | 2/11/2021              | Farallon             | IA1-92.0-021120                      | 92.0          | -59.41                     | < 0.20           | < 0.20           | 16                 | < 0.20                     | 12             | 1.3            |
| MTCA Cleanuj | p Levels for Ground     | water <sup>6</sup>      |                        |                      |                                      |               |                            | 5                | 5                | 16 <sup>7</sup>    | 160 <sup>7</sup>           | 0.2            |                |

|                    |                                           |                                           |             |            |                       | G 1                                  | 6 1                                               |         | Analytical Re | esults (microgra | ms per liter) <sup>3</sup> |                |                              |
|--------------------|-------------------------------------------|-------------------------------------------|-------------|------------|-----------------------|--------------------------------------|---------------------------------------------------|---------|---------------|------------------|----------------------------|----------------|------------------------------|
| Sample<br>Location | Screened Interval (feet bgs) <sup>1</sup> | Screened Interval (feet msl) <sup>2</sup> | Sample Date | Sampled By | Sample Identification | Sample Depth (feet bgs) <sup>1</sup> | Sample<br>Elevation<br>(feet NAVD88) <sup>2</sup> | РСЕ     | TCE           | cDCE             | tDCE                       | Vinyl Chloride | cDCE/Vinyl<br>Chloride Ratio |
|                    |                                           |                                           |             |            | Block 37              | Property (con                        | tinued)                                           |         |               |                  |                            |                |                              |
|                    |                                           |                                           | 12/29/2018  | Farallon   | IA4-46-122918         | 46.0                                 | -14.84                                            | < 0.20  | < 0.20        | < 0.20           | < 0.20                     | < 0.20         |                              |
|                    |                                           |                                           | 12/29/2018  | Farallon   | IA4-60-122918         | 60.0                                 | -28.84                                            | < 0.20  | < 0.20        | < 0.20           | < 0.20                     | < 0.20         |                              |
|                    |                                           |                                           | 12/29/2018  | Farallon   | IA4-74-122918         | 74.0                                 | -42.84                                            | < 0.20  | < 0.20        | < 0.20           | < 0.20                     | < 0.20         |                              |
|                    |                                           |                                           | 12/29/2018  | Farallon   | IA4-88-122918         | 88.0                                 | -56.84                                            | < 0.20  | < 0.20        | < 0.20           | < 0.20                     | < 0.20         |                              |
|                    |                                           |                                           | 11/11/2019  | Farallon   | IA-4-111119-32.0      | 32.0                                 | -0.84                                             | < 0.20  | < 0.20        | < 0.20           | < 0.20                     | < 0.20         |                              |
|                    |                                           |                                           | 11/11/2019  | Farallon   | IA-4-111119-62.0      | 62.0                                 | -30.84                                            | < 0.20  | < 0.20        | < 0.20           | < 0.20                     | < 0.20         |                              |
|                    |                                           |                                           | 11/11/2019  | Farallon   | AI-4-111119-92.0      | 92.0                                 | -60.84                                            | < 0.20  | < 0.20        | < 0.20           | < 0.20                     | < 0.20         |                              |
|                    |                                           |                                           | 2/17/2020   | Farallon   | IA-4-021720-32.0      | 32.0                                 | -0.84                                             | < 0.20  | < 0.20        | < 0.20           | < 0.20                     | < 0.20         |                              |
|                    |                                           |                                           | 2/17/2020   | Farallon   | IA-4-021720-62.0      | 62.0                                 | -30.84                                            | < 0.20  | < 0.20        | < 0.20           | < 0.20                     | < 0.20         |                              |
|                    |                                           |                                           | 2/17/2020   | Farallon   | IA-4-021720-92.0      | 92.0                                 | -60.84                                            | < 0.20  | < 0.20        | < 0.20           | < 0.20                     | < 0.20         |                              |
|                    |                                           |                                           | 4/27/2020   | Farallon   | IA-4-32-042720        | 32.0                                 | -0.84                                             | < 0.20  | < 0.20        | < 0.20           | < 0.20                     | < 0.20         |                              |
|                    |                                           |                                           | 4/27/2020   | Farallon   | IA-4-62-042720        | 62.0                                 | -30.84                                            | < 0.20  | < 0.20        | < 0.20           | < 0.20                     | < 0.20         |                              |
| IA-4               | 32.0 to 92.0                              | -0.84 to -60.84                           | 4/27/2020   | Farallon   | IA-4-92-042720        | 92.0                                 | -60.84                                            | < 0.20  | < 0.20        | < 0.20           | < 0.20                     | < 0.20         |                              |
|                    |                                           |                                           | 6/29/2020   | Farallon   | IA-4-32.0-062920      | 32.0                                 | -0.84                                             | < 0.20  | < 0.20        | < 0.20           | < 0.20                     | < 0.20         |                              |
|                    |                                           |                                           | 6/29/2020   | Farallon   | IA-4-62.0-062920      | 62.0                                 | -30.84                                            | < 0.20  | < 0.20        | < 0.20           | < 0.20                     | < 0.20         |                              |
|                    |                                           |                                           | 6/29/2020   | Farallon   | IA-4-92.0-062920      | 92.0                                 | -60.84                                            | < 0.20  | < 0.20        | < 0.20           | < 0.20                     | < 0.20         |                              |
|                    |                                           |                                           | 8/26/2020   | Farallon   | IA4-32.0-082620       | 32.0                                 | -0.84                                             | < 0.20  | < 0.20        | < 0.20           | < 0.20                     | < 0.20         |                              |
|                    |                                           |                                           | 8/26/2020   | Farallon   | IA4-62.0-082620       | 62.0                                 | -30.84                                            | < 0.20  | < 0.20        | < 0.20           | < 0.20                     | < 0.20         |                              |
|                    |                                           |                                           | 8/26/2020   | Farallon   | IA4-92.0-082620       | 92.0                                 | -60.84                                            | < 0.20  | < 0.20        | < 0.20           | < 0.20                     | < 0.20         |                              |
|                    |                                           |                                           | 12/4/2020   | Farallon   | IA4-32.0-120420       | 32.0                                 | -0.84                                             | < 0.20  | < 0.20        | < 0.20           | < 0.20                     | < 0.20         |                              |
|                    |                                           |                                           | 12/4/2020   | Farallon   | IA4-62.0-120420       | 62.0                                 | -30.84                                            | < 0.20  | < 0.20        | < 0.20           | < 0.20                     | < 0.20         |                              |
|                    |                                           |                                           | 12/4/2020   | Farallon   | IA4-92.0-120420       | 92.0                                 | -60.84                                            | < 0.20  | < 0.20        | < 0.20           | < 0.20                     | < 0.20         |                              |
|                    |                                           |                                           | 2/11/2021   | Farallon   | IA4-32.0-021121       | 32.0                                 | -0.84                                             | < 0.20  | < 0.20        | < 0.20           | < 0.20                     | < 0.20         |                              |
|                    |                                           |                                           | 2/11/2021   | Farallon   | IA4-62.0-021121       | 62.0                                 | -30.84                                            | < 0.20  | < 0.20        | < 0.20           | < 0.20                     | < 0.20         |                              |
|                    |                                           |                                           | 2/11/2021   | Farallon   | IA4-92.0-021121       | 92.0                                 | -60.84                                            | < 0.20  | < 0.20        | < 0.20           | < 0.20                     | < 0.20         |                              |
|                    |                                           |                                           | 9/2/2016    | Farallon   |                       |                                      | -39.65 <sup>4</sup>                               | < 0.20  | < 0.20        | 41               | < 0.20                     | 1.7            | 24.1                         |
|                    |                                           |                                           | 3/24/2017   | PES        |                       |                                      | -39.65 <sup>4</sup>                               | < 0.199 | < 0.153       | 45.6             | < 0.152                    | <b>0.249</b> J | 183                          |
|                    |                                           |                                           | 6/23/2017   | PES        |                       |                                      | -39.65 <sup>4</sup>                               | < 0.199 | < 0.153       | 3.61             | < 0.152                    | <b>0.264</b> J | 14                           |
|                    |                                           |                                           | 12/18/2017  | Farallon   |                       |                                      | -39.65 <sup>4</sup>                               | < 0.20  | < 0.20        | 0.61             | < 0.20                     | < 0.20         |                              |
| EN 637, 121        | 60.5 / 70.5                               | 24.65 : 44.65                             | 4/22/2019   | PES        |                       |                                      | -39.65 <sup>4</sup>                               | < 0.199 | < 0.153       | 10.8             | < 0.152                    | 0.195 J        | 55.4                         |
| FMW-131            | 62.5 to 72.5                              | -34.65 to -44.65                          | 10/21/2019  | PES        |                       |                                      | -39.65 <sup>4</sup>                               | < 0.199 | < 0.153       | 10.5             | < 0.152                    | 0.140 J        | 75.0                         |
|                    |                                           |                                           | 1/22/2020   | PES        |                       |                                      | -39.65 <sup>4</sup>                               | < 0.199 | < 0.153       | 15.1             | < 0.152                    | 0.162 J        | 93.2                         |
|                    |                                           |                                           | 8/26/2020   | Farallon   | FMW-131-082620        | 68.0                                 | -40.2                                             | < 0.20  | < 0.20        | 6.5              | < 0.20                     | < 0.20         |                              |
|                    |                                           |                                           | 12/4/2020   | Farallon   | FMW-131-120420        | 68.0                                 | -40.2                                             | < 0.20  | < 0.20        | 3.5              | < 0.20                     | < 0.20         |                              |
|                    |                                           |                                           | 2/11/2021   | Farallon   | FMW-131-021121        | 68.0                                 | -40.2                                             | < 0.20  | < 0.20        | 0.27             | < 0.20                     | < 0.20         |                              |
|                    | p Levels for Ground                       | 6                                         | 2,11,2021   | 1 didiion  | 11.1.1. 101 021121    | 00.0                                 | 10.2                                              | 5       | 5             | 16 <sup>7</sup>  | 160 <sup>7</sup>           | 0.2            |                              |

|              |                         |                         |             |            |                       |               |                            |         | Analytical R | esults (microgra | ms per liter) <sup>3</sup> |                |                |
|--------------|-------------------------|-------------------------|-------------|------------|-----------------------|---------------|----------------------------|---------|--------------|------------------|----------------------------|----------------|----------------|
|              | ~                       |                         |             |            |                       | Sample        | Sample                     |         |              |                  |                            |                | 1              |
| Sample       | Screened Interval       | _                       |             |            | G 1 71 400 4          | Depth 1       | Elevation                  | DCE     | TOE          | DCE              | 4D.CE                      | W. LOLL !      | cDCE/Vinyl     |
| Location     | (feet bgs) <sup>1</sup> | (feet msl) <sup>2</sup> | Sample Date | Sampled By | Sample Identification |               | (feet NAVD88) <sup>2</sup> | PCE     | ТСЕ          | cDCE             | tDCE                       | Vinyl Chloride | Chloride Ratio |
|              |                         | ı                       |             | 1          | Block 37              | Property (con |                            |         | 1            |                  |                            |                |                |
|              |                         |                         | 1/13/2014   | SES        |                       |               | -35.80 <sup>4</sup>        | < 1     | < 1          | 960 E            | < 1                        | <b>290</b> E   | 3.3            |
|              |                         |                         | 4/22/2015   | SES        |                       |               | -35.80 <sup>4</sup>        | < 1     | < 1          | 150              | < 1                        | 59             | 2.5            |
|              |                         |                         | 10/20/2015  | SES        |                       |               | -35.80 <sup>4</sup>        | < 1     | < 1          | 7.0              | < 1                        | 95             | 0.1            |
|              |                         |                         | 2/2/2016    | SES        |                       |               | -35.80 <sup>4</sup>        | < 1     | < 1          | 70               | < 1                        | 140            | 0.5            |
|              |                         |                         | 3/29/2017   | PES        |                       |               | -35.80 <sup>4</sup>        | < 0.199 | < 0.153      | 7.16             | < 0.152                    | 72.4           | 0.1            |
|              |                         |                         | 6/21/2017   | PES        |                       |               | -35.80 <sup>4</sup>        | < 0.199 | < 0.153      | 109              | < 0.152                    | 195            | 0.6            |
|              |                         |                         | 4/9/2018    | PES        |                       |               | -35.80 <sup>4</sup>        | < 0.199 | < 0.153      | 3.07             | < 0.152                    | 31.0           | 0.1            |
| MW-128       | 60 to 70                | -30.80 to -40.80        | 12/30/2018  | Farallon   | MW-128-123018         | 65.0          | -35.80                     | < 1.0   | < 1.0        | 5.0              | < 1.0                      | 110            | 0.05           |
|              |                         |                         | 11/11/2019  | Farallon   | MW-128-111119         | 65.0          | -35.80                     | < 0.40  | < 0.40       | 1.4              | < 0.40                     | 60             | 0.02           |
|              |                         |                         | 2/18/2020   | Farallon   | MW-128-021820         | 65.0          | -35.80                     | < 0.40  | < 0.40       | 1.4              | < 0.40                     | 54             | 0.03           |
|              |                         |                         | 4/27/2020   | Farallon   | MW-128-042720         | 65.0          | -35.80                     | < 0.40  | < 0.40       | 0.87             | < 0.40                     | 51             | 0.02           |
|              |                         |                         | 6/29/2020   | Farallon   | MW-128-062920         | 65.0          | -35.80                     | < 0.20  | < 0.20       | 0.51             | < 0.20                     | 34             | 0.02           |
|              |                         |                         | 8/26/2020   | Farallon   | MW-128-082620         | 65.0          | -35.80                     | < 0.20  | < 0.20       | 0.46             | < 0.20                     | 29             | 0.02           |
|              |                         |                         | 12/4/2020   | Farallon   | MW-128-120420         | 65.0          | -35.80                     | < 0.20  | < 0.20       | 0.40             | < 0.20                     | 46             | 0.01           |
|              |                         |                         | 2/10/2021   | Farallon   | MW-128-021021         | 65.0          | -35.80                     | < 0.40  | < 0.40       | < 0.40           | < 0.40                     | 55             |                |
|              |                         |                         |             |            | Blo                   | y             |                            |         |              |                  |                            |                |                |
|              |                         |                         | 2/4/2020    | Farallon   | DW-3-020420           |               |                            | < 0.20  | < 0.20       | 0.21             | < 0.20                     | < 0.20         |                |
| DW-3         | 15 to 55                | 10 to -30               | 2/24/2020   | Farallon   | DW-3-022420           |               |                            | < 0.20  | < 0.20       | 0.42             | < 0.20                     | < 0.20         |                |
|              |                         |                         | 3/5/2020    | Farallon   | DW-3-030520           |               |                            | < 0.20  | < 0.20       | 0.43             | < 0.20                     | < 0.20         |                |
|              |                         |                         | 2/4/2020    | Farallon   | DW-4-020420           |               |                            | < 0.20  | < 0.20       | < 0.20           | < 0.20                     | < 0.20         |                |
| DW-4         | 15 to 55                | 10 to -30               | 2/24/2020   | Farallon   | DW-4-022420           |               |                            | < 0.20  | < 0.20       | < 0.20           | < 0.20                     | < 0.20         |                |
|              |                         |                         | 3/5/2020    | Farallon   | DW-4-030520           |               |                            | < 0.20  | < 0.20       | 0.27             | < 0.20                     | < 0.20         |                |
|              |                         |                         | 2/4/2020    | Farallon   | DW-5-020420           |               |                            | < 0.20  | < 0.20       | < 0.20           | < 0.20                     | < 0.20         |                |
| DW-5         | 15 to 55                | 10 to -30               | 2/24/2020   | Farallon   | DW-5-022420           |               |                            | < 0.20  | < 0.20       | < 0.20           | < 0.20                     | < 0.20         |                |
|              |                         |                         | 3/5/2020    | Farallon   | DW-5-030520           |               |                            | < 0.20  | < 0.20       | < 0.20           | < 0.20                     | < 0.20         |                |
| DW-11        | 30 to 70                | 10 to -30               | 3/12/2020   | Farallon   | DW-11-031220          |               |                            | < 0.20  | < 0.20       | < 0.20           | < 0.20                     | < 0.20         |                |
| DW-12        | 29 to 69                | 10 to -30               | 3/12/2020   | Farallon   | DW-12-031220          |               |                            | < 0.20  | < 0.20       | < 0.20           | < 0.20                     | < 0.20         |                |
| DW-13        | 28 to 68                | 10 to -30               | 3/12/2020   | Farallon   | DW-13-031220          |               |                            | < 0.20  | < 0.20       | < 0.20           | < 0.20                     | < 0.20         |                |
| DW-14        | 27 to 67                | 10 to -30               | 3/12/2020   | Farallon   | DW-14-031220          |               |                            | < 0.20  | < 0.20       | < 0.20           | < 0.20                     | < 0.20         |                |
|              |                         |                         | 3/12/2020   | Farallon   | DW-15-031220          |               |                            | < 0.20  | < 0.20       | < 0.20           | < 0.20                     | 0.26           |                |
|              |                         |                         | 4/10/2020   | Farallon   | DW-15-041020          |               |                            | < 0.20  | < 0.20       | < 0.20           | < 0.20                     | < 0.20         |                |
|              |                         |                         | 6/29/2020   | Farallon   | DW-15-062920          |               |                            | < 0.20  | < 0.20       | 0.26             | < 0.20                     | < 0.20         |                |
| DW-15        | 26 to 66                | 10 to -30               | 7/29/2020   | Farallon   | DW-15-072920          |               |                            | < 0.20  | < 0.20       | 0.56             | < 0.20                     | 0.36           | 1.6            |
| D W -13      | 20 10 00                | 10 10 -30               | 8/26/2020   | Farallon   | DW-15-082620          |               |                            | < 0.20  | < 0.20       | 0.98             | < 0.20                     | 0.58           | 1.7            |
|              |                         |                         | 9/17/2020   | Farallon   | DW-15-091720          |               |                            | < 0.20  | < 0.20       | < 0.20           | < 0.20                     | < 0.20         |                |
|              |                         |                         | 12/3/2020   | Farallon   | DW-15-120320          |               |                            | < 0.20  | < 0.20       | 0.78             | < 0.20                     | 0.46           | 1.7            |
|              |                         |                         | 2/11/2021   | Farallon   | DW15-021121           |               |                            | < 0.20  | 0.69         | 38               | < 0.20                     | 0.33           | 115.2          |
| MTCA Cleanup | Levels for Ground       | water <sup>6</sup>      |             |            |                       |               |                            | 5       | 5            | 16 <sup>7</sup>  | 160 <sup>7</sup>           | 0.2            |                |

|             |                         |                         |             | I          |                       |                         |                            |        | Analytical D   | esults (micrograi      | ne nor litor) <sup>3</sup> |                | 1              |
|-------------|-------------------------|-------------------------|-------------|------------|-----------------------|-------------------------|----------------------------|--------|----------------|------------------------|----------------------------|----------------|----------------|
|             |                         |                         |             |            |                       | Sample                  | Sample                     |        | / Analytical K | csuits (inici ogi ai   | ns per neer)               |                | <b>!</b>       |
| Sample      | _                       |                         |             |            |                       | Depth                   | Elevation                  |        |                | _ ~-                   | _ ~-                       |                | cDCE/Vinyl     |
| Location    | (feet bgs) <sup>1</sup> | (feet msl) <sup>2</sup> | Sample Date | Sampled By | Sample Identification | (feet bgs) <sup>1</sup> | (feet NAVD88) <sup>2</sup> | PCE    | TCE            | cDCE                   | tDCE                       | Vinyl Chloride | Chloride Ratio |
|             |                         |                         |             |            | •                     | Property (con           | tinued)                    |        |                |                        |                            |                |                |
|             |                         |                         | 1/4/2020    | Farallon   | DW-16-010420          |                         |                            | < 0.20 | < 0.20         | 0.29                   | < 0.20                     | < 0.20         |                |
|             |                         |                         | 1/14/2020   | Farallon   | DW-16-011420          |                         |                            | < 0.20 | < 0.20         | 1.8                    | < 0.20                     | 0.32           | 5.6            |
|             |                         |                         | 2/17/2020   | Farallon   | DW-16-021720          |                         |                            | < 0.20 | < 0.20         | 9.9                    | < 0.20                     | 2.1            | 4.7            |
|             |                         |                         | 3/5/2020    | Farallon   | DW-16-030520          |                         |                            | < 0.20 | < 0.20         | 43                     | < 0.20                     | 5.9            | 7.3            |
|             |                         |                         | 3/12/2020   | Farallon   | DW-16-031220          |                         |                            | < 0.40 | < 0.40         | 62                     | < 0.40                     | 4.7            | 13.2           |
|             |                         |                         | 4/10/2020   | Farallon   | DW-16-041020          |                         |                            | < 1.0  | < 1.0          | 160                    | < 1.0                      | 2.5            | 64.0           |
| DW-16       | 24 to 64                | 10 to -30               | 4/27/2020   | Farallon   | DW-16-042720          |                         |                            | < 2.0  | < 2.0          | 220                    | < 2.0                      | 2.2            | 100.0          |
| DW-10       | 24 10 04                | 10 10 -50               | 5/19/2020   | Farallon   | DW-16-051920          |                         |                            | < 2.0  | < 2.0          | 300                    | < 2.0                      | < 2.0          |                |
|             |                         |                         | 6/29/2020   | Farallon   | DW-16-062920          |                         |                            | < 2.0  | < 2.0          | 350                    | < 2.0                      | 2.0            | 175.0          |
|             |                         |                         | 7/29/2020   | Farallon   | DW-16-072920          |                         |                            | < 2.0  | < 2.0          | 390                    | 2.8                        | 2.5            | 156.0          |
|             |                         |                         | 8/26/2020   | Farallon   | DW-16-082620          |                         |                            | < 2.0  | 3.0            | 430                    | < 2.0                      | 2.3            | 187.0          |
|             |                         |                         | 9/17/2020   | Farallon   | DW-16-091720          |                         |                            | < 2.0  | 3.1            | 390                    | < 2.0                      | 2.7            | 144.4          |
|             |                         |                         | 12/3/2020   | Farallon   | DW-16-120320          |                         |                            | < 2.0  | 3.4            | 270                    | < 2.0                      | < 2.0          |                |
|             |                         |                         | 2/11/2021   | Farallon   | DW16-021121           |                         |                            | < 4.0  | 6.9            | 800                    | < 4.0                      | < 4.0          |                |
|             |                         |                         | 1/4/2020    | Farallon   | DW-17-010420          |                         |                            | < 0.20 | < 0.20         | < 0.20                 | < 0.20                     | < 0.20         |                |
|             |                         |                         | 1/14/2020   | Farallon   | DW-17-011420          |                         |                            | < 0.20 | < 0.20         | < 0.20                 | < 0.20                     | 3.1            |                |
|             |                         |                         | 2/17/2020   | Farallon   | DW-17-021720          |                         |                            | < 0.20 | < 0.20         | 0.46                   | < 0.20                     | 12             | 0.04           |
|             |                         |                         | 3/5/2020    | Farallon   | DW-17-030520          |                         |                            | < 0.20 | < 0.20         | 1.3                    | < 0.20                     | 20             | 0.1            |
|             |                         |                         | 4/10/2020   | Farallon   | DW-17-041020          |                         |                            | < 0.20 | < 0.20         | 5.1                    | < 0.20                     | 23             | 0.2            |
|             |                         |                         | 4/27/2020   | Farallon   | DW-17-042720          |                         |                            | < 0.20 | < 0.20         | 9.8                    | < 0.20                     | 22             | 0.4            |
| DW-17       | 22 to 62                | 10 to -30               | 5/19/2020   | Farallon   | DW-17-051920          |                         |                            | < 0.20 | < 0.20         | 17                     | < 0.20                     | 27             | 0.6            |
|             |                         |                         | 6/29/2020   | Farallon   | DW-17-062920          |                         |                            | < 0.40 | < 0.40         | 55                     | < 0.40                     | 29             | 1.9            |
|             |                         |                         | 7/29/2020   | Farallon   | DW-17-072920          |                         |                            | < 0.40 | < 0.40         | 94                     | 0.42                       | 43             | 2.2            |
|             |                         |                         | 8/26/2020   | Farallon   | DW-17-082620          |                         |                            | < 1.0  | < 1.0          | 140                    | < 1.0                      | 62             | 2.3            |
|             |                         |                         | 9/17/2020   | Farallon   | DW-17-091720          |                         |                            | < 1.0  | < 1.0          | 180                    | < 1.0                      | 72             | 2.5            |
|             |                         |                         | 12/3/2020   | Farallon   | DW-17-120320          |                         |                            | < 1.0  | < 1.0          | 170                    | < 1.0                      | 79             | 2.2            |
|             |                         |                         | 2/11/2021   | Farallon   | DW17-021121           |                         |                            | < 2.0  | < 2.0          | 320                    | < 2.0                      | 45             | 7.1            |
|             |                         |                         | 1/4/2020    | Farallon   | DW-18A-010420         |                         |                            | < 0.20 | < 0.20         | < 0.20                 | < 0.20                     | < 0.20         |                |
|             |                         |                         | 2/17/2020   | Farallon   | DW-18A-021720         |                         |                            | < 0.20 | < 0.20         | < 0.20                 | < 0.20                     | 11             |                |
|             |                         |                         | 3/5/2020    | Farallon   | DW-18A-030520         |                         |                            | < 0.20 | < 0.20         | 1.6                    | < 0.20                     | 46             | 0.03           |
|             |                         |                         | 4/10/2020   | Farallon   | DW-18A-041020         |                         |                            | < 0.40 | < 0.40         | 15                     | < 0.40                     | 76             | 0.20           |
|             |                         |                         | 4/27/2020   | Farallon   | DW-18A-042720         |                         |                            | < 0.50 | < 0.50         | 19                     | < 0.50                     | 83             | 0.23           |
| DW-18A      | 21 to 61                | 10 to -30               | 5/19/2020   | Farallon   | DW-18A-051920         |                         |                            | < 0.40 | < 0.40         | 23                     | < 0.40                     | 83             | 0.28           |
| DW-10A      | 21 10 01                | 10 10 -30               | 6/29/2020   | Farallon   | DW-18A-062920         |                         |                            | < 0.40 | < 0.40         | 23                     | < 0.40                     | 69             | 0.33           |
|             |                         |                         | 7/29/2020   | Farallon   | DW-18A-072920         |                         |                            | < 0.40 | < 0.40         | 23                     | < 0.40                     | 65             | 0.35           |
|             |                         |                         | 8/26/2020   | Farallon   | DW-18A-082620         |                         |                            | < 0.40 | < 0.40         | 25                     | < 0.40                     | 55             | 0.45           |
|             |                         |                         | 9/17/2020   | Farallon   | DW-18A-091720         |                         |                            | < 0.40 | < 0.40         | 27                     | < 0.40                     | 53             | 0.51           |
|             |                         |                         | 12/3/2020   | Farallon   | DW-18A-120320         |                         |                            | < 0.20 | < 0.20         | 21                     | < 0.20                     | 25             | 0.84           |
|             |                         |                         | 2/11/2021   | Farallon   | DW18A-021121          |                         |                            | < 0.20 | < 0.20         | 28                     | < 0.20                     | 22             | 1.27           |
| MTCA Cleanu | p Levels for Ground     | water <sup>6</sup>      |             |            |                       |                         |                            | 5      | 5              | <b>16</b> <sup>7</sup> | 160 <sup>7</sup>           | 0.2            |                |

|                    |                   |                                           |             |            |                       | 6 1                                  | G 1                                               |         | Analytical R | esults (microgra | ms per liter) <sup>3</sup> |                |                              |
|--------------------|-------------------|-------------------------------------------|-------------|------------|-----------------------|--------------------------------------|---------------------------------------------------|---------|--------------|------------------|----------------------------|----------------|------------------------------|
| Sample<br>Location | Screened Interval | Screened Interval (feet msl) <sup>2</sup> | Sample Date | Sampled By | Sample Identification | Sample Depth (feet bgs) <sup>1</sup> | Sample<br>Elevation<br>(feet NAVD88) <sup>2</sup> | PCE     | TCE          | cDCE             | tDCE                       | Vinyl Chloride | cDCE/Vinyl<br>Chloride Ratio |
|                    |                   |                                           |             |            | Block 38              | Property (con                        | tinued)                                           |         |              |                  |                            |                |                              |
|                    |                   |                                           | 11/20/2018  | Farallon   | FMW-137-112018        | 80.0                                 | -52.9                                             | < 0.20  | < 0.20       | 1.2              | < 0.20                     | < 0.20         |                              |
|                    |                   |                                           | 12/28/2018  | Farallon   | FMW-137-121818        | 80.0                                 | -52.9                                             | < 0.20  | < 0.20       | 1.1              | < 0.20                     | < 0.20         |                              |
|                    |                   | -                                         | 5/6/2019    | Farallon   | FMW-137-050619        | 80.0                                 | -52.9                                             | < 0.20  | < 0.20       | 1.3              | < 0.20                     | < 0.20         |                              |
| FMW-137            | 72.0 to 85.0      | -44.9 to -57.9                            | 7/8/2019    | Farallon   | FMW-137-070819        | 80.0                                 | -52.9                                             | < 0.20  | < 0.20       | 1.3              | < 0.20                     | < 0.20         |                              |
| FMW-13/            | 72.0 to 85.0      | -44.9 10 -37.9                            | 10/14/2019  | Farallon   | FMW-137-101419        | 79.0                                 | -51.9                                             | < 0.20  | < 0.20       | 1.1              | < 0.20                     | < 0.20         |                              |
|                    |                   |                                           | 11/6/2019   | PES        |                       |                                      | -51.4 <sup>4</sup>                                | < 0.199 | < 0.153      | 1.27             | < 0.152                    | < 0.118        |                              |
|                    |                   | -                                         | 11/11/2019  | Farallon   | FMW-137-111119        | 78.5                                 | -51.4                                             | < 0.20  | < 0.20       | 1.3              | < 0.20                     | < 0.20         |                              |
|                    |                   |                                           | 1/22/2020   | PES        |                       |                                      | -51.4 <sup>4</sup>                                | < 0.199 | < 0.153      | 1.99             | < 0.152                    | < 0.118        |                              |
|                    |                   |                                           | 11/20/2018  | Farallon   | FMW-138-112018        | 95.0                                 | -50.96                                            | < 0.20  | < 0.20       | 0.29             | < 0.20                     | < 0.20         |                              |
|                    |                   |                                           | 12/28/2018  | Farallon   | FMW-138-122818        | 95.0                                 | -50.96                                            | < 0.20  | < 0.20       | 0.34             | < 0.20                     | < 0.20         |                              |
| EMW 120            | 00.0 +- 100.0     | 15.00 to 55.00                            | 5/6/2019    | Farallon   | FMW-138-050619        | 95.0                                 | -50.96                                            | < 0.20  | < 0.20       | 0.38             | < 0.20                     | < 0.20         |                              |
| FMW-138            | 90.0 to 100.0     | -45.96 to -55.96                          | 7/8/2019    | Farallon   | FMW-138-070819        | 95.0                                 | -50.96                                            | < 0.20  | < 0.20       | 0.34             | < 0.20                     | < 0.20         |                              |
|                    |                   |                                           | 10/14/2019  | Farallon   | FMW-138-101419        | 95.0                                 | -50.96                                            | < 0.20  | < 0.20       | 0.33             | < 0.20                     | < 0.20         |                              |
|                    |                   |                                           | 11/11/2019  | Farallon   | FMW-138-111119        | 95.0                                 | -50.96                                            | < 0.20  | < 0.20       | 0.37             | < 0.20                     | < 0.20         |                              |
|                    |                   |                                           |             |            | Blo                   | ock 77 Propert                       | y                                                 |         |              |                  | -                          | •              |                              |
|                    |                   |                                           | 7/17/2019   | Farallon   | FMW-140-071719        | 75.0                                 | -43.0                                             | < 2.0   | < 2.0        | 280              | < 2.0                      | 320            | 0.9                          |
|                    |                   |                                           | 10/31/2019  | PES        |                       |                                      | -43.0 <sup>4</sup>                                | < 0.199 | < 0.153      | 0.160 J          | < 0.152                    | 189            | 0.001                        |
|                    |                   |                                           | 11/12/2019  | Farallon   | FMW-140-111219        | 75.0                                 | -43.0                                             | < 4.0   | < 4.0        | 310              | < 4.0                      | 510            | 0.6                          |
|                    |                   |                                           | 1/14/2020   | Farallon   | FMW-140-011420        | 75.0                                 | -43.0                                             | < 4.0   | < 4.0        | 340              | < 4.0                      | 460            | 0.7                          |
|                    |                   |                                           | 1/22/2020   | PES        |                       |                                      | -43.0 <sup>4</sup>                                | < 0.199 | < 0.153      | 406              | 0.729                      | 527            | 0.8                          |
|                    |                   |                                           | 2/18/2020   | Farallon   | FMW-140-021820        | 75.0                                 | -43.0                                             | < 4.0   | < 4.0        | 280              | < 4.0                      | 530            | 0.5                          |
| FMW-140            | 70.0 to 80.0      | -38.29 to -48.29                          | 3/25/2020   | Farallon   | FMW-140-032520        | 75.0                                 | -43.0                                             | < 2.0   | < 2.0        | 100              | < 2.0                      | 290            | 0.3                          |
|                    |                   |                                           | 4/27/2020   | Farallon   | MW-140-042720         | 75.0                                 | -43.0                                             | < 1.0   | < 1.0        | 33               | < 1.0                      | 130            | 0.3                          |
|                    |                   |                                           | 5/19/2020   | Farallon   | FMW-140-051920        | 75.0                                 | -43.0                                             | < 1.0   | < 1.0        | 16               | < 1.0                      | 130            | 0.1                          |
|                    |                   |                                           | 7/29/2020   | Farallon   | MW-140-072920         | 75.0                                 | -43.0                                             | < 1.0   | < 1.0        | 9.7              | < 1.0                      | 170            | 0.1                          |
|                    |                   |                                           | 9/17/2020   | Farallon   | FMW-140-091720        | 75.0                                 | -43.0                                             | < 0.40  | < 0.40       | 25               | < 0.40                     | 43             | 0.6                          |
|                    |                   |                                           | 12/4/2020   | Farallon   | FMW-140-120420        | 75.0                                 | -43.0                                             | < 0.20  | < 0.20       | 3.3              | < 0.20                     | 18             | 0.2                          |
|                    |                   |                                           | 2/10/2021   | Farallon   | FMW-140-021021        | 75.0                                 | -43.0                                             | < 0.20  | < 0.20       | 0.72             | < 0.20                     | 3.2            | 0.2                          |
|                    |                   |                                           | 7/26/2019   | Farallon   | FMW-142-072619        | 40.0                                 | -7.1                                              | < 0.20  | 0.38         | 0.36             | < 0.20                     | < 0.20         |                              |
| FMW-142            | 37.5 to 42.5      | -4.63 to -9.63                            | 10/31/2019  | PES        |                       |                                      | -7.13 <sup>4</sup>                                | < 0.199 | < 0.153      | < 0.0933         | < 0.152                    | < 0.118        |                              |
|                    |                   |                                           | 1/22/2020   | PES        |                       |                                      | -7.13 <sup>4</sup>                                | < 0.199 | < 0.153      | < 0.0933         | < 0.152                    | < 0.118        |                              |
|                    |                   |                                           | 7/30/2019   | Farallon   | FMW-143-073019        | 25.5                                 | 7.5                                               | < 0.20  | < 0.20       | < 0.20           | < 0.20                     | < 0.20         |                              |
| FMW-143            | 23.0 to 28.0      | 9.99 to 4.99                              | 10/31/2019  | PES        |                       |                                      | 7.5 <sup>4</sup>                                  | < 0.199 | < 0.153      | < 0.0933         | < 0.152                    | < 0.118        |                              |
|                    |                   |                                           | 1/22/2020   | PES        |                       |                                      | 7.5 <sup>4</sup>                                  | < 0.199 | < 0.153      | < 0.0933         | < 0.152                    | < 0.118        |                              |
| FMW-140            |                   |                                           |             |            |                       |                                      |                                                   |         |              |                  |                            |                |                              |

Seattle, Washington Farallon PN: 397-061

|                    |                                           |                                                         |                         |            |                       | C1-                                  | C1-                                               |         | Analytical Ro | esults (microgran | ns per liter) <sup>3</sup> |                |                              |
|--------------------|-------------------------------------------|---------------------------------------------------------|-------------------------|------------|-----------------------|--------------------------------------|---------------------------------------------------|---------|---------------|-------------------|----------------------------|----------------|------------------------------|
| Sample<br>Location | Screened Interval (feet bgs) <sup>1</sup> | Screened Interval (feet msl) <sup>2</sup>               | Sample Date             | Sampled By | Sample Identification | Sample Depth (feet bgs) <sup>1</sup> | Sample<br>Elevation<br>(feet NAVD88) <sup>2</sup> | PCE     | ТСЕ           | cDCE              | tDCE                       | Vinyl Chloride | cDCE/Vinyl<br>Chloride Ratio |
|                    |                                           |                                                         |                         |            | Blo                   | ock 79 Propert                       | y                                                 |         |               |                   |                            |                |                              |
|                    |                                           |                                                         | 7/26/2019               | Farallon   | FMW-141-072619        | 52.5                                 | -17.35                                            | < 30    | 2,800         | 6,200             | < 30                       | 820            | 7.6                          |
|                    |                                           |                                                         | 10/30/2019              | PES        |                       |                                      | -17.35 <sup>4</sup>                               | < 0.199 | 2.18 J        | <b>1,200</b> J    | 7.13 J                     | 1,760          | 0.7                          |
|                    |                                           |                                                         | 10/30/2019 <sup>8</sup> | PES        |                       |                                      | -17.35 <sup>4</sup>                               | < 0.199 | <b>12.7</b> J | <b>2,250</b> J    | 10.5 J                     | 1,710          | 1.3                          |
|                    |                                           |                                                         | 11/11/2019              | Farallon   | FMW-141-111119        | 52.5                                 | -17.35                                            | < 20    | < 20          | 3,500             | < 20                       | 2,900          | 1.2                          |
|                    |                                           |                                                         | 1/14/20205              | Farallon   | FMW-141-011420        | 52.5                                 | -17.35                                            | < 4.0   | < 4.0         | 250               | < 4.0                      | 380            | 0.7                          |
|                    |                                           | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ | 0.8                     |            |                       |                                      |                                                   |         |               |                   |                            |                |                              |
| FMW-141            | 47.5 to 57.5                              | -12.35 to -22.35                                        | 2/17/2020               | Farallon   | FMW-141-021720        | 52.5                                 | -17.35                                            | < 2.0   | < 2.0         | 280               | < 2.0                      | 240            | 1.2                          |
| 114144 111         | 17.5 to 57.5                              | 12.55 to 22.55                                          | 3/24/2020               | Farallon   | FMW-141-032420        | 52.5                                 | -17.35                                            | < 10    | < 10          | 1,200             | < 10                       | 820            | 1.5                          |
|                    |                                           |                                                         | 4/27/2020               | Farallon   | MW-141-042720         | 52.5                                 | -17.35                                            | < 2.0   | 6.5           | 440               | 2.1                        | 490            | 0.9                          |
|                    |                                           |                                                         | 5/19/2020               | Farallon   | FMW-141-051920        | 52.5                                 | -17.35                                            | < 20    | < 20          | 2,400             | < 20                       | 910            | 2.6                          |
|                    |                                           |                                                         | 7/28/2020               | Farallon   | MW-141-072820         | 52.5                                 | -17.35                                            | < 10    | < 10          | 8,100             | 20                         | 780            | 10.4                         |
|                    |                                           |                                                         | 9/17/2020               | Farallon   | FMW-141-091720        | 52.5                                 | -17.35                                            | < 4.0   | < 4.0         | 600               | < 4.0                      | 620            | 1.0                          |
|                    |                                           |                                                         | 12/3/2020               | Farallon   | FMW-141-120320        | 52.5                                 | -17.35                                            | < 1.0   | < 1.0         | 68                | < 1.0                      | 190            | 0.4                          |
|                    |                                           |                                                         | 2/10/2021               | Farallon   | FMW-141-021021        | 52.5                                 | -17.35                                            | < 1.0   | < 1.0         | 120               | < 1.0                      | 180            | 0.7                          |
| MTCA Cleanu        | p Levels for Ground                       | water <sup>6</sup>                                      |                         |            |                       |                                      |                                                   | 5       | 5             | 16 <sup>7</sup>   | 160 <sup>7</sup>           | 0.2            |                              |

#### Table F-3

#### **Groundwater Analytical Results for CVOCs**

#### Deep Outwash Aquifer Groundwater

### Performance Monitoring Program Seattle, Washington

Farallon PN: 397-061

|                    |                                           |                                           |             |            |                       |                                            |                                                   |         | Analytical R | esults (micrograi      | ns per liter) <sup>3</sup> |                |                              |
|--------------------|-------------------------------------------|-------------------------------------------|-------------|------------|-----------------------|--------------------------------------------|---------------------------------------------------|---------|--------------|------------------------|----------------------------|----------------|------------------------------|
| Sample<br>Location | Screened Interval (feet bgs) <sup>1</sup> | Screened Interval (feet msl) <sup>2</sup> | Sample Date | Sampled By | Sample Identification | Sample<br>Depth<br>(feet bgs) <sup>1</sup> | Sample<br>Elevation<br>(feet NAVD88) <sup>2</sup> | PCE     | TCE          | cDCE                   | tDCE                       | Vinyl Chloride | cDCE/Vinyl<br>Chloride Ratio |
|                    |                                           |                                           |             |            | Block 79              | Property (con                              | tinued)                                           |         |              |                        |                            |                |                              |
|                    |                                           |                                           | 12/21/2012  | SES        |                       |                                            | -41.80 <sup>4</sup>                               | 1.3 i   | 440          | 5,500                  | 4.1                        | 150            | 36.7                         |
|                    |                                           |                                           | 12/19/2013  | SES        |                       |                                            | -41.80 <sup>4</sup>                               | < 1     | 13           | 140                    | < 1                        | 0.41           | 341                          |
|                    |                                           |                                           | 6/25/2015   | SES        |                       |                                            | -41.80 <sup>4</sup>                               | < 1     | 19           | 670                    | < 1                        | 17             | 39                           |
|                    |                                           |                                           | 10/27/2015  | SES        |                       |                                            | -41.80 <sup>4</sup>                               | < 1     | 4.5          | 670                    | 1.2                        | 17             | 39                           |
|                    |                                           |                                           | 2/3/2016    | SES        |                       |                                            | -41.80 <sup>4</sup>                               | < 1     | 1.1          | 1,500                  | 2.2                        | 13             | 115                          |
|                    |                                           |                                           | 3/22/2017   | PES        |                       |                                            | -41.80 <sup>4</sup>                               | < 0.199 | 27.1         | 7,280                  | 25.4                       | 63.5           | 115                          |
|                    | 70.0 to 80.0                              | -36.80 to -46.80                          | 6/16/2017   | PES        |                       |                                            | -41.80 <sup>4</sup>                               | 0.522   | 148          | 4,750                  | 28.2                       | 53.3           | 89                           |
|                    |                                           |                                           | 4/11/2018   | PES        |                       |                                            | -41.80 <sup>4</sup>                               | 191     | 1,100        | 3,720                  | 21.3                       | 34.9           | 107                          |
|                    |                                           |                                           | 1/30/2019   | PES        |                       |                                            | -41.80 <sup>4</sup>                               | < 0.995 | 2.81         | 6,330                  | 22.8                       | 34.8           | 182                          |
| MW-113             |                                           |                                           | 2/7/2019    | PES        |                       |                                            | -41.80 <sup>4</sup>                               | < 0.199 | 1.77         | 6,990                  | 25.7                       | 46.0           | 152                          |
|                    |                                           |                                           | 11/11/2019  | Farallon   | MW-113-111119         | 75.0                                       | -41.80                                            | < 50    | < 50         | 8,200                  | < 50                       | 950            | 8.6                          |
|                    |                                           |                                           | 1/14/2020   | Farallon   | MW113-011420          | 75.0                                       | -41.80                                            | < 50    | < 50         | 8,000                  | < 50                       | 1,400          | 5.7                          |
|                    |                                           |                                           | 2/18/2020   | Farallon   | MW-113-021820         | 75.0                                       | -41.80                                            | < 50    | < 50         | 9,600                  | < 50                       | 1,800          | 5.3                          |
|                    |                                           |                                           | 3/24/2020   | Farallon   | MW113-032420          | 75.0                                       | -41.80                                            | < 20    | < 20         | 4,100                  | < 20                       | 200            | 20.5                         |
|                    |                                           |                                           | 4/27/2020   | Farallon   | MW-113-042720         | 75.0                                       | -41.80                                            | < 20    | < 20         | 3,500                  | < 20                       | 94             | 37.2                         |
|                    |                                           |                                           | 5/19/2020   | Farallon   | MW-113-051920         | 75.0                                       | -41.80                                            | < 20    | < 20         | 3,700                  | < 20                       | 110            | 33.6                         |
|                    |                                           |                                           | 7/28/2020   | Farallon   | MW-113-072820         | 75.0                                       | -41.80                                            | 170     | 1,300        | 2,300                  | 10                         | 82             | 28.0                         |
|                    |                                           |                                           | 9/17/2020   | Farallon   | MW-113-091720         | 70.0                                       | -36.80                                            | 390     | 1,500        | 1,900                  | < 10                       | 45             | 42.2                         |
|                    |                                           |                                           | 12/3/2020   | Farallon   | MW-113-120320         | 75.0                                       | -41.80                                            | 480     | 800          | 540                    | < 4.0                      | 6.4            | 84.4                         |
|                    |                                           |                                           | 2/10/2021   | Farallon   | MW-113-021021         | 75.0                                       | -41.80                                            | 2.7     | 8.4          | 26                     | < 0.20                     | < 0.20         |                              |
| MTCA Cleanu        | p Levels for Ground                       | water <sup>6</sup>                        |             |            |                       |                                            |                                                   | 5       | 5            | <b>16</b> <sup>7</sup> | 160 <sup>7</sup>           | 0.2            |                              |

NOTES:

Results in **bold** denote concentrations exceeding applicable cleanup levels.

< denotes analyte not detected at or exceeding the reporting limit listed.

<sup>1</sup>In feet below ground surface.

- denotes information is unknown.

bgs = below ground surface

cDCE = cis-1,2-dichloroethene

CVOC = chlorinated volatile organic compounds

E = result exceeded calibration range of instrument and is an estimate

Farallon = Farallon Consulting, L.L.C.

i = result may be due to carryover from previous sample injection at lab

J = result is an estimate NA = not available

NS = not surveyed

PCE = tetrachloroethene PES = PES Environmental, Inc.

SES = SoundEarth Strategies, Inc.

TCE = trichloroethene tDCE = trans-1,2-dichloroethene

Rows highlighted in green indicate samples were collected during dewatering at Block 43 (11/2013 - 12/2014), Block 37 [pit] and Block 38 West (10/2019 - present), or the interim action at Block 37 (4/2017 - 12/2017)

<sup>&</sup>lt;sup>2</sup>In feet North American Vertical Datum of 1988.

<sup>&</sup>lt;sup>3</sup>Analyzed by U.S. Environmental Protection Agency Method 8260.

<sup>&</sup>lt;sup>4</sup>Actual sample depth unknown; assumed mid-point of screened interval.

<sup>&</sup>lt;sup>5</sup>Split sample collected by Farallon and PES and analyzed at different laboratories.

<sup>&</sup>lt;sup>6</sup>Washington State Model Toxics Control Act Cleanup Regulation (MTCA) Method A Cleanup Levels for Groundwater,

Table 720-1 of Section 900 of Chapter 173-340 of the Washington Administrative Code, as revised 2013, unless otherwise noted.

<sup>&</sup>lt;sup>7</sup>MTCA Cleanup Levels and Risk Calculations, Standard Method B Values for Groundwater, updated May 2019, https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Contamination-clean-up-tools/CLARC

<sup>&</sup>lt;sup>8</sup>Duplicate sample results.

## APPENDIX G MIDDOUR CONSULTING LLC GROUNDWATER CONTROL DESIGN

REMEDIAL INVESTIGATION/FOCUSED FEASIBILITY STUDY
Block 38 West Site
500 through 536 Westlake Avenue North
Seattle, Washington

# Groundwater Control Plan Block 38 Seattle, Washington

October 17, 2018

Prepared for

GLY Construction 200 112th Avenue NE, Ste. 300 Bellevue, WA 98004



14241 NE Woodinville Duvall Rd, PMB 226 Woodinville, WA 98072 (425) 864-2719



#### **TABLE OF CONTENTS**

|                                                                            | <u>Page</u> |
|----------------------------------------------------------------------------|-------------|
| INTRODUCTION                                                               | 1           |
| SITE AND PROJECT DESCRIPTION                                               | 1           |
| SOIL AND GROUNDWATER CONDITIONS                                            | 1           |
| CONCEPTUAL GROUNDWATER CONTROL APPROACH                                    | 3           |
| DEWATERING SYSTEM DESIGN CALCULATIONS  Drawdown Analysis                   | 3 4         |
| DEWATERING SYSTEM CONSTRUCTION RECOMMENDATIONS General System Requirements | 5<br>6      |
| LIMITATIONS                                                                | 7           |

#### **LIST OF TABLES**

<u>Table</u>1 Well Location and Elevation Data

#### **LIST OF FIGURES**

| <u>Figure</u> | <u>Title</u>                                  |
|---------------|-----------------------------------------------|
| 1             | Dewatering System Layout                      |
| 2             | <b>Excavation Drawdown Profiles</b>           |
| 3             | Drawdown vs. Distance Profile                 |
| 4             | <b>Dewatering System Construction Details</b> |



#### INTRODUCTION

This report presents our Groundwater Control Plan and recommendations for the Block 38 project in Seattle Washington. GLY Construction (GLY) is the general contractor for the project and we understand the shoring, and dewatering services will be performed by subcontractors. We understand that temporary construction dewatering will be required to successfully install the shoring system and complete foundation construction. Our understanding of the excavation and shoring methods is based on conversations with GLY.

#### SITE AND PROJECT DESCRIPTION

The project site is located south of Lake Union on city block 38 which is bound by Mercer Street to the north, an alley to the east, Republican Street to the south, and Westlake Avenue North to the west. Buildings previously occupied portions of the site but will be demolished prior to construction. As with most urban projects, buried utilities are located in the streets that border the project site. The existing ground surface of the site slopes from about elevation 40 feet in the south end to about elevation 31 feet in the north end.

The Block 38 project consists of a multi-story building over a four level below-grade parking structure. The excavation for the parking structure will extend about 39 to 49 feet below existing grade and will be retained using solider pile and lagging shoring methods in conjunction with four rows of tiebacks. The bottom of footing for the majority of the foundation is elevation -8.0 feet though the elevator cores will likely extend a few feet below the mass excavation subgrade.

The geotechnical and hydrogeological information for the project was provided in the October 17, 2018 Geotechnical Engineering Services report prepared by GeoEngineers. Temporary shoring plans for the excavation were prepared by Ground Support LLC. We understand the excavation is scheduled to begin in the 2018/2019 winter and continuous construction dewatering will be required until sufficient structural weight of the building is constructed.

#### **SOIL AND GROUNDWATER CONDITIONS**

The geotechnical report provides a discussion of the site soil and groundwater conditions as determined from thirteen soil borings advanced 10 to 63 feet below existing grade and several soil borings from other surrounding geotechnical investigations. The soils at the site generally consist of fill, wood

waste, peat/organic silt, recent granular and fine-grained deposits, and glacially consolidated granular soils.

The fill soils are about 5 to 20 feet thick which includes the wood waste deposits. The fill soils consist of loose to very dense silty sand that contains gravel, cobbles and boulders and the wood waste contains wood debris to wood chips. The peat and organic silt deposits are up to 8 feet thick and typically occur below the fill soils and wood waste except for discrete locations where they are absent. The recent deposits are 3 to 17 feet thick and consist of loose to dense sand with varying silt content and soft to medium stiff silt. Underlying the recent deposits, glacially consolidated soils were encountered and consisted predominately of cohesionless sand with varying amounts of gravel and silt though layers of silt were encountered in some of the soil borings. The silt content of the cohesionless sand varies across the site but general consists of silty sand (SM) and sand with silt (SP-SM) to the explored depths. The glacially consolidated silt layers were not encountered in all of the soil borings as such the layers are discontinuous but typically were encountered between elevation 0 and -15 feet.

Groundwater levels measured in observation wells with screen intervals constructed in the recent deposits indicate the groundwater elevation was about 18 to 19 feet in August 2018 whereas observation wells with screen intervals constructed in the glacially consolidated soils indicate the groundwater elevation was 16 feet in August 2018. Based on the soils encountered in the soil borings, the deeper glacially consolidated soils may be partially confined by the overlying fine-grained soils and/or the higher water level in the fine-grained soils may be due to a greater capillary fringe. GeoEngineers estimates the static water level in the area to be about elevation 20 feet prior to significant construction dewatering in the South Lake Union area. GeoEngineers recommends a design groundwater elevation of 20 feet should be used for design of the permanent below-grade walls and mat foundations.

The geotechnical investigation did not perform any on site testing to characterize the hydraulic properties of the aquifer underlying the site nor were any gradation tests performed to estimate the hydraulic conductivity. Middour Consulting performed a pumping test for the Block 44 project which was located on the west side of Westlake Avenue North. The pumping test was performed in dewatering well located on the south side of the site on the sidewalk along Republican Street; the dewatering well was screened in the glacially consolidated granular soils. Analysis of the drawdown data using the Jacobs Method estimates the transmissivity to be 2.1 ft²/min and 1.6x10<sup>-5</sup> for storativity which is unitless. The storativity value derived from the pumping test is reflective of a confined aquifer response. Analysis of the recovery data using the Theis Recovery Method estimates the transmissivity to be 1.8 ft²/min.



#### CONCEPTUAL GROUNDWATER CONTROL APPROACH

As described in the geotechnical report and briefly summarized above, the proposed excavation will encounter saturated soils at about elevation 18 to 19 feet. The majority of the saturated soils above elevation 0 feet on the east side of the site and above elevation 5 feet on the west side are fine-grained silt/clay, peat, organic silt, and wood waste. These soil types do not readily yield groundwater and generally the cost associated with implementing active groundwater control measures doesn't justify the minimal decrease in moisture content; the "dewatered" soils which are nearly saturated still require additional costs to excavate and haul off site. Unless the project team would like to explore groundwater control options for these soils, the GWCP assumes these soils will be excavated at the natural moisture content though some drainage may occur by dewatering the aquifer beneath these soils.

Based on the relatively coarse nature and thickness of the glacially consolidated aquifer as well as the successful performance of several dewatering systems in the area, groundwater control can be accomplished by a system of large diameter dewatering wells installed around the perimeter of the excavation. However, some of the soil borings encountered silt layers between elevation 0 and -15 feet which will remain saturated and/or perch groundwater above these soils. If the fine-grained soil layers are laterally continuous or encompass a significant area, additional wells and/or sump pumping may be required to control the perched groundwater if the layers are laterally extensive and exist above subgrade.

#### **DEWATERING SYSTEM DESIGN CALCULATIONS**

Dewatering system design calculations were performed to estimate potential discharge rates, the number of wells, and the spacing between wells required to lower the groundwater level two feet below subgrade. Dewatering calculations were performed using a computer spreadsheet model that accounts for well interference among multiple pumping wells and aquifer boundary conditions using the principle of superposition and image well theory. The spreadsheet model calculates the net drawdown from all pumping and image wells through a predetermined section of the aquifer by solving the Theis non-equilibrium equation for drawdown using the radius associated with each pumping and image well.

Soil and groundwater parameters used in the dewatering design calculations were derived from the project geotechnical report or were estimated from previous experience if not contained in the geotechnical report and are listed below:

- The aguifer is unconfined but locally it may be semi-confined to confined.
- Groundwater elevation is 16 feet for the glacially consolidated aquifer
- Aquifer thickness 40 feet
- Aquifer Transmissivity range 0.5 to 2.0 ft<sup>2</sup>/min
- Target dewatering elevation -10.0 feet; 2 feet below subgrade
- Specific yield is 0.15 (unitless)

Based on the transmissivity range, the spacing between wells could be up to 75 feet on-center but due to the presence of silt layers below elevation 0 feet, the well spacing was reduced to about 60 feet on-center. Design calculations using the soil and groundwater parameters listed above indicate eighteen dewatering wells installed at the locations shown on Figure 1 will lower groundwater levels down to the target dewatering elevation for the main excavation though additional groundwater control measures may be required to dewater perched water if the silt layers above subgrade are laterally extensive.

Based on the average transmissivity value of 1.5 ft<sup>2</sup>/min, the total discharge from the system of wells is estimated to be about 800 gpm after one week of operation and 540 gpm after one month of operation. The drawdown or cone of depression derived from the spreadsheet model is shown on Figure 2 which displays drawdown profiles parallel and perpendicular to the excavation.

#### **DRAWDOWN ANALYSIS**

Operation of the dewatering system will lower the piezometric level of the glacially consolidated aquifer and the drawdown may extend beneath subsurface and above ground structures and/or mobilize existing groundwater contaminate plumes. The drawdown profile shown on Figure 3 shows the lateral extent of drawdown projected from the west side of the excavation after one month of operation, assuming uniform aquifer conditions and properties. The spreadsheet model assumes homogeneous and isotropic subsurface conditions as such, the actual drawdown cone may deviate from our estimate depending on the actual subsurface properties. The cone of depression will continue to expand after one month of operation however, predicting the distance and amount of drawdown becomes increasingly difficult as the cone of depression encounters undocumented soils and aquifer conditions. Middour Consulting has not assessed the potential for dewatering induced settlement or mobilization of groundwater contaminate plumes nor has Middour Consulting implemented any engineering controls to

BLOCK 38 GWCP | Seattle, WA Project No. 18046002.01



limit the amount of drawdown. Middour Consulting's scope of work did not include these evaluations and Middour Consulting assumes no liability for impacts due to lowering of groundwater levels. We recommend geotechnical engineering and environmental disciplines review this plan to evaluate potential adverse effects due to lowering of groundwater levels.

#### **DEWATERING SYSTEM CONSTRUCTION RECOMMENDATIONS**

We recommend the dewatering/shoring subcontractor and/or GLY monitor the soldier pile installation to determine the presence/absence of silt layers elevation 0 and -8 feet and report this information to Middour Consulting. Should significant areas encounter a silt layer at a specific elevation, a vacuum wellpoint system or sump pumping will be required to remove perched groundwater that seeps through the shoring wall.

Dewatering Wells: Boreholes should be drilled using bucket auger drilling methods and should be 30- to 36-inch-diameter. *Drilling additives and/or slurry to maintain borehole wall stability shall not be used; maintaining a water head and/or casing the borehole are appropriate methods.* Well casings and screen should be 12-inch diameter Schedule 40 PVC. Based on the visual soil descriptions from the soil borings and previous experience in the area, well screens should consist of 30-slot screen size. For well screen lengths and bottom completion elevations refer to Table 1 and well construction details are provided on Figure 4.

We recommend that Middour Consulting monitor the initial drilling, well construction, and well development to verify site conditions. Subsequent wells should be logged and sampled by the driller. GLY or the dewatering subcontractor should notify Middour Consulting if subsurface conditions differ from those described in this report and/or those observed during drilling the first dewatering well. General locations of the dewatering wells are provided on Figure 1; more detailed locations are provided in Table 1.

**Sand Pack:** The available data indicate a dewatering well sand pack consisting of Cal Portland 8700 or equivalent should optimize retention of the formation and well yield. The gradation of the proposed sand pack is listed on the table in Figure 4. Well and seal construction should be consistent with WAC 173-160.

**Development:** Development is important to improve the hydraulic connection with the aquifer and provide a clean dewatering effluent with time. We recommend that each dewatering well be developed immediately upon completion. Development methods should utilize flow-surging and over-

BLOCK 38 GWCP | Seattle, WA Project No. 18046002.01 pumping until the discharge requirement is achieved. Development data should be documented to demonstrate that additional development would produce limited improvement.

**Pumps:** Pumps that are capable of operating in dry well conditions should be provided in each well. Initially pumps should be capable of providing up to 100 gpm under 70 feet of total dynamic head (TDH).

**Header and Conveyance Piping:** The main header and conveyance piping should be constructed using 12-inch-diameter PVC or HDPE pipe. The piping configuration should be located on the behind the dewater wells (i.e. away from the excavation) to minimize the potential for damage during excavation.

#### **GENERAL SYSTEM REQUIREMENTS**

**Power Supply:** A continuous main power supply from portable generators or line power is required for all dewatering systems. We recommend that a backup power source is available on site in the event of a power failure from the main power supply.

**Observation Wells:** GeoEngineers will provide the number and locations of the observation wells. We recommend the boreholes be drilled using air rotary or rotary wash drilling methods and should be a minimum 8-inch-diameter. Well casings and screen should be 2-inch diameter flush threaded Schedule 40 PVC. The well screen should be 20-slot with the screen interval from elevation -10 to -20 feet. The sand pack should consist of Cal Portland 8720 or equivalent.

System Performance and Water Level Monitoring: We recommend measuring water levels in the observation wells daily for a week prior to operating the dewatering system to establish baseline water levels. Groundwater levels in the dewatering wells and observation wells should be measured daily for the first week of operation and reported to Middour Consulting to assess the system performance. Drop tubes in the dewatering wells may be required to obtain accurate water levels if there is water cascading down the well screen.

**Operation:** The dewatering system should operate a minimum of two weeks prior to excavation below the static groundwater level. Visual observations of the discharge should be made several times a day during excavation, to monitor for increased turbidity levels. Middour Consulting should be contacted if the performance of the dewatering system changes significantly. This may include pumping rates that differ significantly from rates presented in this report, the occurrence of a sudden change in pumping rates or groundwater levels, or the occurrence of turbidity levels that exceed discharge limits.

BLOCK 38 GWCP | Seattle, WA Project No. 18046002.01



The dewatering system should be operated continuously until sufficient structural weight, as determined by the resident structural engineer, is constructed to counteract groundwater lateral and uplift forces.

**Discharge Water Quality:** Dewatering discharge will be routed to an onsite water quality treatment system; refer to the WaterTectonics submittal for more details.

**Well Decommissioning:** The dewatering wells should be decommissioned in accordance with WAC 173-160 upon completion of dewatering activities.

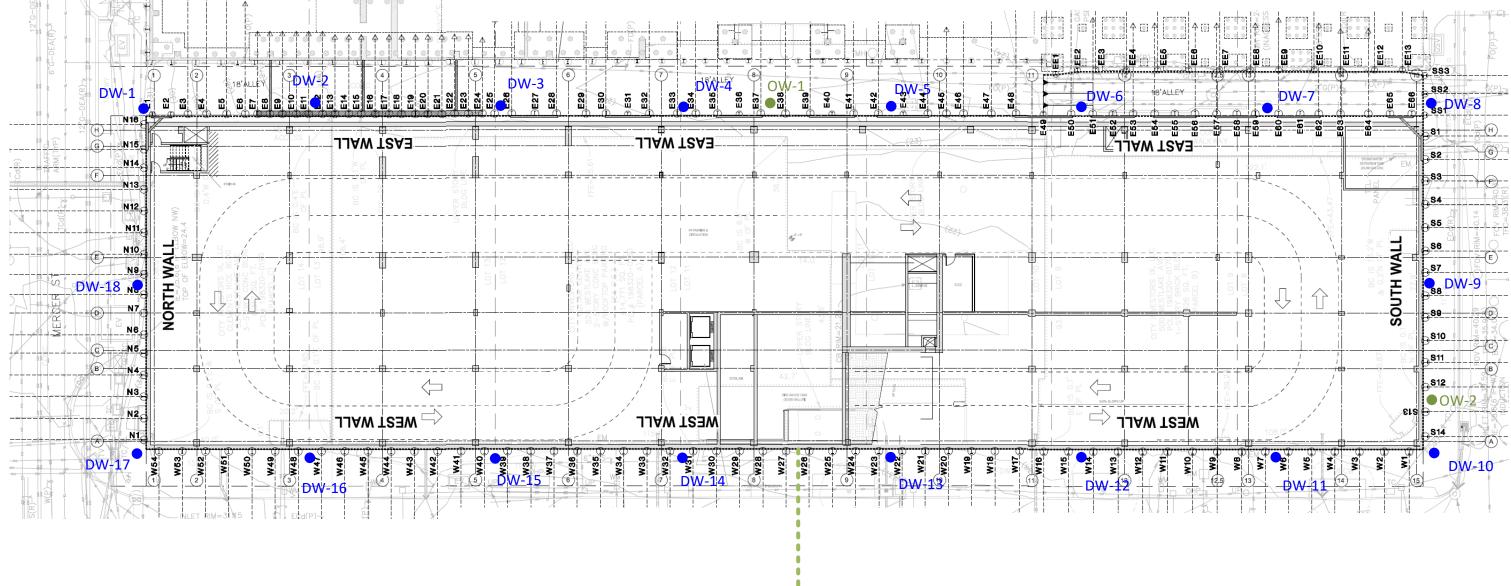
#### **LIMITATIONS**

This Groundwater Control Plan has been prepared for the exclusive use of GLY Construction for their proposed work on the Block 38 project in Seattle Washington. No other party is entitled to rely on the information, conclusions, and recommendations included in this document without the express written consent of Middour Consulting LLC. Further, the reuse of information, conclusions, and recommendations provided herein for extensions of the project or for any other project, without review and authorization by Middour Consulting, shall be at the user's sole risk. Middour Consulting warrants that within the limitations of scope, schedule, and budget, our services have been provided in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions as this project. We make no other warranty, either express or implied.

MIDDOUR CONSULTING LLC

Mh son

Robert O. Middour, L.HG. Principal Hydrogeologist


Hydrogeologist 819

ROBERT O. MIDDOUR

| Well ID | Approximate Pile Location | Ground Surface<br>Elevation (ft) | Bottom Well<br>Elevation (ft) | Well Depth (ft) | Screen<br>Length (ft) |
|---------|---------------------------|----------------------------------|-------------------------------|-----------------|-----------------------|
| DW-1    | N16 / E1                  | 31                               | -30                           | 61              | 40                    |
| DW-2    | E11 / E12                 | 28                               | -30                           | 58              | 40                    |
| DW-3    | E25 / E26                 | 25                               | -30                           | 55              | 40                    |
| DW-4    | E33 / E34                 | 25                               | -30                           | 55              | 40                    |
| DW-5    | E42 / E43                 | 25                               | -30                           | 55              | 40                    |
| DW-6    | E50 / E51                 | 25                               | -30                           | 55              | 40                    |
| DW-7    | E59 / E60                 | 25                               | -30                           | 55              | 40                    |
| DW-8    | SS1/SS2                   | 41                               | -30                           | 71              | 40                    |
| DW-9    | S7 / S8                   | 41                               | -30                           | 71              | 40                    |
| DW-10   | S14 / W1                  | 40                               | -30                           | 70              | 40                    |
| DW-11   | W6/W7                     | 40                               | -30                           | 70              | 40                    |
| DW-12   | W14 / W15                 | 39                               | -30                           | 69              | 40                    |
| DW-13   | W22 / W23                 | 38                               | -30                           | 68              | 40                    |
| DW-14   | W31 / W32                 | 37                               | -30                           | 67              | 40                    |
| DW-15   | W39 / W40                 | 36                               | -30                           | 66              | 40                    |
| DW-16   | W47 / W48                 | 34                               | -30                           | 64              | 40                    |
| DW-17   | W54 / N1                  | 32                               | -30                           | 62              | 40                    |
| DW-18   | N8/N9                     | 31                               | -30                           | 61              | 40                    |



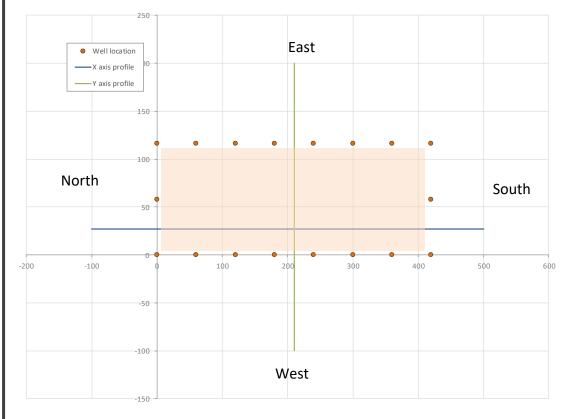




See Figure 3
For Drawdown Profile

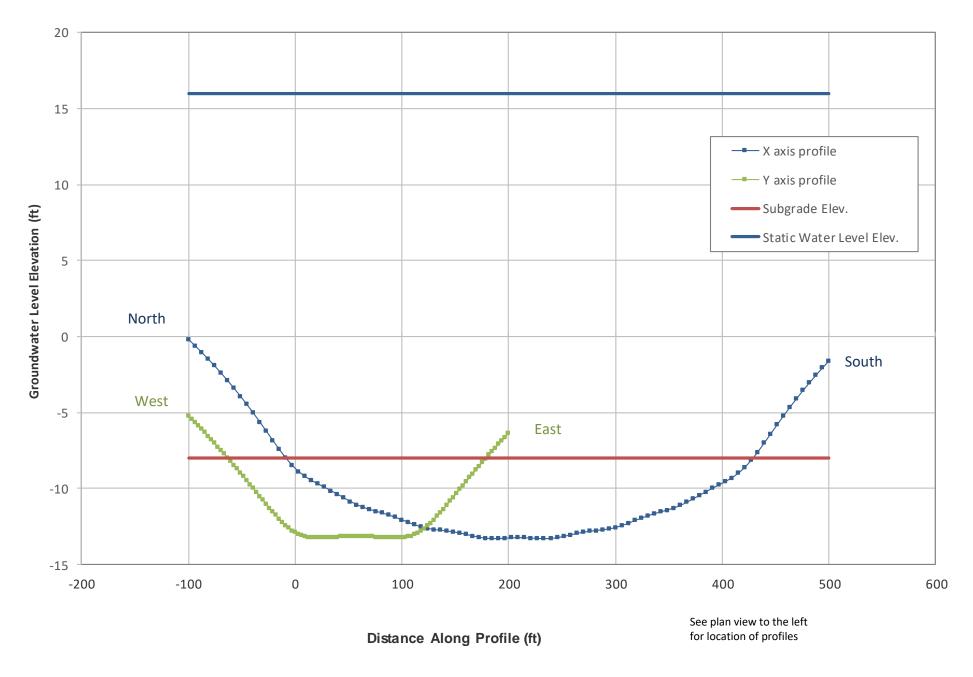
#### **NOTES:**

- 1) Locations of the dewatering wells are approximate, see Table 1 for exact locations (i.e. pile numbers). Locations can be moved to avoid conflicts with construction methods and/or utilities; new locations should be reviewed by Middour Consulting.
- 2) GeoEngineers to determine number and location of observation wells.
- 3) See Figure 4 for dewatering well construction details.

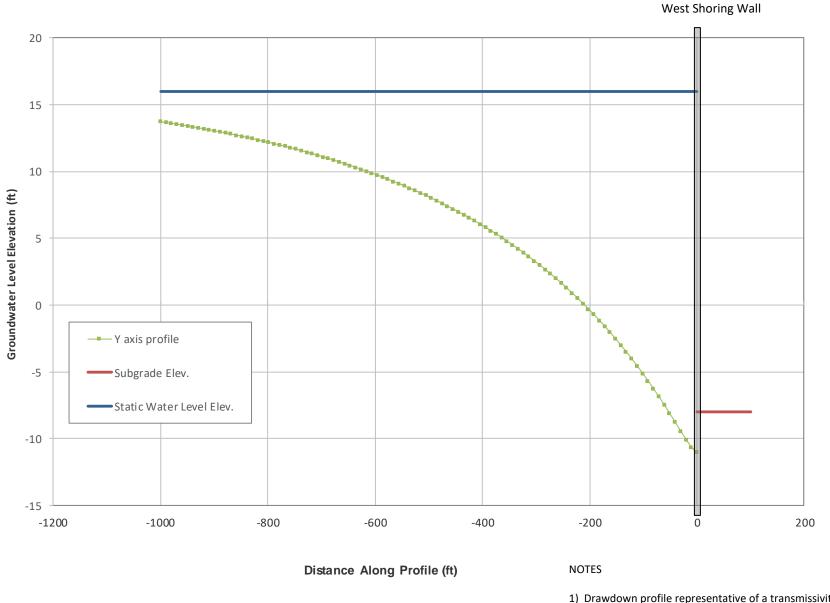


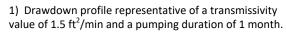

DEWATERING WELL LOCATIONS




## FIGURE 1 Dewatering System Layout Plan

### Plan View

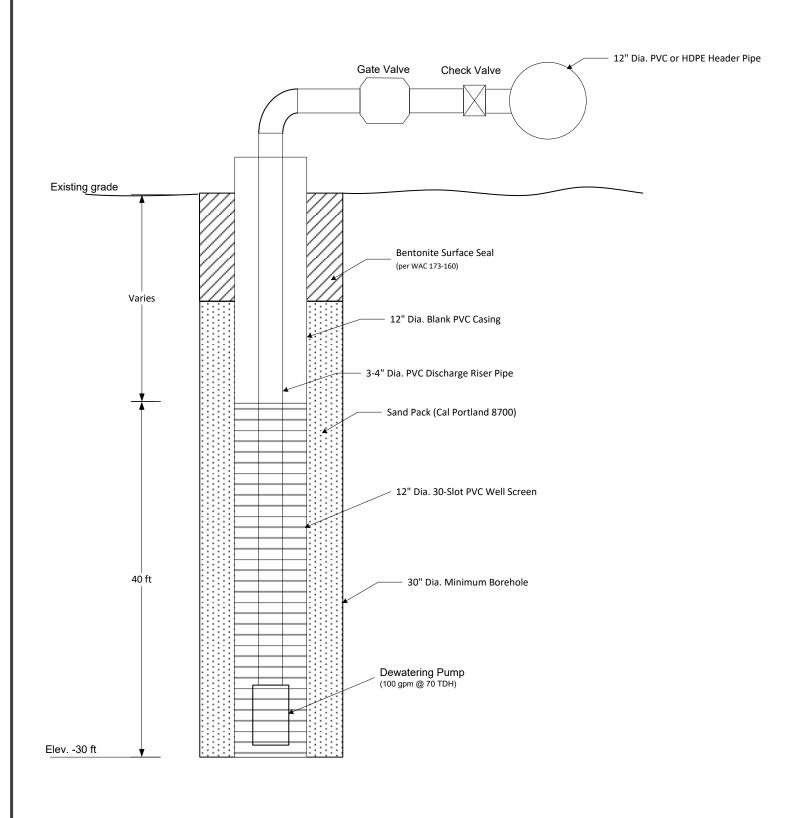




#### NOTES

1) Drawdown profiles representative of a transmissivity value of 1.5 ft<sup>2</sup>/min and a pumping duration of 2 weeks.












### FIGURE 3 Drawdown vs Distance Profile

BLOCK 38 GWCP | Seattle, WA Project No. 18046002.01 | October 16, 2018



Not to Scale

#### NOTES:

Dewatering Wells: Boreholes should be drilled using bucket auger drilling methods and should be 30- to 36-inch-diameter. Drilling additives and/or slurry to maintain borehole wall stability shall not be used; maintaining a water head and/or casing the borehole are appropriate methods. Well casings and screen should be 12-inch diameter Schedule 40 PVC. Based on the visual soil descriptions from the soil borings and previous experience in the area, well screens should consist of 30-slot screen size. For well screen lengths and bottom completion elevations refer to Table 1. We recommend that Middour Consulting monitor the initial drilling, well construction, and well development to verify site conditions. Subsequent wells should be logged and sampled by the driller. GLY or the dewatering subcontractor should notify Middour Consulting if subsurface conditions differ from those described in this report and/or those observed during drilling the first dewatering well. General locations of the dewatering wells are provided on Figure 1; more detailed locations are provided in Table 1.

Sand Pack: The available data indicate a dewatering well gravel pack consisting of Cal Portland 8700 or equivalent shall optimize retention of the formation and well yield. The gradation of the proposed gravel pack is listed on the table below. Well and seal construction shall be consistent with WAC 173-160.

**Development:** Development is important to improve the hydraulic connection with the aquifer and provide a clean dewatering effluent with time. Each dewatering well shall be developed immediately upon completion. Development methods shall utilize flow-surging and over-pumping until the discharge requirement is achieved. Development data shall be documented to demonstrate that additional development would produce limited improvement.

**Pumps:** Pumps that are capable of operating in dry well conditions shall be provided in each well. Initially pumps shall be capable of providing up to 100 gpm under 70 feet of total dynamic head (TDH).

Header and Conveyance Piping: The main header and conveyance piping shall be constructed using 12-inch-diameter PVC or HDPE pipe. The piping configuration shall be located on the behind the dewater wells (i.e. away from the excavation) to minimize the potential for damage during excavation.

**Power Supply:** A continuous main power supply from portable generators or line power is required for all dewatering systems. We recommend that a backup power source is available on site in the event of a power failure from the main power supply.

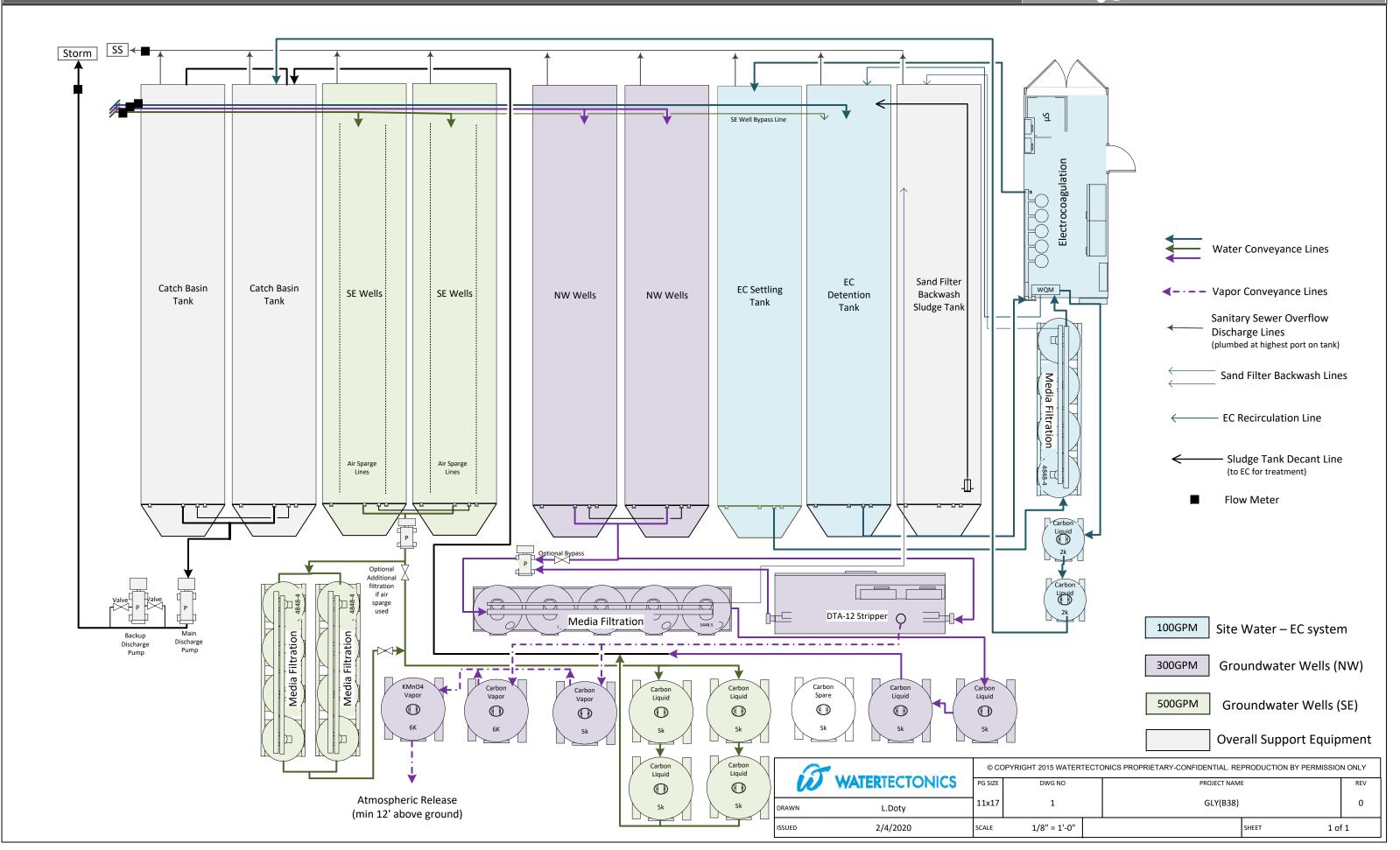
**Observation Wells:** GeoEngineers will provide the number and locations of the observation wells. We recommend the boreholes be drilled using air rotary or rotary wash drilling methods and should be a minimum 8-inch-diameter. Well casings and screen should be 2-inch diameter flush threaded Schedule 40 PVC. The well screen should be 20-slot with the screen interval from elevation -10 to -20 feet. The sand pack should consist of Cal Portland 8720 or equivalent.

System Performance and Water Level Monitoring: We recommend measuring water levels in the observation wells daily for a week prior to operating the dewatering system to establish baseline water levels. Groundwater levels in the dewatering wells and observation wells should be measured daily for the first week of operation and reported to Middour Consulting to assess the system performance. Drop tubes in the dewatering wells may be required to obtain accurate water levels if there is water cascading down the well screen.

**Operation:** The dewatering system should operate a minimum of two weeks prior to excavation below the static groundwater level. Visual observations of the discharge should be made several times a day during excavation, to monitor for increased turbidity levels. Middour Consulting should be contacted if the performance of the dewatering system changes significantly. This may include pumping rates that differ significantly from rates presented in this report, the occurrence of a sudden change in pumping rates or groundwater levels, or the occurrence of turbidity levels that exceed discharge limits. The dewatering system should be operated continuously until sufficient structural weight, as determined by the resident structural engineer, is constructed to counteract groundwater lateral and uplift forces.

Well Decommissioning: The dewatering wells should be decommissioned in accordance with WAC 173-160 upon completion of dewatering activities.

#### **Sand Pack Gradations**


| Sive Size | Gra   | ain Size      | Cal Portland (8700) |            | Cal Portland (8720) |            |  |
|-----------|-------|---------------|---------------------|------------|---------------------|------------|--|
| No.       | (mm)  | (thousandths) | % Finer             | % Retained | % Finer             | % Retained |  |
|           |       |               |                     |            |                     |            |  |
| 3/8       | 9.51  | 374.4         | 100                 | 0          | 100                 | 0          |  |
| No. 4     | 4.75  | 187.0         | 65                  | 35         | 99                  | 1          |  |
| No. 8     | 2.38  | 93.7          | 4                   | 96         | 79                  | 21         |  |
| No. 16    | 1.19  | 46.9          | 3                   | 97         | 49                  | 51         |  |
| No. 30    | 0.595 | 23.4          | 1                   | 99         | 23                  | 77         |  |
| No. 50    | 0.297 | 11.7          | 0.6                 | 99.4       | 5                   | 95         |  |
| No. 100   | 0.149 | 5.9           | 0.4                 | 99.6       | 0.8                 | 99.2       |  |
| No. 200   | 0.074 | 2.9           | 0.2                 | 99.8       | 0.3                 | 99.7       |  |
|           |       |               |                     |            |                     |            |  |



## APPENDIX H WATERTECTONICS WATER TREATMENT SYSTEM DESIGN

REMEDIAL INVESTIGATION/FOCUSED FEASIBILITY STUDY
Block 38 West Site
500 through 536 Westlake Avenue North
Seattle, Washington





### APPENDIX I USTO1 AND USTO2 DECOMMISSIONING RECORDS

REMEDIAL INVESTIGATION/FOCUSED FEASIBILITY STUDY
Block 38 West Site
500 through 536 Westlake Avenue North
Seattle, Washington

#### **Construction Group International, LLC**

19407 144th Avenue NE, Building D Woodinville, WA 98072



Environmental \* Demolition \* Waterproofing \* Coatings

Washington License #CONSTIGI953NA

#### **Billing Summary**

| 18 * (425)487-2619                           |                                                                                     |                      |                                                                                                                                                                                                  |
|----------------------------------------------|-------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vulcan                                       | Date: 3                                                                             | 3/3/2020             |                                                                                                                                                                                                  |
| Raymond Burdick                              | Project                                                                             | : Name:              | Block 38 Development UST Removal, Seattle, WA                                                                                                                                                    |
| 505 -5th Ave S, Suite 900, Seattle, Wa 98104 | Job #:                                                                              | U20                  | 0065                                                                                                                                                                                             |
| 206-342-2451                                 | P.O.#                                                                               | 101                  | 20-00044                                                                                                                                                                                         |
| 206-342-3000                                 | Other #                                                                             | :                    |                                                                                                                                                                                                  |
|                                              | Vulcan  Raymond Burdick  505 -5th Ave S, Suite 900, Seattle, Wa 98104  206-342-2451 | Vulcan         Date: | Vulcan         Date: 3/3/2020           Raymond Burdick         Project Name:           505 -5th Ave S, Suite 900, Seattle, Wa 98104         Job #: U20           206-342-2451         P.O.# 101 |

We hereby submit the following itemized cost breakdown and description of proposed work:

Below are the itemized T&M costs for the Underground Storage Tank(s) remediation & removal on the above-mentioned project.

Removed (2) 1200-gal & 2500-gal bunker oil tanks, approximately10' in depth. General Contractor on site to provide excavator for tank removal. Locates, soil sampling, and reporting to regulatory agencies (DOE).

| Item or Function                                                                                                                                | Qty  | Rate | Labor    | Material    | Equipment | Disposal | Total       |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------|------|----------|-------------|-----------|----------|-------------|
| Mobilization                                                                                                                                    | 2    | 500  | 1,000.00 |             |           |          | \$1,000.00  |
| UST Labor - Licensed Decommissioner                                                                                                             | 50   | 125  | 6,250.00 |             |           |          | \$6,250.00  |
| Project Manager                                                                                                                                 | 2    | 95   | 190.00   |             |           |          | \$190.00    |
| Excavator - Provide by GC on site.                                                                                                              |      |      |          |             |           |          |             |
| Small tools (fire extinguisher, no smoking signs, visqueen, chop                                                                                |      |      |          |             |           |          |             |
| saw, etc)                                                                                                                                       | 2    | 600  |          | 1,200.00    |           |          | \$1,200.00  |
| Tank Pump and Rinse, Vac Truck & Operator                                                                                                       | 10   | 140  |          |             | 1,400.00  |          | \$1,400.00  |
| Wash Water Disposal                                                                                                                             | 3600 | 0.65 |          |             |           | 2,340.00 | \$2,340.00  |
| Seattle Fire Dept Permit                                                                                                                        | 2    | 414  |          | 828.00      |           |          | \$828.00    |
| Marine Chemist, Gas Tank Inert                                                                                                                  | 2    | 1545 | 3,090.00 |             |           |          | \$3,090.00  |
| UST Haul Away                                                                                                                                   | 2    | 250  | 1,250.00 |             | 500.00    |          | \$1,750.00  |
| Tank Destruction                                                                                                                                | 2    | 695  |          |             |           | 1,390.00 | \$1,390.00  |
| TOTALS                                                                                                                                          |      |      |          |             |           |          | \$19,438.00 |
|                                                                                                                                                 | -    |      |          | Total Cos   | t         | \$19,4   | 38.00       |
| **Note: This Quotation Response is valid for thirty (30) days. Payr.<br>net thirty (30) days from date of invoice, with interest accruing at 1. |      | - 1  | Overhe   | ad/Profit I | ncluded   | \$0      | .00         |

net thirty (30) days from date of invoice, with interest accruing at 1.5% per month or all outstanding balances. All costs associated with debt collection shall be born by

|   |                          | 7.10,100.00 |
|---|--------------------------|-------------|
|   | Total Cost               | \$19,438.00 |
|   | Overhead/Profit Included | \$0.00      |
| n | Sales Tax 10.1%          | \$1,963.24  |
|   | TOTAL AMOUNT             | \$21,401.24 |
| _ |                          |             |

| Mark A. Marcell                                         |                        |  |
|---------------------------------------------------------|------------------------|--|
| Mark A. Marcell - Construction Group International, LLC | Authorized Signature   |  |
| Mark A. Marcell - President Printed Name and Title      | Printed Name and Title |  |
|                                                         | Date                   |  |

George D. Blair - Northwest Marine Chemist, Inc. P.O. Box 7084, Tacoma, WA 98417

Office: 253-752-0149 Fax: Email: gbcmc637@gmail.com



Serial

637-01078 Page 1 of 1

|                       | - Coto i enomied                  | Time Survey Completed       |
|-----------------------|-----------------------------------|-----------------------------|
| Last Three 3 Loadings | Tests Performed                   |                             |
| HFO as Fuel           | O <sub>2</sub> , LEL, Visual, VOC | 10:46                       |
| HEO First             | Type of Vessel                    | Specific Location of Vessel |
| Vessel                | Type of Vessel                    | 500 N. Westlake             |
| Tank Farm             | Underground Storage Tank          | 500 N 1845-44-1-5           |
|                       | Vessel Owner Agent                | Date                        |
| Survey Requested by   |                                   | Jan 27, 2020                |
| ECI                   | GLY/CGI                           | Lui en acco                 |

Inspected Spaces:

Group 1. 1-1800 Gal. UST

**Safety Designations:** 

ATMOSPHERE SAFE FOR WORKERS SAFE FOR LIMITED HOT WORK

**LIMITATIONS:** 

Specific Location: At job site.

Hot Work Type: This tank has been pressure washed free of any flammable residues, and is safe for excavation and transportation. Tests of residues show no ignition when exposed to

propane torch.

**Test Results** 

% O,

% LEL

VOC < 1 ppm

Inspected spaces group 1

20.8% <1%

**Limits of Detection** 

0.1 ppm VOC

In the event of physical or atmospheric changes affecting the STANDARD SAFETY DESIGNATIONS assigned to any of the above spaces, this certificate is volded; spaces not listed on the Certificate are not to be entered unless authorized on another Certificate and/or maintained in accordance with OSHA 29 CFR 1915; or if in any doubt, immediately stop all work and contact the undersigned Marine Chemist. Unless otherwise stated on the Certificate, all spaces and affected adjacent spaces are to be reinspected daily or more often as necessary by the competent person or the authority having jurisdiction as applicable in support of work prior to entry or recommencement of work.

CUALIFICATIONS: Transfer of ballast, carge, fuel or manipulation of valves or closure equipment tending to after conditions in pipelines, tanks, or compartments subject to gas accumulation, unless specifically otherwise specifically described. Figure 3 in the control of the vessel from its specific location volds the Certificate unless shifting of the vessel within the facility has been specifically authorized on this certificate. STANDARD SAFETY DESIGNATION with the specific location volds the Certificate unless shifting of the vessel within the facility has been specifically authorized on his certificate. ATMOSPTICES SWEETOW WORKERS: The Certificate is supported by a specifically authorized on his certificate. Concentration or insumable materials is below 10 percent of years or designated (a) the oxygen content of the strongener shall be at least 16.5 percent and not greater than 22 percent by volume; (b) the within permissible concentrations at the time of the inspection of the inspection of the inspection of the inspection. NOT SAFE FOR WORKERS: In the compartment or space so designated, antry shall not be permitted.

EVITED WORKERS: In the compartment or space so designated, entry for work is permitted only if conditions of proper protective equipment, or clothing, or time, or all of the storementioned, as appropriate, are as appearance.

NOT SAFE FOR WORKERS: In the compartment or space so designated, entry shall not be permitted.

ENTER WITH RESTINCTIONS: In the compartment or space so designated, entry for work is permitted only if conditions of proper protective equipment, or clothing, or time, or all of the aforementioned, as SAFE FOR HOT WORK: In the compartment or space so designated (a) the oxygen content of the atmosphere is not greater than 22 percent by volume; (b) the concentration of fammable materials in the higher concentration than permitted by (a) or (b); (d) all adjacent spaces, containing or having contained be or combustible materials and be sufficiently cleaned of residues, scale, or preservative designated or combustible materials and be sufficiently cleaned of residues, scale, or preservative designated or combustible materials and be sufficiently cleaned of residues, scale, or preservative designated or combustible materials and be sufficiently cleaned of residues, scale, or preservative designated or compartment or space so designated (a) portions of the space meet the requirements Safe for Hot Work and Partial Cleaning, as applicable, or (b) the space is and the nature or type of how work shall be limitation crestricted.

NOT SAFE FOR HOT WORK: In the compartment or space so designated, hot is not permitted.

CHEMISTS ENDORSEMENT. This is to certify that I have personally determined that all spaces in the foregoing list are in accordance with NFPA 306 Control of Gas Hazards on Vessels and have found the condition of each to be in accordance with its assigned designation.

"The undersigned acknowledges receipt of this Certificate under NFPA 306 and understands conditions and limitations under which it was issued, and the requirements for maintaining its validity."

This Certificate is based on conditions existing at the time the inspection herein set forth was completed and is issued subject to compliance with all qualifications and instructions.

Authorized Representative

**ECI** Company

Jan 27, 2020 Date

Signed Marine Chemist

637 CMC No.

January 27, 2020 ECI Project No.: 0520-26

#### **Underground Storage Tank Decommissioning Certification**

This is a statement of Underground Storage Tank Decommissioning provided by EcoCon, Inc. (ECI). ECI states this decommissioning has occurred under the supervision of an ICC Certified UST Decommissioner following the local and state rules and regulations as defined by the Uniform Fire Code (UFC) and Washington Administrative Code (WAC). Following Northwest Marine Chemist and Seattle Fire Department certification, the UST was excavated and transported off site to be cut up then disposed at a local metal recycling company.

**Project Client:** 

**Construction Group International** 

Project Name:

Block 38 - Bunker Oil UST #1

Project Address:

500 Westlake Ave. N., Seattle, WA

Type of Decommissioning:

Excavation and removal from sub-surface

**UST Installation Date:** 

Unknown (pre 1980)

**UST Decommissioning Date:** 

1/27/2020

Permit Issuance Date:

1/27/2020

UST #:

Tank #1

**UST(s)** Dimensions:

4.0 x 12 feet (Approximate) - 1 UST

UST(s) Total Gallons:

1200 Gallons (Approximate)

**UST(s)** Construction:

Steel - Single Wall Construction

**Certified UST Decommissioner:** 

**Brad Reilly** 

Certification Number:

8289423 - Exp: 2/14/2020

Brad N. Reilly

January 28, 2020

Date

#### Your Seattle Fire Department



### APPLICATION FOR TEMPORARY PERMIT

| Code 79 |
|---------|
|---------|

### Commercial Tank Removal/Decommissioning

| Permit Fee: TO BE COMPLETED BY PERMIT APPLICANT                                                                                                            | Tomb/s) www.st.b.                                                                                             | Date Issued: <u>1/23/2020</u>                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| BUSINESS NAME: ECI Environment                                                                                                                             | tal                                                                                                           | om site on the same day as permit is issued!             |
| MAILING ADDRESS: P.O. Box 153                                                                                                                              |                                                                                                               | SUITE:                                                   |
| CITY: Fox Island                                                                                                                                           | STATE: WA                                                                                                     | ZIP: 98333                                               |
| JOBSITE ADDRESS: 500 Westlake Av                                                                                                                           | venue                                                                                                         |                                                          |
| CONTACT PERSON: Brad Reilly                                                                                                                                | PHONE NUMBER:                                                                                                 | (206)779-0050                                            |
| Number of Tank(s):1 Tank Size(s                                                                                                                            |                                                                                                               | ☐ Aboveground tank                                       |
| Product(s) Previously Contained:B                                                                                                                          | unker Oil                                                                                                     | Underground tank                                         |
| Removal (Marine Chemist inspection and certi                                                                                                               | ficate required for all tanks regard                                                                          | less of size or contents)                                |
| Abandonment-in-Place (Marine Chemist certifiand/or unknowns)                                                                                               |                                                                                                               |                                                          |
| Hot work being conducted:                                                                                                                                  | Yes (If yes, a separ                                                                                          | rate hot work permit is required)                        |
| Permit applications may be submitted in person weekda                                                                                                      | ays from 8:00 a.m. to 4:30 p.m., or r                                                                         | nailed to                                                |
| 220 Third Ave S, 2 <sup>nd</sup> Floor Tel: (200                                                                                                           | with a Visa or Master Card, email th<br>ALL US TO CONFIRM RECEIPT AND (<br>5) 386-1450<br>Dermits@seattle.gov | is completed application to us,  MAKE PAYMENT.           |
| Call 206-386-1450, at least 24 hours p<br>TANKS MAY BE REMOVED/DECOM<br>NO HOT WORK IS ALLOWED ON A TANK S                                                 | MISSIONED ONLY AFTER FIRE                                                                                     | E DEPARTMENT INSPECTION                                  |
| Permission is hereby granted to remove or decommissical noted special conditions, and all applicable provide PERMIT IS NULL AND VOID IF PERMIT CONDITIONS. |                                                                                                               |                                                          |
| I understand the conditions of this permit and will end I acknowledge that I received an inspection by a Seattle                                           | nsure all tank removal/decommiss<br>Fire Department inspector-today.                                          | ioning operations are conducted accordingly.             |
| Brad Reilly                                                                                                                                                |                                                                                                               | UST Decommissioner                                       |
| Print Name Signature                                                                                                                                       | (                                                                                                             | Title                                                    |
| Special permit conditions: Tank removal/decommission                                                                                                       | ning must be performed, or directly super                                                                     | rvised, by an ICC certified individual (WAC 173-360-600) |
| FMO USE:                                                                                                                                                   | PPROVED BY:                                                                                                   | 7                                                        |
| 61 137                                                                                                                                                     | spector:                                                                                                      | SED ID#                                                  |
| Receipt No.:                                                                                                                                               | ame of Marine Chemist                                                                                         | Certificate #                                            |
| Application ID#:D                                                                                                                                          | ate:                                                                                                          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                  |
| (01/19)                                                                                                                                                    |                                                                                                               |                                                          |

#### COMMERCIAL TANK REMOVAL/DECOMMISSIONING PERMIT CONDITIONS

- 1. Two (2) portable fire extinguishers each having a minimum rating of 40 BC shall be on site within 50 feet of the operation. Fire extinguishers shall be inspected, approved and certified annually.
- Rope or ribbon barricades located at least 10 feet from the tank shall surround every outdoor storage tank removal or decommissioning operation or the operation shall be enclosed in a fenced yard.
- 3. "No Smoking" signs shall be posted in readily visible locations.
- 4. No hot work is allowed on a tank system prior to issuance of this permit and the tank is certified "Safe for Hot Work" by a Certified Marine Chemist. Hot work means any activities involving riveting, welding, burning, brazing, soldering, heating, chopping, grinding, ripping, drilling, cutting with a chop saw or "Sawzall", abrasive blasting, use of powder-actuated tools or similar spark-producing operations, crushing or mechanically shearing to facilitate opening for cleaning, disposal, scrapping for recycling purposes.
- 5. A separate temporary Seattle Fire Department permit (Code 4913) or a validation number assigned in conjunction with an annual hot work permit (Code 4911 or 4912) is required prior to any hot work operations.
- Permits may cover multiple tanks located at the same address. If additional tanks are to be removed or abandoned at later dates, separate permits shall be obtained. Each address location requires a separate permit application regardless of whether multiple address locations are physically next to one another.
- Additional fees will be charged if inspectors are required to work other than normal business hours. (Normal business hours are Monday through Friday, 8:00 a.m. to 4:30 p.m.)
- 8. No excavation of an underground tank is permitted prior to inspection by the Seattle Fire Marshal's Office.

  Exception: Removal of the top layer of asphalt or concrete only with no removal of dirt, pea gravel or soil over the underground storage tank. Further excavation may be allowed by a Seattle Fire Department Special Hazards Unit Inspector prior to the initial inspection depending on conditions and if the tank has been inerted by a Marine Chemist who is present on site. The name of the inspector and the time permission was given shall be made available at time of
- Prior to inspection, to ensure tanks and connected piping are completely free of all flammable or combustible liquids, a receipt
  or certificate must be on site indicating the tanks have been pumped and rinsed by an approved company. Product and rinse
  water must be disposed of in an approved manner.
- 10. For tanks being decommissioned in place that previously contained Class I liquids, a Certified Marine Chemist certificate must be issued and available on site for inspection certifying that the tank has been properly inerted prior to filling.
- 11. No tank shall be filled prior to an inspection by the Seattle Fire Marshal's Office.
- 12. Tanks being decommissioned in place must be filled with a lean concrete mixture. Filling with foam is prohibited.
- 13. A Marine Chemist's certificate verifying the tank has been properly inerted or is otherwise certified "Safe for Hot Work" shall be issued and available on site for inspection for each underground and aboveground tank being removed regardless of the product previously contained.
- 14. If tanks are being removed, the tanks' atmosphere must be inert using one of the following approved methods:
  - Dry ice (pellets or chunks of solid CO<sub>2</sub>). Minimum 40 lbs per 1000 gallons of tank capacity is recommended.
  - Compressed CO<sub>2</sub> gas in cylinders (Note: This method may only be performed by a Certified Marine Chemist).
  - Purging with air (gas-freeing) using Venturi tube apparatus, with proper bonding and grounding and after the tank has been pumped and rinsed by an approved company.
- 15. A maximum reading of less than 6% of oxygen must be obtained prior to the removal of the tanks if CO<sub>2</sub> or another inert gas, as approved by the Marine Chemist, is used to inert the tank or, a reading of 0% LEL must be obtained prior to removal of the tank if the air-purging (Venturi air moving devices) method is used.
- All local, state and federal regulations for confined space entry shall be complied with prior to entering an underground storage tank.
- 17. Tanks with baffles to prevent movement of liquid must be certified gas-freed or inerted by a Certified Marine Chemist or a Petroleum Industry Safety Engineer regularly engaged in that business prior to removal.
- 18. Tanks being removed must be removed from the site and relocated to a remote, approved facility on the same day that the permit is issued.
- 19. During the hot work operations, digging, excavating, hauling or transport of petroleum storage tanks that have not been cleaned and gas-freed, tanks must be inerted to less than 6% oxygen. All openings are to be cap closed and secured except for one 1/8" hole drilled through a cap. These tanks are to be sprayed painted with "INERTED, DO NOT ENTER" or "INERTED WITH CO<sub>2</sub>, NOT SAFE FOR WORKERS".

Nº 31005

# BILL OF LADING PRODUCT TRANSPORT MANIFEST

|                                                        | 7 4 7 7 6 6                                                              |
|--------------------------------------------------------|--------------------------------------------------------------------------|
| TO DESTINATION NAME Marine Vacuum Service, Inc. STREET | SHIPPER CGI Construction STREET 500 Wattake Ave N CITY/STATE Scattle was |
| QUANTITY PROPER SHIPPING NAME                          | UN (PLACARD) NUMBER                                                      |
| 1-1500 UST for de                                      | sposal DOLL ENOUND HOMBER                                                |
| RECEIVER DATE // NOTE: Cleaned 1/27                    | 27/20 SHIPPER DATE/17/2020                                               |

Customer warrants that the waste petroleum products being transferred by the above collector do not contain any contaminates including without limitations, pesticides, chlorinated solvents at concentrations greater than 1000 PPM, any detectable levels of PCBs, or any other material classified as dangerous or hazardous waste by 40 CFR Part 261, Subpart C and D (implementing the Federal Resource Conservation and Recover Act), or by any equivalent state dangerous or hazardous substance classification programs. Should laboratory tests find this waste not in compliance with 40 CFR Part 261, customer (generator) agrees to pay for all disposal costs incurred.

George D. Blair - Northwest Marine Chemist, Inc. P.O. Box 7084, Tacoma, WA 98417

Office: 253-752-0149 Fax: Email: gbcmc637@gmail.com



Serial

637-01081 Page 1 of 1

GLY/CGI Feb 7, 2020 Survey Requested by Vessel Owner Agent Date Tank Farm **Underground Storage Tank** 500 N. Westlake Vessel Type of Vessel Specific Location of Vessel HFO as Fuel O2, LEL, Visual, VOC Last Three 3 Loadings Tests Performed Time Survey Completed

**Inspected Spaces:** 

Group 1. 12-2,500 Gal. UST

Safety Designations:

**ATMOSPHERE SAFE FOR WORKERS** SAFE FOR LIMITED HOT WORK LIMITATIONS:

Specific Location: At job site.

Hot Work Type: This tank has been pressure washed free of any flammable residues, and is safe for excavation and cleaning in place. Tests of residues show no propagated flame when exposed to propane torch. Sparks will not ignite residues.

#### Instructions

Maintain firewatch with charged extinguisher at ready during excavation operations.

% O<sub>2</sub> **Test Results** % LEL VOC Inspected spaces group 1 20.8% 10 ppm

#### **Limits of Detection**

0.1 ppm VOC

In the event of physical or atmospheric changes affecting the STANDARD SAFETY DESIGNATIONS assigned to any of the above spaces, this certificate is voided; spaces not listed on the Certificate are not to be entered unless authorized on another Certificate and/or maintained in accordance with OSHA 29 CFR 1915; or if in any doubt, immediately stop all work and contact the undersigned Marine Chemist. Unless otherwise stated on the Certificate, all spaces and affected adjacent spaces are to be reinspected daily or more often as necessary by the competent person or the authority having jurisdiction as applicable in support of work prior to entry or recommencement of work.

CUALIFICATIONS: Transfer of ballast, cargo, fuel or manipulation of valves or closure equipment tending to eiter conditions in pipelines, tanks, or compartment's subject to gas accumulation, unless specifically designed, requires inspection and a new Certificate for spaces so effected. All lines, vents, heating coils, valves, and similar enclosed appurtanences shall be considered "not safe" unless STANDARD SAFETY DESIGNATION events life, paraphrent are spaces of experiences. All through 4.3.1 through 4.3.4 through 4.3.6 stronger to the vessel within the facility has been specifically authorized on this certificate.

AIMOSPITIES SAFETY WORKERS: On the compartment or space so designated (a) the oxygen content of the atmosphere shell be at least 19.5 percent and not greater than 22 percent by volume; (b) the within permissible concentrations at the time of the inspection is lower explanation or insurance than the stronger of the inspection. NOT SAFE FOR WORKERS: In the compartment or space so designated, entry shall not be permitted.

EVILENT WITH RESTRICT TORS. In the compartment or space so designated, entry for work is permitted only if conditions of proper protective equipment, or circling, or time, or all of the storementioned, as appropriate, are as specimes.

NOT SAFE FOR WORKENES: In the compartment or space so designated, entry onal not be permitted only if conditions of proper protective equipment, or cirching, or time, or all of the sforementioned, as appropriate, are as a speciment.

SAFE FOR HOT WORK in the compartment or space so designated (a) the oxygen content of the atmosphere is not greater than 22 percent by volume; (b) the concentration of flammable meterials in the National SAFE FOR HOT WORK in the compartment or space so designated (a) the oxygen content of the atmosphere is not greater than 22 percent by volume; (b) the concentration of flammable meterials in the higher notes in the standard of the safe and are not be capable of producing a space of the safe and are not be capable of producing a conting store of the safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe and safe a

cosmings to prevent the spread to line, or dray are increase, only a local standard (a) portions of the space meet the requirements. Safe for Hot Work and Partial Cleaning, as applicable, or (b) the space is meaning agreent spaces meet the requirements for Safe for Hot Work, and hot work is restricted to specific locations; (c) portions of the space shall meet the requirements for Safe for Hot Work, as applicable, or (b) the space is and the nature or type of hot work shall be limited or restricted.

NOT SAFE FOR HOT WORK: In the compartment or space so designated, hot is not permitted.

CHEMISTS ENDORSEMENT. This is to certify that I have personally determined that all spaces in the foregoing list are in accordance with NFPA 306 Control of Gas Hazards on Vessels and have found the

nowledges receipt of this Certificate under NFPA 306 and understands conditions and fin sed, and the requirements for materials as watcher."

Authorized Representative

**ECI** Company Feb 7, 2020

Date

Signed Marine Chemist

637 CMC No.



February 10, 2020 ECI Project No.: 0520-26-02

# **Underground Storage Tank Decommissioning Certification**

This is a statement of Underground Storage Tank Decommissioning provided by EcoCon, Inc. (ECI). ECI states this decommissioning has occurred under the supervision of an ICC Certified UST Decommissioner following the local and state rules and regulations as defined by the Uniform Fire Code (UFC) and Washington Administrative Code (WAC). Following Northwest Marine Chemist and Seattle Fire Department certification, the UST was excavated and transported off site to be cut up then disposed at a local metal recycling company.

**Project Client:** 

**Construction Group International** 

Project Name:

Block 38 - Bunker Oil UST #2

Project Address:

500 Westlake Ave. N., Seattle, WA

Type of Decommissioning:

Excavation and removal from sub-surface

UST Installation Date:

Unknown (pre 1980)

**UST Decommissioning Date:** 

2/07/2020

Permit Issuance Date:

2/07/2020

UST #:

Tank #1

UST(s) Dimensions:

5.0 x 16 feet (Approximate) – 1 UST

UST(s) Total Gallons:

2500 Gallons (Approximate)

**UST(s)** Construction:

Steel - Single Wall Construction

**Certified UST Decommissioner:** 

**Brad Reilly** 

**Certification Number:** 

8289423 - Exp: 2/14/2020

Brad N. Reilly

February 10, 2020

Date

Your Seattle Fire Department



# APPLICATION FOR TEMPORARY PERMIT

| Code 7908                                                                                                                                                      | Commercial Tank                                                 | Removal/Decommis                                        | sioning                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Permit Fee: TO BE COMPLETED BY PERMIT                                                                                                                          | Γ APPLICANT Tan                                                 | k(s) must be removed from                               | Date Issued: 02/06/2020 site on the same day as permit is issued!                       |
| BUSINESS NAME: ECI E                                                                                                                                           |                                                                 |                                                         |                                                                                         |
| MAILING ADDRESS: P.O.                                                                                                                                          | Box 153                                                         |                                                         | SUITE:                                                                                  |
| CITY: Fox Island                                                                                                                                               |                                                                 | STATE: WA                                               | zip: 98333                                                                              |
| JOBSITE ADDRESS: 500 V                                                                                                                                         | Vestlake Avenu                                                  | е                                                       |                                                                                         |
| CONTACT PERSON: Brad                                                                                                                                           | Reilly                                                          | PHONE NUMBER: (                                         | 206 , 779-0050                                                                          |
| Number of Tank(s):1                                                                                                                                            | Tank Size(s):                                                   | 2200                                                    | Aboveground tank                                                                        |
| Product(s) Previously Contain                                                                                                                                  | ed: Bunker                                                      | Oil                                                     | Underground tank                                                                        |
| Removal (Marine Chemis                                                                                                                                         | t inspection and certificate rec                                | quired for all tanks regardles                          | s of size or contents)                                                                  |
| Abandonment-in-Place (Mand/or unknowns)                                                                                                                        | farine Chemist certificate requ                                 | uired for tanks previously co                           | ntaining Class I flammable liquids                                                      |
| Hot work being conducted                                                                                                                                       | i: 🔳 No                                                         | ☐ Yes (If yes, a separate                               | hot work permit is required)                                                            |
| Permit applications may be subm<br>Seattle Fire Department<br>Fire Marshal's Office – Pern<br>220 Third Ave S, 2 <sup>nd</sup> Floor<br>Seattle, WA 98104-2608 | To pay with a Vis                                               | sa or Master Card, email this on CONFIRM RECEIPT AND MA | ompleted application to us,                                                             |
| TANKS MAY BE F                                                                                                                                                 | REMOVED/DECOMMISSIO                                             | NED ONLY AFTER FIRE D                                   | arrange for an appointment. PEPARTMENT INSPECTION THIS FIRE DEPARTMENT PERMIT!          |
| Permission is hereby granted to r<br>all noted special conditions, and<br>PERMIT IS NULL AND VOID                                                              | d all applicable provisions of                                  | the Seattle Fire Code, and                              | in accordance with the attached conditions, federal, state, and local regulations. THIS |
| I understand the conditions of t<br>I acknowledge that I received an i                                                                                         | his permit and will ensure all inspection by a Seattle Fire Der | tank removal/decommission                               | ing operations are conducted accordingly.                                               |
| Brad Reilly Print Name                                                                                                                                         |                                                                 |                                                         | UST Decommissioner                                                                      |
|                                                                                                                                                                | Signature                                                       | be performed, or directly supervis                      | Title<br>sed, by an ICC certified individual (WAC 173-360-600)                          |

APPROVED BY:

Name of Marine Chemist \_\_\_\_

SFD ID#

\_\_\_\_\_Certificate # \_\_\_\_\_

Inspector:

Date:

(01/19)

FMO USE:

Check No.:

Receipt No.: \_

Application ID#:\_

#### COMMERCIAL TANK REMOVAL/DECOMMISSIONING PERMIT CONDITIONS

- 1. Two (2) portable fire extinguishers each having a minimum rating of 40 BC shall be on site within 50 feet of the operation. Fire extinguishers shall be inspected, approved and certified annually.
- Rope or ribbon barricades located at least 10 feet from the tank shall surround every outdoor storage tank removal or decommissioning operation or the operation shall be enclosed in a fenced yard.
- "No Smoking" signs shall be posted in readily visible locations.
- 4. No hot work is allowed on a tank system prior to issuance of this permit and the tank is certified "Safe for Hot Work" by a Certified Marine Chemist. Hot work means any activities involving riveting, welding, burning, brazing, soldering, heating, chopping, grinding, ripping, drilling, cutting with a chop saw or "Sawzall", abrasive blasting, use of powder-actuated tools or similar spark-producing operations, crushing or mechanically shearing to facilitate opening for cleaning, disposal, scrapping for recycling purposes.
- 5. A separate temporary Seattle Fire Department permit (Code 4913) or a validation number assigned in conjunction with an annual hot work permit (Code 4911 or 4912) is required prior to any hot work operations.
- Permits may cover multiple tanks located at the same address. If additional tanks are to be removed or abandoned at later dates, separate permits shall be obtained. Each address location requires a separate permit application regardless of whether multiple address locations are physically next to one another.
- Additional fees will be charged if inspectors are required to work other than normal business hours. (Normal business hours are Monday through Friday, 8:00 a.m. to 4:30 p.m.)
- 8. No excavation of an underground tank is permitted prior to inspection by the Seattle Fire Marshal's Office. Exception: Removal of the top layer of asphalt or concrete only with no removal of dirt, pea gravel or soil over the underground storage tank. Further excavation may be allowed by a Seattle Fire Department Special Hazards Unit Inspector prior to the initial inspection depending on conditions and if the tank has been inerted by a Marine Chemist who is present on site. The name of the inspector and the time permission was given shall be made available at time of inspection.
- Prior to inspection, to ensure tanks and connected piping are completely free of all flammable or combustible liquids, a receipt
  or certificate must be on site indicating the tanks have been pumped and rinsed by an approved company. Product and rinse
  water must be disposed of in an approved manner.
- For tanks being decommissioned in place that previously contained Class I liquids, a Certified Marine Chemist certificate must be issued and available on site for inspection certifying that the tank has been properly inerted prior to filling.
- 11. No tank shall be filled prior to an inspection by the Seattle Fire Marshal's Office.
- 12. Tanks being decommissioned in place must be filled with a lean concrete mixture. Filling with foam is prohibited.
- 13. A Marine Chemist's certificate verifying the tank has been properly inerted or is otherwise certified "Safe for Hot Work" shall be issued and available on site for inspection for each underground and aboveground tank being removed regardless of the product previously contained.
- 14. If tanks are being removed, the tanks' atmosphere must be inert using one of the following approved methods:
  - Dry ice (pellets or chunks of solid CO<sub>2</sub>). Minimum 40 lbs per 1000 gallons of tank capacity is recommended.
  - Compressed CO<sub>2</sub> gas in cylinders (Note: This method may only be performed by a Certified Marine Chemist).
  - Purging with air (gas-freeing) using Venturi tube apparatus, with proper bonding and grounding and after the tank has been pumped and rinsed by an approved company.
- 15. A maximum reading of less than 6% of oxygen must be obtained prior to the removal of the tanks if CO<sub>2</sub> or another inert gas, as approved by the Marine Chemist, is used to inert the tank or, a reading of 0% LEL must be obtained prior to removal of the tank if the air-purging (Venturi air moving devices) method is used.
- All local, state and federal regulations for confined space entry shall be complied with prior to entering an underground storage tank.
- 17. Tanks with baffles to prevent movement of liquid must be certified gas-freed or inerted by a Certified Marine Chemist or a Petroleum Industry Safety Engineer regularly engaged in that business prior to removal.
- 18. Tanks being removed must be removed from the site and relocated to a remote, approved facility on the same day that the permit is issued.
- 19. During the hot work operations, digging, excavating, hauling or transport of petroleum storage tanks that have not been cleaned and gas-freed, tanks must be inerted to less than 6% oxygen. All openings are to be cap closed and secured except for one 1/8" hole drilled through a cap. These tanks are to be sprayed painted with "INERTED, DO NOT ENTER" or "INERTED WITH CO<sub>2</sub>, NOT SAFE FOR WORKERS".

BILL OF LADING
PRODUCT TRANSPORT MANIFEST
MARINE VACUUM SERVICE, INC.
24 HOUR EMERGENCY PHONE NUMBER (206) 752-0240
FAX NUMBER 208-763-8084
TRUCK NUMBER DATE 2 - 7-80

Nº 30928

| TREET.   | Marine Vacuum Se<br>1516 South Graham | Street         | SHIPPER CG   | I Construction   |            |
|----------|---------------------------------------|----------------|--------------|------------------|------------|
| STATE    | Seattle, WA 98108                     |                | CITY/STATE S | with the         | ~ <u>P</u> |
| MANTITY  | PROPER SHIPPING                       | NAME           |              |                  |            |
| UST.     | 1800 Gal To                           |                | note)        | UN (PLACARD) NUM | BER        |
|          |                                       |                |              |                  | -          |
| ECENED   |                                       | SLUDGE         |              |                  |            |
| UK       | Toy                                   | DATE<br>2-7-20 | SHIP         | PER              | DATE       |
| OTE: # D | ~~                                    | UST TON        |              | 0                |            |

Customer sarrants that the weste petroleum products being transferred by the above polector do not contain any contaminates including without limitations, pesticides, disprinated solvents as concentrations greater than 1000 PPM, any descable levels of PCBs, or any other material disassitudes dengenous or hazanchous waster by 40 CPR Part 251, Subpart C or O Implementing the Federal Resource Conservation and Recover Act, or by any equivalent state dangerous or hazanchous substance classification programs. Should laboratory lests find this waste not or conciliance with 40 CPR Part 251, sustamer (generator) agrees to pay for all disposal costs incurred.

# APPENDIX J VAPOR BARRIER SPECIFICATIONS

REMEDIAL INVESTIGATION/FOCUSED FEASIBILITY STUDY
Block 38 West Site
500 through 536 Westlake Avenue North
Seattle, Washington

Farallon PN: 397-019



# **BACKGROUND**

From October 2015 through August 2018, Drago Wrap Vapor Intrusion Barrier was subjected to a series of diffusion and sorption tests to obtain the film's diffusion, partitioning, and permeation characteristics. This testing was designed and overseen by an expert in the permeation of volatile organic compounds (VOCs) at a prominent university. The results of this testing, combined with further modeling and analysis, have been used to empirically determine the attenuation efficacy of Drago Wrap against various hydrocarbons and chlorinated solvents. The purpose of this document is to briefly discuss the theory behind diffusive vapor intrusion (VI); summarize and explain the robust testing protocol utilized; and relay the results of the testing and analysis.

# CHEMICALS TESTED

Drago Wrap has been tested with regard to permeation of the following chemicals: Trichloroethylene (TCE); Perchloroethylene (PCE); the BTEX family: Benzene, Toluene, Ethylbenzene, Xylene; Dichloromethane; 1,4 Dichlorobenzene; Methyl tert-butyl ether (MTBE) and Naphthalene. This list was chosen based on a survey of the most often found chemicals on brownfield projects.

# **THEORY**

The practical purpose behind obtaining permeation, diffusion, and partitioning coefficients is to apply them to the equations governing mass flux per Fick's laws during design of VI mitigation systems. The following briefly explains the theory and physics behind Fick's First Law.

The diffusion coefficient,  $D_g$  (units expressed in  $[m^2/s]$ ), is the parameter defining the membrane's resistance to the diffusive mass flux  $[g/m^2s]$  transported within the membrane as governed by Fick's First Law:

$$f = -D_g \frac{dc_g}{dz} \tag{Eq. 1}$$

due to a concentration gradient  $dc_g/d_z$  [g/m<sup>4</sup>] in the membrane layer. If the contaminant source is an aqueous solution adjacent to the membrane, the concentration of the contaminant in the membrane can be related to that in the fluid (at equilibrium) by the partitioning coefficient,  $S_{gf}$  (where  $S_{gf}$  is analogous to a Henry's coefficient). It is given by Equation 2 and depends on the solubility of the contaminant in the material:

$$S_{gf} = \frac{c_g}{c_f} \tag{Eq. 2}$$

where  $c_f$  is the concentration of the contaminant in the fluid, adjacent to and in equilibrium with, the concentration,  $c_g$ , in the membrane.

Thus, the mass flux (f) from the fluid on one side of the membrane to the fluid on the other side (at steady state) is given by:

$$f = S_{gf} D_g \frac{dc_g}{dz} = \frac{P_g}{l} \Delta C$$
 (Eq. 3)



where l is the thickness of the film/membrane, and  $\Delta C$  is the difference in concentration between the two sides of the film/membrane at steady state, and the product of the two parameters ( $S_{gf} D_g$ ) is called the permeation coefficient,  $P_g (m^2/s)$ :

$$P_g = S_{gf} D_g (Eq. 4)$$

It can be gleaned from Equations 1-4 that the diffusion coefficient,  $D_g$ , is not enough to characterize the film's mass transfer properties for contaminants moving from below the membrane to above it. Diffusive mass transfer through an intact geomembrane is a 3-step process: partitioning into the geomembrane; diffusion through the geomembrane; and partitioning out of the geomembrane. Both  $D_g$  and  $S_{gf}$  (or simply  $P_g$ ) must be known in order to effectively utilize Fick's steady state mass transfer equations. Therefore, to allow for full and complete analysis, Drago Wrap's permeation was fully characterized with all three values (permeation, diffusion, and partitioning coefficients) for each chemical tested. Those values are contained in Table 2. It is also imperative to understand the differences in methodologies between lab and site-specific field-testing setups. If such differences exist, the addition of the phase transition coefficient between water and air, Henry's coefficient (H), may also be required in the analysis. A deeper discussion on accounting for these differences is beyond the scope of this summary. Please contact the Stego Industries' Technical Department for additional assistance.

# **TESTING METHODOLOGY**

Two types of tests and subsequent modeling have been employed in characterizing Drago Wrap's relevant characteristics: diffusion testing, sorption testing, and the finite layer modeling and analysis program, POLLUTE v7 (Rowe and Booker 2004).

The diffusion testing setup used stainless steel double-compartment cells (Figure 1), such that source and receptor volumes were separated by the Drago Wrap membrane. The cell was screwed together, with the membrane secured using two Viton rings (Figure 2) to prevent the loss of contaminant at the connection between each compartment and the membrane. Both the source and receptor were filled with double deionized (DDI) water, and a septum was inserted into the sampling ports to prevent losses. A stock solution of contaminants was added to the source compartment to form a dilute aqueous solution with a known concentration. Before assembly, and after disassembly, the mass of the membrane was recorded.







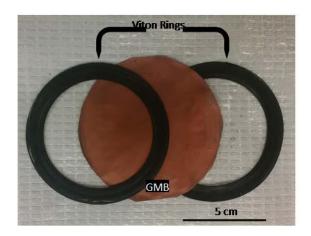



Figure 2: Membrane and Viton Rings

Sorption testing was also performed to directly measure the partitioning coefficients for each chemical. The sorption testing was conducted using 20-ml vials where a specimen was placed in double deionized water. The mass of the specimen was recorded beforehand. The vials were filled with double deionized water so that there was no airspace in the vial. Known masses of contaminants were added and 50 µl samples were taken daily from the vials for analysis and replaced with double deionized water until equilibrium was reached. The chemical analysis of these specimens was performed in the same manner as chemical analysis of the diffusion tests. This analysis is described in Appendix B.

The results from the diffusion and sorption tests were transduced and analyzed using the finite layer modeling and analysis program, POLLUTE v7, to create the results seen in Table 2.

In addition to whole-film testing, the discrete layers that make up Drago Wrap were tested to determine their respective permeation, diffusion and partitioning coefficients. The results obtained from the mathematical modeling of these tests do not necessarily equate to the values obtained from whole-film permeation testing. In other words, the full membrane benefits from a synergistic effect: the whole is greater than the sum of its parts. Due to its unique design, the testing demonstrated a very important feature to Drago Wrap: its ability to degrade chlorinated solvents like TCE. The results show about a 50-day half-life for TCE when the membrane is installed in its intended orientation. The results in Table 2 come from the most conservative approach to analyzing the results and do not consider these synergies.

# **RESULTS**

As described earlier, the values displayed in Table 2 result from a conservative approach to the analysis of data generated from several phases and years of testing, and subsequent numerical modeling. The preferred methodology for obtaining accurate results requires an aqueous-to-aqueous testing scenario. Table 2 depicts these results. There exist scenarios where mass flux design with Drago Wrap requires additional consideration of phase-change analysis beyond what is offered in Table 2. Please contact the Stego Industries' Technical Department for assistance should the need arise.



Table 1 – Descriptions of the Tested Chemicals

| Chemical                | Abbreviation | Family                          | Use                                              |
|-------------------------|--------------|---------------------------------|--------------------------------------------------|
| Benzene                 | Btex         | Aromatic Hydrocarbon            | Gasoline byproduct                               |
| Toluene                 | bTex         | Aromatic Hydrocarbon            | Gasoline byproduct                               |
| Ethylbenzene            | btEx         | Aromatic Hydrocarbon            | Gasoline byproduct                               |
| M&P-Xylenes             | bteX         | Aromatic Hydrocarbon            | Gasoline byproduct                               |
| O-Xylene                | bteX         | Aromatic Hydrocarbon            | Gasoline byproduct                               |
| Trichloroethylene       | TCE          | Chlorinated Hydrocarbon         | Dry Cleaning and Solvent                         |
| Tetrachloroethylene     | PCE          | Chlorinated Hydrocarbon         | Dry Cleaning and Solvent                         |
| Methyl tert-butyl ether | MTBE         | Oxygenate                       | Octane-increasing additive to fuel               |
| Dichloromethane         | DCM          | Chlorinated Hydrocarbon         | Paint Stripper, Decaffeinate, Aerosol propellant |
| Naphthalene             | Naphthalene  | Polycyclic Aromatic Hydrocarbon | Fumigant, Pyrotechnics, Wetting Agent            |
| 1,4-Dichlorobenzne      | 1,4-DCB      | Chlorinated Hydrocarbon         | Pesticide, Disinfectant, Deodorant               |

Table 2 - Aqueous Coefficients

| Chemical     | Diffusion, D <sub>g</sub><br>[x 10 <sup>-15</sup> m <sup>2</sup> /s] | Partitioning, S <sub>gf</sub> [-] | Permeation, P <sub>g</sub><br>[x 10 <sup>-13</sup> m <sup>2</sup> /s] |
|--------------|----------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------|
| Benzene      | 2.6                                                                  | 171                               | 4.5                                                                   |
| Toluene      | 1.5                                                                  | 339                               | 5.1                                                                   |
| Ethylbenzene | 0.41                                                                 | 764                               | 3.1                                                                   |
| M&P-Xylenes  | 0.4                                                                  | 743                               | 2.9                                                                   |
| O-Xylene     | 0.4                                                                  | 670                               | 2.7                                                                   |
| TCE          | 3.9                                                                  | 251                               | 9.8                                                                   |
| PCE          | 1.1                                                                  | 610                               | 6.6                                                                   |
| MTBE         | 1                                                                    | 1                                 | 0.01                                                                  |
| DCM          | 0.95                                                                 | 475                               | 4.5                                                                   |
| Naphthalene  | 0.014                                                                | 1710                              | 0.25                                                                  |
| 1,4-DCB      | 0.94                                                                 | 760                               | 7.1                                                                   |

# CONCLUSION

Drago Wrap has proven to be a superior barrier to standard geomembranes like HDPE (by a factor of about 10 to 200 – See Appendix A) for all contaminants where comparisons could be made to HDPE and has remarkably low values for BTEX, TCE; PCE; MTBE; Naphthalene; DCM; and 1,4 DCB with permeation coefficients of the order of magnitude of  $10^{-13}$  –  $10^{-14}$  m<sup>2</sup>/s. In addition, the testing has shown that chlorinated solvents experience degradation while permeating through the membrane with a half-life of 50 days for TCE when the film is correctly oriented relative to the contaminant source.



# APPENDIX A - COMPARISON TO HDPE (WHERE AVAILABLE)

|              |                        | on Coefi<br>20-mil<br>ago Wra |                       |                        | on Coef<br>mil HD | ficients –<br>PE <sup>1</sup> |                          |
|--------------|------------------------|-------------------------------|-----------------------|------------------------|-------------------|-------------------------------|--------------------------|
|              | Dg                     | $S_{\mathrm{gf}}$             | $P_g$                 | Dg                     | $S_{\mathrm{gf}}$ | Pg                            | Ratio                    |
|              | $(m^2/s)$              | (-)                           | $(m^2/s)$             | $(m^2/s)$              | (-)               | $(m^2/s)$                     | $(P_{gDrago}/P_{gHDPE})$ |
| Benzene      | 2.6x10 <sup>-15</sup>  | 171                           | 4.5x10 <sup>-13</sup> | 3.5x10 <sup>-13</sup>  | 30                | 1.05 x10                      | 23                       |
| Toluene      | 1.5x10 <sup>-15</sup>  | 339                           | 5.1x10 <sup>-13</sup> | 3.0 x10 <sup>-13</sup> | 100               | 3.0 x10 <sup>-11</sup>        | 60                       |
| Ethylbenzene | 4.1x10 <sup>-16</sup>  | 764                           | 3.0x10 <sup>-13</sup> | 1.8 x10 <sup>-13</sup> | 285               | 5.1 x10 <sup>-11</sup>        | 170                      |
| m&p-Xylenes  | 4.0x10 <sup>-16</sup>  | 743                           | 2.9x10 <sup>-13</sup> | 1.7 x10 <sup>-13</sup> | 347               | 5.9 x10 <sup>-11</sup>        | 200                      |
| o-Xylene     | 4.0x10 <sup>-16</sup>  | 670                           | 2.7x10 <sup>-13</sup> | 1.5 x10 <sup>-13</sup> | 240               | 3.6 x10 <sup>-11</sup>        | 130                      |
| TCE          | 3.9x10 <sup>-15</sup>  | 251                           | 9.8x10 <sup>-13</sup> | 4.0 x10 <sup>-13</sup> | 85                | 3.4 x10 <sup>-11</sup>        | 35                       |
| PCE          | 1.1x10 <sup>-15</sup>  | 610                           | 6.6x10 <sup>-13</sup> | -                      | -                 | -                             | -                        |
| MTBE         | 1.0x10 <sup>-15</sup>  | 1                             | 1.0x10 <sup>-15</sup> | -                      | -                 | -                             | -                        |
| DCM          | 9.5x10 <sup>-16</sup>  | 475                           | 4.5x10 <sup>-13</sup> | 6.5 x10 <sup>-13</sup> | 6                 | 3.9 x10 <sup>-12</sup>        | 9                        |
| Naphthalene  | 1.4x10 <sup>-17</sup>  | 1710                          | 2.5x10 <sup>-14</sup> | -                      | -                 | -                             | -                        |
| 1,4-DCB      | 9.4 x10 <sup>-16</sup> | 760                           | 7.1x10 <sup>-13</sup> | -                      | -                 | -                             | -                        |

<sup>&</sup>lt;sup>1</sup>Sangam & Rowe (2001)



# APPENDIX B- CHEMICAL ANALYSIS

The cells were sampled at regular time intervals. During each sampling event, 10 ul to 100 ul was removed from the cell, and that volume was replaced with DDI water so there was no airspace in the cell.

The samples were added to a vial containing 0.4 ml of methanol, 0.01 ml internal standard, and water was added so the total fluid volume in the vial was 1.6 ml. A Solid Phase Micro Extraction (SPME) fiber was inserted into vial headspace and the volatile compounds sorbed onto the fiber. This fiber was analyzed using gas chromatography (GC), and results compared to a certified laboratory standard calibration curve for the contaminant in question. Two types of detectors were used (depending on the cell in question); namely, a mass selective detector and a flame ionization detector. A quality assurance certified lab standard (from a different source to the calibration standards) was assessed during each sampling event.

All laboratory testing was conducted in a Canadian Association for Laboratory Accreditation (CALA) lab and followed CALA methods. This means that rigorous quality assurance practices were followed during chemical analysis. CALA frequently reviews the methods used and the accreditation is renewed every two years.

# **REFERENCES**

Rowe, R. K., and Booker, J. R. (2004). "POLLUTE V.7 - 1D Pollutant Migration through a Non-homogenous Soil." GAEA Environmental Engineering Ltd.

Sangam, H. P., and Rowe, R. K. (2001). "Migration of dilute aqueous organic pollutants through HDPE geomembranes." Geotextiles and Geomembranes, 19(6), 329–357.



# DRAGO® WRAP VAPOR INTRUSION BARRIER RESISTANCE TO DEGRADATION – ADDITIONAL CONSIDERATIONS

Drago Wrap Vapor Intrusion Barrier, and the technologies that underlie this game-changing vapor intrusion protection product, has undergone extensive testing to determine its ability to attenuate VOCs and other relevant material properties. These tests exposed Drago Wrap to a host of deleterious chemicals that may exist at or below a project site, including various petroleum distillates, chlorinated solvents, etc. The results of these tests are positive and telling; they show that Drago Wrap is extremely impermeable to a wide range of chemical vapors and, more importantly for our current considerations, maintains such impermeability over the course of years of exposure to these deleterious compounds.

While the results of such testing speak extensively to Drago Wrap's ability to resist degradation in extreme exposure conditions, we wished to pursue multiple exposure scenarios to further increase the confidence project team members should have in Drago Wrap as a critical component of the vapor intrusion systems they utilize on their projects. The following pages detail these measures. The conclusions indicate that there were no significant changes in mass or volume of Drago Wrap when exposed to direct contact with soils contaminated with benzene, toluene, ethylbenzene, xylene (collectively known as BTEX), trichloroethylene (TCE), perchloroethylene (PCE, or tetrachloroethylene), cis-1,2-dichloroehtylne (C-DCE), trans-1,2-dichloroehtylene (T-DCE), and sulfates. Additionally, we tested the post-exposure samples to determine their tensile strength (ASTM E882) and permeance to water vapor (F1249), and we observed that Drago Wrap maintains its ability to meet each corresponding performance threshold for high-performance water vapor barriers: for D882, Drago Wrap remains a Class A Vapor Barrier per ASTM E1745; for F1249, Drago Wrap maintains a permeance well below 0.01 perms.

If additional questions remain regarding any aspect of Drago Wrap, please be sure to contact the Stego Technical Department. We are happy to help and look forward to the opportunity to provide an effective and economical solution to your barrier needs.

Regards,

Dan Marks CSI CDT LEED Green Associate Technical Director | Stego Industries, LLC

Mulz

O: (949) 325-2035| F: (949) 325-2062

danmarks@stegoindustries.com

Page 1 of 4



# DRAGO® WRAP VAPOR INTRUSION BARRIER TESTING SIMULATED HYDROCARBON (BTEX) CONDITION

# **SETUP**

To simulate a hydrocarbon contaminated brownfield site, a senior chemist at a research and testing lab prepared contaminated water to contain 1,000 ppb of each benzene, toluene, ethylbenzene, and xylene (BTEX). Two liters of this mixture were placed in a chamber, 49 cm x 23.5 cm wide by 27 cm tall. ASTM C778 standard 20-30 sand was added to the vessel until it was 5 cm above the original water line. At this level, the sand was damp with no free-standing water. Drago Wrap samples were placed on top of the damp sand, and the entire surface of the membrane were weighted down with sand-filled plastic bags to ensure full contact of the Drago Wrap with the damp sand. The test vessel was covered and sealed. After 30 days of exposure under ambient laboratory conditions (21-25°C), the samples were removed for evaluation.

# Simply stated:

We took relatively large amounts of often-seen hydrocarbons resulting from fuel spills and old service station sites and put them into a water table just 2 inches below a sample of Drago Wrap. This can be considered an extreme situation in that water tables are not typically that close to the slab and vapor barrier membrane. After a 30-day exposure, the mass and volume changes were analyzed, and we subsequently tested the material for its water vapor permeance rating and tensile strength.

# **RESULTS**

## Mass and Volume

The chemist conducted mass and volume measurements before and after exposure. The following comes directly from her report: "All of the test coupons exhibited slight changes in mass and volume, no matter what their exposure conditions were. Statistical analysis by the two-tailed t-test showed that the changes for the BTEX-exposed coupons were not significantly different from the changes for the control-exposed coupons."

Conclusion: In other words, Drago Wrap mass and volume were not significantly affected by the BTEX exposure.

# **Tensile Strength**

Samples were sent by the lab to our in-house lab and tested per ASTM E882 in both the machine and transverse directions. After the 30-day extreme BTEX solvent exposure, the results were 50.2 lbf/in and 49.6 lbf/in for machine and transverse directions respectively. These results were not significantly different than the water-exposed control samples (48.7 lbf/in, 48.5 lbf/in) or the unexposed samples (48.5 lbf/in, 46.8 lbf/in). For another point of comparison, consider that to be labeled as Class A per ASTM E1745, new-material tensile need only test at 45 lbf/in.

Conclusion: BTEX exposure has little to no effect on Drago Wrap's physical integrity in below-slab applications.

## Water Vapor Permeance

The testing lab then sent exposed and control samples to our in-house lab where they were subsequently tested per ASTM F1249. The results were very positive. The permeance of the sample exposed to the BTEX solution (0.00733 perms) increased minimally compared to the control (0.00614 perms), both staying well below the threshold of 0.01 perms.

Conclusion: BTEX exposure had minimal effect on Drago Wrap's ability to retard water vapor.

Page 2 of 4



# DRAGO® WRAP VAPOR INTRUSION BARRIER TESTING SIMULATED CHLORINATED SOLVENT CONDITION

# **SETUP**

To simulate a dry-cleaning brownfield site, a senior chemist at a research and testing lab prepared contaminated water to contain 3,600 ppb perchloroethylene (PCE), 12,500 PPB trichloroethylene (TCE), 16,200 PPB CIS-1,2-dichloroethylene (C-DCE), AND 1,700 PPB trans-1,2-dichlorothylene (T-DCE). Two liters of this mixture were placed in a chamber, 49 cm x 23.5 cm wide and 27 cm tall. ASTM C778 standard 20-30 sand was added to the vessel until it was 5 cm above the original water line. At this level, the sand was damp with no free-standing water. Drago Wrap samples were placed on top of the damp sand, and the entire surface of the vapor barrier was weighted down with sand-filled plastic bags to ensure full contact of the Drago Wrap with the damp sand. The test vessel was covered and sealed. After 30 days of exposure under ambient laboratory conditions (21-25°C), the samples were removed for evaluation.

# Simply stated:

We took an actual soils report from an old dry cleaning site and recreated the conditions, roughly. In the actual scenario the water table was 20 feet below the vapor barrier. In our setup, we created a contaminated water table just 2 *inches* below Drago Wrap. After a 30-day exposure, the mass and volume changes were analyzed, and we subsequently tested the material for its water vapor permeance rating and tensile strength.

# **RESULTS**

## Mass and Volume

The chemist conducted mass and volume measurements before and after exposure. The following comes directly from her report: "All of the test coupons exhibited slight changes in mass and volume, no matter what their exposure conditions were. Statistical analysis by the two-tailed t-test showed that the changes for the chlorinated solvent-exposed coupons were not significantly different from the changes for the control-exposed coupons."

Conclusion: Drago Wrap's mass and volume were not significantly affected by the chlorinated solvent exposure.

# Tensile Strength

Samples were sent by the lab to our in-house lab and tested per ASTM E882 in both the machine and transverse directions. After the 30-day extreme chlorinated solvent exposure, the results were 51.2 lbf/in and 49.7 lbf/in for machine and transverse directions respectively. These results were not significantly different than the water-exposed control samples (48.7 lbf/in, 48.5 lbf/in) or the unexposed samples (48.5 lbf/in, 46.8 lbf/in). For another point of comparison, consider that to be labeled as Class A per ASTM E1745, new-material tensile need only test at 45 lbf/in.

Conclusion: Chlorinated solvent exposure has little to no effect on Drago Wrap's physical integrity in below-slab applications.

## Water Vapor Permeance

The testing lab then sent exposed and control samples to our in-house lab where they were subsequently tested per ASTM F1249. The results were very positive. The permeance of the sample exposed to the BTEX solution (0.00713 perms) increased minimally compared to the control (0.00614 perms), both staying well below the threshold of 0.01 perms.

Conclusion: Chlorinated solvent exposure had minimal effect on Drago Wrap's ability to retard water vapor.

Page 3 of 4



# DRAGO® WRAP VAPOR INTRUSION BARRIER TESTING SIMULATED SULFATE EXPOSURE CONDITION

# **SETUP**

To simulate the worst possible sulfate exposure, a senior chemist at a research and testing lab prepared water contaminated with 10,000 PPM of SO4 (sulfate.) This sulfate concentration was chosen because it was rated as "very severe" (the highest or worst classification) by UC Berkeley professors conducting research for the Caltrans Long Life Pavement Rehabilitation Strategy (LLPRS) Program. The Chemist took this worst-case scenario concentration and soaked samples of Drago Wrap in it for 28 days. Upon removal, the samples were analyzed for changes in mass and volume, and subsequently the exposed product was tested to determine its tensile strength and water vapor permeance rate.

# **RESULTS**

# Mass & Volume

The chemist conducted mass and volume measurements before and after exposure. The following comes directly from her report: "All of the test coupons exhibited slight changes in mass and volume, no matter what their exposure conditions were. Statistical analysis by the two-tailed t-test showed that the changes for the sulfate-exposed coupons were not significantly different from the changes for the control-exposed coupons."

Conclusion: In other words, Drago Wrap's mass and volume were not significantly affected by the sulfate exposure.

#### **Tensile**

Samples were sent by the lab to our in-house lab and tested per ASTM E882 in both the machine and transverse directions. After the 28-day extreme sulfate exposure, the results were 49.6 lbf/in and 52.3 lbf/in for machine and transverse directions respectively. These results were not significantly different than the water-exposed control samples (48.7 lbf/in, 50.8 lbf/in) or the unexposed samples (48.5 lbf/in, 46.8 lbf/in). For another point of comparison, consider that to be labeled as Class A per ASTM E1745, new-material tensile need only test at 45 lbf/in.

Conclusion: Sulfate exposure has little to no effect on Drago Wrap's physical integrity in below-slab applications.

### Water Vapor Permeance

The testing lab then sent exposed and control samples to our in-house lab where they were subsequently tested per ASTM F1249. The results were very positive. The permeance of the sample exposed to the sulfate solution (0.00734 perms) increased minimally compared to the control (0.00698 perms), both staying well below the threshold of 0.01 perms.

Conclusion: Sulfate exposure had no significant effect on Drago Wrap's ability to retard water vapor.

Page 4 of 4



# DRAGO® WRAP VAPOR INTRUSION BARRIER

A STEGO TECHNOLOGY, LLC INNOVATION | VAPOR RETARDERS 07 26 00, 03 30 00 | VERSION: 2/22/2019

# 1. PRODUCT NAME

#### **DRAGO WRAP VAPOR INTRUSION BARRIER**

# 2. MANUFACTURER

c/o Stego® Industries, LLC\* 216 Avenida Fabricante, Suite 101 San Clemente, CA 92672 Sales, Technical Assistance

Ph: (877) 464-7834 Fx: (949) 257-4113 www.stegoindustries.com



# 3. PRODUCT DESCRIPTION

USES: Drago Wrap is specifically engineered to attenuate volatile organic compounds (VOCs) and serve as a below-slab moisture vapor barrier.

COMPOSITION: Drago Wrap is a multi-layered plastic extrusion that combines uniquely designed materials with only high grade, prime, virgin resins.

ENVIRONMENTAL FACTORS: Drago Wrap can be used in systems for the control of various VOCs including hydrocarbons, chlorinated solvents, radon, methane, soil poisons, and sulfates.

# 4. TECHNICAL DATA

# TABLE 4.1: PHYSICAL PROPERTIES OF DRAGO WRAP VAPOR INTRUSION BARRIER

| PROPERTY                                                               | TEST                                                                                                                                                                                                                                                                                               | RESULTS                                                      |
|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Under Slab Vapor Retarders                                             | ASTM E1745 – Standard Specification for Water Vapor Retarders Used in Contact with Soil or Granular Fill under Concrete Slabs                                                                                                                                                                      | ASTM E1745 Compliant                                         |
| Water Vapor Permeance                                                  | ASTM F1249 – Test Method for Water Vapor Transmission Rate Through Plastic<br>Film and Sheeting Using a Modulated Infrared Sensor                                                                                                                                                                  | 0.0069 perms                                                 |
| Push-Through Puncture                                                  | ASTM D4833 – Test Method for Index Puncture Resistance of Geotextiles,<br>Geomembranes, and Related Products                                                                                                                                                                                       | 183.9 Newtons                                                |
| Tensile Strength                                                       | ASTM D882 – Test Method for Tensile Properties of Thin Plastic Sheeting                                                                                                                                                                                                                            | 53.5 lbf/in                                                  |
| Permeance After Conditioning<br>(ASTM E1745<br>Sections 7.1.2 - 7.1.5) | ASTM E154 Section 8, F1249 – Permeance after wetting, drying, and soaking<br>ASTM E154 Section 11, F1249 – Permeance after heat conditioning<br>ASTM E154 Section 12, F1249 – Permeance after low temperature conditioning<br>ASTM E154 Section 13, F1249 – Permeance after soil organism exposure | 0.0073 perms<br>0.0070 perms<br>0.0062 perms<br>0.0081 perms |
| Hydrocarbon Attenuation Factors                                        | Contact Stego Industries' Technical Department                                                                                                                                                                                                                                                     |                                                              |
| Chlorinated Solvent<br>Attenuation Factors                             | Contact Stego Industries' Technical Department                                                                                                                                                                                                                                                     |                                                              |
| Methane Transmission Rate                                              | ASTM D1434 – Test Method for Determining Gas Permeability Characteristics of Plastic Film and Sheeting                                                                                                                                                                                             | 7.0 GTR**<br>(mL(STP)/m <sup>2</sup> *day)                   |
| Radon Diffusion Coefficient                                            | K124/02/95                                                                                                                                                                                                                                                                                         | 9.8 x 10 <sup>-14</sup> m <sup>2</sup> /second               |
| Thickness                                                              |                                                                                                                                                                                                                                                                                                    | 20 mil                                                       |
| Roll Dimensions                                                        |                                                                                                                                                                                                                                                                                                    | 14' x 105'<br>or 1,470 ft <sup>2</sup>                       |
| Roll Weight                                                            |                                                                                                                                                                                                                                                                                                    | 150 lb                                                       |

# DRAGO® WRAP VAPOR INTRUSION BARRIER

A STEGO TECHNOLOGY, LLC INNOVATION | VAPOR RETARDERS 07 26 00, 03 30 00 | VERSION: 2/22/2019

# 5. INSTALLATION

UNDER SLAB: Unroll Drago Wrap over a tamped aggregate, sand, or earth base. Overlap all seams a minimum of 12 inches and tape using Drago® Tape. All penetrations must be sealed using a combination of Drago Wrap and Drago Accessories.

Review Drago Wrap's complete installation instructions prior to installation.

# 6. AVAILABILITY & COST

Drago Wrap is available nationally through our network of building supply distributors. For current cost information, contact your local Drago distributor or Stego Industries' Sales Representative.

# 7. WARRANTY

Stego Industries, LLC believes to the best of its knowledge, that specifications and recommendations herein are accurate and reliable. However, since site conditions are not within its control, Stego Industries does not guarantee results from the use of the information provided and disclaims all liability from any loss or damage. Stego Technology, LLC does offer a limited warranty on Drago Wrap. Please see www.stegoindustries.com/legal.

# 8. MAINTENANCE

Store Drago Wrap in a dry and temperate area.

# 9. TECHNICAL SERVICES

Technical advice, custom CAD drawings, and additional information can be obtained by contacting Stego Industries or by visiting the website.

**Contact Number:** (877) 464-7834

Website: www.stegoindustries.com

# 10. FILING SYSTEMS

www.stegoindustries.com





# DRAGO® WRAP LIMITED WARRANTY ISSUER: STEGO TECHNOLOGY, <u>LLC ("Stego Tech")</u>



Applicable Date: January 1, 2018 | Revision Date: October 30, 2018 | Version Number: 2.0

P1 of 3

This Drago Wrap Limited Warranty ("the Warranty") commences on the Effective Date and applies to Drago Wrap Vapor Intrusion Barrier (for the purposes of this Warranty "Drago Wrap").

Stego Tech recommends installation of Drago Wrap per ASTM E1643, its published installation instructions, and in accordance with all site-specific recommendations of the project's design team. Drago Wrap is specifically engineered to be installed in conjunction with its proprietary accessories, including Drago® Tape, DragoTack™ Tape, Drago® Sealant, and Drago® Sealant Form. Additionally, to avoid puncturing Drago Wrap and comply with ASTM E1643, Stego Tech recommends utilizing the Beast® Screed system of vapor barrier-safe accessories.

# **WARRANTY TERMS AND CONDITIONS**

# **1** DRAGO WRAP WARRANTY

Stego Tech recognizes the most current version of ASTM E1745 (at the time of the material purchase) as the governing standard specification for under-slab vapor retarders. Subject to the limitations set forth below, for the Life of the Building™ Stego Tech warrants that Drago Wrap:

- (a) meets all of the requirements for its designated ASTM E1745 classification;
- (b) has been tested in accordance with each of the following ASTM test methods:
  - i. ASTM E1745 Standard Specification for Water Vapor Retarders Used in Contact with Soil or Granular Fill under Concrete Slabs
  - ii. ASTM F1249 Test Method for Water Vapor Transmission Rate Through Plastic Film and Sheeting Using a Modulated Infrared Sensor
  - iii. ASTM D1709 Test Methods for Impact Resistance of Plastic Film by Free-Falling Dart Method
  - iv. ASTM D882 Test Method for Tensile Properties of Thin Plastic Sheeting
  - v. ASTM E154 Sections 8, 11, 12, 13 Permeance After Conditioning 1
  - vi. ASTM D1434 Standard Test Method for Determining Gas Permeability Characteristics of Plastic Film and Sheeting
  - vii. ASTM D4833 Standard Test Method for Index Puncture Resistance of Geomembranes and Related Products
- (c) will be free from Manufacturing Composition Defects;
- (d) eligible for input on project-specific installation best practices by a Stego Tech-authorized representative during the preconstruction phase upon reasonable notice, in-person or remotely; and
- (e) eligible for Site Review by a Stego Tech-authorized representative, in-person or digitally, for input on installation prior to concrete placement upon reasonable notice.
- (f) will meet or exceed its published product literature for a period not less than two (2) years from the Date of Installation.

This Warranty is the sole Warranty given by Stego Tech or its Affiliates as to Drago Wrap. All installations or uses of Drago Wrap automatically activate this Warranty. If you do not wish to be bound by the terms of this Warranty, please return the Drago Wrap for a full Refund. Otherwise, all installations will be presumed to have agreed to the terms herein.

# 2 NOTICE AND CLAIMS

Any Claim pursuant to this Warranty must be Certified and must be made within sixty (60) days of the date discovered or the date it should reasonably have been discovered in order for Stego Tech to evaluate the Claim and replace the Drago Wrap. Claims may be made at any time during the Life of the Building. Such replacement (or at Stego Tech's option, Refund of the verified purchase price) shall be your sole and exclusive remedy for any such Claim.

<sup>&</sup>lt;sup>1</sup> Standard Test Methods for Water Vapor Retarders Used in Contact with Earth Under Concrete Slabs, on Walls, or as Ground Cover.



# DRAGO® WRAP LIMITED WARRANTY ISSUER: STEGO TECHNOLOGY, LLC ("Stego Tech")



Applicable Date: January 1, 2018 | Revision Date: October 30, 2018 | Version Number: 2.0

P2 of 3

# **3** WARRANTY AND CONDITIONS TO COVERAGE

This Warranty excludes any defect or damage caused by: (a) faulty or improper installation of the Drago Wrap, including the failure to comply with published specification and installation recommendations in effect at the time of installation; (b) improper use, storage or site conditions (e.g noncompliance with the terms of the Drago Wrap Material Safety Data Sheet); (c) any below-concrete slab or similar activity, and any other maintenance, repair, alteration or new installation to the Building that occurs after the completion of the original installation that impacts the Drago Wrap; (d) damage caused by non-Stego Tech materials; (e) factors beyond the reasonable control of Stego Tech or its Affiliates, including, but not limited to, natural disasters such as lightning, floods, windstorms, seismic disturbances, hurricanes, tornadoes, or impact of foreign objects or other violent storms or casualty; (f) damage resulting from any form of misuse, abuse or negligence; (g) structural defects or failures in the Building to which the Drago Wrap is installed.

Your sole remedy under this Warranty is, at Stego Tech's option: (a) Refund of the purchase price paid; or (b) replacement of so much of the Drago Wrap as Stego Tech deems necessary.

# **WARRANTY EXCLUSIONS**

Except where prohibited by law, this Warranty and the remedies expressly stated herein are the exclusive warranties and remedies provided to you with respect to the Drago Wrap and supersede any prior, contrary or additional representations, whether oral or written. No representative, distributor, dealer or any other person is authorized to make, or makes any warranty, representation, condition or promise with respect to the Drago Wrap. ALL OTHER WARRANTIES ARE DISCLAIMED AND EXCLUDED – WHETHER EXPRESS, IMPLIED, OR STATUTORY – INCLUDING ANY WARRANTY OF MERCHANTABILITY, ANY WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE, AND ANY IMPLIED WARRANTIES OTHERWISE ARISING FROM COURSE OF DEALING, COURSE OF PERFORMANCE, OR USAGE OF TRADE.

In no event shall Stego Tech or its Affiliates be liable for any incidental, special, indirect, consequential damages, including but not limited to lost income or loss of use. This exclusion applies regardless of whether such damages are sought for breach of warranty, breach of contract, negligence, or strict liability in tort or any other legal or equitable theory.

# 5 SEVERANCE

If any provision in this Warranty is found to be invalid or unenforceable, then the remainder shall have full force and effect, and the invalid provision shall be modified or partially enforced to the maximum extent permitted by law to effectuate the purpose of the Warranty.

# **6** DISPUTE RESOLUTION

It is the intention of the parties to use their reasonable best efforts to informally resolve, where possible, any dispute, claim, demand or controversy arising out of the performance of this Warranty by mutual negotiation and cooperation. In the event that the parties are unable to informally resolve a dispute, the Parties agree that such disputes shall be completely and finally settled by submission to arbitration before a single arbitrator under the Judicial Arbitration and Mediation Services (JAMS) Arbitration Rules then in effect. Good faith mediation shall be a condition precedent to initiating arbitration. Unless the parties agree otherwise, the arbitration shall take place in Orange County, California, U.S.A. The award of the arbitrator shall be in writing, shall be final and binding upon the parties, shall not be appealed from or contested in any court and may, in appropriate circumstances, include injunctive relief. Judgment on such award may be entered in any court of appropriate jurisdiction, or application may be made to that court for a judicial acceptance of the award and an order of enforcement, as the party seeking to enforce that award may elect. The prevailing party shall be entitled to recover its attorney fees and costs. This Agreement shall be governed in all respects by the laws of the State of California without regard to the conflict of law provisions thereof. Neither party will consolidate, or seek class treatment for any action unless previously agreed to in writing by all parties.



# DRAGO® WRAP LIMITED WARRANTY ISSUER: STEGO TECHNOLOGY, LLC ("Stego Tech")



Applicable Date: January 1, 2018 | Revision Date: October 30, 2018 | Version Number: 2.0

P3 of 3

# **DEFINITIONS**

"Affiliates" means Stego Tech affiliated entities, partners, joint venturers, suppliers, vendors, subcontractors, representatives, and agents.

"Applicable Date" means the Limited Warranty applies to material sold on or after January 1, 2018.

*"Building"* means the building above which Drago Wrap was installed, as verified by Stego Tech.

"Certified" means that you have investigated whether a breach of this Warranty occurred and obtained and provided a qualified inspector report confirming evidence exists of such a Defect. Stego Tech reserves the right to independently verify any Claims.

"Claim" means a claim for relief under the Warranty.

"Date of Installation" means the date Drago Wrap was installed, as verified by Stego Tech.

"Effective Date" means date of first sale as verified.

"Life of the Building" means the duration of which the building originally installed atop of the Drago Wrap is in good and working condition.

"Manufacturing Composition Defect" means any condition of the Drago Wrap that does not meet the material's intended design and is disclosed to Stego Tech during the Life of the Building.

"**Refund**" means Stego Tech providing a monetary return in the amount verified to be the cost of the Drago Wrap subject to the Claim.

"Site Review" means a review of representative portions of the Drago Wrap installation (digitally or in-person, when possible, and as determined by Stego Tech authorized representative) prior to concrete placement to help ensure compliance with governing installation standard, ASTM E1643, Stego Tech's installation instructions, and/or, if applicable, the design team's recommendations (e.g. contract documents). Site Reviews are not a full site inspection.

"Stego Tech" means Stego Technology, LLC, a California limited liability company with its principal place of business located at 216 Avenida Fabricante, #101, San Clemente, California 92672. Stego Industries, LLC is the exclusive representative of Drago Wrap and accessory products, owned by Stego Technology, LLC, a wholly independent company.

"Warranty" means this Drago Wrap Limited Warranty.





SDS P1 of 5

Revision Date: July 30, 2018 | Date of Issue: June 1, 2017 | Version Number: 2.0

## **SECTION 1: IDENTIFICATION**

**Product Identifier** 

Product Name: Drago Wrap

Intended Use of the Product

Vapor Intrusion Barrier

Company Name, Address, and Telephone of the Responsible Party

Stego Technology, LLC or C/O Stego® Industries, LLC\* 216 Avenida Fabricante #101 San Clemente, CA 92672

**Emergency Telephone Number** 

Emergency Number: 1 (800) 424-9300 (24 Hrs.) CHEMTREC

**Main Contact Number:** (877) 464-7834

## **SECTION 2: HAZARDS IDENTIFICATION**

Classification: This product is not classified as hazardous in accordance with 29 C.F.R. § 1910.1200.

Signal word: None.
Pictogram(s): None.

Hazard statement(s): None.

Precautionary statement(s): None.

Hazards not otherwise classified: Polymer film can burn if exposed to excessive temperatures beyond the normal use of

the product.

# **SECTION 3: COMPOSITION / INFORMATION ON INGREDIENTS**

| Ingredient | CAS Number   | % by WT. |
|------------|--------------|----------|
| Copper     | Proprietary* | <10%*    |

The selections marked with an '\*' are proprietary and considered to be Trade Secrets. This is the reason that they are listed as such, or provided as a range.

# **SECTION 4: FIRST AID MEASURES**

The following first aid recommendations are based on an assumption that appropriate personal and industrial hygiene practices are followed.

**Inhalation:** Not a respirable film. If exposed to fumes from combustion, move subject to fresh air; if breathing is difficult, give oxygen and get medical attention; if victim has stopped breathing, give artificial respiration and get medical attention.

**Eye Contact:** Not a probable route of exposure. If exposed to fumes from overheating or from combustion, move subject to fresh air. Flush with plenty of water; if irritation continues, get medical attention.

**Skin Contact:** No treatment necessary. For thermal burns, cool molten materials with water and get medical attention.

**Ingestion:** Not a probable route of exposure.

Continued...

Note - legal notice on page 5

SDS P2 of 5

Revision Date: July 30, 2018 | Date of Issue: June 1, 2017 | Version Number: 2.0

# **SECTION 5: FIRE-FIGHTING MEASURES**

**Unusual Hazards:** Polymer film can burn if exposed to excessive temperature beyond the normal use of the product. **Extinguishing Agents:** Use extinguishing media appropriate for surrounding fire: carbon dioxide, foam, dry chemical, and water foq.

**Personal Protective:** Equipment unnecessary unless resin is burned, which is not an intended use of the product. If resin is burning, wear self-contained breathing apparatus (pressure-demand MSHAINIOSH approved or equivalent) and full protective gear.

**Note:** See Section 10 for hazardous combustion and thermal decomposition information.

## **SECTION 6: ACCIDENTAL RELEASE MEASURES**

Personal Protection: None necessary.

Procedures: None necessary.

# **SECTION 7: HANDLING AND STORAGE**

Storage Conditions: Cool, dry storage recommended. Indoor storage recommended.

Avoid storing films in areas containing aromatic hydrocarbons, halogenated compounds, chlorinated compounds, oxidative agents, solvents or other known polyethylene solubilizers, prodegradants, as they may impact the product performance and/or service life.

**Handling Procedures:** Avoid direct sunlight. Avoiding direct UV exposure of product. Avoid contact with incompatible materials.

**Installation Temperature Range:** Below 110°F (ambient). Please also see technical and safety data sheets for accessory products installation/application temperature ranges.

In-Service Temperature Range: Below 85°F (soil and slab temperature, beginning 28 days following slab placement). Please also see technical and safety data sheets for accessory products installation/application temperature ranges. Exposure to Ultraviolet Radiation/Weather Events: The amount of time between when Stego Wrap is installed and when concrete is placed or other complete protection from sunlight and weather events is provided should be minimized while not exceeding 7 days.

Please review the remainder of the SDS and this wrap's technical data sheet for storage and additional information. If any of the conditions cited above pose a problem for the typical installation of Drago Wrap, please contact Stego Industries for additional information and solutions.

# **SECTION 8: EXPOSURE CONTROLS / PERSONAL PROTECTION**

| Ingredient | OSHA PEL            | ACGIH TWA           |
|------------|---------------------|---------------------|
| Copper     | 0.1 mg/m³ (Cu fume) | 0.2 mg/m³ (Cu fume) |

**Respiratory Protection:** None required during handling. Local exhaust to remove fumes from heat sealing and hot wire cutting areas of packaging or bag converting for worker comfort.

**Eye Protection:** None necessary. **Hand Protection:** None necessary.

**Engineering Controls (Ventilation):** Use local exhaust ventilation when routinely heat sealing this product. Recommended ventilation is with a minimum capture velocity of 100 ft/min. (30 m/min.) at the point of vapor evolution. Refer to the current edition of *Industrial Ventilation: A Manual of Recommended Practice* published by the American Conference of Governmental Industrial Hygienists for information on the design, installation, use, and maintenance of exhaust systems.



Revision Date: July 30, 2018 | Date of Issue: June 1, 2017 | Version Number: 2.0

# SECTION 9: PHYSICAL AND CHEMICAL PROPERTIES Continued...

General Physical Form: Solid plastic film.

#### INFORMATION ON BASIC PHYSICAL AND CHEMICAL PROPERTIES

AppearancePlastic filmColor:Copper and Gray

State:SolidOdor Characteristics:NoneOdor Threshold:None

:Ha Not Applicable Not Applicable Melting Point/Freezing Point: Initial Boiling Point and Boiling Point Range: Not Applicable Flash Point: Not Applicable **Evaporation Rate:** Not Applicable Flammability (solid, gas): Not Applicable Upper flammability: Not Applicable Lower Flammability: Not Applicable **Vapor Pressure:** Not Applicable Not Applicable Vapor Density: Relative Density: Not Applicable Solubility: Not Applicable Partition Coefficient: n-octanol/water: Not Applicable Auto ignition-temperature: Not Applicable >325°C (617°F) **Decomposition temperature:** Viscosity: Not Applicable

# **SECTION 10: STABILITY AND REACTIVITY**

**Instability:** This material is considered stable. Thermal decomposition is dependent on time and temperature.

#### HAZARDOUS DECOMPOSITION PRODUCTS

| Substance       | Condition             |
|-----------------|-----------------------|
| Hydrocarbons    | Combustion by-product |
| Carbon Monoxide | Combustion by-product |
| Carbon Dioxide  | Combustion by-product |
| Copper Fume     | Combustion by-product |

**Hazardous Polymerization:** Product will not undergo hazardous polymerization. Product does not decompose at ambient temperatures.

**Incompatibility:** Lead azide and lead stiphanate commonly used in high explosive detonators react violently with copper. **Reactivity:** Reacts and binds with polar gases such as Hydrogen sulfide  $(H_2S)$ , Ozone  $(0_3)$ , Carbonyl sulfide (COS), Sulfur Dioxide  $(S0_2)$ , Hydrogen chloride (HCI), Formic Acid, Acetic Acid.

**Hazardous Decomposition:** Under recommended usage conditions, hazardous decomposition products are not expected. Hazardous decomposition products may occur as a result of oxidation, heating, or reaction with another material.



Revision Date: July 30, 2018 | Date of Issue: June 1, 2017 | Version Number: 2.0

# **SECTION 11: TOXICOLOGICAL INFORMATION**

This product, when used under reasonable conditions and in accordance with the directions for use, should not present a health hazard. However, use or processing of the product in a manner not in accordance with the product's directions for use may affect the performance of the product and may present potential health and safety hazards.

Acute Data: No Toxicity data are available for this material.

#### PRIMARY ROUTES OF EXPOSURE

**Skin Contact:** Only if burned. **Eye Contact:** Only if burned. **Respiratory Contact:** Only if burned.

#### **ACUTE EFFECTS OF EXPOSURE**

**Ingestion:** Not a probable route of exposure.

**Inhalation:** No inhalation risk unless product is heated to point of burning, which in normal applications does not occur. Fumes from combustion are unlikely to be produced during heat shrinking. Local ventilation should be used for comfort. Testing data shows copper/polymer particulate count at approximately  $0.007 \text{mg/m}^3$ , which is well below OSHA PEL of  $0.1 \text{mg/m}^{3+}$ .

**Eye Contact:** No eye exposure risk during all product usage except during heating if plastic is heated to point of combustion, which does not occur during the intended use of the product. Fumes from combustion, which have a low toxicity, may be produced during hot wire cutting or heat sealing. Fumes are unlikely to be produced during heat shrinking when used as directed.

**Skin Contact:** Not irritating when used as directed. Hot polymer created during heat shrinking, wire cutting, or heat sealing, may produce thermal bums.

Chronic Effects of Exposure: None known when used as directed.

Carcinogenicity: None known when used as directed.

# **SECTION 12: ECOLOGICAL INFORMATION**

This material is insoluble in water and not expected to present any environmental problems in normal application, however areas containing aromatic hydrocarbons, halogenated compounds, chlorinated compounds, pH extremities, oxidative agents, solvents or other known polyethylene solubilizers, prodegradants, etc. may impact the product performance and/or service life.

## **SECTION 13: DISPOSAL CONSIDERATIONS**

**Procedure:** Reclaim if feasible. If product can't be reclaimed, no special requirements are necessary; dispose of as ordinary solid waste. Pick up film for good "housekeeping" and to prevent a slipping hazard. Incineration or landfill in compliance with federal, state and local regulations. Since regulations vary, consult applicable regulations or authorities before disposal.

## **SECTION 14: TRANSPORT INFORMATION**

US DOT Hazard Class: Not regulated.

Continued...

Note - legal notice on page 5



Revision Date: July 30, 2018 | Date of Issue: June 1, 2017 | Version Number: 2.0

## **SECTION 15: REGULATORY INFORMATION**

**Workplace Classification:** This product is not considered hazardous under the OSHA Hazard Communication Standard (29 C.F.R. § 1910.1200).

**CERCLA Information (40 C.F.R. 302.4):** Because of the form in which copper is contained within the resin, releases of this material to air, land, or water are not reportable to the National Response Center under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA).

**Waste Classification:** When this product becomes a waste, it is classified as a non-hazardous waste under criteria of the Resource Conservation and Recovery Act (40 C.F.R. 261).

## **SECTION 16: OTHER INFORMATION**

#### **HAZARD RATING**

Health: 0 | Flammability: 1 | Reactivity: 0 | Special Hazards: None Scale: 4 = Extreme | 3 = High | 2 = Moderate | 1 = Slight | 0 = Insignificant

National Fire Protection Association (NFPA) hazard ratings are designed for use by emergency response personnel to address the hazards that are presented by short-term, acute exposure to a material under conditions of fire, spill, or similar emergencies. Hazard ratings are primarily based on the inherent physical and toxic properties of the material, but also include the toxic properties of combustion or decomposition products that are known to be generated in significant quantities.

Rating are based on internal supplier's guidelines, and they are intended for internal use only.

#### **ABBREVIATIONS**

ACGIH = American Conference of Governmental Industrial Hygienists OSHA = Occupational Safety and Health Administration TLV = Threshold Limit Value

PEL = Permissible Exposure Limit

TWA = Time Weighted Average

STEL = Short-Term Exposure Limit

**Disclaimer:** The information contained herein relates only to the specific material identified. Stego Technology, LLC believes that such information is accurate and reliable as of the date of this material safety data sheet, but no representation, guarantee or warranty, expressed or implied, is made as to the accuracy, reliability, or completeness of the information. Stego Technology, LLC urges persons receiving this information to make their own determination as to the information's suitability and completeness for their particular application.

Please read the product statements for all Drago® products by navigating here: http://www.stegoindustries.com/legal



# DRAGO® WRAP VAPOR INTRUSION BARRIER

# INSTALLATION INSTRUCTIONS

Engineered protection to create a *healthy* built environment.

# DRAGO® WRAP VAPOR INTRUSION BARRIER INSTALLATION INSTRUCTIONS



P2 of

**IMPORTANT:** Please read these installation instructions completely, prior to beginning any Drago Wrap installation. The following installation instructions are generally based on ASTM E1643 – Standard Practice for Selection, Design, Installation, and Inspection of Water Vapor Retarders Used in Contact with Earth or Granular Fill Under Concrete Slabs. There are specific instructions in this document that go beyond what is stated in ASTM E1643 to take into account vapor intrusion mitigation. If project specifications call for compliance with ASTM E1643, then be sure to review the specific installation sections outlined in the standard along with the techniques referenced in these instructions.

# **UNDER-SLAB INSTRUCTIONS:**

1. Drago Wrap has been engineered to be installed over a tamped aggregate, sand, or earth base. It is not typically necessary to have a cushion layer or sand base, as Drago Wrap is tough enough to withstand rugged construction environments.

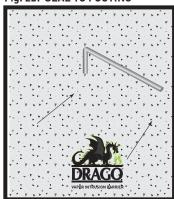
NOTE: Drago Wrap must be installed with the gray facing the subgrade.

Fig.1: UNDER-SLAB INSTALLATION



2. Unroll Drago Wrap over the area where the slab is to be placed. Drago Wrap should completely cover the concrete placement area. All joints/seams should be overlapped a minimum of 12 inches and taped using Drago® Tape. (Fig. 1). If additional protection is needed, install DragoTack™ Tape in between the overlapped seam in combination with Drago Tape on top of the

NOTE: The area of adhesion should be free from dust, dirt, moisture, and frost to allow maximum adhesion of the pressure-sensitive tape. Ensure that all seams are taped with applied pressure to allow for maximum and continuous adhesion of the pressure-sensitive Drago Tape. Adhesives should be installed above 40°F. In temperatures below 40°F, take extra care to remove moisture/frost from the area of adhesion.


3.

ASTM E1643 requires sealing the perimeter of the slab. Extend vapor retarder over footings and seal to foundation wall or grade beam at an elevation consistent with the top of the slab or terminate at impediments such as waterstops or dowels. Consult the structural and environmental engineer of record before proceeding.

#### Fig.2a: SEAL TO PERIMETER WALL



Fig. 2b: SEAL TO FOOTING



# SEAL TO PERIMETER WALL OR FOOTING WITH DRAGOTACK TAPE: (Fig. 2a and 2b)

- Make sure area of adhesion is free of dust, dirt, debris, moisture, and frost to allow maximum adhesion.
- **b**. Remove release liner on one side and stick to desired surface.
- **c**. When ready to apply Drago Wrap, remove the exposed release liner and press firmly against DragoTack Tape to secure.
- **d**. If a mechanical seal is needed, fasten a termination bar over the top of the Drago Wrap inline with the DragoTack Tape.

NOTE: If sealing to the footing, the footing should receive a hand float finish to allow for maximum adhesion.



P3 of 4

4.

In the event that Drago Wrap is damaged during or after installation, repairs must be made. Cut a piece of Drago Wrap to a size and shape that covers any damage by a minimum of 6 inches in all directions. Clean all adhesion areas of dust, dirt, moisture, and frost. Tape down all edges using Drago Tape. (Fig. 3)

Fig. 3: SEALING DAMAGED AREAS







5.

**IMPORTANT:** ALL PENETRATIONS MUST BE SEALED. All pipe, ducting, rebar, and block outs should be sealed using Drago Wrap, Drago Tape, and/or Drago® Sealant and Drago® Sealant Form. (Fig. 4a). Drago accessories should be sealed directly to the penetrations.

Fig. 4a: PIPE PENETRATION SEALING





Fig. 4b: DETAIL PATCH FOR PIPE PENETRATION SEALING









#### **DETAIL PATCH FOR PIPE PENETRATION SEALING: (Fig. 4b)**

- **a.** Install Drago Wrap around pipe penetrations by slitting/cutting material as needed. Try to minimize void space created.
- **b.** If Drago Wrap is close to pipe and void space is minimized, proceed to step d.
- c. If void space exists, then
  - i. Cut a detail patch to a size and shape that creates a 6-inch overlap on all edges around the void space at the base of the pipe.
  - ii. Cut an "X" slightly smaller than the size of the pipe diameter in the center of the detail patch and slide tightly over pipe.
  - iii. Tape the edges of the detail patch using Drago Tape.
- d. Seal around the base of the pipe using Drago Tape and/or Drago Sealant and Drago Sealant Form.
  - i. If Drago Sealant is used to seal around pipe, make sure Drago Wrap is flush with the base of the penetration prior to pouring Drago Sealant.

# DRAGO® WRAP VAPOR INTRUSION BARRIER INSTALLATION INSTRUCTIONS



P3 of 4

# **MULTIPLE PIPE PENETRATION SEALING: (Fig. 5)**

NOTE: Multiple pipe penetrations in close proximity may be most efficiently sealed using Drago Wrap, Drago Sealant, and Drago Sealant Form for ease of installation.

- Cut a hole in Drago Wrap such that the membrane fits over and around the base of the pipes as closely as possible, ensuring that it is flush with the base of the penetrations.
- b. Install Drago Sealant Form continuously around the entire perimeter of the group of penetrations and at least 1 inch beyond the terminating edge of Drago Wrap.
- c. Pour Drago Sealant inside of Drago Sealant Form to create a seal around the penetrations.
- d. If the void space between Drago Wrap and the penetrations is not minimized and/or the base course allows for too much drainage of sealant, a second coat of Drago Sealant may need to be poured after the first application has cured.

Fig. 5: MULTIPLE PIPE PENETRATION SEALING











# BEAST® CONCRETE ACCESSORIES - VAPOR BARRIER SAFE

Stego Industries\* recommends the use of BEAST vapor barrier-safe concrete accessories. to help eliminate the use of non-permanent penetrations in Drago Wrap installations.



**BEAST® SCREED** 

**BEAST® FORM STAKE** 

**BEAST® HOOK** 

Improve efficiency and maintain concrete floor levelness with the BEAST SCREED SYSTEM!

Locate it and lock it down!

The Stego barrier-safe forming system that prevents punctures in the vapor barrier.

IMPORTANT: AN INSTALLATION COMPLETED PER THESE INSTRUCTIONS SHOULD CREATE A MONOLITHIC MEMBRANE BETWEEN ALL INTERIOR INTRUSION PATHWAYS AND VAPOR SOURCES BELOW THE SLAB AS WELL AS AT THE SLAB PERIMETER. THE UNDERLYING SUBBASE SHOULD NOT BE VISIBLE IN ANY AREA WHERE CONCRETE WILL BE PLACED. IF REQUIRED BY THE DESIGN ENGINEER, ADDITIONAL INSTALLATION VALIDATION CAN BE DONE THROUGH SMOKE TESTING.

NOTE: While Drago Wrap installation instructions are based on ASTM E1643 - Standard Practice for Selection, Design, Installation, and Inspection of Water Vapor Retarders Used in Contact with Earth or Granular Fill Under Concrete Slabs, these instructions are meant to be used as a guide, and do not take into account specific job site situations. Consult local building codes and regulations along with the building owner or owner's representative before proceeding. If you have any questions regarding the above-mentioned installation instructions or products, please call us at 877-464-7834 for technical assistance. While Stego Industries' employees and representatives may provide technical assistance regarding the utility of a specific installation practice or Stego product, they are not authorized to make final design decisions.

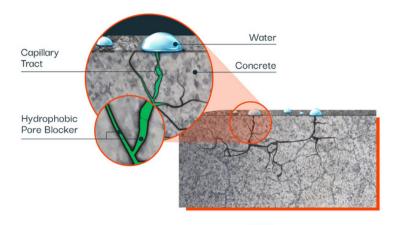


201.386.8110



**DATA SHEET** 

# Hycrete Endure WP


For Maximum Waterproofing Protection in Concrete Mixes

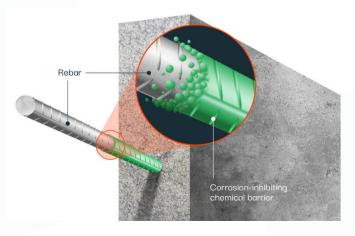
#### PRODUCT DESCRIPTION

Hycrete Endure WP (formerly W1000), Hycrete's patented flagship concrete waterproofing admixture, dramatically reduces water ingress through concrete. Ordinary concrete absorbs water and dissolved salts through its network of pores, leading to water infiltration and corrosion of steel reinforcement. Hycrete Endure WP reduces absorption to 1% or lower and forms a protective coating around steel reinforcement. Less water and fewer chlorides are able to penetrate the concrete and the reinforcement has enhanced protection from corrosion. Hycrete Endure WP delivers consistent and reliable performance and is easy to use. Hycrete Endure WP is an environmentally responsible, Cradle to Cradle™ certified product. Using Hycrete Endure WP allows owners and builders to have the comfort of knowing their investment /project remains secure against one of nature's most damaging elements ...water.

#### **USES AND APPLICATIONS**

- Included in Hycrete360; see separate data sheet for Hycrete360.
- Extra protection for walls and slabs
- Above and below grade construction
- · Water containment reservoirs
- Sewage and water treatment plants
- Secondary containment structures
- · Underground vaults
- Tilt-up panel walls
- Pre-cast components
- · Architectural water features and fountains
- · Bridges, dams and highway infrastructure
- · Aquatic centers, marinas and zoos
- Swimming pools




#### **KEY BENEFITS**

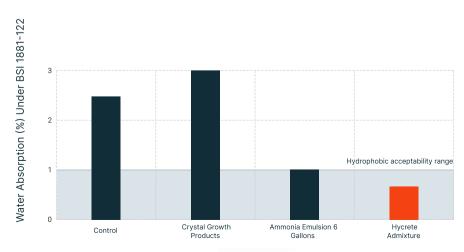
- Maximum waterproofing protection in concrete: less than 1% water absorption
- Corrosion protection; protective coating formed around steel reinforcement
- Neutral concrete set time performance, even in high fly ash and GGBS (slag) mixes
- · Resists hydrostatic pressure
- · Can heal cracks up to 0.4mm
- · Consistent performance and verifiable dosage
- · Easy to use; no additional labor required
- · Safe to use

#### **PRODUCT FEATURES**

- Cradle to Cradle<sup>™</sup> certified by MBDC
- NSF/ANSI 61 approved for use in potable water tanks
- Compatible with standard admixture metering equipment
- ISO 14021 compliant recycled content in accordance with Type II environmental labeling; applicable for LEED Materials and Resources Credit

4.1/4.2 - Recycled Content






# **PRODUCT PERFORMANCE\***

| Water absorption                     | BSI 1881-122                       | Less than 1% absorption                                                                                                                      |  |
|--------------------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|
| Permeability/hydrostatic<br>pressure | DIN 1048<br>BS EN 12390-8          | Passes DIN 1048; up to 70% reduction in permeability                                                                                         |  |
| Crack healing                        | ASTM C597                          | Concrete with Hycrete fosters faster and 100% complete healing compared to untreated control                                                 |  |
| Set time                             | ASTM C403                          | Set neutral                                                                                                                                  |  |
| Drying shrinkage                     | ASTM C157                          | Neutral to the control                                                                                                                       |  |
| Slump                                | ASTM C143                          | Neutral                                                                                                                                      |  |
| Workability                          | N/A                                | Excellent                                                                                                                                    |  |
| Effect on concrete color             | N/A                                | None                                                                                                                                         |  |
| Compressive strength                 | ASTM C39                           | Water/cement ratios may need to be lowered to account possible, minor strength decreases associated with som materials. Perform trial mixes. |  |
| Potable water                        | NSF/ANSI 61                        | Approved for use in potable water tanks 50,000 gallons or greater and pipes 84" in diameter and greater                                      |  |
| Adhesion                             | ASTM C1583, ASTM C1072, ASTM D3359 | Neutral; no adverse effect on bond with concrete                                                                                             |  |

<sup>\*</sup>All benefits and results are based on actual test results. Results may vary according to concrete mix designs, Hycrete Endure WP dosage, or other factors.

# WATERPROOFING PERFORMANCE





## GENERAL PROPERTIES AND CHARACTERISTICTS

Physical characteristics: Form: Liquid

Specific gravity: 1.05
Chloride content: Nil
pH: 8.5

#### Compatibility:

- Most concrete admixtures
- Most Portland cements or replacements including fly ash and GGBS (slag)
- Shotcrete mixes and application
- Most surface-applied sealants and external membrane protection systems

#### Recommended dosage:

1.0 U.S. gallon per cubic yard of concrete (5.0 liters per cubic meter)

#### Usage guidelines:

- Superplasticizer at the manufacturer's recommended rate and appropriate for the placement requirements of the project.
- Cementitious Content: The cementitious content of concrete containing Hydrophobic Concrete Admixture will not be less than 550 lbs/yd3 (325 kg/m3) with up to 15% fly ash or 50% slag maximum.
- Water-Cement Ratio: 0.42 maximum. Water content of Hydrophobic Concrete Admixture and other admixtures to be included in the water-to cementitious ratio.

#### Packaging:

1 gallon bottles; 5 gallon pails; 55 gallon drums; 275 gallon totes; bulk tanker delivery

#### Storage and handling:

Store above 32°F (0°C) and below 120 °F (48 °C). Slight flocculation can occur over time due to pH reductions. Such flocculation does not affect product performance

#### Notes

- For air-entrained concrete mixes speak to your local Hycrete Rep for proper mix design.
- User should perform trial mixes prior to placement and make necessary adjustments to the mix design as needed.
- If considering dosages other than recommended dosage contact Technical Services before use.

#### Safety

• Hycrete Endure WP (formerly W1000) is a water-based material and should not be swallowed or come into contact with skin or eyes. Wear suitable protective gloves and goggles. If material comes in contact with the skin, wash immediately with soap and water. In case of contact with eyes, rinse immediately with sufficient water and seek medical support. If swallowed, seek immediate medical attention. For further information please consult the Material Safety Data Sheet.

# **Related Documents**

- Hycrete Mixing Instructions
- Hycrete Material Safety Data Sheet Hycrete Endure WP
- For air-entrained concrete mixes speak to your local Hycrete Rep for proper mix design.









Hycrete, Inc.| 14 Spielman Rd | Fairfield, NJ 07004 USA | Phone: (+1) 201.386.8110 | Fax: (+1) 201.386.8155 | www.hycrete.com

Copyright © 2022 Hycrete, Inc. All rights reserved. Hycrete, Inc. and the Hycrete logo are trademarks of Hycrete, Inc.

Hycrete warrants that its products are free from manufacturing defects and, when applied in accordance with the current specification and application instructions, will perform as so stated in its product literature.

Disclaimer: The information and recommendations relating to the application and end-use of Hycrete Products are based on data that Hycrete, Inc. considers to be true and accurate and is to be used for the users' consideration, examination, and confirmation, but Hycrete, Inc. does not warrant the results acquired. Materials, compositions, and site environments are varied, and no warranty can be implied from this information or from any written recommendations, or from any other offered guidance. All orders are accepted subject to Hycrete, Inc.'s terms of sale and delivery. Copies of the most recent version of the Product Data Sheet should always be referenced and are available upon request. See warranty sheet for warranty details (available upon request). Protected under one or more of the following U.S. patents: 7,261,923; 7,381,252; 7,407,535; 7,498,090; 7,513,948 and 7,670,415. Additional patents pending and/or issued in the U.S. and internationally.

1002002-DEC22

info@hycrete.com hycrete.com

# APPENDIX K REMEDIAL INVESTIGATION SAMPLING AND ANALYSIS SUMMARY TABLES

REMEDIAL INVESTIGATION/FOCUSED FEASIBILITY STUDY
Block 38 West Site
500 through 536 Westlake Avenue North
Seattle, Washington

Farallon PN: 397-019

# Table K-1 Scope of Work and Rationale Block 38 West Site Seattle, Washington Farallon PN: 397-019

|                                                                                                                 | Dational                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Analysis and Matheda                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UST Product Line Borings<br>West- and North-Adjacent to<br>Northwestern Corner of the<br>Block 38 West Property | Rationale  Evaluate the lateral extent of ORO and cPAHs in soil west and north of the mass excavation soil sampling grid M1 located in the northwestern corner of the Block 38 West Property. | 1) Advance one boring up to a depth of 15 feet bgs, corresponding to an elevation of 10 feet NAVD88. Boring FB-20 was advanced in February 2022 to evaluate conditions north-adjacent to the northwestern corner of the Block 38 West Property.  2) Collect soil samples at elevations of 20, 17, 15, and/or 10 feet NAVD88.  3) Abandon borings with bentonite chips and concrete or asphalt to match surrounding grade.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Analytes and Methods  Soil samples will be analyzed for one or more of the following analytes (see Table J-1A):  1) DRO and ORO by NWTPH-Dx;  2) cPAHs by EPA 8270D SIM; and  3) Naphthalenes by EPA 8270.                                                                                                                                                                                                                                                                        |
| Monitoring Wells in the Shallow<br>Water-Bearing Zone                                                           | Evaluate the lateral extent of COPCs in the Shallow Water-Bearing Zone and evaluate groundwater flow conditions around the new building foundation.                                           | 1) Advance four monitoring wells to approximate elevation 5 feet NAVD88. Monitoring wells FMW-154 through FMW-156 were completed with a 5-foot screen interval from elevation 15 to 10 feet NAVD88. Remaining SWBZ monitoring wells will be completed with a 15-foot screen interval from elevation 20 to 5 feet NAVD88.  2) Complete borings as monitoring wells; develop monitoring wells once groundwater returns to steady state conditions.  3) Survey monitoring wells top of casing elevations at all wells in NAVD88 once top of casing and monument are set.  4) Conduct four quarterly groundwater monitoring events from a network of seven SWBZ monitoring wells following termination of concurrent construction dewatering events that occurred at the Block 38 West Property and in the nearby South Lake Union area, and once groundwater returns to steady state conditions. During the first groundwater monitoring event barium will be analyzed from four monitoring wells (FMW-A, FMW-154 through FMW-156. Mercury will be analyzed from monitoring well FMW-155.  5) Measure groundwater elevations quarterly to evaluate groundwater flow conditions from a network of seven monitoring wells. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Monitoring Wells in the<br>Intermediate Water-Bearing Zone                                                      | Evaluate the lateral extent of DRO and ORO in the Intermediate Water-Bearing Zone and evaluate groundwater flow conditions.                                                                   | <ol> <li>Advance three monitoring wells to approximate elevation -13 to -15 feet NAVD88. Complete with 10-foot screen interval from approximate elevation -3 to -5 to -13 to -15 feet NAVD88.</li> <li>Complete borings as monitoring wells; develop new monitoring wells once groundwater returns to steady state conditions.</li> <li>Survey new monitoring well top of casing elevations in NAVD88 once top of casing and monument are set.</li> <li>Conduct four quarterly groundwater monitoring events from a network of 11 IWBZ monitoring wells following termination of concurrent construction dewatering events that occurred at the Block 38 West Property and in the nearby South Lake Union area, and once groundwater returns to steady state conditions.</li> <li>Measure groundwater elevations quarterly to evaluate groundwater flow conditions from a network of 11 monitoring wells (including observation well OW-5).</li> </ol>                                                                                                                                                                                                                                                                | No soil analyses proposed.  Groundwater samples will be analyzed for one or more of the following analytes (see Table J-1B):  1) DRO and ORO by NWTPH-Dx; and  2) Naphthalenes by EPA 8270.  If DRO and ORO are present at concentrations exceeding groundwater screening levels, then the potential for comingling of these COPCs with the American Linen CVOC Plume will be assessed at these monitoring wells and groundwater samples will be analyzed for CVOCs by EPA 8260D. |

# Table K-1 Scope of Work and Rationale Block 38 West Site Seattle, Washington Farallon PN: 397-019

| Location                                        | Rationale                                                                                                                                                                                                    | Scope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Analytes and Methods                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Monitoring Wells in the Deep<br>Outwash Aquifer | Assess groundwater conditions in the Deep Outwash Aquifer at the Block 38 West Site post-construction dewatering events that occurred on the Block 38 West Property and in the nearby South Lake Union area. | <ol> <li>Advance one boring to approximate elevation -55 feet NAVD88. Complete with a 10-foot screen interval from approximate elevation -45 to -55 feet NAVD88.</li> <li>Complete boring as monitoring well; develop monitoring well once groundwater returns to steady state conditions.</li> <li>Survey monitoring well top of casing elevations at the new well in NAVD88 once top of casing and monument are set to match the existing grade.</li> <li>Conduct one groundwater monitoring event from a network of three DOA monitoring wells following termination of concurrent construction dewatering events that occurred at the Block 38 West Property and in the nearby South Lake Union area, and once groundwater returns to steady state conditions.</li> <li>Measure groundwater elevations quarterly to evaluate groundwater flow conditions from a network of three monitoring wells.</li> </ol> | Ecology requested that, in addition to the new DOA monitoring well, both FMW-137 and FMW-138 be sampled post-construction dewatering. Analysis of CVOCs is pursuant to Ecology requirements.  Groundwater samples will be analyzed for the following analyte (see Table J-1B):  1) CVOCs by EPA 8260D. |

NOTES:

bgs = below ground surface

COPC = constituents of potential concern

cPAHs = carcinogenic polycyclic aromatic hydrocarbons

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

DOA = Deep Outwash Aquifer

EPA = U.S. Environmental Protection Agency

GRO = TPH as gasoline-range organics

MTCA = Washington State Model Toxics Control Act Cleanup Regulation

NAVD88 = North American Vertical Datum of 1988

ORO = TPH as oil-range organics

UST = Underground Storage Tank

CVOC = chlorinated volatile organic compound

Table K-1A
Proposed Soil Analyses
Block 38 West Site
Seattle, Washington
Farallon PN: 397-019

| Location Description                             | Location                                               | Sample<br>Location | Sample Elevation Depth<br>(feet NAVD88) | GRO | DRO | ORO | втех | Naphthalenes | cPAHs | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                      |  |  |  |    |  |   |   |  |   |
|--------------------------------------------------|--------------------------------------------------------|--------------------|-----------------------------------------|-----|-----|-----|------|--------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|----|--|---|---|--|---|
| Westlake Avenue North                            |                                                        |                    | 20                                      |     | X   | X   |      |              | X     | 11/19/2021 - Email from Ecology requesting analysis of DRO, ORO, and cPAHs at elevations 20, 15, and 10 feet NAVD88.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                      |  |  |  |    |  |   |   |  |   |
| Proximate to former UST line                     | FB-17                                                  | FB-17              | 15                                      |     | X   | X   |      |              | X     | Overall comment for naphthalenes; sufficient data already collected for this COPC; although [naphtha] > SLs at elevation 20 feet NAVD88 in soil sample from UST-01-Line1; it was < SLs in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                      |  |  |  |    |  |   |   |  |   |
|                                                  |                                                        |                    | 10                                      |     | X   | X   |      |              | X     | several WSW samples at elevation 20 feet: M1-WSW2, M1-WSW, N1-WSW, N1-NSW.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                      |  |  |  |    |  |   |   |  |   |
| Mercer Avenue<br>Proximate to former UST<br>line | FB-A<br>Ecology Required<br>Boring North of Grid<br>N1 | FB-20              | 20                                      |     | X   | X   |      | X            | X     | 11/19/2021 - Email from Ecology requesting analysis of cPAHs + naphthalenes. 10/12/2021 - Call with Ecology - clarified that field screening (qualitative data) will not be accepted to bound DRO + ORO impacts detected in a soil sample collected from N1-WSW at elevation 17 feet NAVD88. Ecology is requiring empirical data for all elevations listed and agreed to collect and retain at the 10-foot elevation pending results at elevation 15 feet NAVD88. Farallon summarized the lack of obvious signs of contamination by visual, olfactory, and PID field screening, which is why the soil sample collected from the north sidewall of N1 was considered representative of conditions. Farallon reviewed the utility locations and access limitations. Ecology requested that a boring be advanced or attempted to be advanced. Updating the proposed boring location map to include the utility layout provided by City Investors. Naphthalenes were detected at concentrations > SLs in two soil samples, M1-Tank and UST-01-Line. M1-Tank was bounded in all directions by UST soil samples collected during |                                                                                                                                                                                                                                                                                                                                                      |  |  |  |    |  |   |   |  |   |
|                                                  |                                                        |                    |                                         | 17  |     | X   | X    |              | X     | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | decommissioning (UST01-W1, UST01-N1, UST01-E1, UST01-S1, and UST01-B at elevations ranging from 19 to 17.5 feet NAVD88). UST-01-Line was bounded in all directions by UST soil samples collected during decommissioning (M1-WSW, UST02-N and UST02-N1, UST02-E, UST02-S, M1-WSW2, and UST01-B at elevations ranging from 20 to 17.5 feet NAVD88). No |  |  |  |    |  |   |   |  |   |
|                                                  |                                                        |                    |                                         |     |     |     |      |              |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                      |  |  |  | 15 |  | X | X |  | X |
|                                                  |                                                        |                    | 10                                      |     | /   | /   |      | /            | /     | cPAHs to evaluate exceedance at M1-WSW. No data gap for cPAHs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                      |  |  |  |    |  |   |   |  |   |
| Westlake Avenue North<br>TP-12                   | FB-B                                                   | FB-18              | 20                                      |     |     |     |      |              | X     | 11/19/2021 - Email from Ecology agreeing to analysis of only cPAHs. cPAHs were detected at a concentration > SLs in TP-12 at elevations 20 and 15 feet NAVD88. Ecology's 9/14/2021 response letter only states that cPAHs are required to complete the remedial investigation. Farallon did not sample for these COPCs based on existing data set and no field indications of petroleum hydrocarbon impacts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                      |  |  |  |    |  |   |   |  |   |
|                                                  |                                                        |                    | 15                                      |     |     |     |      |              | X     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                      |  |  |  |    |  |   |   |  |   |
|                                                  |                                                        |                    | 10                                      |     |     |     |      |              | /     | Collect and retain; analyze if cPAHs > SLs at elevation 15 feet NAVD88.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |  |  |  |    |  |   |   |  |   |
| Westlake Avenue North<br>TP-12                   | FB-C                                                   | FB-19              | 20                                      |     |     |     |      |              | Х     | 11/19/2021 - Email from Ecology agreeing to analysis of only cPAHs. cPAHs were detected at a concentration > SLs in TP-12 at elevations 20 and 15 feet NAVD88. Ecology's 9/14/2021 response letter states that cPAHs are required to complete the remedial investigation. Farallon did not sample for these COPCs based on existing data set and no field indications of petroleum hydrocarbon impacts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |  |  |  |    |  |   |   |  |   |
|                                                  |                                                        |                    | 15                                      |     |     |     |      |              | X     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                      |  |  |  |    |  |   |   |  |   |
|                                                  |                                                        |                    | 10                                      |     |     |     |      |              | /     | Collect and retain; analyze if cPAHs > SLs at elevation 15 feet NAVD88.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                      |  |  |  |    |  |   |   |  |   |

Table K-1A
Proposed Soil Analyses
Block 38 West Site
Seattle, Washington
Farallon PN: 397-019

| Location Description                        | Location     | Sample<br>Location | Sample Elevation Depth<br>(feet NAVD88) | GRO | DRO | ORO | BTEX | Naphthalenes | cPAHs | Comments                                                                                                                                                                                                                                         |
|---------------------------------------------|--------------|--------------------|-----------------------------------------|-----|-----|-----|------|--------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mercer Street                               | FB-D         | FB-21              | 28                                      |     |     |     |      | -            | X     | N/A5-NSW cPAHs > SLs at elevation 28 feet NAVD88; make Ecology aware of utility bank in sidewalk. Boring may not be feasible.                                                                                                                    |
| North of Alley NSW                          |              |                    | 26                                      |     |     |     |      |              | X     | Collect and retain; analyze if cPAHs > SLs at elevation 28 feet NAVD88.                                                                                                                                                                          |
| SWBZ gw sample west of FB-03 reconnaissance | FMW-A        | FMW-158            |                                         |     |     |     |      |              |       |                                                                                                                                                                                                                                                  |
| IWBZ                                        | FMW-B        | FMW-159            | 20                                      |     | /   | /   |      | /            | /     | Data from FB-05 does not indicate that COPCs are present above SLs. Farallon agrees to collect and retain in the event of a detection of a COPC in groundwater.                                                                                  |
| bound DRO/ORO to west                       | TMW-D        | FMW-159            | 15                                      |     | /   | /   |      | /            | /     | Data from FB-05 does not indicate that COPCs are present above SLs. Farallon agrees to collect and retain in the event of a detection of a COPC in groundwater.                                                                                  |
| SWBZ                                        | FMW-C        | FMW-160            | 20                                      |     | X   | X   |      | Х            | X     | 3/17/22 - Ecology letter required analysis for naphthalenes and cPAHs.  Based on ORO + DRO detected in FMW-134 > SLs at elevation 20 feet NAVD88; collect and retain for naphthalenes analyze if detected in groundwater at concentration > SLs. |
|                                             |              | FMW-160            | 15                                      |     | X   | X   |      | X            | X     | 3/17/22 - Ecology letter required analysis for naphthalenes and cPAHs.                                                                                                                                                                           |
| SWBZ                                        | FMW-D        | FMW-161            | 20                                      |     | X   | X   |      | Х            | X     | 3/17/22 - Ecology letter required analysis for naphthalenes and cPAHs.  Based on ORO + DRO detected in FMW-134 > SLs at elevation 20 feet NAVD88; collect and retain for naphthalenes analyze if detected in groundwater at concentration > SLs. |
|                                             |              | FMW-161            | 15                                      |     | X   | X   |      | Х            | X     | 3/17/22 - Ecology letter required analysis for DRO, ORO, naphthalenes, and cPAHs. DRO, ORO, DRO + ORO, cPAHs, naphthalenes > SLs in FMW-149 at elevations 15 and 5 feet NAVD88.                                                                  |
|                                             | FMW-E        | FMW-162            | 20                                      |     |     |     |      |              |       |                                                                                                                                                                                                                                                  |
| IWBZ                                        | I 1/1 (V -E/ | FMW-162            | 15                                      |     |     |     |      |              |       |                                                                                                                                                                                                                                                  |
| SWBZ                                        | FMW-F        | FMW-163            | 20                                      |     | X   | X   |      | Х            | X     | 5/3/22 Ecology requested soil samples be analyzed for DRO, ORO, naphthalenes, and cPAHs. TP-15 is 10 feet north of proposed SWBZ FMW-F.                                                                                                          |
| SWDE                                        | F IVI VV -I  | FMW-163            | 15                                      |     | X   | X   |      | Х            | X     | DRO, ORO, DRO + ORO > SLs in TP-15 at elevations 20, 15, 10 feet NAVD88; and DRO, ORO, DRO + ORO > SLs in FMW-136; and DRO, ORO, DRO + ORO, cPAHs, naphthalenes > FMW-149 at elevations 15 and 5 feet NAVD88.                                    |

Table K-1A
Proposed Soil Analyses
Block 38 West Site
Seattle, Washington
Farallon PN: 397-019

| Location Description | Location | Sample<br>Location | Sample Elevation Depth<br>(feet NAVD88) | GRO | DRO | ORO | BTEX | Naphthalenes | cPAHs | Comments |
|----------------------|----------|--------------------|-----------------------------------------|-----|-----|-----|------|--------------|-------|----------|
| IWBZ                 | FMW-G    | FMW-164            |                                         |     |     |     |      |              |       |          |
| SWBZ                 | FMW-H    | FMW-154            |                                         |     |     |     |      |              |       |          |
| SWBZ                 | FMW-I    | FMW-155            |                                         |     |     |     |      |              |       |          |
| IWBZ                 | FMW-J    | FMW-157            |                                         |     |     |     |      |              |       |          |
| SWBZ                 | FMW-K    | FMW-156            |                                         |     |     |     |      |              |       |          |

#### NOTES:

bgs = below ground surface

COPC = constituents of potential concern

cPAHs = carcinogenic polycyclic aromatic hydrocarbons

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

Ecology = Washington State Department of Ecology

GRO =TPH as gasoline-range organics

NAVD88 = North American Vertical Datum of 1988

MTCA = Washington State Model Toxics Control Act Cleanup Regulation

ORO = TPH as oil-range organics

/= Collect and retain sample for potential analysis

# Table K-1B Proposed Groundwater Analyses Block 38 West Site Seattle, Washington Farallon PN: 397-019

|                                             |          | 1 1                |                                  | 1   | 1   |     |      | F            |       |       |        | T                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------|----------|--------------------|----------------------------------|-----|-----|-----|------|--------------|-------|-------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Location Description                        | Location | Sample<br>Location | Screen Interval<br>(feet NAVD88) | GRO | DRO | ORO | BTEX | Naphthalenes | cPAHs | CVOCs | Metals | Comments                                                                                                                                                                                                                                                                                                                                                                           |
| IWBZ                                        | NA       | FMW-150            | -8.5 to -13.5 <sup>1</sup>       |     | X   | X   |      | X            |       | /     |        | 5/3/2022 - Ecology requested analysis of naphthalenes from all IWBZ monitoring wells.  If DRO and ORO are present at concentrations exceeding groundwater screening levels, then the potential for comingling of these COPCs with the American Linen CVOC Plume will be assessed.                                                                                                  |
| IWBZ                                        | NA       | FMW-151            | -9.3 to -14.3 <sup>1</sup>       |     | X   | X   |      | X            |       | /     |        | 5/3/2022 - Ecology requested analysis of naphthalenes from all IWBZ monitoring wells.  If DRO and ORO are present at concentrations exceeding groundwater screening levels, then the potential for comingling of these COPCs with the American Linen CVOC Plume will be assessed.                                                                                                  |
| IWBZ                                        | NA       | FMW-152            | -8.5 to -13.5 <sup>1</sup>       |     | X   | X   |      | X            |       | /     |        | 5/3/2022 - Ecology requested analysis of naphthalenes from all IWBZ monitoring wells.  If DRO and ORO are present at concentrations exceeding groundwater screening levels, then the potential for comingling of these COPCs with the American Linen CVOC Plume will be assessed.                                                                                                  |
| IWBZ                                        | NA       | FMW-153            | -8.5 to -13.5 <sup>1</sup>       |     | X   | X   |      | X            |       | /     |        | 5/3/2022 - Ecology requested analysis of naphthalenes from all IWBZ monitoring wells.  If DRO and ORO are present at concentrations exceeding groundwater screening levels, then the potential for comingling of these COPCs with the American Linen CVOC Plume will be assessed.                                                                                                  |
| IWBZ                                        | NA       | OW-1               | -6.0 to -21.0                    |     | X   | X   |      | X            |       | /     |        | Ecology requested naphthalenes be analyzed in IWBZ based on naphthalenes detected at a concentration that exceeds the groundwater screening level protective of indoor air in FMW-146.  If DRO and ORO are present at concentrations exceeding groundwater screening levels, then the potential for comingling of these COPCs with the American Linen CVOC Plume will be assessed. |
| IWBZ                                        | NA       | OW-2               | -7.0 to -22.0                    |     | X   | X   |      | X            |       | /     |        | 5/3/2022 - Ecology requested analysis of naphthalenes from all IWBZ monitoring wells.  If DRO and ORO are present at concentrations exceeding groundwater screening levels, then the potential for comingling of these COPCs with the American Linen CVOC Plume will be assessed.                                                                                                  |
| IWBZ                                        | NA       | OW-3               | -8.0 to -23.0                    |     | х   | X   |      | X            |       | /     |        | 5/3/2022 - Ecology requested analysis of naphthalenes from all IWBZ monitoring wells.  If DRO and ORO are present at concentrations exceeding groundwater screening levels, then the potential for comingling of these COPCs with the American Linen CVOC Plume will be assessed.                                                                                                  |
| SWBZ gw sample west of FB-03 reconnaissance | FMW-A    | FMW-158            | 15 to 10                         | X   | X   | X   | X    | X            |       |       | X      | 1/30/2023 - Ecology requested analysis of barium for the first quarterly monitoring event to verif whether the soil exceedance in saturated soil at FB-03 has impacted groundwater.                                                                                                                                                                                                |
| IWBZ<br>bound DRO/ORO to west               | FMW-B    | FMW-159            | -3 to -13                        |     | X   | X   |      | X            |       | /     |        | 5/3/2022 - Ecology requested analysis of naphthalenes from all IWBZ monitoring wells.  If DRO and ORO are present at concentrations exceeding groundwater screening levels, then the potential for comingling of these COPCs with the American Linen CVOC Plume will be assessed.                                                                                                  |
| SWBZ                                        | FMW-C    | FMW-160            | 15 to 10                         | X   | X   | X   | X    | X            |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                    |
| SWBZ                                        | FMW-D    | FMW-161            | 15 to 10                         | X   | X   | X   | Х    | Х            |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                    |
| IWBZ                                        | FMW-E    | FMW-162            | -3 to -13                        |     | X   | X   |      | X            |       | /     |        | 5/3/2022 - Ecology requested analysis of naphthalenes from all IWBZ monitoring wells.  If DRO and ORO are present at concentrations exceeding groundwater screening levels, then the potential for comingling of these COPCs with the American Linen CVOC Plume will be assessed.                                                                                                  |
| SWBZ                                        | FMW-F    | FMW-163            | 15 to 10                         | X   | Х   | Х   | Х    | X            |       |       |        |                                                                                                                                                                                                                                                                                                                                                                                    |

# Table K-1B Proposed Groundwater Analyses Block 38 West Site Seattle, Washington Farallon PN: 397-019

| Location Description | Location | Sample<br>Location | Screen Interval<br>(feet NAVD88) | GRO | DRO | ORO | втех | Naphthalenes | cPAHs   | CVOCs | Metals | Comments                                                                                                                                                                                                                                                                          |
|----------------------|----------|--------------------|----------------------------------|-----|-----|-----|------|--------------|---------|-------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IWBZ                 | FMW-G    | FMW-164            | -3 to -13                        | UNO | X   | X   | DIEX | X            | CITAIIS | /     | Wetais | 5/3/2022 - Ecology requested analysis of naphthalenes from all IWBZ monitoring wells.  If DRO and ORO are present at concentrations exceeding groundwater screening levels, then the potential for comingling of these COPCs with the American Linen CVOC Plume will be assessed. |
| SWBZ                 | FMW-H    | FMW-154            | 14 to 9                          | X   | X   | X   | X    | X            |         |       | X      | 1/30/2023 - Ecology requested analysis of barium for the first quarterly monitoring event to verify whether the soil exceedance in saturated soil at FB-04 has impacted groundwater.                                                                                              |
| SWBZ                 | FMW-I    | FMW-155            | 14 to 9                          | X   | X   | X   | X    | X            |         |       | X      | 1/30/2023 - Ecology requested analysis of barium and mercury for the first quarterly monitoring event to verify whether the soil exceedance in saturated soil at FB-02 has impacted groundwater.                                                                                  |
| IWBZ                 | FMW-J    | FMW-157            | -4 to -14                        |     | X   | X   |      | X            |         | /     |        | 5/3/2022 - Ecology requested analysis of naphthalenes from all IWBZ monitoring wells.  If DRO and ORO are present at concentrations exceeding groundwater screening levels, then the potential for comingling of these COPCs with the American Linen CVOC Plume will be assessed. |
| SWBZ                 | FMW-K    | FMW-156            | 11 to 6                          | X   | X   | X   | X    | X            |         |       | X      | 1/30/2023 - Ecology requested analysis of barium for the first quarterly monitoring event to verify whether the soil exceedance in saturated soil at FB-01 has impacted groundwater.                                                                                              |
| DOA                  | FMW-L    | FMW-165            | -45 to -55                       |     |     |     |      |              |         | X     |        |                                                                                                                                                                                                                                                                                   |
| DOA                  | NA       | FMW-137            | -41.9 to -54.9                   |     |     |     |      |              |         | X     |        | 3/17/22 - Ecology letter requested sampling and analysis of existing monitoring well. One time event.                                                                                                                                                                             |
| DOA                  | NA       | FMW-138            | -49.96 to -59.96                 |     |     |     |      |              |         | X     |        | 3/17/22 - Ecology letter requested sampling and analysis of existing monitoring well. One time event.                                                                                                                                                                             |

Collect and retain sample for potential analysis

#### NOTES:

bgs = below ground surface

COPC = constituents of potential concern

cPAHs = carcinogenic polycyclic aromatic hydrocarbons

DRO = total petroleum hydrocarbons (TPH) as diesel-range organics

GRO =TPH as gasoline-range organics

NAVD88 = North American Vertical Datum of 1988

MTCA = Washington State Model Toxics Control Act Cleanup Regulation

ORO = TPH as oil-range organics

 $^{1}$ In feet referenced to North American Vertical Datum of 1988 (NAVD88) based on well construction detail.

# APPENDIX L WELL SURVEY REPORT

REMEDIAL INVESTIGATION/FOCUSED FEASIBILITY STUDY
Block 38 West Site
500 through 536 Westlake Avenue North
Seattle, Washington

Farallon PN: 397-019



# MONITORING WELL SURVEY 520 WESTLAKE AVE. N., SEATTLE

SURVEY DATE MAY 16, 2023

APEX ENGINEERING JOB #36151

# FARALLON JOB NO. 397-019

| FEATURE | ELEVATION NORTH RIM<br>OF OUTER CASE | ELEVATION NORTH<br>EDGE OF PVC | NORTHING  | EASTING    |
|---------|--------------------------------------|--------------------------------|-----------|------------|
|         |                                      |                                |           |            |
| FMW-158 | 35.51                                | 35.04                          | 231219.18 | 1269311.57 |
| FMW-159 | 36.48                                | 36.15                          | 231170.14 | 1269311.66 |
| FMW-160 | 39.23                                | 38.95                          | 231030.33 | 1269305.99 |
| FMW-161 | 40.24                                | 39.86                          | 230983.90 | 1269329.97 |
| FMW-162 | 40.35                                | 40.09                          | 230981.28 | 1269335.12 |
| FMW-163 | 40.66                                | 40.29                          | 230979.55 | 1269369.25 |
| FMW-164 | 40.53                                | 40.18                          | 230978.04 | 1269410.55 |
| FMW-165 | 32.43                                | 32.11                          | 231376.97 | 1269316.42 |

VERTICAL NAVD 88 - BASED ON CITY OF SEATTLE BENCHMARK NO. 3658-0102 WITH A PUBLISHED

DATUM: ELEVATION OF 54.26'

HORIZONTAL NAD 83/2011 WASHINGTON SOUTH ZONE - BASED ON GPS MEASUREMENTS USING THE

DATUM: WASHINGTON STATE REFERENCE NETWORK.







# APPENDIX M DATA VALIDATION REPORT

REMEDIAL INVESTIGATION/FOCUSED FEASIBILITY STUDY
Block 38 West Site
500 through 536 Westlake Avenue North
Seattle, Washington

Farallon PN: 397-019





# DATA VALIDATION REPORT

# BLOCK 38 WEST SITE 500 THROUGH 536 WESTLAKE AVENUE NORTH SEATTLE, WASHINGTON

Agreed Order No. DE 17963 Facility Site Identification No. 62773 Cleanup Site Identification No. 15008

> Submitted by: Farallon Consulting, L.L.C. 975 5<sup>th</sup> Avenue Northwest Issaquah, Washington 98027

> > **Farallon PN: 397-019**

For:

City Investors IX LLC 505 5<sup>th</sup> Avenue South Seattle, Washington 98104

August 13, 2021

Prepared by:

Environmental Data Manager

Reviewed by:

Eric Buer, L.G., L.H.G. Principal Hydrogeologist

www.farallonconsulting.com



# TABLE OF CONTENTS

| 1.0 | INTE | RODUC | TION                                                        | 1-1 |
|-----|------|-------|-------------------------------------------------------------|-----|
|     | 1.1  | OVER  | RALL DATA ASSESSMENT                                        | 1-1 |
|     | 1.2  | DATA  | A QUALIFIER DEFINITIONS                                     | 1-2 |
|     | 1.3  |       | N-OF-CUSTODY                                                |     |
|     | 1.4  |       | PLETENESS                                                   |     |
| 2.0 | PETI | ROLEU | M HYDROCARBON NWTPH-DX QA REVIEW                            | 2-1 |
|     | 2.1  | TIME  | LINESS AND PRESERVATION                                     | 2-1 |
|     | 2.2  |       | O QUALITY CONTROL SAMPLES                                   |     |
|     | 2.3  | LABC  | DRATORY QUALITY CONTROL SAMPLES                             | 2-1 |
|     |      |       | Quality Control Analysis Frequency                          |     |
|     |      | 2.3.2 | Method Blanks                                               |     |
|     |      | 2.3.3 | Laboratory Duplicates                                       | 2-2 |
|     |      | 2.3.4 | Surrogate Recoveries                                        |     |
| 3.0 | PETI | ROLEU | M HYDROCARBON NWTPH-GX QA REVIEW                            | 3-1 |
|     | 3.1  |       | LINESS AND PRESERVATION                                     |     |
|     | 3.2  | FIELI | QUALITY CONTROL SAMPLES                                     | 3-1 |
|     | 3.3  | LABC  | DRATORY QUALITY CONTROL SAMPLES                             | 3-2 |
|     |      | 3.3.1 | Quality Control Analysis Frequency                          |     |
|     |      | 3.3.2 |                                                             |     |
|     |      | 3.3.3 | Laboratory Duplicates, Spike Blanks/Spike Blank Duplicates, | ,   |
|     |      |       | and/or Matrix Spikes/Matrix Spike Duplicates                |     |
|     |      | 3.3.4 | Surrogate Recoveries                                        |     |
| 4.0 | PETI | ROLEU | M HYDROCARBON NWTPH-HCID QA REVIEW                          | 4-1 |
|     | 4.1  |       | LINESS AND PRESERVATION                                     |     |
|     | 4.2  |       | DRATORY QUALITY CONTROL SAMPLES                             |     |
|     |      | 4.2.1 | Quality Control Analysis Frequency                          |     |
|     |      | 4.2.2 |                                                             |     |
|     |      | 4.2.3 | Surrogate Recoveries                                        |     |
| 5.0 | VOL  | ATILE | ORGANIC COMPOUND 8021B QA REVIEW                            | 5-1 |
|     | 5.1  |       | LINESS                                                      |     |
|     | 5.2  | LABC  | DRATORY QUALITY CONTROL SAMPLES                             | 5-1 |
|     |      | 5.2.1 | Quality Control Analysis Frequency                          | 5-1 |
|     |      | 5.2.2 | Method Blanks                                               | 5-1 |
|     |      | 5.2.3 | Laboratory Duplicates, Spike Blanks/Spike Blank Duplicates, | 1   |
|     |      |       | and/or Matrix Spikes/Matrix Spike Duplicates                |     |
|     |      | 5.2.4 | Surrogate Recoveries                                        |     |
| 6.0 | VOL  | ATILE | ORGANIC COMPOUND 8260C/D QA REVIEW                          | 6-1 |



|        | 6.1 | TIMEI    | LINESS                                               | 6-1  |  |  |  |  |  |  |
|--------|-----|----------|------------------------------------------------------|------|--|--|--|--|--|--|
|        | 6.2 | FIELD    | QUALITY CONTROL SAMPLES                              | 6-1  |  |  |  |  |  |  |
|        | 6.3 | LABO     | RATORY QUALITY CONTROL SAMPLES                       | 6-1  |  |  |  |  |  |  |
|        |     | 6.3.1    | Quality Control Analysis Frequency                   | 6-1  |  |  |  |  |  |  |
|        |     | 6.3.2    | Method Blanks                                        | 6-1  |  |  |  |  |  |  |
|        |     | 6.3.3    | Spike Blanks/Spike Blank Duplicates                  | 6-1  |  |  |  |  |  |  |
|        |     | 6.3.4    | Surrogate Recoveries                                 | 6-2  |  |  |  |  |  |  |
| 7.0    | SE  | MIVOLAT  | ΓILE ORGANIC COMPOUND QA REVIEW                      | 7-1  |  |  |  |  |  |  |
|        | 7.1 | TIMEI    | LINESS                                               | 7-1  |  |  |  |  |  |  |
|        | 7.2 |          | QUALITY CONTROL SAMPLES                              |      |  |  |  |  |  |  |
|        | 7.3 | LABO     | RATORY QUALITY CONTROL SAMPLES                       | 7-2  |  |  |  |  |  |  |
|        |     | 7.3.1    | Quality Control Analysis Frequency                   |      |  |  |  |  |  |  |
|        |     | 7.3.2    | Method Blanks                                        | 7-2  |  |  |  |  |  |  |
|        |     | 7.3.3    | Spike Blanks/Spike Blank Duplicates and/or Matrix    |      |  |  |  |  |  |  |
|        |     |          | Spikes/Matrix Spike Duplicates                       | 7-2  |  |  |  |  |  |  |
|        |     | 7.3.4    | Surrogate Recoveries                                 |      |  |  |  |  |  |  |
| 0.0    | DC  | D A DOCL | ODG OA DEWIEW                                        | 0.1  |  |  |  |  |  |  |
| 8.0    |     |          | ORS QA REVIEW                                        |      |  |  |  |  |  |  |
|        | 8.1 |          | LINESS                                               |      |  |  |  |  |  |  |
|        | 8.2 |          | RATORY QUALITY CONTROL SAMPLES                       |      |  |  |  |  |  |  |
|        |     | 8.2.1    | Quality Control Analysis Frequency                   |      |  |  |  |  |  |  |
|        |     | 8.2.2    | Method Blanks                                        | 8-1  |  |  |  |  |  |  |
|        |     | 8.2.3    | Spike Blanks/Spike Blank Duplicates and/or Matrix    | 0.1  |  |  |  |  |  |  |
|        |     | 0.2.4    | Spikes/Matrix Spike Duplicates                       |      |  |  |  |  |  |  |
|        |     | 8.2.4    | Surrogate Recoveries                                 | 8-1  |  |  |  |  |  |  |
| 9.0    | MI  | ETALS QA | A REVIEW                                             | 9-1  |  |  |  |  |  |  |
|        | 9.1 | TIMEI    | LINESS                                               | 9-1  |  |  |  |  |  |  |
|        | 9.2 | LABO     | RATORY QUALITY CONTROL SAMPLES                       | 9-1  |  |  |  |  |  |  |
|        |     | 9.2.1    | Quality Control Analysis Frequency                   | 9-1  |  |  |  |  |  |  |
|        |     | 9.2.2    | Method Blanks                                        | 9-1  |  |  |  |  |  |  |
|        |     | 9.2.3    | Matrix Spikes/Matrix Spike Duplicates and Laboratory |      |  |  |  |  |  |  |
|        |     |          | Duplicates                                           | 9-1  |  |  |  |  |  |  |
| 10.0   | RE  | FERENCI  | ES                                                   | 10-1 |  |  |  |  |  |  |
|        |     |          |                                                      |      |  |  |  |  |  |  |
|        |     |          | TABLES                                               |      |  |  |  |  |  |  |
| т.1.1. | 1   | Onemaria |                                                      |      |  |  |  |  |  |  |
| Table  |     |          | of Soil Sample Analyses                              |      |  |  |  |  |  |  |
| Table  |     | •        | of Qualified Data                                    |      |  |  |  |  |  |  |
| Table  | 3   | FMW-134  | FMW-134 Sample and Field Duplicate Precision Summary |      |  |  |  |  |  |  |



#### 1.0 INTRODUCTION

This report provides a summary of quality assurance (QA) data validation findings. Data validation was performed for the following environmental samples:

Project Name: Block 38 West Site

Project No.: 397-019

Lab Name: OnSite Environmental Inc. (OnSite), Redmond, Washington

Lab Reference No.: 55 Sample Delivery Groups identified in Table 1

Matrices: Soil and Groundwater

Table 1 identifies the 55 Sample Delivery Groups (SDGs) analyzed by OnSite, the number of samples within each delivery group, the sample matrix, and the analytical methods used to analyze one or more samples within each delivery group.

This review of project data was performed using the U.S. Environmental Protection Agency's (EPA) National Functional Guidelines for Organic Superfund Methods Data Review (USEPA-540-R-2017-002) dated January 2017, and National Functional Guidelines for Inorganic Superfund Methods Data Review (USEPA-540-R-2017-001) dated January 2017.

This report includes a review of holding times, method blanks, matrix spike and spike blank recoveries, matrix spike duplicate and spike blank duplicate data, duplicates, surrogates, and chain-of-custody records. As shown in Table 1, select samples were analyzed for total petroleum hydrocarbons (TPH) in the diesel- and oil-range by Northwest Method NWTPH-Dx, TPH in the gasoline-range by Northwest Method NWTPH-Gx, and TPH by Northwest Method NWTPH-HCID (hydrocarbon identification); volatile organic compounds (VOCs) by EPA Method 8021B; VOCs by EPA Method 8260C or 8260D; semivolatile organic compounds (SVOCs) by EPA Method 8270D/Selective Ion Monitoring (SIM) mode or 8270E/SIM; polychlorinated biphenyl (PCB) Aroclors by EPA Method 8082A; metals by EPA Method 6010D or 6020B, and mercury by EPA Method 7471B.

#### 1.1 OVERALL DATA ASSESSMENT

All data are of known quality and are acceptable for use. No results were rejected as a result of this data assessment. Data qualified during this validation effort is summarized in Table 2 and discussed in the sections below.



# 1.2 DATA QUALIFIER DEFINITIONS

Following are definitions of data qualifiers used during data validation:

- J+ (Estimated High Bias): The result is an estimated quantity and the result may be biased high based on non-conformances identified during data validation.
- J- (Estimated Low Bias): The result is an estimated quantity and the result may be biased low based on non-conformances identified during data validation.
- J- (Estimated): The result is an estimated quantity based on non-conformances identified during data validation.
- UJ (Non-detected estimated): The analyte was reported as not detected by the laboratory; however, the reporting limit is estimated due to non-conformances identified during data validation.

#### 1.3 CHAIN-OF-CUSTODY

Field chain-of-custody forms were complete. All chain-of-custody forms were signed and dated. No issues with sample receipt conditions were indicated in the Case Narrative section of the laboratory reports except as noted below. All samples listed on the chain-of-custody forms were analyzed as indicated:

- SDG 1901-097: Volatile organic analysis vials were not received for sample PH-13-3.0-011219 in accordance with Method 5035A for analysis by Northwest Method NWTPH-Gx. A sample aliquot was extracted from a 4-ounce jar for analysis and some loss of volatiles may have occurred. The non-detect result for this sample is qualified as not detected and the reporting limit is an estimate (UJ) as shown in Table 2.
- SDG 1901-158: Volatile organic analysis vials were not received for sample PH-11A-4.0-011919 in accordance with Method 5035A for analysis by Northwest Method NWTPH-Gx. A sample aliquot was extracted from a 4-ounce jar for analysis and some loss of volatiles may have occurred. The non-detect result for this sample is qualified as not detected and the reporting limit is an estimate (UJ) as shown in Table 2.
- **SDG 2002-223:** Soil samples I3-B-15.0, I3-B-20.0, N2-B-10.0, and N2-B-15.0 were received by the laboratory 2 hours outside the 48-hour holding time specified by Method 5035A for unpreserved samples to be analyzed by Northwest Method NWTPH-Gx and



EPA Method 8021B. The non-detect results for these samples are qualified as not detected and the reporting limits are estimates (UJ) as shown in Table 2.

#### 1.4 COMPLETENESS

Completeness is expressed as the ratio of valid results to the amount of data expected to be obtained under normal conditions. Completeness is determined by assessing the number of samples for which valid results were obtained versus the number of samples that were submitted to the laboratory for analysis. Valid results are results that are determined to be usable during the data validation review process.

The completeness of this data set is 100 percent.



# 2.0 PETROLEUM HYDROCARBON NWTPH-DX QA REVIEW

#### 2.1 TIMELINESS AND PRESERVATION

The recommended holding time for Northwest Method NWTPH-Dx soil and preserved groundwater samples is 14 days to extract and 40 days to analyze after extraction. All samples were extracted and analyzed within holding times except for the following sample:

• **SDG 1912-093:** Soil sample N3-20.0-121019 was analyzed 1 day outside of the holding time. The non-detect results for this sample are qualified as not detected and the reporting limits are estimates (UJ) as shown in Table 2.

# 2.2 FIELD QUALITY CONTROL SAMPLES

One field duplicate water sample was collected and analyzed by Northwest Method NWTPH-Dx. The duplicate sample and parent sample are:

Field Duplicate Sample ID
FMW500-122818
FMW134-122818

See Table 3 for the calculation of the relative percent difference (RPD) for diesel- and oil-range organics. The results were less than five times the practical quantitation limit (PQL) so the absolute differences between the results were calculated. The absolute RPD differences were below standard RPD limits of less than one times the PQL when the original or duplicate sample results are less than five times the PQL.

# 2.3 LABORATORY QUALITY CONTROL SAMPLES

#### 2.3.1 Quality Control Analysis Frequency

Method blanks were analyzed at a minimum frequency of 5 percent (or one per batch). Duplicates were analyzed at a rate of 1 duplicate per 10 samples with a minimum of 1 duplicate per SDG. These criteria were met for all delivery groups.

#### 2.3.2 Method Blanks

No target analytes were detected in the soil or groundwater method blanks at or exceeding the reporting limits for all delivery groups.



# 2.3.3 Laboratory Duplicates

RPDs of all analytes were within the laboratory's quality control (QC) limits for all delivery groups. In cases where the RPD was elevated, the duplicate was performed on a non-project sample where heterogeneity and matrix impacts may have been present. No qualification of project samples is needed.

#### 2.3.4 Surrogate Recoveries

The laboratory used one surrogate spike compound for Method NWTPH-Dx. All surrogate recoveries were within the laboratory's QC limits for all delivery groups except as noted below. The o-terphenyl surrogate spike was not recovered in the following samples due to sample dilution to address high concentrations of target analyses:

- **SDG 1808-229:** Sample FB-01-5.0-082118;
- **SDG 1901-158:** Sample PH-12-4.0-011919;
- **SDG 1912-207:** Sample TP-2-15.0-121919;
- **SDG 1912-230:** Sample FB-08-2.5;
- **SDG 2001-179:** Sample M1-24.5;
- **SDG 2001-349:** Sample UST-01-line-21.0;
- **SDG 2002-097:** Sample N1-WSW-17.0; and
- **SDG 2002-150:** Sample K3-B-20.0.

No qualifications of sample results are needed based on the lack of surrogate recovery in these samples.



# 3.0 PETROLEUM HYDROCARBON NWTPH-GX QA REVIEW

#### 3.1 TIMELINESS AND PRESERVATION

The recommended holding time for Northwest Method NWTPH-Gx soil and preserved groundwater samples is 14 days. All samples were extracted and analyzed within this period except as noted below:

- **SDG 1912-093:** Soil sample N3-20.0-121019 was analyzed 1 day outside of the holding time. The non-detected gasoline result for this sample is qualified as not detected and the reporting limit is an estimate (UJ) as shown in Table 2.
- **SDG 2002-032:** Soil samples H4-ESW-20.0 and H4-ESW2-20.0 were analyzed 7 days outside of the holding time. The non-detected gasoline results for these two samples are qualified as non-detected estimated (UJ) as shown in Table 2.
- **SDG 2002-223:** Soil samples I3-B-15.0, I3-B-20.0, N2-B-10.0, and N2-B-15.0 were received by the laboratory 2 hours outside the 48-hour holding time specified for unpreserved samples to be analyzed by Northwest Method NWTPH-Gx as noted in Section 1.3. The non-detect results for these samples are qualified as non-detected estimated (UJ) as shown in Table 2.

# 3.2 FIELD QUALITY CONTROL SAMPLES

One field duplicate water sample was collected and analyzed by Northwest Method NWTPH-Gx. The duplicate sample and parent sample are:

Field Duplicate Sample ID
FMW500-122818
FMW134-122818

See Table 3 for the calculation of the RPDs for gasoline-range organics. Gasoline-range organics were not detected in the field duplicate or parent sample.



# 3.3 LABORATORY QUALITY CONTROL SAMPLES

#### 3.3.1 Quality Control Analysis Frequency

Method blanks were analyzed at a frequency of 1 method blank per 10 samples. Duplicates, spike blanks/spike blank duplicates, and/or matrix spikes/matrix spike duplicates were analyzed at a frequency of 1 per 10 samples. These criteria were met for all delivery groups.

#### 3.3.2 Method Blanks

No target analytes were detected at or exceeding the reporting limits in the method blanks for all delivery groups.

# 3.3.3 Laboratory Duplicates, Spike Blanks/Spike Blank Duplicates, and/or Matrix Spikes/Matrix Spike Duplicates

Recoveries and RPDs of all analytes were within the laboratory's QC limits for all delivery groups.

#### 3.3.4 Surrogate Recoveries

The laboratory used one surrogate spike compound for Method NWTPH-Gx. All surrogate recoveries were within the laboratory's QC limits for all delivery groups.



# 4.0 PETROLEUM HYDROCARBON NWTPH-HCID QA REVIEW

#### 4.1 TIMELINESS AND PRESERVATION

The recommended holding time for Northwest Method NWTPH-HCID soil samples is 14 days to extract and 40 days to analyze after extraction. All samples were extracted and analyzed within holding times.

# 4.2 LABORATORY QUALITY CONTROL SAMPLES

#### 4.2.1 Quality Control Analysis Frequency

Method blanks were analyzed at a frequency of 1 method blank per 10 samples. These criteria were met for all delivery groups.

#### 4.2.2 Method Blanks

No target analytes were detected at or exceeding the reporting limits in the method blanks for all delivery groups.

# 4.2.3 Surrogate Recoveries

The laboratory used one surrogate spike compound for Method NWTPH-HCID. Surrogates were not able to be recovered for the following:

- **SDG 2001-179:** The surrogate o-terphenyl was not able to be recovered in Sample M1-24.5-Product due to the necessary dilution of the sample as a result of the elevated concentrations of target analytes. No qualifications of sample results are needed.
- **SDG 2002-043:** The surrogate o-terphenyl was not able to be recovered in Sample UST-02-Product due to the necessary dilution of the sample as a result of the elevated concentrations of target analytes. No qualifications of sample results are needed.



# 5.0 VOLATILE ORGANIC COMPOUND 8021B QA REVIEW

#### 5.1 TIMELINESS

The recommended holding time for EPA Method 8021B is 14 days for soil samples and 14 days for preserved water samples. All samples were extracted and analyzed within this period except as noted below:

- **SDG 1912-093:** Soil sample N3-20.0-121019 was analyzed 1 day outside of the holding time. The non-detected results for this sample are qualified as not detected and the reporting limits are estimates (UJ) as shown in Table 2.
- **SDG 2002-223:** Soil sample I3-B-20.0 was received by the laboratory 2 hours outside the 48-hour holding time specified by Method 5035A for preservation of samples to be analyzed by EPA Method 8021B as noted in Section 1.3, Chain-of-Custody. The non-detect results for this sample are qualified as not detected and the reporting limits are estimates (UJ) as shown in Table 2.

# 5.2 LABORATORY QUALITY CONTROL SAMPLES

#### 5.2.1 Quality Control Analysis Frequency

Method blanks were analyzed at a frequency of 1 method blank per 10 samples. Duplicates, spike blanks/spike blank duplicates, and/or matrix spikes/matrix spike duplicates were analyzed at a frequency of 1 per 10 samples. These criteria were met for all delivery groups.

#### 5.2.2 Method Blanks

No target analytes were detected at or exceeding the reporting limits in the method blanks for all delivery groups.

# 5.2.3 Laboratory Duplicates, Spike Blanks/Spike Blank Duplicates, and/or Matrix Spikes/Matrix Spike Duplicates

Recoveries and RPDs of all analytes were within the laboratory's QC limits for all delivery groups.

#### **5.2.4** Surrogate Recoveries

The laboratory used one surrogate spike compound for EPA Method 8021B. All surrogate recoveries were within the laboratory's QC limits for all delivery groups.



# 6.0 VOLATILE ORGANIC COMPOUND 8260C/D QA REVIEW

#### 6.1 TIMELINESS

The recommended holding time for EPA Method 8260C/8260D is 14 days for preserved soil samples and 14 days for preserved water samples. All samples were extracted and analyzed within this period.

# **6.2** FIELD QUALITY CONTROL SAMPLES

One field duplicate water sample was collected and analyzed by EPA Method 8260C. The duplicate sample and parent sample are:

<u>Field Duplicate Sample ID</u>
FMW500-122818

FMW134-122818

See Table 3 for calculation of the RPDs for VOCs. VOCs were not detected in the field duplicate or parent sample.

# **6.3** LABORATORY QUALITY CONTROL SAMPLES

#### **6.3.1** Quality Control Analysis Frequency

Method blanks were analyzed at a frequency of 1 method blank per 10 samples. Spike blanks/spike blank duplicates were analyzed at a frequency of 1 per 10 samples. These criteria were met for all delivery groups.

#### 6.3.2 Method Blanks

No target analytes were detected at or exceeding the reporting limits in the method blanks for all delivery groups.

#### 6.3.3 Spike Blanks/Spike Blank Duplicates

Recoveries and RPDs of all analytes were within the laboratory's QC limits for all delivery groups.



# **6.3.4** Surrogate Recoveries

The laboratory used three surrogate spike compounds for EPA Method 8260C/8260D. All surrogate recoveries were within the laboratory's QC limits for all delivery groups.



# 7.0 SEMIVOLATILE ORGANIC COMPOUND QA REVIEW

#### 7.1 TIMELINESS

The recommended holding time for EPA Method 8270D/SIM or 8270E/SIM soil samples is 14 days to extract and 40 days to analyze after extraction; and the recommended holding time for water samples is 7 days to extract and 40 days to analyze after extraction. All samples were extracted and analyzed within this period except for the following:

- **SDG 1808-272:** Soil sample FB-06-10.0-082218 was extracted and analyzed 1 day outside of the holding time. The non-detect results for this sample are qualified as not detected, the reporting limits are estimates (UJ), and the one detected analyte (pyrene) is qualified as an estimate (J) as shown in Table 2.
- **SDG 2002-069:** Soil sample N2-B-20.0 was extracted and analyzed 5 days outside of the holding time. The results for this sample are qualified as estimates (J).

# 7.2 FIELD QUALITY CONTROL SAMPLES

One field duplicate water sample was collected and analyzed by EPA Method 8270D/SIM. The duplicate sample and parent sample are:

Field Duplicate Sample ID
FMW500-122818
FMW134-122818

See Table 3 for calculation of the RPDs for SVOCs. Where sample results were less than five times the PQL, the absolute difference between the results was calculated instead of an RPD. The results were compared to the following criteria: an RPD less than 20 percent, or an absolute difference less than the PQL for results less than five times the PQL. Four polycyclic aromatic hydrocarbons results for water sample FMW134-122818 and its duplicate did not meet the criteria, and these original and duplicate results are qualified as estimates (J) as shown on Table 2.



# 7.3 LABORATORY QUALITY CONTROL SAMPLES

# 7.3.1 Quality Control Analysis Frequency

Method blanks and spike blanks/spike blank duplicates (or matrix spikes/matrix spike duplicates) were analyzed at a minimum frequency of 5 percent (or one per batch). These criteria were met for all delivery groups.

#### 7.3.2 Method Blanks

No target analytes were detected at or exceeding the reporting limits in the method blanks for all delivery groups.

# 7.3.3 Spike Blanks/Spike Blank Duplicates and/or Matrix Spikes/Matrix Spike Duplicates

Recoveries and RPDs of all analytes were within the laboratory's QC limits for all delivery groups except for the following:

• **SDG 1808-272:** The percent recovery of pentachlorophenol in the spike blank duplicate exceeded the upper control limit. This analyte was not detected in the one sample in the associated batch and no action is needed.

#### 7.3.4 Surrogate Recoveries

The laboratory used between three and six surrogate spike compounds for EPA Method 8270D/SIM or 8270E/SIM for soil and water samples depending on the list of reported SVOCs. Surrogate recoveries were within the laboratory's QC limits for all delivery groups except as noted below:

- **SDG 1808-293:** The percent recovery of the surrogate 2,4,6-tribromophenol was less than the lower control limit for soil sample FMW-133-20.0-082418. The non-detect results associated with this surrogate for this sample are qualified as not detected and the reporting limits are estimates (UJ) as shown in Table 2.
- **SDG 1808-374:** The percent recovery of the surrogate 2-fluorobiphenyl exceeded the upper control limit in the water method blank. Surrogate recoveries in all project samples in this delivery group were within control limits and no action is needed.
- **SDG 1808-375:** The percent recovery of the surrogate 2-fluorobiphenyl exceeded the upper control limit in the water method blank. Surrogate recoveries in all project samples in this delivery group were within control limits and no action is needed.



- **SDG 1901-158:** The percent recovery of the surrogate terphenyl-d14 was less than the lower control limit for soil sample PH-11A-4.0-011919. All results are qualified as estimates with a low bias (J-) as shown in Table 2.
- SDG 1912-256: The percent recovery of the surrogate pyrene-d10 exceeded the upper control limit for water sample FMW-146-122619. The analytes associated with this surrogate compound, benzo(a)anthracene and chrysene, were detected in the sample and the results are qualified as estimates with a high bias (J+). The percent recovery of pyrene-d10 exceeded the upper control limit in spike blank SB1226W1 and spike blank duplicate SB1231W2. No action is needed as this surrogate was within control limits for the other project samples in the batch except for FMW-146-122619 as described earlier.
- **SDG 2001-349:** The percent recovery of the surrogate 2-fluorobiphenyl exceeded the upper control limit in soil sample UST-01-line-21.0. The analytes associated with this surrogate compound, 2-methylnaphthalene and 1-methylnaphthalene, were detected in the sample and the results are qualified as estimates with a high bias (J+).
- **SDG 2002-032:** Surrogates were not able to be recovered in soil sample I4-ESW-20.0 due to the necessary dilution of the sample as a result of elevated concentrations of target analytes. No qualifications of sample results are needed.



# 8.0 PCB AROCLORS QA REVIEW

#### 8.1 TIMELINESS

There is no recommended holding time specified in the method for soil and water samples analyzed by EPA Method 8082A due to the stability of PCBs in environmental samples. However, many programs and laboratories default to the holding time for SVOCs of 7 days to extraction for water samples, 14 days to extraction for soil samples, and 40 days to analyze after extraction for both matrices. All samples were analyzed within 1 to 3 days after collection.

# 8.2 LABORATORY QUALITY CONTROL SAMPLES

#### 8.2.1 Quality Control Analysis Frequency

Method blanks and spike blanks/spike blank duplicates (or matrix spikes/matrix spike duplicates) were analyzed at a minimum frequency of 5 percent (or one per batch). These criteria were met for all delivery groups.

#### 8.2.2 Method Blanks

No target analytes were detected at or exceeding the reporting limits in the method blanks for all delivery groups.

#### 8.2.3 Spike Blanks/Spike Blank Duplicates and/or Matrix Spikes/Matrix Spike Duplicates

Recoveries and RPDs of all analytes were within the laboratory's QC limits for all delivery groups.

#### **8.2.4** Surrogate Recoveries

The laboratory used one surrogate spike compound for EPA Method 8082A for soil and water samples. Surrogate recoveries were within the laboratory's QC limits for all delivery groups except as noted below:

• **SDG 1912-256:** The percent recovery of the surrogate decachlorobiphenyl was less than the lower control limit for water samples FMW-145-122619 and FMW-146-122619. Aroclors were not detected in the samples and all results are qualified as not detected and the reporting limits are estimates (UJ) as shown in Table 2.



# 9.0 METALS QA REVIEW

#### 9.1 TIMELINESS

The recommended holding time for EPA Method 6010D or 6020B is 6 months for soil samples. The recommended holding time for EPA Method 7471B (mercury in soil) is 28 days. All samples were extracted and analyzed within holding times.

#### 9.2 LABORATORY QUALITY CONTROL SAMPLES

#### 9.2.1 Quality Control Analysis Frequency

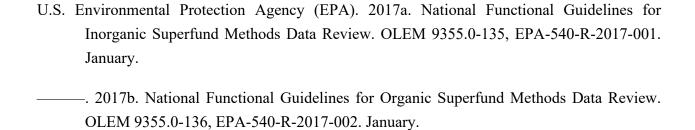
Method blanks, matrix spikes/matrix spike duplicates, and laboratory duplicates were analyzed at a frequency of 5 percent (or one per batch). These criteria were met for all delivery groups.

#### 9.2.2 Method Blanks

No target analytes were detected at or exceeding the reporting limits in the method blanks for all delivery groups.

# 9.2.3 Matrix Spikes/Matrix Spike Duplicates and Laboratory Duplicates

Recoveries and RPDs of all analytes were within the laboratory's QC limits for all delivery groups except as noted below:


- **SDG 1808-217:** The laboratory duplicate RPD for chromium exceeded the RPD control limit. The laboratory duplicate analysis was conducted on a non-project sample within the batch; the laboratory noted that the result may be due to sample soil material heterogeneity. The laboratory re-analyzed the sample with similar results. No action is needed as the duplicate analysis was not performed on a project sample.
- **SDG 1808-229:** The laboratory duplicate RPD for chromium exceeded the RPD control limit. The laboratory duplicate analysis was conducted on a non-project sample within the batch; the laboratory noted that the result may be due to sample soil material heterogeneity. The laboratory re-analyzed the sample with similar results. No action is needed as the duplicate analysis was not performed on a project sample.
- **SDG 2001-279:** The laboratory duplicate RPD for lead exceeded the RPD control limit. The laboratory duplicate analysis was conducted on a non-project sample within the batch; the laboratory noted that the result may be due to sample soil material heterogeneity. The



- laboratory re-analyzed the sample with similar results. No action is needed as the duplicate analysis was not performed on a project sample.
- **SDG 2001-280:** The laboratory duplicate RPD for lead exceeded the RPD control limit. The laboratory duplicate analysis was conducted on a non-project sample within the batch; the laboratory noted that the result may be due to sample soil material heterogeneity. The laboratory re-analyzed the sample with similar results. No action is needed as the duplicate analysis was not performed on a project sample.



# **10.0 REFERENCES**



# **TABLES**

DATA VALIDATION REPORT
Block 38 West Site
500 Through 536 Westlake Avenue North
Seattle, Washington

Farallon PN: 397-019

# Table 1 Overview of Soil Sample Analyses Block 38 Seattle, Washington

Seattle, Washington Farallon PN: 397-019

| Lab Sample     |             | Number of |          | I        |            |           | Analytical Me | thod            |           |                        |
|----------------|-------------|-----------|----------|----------|------------|-----------|---------------|-----------------|-----------|------------------------|
| Delivery Group | Matrix      | Samples   | NWTPH-Dx | NWTPH-Gx | NWTPH-HCID | EPA 8021B | EPA 8260C/D   | EPA 8270D/E/SIM | EPA 8082A | EPA 6010D/6020B//7471B |
| 1808-217       | Soil        | 4         | X        | X        |            | X         | X             | X               |           | X                      |
| 1808-229       | Soil        | 8         | X        | X        |            | X         | X             | X               |           | X                      |
| 1808-272       | Soil        | 7         | X        | X        |            | X         | X             | X               |           | X                      |
| 1808-271       | Soil        | 3         | X        | X        |            | X         | X             | X               |           | X                      |
| 1808-277       | Soil        | 6         | X        | X        |            | X         |               | X               |           | X                      |
| 1808-292       | Soil        | 6         | X        | X        |            | X         | X             | X               |           | X                      |
| 1808-293       | Soil        | 3         | X        | X        |            | X         |               | X               |           | X                      |
| 1808-374       | Groundwater | 4         | X        | X        |            |           | X             | X               |           |                        |
| 1808-375       | Groundwater | 2         | X        | X        |            |           | X             | X               |           |                        |
| 1812-267       | Groundwater | 7         | X        | X        |            |           | X             | X               |           |                        |
| 1901-097       | Soil        | 1         | X        | X        |            |           |               | X               |           |                        |
| 1901-158       | Soil        | 2         | X        | X        |            |           |               | X               |           |                        |
| 1901-216       | Soil        | 1         |          |          |            |           |               | X               |           |                        |
| 1903-242       | Groundwater | 6         | X        | X        |            | X         |               | X               |           |                        |
| 1912-093       | Soil        | 1         | X        | X        |            | X         |               |                 |           |                        |
| 1912-141       | Soil        | 1         | X        | X        |            | X         |               |                 |           |                        |
| 1912-207       | Soil        | 4         | X        | X        |            | X         |               | X               |           |                        |
| 1912-230       | Soil        | 10        | X        | X        |            | X         |               | X               |           |                        |
| 1912-231       | Soil        | 18        | X        | X        |            | X         |               | X               |           |                        |
| 1912-240       | Soil        | 1         | X        | X        |            |           | X             | X               | X         | X                      |
| 1912-256       | Groundwater | 5         | X        | X        |            | X         | X             | X               | X         |                        |
| 2001-112       | Soil        | 2         | X        |          |            |           |               |                 |           |                        |
| 2001-179       | Soil        | 1         | X        |          | X          |           |               |                 |           |                        |
| 2001-199       | Soil        | 1         |          | X        |            |           | X             | X               | X         | X                      |
| 2001-279       | Soil        | 1         | X        | X        |            |           | X             | X               | X         | X                      |
| 2001-280       | Soil        | 4         | X        |          |            |           | X             | X               |           | X                      |
| 2001-348       | Soil        | 4         | X        |          |            |           |               | X               |           |                        |
| 2001-349       | Soil        | 1         | X        |          |            |           |               | X               |           | X                      |
| 2002-014       | Soil        | 4         | X        |          |            |           |               | X               |           |                        |
| 2002-115       | Soil        | 4         | X        |          |            |           |               | X               |           |                        |
| 2002-032       | Soil        | 9         | X        | X        |            |           |               | X               |           |                        |
| 2002-043       | Soil        | 2         | X        | X        | X          |           | X             | X               | X         |                        |
| 2002-069       | Soil        | 7         | X        |          |            | X         |               | X               |           |                        |
| 2002-081       | Soil        | 10        | X        |          |            |           |               | X               |           |                        |
| 2002-097       | Soil        | 4         | X        |          |            |           |               |                 |           | X                      |
| 2002-150       | Soil        | 3         | X        | X        |            |           |               | X               |           |                        |
| 2002-163       | Soil        | 10        | X        | X        |            |           | X             | X               |           |                        |
| 2002-174       | Soil        | 1         | X        |          |            |           |               |                 |           |                        |
| 2002-199       | Soil        | 3         | X        | X        |            |           |               | X               |           |                        |
| 2002-208       | Soil        | 2         |          | X        |            |           |               | X               |           |                        |
| 2002-215       | Soil        | 1         | X        |          |            |           |               |                 |           |                        |
| 2002-223       | Soil        | 14        | X        | X        |            | X         |               | X               |           |                        |
| 2002-240       | Soil        | 11        | X        | X        |            |           |               | X               |           |                        |
| 2002-241       | Soil        | 3         |          | X        |            |           |               |                 |           |                        |

# Table 1 Overview of Soil Sample Analyses Block 38

# Seattle, Washington Farallon PN: 397-019

| Lab Sample     |        | Number of |          | Analytical Method |            |           |             |                 |           |                        |  |  |  |  |
|----------------|--------|-----------|----------|-------------------|------------|-----------|-------------|-----------------|-----------|------------------------|--|--|--|--|
| Delivery Group | Matrix | Samples   | NWTPH-Dx | NWTPH-Gx          | NWTPH-HCID | EPA 8021B | EPA 8260C/D | EPA 8270D/E/SIM | EPA 8082A | EPA 6010D/6020B//7471B |  |  |  |  |
| 2002-263       | Soil   | 6         | X        | X                 |            |           |             |                 |           |                        |  |  |  |  |
| 2002-275       | Soil   | 15        | X        | X                 |            |           |             | X               |           |                        |  |  |  |  |
| 2002-293       | Soil   | 9         | X        | X                 |            |           |             | X               |           |                        |  |  |  |  |
| 2002-303       | Soil   | 9         | X        |                   |            |           |             | X               |           |                        |  |  |  |  |
| 2003-002       | Soil   | 2         |          |                   |            |           |             | X               |           |                        |  |  |  |  |
| 2004-206       | Soil   | 1         | X        |                   |            |           |             |                 |           |                        |  |  |  |  |
| 2004-218       | Soil   | 1         |          |                   |            |           |             | X               |           |                        |  |  |  |  |
| 2005-017       | Soil   | 5         |          |                   |            |           |             | X               |           |                        |  |  |  |  |
| 2005-214       | Soil   | 1         | X        | X                 |            | X         |             | X               |           |                        |  |  |  |  |
| 2006-023       | Soil   | 1         | X        | X                 |            | X         |             | X               |           |                        |  |  |  |  |
| 2006-045       | Soil   | 4         | X        | X                 |            | X         |             | X               |           |                        |  |  |  |  |

# NOTES:

An "X" indicates one or more samples within the delivery group were analyzed by the method specified in that column.

EPA = U.S. Environmental Protection Agency

# Table 2 Summary of Qualified Data Block 38

# Seattle, Washington Farallon PN: 397-019

| Sample Identification | SDG      | Matrix | Method        | Analyte                         | Qualifier | Reason                                  |
|-----------------------|----------|--------|---------------|---------------------------------|-----------|-----------------------------------------|
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | n-Nitrosodimethylamine          | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | Pyridine                        | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | Phenol                          | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | Aniline                         | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | bis(2-Chloroethyl)ether         | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | 2-Chlorophenol                  | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | 1,3-Dichlorobenzene             | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | 1,4-Dichlorobenzene             | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | Benzyl alcohol                  | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | 1,2-Dichlorobenzene             | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | 2-Methylphenol (o-Cresol)       | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | bis(2-Chloroisopropyl)ether     | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | (3+4)-Methylphenol (m,p-Cresol) | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | n-Nitroso-di-n-propylamine      | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | Hexachloroethane                | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | Nitrobenzene                    | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | Isophorone                      | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | 2-Nitrophenol                   | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | 2,4-Dimethylphenol              | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | bis(2-Chloroethoxy)methane      | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | 2,4-Dichlorophenol              | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | 1,2,4-Trichlorobenzene          | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | Naphthalene                     | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | 4-Chloroaniline                 | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | Hexachlorobutadiene             | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | 4-Chloro-3-methylphenol         | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | 2-Methylnaphthalene             | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | 1-Methylnaphthalene             | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | Hexachlorocyclopentadiene       | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | 2,4,6-Trichlorophenol           | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | 2,3-Dichloroaniline             | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | 2,4,5-Trichlorophenol           | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | 2-Chloronaphthalene             | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | 2-Nitroaniline                  | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | 1,4-Dinitrobenzene              | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | Dimethylphthalate               | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | 1,3-Dinitrobenzene              | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | 2,6-Dinitrotoluene              | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | 1,2-Dinitrobenzene              | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | Acenaphthylene                  | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | 3-Nitroaniline                  | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | 2,4-Dinitrophenol               | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | Acenaphthene                    | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | 4-Nitrophenol                   | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | 2,4-Dinitrotoluene              | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | Dibenzofuran                    | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | 2,3,5,6-Tetrachlorophenol       | UJ        | Sample analyzed outside of holding time |
| FB-06-10.0-082218     | 1808-272 | Soil   | EPA 8270D/SIM | 2,3,4,6-Tetrachlorophenol       | UJ        | Sample analyzed outside of holding time |

# Table 2 Summary of Qualified Data Block 38 Seattle, Washington

# Farallon PN: 397-019

| Sample Identification | SDG      | Matrix      | Method        | Analyte                    | Qualifier | Reason                                                                               |
|-----------------------|----------|-------------|---------------|----------------------------|-----------|--------------------------------------------------------------------------------------|
| FB-06-10.0-082218     | 1808-272 | Soil        | EPA 8270D/SIM | Diethylphthalate           | UJ        | Sample analyzed outside of holding time                                              |
| FB-06-10.0-082218     | 1808-272 | Soil        | EPA 8270D/SIM | 4-Chlorophenyl-phenylether | UJ        | Sample analyzed outside of holding time                                              |
| FB-06-10.0-082218     | 1808-272 | Soil        | EPA 8270D/SIM | 4-Nitroaniline             | UJ        | Sample analyzed outside of holding time                                              |
| FB-06-10.0-082218     | 1808-272 | Soil        | EPA 8270D/SIM | Fluorene                   | UJ        | Sample analyzed outside of holding time                                              |
| FB-06-10.0-082218     | 1808-272 | Soil        | EPA 8270D/SIM | 4,6-Dinitro-2-methylphenol | UJ        | Sample analyzed outside of holding time                                              |
| FB-06-10.0-082218     | 1808-272 | Soil        | EPA 8270D/SIM | n-Nitrosodiphenylamine     | UJ        | Sample analyzed outside of holding time                                              |
| FB-06-10.0-082218     | 1808-272 | Soil        | EPA 8270D/SIM | 1,2-Diphenylhydrazine      | UJ        | Sample analyzed outside of holding time                                              |
| FB-06-10.0-082218     | 1808-272 | Soil        | EPA 8270D/SIM | 4-Bromophenyl-phenylether  | UJ        | Sample analyzed outside of holding time                                              |
| FB-06-10.0-082218     | 1808-272 | Soil        | EPA 8270D/SIM | Hexachlorobenzene          | UJ        | Sample analyzed outside of holding time                                              |
| FB-06-10.0-082218     | 1808-272 | Soil        | EPA 8270D/SIM | Pentachlorophenol          | UJ        | Sample analyzed outside of holding time                                              |
| FB-06-10.0-082218     | 1808-272 | Soil        | EPA 8270D/SIM | Phenanthrene               | UJ        | Sample analyzed outside of holding time                                              |
| FB-06-10.0-082218     | 1808-272 | Soil        | EPA 8270D/SIM | Anthracene                 | UJ        | Sample analyzed outside of holding time                                              |
| FB-06-10.0-082218     | 1808-272 | Soil        | EPA 8270D/SIM | Carbazole                  | UJ        | Sample analyzed outside of holding time                                              |
| FB-06-10.0-082218     | 1808-272 | Soil        | EPA 8270D/SIM | Di-n-butylphthalate        | UJ        | Sample analyzed outside of holding time                                              |
| FB-06-10.0-082218     | 1808-272 | Soil        | EPA 8270D/SIM | Fluoranthene               | UJ        | Sample analyzed outside of holding time                                              |
| FB-06-10.0-082218     | 1808-272 | Soil        | EPA 8270D/SIM | Benzidine                  | UJ        | Sample analyzed outside of holding time                                              |
| FB-06-10.0-082218     | 1808-272 | Soil        | EPA 8270D/SIM | Pyrene                     | J         | Sample analyzed outside of holding time                                              |
| FB-06-10.0-082218     | 1808-272 | Soil        | EPA 8270D/SIM | Butylbenzylphthalate       | UJ        | Sample analyzed outside of holding time                                              |
| FB-06-10.0-082218     | 1808-272 | Soil        | EPA 8270D/SIM | bis-2-Ethylhexyladipate    | UJ        | Sample analyzed outside of holding time                                              |
| FB-06-10.0-082218     | 1808-272 | Soil        | EPA 8270D/SIM | 3,3'-Dichlorobenzidine     | UJ        | Sample analyzed outside of holding time                                              |
| FB-06-10.0-082218     | 1808-272 | Soil        | EPA 8270D/SIM | Benzo[a]anthracene         | UJ        | Sample analyzed outside of holding time                                              |
| FB-06-10.0-082218     | 1808-272 | Soil        | EPA 8270D/SIM | Chrysene                   | UJ        | Sample analyzed outside of holding time                                              |
| FB-06-10.0-082218     | 1808-272 | Soil        | EPA 8270D/SIM | bis(2-Ethylhexyl)phthalate | UJ        | Sample analyzed outside of holding time                                              |
| FB-06-10.0-082218     | 1808-272 | Soil        | EPA 8270D/SIM | Di-n-octylphthalate        | UJ        | Sample analyzed outside of holding time                                              |
| FB-06-10.0-082218     | 1808-272 | Soil        | EPA 8270D/SIM | Benzo[b]fluoranthene       | UJ        | Sample analyzed outside of holding time                                              |
| FB-06-10.0-082218     | 1808-272 | Soil        | EPA 8270D/SIM | Benzo(j,k)fluoranthene     | UJ        | Sample analyzed outside of holding time                                              |
| FB-06-10.0-082218     | 1808-272 | Soil        | EPA 8270D/SIM | Benzo[a]pyrene             | UJ        | Sample analyzed outside of holding time                                              |
| FB-06-10.0-082218     | 1808-272 | Soil        | EPA 8270D/SIM | Indeno[1,2,3-cd]pyrene     | UJ        | Sample analyzed outside of holding time                                              |
| FB-06-10.0-082218     | 1808-272 | Soil        | EPA 8270D/SIM | Dibenz[a,h]anthracene      | UJ        | Sample analyzed outside of holding time                                              |
| FB-06-10.0-082218     | 1808-272 | Soil        | EPA 8270D/SIM | Benzo[g,h,i]perylene       | UJ        | Sample analyzed outside of holding time                                              |
| FMW-133-20.0-082418   | 1808-293 | Soil        | EPA 8270D/SIM | 4-Chloro-3-methylphenol    |           | Percent recovery of surrogate 2,4,6-tribromophenol was below the lower control limit |
| FMW-133-20.0-082418   | 1808-293 | Soil        | EPA 8270D/SIM | 2,4,6-Trichlorophenol      | UJ        | Percent recovery of surrogate 2,4,6-tribromophenol was below the lower control limit |
| FMW-133-20.0-082418   | 1808-293 | Soil        | EPA 8270D/SIM | 2,4,5-Trichlorophenol      | UJ        | Percent recovery of surrogate 2,4,6-tribromophenol was below the lower control limit |
| FMW-133-20.0-082418   | 1808-293 | Soil        | EPA 8270D/SIM | 2,4-Dinitrophenol          | UJ        | Percent recovery of surrogate 2,4,6-tribromophenol was below the lower control limit |
| FMW-133-20.0-082418   | 1808-293 | Soil        | EPA 8270D/SIM | 4-Nitrophenol              | UJ        | Percent recovery of surrogate 2,4,6-tribromophenol was below the lower control limit |
| FMW-133-20.0-082418   | 1808-293 | Soil        | EPA 8270D/SIM | 2,3,5,6-Tetrachlorophenol  | UJ        | Percent recovery of surrogate 2,4,6-tribromophenol was below the lower control limit |
| FMW-133-20.0-082418   | 1808-293 | Soil        | EPA 8270D/SIM | 2,3,4,6-Tetrachlorophenol  | UJ        | Percent recovery of surrogate 2,4,6-tribromophenol was below the lower control limit |
| FMW-133-20.0-082418   | 1808-293 | Soil        | EPA 8270D/SIM | 4,6-Dinitro-2-methylphenol | UJ        | Percent recovery of surrogate 2,4,6-tribromophenol was below the lower control limit |
| FMW-133-20.0-082418   | 1808-293 | Soil        | EPA 8270D/SIM | Pentachlorophenol          | UJ        | Percent recovery of surrogate 2,4,6-tribromophenol was below the lower control limit |
| FMW134-122818         | 1812-267 | Groundwater | EPA 8270D/SIM | Naphthalene                | J         | Parent sample and field duplicate RPD exceeds control limit                          |
| FMW134-122818         | 1812-267 | Groundwater | EPA 8270D/SIM | 2-Methylnaphthalene        |           | Parent sample and field duplicate RPD exceeds control limit                          |
| FMW134-122818         | 1812-267 | Groundwater | EPA 8270D/SIM | 1-Methylnaphthalene        | J         | Parent sample and field duplicate RPD exceeds control limit                          |
| FMW134-122818         | 1812-267 | Groundwater | EPA 8270D/SIM | Acenaphthene               | J         | Parent sample and field duplicate RPD exceeds control limit                          |
| FMW500-122818         | 1812-267 | Groundwater | EPA 8270D/SIM | Naphthalene                |           | Parent sample and field duplicate RPD exceeds control limit                          |
| FMW500-122818         | 1812-267 | Groundwater | EPA 8270D/SIM | 2-Methylnaphthalene        | J         | Parent sample and field duplicate RPD exceeds control limit                          |
| FMW500-122818         | 1812-267 | Groundwater | EPA 8270D/SIM | 1-Methylnaphthalene        |           | Parent sample and field duplicate RPD exceeds control limit                          |
| FMW500-122818         | 1812-267 | Groundwater | EPA 8270D/SIM | Acenaphthene               | J         | Parent sample and field duplicate RPD exceeds control limit                          |

## Table 2 Summary of Qualified Data Block 38

## Seattle, Washington Farallon PN: 397-019

| Sample Identification | SDG      | Matrix      | Method        | Analyte                 | Qualifier | Reason                                                                                |
|-----------------------|----------|-------------|---------------|-------------------------|-----------|---------------------------------------------------------------------------------------|
| PH-13-3.0-011219      | 1901-097 | Soil        | NWTPH-Gx      | Gasoline                | UJ        | VOA vials not provided for sample per Method 5035A; sample extracted from 4-ounce jar |
| PH-11A-4.0-011919     | 1901-158 | Soil        | NWTPH-Gx      | Gasoline                | UJ        | VOA vials not provided for sample per Method 5035A; sample extracted from 4-ounce jar |
| PH-11A-4.0-011919     | 1901-158 | Soil        | EPA 8270D/SIM | Benzo[a]anthracene      | J-        | Percent recovery of surrogate terphenyl-d14 was below the lower control limit         |
| PH-11A-4.0-011919     | 1901-158 | Soil        | EPA 8270D/SIM | Chrysene                | J-        | Percent recovery of surrogate terphenyl-d14 was below the lower control limit         |
| PH-11A-4.0-011919     | 1901-158 | Soil        | EPA 8270D/SIM | Benzo[b]fluoranthene    | J-        | Percent recovery of surrogate terphenyl-d14 was below the lower control limit         |
| PH-11A-4.0-011919     | 1901-158 | Soil        | EPA 8270D/SIM | Benzo(j,k)fluoranthene  | J-        | Percent recovery of surrogate terphenyl-d14 was below the lower control limit         |
| PH-11A-4.0-011919     | 1901-158 | Soil        | EPA 8270D/SIM | Benzo[a]pyrene          | J-        | Percent recovery of surrogate terphenyl-d14 was below the lower control limit         |
| PH-11A-4.0-011919     | 1901-158 | Soil        | EPA 8270D/SIM | Indeno(1,2,3-c,d)pyrene | J-        | Percent recovery of surrogate terphenyl-d14 was below the lower control limit         |
| PH-11A-4.0-011919     | 1901-158 | Soil        | EPA 8270D/SIM | Dibenz[a,h]anthracene   | J-        | Percent recovery of surrogate terphenyl-d14 was below the lower control limit         |
| N3-20.0-121019        | 1912-093 | Soil        | NWTPH-Gx      | Gasoline                | UJ        | Sample analyzed outside of holding time                                               |
| N3-20.0-121019        | 1912-093 | Soil        | EPA 8021B     | Benzene                 | UJ        | Sample analyzed outside of holding time                                               |
| N3-20.0-121019        | 1912-093 | Soil        | EPA 8021B     | Toluene                 | UJ        | Sample analyzed outside of holding time                                               |
| N3-20.0-121019        | 1912-093 | Soil        | EPA 8021B     | Ethyl Benzene           | UJ        | Sample analyzed outside of holding time                                               |
| N3-20.0-121019        | 1912-093 | Soil        | EPA 8021B     | m,p-Xylene              | UJ        | Sample analyzed outside of holding time                                               |
| N3-20.0-121019        | 1912-093 | Soil        | EPA 8021B     | o-Xylene                | UJ        | Sample analyzed outside of holding time                                               |
| N3-20.0-121019        | 1912-093 | Soil        | NWTPH-Dx      | Diesel Range Organics   | UJ        | Sample analyzed outside of holding time                                               |
| N3-20.0-121019        | 1912-093 | Soil        | NWTPH-Dx      | Oil Range Organics      | UJ        | Sample analyzed outside of holding time                                               |
| FMW-146-122619        | 1912-256 | Groundwater | EPA 8270E/SIM | Benzo[a]anthracene      | J+        | Percent recovery of surrogate pyrene-d10 exceeded the upper control limit             |
| FMW-146-122619        | 1912-256 | Groundwater | EPA 8270E/SIM | Chrysene                | J+        | Percent recovery of surrogate pyrene-d10 exceeded the upper control limit             |
| FMW-145-122619        | 1912-256 | Groundwater | EPA 8082A     | Aroclor 1016            | UJ        | Percent recovery of surrogate DCB was below the lower control limit                   |
| FMW-145-122619        | 1912-256 | Groundwater | EPA 8082A     | Aroclor 1221            |           | Percent recovery of surrogate DCB was below the lower control limit                   |
| FMW-145-122619        | 1912-256 | Groundwater | EPA 8082A     | Aroclor 1232            | UJ        | Percent recovery of surrogate DCB was below the lower control limit                   |
| FMW-145-122619        | 1912-256 | Groundwater | EPA 8082A     | Aroclor 1242            |           | Percent recovery of surrogate DCB was below the lower control limit                   |
| FMW-145-122619        | 1912-256 | Groundwater | EPA 8082A     | Aroclor 1248            |           | Percent recovery of surrogate DCB was below the lower control limit                   |
| FMW-145-122619        | 1912-256 | Groundwater | EPA 8082A     | Aroclor 1254            |           | Percent recovery of surrogate DCB was below the lower control limit                   |
| FMW-145-122619        | 1912-256 | Groundwater | EPA 8082A     | Aroclor 1260            | UJ        | Percent recovery of surrogate DCB was below the lower control limit                   |
| FMW-146-122619        | 1912-256 | Groundwater | EPA 8082A     | Aroclor 1016            |           | Percent recovery of surrogate DCB was below the lower control limit                   |
| FMW-146-122619        | 1912-256 | Groundwater | EPA 8082A     | Aroclor 1221            |           | Percent recovery of surrogate DCB was below the lower control limit                   |
| FMW-146-122619        | 1912-256 | Groundwater | EPA 8082A     | Aroclor 1232            |           | Percent recovery of surrogate DCB was below the lower control limit                   |
| FMW-146-122619        | 1912-256 | Groundwater | EPA 8082A     | Aroclor 1242            |           | Percent recovery of surrogate DCB was below the lower control limit                   |
| FMW-146-122619        | 1912-256 | Groundwater | EPA 8082A     | Aroclor 1248            |           | Percent recovery of surrogate DCB was below the lower control limit                   |
| FMW-146-122619        | 1912-256 | Groundwater | EPA 8082A     | Aroclor 1254            |           | Percent recovery of surrogate DCB was below the lower control limit                   |
| FMW-146-122619        | 1912-256 | Groundwater | EPA 8082A     | Aroclor 1260            |           | Percent recovery of surrogate DCB was below the lower control limit                   |
| UST-01-line-21.0      | 2001-349 | Soil        | EPA 8270E/SIM | 2-Methylnaphthalene     | J+        | Percent recovery of surrogate 2-fluorobiphenyl exceeded the upper control limit       |
| UST-01-line-21.0      | 2001-349 | Soil        | EPA 8270E/SIM | 1-Methylnaphthalene     | J+        | Percent recovery of surrogate 2-fluorobiphenyl exceeded the upper control limit       |
| H4-ESW-20.0           | 2002-032 | Soil        | NWTPH-Gx      | Gasoline                | UJ        | Sample analyzed outside of holding time                                               |
| H4-ESW2-20.0          | 2002-032 | Soil        | NWTPH-Gx      | Gasoline                | UJ        | Sample analyzed outside of holding time                                               |
| N2-B-20.0             | 2002-069 | Soil        | EPA 8270E/SIM | Benzo[a]anthracene      | J         | Sample analyzed outside of holding time                                               |
| N2-B-20.0             | 2002-069 | Soil        | EPA 8270E/SIM | Chrysene                | J         | Sample analyzed outside of holding time                                               |
| N2-B-20.0             | 2002-069 | Soil        | EPA 8270E/SIM | Benzo[b]fluoranthene    | J         | Sample analyzed outside of holding time                                               |
| N2-B-20.0             | 2002-069 | Soil        | EPA 8270E/SIM | Benzo(j,k)fluoranthene  | J         | Sample analyzed outside of holding time                                               |
| N2-B-20.0             | 2002-069 | Soil        | EPA 8270E/SIM | Benzo[a]pyrene          | J         | Sample analyzed outside of holding time                                               |
| N2-B-20.0             | 2002-069 | Soil        | EPA 8270E/SIM | Indeno(1,2,3-c,d)pyrene | J         | Sample analyzed outside of holding time                                               |
| N2-B-20.0             | 2002-069 | Soil        | EPA 8270E/SIM | Dibenz[a,h]anthracene   | J         | Sample analyzed outside of holding time                                               |
| I3-B-15.0             | 2002-223 | Soil        | NWTPH-Gx      | Gasoline                | UJ        | Sample received outside of Method 5035A preservation holding time                     |
| N2-B-15.0             | 2002-223 | Soil        | NWTPH-Gx      | Gasoline                | UJ        | Sample received outside of Method 5035A preservation holding time                     |
| N2-B-10.0             | 2002-223 | Soil        | NWTPH-Gx      | Gasoline                | UJ        | Sample received outside of Method 5035A preservation holding time                     |

## Table 2 Summary of Qualified Data Block 38

## Seattle, Washington Farallon PN: 397-019

| Sample Identification | SDG      | Matrix | Method    | Analyte       | Qualifier | Reason                                                            |
|-----------------------|----------|--------|-----------|---------------|-----------|-------------------------------------------------------------------|
| I3-B-20.0             | 2002-223 | Soil   | NWTPH-Gx  | Gasoline      | UJ        | Sample received outside of Method 5035A preservation holding time |
| I3-B-20.0             | 2002-223 | Soil   | EPA 8021B | Benzene       | UJ        | Sample received outside of Method 5035A preservation holding time |
| I3-B-20.0             | 2002-223 | Soil   | EPA 8021B | Toluene       | UJ        | Sample received outside of Method 5035A preservation holding time |
| I3-B-20.0             | 2002-223 | Soil   | EPA 8021B | Ethyl Benzene | UJ        | Sample received outside of Method 5035A preservation holding time |
| I3-B-20.0             | 2002-223 | Soil   | EPA 8021B | m,p-Xylene    | UJ        | Sample received outside of Method 5035A preservation holding time |
| I3-B-20.0             | 2002-223 | Soil   | EPA 8021B | o-Xylene      | UJ        | Sample received outside of Method 5035A preservation holding time |

#### NOTES:

DCB = decachlorobiphenyl

EPA = U.S. Environmental Protection Agency

J = result is an estimate

J+ = result is an estimate with a high bias

J- = result is an estimate with a low bias

RPD = relative percent difference

SDG = sample delivery group

UJ = analyte not detected exceeding the laboratory reporting limit and reporting limit is an estimate

# Table 3 FMW-134 Sample and Field Duplicate Precision Summary Block 38

Seattle, Washington Farallon PN: 397-019

|                          |                             |              | (                                      | Original Samp | ole  | D                                      | uplicate Samp | ole  |           |                                           |              |
|--------------------------|-----------------------------|--------------|----------------------------------------|---------------|------|----------------------------------------|---------------|------|-----------|-------------------------------------------|--------------|
|                          |                             |              | FMW-134<br>FMW134-122818<br>12/28/2018 |               |      | FMW-134<br>FMW500-122818<br>12/28/2018 |               |      | RPD       | Absolute Difference when Results are less | RPD          |
| <b>Analytical Method</b> | Analyte                     | Unit         | Result                                 | Detect        | PQL  | Result                                 | Detect        | PQL  | (percent) | than 5x PQL                               | Criteria Met |
| NWTPH-Dx                 | Diesel-Range Organics       | mg/l         | 0.56                                   |               | 0.26 | 0.68                                   |               | 0.26 |           | 0.12                                      | Yes          |
| NWTPH-Dx                 | Oil-Range Organics          | mg/l         | 0.41                                   | U             | 0.41 | 0.49                                   |               | 0.41 |           | 0.08                                      | Yes          |
| NWTPH-GX                 | Gasoline-Range Organics     | μg/l         | 100                                    | U             | 100  | 100                                    | U             | 100  |           |                                           | ND           |
| EPA 8260C                | 1,1,1,2-Tetrachloroethane   | μg/l         | 0.2                                    | U             | 0.2  | 0.2                                    | U             | 0.2  |           |                                           | ND           |
| EPA 8260C                | 1,1,1-Trichloroethane       | μg/l         | 0.2                                    | U             | 0.2  | 0.2                                    | U             | 0.2  |           |                                           | ND           |
| EPA 8260C                | 1,1,2,2-Tetrachloroethane   | μg/l         | 0.2                                    | U             | 0.2  | 0.2                                    | U             | 0.2  |           |                                           | ND           |
| EPA 8260C                | 1,1,2-Trichloroethane       | μg/l         | 0.2                                    | U             | 0.2  | 0.2                                    | U             | 0.2  |           |                                           | ND           |
| EPA 8260C                | 1,1-Dichloroethane          | μg/l         | 0.2                                    | U             | 0.2  | 0.2                                    | U             | 0.2  |           |                                           | ND           |
| EPA 8260C                | 1,1-Dichloroethene          | μg/l         | 0.2                                    | U             | 0.2  | 0.2                                    | U             | 0.2  |           |                                           | ND           |
| EPA 8260C                | 1,1-Dichloropropene         | μg/l         | 0.2                                    | U             | 0.2  | 0.2                                    | U             | 0.2  |           |                                           | ND           |
| EPA 8260C                | 1,2,3-Trichlorobenzene      | μg/l         | 0.2                                    | U             | 0.2  | 0.2                                    | U             | 0.2  |           |                                           | ND           |
| EPA 8260C                | 1,2,3-Trichloropropane      | μg/l         | 0.2                                    | U             | 0.2  | 0.2                                    | U             | 0.2  |           |                                           | ND           |
| EPA 8260C                | 1,2,4-Trichlorobenzene      | μg/l         | 0.2                                    | U             | 0.2  | 0.2                                    | U             | 0.2  |           |                                           | ND           |
| EPA 8260C                | 1,2-Dibromo-3-chloropropane | μg/l         | 1                                      | U             | 1    | 1                                      | U             | 1    |           |                                           | ND           |
| EPA 8260C                | 1,2-Dibromoethane           | μg/l         | 0.2                                    | U             | 0.2  | 0.2                                    | U             | 0.2  |           |                                           | ND           |
| EPA 8260C                | 1,2-Dichlorobenzene         | μg/l         | 0.2                                    | U             | 0.2  | 0.2                                    | U             | 0.2  |           |                                           | ND           |
| EPA 8260C                | 1,2-Dichloroethane          | μg/l         | 0.2                                    | U             | 0.2  | 0.2                                    | U             | 0.2  |           |                                           | ND           |
| EPA 8260C                | 1,2-Dichloropropane         | μg/l         | 0.2                                    | U             | 0.2  | 0.2                                    | U             | 0.2  |           |                                           | ND           |
| EPA 8260C                | 1,3-Dichlorobenzene         | μg/l         | 0.2                                    | U             | 0.2  | 0.2                                    | U             | 0.2  |           |                                           | ND           |
| EPA 8260C                | 1,3-Dichloropropane         | μg/l         | 0.2                                    | U             | 0.2  | 0.2                                    | U             | 0.2  |           |                                           | ND           |
| EPA 8260C                | 1,4-Dichlorobenzene         | μg/l         | 0.2                                    | U             | 0.2  | 0.2                                    | U             | 0.2  |           |                                           | ND           |
| EPA 8260C                | 2,2-Dichloropropane         | μg/l         | 0.2                                    | U             | 0.2  | 0.2                                    | U             | 0.2  |           |                                           | ND           |
| EPA 8260C                | 2-Chloroethyl Vinyl Ether   | μg/l         | 1                                      | U             | 1    | 1                                      | U             | 1    |           |                                           | ND           |
| EPA 8260C                | 2-Chlorotoluene             | μg/l         | 0.2                                    | U             | 0.2  | 0.2                                    | U             | 0.2  |           |                                           | ND           |
| EPA 8260C                | 4-Chlorotoluene             | μg/l         | 0.2                                    | U             | 0.2  | 0.2                                    | U             | 0.2  |           |                                           | ND           |
| EPA 8260C                | Benzene                     | μg/l         | 0.2                                    | U             | 0.2  | 0.2                                    | U             | 0.2  |           |                                           | ND           |
| EPA 8260C                | Bromobenzene                | μg/l         | 0.2                                    | U             | 0.2  | 0.2                                    | U             | 0.2  |           |                                           | ND           |
| EPA 8260C                | Bromochloromethane          | μg/l         | 0.2                                    | U             | 0.2  | 0.2                                    | U             | 0.2  |           |                                           | ND           |
| EPA 8260C                | Bromodichloromethane        | μg/l         | 0.2                                    | U             | 0.2  | 0.2                                    | U             | 0.2  |           |                                           | ND           |
| EPA 8260C                | Bromoform                   | <u>μg</u> /l | 1                                      | U             | 1    | 1                                      | U             | 1    |           |                                           | ND           |
| EPA 8260C                | Bromomethane                | μg/l         | 0.2                                    | U             | 0.2  | 0.2                                    | U             | 0.2  |           |                                           | ND           |
| EPA 8260C                | Carbon Tetrachloride        | μg/l         | 0.2                                    | U             | 0.2  | 0.2                                    | U             | 0.2  |           |                                           | ND           |
| EPA 8260C                | Chlorobenzene               | μg/l         | 0.2                                    | U             | 0.2  | 0.2                                    | U             | 0.2  |           |                                           | ND           |

# Table 3 FMW-134 Sample and Field Duplicate Precision Summary Block 38

## Seattle, Washington Farallon PN: 397-019

|                          |                           |      | (      | Driginal Samp                       | ole   | D      | uplicate Samp                       | ole  |           |                                           |                     |
|--------------------------|---------------------------|------|--------|-------------------------------------|-------|--------|-------------------------------------|------|-----------|-------------------------------------------|---------------------|
|                          |                           |      | F      | FMW-134<br>MW134-1228<br>12/28/2018 | 318   | F      | FMW-134<br>MW500-1228<br>12/28/2018 | 18   | RPD       | Absolute Difference when Results are less | RPD<br>Criteria Met |
| <b>Analytical Method</b> | Analyte                   | Unit | Result | Detect                              | PQL   | Result | Detect                              | PQL  | (percent) | than 5x PQL                               |                     |
| EPA 8260C                | Chloroethane              | μg/l | 1      | U                                   | 1     | 1      | U                                   | 1    |           |                                           | ND                  |
| EPA 8260C                | Chloroform                | μg/l | 0.2    | U                                   | 0.2   | 0.2    | U                                   | 0.2  |           |                                           | ND                  |
| EPA 8260C                | Chloromethane             | μg/l | 1      | U                                   | 1     | 1      | U                                   | 1    |           |                                           | ND                  |
| EPA 8260C                | cis-1,2-Dichloroethene    | μg/l | 0.2    | U                                   | 0.2   | 0.2    | U                                   | 0.2  |           |                                           | ND                  |
| EPA 8260C                | cis-1,3-Dichloropropene   | μg/l | 0.2    | U                                   | 0.2   | 0.2    | U                                   | 0.2  |           |                                           | ND                  |
| EPA 8260C                | Dibromochloromethane      | μg/l | 0.2    | U                                   | 0.2   | 0.2    | U                                   | 0.2  |           |                                           | ND                  |
| EPA 8260C                | Dibromomethane            | μg/l | 0.2    | U                                   | 0.2   | 0.2    | U                                   | 0.2  |           |                                           | ND                  |
| EPA 8260C                | Dichlorodifluoromethane   | μg/l | 0.2    | U                                   | 0.2   | 0.2    | U                                   | 0.2  |           |                                           | ND                  |
| EPA 8260C                | Ethylbenzene              | μg/l | 0.2    | U                                   | 0.2   | 0.2    | U                                   | 0.2  |           |                                           | ND                  |
| EPA 8260C                | Hexachlorobutadiene       | μg/l | 1      | U                                   | 1     | 1      | U                                   | 1    |           |                                           | ND                  |
| EPA 8260C                | Iodomethane               | μg/l | 1      | U                                   | 1     | 1      | U                                   | 1    |           |                                           | ND                  |
| EPA 8260C                | m,p-Xylene                | μg/l | 0.4    | U                                   | 0.4   | 0.4    | U                                   | 0.4  |           |                                           | ND                  |
| EPA 8260C                | Methylene Chloride        | μg/l | 1      | U                                   | 1     | 1      | U                                   | 1    |           |                                           | ND                  |
| EPA 8260C                | o-Xylene                  | μg/l | 0.2    | U                                   | 0.2   | 0.2    | U                                   | 0.2  |           |                                           | ND                  |
| EPA 8260C                | Tetrachloroethene (PCE)   | μg/l | 0.2    | U                                   | 0.2   | 0.2    | U                                   | 0.2  |           |                                           | ND                  |
| EPA 8260C                | Toluene                   | μg/l | 1      | U                                   | 1     | 1      | U                                   | 1    |           |                                           | ND                  |
| EPA 8260C                | trans-1,2-Dichloroethene  | μg/l | 0.2    | U                                   | 0.2   | 0.2    | U                                   | 0.2  |           |                                           | ND                  |
| EPA 8260C                | trans-1,3-Dichloropropene | μg/l | 0.2    | U                                   | 0.2   | 0.2    | U                                   | 0.2  |           |                                           | ND                  |
| EPA 8260C                | Trichloroethene (TCE)     | μg/l | 0.2    | U                                   | 0.2   | 0.2    | U                                   | 0.2  |           |                                           | ND                  |
| EPA 8260C                | Trichlorofluoromethane    | μg/l | 0.2    | U                                   | 0.2   | 0.2    | U                                   | 0.2  |           |                                           | ND                  |
| EPA 8260C                | Vinyl Chloride            | μg/l | 0.2    | U                                   | 0.2   | 0.2    | U                                   | 0.2  |           |                                           | ND                  |
| EPA 8270D/SIM            | 1-Methylnaphthalene       | μg/l | 0.67   |                                     | 0.11  | 1.7    |                                     | 0.1  | 86.9      |                                           | No                  |
| EPA 8270D/SIM            | 2-Methylnaphthalene       | μg/l | 0.77   |                                     | 0.11  | 2.3    |                                     | 0.1  | 99.7      |                                           | No                  |
| EPA 8270D/SIM            | Acenaphthene              | μg/l | 0.71   |                                     | 0.11  | 1.6    |                                     | 0.1  | 77.1      |                                           | No                  |
| EPA 8270D/SIM            | Acenaphthylene            | μg/l | 0.11   | U                                   | 0.11  | 0.1    | U                                   | 0.1  |           |                                           | ND                  |
| EPA 8270D/SIM            | Anthracene                | μg/l | 0.11   | U                                   | 0.11  | 0.1    | U                                   | 0.1  |           |                                           | ND                  |
| EPA 8270D/SIM            | Benzo(a)Anthracene        | μg/l | 0.011  | U                                   | 0.011 | 0.01   | U                                   | 0.01 |           |                                           | ND                  |
| EPA 8270D/SIM            | Benzo(a)Pyrene            | μg/l | 0.011  | U                                   | 0.011 | 0.01   | U                                   | 0.01 |           |                                           | ND                  |
| EPA 8270D/SIM            | Benzo(b)Fluoranthene      | μg/l | 0.011  | U                                   | 0.011 | 0.01   | U                                   | 0.01 |           |                                           | ND                  |
| EPA 8270D/SIM            | Benzo(g,h,i)Perylene      | μg/l | 0.011  | U                                   | 0.011 | 0.01   | U                                   | 0.01 |           |                                           | ND                  |
| EPA 8270D/SIM            | Benzo(j,k)Fluoranthene    | μg/l | 0.011  | U                                   | 0.011 | 0.01   | U                                   | 0.01 |           |                                           | ND                  |
| EPA 8270D/SIM            | Chrysene                  | μg/l | 0.011  | U                                   | 0.011 | 0.01   | U                                   | 0.01 |           |                                           | ND                  |
| EPA 8270D/SIM            | Dibenzo(a,h)Anthracene    | μg/l | 0.011  | U                                   | 0.011 | 0.01   | U                                   | 0.01 |           |                                           | ND                  |
| EPA 8270D/SIM            | Fluoranthene              | μg/l | 0.11   | U                                   | 0.11  | 0.1    | U                                   | 0.1  |           |                                           | ND                  |

# Table 3 FMW-134 Sample and Field Duplicate Precision Summary Block 38

Seattle, Washington Farallon PN: 397-019

|                   |                        |      | Original Sample FMW-134 FMW134-122818 12/28/2018 |        |       | Duplicate Sample<br>FMW-134<br>FMW500-122818<br>12/28/2018 |        |      | RPD       | Absolute<br>Difference when<br>Results are less | RPD          |
|-------------------|------------------------|------|--------------------------------------------------|--------|-------|------------------------------------------------------------|--------|------|-----------|-------------------------------------------------|--------------|
| Analytical Method | Analyte                | Unit | Result                                           | Detect | PQL   | Result                                                     | Detect | PQL  | (percent) | than 5x PQL                                     | Criteria Met |
| EPA 8270D/SIM     | Fluorene               | μg/l | 0.11                                             | U      | 0.11  | 0.15                                                       |        | 0.1  |           | 0.04                                            | Yes          |
| EPA 8270D/SIM     | Indeno(1,2,3-cd)Pyrene | μg/l | 0.011                                            | U      | 0.011 | 0.01                                                       | U      | 0.01 |           |                                                 | ND           |
| EPA 8270D/SIM     | Naphthalene            | μg/l | 23                                               |        | 1.1   | 62                                                         |        | 2.1  | 91.8      |                                                 | No           |
| EPA 8270D/SIM     | Phenanthrene           | μg/l | 0.11                                             | U      | 0.11  | 0.1                                                        | U      | 0.1  |           |                                                 | ND           |
| EPA 8270D/SIM     | Pyrene                 | μg/l | 0.11                                             | U      | 0.11  | 0.1                                                        | U      | 0.1  |           |                                                 | ND           |

## NOTES:

mg/l = milligrams per liter

 $\mu$ g/l = micrograms per liter

ND = analyte not detected in both original sample and field duplicate

PQL = practical quantitation limit

RPD = relative percent difference

U = analyte not detected at or exceeding the laboratory practical quantitation limit





#### DATA VALIDATION REPORT

## ALLEY AREA OF BLOCK 38 WEST SITE BETWEEN REPUBLICAN STREET AND MERCER STREET SEATTLE, WASHINGTON

Agreed Order No. DE 17963 Facility Site Identification No. 62773 Cleanup Site Identification No. 15008

> Submitted by: Farallon Consulting, L.L.C. 975 5<sup>th</sup> Avenue Northwest Issaquah, Washington 98027

> > **Farallon PN: 397-019**

For:

City Investors IX LLC 505 5<sup>th</sup> Avenue South Seattle, Washington 98104

August 23, 2022

Prepared by

Jeanette Mullin, L.G. Environmental Data Manager

Reviewed by:

Eric Buer, L.G., L.H.G. Principal Hydrogeologist



## TABLE OF CONTENTS

| 1.0 | INT                                       | RODUC  | TION                                                       | 1-1   |  |  |  |  |  |  |
|-----|-------------------------------------------|--------|------------------------------------------------------------|-------|--|--|--|--|--|--|
|     | 1.1                                       | OVE    | RALL DATA ASSESSMENT                                       | 1-2   |  |  |  |  |  |  |
|     | 1.2                                       | DATA   | A QUALIFIER DEFINITIONS                                    | 1-2   |  |  |  |  |  |  |
|     | 1.3                                       |        | N-OF-CUSTODY                                               |       |  |  |  |  |  |  |
|     | 1.4                                       | COM    | PLETENESS                                                  | 1-2   |  |  |  |  |  |  |
| 2.0 | PET                                       | ROLEU  | JM HYDROCARBON NWTPH-DX QA REVIEW                          | 2-1   |  |  |  |  |  |  |
|     | 2.1                                       |        | LINESS AND PRESERVATION                                    |       |  |  |  |  |  |  |
|     | 2.2                                       | LABO   | ORATORY QUALITY CONTROL SAMPLES                            | 2-1   |  |  |  |  |  |  |
|     |                                           | 2.2.1  |                                                            |       |  |  |  |  |  |  |
|     |                                           | 2.2.2  | Method Blanks                                              |       |  |  |  |  |  |  |
|     |                                           | 2.2.3  |                                                            |       |  |  |  |  |  |  |
|     |                                           | 2.2.4  |                                                            |       |  |  |  |  |  |  |
| 3.0 | PET                                       | ROLEU  | M HYDROCARBON NWTPH-GX QA REVIEW                           | 3-1   |  |  |  |  |  |  |
|     | 3.1                                       |        | LINESS AND PRESERVATION                                    |       |  |  |  |  |  |  |
|     | 3.2                                       | LABO   | ORATORY QUALITY CONTROL SAMPLES                            | 3-1   |  |  |  |  |  |  |
|     |                                           | 3.2.1  |                                                            |       |  |  |  |  |  |  |
|     |                                           | 3.2.2  | Method Blanks                                              |       |  |  |  |  |  |  |
|     |                                           | 3.2.3  | Laboratory Duplicates, Spike Blanks/Spike Blank Duplicates | ates, |  |  |  |  |  |  |
|     |                                           |        | and/or Matrix Spikes/Matrix Spike Duplicates               |       |  |  |  |  |  |  |
|     |                                           | 3.2.4  | Surrogate Recoveries                                       |       |  |  |  |  |  |  |
| 4.0 | VOLATILE ORGANIC COMPOUND 8260D QA REVIEW |        |                                                            |       |  |  |  |  |  |  |
|     | 4.1                                       |        | LINESS                                                     |       |  |  |  |  |  |  |
|     | 4.2                                       | LABO   | DRATORY QUALITY CONTROL SAMPLES                            | 4-1   |  |  |  |  |  |  |
|     |                                           | 4.2.1  | Quality Control Analysis Frequency                         | 4-1   |  |  |  |  |  |  |
|     |                                           | 4.2.2  | Method Blanks                                              | 4-1   |  |  |  |  |  |  |
|     |                                           | 4.2.3  | Spike Blanks/Spike Blank Duplicates                        | 4-1   |  |  |  |  |  |  |
|     |                                           | 4.2.4  | Surrogate Recoveries                                       | 4-1   |  |  |  |  |  |  |
| 5.0 | SEM                                       | IIVOLA | TILE ORGANIC COMPOUND QA REVIEW                            | 5-1   |  |  |  |  |  |  |
|     | 5.1                                       |        | ELINESS                                                    |       |  |  |  |  |  |  |
|     | 5.2                                       |        | DRATORY QUALITY CONTROL SAMPLES                            |       |  |  |  |  |  |  |
|     |                                           | 5.2.1  | Quality Control Analysis Frequency                         |       |  |  |  |  |  |  |
|     |                                           | 5.2.2  | Method Blanks                                              | 5-1   |  |  |  |  |  |  |
|     |                                           | 5.2.3  | Spike Blanks/Spike Blank Duplicates and/or Matrix          |       |  |  |  |  |  |  |
|     |                                           |        | Spikes/Matrix Spike Duplicates                             | 5-1   |  |  |  |  |  |  |
|     |                                           | 5.2.4  | Surrogate Recoveries                                       | 5-1   |  |  |  |  |  |  |
| 6.0 | MET                                       | TALS Q | A REVIEW                                                   | 6-1   |  |  |  |  |  |  |
|     | 6.1                                       | TIME   | LINESS                                                     | 6-1   |  |  |  |  |  |  |



Table 2

|       | 6.2 | LABC     | DRATORY QUALITY CONTROL SAMPLES                      | 6-1 |
|-------|-----|----------|------------------------------------------------------|-----|
|       |     |          | Quality Control Analysis Frequency                   |     |
|       |     | 6.2.2    | Method Blanks                                        | 6-1 |
|       |     | 6.2.3    | Matrix Spikes/Matrix Spike Duplicates and Laboratory |     |
|       |     |          | Duplicates                                           | 6-1 |
| 7.0   | REI | FERENC   | ES                                                   | 7-1 |
|       |     |          | TABLES                                               |     |
| Table | 1 ( | Overview | of Soil Sample Analyses                              |     |

Summary of Qualified Data



#### 1.0 INTRODUCTION

This report provides a summary of quality assurance (QA) data validation findings. Data validation was previously performed for most of the data shown in the Block 38 analytical results tables and is reported in two other reports:

- Appendix B of the *Alley Area of Block 38 West Site Interim Action Workplan* (Farallon 2021a); and
- Appendix D of the Agency Review Draft Interim Action Report, Block 38 West Site, 500 through 536 Westlake Avenue North, Seattle, Washington (Farallon 2021).

This report documents the data validation performed for additional soil samples collected in 2021 from the Block 38 alley during the interim action cleanup. Data validation was conducted for the following environmental samples:

Project Name: Alley Area of the Block 38 West Site

Project No.: 397-019

Lab Name: OnSite Environmental Inc. (OnSite), Redmond, Washington

Lab Reference No.: 11 Sample Delivery Groups identified in Table 1

Matrices: Soil

Table 1 identifies the 11 Sample Delivery Groups (SDGs) analyzed by OnSite, the samples analyzed within each delivery group, the sample matrix, and the analytical methods used to analyze each sample.

This review of project data was performed using the U.S. Environmental Protection Agency's (EPA) National Functional Guidelines for Organic Superfund Methods Data Review (USEPA-540-R-2017-002) dated January 2017, and National Functional Guidelines for Inorganic Superfund Methods Data Review (USEPA-540-R-2017-001) dated January 2017.

This report includes a review of holding times, method blanks, matrix spike and spike blank recoveries, matrix spike duplicate and spike blank duplicate data, duplicates, surrogates, and chain-of-custody records. As shown in Table 1, select samples were analyzed for total petroleum hydrocarbons (TPH) as diesel- and oil-range organics by Northwest Method NWTPH-Dx; TPH as gasoline-range organics by Northwest Method NWTPH-Gx; volatile organic compounds (VOCs)



by EPA Method 8260D; semivolatile organic compounds (SVOCs) by EPA Method 8270E/Selective Ion Monitoring (SIM); and metals by EPA Method 6010D.

#### 1.1 OVERALL DATA ASSESSMENT

All data are of known quality and are acceptable for use. No results were rejected as a result of this data assessment. Data qualified during this validation effort is summarized in Table 2 and discussed in the sections below.

#### 1.2 DATA QUALIFIER DEFINITIONS

Following are definitions of data qualifiers used during data validation:

J+ (Estimated High Bias): The result is an estimated quantity, and the result may be biased high based on non-conformances identified during data validation.

#### 1.3 CHAIN-OF-CUSTODY

Field chain-of-custody forms were complete. All chain-of-custody forms were signed and dated. No issues with sample receipt conditions were indicated in the Case Narrative section of the laboratory reports.

#### 1.4 COMPLETENESS

Completeness is expressed as the ratio of valid results to the amount of data expected to be obtained under normal conditions. Completeness is determined by assessing the number of samples for which valid results were obtained versus the number of samples that were submitted to the laboratory for analysis. Valid results are results that are determined to be usable during the data validation review process.

The completeness of this data set is 100 percent.



#### 2.0 PETROLEUM HYDROCARBON NWTPH-DX QA REVIEW

#### 2.1 TIMELINESS AND PRESERVATION

The recommended holding time for Northwest Method NWTPH-Dx soil is 14 days to extract and 40 days to analyze after extraction. All samples were extracted and analyzed within holding times.

### 2.2 LABORATORY QUALITY CONTROL SAMPLES

#### 2.2.1 Quality Control Analysis Frequency

Method blanks were analyzed at a minimum frequency of 5 percent (or one per batch). Duplicates were analyzed at a rate of 1 duplicate per 10 samples with a minimum of 1 duplicate per SDG. These criteria were met for all delivery groups.

#### 2.2.2 Method Blanks

No target analytes were detected in the soil method blanks at or exceeding the reporting limits for all delivery groups.

#### 2.2.3 Laboratory Duplicates

Relative Percent Differences (RPDs) of all analytes were within the laboratory's quality control (QC) limits for all delivery groups. In cases where the RPD was elevated, such as for SDG 2107-084, the duplicate was performed on a non-project sample where heterogeneity and matrix impacts may have been present. No qualification of project samples is needed.

#### 2.2.4 Surrogate Recoveries

The laboratory used one surrogate spike compound for Method NWTPH-Dx. All surrogate recoveries were within the laboratory's QC limits for all delivery groups except as noted below. The o-terphenyl surrogate spike was not recovered in the following sample due to sample dilution to address high concentrations of target analytes:

#### • **SDG 2107-084:** Sample I/A5-ESW-20.0-070921

No qualifications of sample results are needed based on the lack of surrogate recovery in this sample.



#### 3.0 PETROLEUM HYDROCARBON NWTPH-GX QA REVIEW

#### 3.1 TIMELINESS AND PRESERVATION

The recommended holding time for Northwest Method NWTPH-Gx soil samples is 14 days. All samples were extracted and analyzed within this period.

#### 3.2 LABORATORY QUALITY CONTROL SAMPLES

#### 3.2.1 Quality Control Analysis Frequency

Method blanks were analyzed at a frequency of 1 method blank per 10 samples. Duplicates were analyzed at a frequency of 1 per 10 samples. These criteria were met for all delivery groups.

#### 3.2.2 Method Blanks

No target analytes were detected at or exceeding the reporting limits in the method blanks for all delivery groups.

## 3.2.3 Laboratory Duplicates, Spike Blanks/Spike Blank Duplicates, and/or Matrix Spikes/Matrix Spike Duplicates

RPDs of all analytes were within the laboratory's QC limits for all delivery groups.

#### 3.2.4 Surrogate Recoveries

The laboratory used one surrogate spike compound for Method NWTPH-Gx. All surrogate recoveries were within the laboratory's QC limits for all delivery groups.



#### 4.0 VOLATILE ORGANIC COMPOUND 8260D QA REVIEW

#### 4.1 TIMELINESS

The recommended holding time for EPA Method 8260D is 14 days for preserved soil samples. All samples were extracted and analyzed within this period.

### 4.2 LABORATORY QUALITY CONTROL SAMPLES

#### 4.2.1 Quality Control Analysis Frequency

Method blanks were analyzed at a frequency of 1 method blank per 10 samples. Spike blanks/spike blank duplicates were analyzed at a frequency of 1 per 10 samples. These criteria were met for all delivery groups.

#### 4.2.2 Method Blanks

No target analytes were detected at or exceeding the reporting limits in the method blanks for all delivery groups.

#### 4.2.3 Spike Blanks/Spike Blank Duplicates

Recoveries and RPDs of all analytes were within the laboratory's QC limits for all delivery groups.

#### 4.2.4 Surrogate Recoveries

The laboratory used three surrogate spike compounds for EPA Method 8260D. All surrogate recoveries were within the laboratory's QC limits for all delivery groups.



#### 5.0 SEMIVOLATILE ORGANIC COMPOUND QA REVIEW

#### 5.1 TIMELINESS

The recommended holding time for EPA Method 8270E/SIM soil samples is 14 days to extract and 40 days to analyze after extraction. All samples were extracted and analyzed within this period.

#### 5.2 LABORATORY QUALITY CONTROL SAMPLES

#### **5.2.1** Quality Control Analysis Frequency

Method blanks and spike blanks/spike blank duplicates (or matrix spikes/matrix spike duplicates) were analyzed at a minimum frequency of 5 percent (or one per batch). These criteria were met for all delivery groups.

#### 5.2.2 Method Blanks

No target analytes were detected at or exceeding the reporting limits in the method blanks for all delivery groups.

### 5.2.3 Spike Blanks/Spike Blank Duplicates and/or Matrix Spikes/Matrix Spike Duplicates

Recoveries and RPDs of all analytes were within the laboratory's QC limits for all delivery groups.

#### **5.2.4** Surrogate Recoveries

The laboratory used three surrogate spike compounds for EPA Method 8270E/SIM for soil samples. Surrogate recoveries were within the laboratory's QC limits for all delivery groups except as noted below:

• **SDG 2107-084:** The percent recovery of the surrogate terphenyl-d14 exceeded the upper control limit in soil sample I/A5-ESW-17.5-070921. The analytes associated with this surrogate compound (benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo(j,k)fluoranthene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene, and dibenz[a,h]anthracene) were detected in the sample and the results are qualified as estimates with a high bias (J+) as shown in Table 2.



#### 6.0 METALS QA REVIEW

#### 6.1 TIMELINESS

The recommended holding time for EPA Method 6010D is 6 months for soil samples. All samples were extracted and analyzed within holding times.

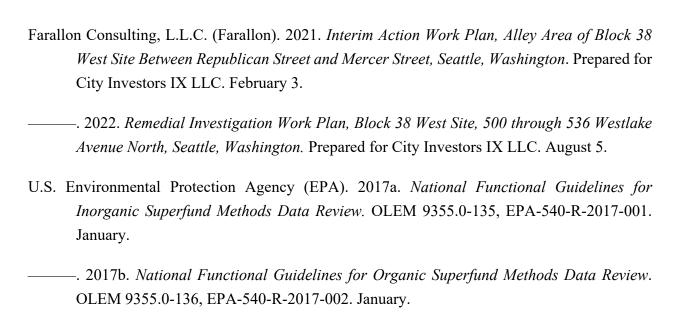
### 6.2 LABORATORY QUALITY CONTROL SAMPLES

#### **6.2.1** Quality Control Analysis Frequency

Method blanks, matrix spikes/matrix spike duplicates, and laboratory duplicates were analyzed at a frequency of 5 percent (or one per batch). These criteria were met for all delivery groups.

#### 6.2.2 Method Blanks

No target analytes were detected at or exceeding the reporting limits in the method blanks for all delivery groups.


#### 6.2.3 Matrix Spikes/Matrix Spike Duplicates and Laboratory Duplicates

Recoveries and RPDs of all analytes were within the laboratory's QC limits for all delivery groups except as noted below:

• SDG 2107-039B: The laboratory duplicate RPD for lead exceeded the RPD control limit. The laboratory duplicate analysis was conducted on a non-project sample within the batch; the laboratory noted that the original and duplicate results were within five times the quantitation limit. EPA guidance indicates that when the original sample and duplicate sample results are less than five times the quantitation limit, the absolute difference between the original sample result and duplicate sample result should be calculated and compared to the quantitation limit. If the difference is less than the quantitation limit, no qualification is needed. No qualifications of project sample results are needed for two reasons: 1) the duplicate analysis was performed on a non-project sample and results are not applicable to project samples, and 2) the absolute difference between the original and duplicate sample results was less than the practical quantitation limit.



#### 7.0 REFERENCES



## **TABLES**

DATA VALIDATION REPORT Alley Area of Block 38 West Site Between Republican Street and Mercer Street Seattle, Washington

Farallon PN: 397-019

## Table 1 Overview of Soil Sample Analyses Block 38 Alley Seattle, Washington

| Farallon | PN: | 397- | 019 |
|----------|-----|------|-----|

| Lab Sample     |                       |        |             |          |          | Analytical Method |               |           |
|----------------|-----------------------|--------|-------------|----------|----------|-------------------|---------------|-----------|
| Delivery Group | Sample Identification | Matrix | Sample Date | NWTPH-Dx | NWTPH-Gx | EPA 8260D         | EPA 8270E/SIM | EPA 6010D |
| 2103-120       | A/A5-SSW-22.5-031021  | Soil   | 3/10/2021   |          |          |                   | X             |           |
| 2103-120       | A/A5-B2-22.5-031021   | Soil   | 3/10/2021   |          |          |                   | X             |           |
| 2103-120       | A/A5-B2-20.0-031021   | Soil   | 3/10/2021   |          |          |                   | X             |           |
| 2103-120       | A/A5-B2-17.5-031021   | Soil   | 3/10/2021   |          |          |                   | X             |           |
| 2103-120       | A/A5-B-17.5-031021    | Soil   | 3/10/2021   |          |          |                   | X             |           |
| 2103-234       | A/A5-ESW-22.5-031821  | Soil   | 3/18/2021   |          |          |                   | X             |           |
| 2103-234       | A/A5-ESW-20.0-031821  | Soil   | 3/18/2021   |          |          |                   | X             |           |
| 2103-234       | A/A5-ESW-17.5-031821  | Soil   | 3/18/2021   |          |          |                   | X             |           |
| 2103-234       | A/A5-SSW-20.0-031821  | Soil   | 3/18/2021   |          |          |                   | X             |           |
| 2103-267       | C/A5-ESW-22-5-032221  | Soil   | 3/22/2021   |          |          |                   | X             |           |
| 2103-267       | C/A5-ESW-20.0-032221  | Soil   | 3/22/2021   |          |          |                   | X             |           |
| 2103-267       | C/A5-ESW-17.5-032221  | Soil   | 3/22/2021   |          |          |                   | X             |           |
| 2103-267       | D/A5-B-17.5-032221    | Soil   | 3/22/2021   |          |          |                   | X             |           |
| 2103-267       | A/A5-SSW-17.5-032221  | Soil   | 3/22/2021   |          |          |                   | X             |           |
| 2103-287       | A/A5-B-16.0-032421    | Soil   | 3/24/2021   |          |          |                   | X             |           |
| 2105-037       | E/A5-ESW-22.5-050421  | Soil   | 5/4/2021    | X        | X        | X                 | X             |           |
| 2105-037       | E/A5-ESW-20.0-050421  | Soil   | 5/4/2021    | X        | X        | X                 | X             |           |
| 2105-037       | E/A5-ESW-17.5-050421  | Soil   | 5/4/2021    | X        | X        | X                 | X             |           |
| 2106-270       | E/A5-B-17.5           | Soil   | 6/28/2021   | X        | X        | X                 | X             |           |
| 2106-270       | F/A5-B-17.5           | Soil   | 6/28/2021   | X        | X        | X                 | X             |           |
| 2107-039       | G/A5-ESW-22.5-070621  | Soil   | 7/6/2021    | X        |          |                   | X             | X         |
| 2107-039       | G/A5-ESW-20.0-070621  | Soil   | 7/6/2021    | X        |          |                   | X             | X         |
| 2107-039       | G/A5-ESW-17.5-070621  | Soil   | 7/6/2021    | X        |          |                   | X             | X         |
| 2107-039       | H/A5-ESW-22.5-070621  | Soil   | 7/6/2021    | X        |          |                   | X             | X         |
| 2107-039       | H/A5-ESW-20.0-070621  | Soil   | 7/6/2021    | X        |          |                   | X             | X         |
| 2107-039       | H/A5-ESW-17.5-070621  | Soil   | 7/6/2021    | X        |          |                   | X             | X         |
| 2107-039       | H/A5-B-17.5-070621    | Soil   | 7/6/2021    | X        |          |                   | X             | X         |
| 2107-084       | I/A5-ESW-22.5-070921  | Soil   | 7/9/2021    | X        |          |                   | X             | X         |
| 2107-084       | I/A5-ESW-20.0-070921  | Soil   | 7/9/2021    | X        |          |                   | X             | X         |
| 2107-084       | I/A5-ESW-17.5-070921  | Soil   | 7/9/2021    | X        |          |                   | X             |           |
| 2107-084       | I/A5-B-17.5-070921    | Soil   | 7/9/2021    | X        |          |                   | X             | X         |
| 2107-084       | J/A5-ESW-22.5-070921  | Soil   | 7/9/2021    | X        |          |                   | X             | X         |

# Table 1 Overview of Soil Sample Analyses Block 38 Alley Seattle, Washington

**Farallon PN: 397-019** 

| Lab Sample     |                       |        |             |          |          | Analytical Method |               |           |
|----------------|-----------------------|--------|-------------|----------|----------|-------------------|---------------|-----------|
| Delivery Group | Sample Identification | Matrix | Sample Date | NWTPH-Dx | NWTPH-Gx | EPA 8260D         | EPA 8270E/SIM | EPA 6010D |
| 2107-084       | J/A5-ESW-20.0-070921  | Soil   | 7/9/2021    | X        |          |                   | X             | X         |
| 2107-084       | J/A5-ESW-17.5-070921  | Soil   | 7/9/2021    | X        |          |                   | X             |           |
| 2107-095       | L/A5-ESW-25.0-071221  | Soil   | 7/12/2021   | X        |          |                   | X             |           |
| 2107-095       | L/A5-ESW-22.5-071221  | Soil   | 7/12/2021   | X        |          |                   | X             |           |
| 2107-095       | L/A5-B-22.0-071221    | Soil   | 7/12/2021   | X        |          |                   | X             |           |
| 2107-157       | M/A5-ESW-25.0-071521  | Soil   | 7/15/2021   | X        |          |                   | X             |           |
| 2107-157       | M/A5-ESW-22.5-071521  | Soil   | 7/15/2021   | X        |          |                   | X             |           |
| 2107-191       | N/A5-ESW-28.0-072021  | Soil   | 7/20/2021   |          |          |                   | X             |           |
| 2107-191       | N/A5-ESW-26.0-072021  | Soil   | 7/20/2021   |          |          |                   | X             |           |
| 2107-191       | N/A5-NSW-28.0-072021  | Soil   | 7/20/2021   |          |          |                   | X             |           |
| 2107-191       | N/A5-NSW-26.0-072021  | Soil   | 7/20/2021   |          |          |                   | X             |           |
| 2107-191       | N/A5-B-25.0-072021    | Soil   | 7/20/2021   |          |          |                   | X             |           |

#### NOTES:

An "X" indicates the sample was analyzed by the method specified in that column.

## Table 2 Summary of Qualified Data Block 38 Alley Seattle, Washington

**Farallon PN: 397-019** 

| Sample Identification | SDG      | Matrix | Method        | Analyte                | Qualifier | Reason                                                                       |
|-----------------------|----------|--------|---------------|------------------------|-----------|------------------------------------------------------------------------------|
| I/A5-ESW-17.5-070921  | 2107-084 | Soil   | EPA 8270E/SIM | Benzo[a]anthracene     | J+        | Percent recovery of surrogate terphenyl-d14 exceeded the upper control limit |
| I/A5-ESW-17.5-070921  | 2107-084 | Soil   | EPA 8270E/SIM | Chrysene               | J+        | Percent recovery of surrogate terphenyl-d14 exceeded the upper control limit |
| I/A5-ESW-17.5-070921  | 2107-084 | Soil   | EPA 8270E/SIM | Benzo[b]fluoranthene   | J+        | Percent recovery of surrogate terphenyl-d14 exceeded the upper control limit |
| I/A5-ESW-17.5-070921  | 2107-084 | Soil   | EPA 8270E/SIM | Benzo(j,k)fluoranthene | J+        | Percent recovery of surrogate terphenyl-d14 exceeded the upper control limit |
| I/A5-ESW-17.5-070921  | 2107-084 | Soil   | EPA 8270E/SIM | Benzo[a]pyrene         | J+        | Percent recovery of surrogate terphenyl-d14 exceeded the upper control limit |
| I/A5-ESW-17.5-070921  | 2107-084 | Soil   | EPA 8270E/SIM | Indeno[1,2,3-cd]pyrene | J+        | Percent recovery of surrogate terphenyl-d14 exceeded the upper control limit |
| I/A5-ESW-17.5-070921  | 2107-084 | Soil   | EPA 8270E/SIM | Dibenz[a,h]anthracene  | J+        | Percent recovery of surrogate terphenyl-d14 exceeded the upper control limit |

#### NOTES:

EPA = U.S. Environmental Protection Agency

J+ = result is an estimate with a high bias

SDG = sample delivery group





## **DATA VALIDATION REPORT**

Block 38 West Site 500 through 536 Westlake Avenue North Seattle, Washington

Agreed Order No. DE 17963
Facility Site Identification No. 62773
Cleanup Site Identification No. 15008

Farallon PN: 397-019

December 20, 2024

Prepared by:

Jeanette Mullin, L.G. Environmental Data Manager

Reviewed by:

Pete Kingston, L.G.

Principal Geologist

For:

City Investors IX LLC 505 5<sup>th</sup> Avenue South Seattle, Washington 98104 Submitted by: Farallon Consulting, L.L.C. 975 5<sup>th</sup> Avenue Northwest Issaquah, Washington 98027



## **TABLE OF CONTENTS**

| 1.0 | INTRO | DDUCTION                                                                | 1-1 |
|-----|-------|-------------------------------------------------------------------------|-----|
|     | 1.1   | OVERALL DATA ASSESSMENT                                                 | 1-2 |
|     | 1.2   | DATA QUALIFIER DEFINITIONS                                              |     |
|     | 1.3   | CHAIN OF CUSTODY                                                        | 1-2 |
|     | 1.4   | COMPLETENESS                                                            | 1-4 |
| 2.0 | PETR  | OLEUM HYDROCARBON NWTPH-DX QA REVIEW                                    |     |
|     | 2.1   | TIMELINESS AND PRESERVATION                                             |     |
|     | 2.2   | LABORATORY QUALITY CONTROL SAMPLES                                      |     |
|     |       | 2.2.1 Quality Control Analysis Frequency                                |     |
|     |       | 2.2.2 Method Blanks                                                     |     |
|     |       | 2.2.3 Laboratory Duplicates, Spike Blanks, and Spike Blank Duplicates   |     |
|     |       | 2.2.4 Surrogate Recoveries                                              | 2-1 |
| 3.0 |       | OLEUM HYDROCARBON NWTPH-GX QA REVIEW                                    |     |
|     | 3.1   | TIMELINESS AND PRESERVATION                                             |     |
|     | 3.2   | LABORATORY QUALITY CONTROL SAMPLES                                      |     |
|     |       | 3.2.1 Quality Control Analysis Frequency                                |     |
|     |       | 3.2.2 Method Blanks                                                     |     |
|     |       | 3.2.3 Laboratory Duplicates and Spike Blanks                            |     |
|     |       | 3.2.4 Surrogate Recoveries                                              | 3-1 |
| 4.0 |       | TILE ORGANIC COMPOUND 8260D QA REVIEW                                   | 4-1 |
|     | 4.1   | TIMELINESS AND PRESERVATION                                             |     |
|     | 4.2   | LABORATORY QUALITY CONTROL SAMPLES                                      |     |
|     |       | 4.2.1 Quality Control Analysis Frequency                                |     |
|     |       | 4.2.2 Method Blanks                                                     |     |
|     |       | 4.2.3 Laboratory Duplicates, Spike Blanks, and Matrix Spikes            |     |
|     |       | 4.2.4 Surrogate Recoveries                                              |     |
|     |       | 4.2.5 Continuing Calibration Verification                               | 4-2 |
| 5.0 |       | VOLATILE ORGANIC COMPOUND 8270E QA REVIEW                               | 5-1 |
|     | 5.1   | TIMELINESS AND PRESERVATION                                             |     |
|     | 5.2   | LABORATORY QUALITY CONTROL SAMPLES                                      |     |
|     |       | 5.2.1 Quality Control Analysis Frequency                                |     |
|     |       | 5.2.2 Method Blanks                                                     |     |
|     |       | 5.2.3 Spike Blanks, Spike Blank Duplicates, Matrix Spikes, Matrix Spike |     |
|     |       | Duplicates, and Laboratory Duplicates                                   |     |
|     |       | 5.2.4 Surrogate Recoveries                                              | 5-2 |
| 6.0 |       | ALS 6020B QA REVIEW                                                     |     |
|     | 6.1   | TIMELINESS AND PRESERVATION                                             | _   |
|     | 6.2   | LABORATORY QUALITY CONTROL SAMPLES                                      |     |
|     |       | 6.2.1 Quality Control Analysis Frequency                                |     |
|     |       | 6.2.2 Method Blanks                                                     | 6-1 |



|     |                                | 6.2.3 Laboratory Duplicates, Spike Blanks, and Matrix Spikes | 6-1 |
|-----|--------------------------------|--------------------------------------------------------------|-----|
| 7.0 | TOTAL                          | _ SUSPENDED SOLIDS QA REVIEW                                 | 7-1 |
|     | 7.1                            | TIMELINESS AND PRESERVATION                                  |     |
|     | 7.2                            | LABORATORY QUALITY CONTROL SAMPLES                           | 7-1 |
|     |                                | 7.2.1 Quality Control Analysis Frequency                     | 7-1 |
|     |                                | 7.2.2 Method Blanks                                          |     |
|     |                                | 7.2.3 Laboratory Duplicates and Reference Sample             |     |
| 8.0 | TOTAL ORGANIC CARBON QA REVIEW |                                                              | 8-1 |
|     | 8.1                            | TIMELINESS AND PRESERVATION                                  |     |
|     | 8.2                            | LABORATORY QUALITY CONTROL SAMPLES                           | 8-1 |
|     |                                | 8.2.1 Quality Control Analysis Frequency                     |     |
|     |                                | 8.2.2 Method Blanks                                          |     |
|     |                                | 8.2.3 Spike Blanks                                           | 8-1 |
| 9.0 | REFE                           | RENCES                                                       | 9-1 |

## **TABLES**

Table 1 Overview of Sample Analyses

Table 2 Summary of Qualified Data



## **ACRONYMS AND ABBREVIATIONS**

EPA U.S. Environmental Protection Agency

Farallon Farallon Consulting, L.L.C.

GRO gasoline-range organics

J estimated

J- estimated low bias

QA quality assurance

QC quality control

RPD relative percent difference

SDG Sample Delivery Group

SIM Selective Ion Monitoring

SVOC semivolatile organic compound

TPH total petroleum hydrocarbons

UJ non-detected estimated

VOA volatile organic analysis

VOC volatile organic compound



#### 1.0 INTRODUCTION

This Data Validation Report provides a summary of quality assurance (QA) data validation findings for analytical results obtained for the Block 38 West Remedial Investigation. This report supplements the Data Validation reports provided in the *Final Interim Action Report*, *Block 38 West Site*, 500 through 536 Westlake Avenue North, Seattle, Washington dated December 28, 2023 (Farallon 2023), and the *Final Interim Action Report*, *Alley Area of Block 38 West Site*, Between Republican Street and Mercer Street, 500 through 536 Westlake Avenue North, Seattle, Washington dated January 5, 2024 (Farallon 2024). Data validation was performed for the following environmental samples:

Project Name: Block 38 West Site

Project No.: 397-019

Lab Name: OnSite Environmental Inc. (OnSite), Redmond, Washington

Lab Reference No.: 2111-264 2202-076

Matrices: Soil

Lab Name: Apex Laboratories, LLC (Apex), Tigard, Oregon

Lab Reference No.: A3E1048 A3K1435

A3E1263 A4B1607 A3E1405 A4B1613 A3E1514 A4B1637 A3H1087 A4C0878

A3H1155

Matrices: Soil and Water

Lab Name: ALS Environmental (ALS), Kelso, Washington (subcontractor to

Apex)

Lab Reference No.: A4B1637 A4C0878

Matrices: Water

Apex subcontracted with ALS to perform total organic carbon analysis by Standard Method 5310C. Table 1 identifies the soil and water samples analyzed by OnSite, Apex, and ALS, the analytical method used to analyze each sample, and the Sample Delivery Group (SDG) each sample was analyzed in.



This review of project data was performed using the U.S. Environmental Protection Agency (EPA) (2020b) *National Functional Guidelines for Organic Superfund Methods Data Review* dated November 2020, and the EPA (2020a) *National Functional Guidelines for Inorganic Superfund Methods Data Review* dated November 2020.

This Data Validation Report includes a review of holding times, method blanks, matrix spike and spike blank recoveries, spike blank duplicate data, surrogates, and Chain of Custody forms. As shown in Table 1, select soil and groundwater samples were analyzed for total petroleum hydrocarbons (TPH) in the diesel- and oil-range by Northwest Method NWTPH-Dx with and without silica gel treatment, TPH in the gasoline-range by Northwest Method NWTPH-Gx, volatile organic compounds (VOCs) by EPA Method 8260D; semivolatile organic compounds (SVOCs) by EPA Method 8270E or EPA Method 8270E/Selective Ion Monitoring (SIM) mode, metals by EPA Method 6020B, total suspended solids by Standard Method 2540D, and total organic carbon by Standard Method 5310C.

#### 1.1 OVERALL DATA ASSESSMENT

All data are of known quality and are acceptable for use. No results were rejected as a result of this data assessment. Data qualified as estimated during this validation effort are summarized in Table 2 and discussed in the sections below.

#### 1.2 DATA QUALIFIER DEFINITIONS

The definitions of the data qualifiers used during data validation are as follows:

- **J (estimated):** The analyte was analyzed for and positively identified by the laboratory; however, the reported concentration is estimated due to non-conformances identified during data validation.
- J- (estimated low bias): The analyte was analyzed for and positively identified by the laboratory; however, the reported concentration is estimated and the result may be biased low due to non-conformances identified during data validation.
- **UJ (non-detected estimated):** The analyte was reported as not detected by the laboratory; however, the reported quantitation/detection limit is estimated due to non-conformances identified during data validation.

#### 1.3 CHAIN OF CUSTODY

Field Chain of Custody forms were complete. All Chain of Custody forms were signed and dated. All samples listed on the Chain of Custody forms were analyzed as indicated. No



issues with sample receipt conditions were indicated on the Apex Cooler Receipt Form, or in the Case Narrative sections of the other laboratory reports, with the exceptions noted below:

- SDG A3E1405: One of the six volatile organic analysis (VOA) vials submitted for sample FMW-161-051523 was received broken. The laboratory was able to conduct the requested analyses with the remaining VOA vials. Visible headspace was observed in two of the six VOA vials submitted for sample FMW-160-051523, in one of six VOA vials submitted for sample FMW-158-051523, and in three of five VOA vials submitted for sample FMW-161-051523. The laboratory was able to conduct the requested analyses for these samples using VOA vials without visible headspace and no qualification of data is needed.
- SDG A3E1514: Broken lids were observed by the laboratory on the amber glass containers received for samples OW-2-051623 and FMW-164-051623. The laboratory replaced the lids with no loss of sample. Visible headspace was observed in one of three VOA vials submitted for samples OW-1-051623, FMW-162-051623, OW-3-051723, and in one of six VOA vials submitted for FMW-155-051623. The laboratory was able to conduct the requested analyses for these samples using VOA vials without visible headspace and no qualification of data is needed. Visible headspace was also observed in three of three VOA vials submitted for sample FMW-165-051723. The laboratory used one of the VOA vials with visible headspace for EPA Method 8260D analysis for sample FMW-165-051723. The VOC results for this sample are qualified as estimates (J and UJ), as shown in Table 2.
- SDG A3H1087: Two of six VOA vials submitted for sample FMW-161-081423 were received by the laboratory broken. The laboratory was able to conduct the requested analyses with the remaining VOA vials. No sample identification, date, or time was provided on one of two amber containers submitted for sample FMW-154-081423. The laboratory was able to determine the sample identification of the container by the way the bottles were packaged in the cooler. The laboratory observed visible headspace in four of the six VOA vials submitted for sample FMW-160-081423. The laboratory was able to conduct the requested analyses for this sample using the VOA vials without visible headspace and no qualification of data is needed.
- SDG A3H1155: One of the containers for sample FMW-153-081523 was mismarked with a sample name that was not shown on the Chain of Custody form. The laboratory matched the container to the correct sample identification using the date and time of sample collection. The laboratory observed visible headspace in three of three VOA



vials submitted for samples OW-1-081523 and FMW-159-081523, in two of three VOA vials submitted for samples OW-3-081523 and FMW-151-081523, and in one of three VOA vials submitted for sample FMW-157-081523. None of the containers with visible headspace were used in any analysis and no qualification of data is needed.

- SDG A4B1607: The sample identification on the containers submitted for the one sample in this delivery group did not match the sample identification shown on the Chain of Custody form. The laboratory used the sample identification as shown on the Chain of Custody form.
- SDG A4C0878: The times on the containers for several samples did not match the time of collection shown on the Chain of Custody. The laboratory used the times as shown on the Chain of Custody form.

#### 1.4 COMPLETENESS

Completeness is expressed as the ratio of valid results to the amount of data expected to be obtained under normal conditions. Completeness is determined by assessing the number of samples for which valid results were obtained versus the number of samples submitted to the laboratory for analysis. Valid results are results determined during the data validation review process to be usable.

The completeness of this data set is 100 percent.



## 2.0 PETROLEUM HYDROCARBON NWTPH-DX QA REVIEW

#### 2.1 TIMELINESS AND PRESERVATION

The recommended holding time for Northwest Method NWTPH-Dx (with and without silica gel cleanup) for soil and preserved groundwater samples is 14 days to extract and 40 days to analyze after extraction. All samples were extracted and analyzed within holding times.

#### 2.2 LABORATORY QUALITY CONTROL SAMPLES

#### 2.2.1 Quality Control Analysis Frequency

Method blanks were analyzed at a minimum frequency of 5 percent (or one per batch). Duplicates and/or spike blanks/spike blank duplicates were analyzed at a rate of 1 duplicate and/or spike blank/spike blank duplicate per batch with a minimum of 1 duplicate or spike blank/spike blank duplicate per delivery group. These criteria were met for all delivery groups.

#### 2.2.2 Method Blanks

No target analytes were detected in the soil or groundwater method blanks at or exceeding the reporting limits for all delivery groups.

#### 2.2.3 Laboratory Duplicates, Spike Blanks, and Spike Blank Duplicates

Recoveries and relative percent difference (RPDs) for all target analytes reported for the laboratory duplicates and spike blanks/spike blank duplicates were within laboratory quality control (QC) limits for all delivery groups.

#### 2.2.4 Surrogate Recoveries

All surrogate recoveries were within the laboratory's QC limits for all delivery groups.



## 3.0 PETROLEUM HYDROCARBON NWTPH-GX QA REVIEW

#### 3.1 TIMELINESS AND PRESERVATION

The recommended holding time for Northwest Method NWTPH-Gx for preserved groundwater samples is 14 days. All samples were extracted and analyzed within this period.

#### 3.2 LABORATORY QUALITY CONTROL SAMPLES

#### 3.2.1 Quality Control Analysis Frequency

Method blanks were analyzed at a minimum frequency of 5 percent (or one per batch). Duplicates and spike blanks were analyzed at a rate of 1 duplicate and spike blank per batch with a minimum of 1 duplicate or spike blank per delivery group. These criteria were met for all delivery groups.

#### 3.2.2 Method Blanks

No target analytes were detected in the groundwater method blanks at or exceeding the reporting limits for all delivery groups.

#### 3.2.3 Laboratory Duplicates and Spike Blanks

Recoveries and RPDs for all target analytes reported for the laboratory duplicates and spike blanks were within laboratory QC limits for all delivery groups.

#### 3.2.4 Surrogate Recoveries

All surrogate recoveries were within the laboratory's QC limits for all delivery groups.



## 4.0 VOLATILE ORGANIC COMPOUND 8260D QA REVIEW

#### 4.1 TIMELINESS AND PRESERVATION

The recommended holding time for EPA Method 8260D is 14 days for preserved water samples. All samples were extracted and analyzed within this period.

#### 4.2 LABORATORY QUALITY CONTROL SAMPLES

#### 4.2.1 Quality Control Analysis Frequency

Method blanks were analyzed at a minimum frequency of 5 percent (or one per batch). Duplicates, spike blanks, and matrix spikes were analyzed at a rate of 1 duplicate, 1 spike blank, and 1 matrix spike per batch with a minimum of one set of these QC samples per delivery group. These criteria were met for all delivery groups.

#### 4.2.2 Method Blanks

No target analytes were detected in the groundwater method blanks at or exceeding the reporting limits for all delivery groups.

#### 4.2.3 Laboratory Duplicates, Spike Blanks, and Matrix Spikes

Recoveries and RPDs for all target analytes reported for the laboratory duplicates, spike blanks, and matrix spikes were within laboratory QC limits for all delivery groups with the following exceptions:

- SDG A3E1405: The percent recovery of xylenes in a matrix spike sample exceeded
  the laboratory's upper control limit. However, the matrix spike was conducted on a
  non-project sample and results are not applicable to project samples. No
  qualification of project data is needed.
- SDG A3K1435: A matrix spike was conducted on sample FMW-161-111423. The
  percent recoveries of benzene and ethylbenzene exceeded the laboratory's upper
  control limits. Benzene and ethylbenzene were not detected in the original sample
  and no qualification of data is needed.

#### 4.2.4 Surrogate Recoveries

All surrogate recoveries were within the laboratory's QC limits for all delivery groups.



#### 4.2.5 Continuing Calibration Verification

The daily continuing calibration verifications were within established control limits for all delivery groups with the following exceptions:

- SDG A4B1637: The daily continuing calibration verification recovery for naphthalene failed the +/-20 percent criteria listed in EPA Method 8260. The non-detect naphthalene results for the following samples associated with this daily continuing calibration verification are qualified as estimates (UJ), as shown in Table 2: FMW-157-022824, FMW-162-022824, OW-2-022824, OW-1-022824, and FMW-154-022824.
- SDG A4C0878: The daily continuing calibration verification recovery for naphthalene failed the +/-20 percent criteria listed in EPA Method 8260. The non-detect naphthalene results for the following samples associated with this daily continuing calibration verification are qualified as estimates (UJ), as shown in Table 2: 0W3-022824 and FMW-159-022824.



## 5.0 SEMIVOLATILE ORGANIC COMPOUND 8270E QA REVIEW

#### 5.1 TIMELINESS AND PRESERVATION

The recommended holding time for EPA Method 8270E or 8270E/SIM soil samples is 14 days to extract and 40 days to analyze after extraction; and the recommended holding time for water samples is 7 days to extract and 40 days to analyze after extraction. All samples were extracted and analyzed within this period.

#### 5.2 LABORATORY QUALITY CONTROL SAMPLES

#### 5.2.1 Quality Control Analysis Frequency

Method blanks were analyzed at a minimum frequency of 5 percent (or one per batch). Spike blanks and spike blank duplicates or laboratory duplicates, and/or matrix spikes and matrix spike duplicates were analyzed with a minimum of one spike and one duplicate QC sample per batch. These criteria were met for all delivery groups.

#### 5.2.2 Method Blanks

No target analytes were detected in the soil and groundwater method blanks at or exceeding the reporting limits for all delivery groups with the following exception:

SDG A3K1435: Naphthalene was detected in one of three method blanks in this
delivery group at a concentration above the method detection limit but below the
reporting limit. Samples FMW-159-111523 and OW-3-111523 were associated with
this method blank. Naphthalene was not detected in either sample; no qualification
of data is needed.

## 5.2.3 Spike Blanks, Spike Blank Duplicates, Matrix Spikes, Matrix Spike Duplicates, and Laboratory Duplicates

Recoveries and RPDs for all target analytes reported for the spike blanks, spike blank duplicates, matrix spikes, matrix spike duplicates, and laboratory duplicates were within laboratory QC limits for all delivery groups with the following exceptions:

SDG A3E1048: A laboratory duplicate analysis was conducted on sample FMW-163-20.0. The RPD for naphthalene exceeded the RPD control limit. However, the sample and duplicate results for naphthalene were less than five times the laboratory reporting limit. In cases like this where the results are near the laboratory reporting limit, the absolute difference between the results is calculated instead of the typical RPD. The absolute difference is then compared to the standard RPD limit of less than



two times the laboratory reporting limit when the original or duplicate soil sample results are less than five times the laboratory reporting limit. The absolute difference between the sample and duplicate met this criterion and no qualification of data is needed.

- SDG A3E1263: The RPD for naphthalene exceeded the RPD control limit in a
  laboratory duplicate sample. However, the laboratory duplicate analysis was
  conducted on a non-SDG sample and the results are not applicable to samples in this
  delivery group.
- SDGs A4B1607, A4B1613, and A4B1637: The percent recoveries of naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene were below the lower control limits in the spike blank and spike blank duplicate QC samples associated with the samples in these three delivery groups.

The laboratory re-extracted and re-analyzed the samples in these delivery groups with similar results. The investigation into the low spike blank recoveries was unable to identify a specific root cause. Analysis of subsequent analytical batches for these analytes by EPA Method 8270E yielded spike blank recoveries within acceptance limits. There was insufficient remaining sample volume for the samples in these three delivery groups to re-analyze the samples again.

A decision was made to report naphthalene from the EPA Method 8260 analysis due to the Method 8270E QC issues. The 1-methylnaphthalene and 2-methylnaphthalene results are being retained for the samples in these three delivery groups but are being qualified as estimates (UJ) as shown in Table 2. The non-detect 1-methylnaphthalene and 2-methylnaphthalene results for these sample locations are consistent with the three previous groundwater monitoring rounds conducted in 2023.

#### 5.2.4 Surrogate Recoveries

All surrogate recoveries were within the laboratory's QC limits for all delivery groups with the following exceptions:

• SDG A3E1405: The percent recovery of the surrogate 2-fluorobiphenyl was less than the lower control limit for sample FMW-163-051523. The naphthalene result for this sample is qualified as an estimate with a low bias (J-), and the 1-methylnaphthalene and 2-methylnaphthalene results are qualified as not detected and the reporting limits are estimates (UJ) as shown in Table 2.



- SDG A3K1435: The percent recovery of the surrogate nitrobenzene-d5 was less than the lower control limit for sample OW-3-111523. The naphthalene, 1methylnaphthalene, and 2-methylnaphthalene results for this sample are qualified as not detected and the reporting limits are estimates (UJ) as shown in Table 2. The percent recovery of the surrogate nitrobenzene-d5 was less than the lower control limit for sample FMW-161-111423. The naphthalene result for this sample is qualified as an estimate with a low bias (J-), the 1-methylnaphthalene and 2methylnaphthalene results are qualified as not detected, and the reporting limits are estimates (UJ) as shown in Table 2. The percent recoveries of the surrogates 2fluorobiphenyl and nitrobenzene-d5 were less than the lower control limits for sample FMW-164-111523. The naphthalene, 1-methylnaphthalene, and 2methylnaphthalene results are qualified as not detected and the reporting limits are estimates (UJ) as shown in Table 2. The percent recovery of the surrogate 2fluorobiphenyl was less than the lower control limit for sample FMW-162-111523. The naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene results are qualified as not detected and the reporting limits are estimates (UJ) as shown in Table 2.
- SDG A4B1613: The percent recovery of the surrogate 2,4,6-tribromophenol exceeded the upper control limit for sample FMW-156-022724. This surrogate is not associated with 1-methylnaphthalene and 2-methylnaphthalene. The other surrogate percent recoveries were within control limits, including the surrogates that correspond to the naphthalenes. No qualification of data is needed.
- SDG A4B1637: The percent recovery of the surrogate phenol-d6 was less than the lower control limit for sample OW-1-022824. This surrogate is not associated with 1-methylnaphthalene and 2-methylnaphthalene. The other surrogate percent recoveries were within control limits including the surrogates that correspond to the naphthalenes. No qualification of data is needed.



#### 6.0 METALS 6020B QA REVIEW

#### 6.1 TIMELINESS AND PRESERVATION

The recommended holding time for EPA Method 6020B for preserved groundwater samples is 6 months. All samples were extracted and analyzed within this period.

#### 6.2 LABORATORY QUALITY CONTROL SAMPLES

#### 6.2.1 Quality Control Analysis Frequency

Method blanks were analyzed at a minimum frequency of 5 percent (or one per batch). Duplicates, spike blanks, and matrix spikes were analyzed at a rate of 1 duplicate, 1 spike blank, and 1 matrix spike per batch with a minimum of one set of these QC samples per delivery group. These criteria were met for all delivery groups.

#### 6.2.2 Method Blanks

No target analytes were detected in the groundwater method blanks at or exceeding the reporting limits for all delivery groups.

#### 6.2.3 Laboratory Duplicates, Spike Blanks, and Matrix Spikes

Recoveries and RPDs for all target analytes reported for the laboratory duplicates, spike blanks, and matrix spikes were within the laboratory's QC limits for all delivery groups.



#### 7.0 TOTAL SUSPENDED SOLIDS QA REVIEW

#### 7.1 TIMELINESS AND PRESERVATION

The recommended holding time for Standard Method 2540D for groundwater samples is 7 days. One sample was analyzed by this method and was extracted and analyzed within this period.

#### 7.2 LABORATORY QUALITY CONTROL SAMPLES

#### 7.2.1 Quality Control Analysis Frequency

Method blanks were analyzed at a minimum frequency of 5 percent (or one per batch). Duplicates and a reference sample were analyzed at a rate of 1 duplicate and reference sample per batch. These criteria were met for the one delivery group analyzed by this method.

#### 7.2.2 Method Blanks

No target analyte was detected in the groundwater method blank at or exceeding the reporting limit for this delivery group.

#### 7.2.3 Laboratory Duplicates and Reference Sample

Recoveries and RPDs for total suspended solids reported for the laboratory duplicates and reference sample were within the laboratory's QC limits with the following exception:

• SDG A4B1607: The laboratory ran a duplicate analysis on a non-project sample. The RPD exceeded the QC control limit. However, the sample and duplicate results for total suspended solids were less than five times the laboratory reporting limit. In cases like this where the results are near the laboratory reporting limit, the absolute difference between the results is calculated instead of the typical RPD. The absolute difference is then compared to the standard RPD limit of less than one times the laboratory reporting limit when the original or duplicate groundwater sample results are less than five times the laboratory reporting limit. The absolute difference between the sample and duplicate met this criterion. No qualification of data is needed.



#### 8.0 TOTAL ORGANIC CARBON QA REVIEW

#### 8.1 TIMELINESS AND PRESERVATION

The recommended holding time for Standard Method 5310C for preserved groundwater samples is 28 days. All samples were extracted and analyzed within this period.

#### 8.2 LABORATORY QUALITY CONTROL SAMPLES

#### 8.2.1 Quality Control Analysis Frequency

Method blanks were analyzed at a minimum frequency of 5 percent (or one per batch). Spike blanks were analyzed at a rate of 1 spike blank per batch with a minimum of 1 spike blank per delivery group. These criteria were met for all delivery groups.

#### 8.2.2 Method Blanks

No target analytes were detected in the groundwater method blanks at or exceeding the reporting limits for all delivery groups.

#### 8.2.3 Spike Blanks

Recoveries of total organic carbon reported for the laboratory spike blanks were within laboratory QC limits for all delivery groups.



#### 9.0 REFERENCES

- Farallon Consulting, L.L.C. (Farallon). 2023. *Final Interim Action Report, Block* 38 West Site, 500 through 536 Westlake Avenue North, Seattle, Washington. Prepared for City Investors IX L.L.C. December 28.
- ——. 2024. Final Interim Action Report, Alley Area of Block 38 West Site, Between Republican Street and Mercer Street, 500 through 536 Westlake Avenue North, Seattle, Washington. Prepared for City Investors IX L.L.C. January 5.
- U.S. Environmental Protection Agency (EPA). 2020a. *National Functional Guidelines for Inorganic Superfund Methods Data Review*. OLEM 9240.1-66; EPA-542-R-20-006. November.
- ——. 2020b. National Functional Guidelines for Organic Superfund Methods Data Review. OLEM 9240.0-51; EPA-540-R-20-005. November.

# **TABLES**

DATA VALIDATION REPORT Block 38 West Site 500 through 536 Westlake Avenue North Seattle, Washington

## Table 1 Overview of Sample Analyses Block 38 Seattle, Washington

|                              |                              |             |        | Analytical Method |                             |          |           |                  |           |          |                                                  |
|------------------------------|------------------------------|-------------|--------|-------------------|-----------------------------|----------|-----------|------------------|-----------|----------|--------------------------------------------------|
| Lab Sample<br>Delivery Group | Sample<br>Identification     | Sample Date | Matrix | NWTPH-Dx          | NWTPH-Dx with<br>Silica Gel | NWTPH-Gx | EPA 8260D | EPA<br>8270E/SIM | EPA 6020B | SM 2540D | SM 5310C                                         |
| 2111-264                     | FB-18-15.0                   | 11/24/2021  | Soil   |                   |                             |          |           | X                |           |          |                                                  |
| 2111-264                     | FB-18-20.0                   | 11/24/2021  | Soil   |                   |                             |          |           | X                |           |          |                                                  |
| 2111-264                     | FB-19-15.0                   | 11/24/2021  | Soil   |                   |                             |          |           | Х                |           |          |                                                  |
| 2111-264                     | FB-19-20.0                   | 11/24/2021  | Soil   |                   |                             |          |           | Х                |           |          |                                                  |
| 2202-076                     | FB-20-12-0                   | 2/5/2022    | Soil   | X                 |                             |          |           | Х                |           |          |                                                  |
| 2202-076                     | FB-20-15.0                   | 2/5/2022    | Soil   | Х                 |                             |          |           | Х                |           |          |                                                  |
| 2202-076                     | FB-20-17.0                   | 2/5/2022    | Soil   | Х                 |                             |          |           | Х                |           |          |                                                  |
| 2202-076                     | FB-21-3.0                    | 2/5/2022    | Soil   |                   |                             |          |           | Х                |           |          |                                                  |
| 2202-076                     | FB-21-5.0                    | 2/5/2022    | Soil   |                   |                             |          |           | X                |           |          |                                                  |
| A3E1048                      | FMW-163-15.0                 | 5/1/2023    | Soil   | Х                 |                             |          |           | X                |           |          |                                                  |
| A3E1048                      | FMW-163-20.0                 | 5/1/2023    | Soil   | X                 |                             |          |           | X                |           |          |                                                  |
| A3E1048                      | FMW-161-15.0                 | 5/3/2023    | Soil   | X                 |                             |          |           | X                |           |          |                                                  |
| A3E1048<br>A3E1048           | FMW-161-20.0                 | 5/3/2023    | Soil   | X                 |                             |          |           |                  | +         |          | <del> </del>                                     |
|                              | FMW-161-20.0<br>FMW-160-15.0 |             |        |                   |                             |          |           | X                |           |          |                                                  |
| A3E1263                      |                              | 5/5/2023    | Soil   | X                 |                             |          |           | X                |           |          |                                                  |
| A3E1263                      | FMW-160-20.0                 | 5/5/2023    | Soil   | X                 |                             |          |           | X                | 1         |          | <del> </del>                                     |
| A3E1263                      | FB-17-10.0                   | 5/9/2023    | Soil   | X                 |                             |          |           | X                |           |          |                                                  |
| A3E1263                      | FB-17-15.0                   | 5/9/2023    | Soil   | Х                 |                             |          |           | Х                |           |          |                                                  |
| A3E1263                      | FB-17-17.0                   | 5/9/2023    | Soil   | X                 |                             |          |           | X                |           |          |                                                  |
| A3E1405                      | FMW-160-051523               | 5/15/2023   | Water  | X                 |                             | X        | Χ         | X                |           |          |                                                  |
| A3E1405                      | FMW-158-051523               | 5/15/2023   | Water  | X                 |                             | X        | Χ         | X                | X         |          |                                                  |
| A3E1405                      | FMW-161-051523               | 5/15/2023   | Water  | Х                 |                             | Х        | Х         | X                |           |          |                                                  |
| A3E1405                      | FMW-163-051523               | 5/15/2023   | Water  | Х                 |                             | Х        | Х         | Х                |           |          |                                                  |
| A3E1514                      | FMW-155-051623               | 5/16/2023   | Water  | Х                 |                             | Х        | Х         | Х                | Х         |          |                                                  |
| A3E1514                      | FMW-156-051623               | 5/16/2023   | Water  | Х                 |                             | Х        | Х         | Х                | Х         |          |                                                  |
| A3E1514                      | OW-1-051623                  | 5/16/2023   | Water  | Х                 |                             |          |           | Х                |           |          |                                                  |
| A3E1514                      | FMW-154-051623               | 5/16/2023   | Water  | X                 |                             | Х        | Х         | X                | Х         |          |                                                  |
| A3E1514                      | FMW-157-051623               | 5/16/2023   | Water  | X                 |                             | 7.       |           | X                | ,         |          |                                                  |
| A3E1514                      | OW-2-051623                  | 5/16/2023   | Water  | X                 |                             |          |           | X                |           |          |                                                  |
| A3E1514                      | FMW-152-051623               | 5/16/2023   | Water  | X                 |                             |          |           | X                |           |          |                                                  |
| A3E1514                      | FMW-150-051623               | 5/16/2023   | Water  | X                 |                             |          |           | X                |           |          |                                                  |
| A3E1514                      | FMW-137-051623               | 5/16/2023   | Water  | ^                 |                             |          | Χ         |                  |           |          |                                                  |
| A3E1514                      | FMW-164-051623               | 5/16/2023   | Water  |                   |                             |          | ^         |                  |           |          |                                                  |
|                              |                              |             |        | X                 |                             |          |           | X                |           |          |                                                  |
| A3E1514                      | FMW-162-051623               | 5/16/2023   | Water  | Х                 |                             |          |           | X                |           |          |                                                  |
| A3E1514                      | FMW-138-051623               | 5/16/2023   | Water  |                   |                             |          | X         |                  |           |          |                                                  |
| A3E1514                      | FMW-159-051623               | 5/16/2023   | Water  | X                 |                             |          |           | X                |           |          | ļ                                                |
| A3E1514                      | FMW-153-051623               | 5/16/2023   | Water  | X                 |                             |          |           | X                |           |          |                                                  |
| A3E1514                      | FMW-151-051623               | 5/16/2023   | Water  | X                 |                             |          |           | X                |           |          |                                                  |
| A3E1514                      | OW-3-051723                  | 5/17/2023   | Water  | Х                 |                             |          |           | Х                |           |          |                                                  |
| A3E1514                      | FMW-165-051723               | 5/17/2023   | Water  |                   |                             |          | X         |                  |           |          | ļ                                                |
| A3H1087                      | FMW-155-081423               | 8/14/2023   | Water  | X                 | Х                           | X        | X         | Х                | 1         |          | ļ                                                |
| A3H1087                      | FMW-163-081423               | 8/14/2023   | Water  | X                 |                             | X        | X         | X                |           |          |                                                  |
| A3H1087                      | FMW-160-081423               | 8/14/2023   | Water  | X                 | X                           | X        | X         | X                |           |          |                                                  |
| A3H1087                      | FMW-156-081423               | 8/14/2023   | Water  | X                 |                             | X        | Х         | X                |           |          |                                                  |
| A3H1087                      | FMW-161-081423               | 8/14/2023   | Water  | Х                 |                             | Х        | Х         | Х                |           |          |                                                  |
| A3H1087                      | FMW-154-081423               | 8/14/2023   | Water  | Х                 | Х                           | Х        | Х         | Х                |           |          |                                                  |
| A3H1155                      | OW-2-081523                  | 8/15/2023   | Water  | Х                 |                             |          |           | Х                |           |          |                                                  |
| A3H1155                      | FMW-158-081523               | 8/15/2023   | Water  | X                 |                             | Х        | Х         | X                |           |          |                                                  |
| A3H1155                      | FMW-164-081523               | 8/15/2023   | Water  | X                 |                             | 1        |           | X                | 1         |          | <del> </del>                                     |
| A3H1155                      | FMW-159-081523               | 8/15/2023   | Water  | X                 |                             |          |           | X                | †         |          | <del> </del>                                     |
| A3H1155                      | OW-1-081523                  | 8/15/2023   | Water  | X                 |                             |          |           | X                | +         |          | 1                                                |
| A3H1155                      | OW-3-081523                  | 8/15/2023   | Water  | X                 |                             |          |           | X                | 1         |          | <del>                                     </del> |
| A3111133                     | FMW-157-081523               | 8/15/2023   | Water  | X                 |                             |          |           | X                |           |          | <del>                                     </del> |

# Table 1 Overview of Sample Analyses Block 38 Seattle, Washington Farallon PN: 397-019

|                              |                          |             |        | Analytical Method |                             |          |           |                  |           |          |          |
|------------------------------|--------------------------|-------------|--------|-------------------|-----------------------------|----------|-----------|------------------|-----------|----------|----------|
| Lab Sample<br>Delivery Group | Sample<br>Identification | Sample Date | Matrix | NWTPH-Dx          | NWTPH-Dx with<br>Silica Gel | NWTPH-Gx | EPA 8260D | EPA<br>8270E/SIM | EPA 6020B | SM 2540D | SM 5310C |
| A3H1155                      | FMW-162-081523           | 8/15/2023   | Water  | X                 | 55u 55.                     |          | 2.7.02002 | X                | 2.7.00202 | 0 20 102 | S 55155  |
| A3H1155                      | FMW-153-081523           | 8/15/2023   | Water  | X                 |                             |          |           | X                |           |          |          |
| A3H1155                      | FMW-151-081523           | 8/15/2023   | Water  | X                 |                             |          |           | X                |           |          |          |
| A3H1155                      | FMW-150-081523           | 8/15/2023   | Water  | X                 |                             |          |           | X                |           |          |          |
| A3H1155                      | FMW-152-081523           | 8/15/2023   | Water  | Х                 |                             |          |           | Х                |           |          |          |
| A3K1435                      | FMW-155-111423           | 11/14/2023  | Water  | Х                 | Х                           | Х        | Х         | Х                |           |          |          |
| A3K1435                      | FMW-154-111423           | 11/14/2023  | Water  | Х                 | Х                           | Х        | Х         | X                |           |          |          |
| A3K1435                      | FMW-161-111423           | 11/14/2023  | Water  | Х                 |                             | Х        | Х         | X                |           |          |          |
| A3K1435                      | FMW-160-111423           | 11/14/2023  | Water  | Х                 |                             | Х        | Х         | X                |           |          |          |
| A3K1435                      | FMW-163-111523           | 11/15/2023  | Water  | Х                 |                             | Х        | Х         | X                |           |          |          |
| A3K1435                      | FMW-158-111523           | 11/15/2023  | Water  | Х                 | Х                           | Х        | Х         | X                |           |          |          |
| A3K1435                      | FMW-156-111523           | 11/15/2023  | Water  | Х                 |                             | Х        | Х         | Х                |           |          |          |
| A3K1435                      | FMW-159-111523           | 11/15/2023  | Water  | Х                 | Х                           |          |           | Х                |           |          |          |
| A3K1435                      | FMW-157-111523           | 11/15/2023  | Water  | Х                 |                             |          |           | Х                |           |          |          |
| A3K1435                      | OW-3-111523              | 11/15/2023  | Water  | Х                 |                             |          |           | Х                |           |          |          |
| A3K1435                      | OW-2-111523              | 11/15/2023  | Water  | Х                 |                             |          |           | Х                |           |          |          |
| A3K1435                      | FMW-164-111523           | 11/15/2023  | Water  | X                 |                             |          |           | Χ                |           |          |          |
| A3K1435                      | FMW-162-111523           | 11/15/2023  | Water  | X                 |                             |          |           | Χ                |           |          |          |
| A3K1435                      | OW-1-111523              | 11/15/2023  | Water  | Х                 | Х                           |          |           | Х                |           |          |          |
| A3K1435                      | FMW-150-111523           | 11/15/2023  | Water  | Х                 |                             |          |           | X                |           |          |          |
| A3K1435                      | FMW-152-111523           | 11/15/2023  | Water  | Х                 |                             |          |           | X                |           |          |          |
| A3K1435                      | FMW-153-111523           | 11/15/2023  | Water  | Х                 |                             |          |           | Х                |           |          |          |
| A3K1435                      | FMW-151-111523           | 11/15/2023  | Water  | X                 |                             |          |           | Χ                |           |          |          |
| A4B1607                      | FMW-158-022724           | 2/27/2024   | Water  |                   |                             | X        | Х         | Χ                |           | X        |          |
| A4B1613                      | FMW-160-022724           | 2/27/2024   | Water  | X                 |                             | X        | Х         | Χ                |           |          |          |
| A4B1613                      | FMW-161-022724           | 2/27/2024   | Water  | X                 |                             | X        | X         | Χ                |           |          |          |
| A4B1613                      | FMW-156-022724           | 2/27/2024   | Water  | X                 |                             | X        | Χ         | X                |           |          |          |
| A4B1613                      | FMW-163-022724           | 2/27/2024   | Water  | X                 |                             | X        | Х         | X                |           |          |          |
| A4B1613                      | FMW-155-022724           | 2/27/2024   | Water  | X                 | X                           | X        | X         | X                |           |          |          |
| A4B1637                      | FMW-154-022824           | 2/28/2024   | Water  | X                 |                             | X        | X         | X                |           |          |          |
| A4B1637                      | OW-2-022824              | 2/28/2024   | Water  | X                 |                             |          | X         | X                |           |          |          |
| A4B1637                      | OW-1-022824              | 2/28/2024   | Water  | X                 |                             |          | Х         | Х                |           |          |          |
| A4B1637                      | FMW-157-022824           | 2/28/2024   | Water  | Х                 |                             |          | X         | X                |           |          |          |
| A4B1637                      | OW-3-022824              | 2/28/2024   | Water  | Х                 |                             |          |           | X                |           |          |          |
| A4B1637                      | FMW-159-022824           | 2/28/2024   | Water  | Х                 | Х                           |          | Х         | X                |           |          | Х        |
| A4B1637                      | FMW-162-022824           | 2/28/2024   | Water  | X                 |                             |          | X         | X                |           |          |          |
| A4C0878                      | FMW-152-022924           | 2/29/2024   | Water  | Х                 |                             |          |           | X                |           |          |          |
| A4C0878                      | OW3-022824               | 2/29/2024   | Water  |                   |                             |          | Х         |                  |           |          |          |
| A4C0878                      | FMW-164-022924           | 2/29/2024   | Water  | X                 |                             |          |           | X                |           |          |          |
| A4C0878                      | FMW-150-022924           | 2/29/2024   | Water  | X                 |                             |          |           | X                |           |          |          |
| A4C0878                      | FMW-153-022924           | 2/29/2024   | Water  | X                 | , .                         |          |           | Х                |           |          |          |
| A4C0878                      | FMW-158-022924           | 2/29/2024   | Water  | X                 | X                           |          |           |                  |           |          | X        |
| A4C0878                      | FMW-151-022924           | 2/29/2024   | Water  | X                 |                             |          |           | Χ                |           |          |          |

#### NOTES:

An "X" indicates one or more samples within the delivery group were analyzed by the method specified in that column.

EPA = U.S. Environmental Protection Agency

SM = Standard Method

# Table 2 Summary of Qualified Data Block 38 Seattle, Washington

| Sample Identification | SDG     | Matrix      | Method        | Analyte                  | Qualifier | Reason                                                                                                                |
|-----------------------|---------|-------------|---------------|--------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------|
| FMW-165-051723        | A3E1514 | Groundwater | EPA 8260D     | Tetrachloroethene        | UJ        | Visible headspace observed in VOA vial used for analysis.                                                             |
| FMW-165-051723        | A3E1514 | Groundwater | EPA 8260D     | Trichloroethene          | UJ        | Visible headspace observed in VOA vial used for analysis.                                                             |
| FMW-165-051723        | A3E1514 | Groundwater | EPA 8260D     | cis-1,2-Dichloroethene   | J         | Visible headspace observed in VOA vial used for analysis.                                                             |
| FMW-165-051723        | A3E1514 | Groundwater | EPA 8260D     | trans-1,2-Dichloroethene | UJ        | Visible headspace observed in VOA vial used for analysis.                                                             |
| FMW-165-051723        | A3E1514 | Groundwater | EPA 8260D     | Vinyl Chloride           | J         | Visible headspace observed in VOA vial used for analysis.                                                             |
| FMW-157-022824        | A4B1637 | Groundwater | EPA 8260D     | Naphthalene              | UJ        | Daily Continuing Calibration Verification recovery for naphthalene failed the +/-20% criteria listed in the method    |
| FMW-162-022824        | A4B1637 | Groundwater | EPA 8260D     | Naphthalene              | UJ        | Daily Continuing Calibration Verification recovery for naphthalene failed the +/-20% criteria listed in the method    |
| OW-2-022824           | A4B1637 | Groundwater | EPA 8260D     | Naphthalene              | UJ        | Daily Continuing Calibration Verification recovery for naphthalene failed the +/-20% criteria listed in the method    |
| OW-1-022824           | A4B1637 | Groundwater | EPA 8260D     | Naphthalene              | UJ        | Daily Continuing Calibration Verification recovery for naphthalene was below the +/-20% criteria listed in the method |
| FMW-154-022824        | A4B1637 | Groundwater | EPA 8260D     | Naphthalene              | UJ        | Daily Continuing Calibration Verification recovery for naphthalene was below the +/-20% criteria listed in the method |
| OW3-022824            | A4C0878 | Groundwater | EPA 8260D     | Naphthalene              | UJ        | Daily Continuing Calibration Verification recovery for naphthalene failed the +/-20% criteria listed in the method    |
| FMW-159-022824        | A4C0878 | Groundwater | EPA 8260D     | Naphthalene              | UJ        | Daily Continuing Calibration Verification recovery for naphthalene failed the +/-20% criteria listed in the method    |
| FMW-163-051523        | A3E1405 | Groundwater | EPA 8270E/SIM | Naphthalene              | J-        | Percent recovery of surrogate 2-fluorobiphenyl was below the lower control limit                                      |
| FMW-163-051523        | A3E1405 | Groundwater | EPA 8270E/SIM | 1-Methylnaphthalene      | UJ        | Percent recovery of surrogate 2-fluorobiphenyl was below the lower control limit                                      |
| FMW-163-051523        | A3E1405 | Groundwater | EPA 8270E/SIM | 2-Methylnaphthalene      | UJ        | Percent recovery of surrogate 2-fluorobiphenyl was below the lower control limit                                      |
| OW-3-111523           | A3K1435 | Groundwater | EPA 8270E     | Naphthalene              | UJ        | Percent recovery of surrogate nitrobenzene-d5 was below the lower control limit                                       |
| OW-3-111523           | A3K1435 | Groundwater | EPA 8270E     | 1-Methylnaphthalene      | UJ        | Percent recovery of surrogate nitrobenzene-d5 was below the lower control limit                                       |
| OW-3-111523           | A3K1435 | Groundwater | EPA 8270E     | 2-Methylnaphthalene      | UJ        | Percent recovery of surrogate nitrobenzene-d5 was below the lower control limit                                       |
| FMW-164-111523        | A3K1435 | Groundwater | EPA 8270E     | Naphthalene              | UJ        | Percent recoveries of surrogates nitrobenzene-d5 and 2-fluorobiphenyl were below the lower control limits             |
| FMW-164-111523        | A3K1435 | Groundwater | EPA 8270E     | 1-Methylnaphthalene      | UJ        | Percent recoveries of surrogates nitrobenzene-d5 and 2-fluorobiphenyl were below the lower control limits             |
| FMW-164-111523        | A3K1435 | Groundwater | EPA 8270E     | 2-Methylnaphthalene      | UJ        | Percent recoveries of surrogates nitrobenzene-d5 and 2-fluorobiphenyl were below the lower control limits             |
| FMW-162-111523        | A3K1435 | Groundwater | EPA 8270E     | Naphthalene              | UJ        | Percent recovery of surrogate 2-fluorobiphenyl was below the lower control limit                                      |
| FMW-162-111523        | A3K1435 | Groundwater | EPA 8270E     | 1-Methylnaphthalene      | UJ        | Percent recovery of surrogate 2-fluorobiphenyl was below the lower control limit                                      |
| FMW-162-111523        | A3K1435 | Groundwater | EPA 8270E     | 2-Methylnaphthalene      | UJ        | Percent recovery of surrogate 2-fluorobiphenyl was below the lower control limit                                      |
| FMW-161-111423        | A3K1435 | Groundwater | EPA 8270E     | Naphthalene              | J-        | Percent recovery of surrogate nitrobenzene-d5 was below the lower control limit                                       |
| FMW-161-111423        | A3K1435 | Groundwater | EPA 8270E     | 1-Methylnaphthalene      | UJ        | Percent recovery of surrogate nitrobenzene-d5 was below the lower control limit                                       |
| FMW-161-111423        | A3K1435 | Groundwater | EPA 8270E     | 2-Methylnaphthalene      | UJ        | Percent recovery of surrogate nitrobenzene-d5 was below the lower control limit                                       |
| FMW-158               | A4B1607 | Groundwater | EPA 8270E     | 1-Methylnaphthalene      | UJ        | Percent recovery of 1-methylnaphthalene was below the lower control limit in the associated LCS and LCSD              |
| FMW-158               | A4B1607 | Groundwater | EPA 8270E     | 2-Methylnaphthalene      | UJ        | Percent recovery of 2-methylnaphthalene was below the lower control limit in the associated LCS and LCSD              |
| FMW-160-022724        | A4B1613 | Groundwater | EPA 8270E     | 1-Methylnaphthalene      | UJ        | Percent recovery of 1-methylnaphthalene was below the lower control limit in the associated LCS and LCSD              |
| FMW-160-022724        | A4B1613 | Groundwater | EPA 8270E     | 2-Methylnaphthalene      | UJ        | Percent recovery of 2-methylnaphthalene was below the lower control limit in the associated LCS and LCSD              |
| FMW-161-022724        | A4B1613 | Groundwater | EPA 8270E     | 1-Methylnaphthalene      | UJ        | Percent recovery of 1-methylnaphthalene was below the lower control limit in the associated LCS and LCSD              |
| FMW-161-022724        | A4B1613 | Groundwater | EPA 8270E     | 2-Methylnaphthalene      | UJ        | Percent recovery of 2-methylnaphthalene was below the lower control limit in the associated LCS and LCSD              |
| FMW-163-022724        | A4B1613 | Groundwater | EPA 8270E     | 1-Methylnaphthalene      | UJ        | Percent recovery of 1-methylnaphthalene was below the lower control limit in the associated LCS and LCSD              |
| FMW-163-022724        | A4B1613 | Groundwater | EPA 8270E     | 2-Methylnaphthalene      | UJ        | Percent recovery of 2-methylnaphthalene was below the lower control limit in the associated LCS and LCSD              |
| FMW-156-022724        | A4B1613 | Groundwater | EPA 8270E     | 1-Methylnaphthalene      | UJ        | Percent recovery of 1-methylnaphthalene was below the lower control limit in the associated LCS and LCSD              |
| FMW-156-022724        | A4B1613 | Groundwater | EPA 8270E     | 2-Methylnaphthalene      | UJ        | Percent recovery of 2-methylnaphthalene was below the lower control limit in the associated LCS and LCSD              |
| FMW-155-022724        | A4B1613 | Groundwater | EPA 8270E     | 1-Methylnaphthalene      | UJ        | Percent recovery of 1-methylnaphthalene was below the lower control limit in the associated LCS and LCSD              |
| FMW-155-022724        | A4B1613 | Groundwater | EPA 8270E     | 2-Methylnaphthalene      | UJ        | Percent recovery of 2-methylnaphthalene was below the lower control limit in the associated LCS and LCSD              |
| FMW-154-022824        | A4B1637 | Groundwater | EPA 8270E     | 1-Methylnaphthalene      | UJ        | Percent recovery of 1-methylnaphthalene was below the lower control limit in the associated LCS and LCSD              |
| FMW-154-022824        | A4B1637 | Groundwater | EPA 8270E     | 2-Methylnaphthalene      | UJ        | Percent recovery of 2-methylnaphthalene was below the lower control limit in the associated LCS and LCSD              |
| FMW-157-022824        | A4B1637 | Groundwater | EPA 8270E     | 1-Methylnaphthalene      | UJ        | Percent recovery of 1-methylnaphthalene was below the lower control limit in the associated LCS and LCSD              |
| FMW-157-022824        | A4B1637 | Groundwater | EPA 8270E     | 2-Methylnaphthalene      | UJ        | Percent recovery of 2-methylnaphthalene was below the lower control limit in the associated LCS and LCSD              |
| FMW-162-022824        | A4B1637 | Groundwater | EPA 8270E     | 1-Methylnaphthalene      | UJ        | Percent recovery of 1-methylnaphthalene was below the lower control limit in the associated LCS and LCSD              |
| FMW-162-022824        | A4B1637 | Groundwater | EPA 8270E     | 2-Methylnaphthalene      | UJ        | Percent recovery of 2-methylnaphthalene was below the lower control limit in the associated LCS and LCSD              |

# Table 2 Summary of Qualified Data Block 38

Seattle, Washington Farallon PN: 397-019

| Sample Identification | SDG     | Matrix      | Method    | Analyte             | Qualifier | Reason                                                                                                   |
|-----------------------|---------|-------------|-----------|---------------------|-----------|----------------------------------------------------------------------------------------------------------|
| FMW-159-022824        | A4B1637 | Groundwater | EPA 8270E | 1-Methylnaphthalene | UJ        | Percent recovery of 1-methylnaphthalene was below the lower control limit in the associated LCS and LCSD |
| FMW-159-022824        | A4B1637 | Groundwater | EPA 8270E | 2-Methylnaphthalene | UJ        | Percent recovery of 2-methylnaphthalene was below the lower control limit in the associated LCS and LCSD |
| OW-1-022824           | A4B1637 | Groundwater | EPA 8270E | 1-Methylnaphthalene | UJ        | Percent recovery of 1-methylnaphthalene was below the lower control limit in the associated LCS and LCSD |
| OW-1-022824           | A4B1637 | Groundwater | EPA 8270E | 2-Methylnaphthalene | UJ        | Percent recovery of 2-methylnaphthalene was below the lower control limit in the associated LCS and LCSD |
| OW-2-022824           | A4B1637 | Groundwater | EPA 8270E | 1-Methylnaphthalene | UJ        | Percent recovery of 1-methylnaphthalene was below the lower control limit in the associated LCS and LCSD |
| OW-2-022824           | A4B1637 | Groundwater | EPA 8270E | 2-Methylnaphthalene | UJ        | Percent recovery of 2-methylnaphthalene was below the lower control limit in the associated LCS and LCSD |
| OW-3-022824           | A4B1637 | Groundwater | EPA 8270E | 1-Methylnaphthalene | UJ        | Percent recovery of 1-methylnaphthalene was below the lower control limit in the associated LCS and LCSD |
| OW-3-022824           | A4B1637 | Groundwater | EPA 8270E | 2-Methylnaphthalene | UJ        | Percent recovery of 2-methylnaphthalene was below the lower control limit in the associated LCS and LCSD |

#### NOTES:

EPA = U.S. Environmental Protection Agency

J = result is an estimate

J- = result is an estimate with a low bias

LCS = lab control sample (spike blank)

LCSD = lab control sample duplicate (spike blank duplicate)

RPD = relative percent difference

SDG = sample delivery group

UJ = analyte not detected exceeding the laboratory reporting limit and reporting limit is an estimate

# APPENDIX N TERRESTRIAL ECOLOGICAL EVALUATION

REMEDIAL INVESTIGATION/FOCUSED FEASIBILITY STUDY
Block 38 West Site
500 through 536 Westlake Avenue North
Seattle, Washington



# **Voluntary Cleanup Program**

Washington State Department of Ecology Toxics Cleanup Program

# TERRESTRIAL ECOLOGICAL EVALUATION FORM

Under the Model Toxics Control Act (MTCA), a terrestrial ecological evaluation is necessary if hazardous substances are released into the soils at a Site. In the event of such a release, you must take one of the following three actions as part of your investigation and cleanup of the Site:

- 1. Document an exclusion from further evaluation using the criteria in WAC 173-340-7491.
- 2. Conduct a simplified evaluation as set forth in WAC 173-340-7492.
- 3. Conduct a site-specific evaluation as set forth in WAC 173-340-7493.

When requesting a written opinion under the Voluntary Cleanup Program (VCP), you must complete this form and submit it to the Department of Ecology (Ecology). The form documents the type and results of your evaluation.

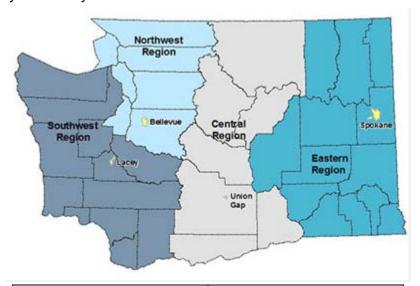
Completion of this form is not sufficient to document your evaluation. You still need to document your analysis and the basis for your conclusion in your cleanup plan or report.

If you have questions about how to conduct a terrestrial ecological evaluation, please contact the Ecology site manager assigned to your Site. For additional guidance, please refer to <a href="https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Terrestrial-ecological-evaluation">https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Terrestrial-ecological-evaluation</a>.

| Step 1: IDENTIFY HAZARDOUS WASTE SITE                                                       |                      |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|----------------------|--|--|--|--|--|
| Please identify below the hazardous waste site for which you are documenting an evaluation. |                      |  |  |  |  |  |
| Facility/Site Name: Block 38 West                                                           |                      |  |  |  |  |  |
| Facility/Site Address: 520 Westlake Avenue N, Seattle WA 98109                              |                      |  |  |  |  |  |
| Facility/Site No: 62773                                                                     | VCP Project No.: N/A |  |  |  |  |  |

| Step 2: IDENTIFY EVALUATOR                                                                   |  |  |                                       |                 |  |  |  |
|----------------------------------------------------------------------------------------------|--|--|---------------------------------------|-----------------|--|--|--|
| Please identify below the person who conducted the evaluation and their contact information. |  |  |                                       |                 |  |  |  |
| Name: Greg Peters Title: Project Scientist                                                   |  |  |                                       |                 |  |  |  |
| Organization: Farallon Consulting                                                            |  |  |                                       |                 |  |  |  |
| Mailing address: 975 5th Ave NW                                                              |  |  |                                       |                 |  |  |  |
| City: Issaquah                                                                               |  |  | te: WA                                | Zip code: 98207 |  |  |  |
| Phone: 425-677-9521 Fax:                                                                     |  |  | E-mail:gpeters@farallonconsulting.com |                 |  |  |  |

# Step 3: DOCUMENT EVALUATION TYPE AND RESULTS A. Exclusion from further evaluation. 1. Does the Site qualify for an exclusion from further evaluation? If you answered "YES," then answer Question 2. X Yes No or If you answered "NO" or "UNKNOWN," then skip to Step 3B of this form. Unknown 2. What is the basis for the exclusion? Check all that apply. Then skip to Step 4 of this form. Point of Compliance: WAC 173-340-7491(1)(a) All soil contamination is, or will be,\* at least 15 feet below the surface. All soil contamination is, or will be,\* at least 6 feet below the surface (or alternative depth if approved by Ecology), and institutional controls are used to manage remaining contamination. Barriers to Exposure: WAC 173-340-7491(1)(b) All contaminated soil, is or will be,\* covered by physical barriers (such as buildings or $\mathbf{X}$ paved roads) that prevent exposure to plants and wildlife, and institutional controls are used to manage remaining contamination. Undeveloped Land: WAC 173-340-7491(1)(c) There is less than 0.25 acres of contiguous# undeveloped\* land on or within 500 feet of any area of the Site and any of the following chemicals is present: chlorinated dioxins or furans, PCB mixtures, DDT, DDE, DDD, aldrin, chlordane, dieldrin, endosulfan, endrin, heptachlor, heptachlor epoxide, benzene hexachloride, toxaphene, hexachlorobenzene, pentachlorophenol, or pentachlorobenzene. For sites not containing any of the chemicals mentioned above, there is less than 1.5 X acres of contiguous# undeveloped± land on or within 500 feet of any area of the Site. Background Concentrations: WAC 173-340-7491(1)(d) Concentrations of hazardous substances in soil do not exceed natural background levels as described in WAC 173-340-200 and 173-340-709. \* An exclusion based on future land use must have a completion date for future development that is acceptable to Ecology. # "Undeveloped land" is land that is not covered by building, roads, paved areas, or other barriers that would prevent wildlife from feeding on plants, earthworms, insects, or other food in or on the soil. # "Contiguous" undeveloped land is an area of undeveloped land that is not divided into smaller areas of highways, extensive paving, or similar structures that are likely to reduce the potential use of the overall area


by wildlife.

| В. | Simplified e                                                                                                              | evaluation.                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |
|----|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| 1. | Does the Si                                                                                                               | te qualify for a simplified evaluation?                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
|    | ☐ Ye                                                                                                                      | s If you answered "YES," then answer Question 2 below.                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
|    | ☐ No<br>Unkno                                                                                                             | IT VALL 2NSWARACENING OF "LINK NEDVENE" THAN SKIN TO STAN 31. AT THIS TARM                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |
| 2. | . Did you conduct a simplified evaluation?                                                                                |                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
|    | ☐ Ye                                                                                                                      | s If you answered "YES," then answer Question 3 below.                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
|    | ☐ No                                                                                                                      | If you answered "NO," then skip to Step 3C of this form.                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
| 3. | Was further                                                                                                               | evaluation necessary?                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |
|    | ☐ Ye                                                                                                                      | s If you answered "YES," then answer Question 4 below.                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
|    | ☐ No                                                                                                                      | If you answered "NO," then answer Question 5 below.                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |
| 4. | If further ev                                                                                                             | aluation was necessary, what did you do?                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
|    |                                                                                                                           | Used the concentrations listed in Table 749-2 as cleanup levels. If so, then skip to <b>Step 4</b> of this form.                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
|    |                                                                                                                           | Conducted a site-specific evaluation. If so, then skip to <b>Step 3C</b> of this form.                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |
| 5. |                                                                                                                           | evaluation was necessary, what was the reason? Check all that apply. Then skip                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
|    | to <b>Step 4</b> of this form.  Exposure Analysis: WAC 173-340-7492(2)(a)                                                 |                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
|    | · <u> </u>                                                                                                                | rea of soil contamination at the Site is not more than 350 square feet.                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |
|    | _                                                                                                                         | Current or planned land use makes wildlife exposure unlikely. Used Table 749-1.                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
|    |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
|    | Pathway Analysis: WAC 173-340-7492(2)(b)  No potential exposure pathways from soil contamination to ecological receptors. |                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |  |  |
|    |                                                                                                                           | t Analysis: WAC 173-340-7492(2)(c)                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |
|    |                                                                                                                           | No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |
|    |                                                                                                                           | concentrations that exceed the values listed in Table 749-2.                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
|    |                                                                                                                           | No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations that exceed the values listed in Table 749-2, and institutional controls are used to manage remaining contamination.                                                             |  |  |  |  |  |  |  |  |
|    |                                                                                                                           | No contaminant listed in Table 749-2 is, or will be, present in the upper 15 feet at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays.                                                                                                                     |  |  |  |  |  |  |  |  |
|    |                                                                                                                           | No contaminant listed in Table 749-2 is, or will be, present in the upper 6 feet (or alternative depth if approved by Ecology) at concentrations likely to be toxic or have the potential to bioaccumulate as determined using Ecology-approved bioassays, and institutional controls are used to manage remaining contamination. |  |  |  |  |  |  |  |  |

| C. | C. Site-specific evaluation. A site-specific evaluation process consists of two parts: (1) formulating the problem, and (2) selecting the methods for addressing the identified problem. Both steps require consultation with and approval by Ecology. See WAC 173-340-7493(1)(c). |                              |                                                                                                                                       |  |  |  |  |  |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 1. | Was there a pro                                                                                                                                                                                                                                                                    | oblem? Se                    | e WAC 173-340-7493(2).                                                                                                                |  |  |  |  |  |  |  |
|    | ☐ Yes                                                                                                                                                                                                                                                                              | If you ans                   | wered "YES," then answer Question 2 below.                                                                                            |  |  |  |  |  |  |  |
|    | ☐ No                                                                                                                                                                                                                                                                               | If you ansubelow:            | wered "NO," then identify the reason here and then skip to Question 5                                                                 |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                    |                              | No issues were identified during the problem formulation step.                                                                        |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                    |                              | While issues were identified, those issues were addressed by the cleanup actions for protecting human health.                         |  |  |  |  |  |  |  |
| 2. | What did you d                                                                                                                                                                                                                                                                     | lo to resolv                 | e the problem? See WAC 173-340-7493(3).                                                                                               |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                    | ed the conce<br>estion 5 be  | entrations listed in Table 749-3 as cleanup levels. If so, then skip to low.                                                          |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                    |                              | ore of the methods listed in WAC 173-340-7493(3) to evaluate and entified problem. <i>If so, then answer Questions 3 and 4 below.</i> |  |  |  |  |  |  |  |
| 3. | . If you conducted further site-specific evaluations, what methods did you use?  Check all that apply. See WAC 173-340-7493(3).                                                                                                                                                    |                              |                                                                                                                                       |  |  |  |  |  |  |  |
|    | Lite                                                                                                                                                                                                                                                                               | erature surve                | eys.                                                                                                                                  |  |  |  |  |  |  |  |
|    | Soi                                                                                                                                                                                                                                                                                | l bioassays.                 |                                                                                                                                       |  |  |  |  |  |  |  |
|    | Wil                                                                                                                                                                                                                                                                                | Wildlife exposure model.     |                                                                                                                                       |  |  |  |  |  |  |  |
|    | Bio                                                                                                                                                                                                                                                                                | Biomarkers.                  |                                                                                                                                       |  |  |  |  |  |  |  |
|    | Site                                                                                                                                                                                                                                                                               | Site-specific field studies. |                                                                                                                                       |  |  |  |  |  |  |  |
|    | □ We                                                                                                                                                                                                                                                                               | eight of evide               | ence.                                                                                                                                 |  |  |  |  |  |  |  |
|    | Oth                                                                                                                                                                                                                                                                                | ner methods                  | approved by Ecology. If so, please specify:                                                                                           |  |  |  |  |  |  |  |
| 4. | 4. What was the result of those evaluations?                                                                                                                                                                                                                                       |                              |                                                                                                                                       |  |  |  |  |  |  |  |
|    | Co                                                                                                                                                                                                                                                                                 | nfirmed ther                 | e was no problem.                                                                                                                     |  |  |  |  |  |  |  |
|    | Col                                                                                                                                                                                                                                                                                | nfirmed ther                 | e was a problem and established site-specific cleanup levels.                                                                         |  |  |  |  |  |  |  |
| 5. | 5. Have you already obtained Ecology's approval of both your problem formulation and problem resolution steps?                                                                                                                                                                     |                              |                                                                                                                                       |  |  |  |  |  |  |  |
|    | Yes If so, please identify the Ecology staff who approved those steps:                                                                                                                                                                                                             |                              |                                                                                                                                       |  |  |  |  |  |  |  |
|    | □ No                                                                                                                                                                                                                                                                               |                              |                                                                                                                                       |  |  |  |  |  |  |  |

#### **Step 4: SUBMITTAL**

Please mail your completed form to the Ecology site manager assigned to your Site. If a site manager has not yet been assigned, please mail your completed form to the Ecology regional office for the County in which your Site is located.



Northwest Region: Attn: VCP Coordinator 3190 160<sup>th</sup> Ave. SE Bellevue, WA 98008-5452

Southwest Region: Attn: VCP Coordinator P.O. Box 47775 Olympia, WA 98504-7775 Central Region:
Attn: VCP Coordinator

1250 West Alder St. Union Gap, WA 98903-0009

Eastern Region: Attn: VCP Coordinator N. 4601 Monroe Spokane WA 99205-1295