

WORK PLAN FOR ADDITIONAL SITE CHARACTERIZATION

Cascade Laundry 205 Prospect Street Bellingham, Washington 98225 Facility Site ID #21786898 VCP Project No# NW3076

Prepared For:

Sonja Max EcoBloom Inc

PO Box 2546 Bellingham, WA 98227 (360) 714-9409

November 1, 2024

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	GENERAL SITE INFORMATION	1
2. 2. 2. 2.	 2 DEVELOPMENT AND USE HISTORY 3 GEOLOGY AND SOILS 	2 2
3.0	SUMMARY OF PREVIOUS INVESTIGATIONS	3
4.0	CONCEPTUAL SITE MODEL	6
4. 4. 4.	2 CONTAMINANTS OF CONCERN	6
5.0	INTERIM SAMPLING AND MITIGATION WORK	8
5. 5. 5.	5.1.1 September 2021 Results Discussion. 2 VAPOR MITIGATION INSTALLATION.	
6.0 7.0	PROPOSED WORK PLAN	
7. 7. 7.	1 WELL INSTALLATION PREPARATORY ACTIVITIES 2 GROUNDWATER MONITORING WELL INSTALLATION 7.2.1 Well Survey 3 GROUNDWATER SAMPLING 7.3.1 Quarterly Groundwater Monitoring 7.3.2 Off-Site Well Sampling 7.3.3 Slope Inspections	22 23 24 24 24 24 25 25 25
7. 7. 7. 7.	6 REPORTING	26 27

TABLES

Table 1. Summary of USTs	6
Table 2. Indoor Air Sample Results (September 2021)	9
Table 3. Sub-Slab Soil Gas Sample Results (September 2021)	10
Table 4. Basement Indoor Air Sample Results	13
Table 5. Basement Sub-Slab Air Sample Results	14
Table 6. Vapor Mitigation System Outflow Air Sample Results	14
Table 7. Depth-to-Water	16
Table 8. Groundwater Sample Results: Petroleum (September 2023)	17
Table 9. Groundwater Sample Results: VOCs, Metals, Cyanide (September 2023)	
Table 10. Petroleum Carbon Fractionization in MW-1	19
Table 11. Monitoring Well Location Rationale	
Table 12. Sample Analysis Plan.	
Table 13. Project Timetable	

APPENDICES

APPENDIX I

Figure 1-1 – Site Vicinity Map

- Figure 2-1 Annotated Aerial Photograph
- Figure 3-1 Conceptual Site Model

Figure 4-1 - Proposed Groundwater Monitoring and Sampling Locations

APPENDIX II

Indoor Air and Sub-Slab Air Sampling (2012-2023)

- Figure 1-2 Air Sample Map
- September 2021 air laboratory results
- December 2022 air laboratory results
- February 2023 air laboratory results
- September 2023 air laboratory results
- Summary of Indoor Air & Sub-Slab Air Sample Results (2018-2023)

APPENDIX III

Vapor Mitigation Installation (2022)

- Figure 1-2 Passive Vapor Mitigation Layout and Soil Sample Map
- Photograph of Vapor Mitigation Location
- May 2022 soil sample laboratory results
- Soil Disposal Manifest

APPENDIX IV

Groundwater Sampling (2023)

- Figure 1-3 Groundwater sample map
 September 2023 water sample laboratory results
- Summary of groundwater sample results (2018-2023)

APPENDIX V

Stratum Group Field Procedures

PO Box 2546, Bellingham, WA 98227 Phone: (360) 714-9409

November 1, 2024

Sonja Max EcoBloom Inc.

Re: Report Work Plan for Additional Site Characterization Cascade Laundry 205 Prospect Street Bellingham, Washington 98225 Ecology FS ID: 21786898 VPC Project No: NW3076

Dear Sonja Max and EcoBloom Inc:

This document presents a summary of environmental sampling and vapor intrusion mitigation work that has taken place since 2021, as well as a work plan to further our understanding of subsurface conditions at the Cascade Laundry site in Bellingham, Washington. The intent of the work plan is to fill in data gaps associated with subsurface contamination in the soil and groundwater, which serves as the next step toward the goal of achieving a no further action with a restrictive covenant on the site. This work plan is an update of the March 12, 2024 draft work plan, following review and comment by the Department of Ecology.

Should you have any questions concerning this work plan, please do not hesitate to contact us at (360) 714-9409.

Sincerely, Stratum Group

ink

Kim Ninnemann, B.Sc., L.G. Licensed Geologist

1.0 INTRODUCTION

This work plan documents the air sampling, vapor intrusion mitigation, and groundwater monitoring work that has taken place since 2021, and provides recommendations for further site characterization work on the site to fill in data gaps in our understanding the subsurface conditions at the Cascade Laundry property.

Environmental work completed since 2021 and this work plan were completed in response to an Opinion Letter dated June 24, 2021 completed by Michael Warfel with the Department of Ecology (Ecology) and review and comment by the site project manager through the Voluntary Cleanup Program, Kim Vik .

2.0 GENERAL SITE INFORMATION

The Cascade Laundry property is developed with one mixed-use commercial building. Asphalt pavement surrounds most of the building, and a vegetated slope covers the western edge of the site. The building includes a basement, a main floor and a 2nd story. The current occupants include:

- Bellingham Cider Company (basement and main floor)
- New Prospect Theater (main floor)
- The Upfront Theater (main floor)
- Raven Bakery (main floor)
- Sharon Kingston Fine Art (main floor annex)
- Opus Performing Arts (2nd story)

The basement is used by Bellingham Cider Company as a storage area and for some office work. A walk-in cooler occupies a portion of the basement. Only Bellingham Cider Company employees utilize the basement. The Bellingham Cider Company utilizes the main floor as their kitchen and customer dining area. Additionally, the cider company has an outdoor dining area near the southwest corner of the building. The outdoor dining area is on a concrete patio and is supported by a retaining wall to the west.

2.1 Property Location

The Cascade Laundry property is located along the west side of Prospect Street between Flora Street and Central Avenue in the downtown area of Bellingham, Washington. Cascade Laundry occupies one tax parcel (Whatcom County Parcel 380330111249) that utilizes the address of 205 Prospect Street. The location of the subject property is presented in Figure 1 in Appendix I.

The subject property covers 0.54 acres and is zoned commercial. The property is located along a

commercially developed roadway within downtown Bellingham. Maritime Heritage Park, formerly part of the Holly Street landfill, bounds the property to the west.

An annotated aerial photograph of the property and vicinity is provided in Figure 2 in Appendix I.

2.2 Development and Use History

The subject property and vicinity were initially developed as a sawmill in approximately the 1850s as part of the earliest area of development along Bellingham Bay. An 1892 photograph of the site and vicinity indicates that a home was located on the subject property at that time.

The main structure of the existing building on the site was constructed in 1922. The southern portion of the subject property was utilized as a car sales lot until approximately 1935.

Cascade Laundry began to utilize the subject property by at least 1932. An addition was added to the south side of the building in 1966 (referred to as the annex). Cascade Laundry utilized the building for cleaning clothing, rugs, and miscellaneous goods, dry cleaning, and dyeing fabric. The year that dry cleaning operations began is unknown but these activities are believed to have ended by 1971. The site remained in use as a commercial laundry facility through the early 2000s.

The building interior was fully remodeled into a multi-tenant commercial building in the mid-2010s. The site has since been utilized by a mix of theaters, a restaurant, retail sales businesses, galleries, and dance companies.

2.3 Geology and Soils

The following descriptions of the surficial deposits in the vicinity of the subject property were interpreted from the *Geologic Map of the Bellingham 1:100,000 Quadrangle, Washington* (Lapen, 2000). According to Lapen (2000), the subject property is underlain by Bellingham glaciomarine drift. The Bellingham drift was deposited by melting glacial ice near the end of the last glacial period when the area was submerged below sea level. The Bellingham drift generally consists of dense silty clay.

Numerous environmental borings have been completed on the subject property to depths of up to 30 feet below the ground surface (bgs). Boring logs for the environmental drilling indicates that the site is underlain by silty clay, clayey silt, sandy clay and sandy silt to depths of up to 30 feet bgs. Chuckanut sandstone bedrock was encountered between 26 and 32 feet bgs. Layers of sand were identified in numerous borings. The sand units vary from 1 to 10 feet thick, and some sandy zones have lenses of clay.

Fill material has been identified in some of the borings on the west side of the property, which included organic material and pieces of glass and charcoal. Fill is also located at the southwestern corner of the building, east of a concrete retaining wall. The fill material at this location was

largely comprised of loose brown silty sand. Some bricks, pipes, and other miscellaneous debris were observed within the fill material. Organic material, woody debris, and some brick fragments have been identified in the upper 7 feet along the top of the slope, near the western property boundary.

2.4 Hydrology

No surface water features are located on the subject property. The property is located approximately 550 feet east of the Whatcom Waterway and includes the upper portion of the former shoreline bluff above the creek estuary. No groundwater seeps have been observed along the bluff.

The direction of shallow groundwater flow is generally a function of topography. The property is located on topography that slopes moderately to the west-southwest, toward Bellingham Bay. Based on topography, shallow groundwater beneath the subject property is expected to flow to the west, toward Bellingham Bay and Whatcom Creek.

Previously completed environmental investigations on the property identified groundwater to be present in discontinuous and inconsistent lenses of sandy soil below approximately 12 feet bgs. Based on site observations, previous investigations in the vicinity, and review of well logs recorded in Ecology's database, this groundwater is not likely representative of a regional groundwater table. Groundwater was identified in three of the five borings completed in 2018 in narrow sandy lenses between 12 and 28 feet bgs. Three monitoring wells are located onsite; however, a survey of the wells has not been completed due to the very limited presence of water in two of the three wells. Data collected to date indicates that groundwater in the two wells along the western boundary have low recharge rates with water present only near the soil-bedrock interface.

Our review of groundwater sampling reports for the adjacent Maritime Heritage Park site, located on the adjacent property to the west (also known as Holly Street landfill) indicates that groundwater is present on the park site at approximately 20 feet bgs. Based upon the park being located approximately 24 feet below the basement level of the Cascade Laundry building, groundwater would be located approximately 44 feet below the subject property. Additional evaluation will help to determine if the groundwater continues to flow along the native soil-bedrock boundary to this depth. Flow direction of groundwater at the monitoring wells within the park indicates flow to the northwest, toward Whatcom Creek (Landau, 1993).

3.0 SUMMARY OF PREVIOUS INVESTIGATIONS

Several environmental investigations have taken place on the site, including tank removals, soil and groundwater investigations, and an indoor air quality sampling event. The site's environmental history is described in the following documents in chronological order:

- **1992:** Underground Storage Tank Site Check/Site Assessment Checklist (Welch) Documents the removal of a 500-gallon gasoline UST. No contamination identified.
- 2006: *Phase I and Phase II Environmental Site Assessment (Stratum Group)* Phase I report identified site's former use as a dry cleaner as a recognized environmental condition. Five test pits were completed around the south and west sides of the building. One tetrachloroethylene (PCE) UST and PCE contaminated soil was identified near the southwest corner of the building.
 - 2007: *Phase II Environmental Borings (GeoEngineers)* Four borings were completed to depths of 29 feet bgs. No petroleum contamination was found in the soil or groundwater of the southeast corner of the property, closest to the adjacent former gasoline station across Prospect Street. Gasoline-range petroleum, diesel/oil, and PCE was found in soil above the MTCA Method A cleanup standards between 15 and 29 feet deep along the top of the slope, west of the building.
 - 2010: Tank Removal Report (Whatcom Environmental Services) Documents the removal of a 3,200-gallon heating oil tank and a 300gallon PCE tank. No contamination was identified around the heating oil tank. Gasoline-range petroleum, xylenes, and PCE were identified at concentrations that exceed the MTCA Method A cleanup standards in the bottom and sidewalls of the excavation around the dry cleaning tank.
- 2011: Site Characterization Report (Whatcom Environmental Services) Five borings were completed around the exterior of the building to depths of up 30 feet bgs. Gasoline-range petroleum, benzene, xylenes and PCE were identified in the fill soil near the southwestern corner of the property at depths between 14 and 25 feet. Groundwater was encountered between 12 and 17 feet. Gasoline-range petroleum, benzene, and PCE were detected in soil above the MTCA Method A cleanup standards.
- 2012: Site Characterization Report Building Interior Soil Borings (Whatcom Environmental Services)

Four borings were extended through the floor of the Cascade Laundry building. One boring, located in the southern building addition, had exceedances of gasoline-range petroleum, benzene, ethylbenzene, and xylenes in the soil at 14.5-15.5 feet bgs. PCE was detected above the cleanup standard in the groundwater within the two borings in the southern building addition.

• **2015:** *Environmental Baseline (Stratum Group)*

Compilation of soil and groundwater data and maps completed for the Cascade Laundry site. Report includes samples of soil and water within an interior sump and results from an indoor air quality test. Soil in bottom of sump in the southwestern corner of the building had diesel and oil concentrations above the state cleanup standards. Some volatile organic compounds (VOCs) were detected in the air inside the building.

• **2018:** Underground Storage Tank Removal and Hazardous Waste Generator Identification (Stratum Group)

Documents the removal of one 600-gallon Stoddard solvent UST previously located near the southwest corner of the building. Approximately 300 gallons of fluid was pumped out of the tank prior to removal. Disposal of the fluid required registering the property as a Hazardous Waste Generator with the Department of Ecology. The site was assigned the RCRA Site ID of WAH000054560. Gasoline contamination was identified at concentrations above MTCA cleanup standards in the base of the tank excavation. VOCs were detected but at levels below MTCA Method A state cleanup standards.

• 2019: Remedial Investigation / Site Characterization (Stratum Group)

Documents the findings from five environmental borings, three of which were completed as groundwater monitoring wells. Twenty-three soil samples were collected and analyzed. Petroleum and dry-cleaning solvents were detected, but only exceeded MTCA Method A cleanup standards in one sample for gasoline-range petroleum and one for diesel and oil-range petroleum. Groundwater was only productive enough in one monitoring well for sampling (MW-1), completed through the patio into fill near the southwest corner of the building. Groundwater quality in MW-1 exceeded the cleanup standards for gasoline, diesel, benzene, vinyl chloride and three additional VOCs at concentrations above the MTCA Method A cleanup standards.

All of these documents have been previously submitted to Ecology and reviewed as part of the Opinion Letter provided by Ecology dated June 24, 2021.

Our site history review indicates that four underground storage tanks (USTs) are known to have been located on the site. A summary of the known USTs is provided in Table 1, below.

Tank Size (gallons)	Tank Contents	Tank Status	Installation Date	Removal Date
300	PCE (dry cleaning tank)	Removed	Unknown	2010
3,200	Bunker C fuel oil	Removed	Unknown	2010
500	Gasoline	Closed-in-Place	1978	1992
600	Stoddard solvent (gasoline-range petroleum)	Removed	Unknown	2018

 Table 1.
 Summary of USTs

4.0 CONCEPTUAL SITE MODEL

A conceptual site model for the Cascade Laundry site is provided in Figure 3 of Appendix I. The model indicates the potential contamination sources, the media which could be impacted by the releases, the potential migration pathways in the environment, and the potential receptors.

4.1 Potential Contamination Sources

Potential contamination sources at the site include releases from USTs and associated piping, suspected surface dumping, and/or contaminant migration from an off-site and up gradient former gasoline station.

4.2 Contaminants of Concern

The documented releases on the site include petroleum products and dry cleaning products. This remedial investigation will help to evaluate for additional potential contaminants of concern (COCs).

The known and potential COCs at the site include:

- Gasoline-range petroleum
- BTEX (benzene, toluene, ethylbenzene, xylenes)
- Diesel and oil-range petroleum
- Tetrachloroethene (PCE)
- Trichloroethylene (TCE)
- Vinyl chloride
- cis- and trans-1,2-dichloroethylene
- 1,2-dichloropropane
- Metals (copper, hexavalent chromium, trivalent chromium, nickel, lead, zinc)

• Cyanide

4.3 Potential Exposure Pathways & Receptors

Potential exposure pathways to releases on the site include direct contact with contaminated soil, direct contact with contaminated groundwater, soil to groundwater impacts, groundwater to surface water impacts, and soil vapor and groundwater to air (vapor intrusion).

At present, potential receptors include commercial and construction workers, visitors to the onsite commercial businesses, and wildlife. Based upon WAC 173-360-7490, industrial and commercial properties need only to be evaluated for risk to wildlife, not plants or soil biota.

Direct Contact with Soil Pathway: Incomplete

The entire site, aside from the vegetated slope along the western portion of the property, is covered by building, concrete or asphalt. The building and pavement form a physical barrier between the soil and site occupants and workers, preventing direct access to the soil. Based upon the presence of the physical barrier, the direct contact pathway is incomplete.

Ecology requires a restrictive covenant on parcels where contaminated soil remains in place and is capped, to reduce the potential for future exposure during property construction and/or redevelopment activities.

Direct Contact with Groundwater Pathway: Incomplete

No drinking water wells are known to be present on the property and water is delivered to the property from the City of Bellingham public utility.

Additionally, the site is located within 1,000-feet of a landfill. The Whatcom County Health Department requires drinking water wells to be located outside of a 1,000-foot buffer from landfills, unless site specific conditions are presented and approved for a variance.

Based upon the lack of drinking water wells and limitations on well construction due to the proximity to the adjacent landfill, the groundwater ingestion pathway is not complete.

Soil-to-Groundwater Pathway: Complete

Groundwater contamination has been documented on the Cascade Laundry site. The contamination is suspected to be due to leaching from contaminated soils. Therefore, the pathway between soil and groundwater is complete.

Groundwater-to-Surface Water Pathway: Likely incomplete

The nearest surface water features are Whatcom Creek and Whatcom Waterway. Whatcom Creek is located approximately 315 feet northwest of the subject property. The creek becomes known as the Whatcom Waterway as it nears Bellingham Bay. Whatcom Waterway is located approximately 540 feet west of the subject property.

No seeps have been observed on the vegetated slope along the western boundary of the subject property. The groundwater beneath the west-adjacent park is located approximately 20 feet below the ground surface, so groundwater on the subject property is assumed to follow the interface of sediment and bedrock, which slopes beneath the park; however, observation of the slopes has not been systematic and additional assessment should be conducted to observe the slope (monthly), particularly during the spring and winter months.

Vapor Intrusion Pathway (Soil Vapor and Groundwater to Air): Mitigated

Sub-slab air samples and numerous indoor air sampling events within the basement of the Cascade Laundry building identified levels of PCE and TCE above Ecology's screening levels, which indicated a complete pathway for vapors to enter the building.

To mitigate this risk, the property owners installed a passive venting system in the floor of the basement (see details in Section 5.2 of this report). Indoor air sampling events completed after the installation of the venting system indicate that the air quality within the basement is below the action threshold for air quality. Based upon the mitigation work completed, the vapor intrusion pathway is no longer complete.

5.0 INTERIM SAMPLING AND MITIGATION WORK

Following receipt of the 2021 opinion letter, additional indoor air sampling, vapor intrusion mitigation work, and groundwater sampling was conducted. Details of these activities have not been previously reported.

Stratum Group's environmental sampling procedures were followed for collection, handling, storage, and transport of samples, per the Stratum Group Field Procedures provided in Appendix III.

5.1 Sub-slab and Indoor Air Sampling (September 2021)

The September 2021 round of air sampling was completed to further evaluate the air quality in the building and to determine if mitigation was warranted. Previous sampling events had identified elevated benzene, TCE, PCE, and chloroform in the indoor air at concentrations above the screening level for unrestricted land use indoor air quality, and TCE and PCE concentrations

in the basement had previously exceeded the commercial worker screening levels.

Three air samples and one sub-slab sample were collected as part of the September 2021 sampling event.

Indoor air samples were collected over two days including collection of indoor air from the basement on September 12, 2021, and collection of indoor air from the main floor of the building, above the basement (occupied by Bellingham Cider Company) and an outdoor ambient air sample on September 13, 2021. The basement air sample was collected on Sunday, September 12, 2021, as other days were deemed to have too much activity in the basement (i.e., door openings). The indoor samples were collected over an 8-hour period into 6L Summa canisters.

The indoor air and ambient air samples were analyzed for benzene, TCE, PCE, chloroform, and vinyl chloride.

The results of the September 2021 sampling event are presented in Table 2, below, along with the three applicable screening levels. The laboratory report is provided in Appendix II. A complete summary of air sample results from the Cascade Laundry site is provided in Appendix II.

Contaminants of	Indoor Air Co (µg/i		Ecology Indoor	Ecology Short-Term	Commercial
Concern	Basement	Main Floor	Screening Level (µg/m ³)	Exposure Action Level (µg/m ³)	Worker (µg/m³)
Benzene _b	0.63	22.81	0.32		1.5
Trichloroethene (TCE)	0.96	0.17	0.37	7.5	2.85
Tetrachloroethene (PCE)	14	2.8	9.6		44.9
Chloroform	4.2	1.4	0.11		
Vinyl Chloride	U<0.15	U<0.15	0.28		

 Table 2. Indoor Air Sample Results (September 2021)

a = concentrations are the indoor air sample results at each location minus the ambient air concentrations; b = benzene was the only COC detected in the ambient air sample at 0.19 μ g/m³; U = analyte was not detected at indicated reporting limits; shaded boxes = concentration exceeds screening level for commercial worker use; bold type indicates that concentrations exceeded the screening level for unrestricted land use indoor air quality.

One grab sample of sub-slab air was collected from the permanent vapor pin present in the concrete floor of the basement. The sub-slab sample was collected following collection of the indoor air sample from the basement to reduce potential cross-contamination. Air was purged

from the vapor pin and then a grab sample was collected using a five-minute flow regulator into a 1L summa canister.

The sub-slab basement sample was analyzed for benzene, TCE, PCE, chloroform, and vinyl chloride.

The results of the September 2021 sampling event are presented in Table 3, below, along with the two applicable screening levels. The laboratory report is provided in Appendix II. A complete summary of air sample results from the Cascade Laundry site is provided in Appendix II.

Contaminants of Concern	Basement Sub-Slab Soil Gas Concentrations (µg/m ³)	Ecology's Sub-Slab Screening Level for unrestricted land use (µg/m3)	Ecology's Sub- Slab Screening Level for Commercial Worker (µg/m ³)
Benzene	U<93	11	50
Trichloroethene (TCE)	690	11	95
Tetrachloroethene (PCE)	15,000	320	1,500
Chloroform	U<100	3.6	17
Vinyl Chloride	U<96	9.5	44

Table 3. Sub-Slab Soil Gas Sample Results (September 2021)

U = analyte was not detected at reporting limits; shaded boxes = concentration exceeds screening level for commercial workers; bold type indicates that the concentration exceeds the screening level for unrestricted land use.

5.1.1 September 2021 Results Discussion

The sub-slab concentrations of TCE and PCE continued to significantly exceed both the unrestricted and commercial worker screening levels. Due to the high level of TCE and PCE in the sub-slab air, the reporting limits for benzene, chloroform and vinyl chloride were elevated such that they were well above their respective screening levels.

The indoor air within the basement exceeded the air quality levels for unrestricted land use; however, the concentrations were below the screening level for an 8-hour commercial worker site use. The concentration of TCE in the indoor air did not exceed Ecology's short term action level.

The presence of TCE and PCE in the indoor air indicated that the vapor intrusion pathway was complete. Due to the potential for continuing vapor intrusion, mitigation was recommended.

Benzene and chloroform were detected above indoor air quality standards in both the basement and main floor air samples; however, these chemicals were not detected in the sub-slab sample. The benzene and chloroform are therefore not suspected to be present as a result of vapor

intrusion but due to an indoor source. Benzene concentrations were particularly elevated in the main floor restaurant space. The benzene is suspected to a byproduct of burned natural gas (used to heat the building and ovens/cook tops), incomplete combustion of natural gas, and/or charcoal creation during cooking activities. Chloroform is suspected to be off-gassing from building materials used in the structure. Recommendations were made to have the building evaluated for natural gas leaks.

Cascade Natural Gas conducted an assessment of the building on December 6, 2021 to inspect for natural gas leaks. Two pilot lights were out in the kitchen equipment, one grill needed maintenance, and two fittings on natural gas hot water heat in the basement were suspected to have very minor leaks. Property owners notified Bellingham Cider Company to repair the grill and check the pilot lights as a part of daily operations.

5.2 Vapor Mitigation Installation

To mitigate apparent vapor intrusion into the building, a passive vapor mitigation system was installed in the basement of the Cascade Laundry building in May 2022. The vapor mitigation installation included excavation of trenches to approximately 1-foot depth through the floor of the building and placement of a perforated PVC pipe surrounded by pea gravel into the trenches. The piping transitioned to solid PVC piping, which extended up the wall of the building and discharged to the building exterior. The trenches were backfilled with gravel and capped with concrete. The system is passive and does not include any active fans.

Subsurface materials removed from the trenches largely consisted of non-native pea gravel fill; however, native brown silty sand soils with minor gravel was encountered at the south end of the basement, east extent of the trenches, and near the west wall where the piping transitioned above ground.

Two soil samples were collected from the native soil to evaluate the soil conditions for proper disposal of the excavated soil material. Kim Ninnemann of Stratum Group visited the site on May 10, 2022. One sample was collected from the soil to the north of the cooler (sample 051022-1) and one was collected near the south wall of the basement, west of the cooler (sample 050122-2). Each sample was collected from approximately 0.5 foot depth, placed in an ice-chilled cooler, and delivered to ALS Laboratory for analysis of a full suite of volatile organic compounds (VOCs). Both samples were non-detect for all VOCs, except for PCE detected in 051022-2 at a concentration of 0.37 mg/kg, above the MTCA Method A cleanup level of 0.05 mg/kg.

Based upon the presence of PCE, the soil was placed in one-ton tote bags provided by Clean Harbors and removed as hazardous material. A total of 4,000 pounds was removed from the site for disposal at Clean Harbors Environmental Services in Kimball, Maine in July 2022.

Supporting documentation for the vapor intrusion installation is provided in Appendix III,

including a map that shows the location of the passive vapor system in the basement and the soil sample locations. A copy of the full laboratory report for the soil samples and soil disposal manifest is provided in Appendix II.

5.3 Follow up Indoor Air Sampling (December 2022, February 2023, September 2023)

Three air sampling events have taken place since the installation of the passive venting system: December 2022, February 2023, and September 2023. Since vapor intrusion was expected to be most significant in the partially below-ground basement space, the follow-up sampling work focused only on the basement.

The December 2022 event included samples from the basement indoor air, basement sub-slab air, and an ambient air sample. Two additional sample locations were added for the February 2023 sampling event including behind the drywall along the south wall of the basement and from the passive vent discharge pipe from the vapor mitigation system in February 2023. An ambient air sample and basement indoor air sample were collected in September 2023.

The December 2022 sampling event was completed using Summa canisters. The canisters were not available during the February 2023 sampling event so sorbent tubes were used to collect the air sample. The sorbent tubes were connected to a flow regulator (BIOS Defender 510) and pump (Gilian dual mode low flow sampler).

A summary of the basement air sample data collected between December 2022 and September 2023) is provided in Table 4. A summary of sub-slab sample data through the basement floor between December 2022 and February 2023 is provided in Table 5. A summary of the data collected from the discharge pipe from the vapor mitigation system is provided in Table 6. Ambient air results were only collected in December 2022 and were non-detect for all the halogenated VOCs analyzed.

Contaminants of Concern	Inc	door Air Concent In Basement (µg/m³)a		Ecology Indoor Screening Level (µg/m ³)	Ecology Short-Term Exposure Action Level (µg/m ³)	Commercial Worker (µg/m³)
	12/19/2022	2/20/2023	9/11/2023			
Benzene				0.321		1.5
Trichloroethene (TCE)	4.2	0.014	U<0.12	0.334	7.5	2.85
Tetrachloroethene (PCE)	58	0.16	1.3	9.62		44.9
Vinyl Chloride	U<0.26	< 0.032	U<0.6	0.28		1.33
1,2DCE - cis	1.1	< 0.032	U<0.6	Not available		156
1,2DCE - trans	U<0.4	< 0.032	U<0.6	0.96		156
Sample Collection Type	6L Summa	Sorbent tubes	Sorbent tubes			
Sample Time	8-hr	1-hr	8-hr			

Table 4. Basement	Indoor Air	Sample	Results
-------------------	------------	--------	---------

a = concentrations are the indoor air sample results at each location minus the ambient air concentrations; U = analyte was not detected at reporting limits shaded boxes = concentration exceeds screening level for commercial worker; bold text = sample exceeds concentration for unrestricted land use; -- = analyte not tested

Table 5. Dasement Sub-Stab Ant Sample Results						
Contaminants of Concern	(µg	Concentrations g/m ³) _a nt Vapor Pin	Ecology's Sub-Slab Screening Level for unrestricted land use	Ecology's Sub-Slab Screening Level for Commercial Worker (µg/m ³)		
	12/19/2022	2/20/2023	(μg/m3)			
Benzene		U<0.034	11	50		
Trichloroethene (TCE)	3.9	1.2	11	95		
Tetrachloroethene (PCE)	54	2.8	320	1,500		
Vinyl Chloride	U<1.8	U<0.034	9.5	44		
1,2DCE - cis	U<2.8	0.12	610	5,200		
1,2DCE - trans	U<2.8	U<0.034	610	5,200		
Sample Collection Type	1L Summa	1L Summa				
Sample Time	5-min	5-min				

Table 5. Basement Sub-Slab Air Sample Results

a = concentrations are the indoor air sample results at each location minus the ambient air concentrations; U = analyte was not detected at reporting limits; shaded boxes = concentration exceeds screening level for commercial worker; bold text = sample exceeds concentration for unrestricted land use; -- = analyte not tested

Contaminants of Concern	Vented Air Concentrations (µg/m ³) _a 2/20/2023
Trichloroethene (TCE)	5.0
Tetrachloroethene (PCE)	47
Vinyl Chloride	U<0.065
1,2DCE - cis	1.6
1,2DCE - trans	U<0.065
Sample Collection Type	Sorbent Tube
Sample Time	1-hr

Table 6. Vapor Mitigation System Outflow Air Sample Results

a = concentrations are the indoor air sample results at each location minus the ambient air concentrations; U = analyte was not detected at reporting limits; shaded boxes = concentration exceeds screening level for commercial worker; bold text = sample exceeds concentration for unrestricted land use; -- = analyte not tested

5.3.1 Results Discussion of Air Sampling – Post Vapor Mitigation Installation

Basement Indoor Air

The Cascade Laundry basement's indoor air quality exceeded commercial worker levels during the December 2022 air sampling event. The results were not anticipated, based upon the operation of the passive vapor mitigation system for more than 6 months. We noted in our

review that the indoor air sample results were unusually similar to the sub-slab results. We hypothesized that the results could have been the result of leaks through the concrete floor, from a different source than the floor (i.e., south wall that abuts fill zone with known soil and water contamination), or from sampling errors during collection.

To assess these hypotheses, a thorough evaluation was conducted of the basement to identify every pipe and potential access into the room. Foam sealant was used around some piping that entered the basement to ensure the air flow was blocked. Additionally, it was determined that the next round of air sampling should include a sample from the vapor mitigation outflow vent to verify it was operating appropriately, and from behind the drywall along the south wall of the basement, as solvent tanks and releases to the environment are known to have been present in the fill material on the opposite side of the wall to the south.

The February 2023 sampling event found that no PCE or TCE was detected in the air sample collected from between the concrete and drywall along the south wall of the basement. This result indicates that vapors are not migrating through the south wall into the building's interior air.

The February 2023 and September 2023 indoor air samples from the basement met both the unrestricted land use values for indoor air as well as the commercial worker values. The samples from these events were collected with sorbent tubes, a commonly used sampling method for VOCs. Based upon these two sampling events, the mitigation system has been successful in passively reducing vapor intrusion to well below screening levels for unrestricted land use.

Basement Sub-Slab

Basement sub-slab air samples collected during the December 2022 and February 2023 events found the sub-slab air to meet the screening levels for unrestricted land use. PCE and TCE were detected in the sub-slab samples, but at an order of magnitude below the screening levels. Based upon these results, it was determined that vapor mitigation activities were successful and additional sub-slab samples were no longer needed.

Vapor Mitigation Vent

A sample collected from the outflow vent for the passive vapor mitigation system was analyzed from February 20, 2023. The sample had notable detections of PCE ($5.0 \mu g/m^3$) and PCE ($47 \mu g/m^3$). These results indicate that the passive venting system is effectively functioning to move solvent-impacted air from below the basement floor to the building exterior.

5.4 Groundwater Sample Results (Sept 2023)

Three groundwater monitoring wells are located on the Cascade Laundry site (MW-1, MW-2, and MW-3). The locations of the monitoring wells are presented in Figure 1, Appendix IV.

Depths to water in the wells were collected on September 11, September 14 (prior to purging) and again on September 18, 2023 (sampling day). Purging and sampling were completed on separate days due to the low recharge in two of the wells. The measured depth to water levels are presented in Table 7.

Monitoring Depth-to-Water (feet)						
Well	Sept 11, 2023 Sept 14, 2023 Sept 18, 202					
MW-1	20.33	20.33	20.80			
MW-2	19.34	24.55	21.75			
MW-3	24.54	19.33	24.63			

*measurements taken from location marked on the casing

MW-1 was purged dry on September 14, 2023, then allowed to recharge for one hour, before additional purging was completed. More than 3 well volumes of water were purged from MW-1. The purge water on September 14, 2023 had a yellowish color, significant petroleum sheens, and a very strong petroleum odor. Upon purging the well dry, water trickling into the base of the well contained even stronger odors and sheens.

MW-2 was purged dry with less than 0.5L on September 14, 2023. The well had no recoverable water after one hour.

MW-3 was purged dry after removal of 1.5L. The well was allowed to recharge for one hour. Less than 0.5L was removed after one hour of recharge.

Due to the slow recharge observed from all three wells, Stratum Group returned to the site in on September 18, 2023 to try to collect samples. No water was purged prior to sample collection. Water within MW-1 was clear, with no sign of turbidity or free product. MW-2 ran dry after filling four VOA containers. The water in MW-2 was clear with no turbidity. MW-3 ran dry after filling five VOA containers. The water had a slight yellow tinge and no turbidity.

The samples were placed in an ice-filled cooler and delivered to Friedman and Bruya for analysis via Fed Ex.

5.4.1 Groundwater Sample Results

Each groundwater sample was analyzed for gasoline-range petroleum (NWTPH-GX) benzene, toluene, ethylbenzene, and xylenes (BTEX), and halogenated VOCs. There was insufficient water to test MW-2 and MW-3 for diesel and oil-range petroleum. MW-1 was further analyzed for diesel and oil-range petroleum, cyanide, metals (copper, hexavalent chromium, total chromium, nickel, lead, and zinc), and for carbon fractionization for diesel and oil-range petroleum (EPH method) and gasoline-range petroleum (VPH method).

The results of the sampling event are presented in Tables 8 through 10. Table 8 includes petroleum results from all three wells. Table 9 includes the metals and VOC results for all three wells, and Table 10 includes the carbon fractionization results for groundwater from MW-1. Only VOCs that were detected in each sample are presented in Table 9. If an analyte is not shown in the table, it was not detected in the sample. The results in Table 8 and 9 are compared to MTCA Method A cleanup standards, as a screening level, when available, or Method B. Screening levels will be utilized for the site until site-specific cleanup levels are developed.

A copy of the complete laboratory report and chain of custody is provided in Appendix IV.

Sampla		Concentration of Contaminants (µg/L)							
Sample ID	Gas	Diesel	Oil	Benzene	Toluene	Ethyl- benzene	Xylenes		
MW-1	4,900	32,000	3,100	9.2	5.0	8.4	38		
MW-2	370			3.5	U<1	3.6	U<3		
MW-3	U<100			U<1	U<1	U<1	U<3		
MTCA Method A Screening Levels (µg/L) _a	1,000/800a	500	500	5	1,000	700	1,000		

 Table 8. Groundwater Sample Results: Petroleum (September 2023)

a = The lower clean up value is used if benzene is present, otherwise, the higher clean up number is used; U = sample analyzed, but not detected at laboratory provided reporting limits; -- = contaminant not tested; bold shaded text indicates sample exceeds the screening levels

Table 7: Groundwater Sample Results: VOEs, Metans, Cyande (September 2023)										
	Concentration of Contaminants (µg/L)									
Sample ID	VOCs _a			Metals						
	Vinyl Chloride	Trans	Cis 1,2-	Chromium						Cyanide
		1,2- DCE	DCE	Total	Hexavalent	Copper	Lead	Nickel	Zinc	Cyamue
MW-1	110	8.7	1.5	1.41	U<50	U<5	U<1	28.3	15.5	U<50
MW-2	0.98	U<1	U<1							
MW-3	0.11	U<1	2.1							
Method A or B Screening Levels (µg/L) _a	0.20	160	16	50	48	640	15	320	4,800	5

Table 9. Groundwater Sample Results: VOCs, Metals, Cyanide (September 2023)

a= only VOCs detected in the samples, based upon analysis of 11 halogenated compounds are presented, as all other VOCs were not identified above reporting limits; bold shaded text indicates sample exceeds the screening levels; -- = analytes not sampled

	Laboratory	Concentration (µg/L)		
Analytes	Analysis Method	MW-1		
C8-C10 Aliphatics	NWEPH	100		
C10-C12 Aliphatics		46.6		
C12-C16 Aliphatics		U<39.8		
C16-C21 Aliphatics		U<39.8		
C21-C34 Aliphatics		U<39.8		
C8-C10 Aromatics		666		
C10-C12 Aromatics		460		
C12-C16 Aromatics		70.6		
C16-C21 Aromatics		U<39.8		
C21-C34 Aromatics		54.9		
C5-C6 Aliphatics		U<40		
C6-C8 Aliphatics	NWVPH	53.7		
C8-C10 Aliphatics		193		
C10-C12 Aliphatics		983		
C10-C12 Aliphatics		767		
C8-C10 Aromatics]	1,120		
C10-C12 Aromatics]	774		
C12-C13Aromatics		U<40		

Table 10. Petroleum Carbon Fractionization in MW-1

5.4.2 Results Discussion of Groundwater Sampling (September 2023 event)

Our groundwater sampling event found low recovery rates in MW-2 and MW-3, located on the west edge of the developed portion of the site. The groundwater monitoring wells were installed at the top of the groundwater table. It is hypothesized that groundwater may flow at a slow rate along the soil-bedrock interface. A survey has not been completed on the monitoring wells, so groundwater flow directions cannot be verified; however, topography of the site indicates a suspected westerly flow and contaminant levels, particularly of vinyl chloride in the water, indicate a likely west-southwesterly flow at the site, with concentrations decreasing to the west. An elevation survey will be needed to confirm groundwater flow direction.

<u>MW-1</u>

MW-1, placed through the fill area along the southwestern end of the building, was found to exceed the MTCA Method A screening levels for gasoline-range petroleum, benzene, diesel, oil,

and vinyl chloride. Other petroleum products and VOCs were detected, but at concentrations well below the screening levels. None of the metals analyzed in the sample from MW-1 exceeded the screening levels. No hexavalent chromium or cyanide were detected; however, the reporting limits for both analytes were above the cleanup/screening levels and therefore will require additional testing with lower reporting limits to properly evaluate.

The carbon fraction data from the water sample was entered into MTCATPH-V12.0, Ecology's calculator for determining groundwater cleanup levels. The total measured petroleum concentration in the sample from MW-1 was calculated to be 3,306.3 μ g/L. Based upon the calculator, the overall TPH Method B potable groundwater protective cleanup level for the site would be 140 μ g/L. This concentration is considered an estimate, as n-hexane and naphthalene concentrations were not included in the original analysis. The sample results for MW-1 exceed the calculated site specific groundwater cleanup value for petroleum.

We noted yellowish fluid entering the base of the well after the well had been purged dry on September 14, 2023. The water with the yellow fluid had a strong odor that was suspected to be petroleum. Additional assessment should take place to determine if the fluid is a light nonaqueous phase liquid (LNAPL) or dense nonaqueous phase liquid (DNAPL).

<u>MW-2</u>

Water quality in MW-2 had detections of gasoline-range petroleum, benzene, and ethylbenzene; however, all the concentrations were found to be below the screening levels. Vinyl chloride was detected in the groundwater at a concentration of $0.98 \,\mu$ g/L, which exceeds the screening level for vinyl chloride. No other VOCs of concern were detected.

<u>MW-3</u>

No VOC or petroleum contaminants exceeded the screening levels in MW-3, located west of the northern end of the building. Vinyl chloride was detected in the sample at 0.11 μ g/L; however, this concentration was below the screening level of 0.2 μ g/L. Additional sampling from this well will be needed to determine if there is seasonal fluctuations in the water quality.

5.5 Evaluation of Potential Off-Site Groundwater Monitoring Well Locations

Monitoring wells have been installed on two adjacent properties in association with previous environmental work: Holly Street Landfill (aka Maritime Heritage Park) and 401 Central Ave LUST.

Three monitoring wells are mapped as being located south of the western end of the subject property within Maritime Heritage Park. Stratum Group personnel located one well monument, approximately 3' high; however, it was missing a cap on both the casing and the PVC well and was stuffed with wood chips and debris. The other two mapped monitoring wells in the vicinity

were not identified. The observed well is not an option for potential off-site sampling; however, additional communication could take place with the City of Bellingham to determine the other well locations as potential sampling locations, if needed.

Two monitoring wells were identified north of the western end of the subject property at the 401 Central LUST site (address is 401 Central). The wells are two properties north of the subject property and look to be functional, if additional water quality data is needed north of the Cascade Laundry property.

6.0 IDENTIFIED DATA GAPS

Several data gaps remain to characterize the nature and extent of contamination at Cascade Laundry. The data gaps include:

- Lateral extent of petroleum and VOCs in soil and groundwater not determined to the south and west of the site.
- Assessment of potential surface water seeps in vegetated slope along western property boundary is needed.
- Assessment of potential COCs associated with previous hide tanning activities (e.g., metals and cyanide); COCs should be analyzed in future soil and groundwater samples.
- Site-specific cleanup levels (need to propose preliminary values for approval by Ecology)
- Determine if site meets requirements for non-potable groundwater, which could impact the groundwater cleanup standard for the site.
- Update site maps to include all tank locations, subsurface soil sample locations, groundwater sample locations, air sample locations, and a detailed cross-section (details provided in 2021 Opinion Letter)

7.0 PROPOSED WORK PLAN

The work plan proposed herein was designed to address the identified data gaps and further characterize the nature and extent of contamination associated with the Cascade Laundry property. We propose a combination of additional soil sampling, groundwater monitoring well installation (both on and off-site), and quarterly groundwater sampling to determine the nature and extent of petroleum contaminated groundwater. This data will be used to evaluate whether contamination boundaries have been identified and to develop site specific cleanup levels for soil, groundwater, and indoor air. A well survey of the monitoring wells will be needed, once new wells are installed so that groundwater flow direction can be determined. The goal of these proposed activities is to further and/or complete our understanding of contamination and provide a baseline for evaluating potential cleanup options.

Stratum Group personnel will coordinate and be onsite to oversee subcontractors, collect soil

samples, develop monitoring wells, and collect groundwater samples. Subcontractors will be utilized, as needed, during the project including well drilling professionals, Ecology accredited laboratories for sample analysis, ground penetrating radar and private utility locate professionals, and a professional survey company.

We recommend one primary mobilization for drilling and installation of four new groundwater monitoring wells, followed by quarterly groundwater sampling events of wells for one year, and monthly inspections of the western slope of the site to observe for groundwater seeps.

All fieldwork and sampling activities will be completed in accordance with Stratum Group's standard field procedures, provided in Appendix II.

The work plan will be implemented upon the completion of Ecology's review and comment, and with approval from the property owner.

7.1 Well Installation Preparatory Activities

Four groundwater monitoring wells are proposed within this work plan: two wells proposed on the Cascade Laundry site and two wells proposed on adjacent properties.

Off-site groundwater monitoring wells are proposed on the adjacent property to the south (MW6) and west (MW7). The south and west adjacent properties are owned by the City of Bellingham. Letters will be written to request access to install groundwater monitoring wells on these properties, as well as a request for access for the installation, development, and sampling of the groundwater monitoring wells. Permits will be applied for, if needed, for these off-site wells.

At least two business days prior to scheduled completion of ground disturbing activities, proposed monitoring well locations will be marked with white paint and the One-Call Utility Notification Service will be notified.

A professional private utility locating service will be engaged to do a conductible locate and a ground penetrating radar (GPR) to further identify any underground utilities, objects, or tanks. GPR is a non-destructive technique that uses radar to create images of the subsurface. Buried objects (e.g., tanks) and other anomalies are identified based on the imagery developed during the investigation. This type of investigation will not determine if contamination is present but will assist in determining if utility lines or tanks are present or may have previously been located. This information can direct where soil and groundwater samples should/should not be collected. GPR will also further clear our proposed sampling locations to provide extra certainty that no obvious obstructions are present. The utilities identified through the private locate company will be marked with paint on the ground surface and flagged.

We proposed that the GPR survey be conducted around each proposed well installation.

7.2 Groundwater Monitoring Well Installation

We propose completion of four borings to be completed as groundwater monitoring wells. Wells will be installed by a licensed well driller and all drilling and well installation activities will be conducted in accordance with Ecology's *Minimum Standards for Construction and Maintenance of Wells* (WAC 173-360).

The locations of the proposed groundwater monitoring wells are provided in Figure 4-1, Appendix I. The rationale for each sample location is provided in Table 11.

Well ID	Location	Rationale		
MW4	East side of property	Evaluate for potential contamination migration along the soil-bedrock interface from former adjacent gas station		
MW5	West of MW-1, below the retaining wall	Down gradient of known contaminated area around MW-1, potentially to identify a western contaminant boundary		
MW6	South of southwestern portion of the site, on City of Bellingham Whatcom Museum property.	Potentially identify a southern boundary of contamination (off-site well)		
MW7	West of subject property	Down gradient of subject property (off-site well), potentially to identify a western contaminant boundary		

 Table 11. Monitoring Well Location Rationale

Because site groundwater is expected to be flowing along the soil/bedrock interface, we recommend that sonic drilling techniques be utilized so that the monitoring wells can be extended approximately one foot into the bedrock. Previous environmental sampling work using a push probe drill rig has encountered bedrock and hit refusal.

Soil will be collected continuously through the boring with a 4"-ID core barrel and will be collected for visual analysis, field testing, and collection of samples for laboratory analysis. Stratum Group personnel will conduct field testing for obvious indications of contamination including discoloration, odors, and sheens. Field personnel will also utilize a photoionization detector (PID) to scan for volatile vapors.

Borings will be advanced to depths of approximately 30-35 feet bgs or until we are approximately one foot into the bedrock. A casing is pushed forward following each five-foot length of soil collection, which is removed upon completion of the well.

Stratum Group will be onsite to collect soil samples during drilling of the permanent monitoring wells. At least four soil samples will be collected from each boring location:

• One sample near surface (~1-1.5) to evaluate for potential surface releases

- Two samples within sandy layers throughout the middle of the boring, where previous sampling indicated higher concentrations of contaminants
- One sample from the native soil-bedrock interface zone

Field indications of contamination may be used to adjust sampling depths during field activities.

The wells will be created with 2" PVC pipe with a 10' screen. We anticipate that the base of the screen will be set at the bottom of the well. Sand will be placed around the pre-pack well to fill the boring annulus, with bentonite clay placed above the sand pack to act as a seal. A flush mounted well casing, at the same elevation as the ground surface, will be placed around the monitoring well to provide protection to the monitoring well and allow easier future access to the area.

If a shallower zone of groundwater is encountered during the sonic drilling, then the drilling will be temporarily halted so that a water sample can be collected prior to continued drilling to just below the bedrock interface.

Stratum Group will return to the site within one week of completion of well drilling activities to develop the monitoring wells. Development will be completed according to Stratum Group standard field procedures.

Stratum Group will return to the site at least 24 hours after well development to sample the wells.

7.2.1 Well Survey

Following installation of the monitoring wells, Stratum Group will engage a professional surveying contractor to survey the locations of the wells. The survey will be completed on all the monitoring wells (MW-1 through MW-7). The survey should include determination of the ground surface of the monitoring well monuments and the tops of the well casings (top of the PVC pipe). Survey data collected from this survey will be used with field collected depth to water measurements to determine the groundwater table elevation in each well.

The groundwater level elevations will be used to create a groundwater elevation contour map, so that groundwater flow at the site can be determined using depth-to-water measurements from each groundwater sampling event.

7.3 Groundwater Sampling

7.3.1 Quarterly Groundwater Monitoring

We recommend that quarterly groundwater monitoring take place, beginning with the initial groundwater sampling event of all seven wells. Quarterly monitoring should take place for a minimum of four quarters.

All seven wells associated with the Cascade Laundry well network should be sampled. Permanent marker should be used to mark the location on the PVC casing where the depth-towater measurements are collected.

Upon arrival, field personnel will open each well and remove the cap on the casing to allow the water table to equilibrate with atmospheric pressure. Measurements of the depth to groundwater from the top of casing will be completed initially and then again at least 30 minutes after the initial measurement, but prior to sampling. An interface depth-to-water meter will be used to determine if LNAPL or DNAPL are present in the wells, particularly in MW-1 and MW-5. If the difference in the two depth-to-water measurements in a given well is greater than 0.05 feet, additional measurements will be taken at approximately 30-minute intervals until the difference is less than 0.05 feet.

Wells will be purged and sampled using low flow sampling techniques. Sample tubing will be placed approximately 1 to 2 feet below the top of the water table and will be adjusted as needed to account for drawdown. Prior to sampling, well water will be purged until field parameters including temperature, pH, dissolved oxygen, ORP, and/or conductivity stabilize and the water is visually free of turbidity or the well has been purged dry. A record of field measurements collected during well purging will be written down in the field and retained as part of the general project file.

After field parameters have stabilized, groundwater samples will be collected from the permanent wells. In wells where limited groundwater recharge is present, as previously noted in MW-2 and MW-3, samples may need to be collected 1-2 days after purging to have enough water to fill sample containers.

7.3.2 Off-Site Well Sampling

If groundwater sampling data from the Cascade Laundry well network indicates that additional sampling is needed to characterize the site, efforts will be made to identify and communicate with adjacent property owners (Maritime Heritage Park or 401 Central) to get permission for a groundwater sampling event from off-site wells that are already installed, if the well locations are positioned and/or drilled to depths that would provide useful information for the Cascade Laundry assessment.

7.3.3 Slope Inspections

We recommend that observation of the western slope of the subject property be completed once per month during the months of November, December, January, February, March, April, and May. The goal of the inspection is to observe the hillside to verify whether any groundwater springs are present. If present, photos should be taken and the location marked on a map, and a water sample should be collected and analyzed for the contaminants of concern at the Cascade Laundry site.

This data along with groundwater sample data will be used to determine if the exposure pathway from groundwater-to-surface water is complete or incomplete.

7.4 Sample Analysis Plan

Environmental samples analyzed as part of this work plan will be delivered or mailed to a Department of Ecology accredited laboratory for analysis. The proposed sample analysis to be completed on the soil and groundwater collected during the well installation and groundwater sampling events from wells installed to evaluate Cascade Laundry site is provided in Table 12.

Well	Sample Description	Contaminants of Concern	Analytical Method	
	 4 soil samples will be sampled during installation of the new MW-2 MW-3 MW-4 MW-5 Quarterly groundwater samples from all monitoring wells 	Diesel & Oil	NWTPH-Dx	
		Gasoline	NWTPH-Gx	
MW-2		monitoring wells (MW4- MW7)	BTEX	EPA 8021B
MW-4			Halogenated VOCs	EPA 8260D
MW-6		Metals	EPA 6020B	
	associated with the site for one year	Cyanide	SM 4500-CN C,E	
		Hexavalent Chromium	SM 3500 Cr B	

 Table 12. Sample Analysis Plan

If sampling of additional off-site monitoring wells is determined to be needed (i.e. from already installed wells to the west within Maritime Heritage Park or to the north at 401 Central), or groundwater seeps on the hillside are identified, then water collected from these locations will be analyzed for all the contaminants of concern identified in Table 12.

Groundwater samples analyzed for metals will be initially analyzed for total metals. If elevated metals concentrations are detected from these analyses, the samples will be laboratory filtered and re-analyzed for dissolved metals.

7.5 Timeline

An estimated timetable of proposed work activities is provided in Table 13, below.

We will begin preparatory steps for a groundwater monitoring well installation once Ecology's review has been completed and the work plan has been finalized.

This timetable assumes that standard turnaround times for sample analysis will be used. Timetable dates are subject to subcontractor availability for drilling and survey portions of the project.

Task	Approximate Date of Completion			
Submittal of draft work plan to Ecology for review	Mid-March 2024			
Edits made to work plan based upon Ecology comments; final work plan submitted to Ecology	November 2024			
Submit request for off-site monitoring wells to City of Bellingham	November 2024			
GPR & private utility locate	Dec 2024-January 2025			
Install four monitoring wells	Dec 2024 -January 2025			
Survey monitoring wells	February 2025			
Quarterly groundwater monitoring	February 2025 May 2025 August 2025 November 2025			
Monthly slope inspections	November 2024 – May 2025			
Sample additional off-site wells/seeps, if needed	During quarterly monitoring event, if neede			
Remedial Investigation report	January 2026			

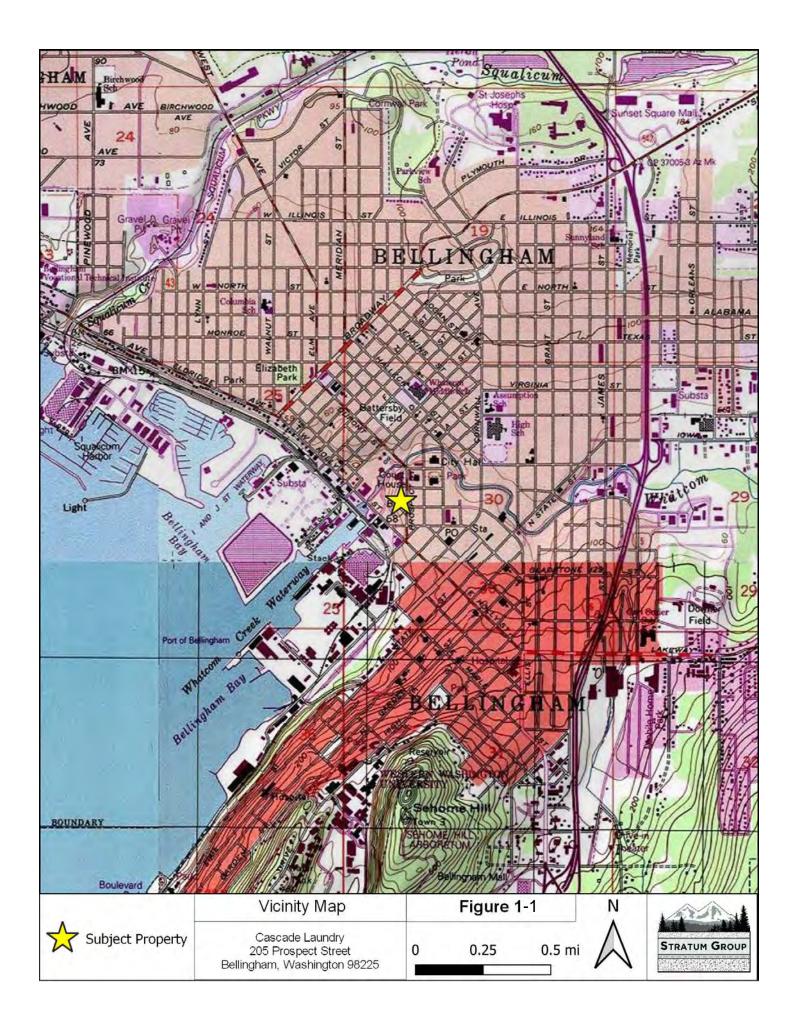
 Table 13. Project Timetable

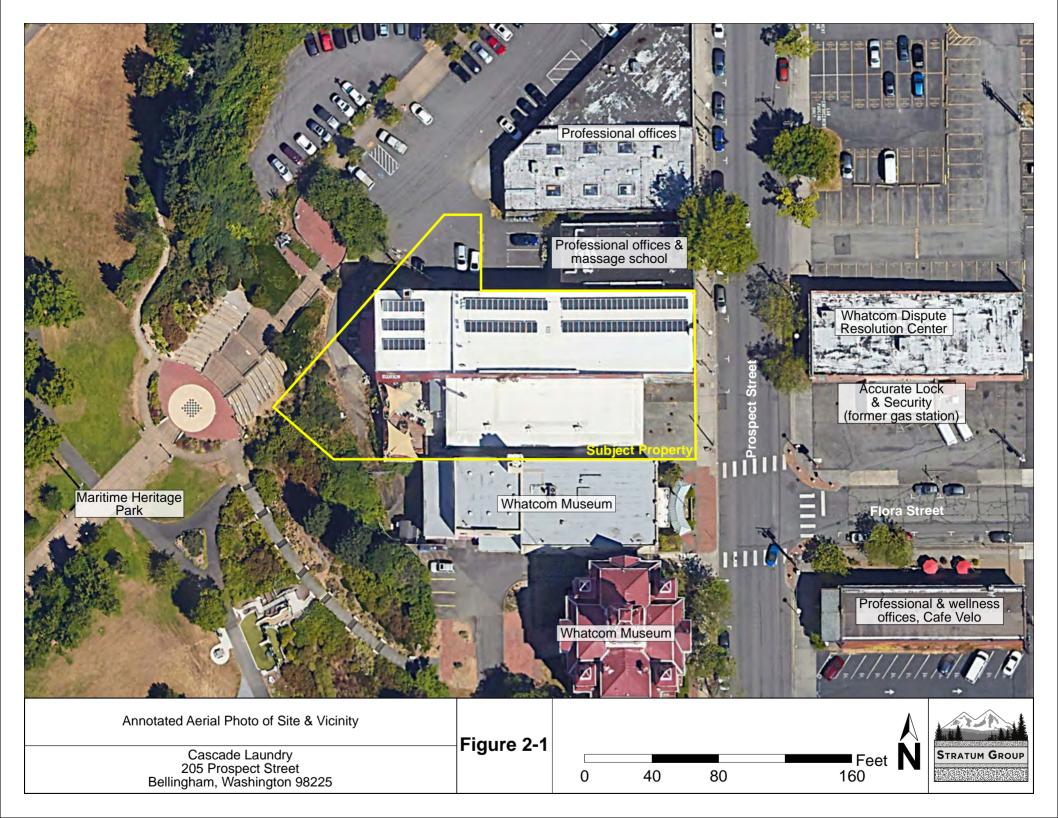
7.6 Reporting

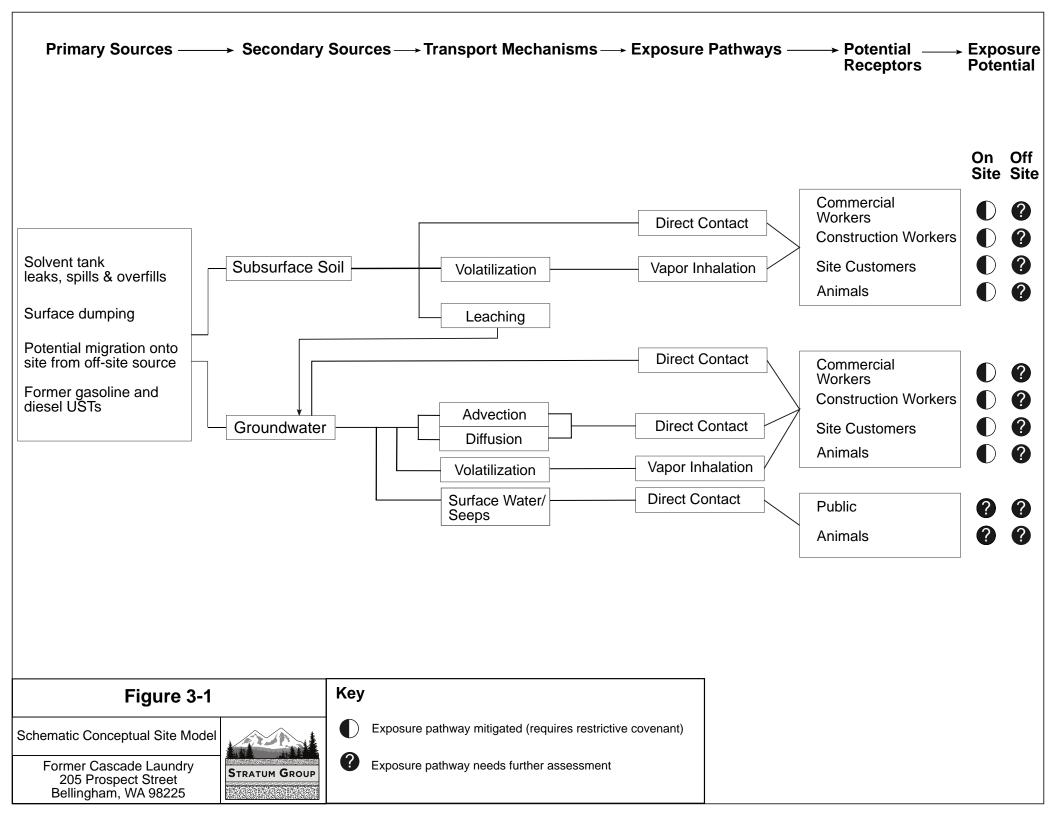
Results will be reported to the property owner following each sampling event.

Upon completion of the above remedial investigation tasks, Stratum Group will compile a Remedial Investigation report in compliance with Department of Ecology guidance and WAC 173-340-350(7). This report will document and summarize the results of environmental sampling, including photographs, sample maps and data, well logs, site conceptual model, and conclusions. The Remedial Investigation report will include details requested in the June 24, 2021 opinion letter. This report will also include a re-evaluation of contaminants of concern and propose preliminary cleanup levels based upon the findings of the remedial investigation. The findings may allow us to limit the number of wells needed for further assessment and/or the analyses needed in each monitoring well. We recommend that this report be submitted to Ecology for review and comment. A formal opinion letter can be requested. All supporting data will be entered into Ecology's Environmental Information Management (EIM) system. If, in our professional opinion, sample results from the soil sampling during well installation or

water sampling from the monitoring wells indicate that site characterization remains incomplete, Stratum Group will prepare an interim remedial investigation report and work plan. The interim report will include a table of the analysis results obtained to date, a map showing the spatial distribution of the results, and a short narrative summarizing the results and providing detailed recommendations for additional samples to complete site characterization. We recommend this interim report be submitted to Ecology for review and comments prior to completion of any additional sampling that is beyond the scope of work described herein. An interim report will not be prepared if, in our professional opinion, initial sampling results indicate that site characterization is complete.


7.7 Management of Investigation Derived Waste (IDW)


All soil and water generated from boring and monitoring well installation activities that is not used for sample analysis purposes will be placed in properly labeled 55-gallon drums and stored on-site pending characterization. We anticipate this waste will be stored on-site until cleanup activities commence, at which time the soil and water will be properly profiled and disposed of off-site along with soil and water removed during remediation. If no cleanup is anticipated in the short-term, then disposal of the soil and water will be handled separately by a hazardous waste disposal company. Disposal receipts will be obtained to verify proper disposal.



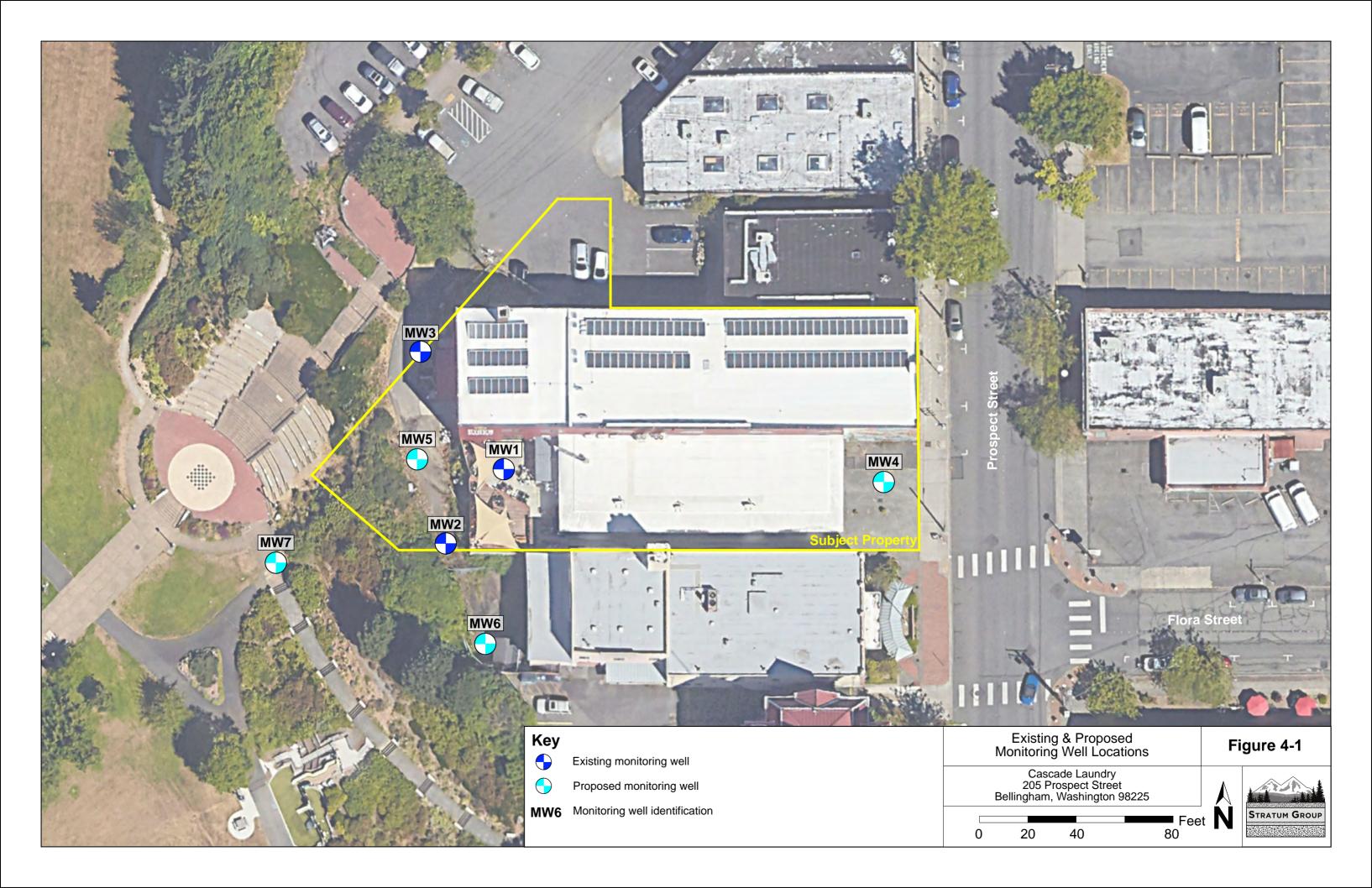
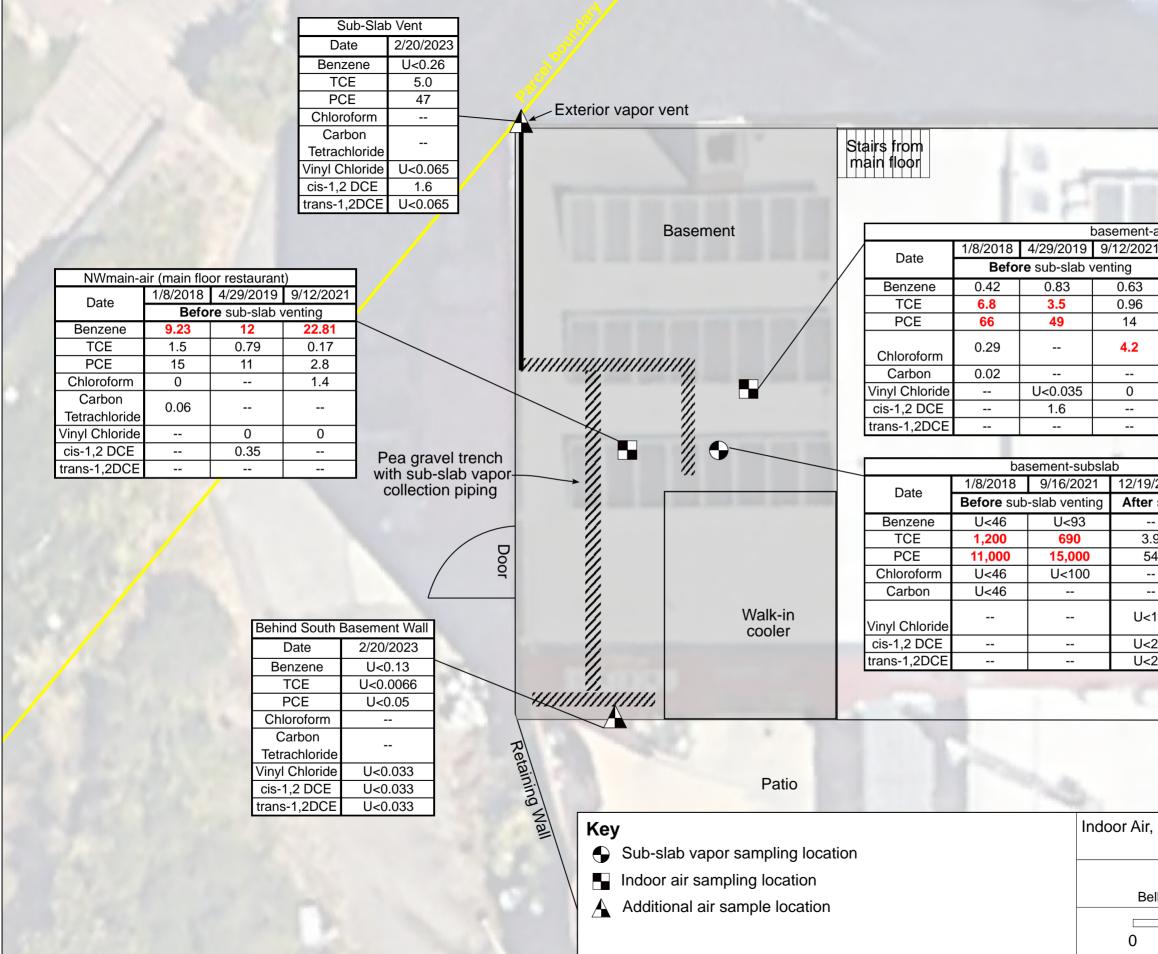

APPENDIX I

Figure 1-1 – Site Vicinity Map Figure 2-1 – Annotated Aerial Photograph Figure 3-1 – Conceptual Site Model Figure 4-1 – Proposed Groundwater Monitoring and Sampling Locations



APPENDIX II

Indoor Air and Sub-Slab Air Sampling (2012-2023)

- Indoor Air & Subslab Sample Map
- September 2021 laboratory results
- December 2022 laboratory results
- February 2023 laboratory results
- September 2023 laboratory results
- Summary of Indoor Air & Sub-Slab Air Sample Results (2018-2023)

ai	r				
1	12/19/2022	2/20/2023	9/11/2023		
	After	sub-slab ver	nting		
		U<0.13			
	4.2	0.014	U<0.12		
	58	0.16	1.3		
	U<0.26	U<0.032	U<0.6		
	1.1	U<0.032	U<0.6		
	U<0.4	U<0.032	U<0.6		

/2022	2/20/2023						
sub-s	lab venting						
-	U<0.14						
9	1.2						
4	2.8						
-							
-							
1.8	U<0.034						
2.8	0.12						
2.8	U<0.034						

	Commercial Wo	orker Screening	Levels (µg/L)							
		Subslab	Indoor Air							
-	Benzene	5	1.5							
	TCE	9.5	2.85							
	PCE	1,500	44.9							
	Chloroform	17	0.508							
	Carbon	65	1.95							
	Tetrachloride	05	1.95							
	Vinyl Chloride	44	1.33							
	cis-1,2 DCE	5,200	156							
	trans-1,2DCE	5,200	156							

Indoor Air, Subslab Vapor, and Vented Air Sample Results

Cascade Laundry 205 Prospect Street Bellingham, Washington 98225

10

5

20

Figure 1-2

STRATUM GROUP

2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 www.alsglobal.com

LABORATORY REPORT

October 11, 2021

Kim Ninnemann Stratum Group, Inc. P.O. Box 2546 Bellingham, WA 98227

RE: Cascade Laundry

Dear Kim:

Your report P2104922 has been amended for the samples submitted to our laboratory on September 17, 2021. Sample for NW main-air (P2104922-002) was re-processed to report dimethyl sulfide as a tentatively identified compound. The change has been indicated by the "Added Page" footer located at the bottom right corner each additional page.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at <u>www.alsglobal.com</u>. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

ALS | Environmental

By Sue Anderson at 6:45 pm, Oct 11, 2021

Sue Anderson Project Manager

2655 Park Center Dr., Suite A Simi Valley, CA 93065 T: +1 805 526 7161 www.alsglobal.com

Client:	Stratum Group, Inc.
Project:	Cascade Laundry

Service Request No: P2104922

CASE NARRATIVE

The samples were received intact under chain of custody on September 17, 2021 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

Volatile Organic Compound Analysis

The samples were analyzed for volatile organic compounds in accordance with EPA Method TO-15 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), January, 1999. This procedure is described in laboratory SOP VOA-TO15. The analytical system was comprised of a gas chromatograph / mass spectrometer (GC/MS) interfaced to a whole-air preconcentrator. This method is included on the laboratory's NELAP and DoD-ELAP scope of accreditation. Any analytes flagged with an X are not included on the NELAP or DoD-ELAP accreditation.

The containers were cleaned, prior to sampling, down to the method reporting limit (MRL) reported for this project. For projects requiring DoD QSM 5.3 compliance canisters were cleaned to <1/2 the MRL. Please note, projects which require reporting below the MRL could have results between the MRL and method detection limit (MDL) that are biased high.

Sulfur Analysis

Sample NW main-air (P2104922-002) was analyzed for twenty sulfur compounds per ASTM D 5504-12 using a gas chromatograph equipped with a sulfur chemiluminescence detector (SCD). All compounds with the exception of hydrogen sulfide and carbonyl sulfide are quantitated against the initial calibration curve for methyl mercaptan. This method is included on the laboratory's NELAP scope of accreditation, however it is not part of the DoD-ELAP accreditation.

The analysis was added past the hold time; therefore, the data has been flagged accordingly.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.

ALS Environmental - Simi Valley

CERTIFICATIONS, ACCREDITATIONS, AND REGISTRATIONS

Agency	Web Site	Number
Alaska DEC	http://dec.alaska.gov/eh/lab.aspx	17-019
Arizona DHS	http://www.azdhs.gov/preparedness/state-laboratory/lab-licensure- certification/index.php#laboratory-licensure-home	AZ0694
Florida DOH (NELAP)	http://www.floridahealth.gov/licensing-and-regulation/environmental- laboratories/index.html	E871020
Louisiana DEQ (NELAP)	http://www.deq.louisiana.gov/page/la-lab-accreditation	05071
Maine DHHS	http://www.maine.gov/dhhs/mecdc/environmental- health/dwp/professionals/labCert.shtml	2018027
Minnesota DOH (NELAP)	http://www.health.state.mn.us/accreditation	1776326
New Jersey DEP (NELAP)	http://www.nj.gov/dep/enforcement/oqa.html	CA009
New York DOH (NELAP)	http://www.wadsworth.org/labcert/elap/elap.html	11221
Oregon PHD (NELAP)	http://www.oregon.gov/oha/ph/LaboratoryServices/EnvironmentalLaborat oryAccreditation/Pages/index.aspx	4068-008
Pennsylvania DEP	http://www.dep.pa.gov/Business/OtherPrograms/Labs/Pages/Laboratory- Accreditation-Program.aspx	68-03307 (Registration)
PJLA (DoD ELAP)	http://www.pjlabs.com/search-accredited-labs	65818 (Testing)
Texas CEQ (NELAP)	http://www.tceq.texas.gov/agency/qa/env_lab_accreditation.html	T104704413- 19-10
Utah DOH (NELAP)	http://health.utah.gov/lab/lab_cert_env	CA01627201 9-10
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C946

Analyses were performed according to our laboratory's NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at <u>www.alsglobal.com</u>, or at the accreditation body's website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.

DETAIL SUMMARY REPORT

Client: Project ID:	Stratum Group, Cascade Laundi							Service Request: P2104922
Date Received: Time Received:	9/17/2021 10:00		Date	Time	Container	Pil	Pf1	-15 - VOC Cans
Client Sample ID	Lab Code	Matrix	Collected	Collected	ID	(psig)	(psig)	Ú.
basement-air	P2104922-001	Air	9/12/2021	17:01	AC02286	0.57	3.98	Х
NW main-air	P2104922-002	Air	9/13/2021	15:14	AS01344	-0.80	3.70	Х
Ambient-air	P2104922-003	Air	9/13/2021	15:16	AS01371	-0.72	3.67	Х
basement-subslab	P2104922-004	Air	9/16/2021	09:15	1SC00005	0.20	7.42	Х

	ALS Project No. 122	5					Comments e.g. Actual	Preservative or	specific filsu uctions			Thethanethil in NW Main-Ar			tametr							Project Requirements (MRLs, QAPP)		Cooler / Blank
	ALS Project			Analysis method										كولد	-Alltar	3		 				al: (Circle) N ABSENT	Time	Time:
		Idard Contact		Analy)	P P	-		Benaun	Chlantern	また	Vinyliking								Chain of Custody Seal: (Circle) INTACT BROKEN ABSE	Date:/13/21	Date:
	circle) Day-Stan								Sample Volume	19	1-19	19	1								Chain of C INTACT		
	harges) please	5 Day (25%) 1((Jone)			Canister End Pressure "Hg/psig		59	3,2	0									1	
	ess Days (Surcl) 4 Day (35%) {	1 nd M n		/		(Shakin		Kink	Canister Start Pressure "Hg	30	31	31	23							-	/ No Units:	re)	[e] >
	und Time in Busin	(75%) 3 Day (50%	Cascade Law nd MN		Casia he	ation	bill to company (Shatin Gaup)		1 ulurus	Flow Controller ID ⁶ (Bar code # - FC #)	SFC00312	SF0 00523	SFLIDZUY	-								EDD required Yes / No Type:	Received by: (Signature)	Received by: (Signature)
	Requested Turnaround Time in Business Days (Surcharges) please circle	1 Day (100%) 2 Day (75%) 3 Day (50%) 4 Day (35%) 5 Day (25% 10 Day-Standard	Project Name	Droiard Number		P.O. # / Billing Information	et lig		Sampler (Print & Sign)	Canister ID (Bar code # - AC, SC, etc.)	AC02286	A501344	A S01371	1500005								maries) rcharge	۲ ٤	
35		<u> </u>								Time Collected	The Senish	Sh- Inis	8 hr 1mm	Q: 15am	1		 	 -	_	-		Calibration Su ckage) 10%	Pate/13/24	Date
alifornia 9306	526-7161			00 00	WA 98		-			Date Collected	ahatan		Alina	1/16/21	11.1							please sele Results + QC & ta Validation P		
Simi Vallev, California 93065	Phone (805) 526-7161		Information)		ngham	7	Fax	2/6	p.net	Laboratory ID Number	-	4	~	5								Report Tier Levels - please select d) Tier III (Results + QC & C Tier IV (Data Validation Par		
	(ALS)		Company Name & Address (Reporting Information)	STRUMPA CAMP	P. Box 2546, Bellinginam WA 98227	Project Manager	Phone Fix VIDIA Fax	360-714-9409	Email Address for Résult Reporting' Vin OS drad vigno 0 . 1 et	Client Sample ID	basment-air	NWMain - air	Ambent air	-M								Repor Tier I - Results (Default if not specified)	Relinquished by: (Signature)	Relinquished by: (Signature)

ALS Environmental Sample Acceptance Check Form

Client:	Stratum Group	o, Inc.	Sump	ie meeeptumee		Work order:	P2104922				
Project:	Cascade Laun	dry									
Sample	(s) received on:	9/17/21]	Date opened:	9/17/21	by:	ADAV	ID		
<u>Note:</u> This	form is used for <u>all</u>	samples received by ALS.	The use of this f	orm for custody se	eals is strictly me	eant to indicate prese	nce/absence and n	not as an ir	dication	of	
compliance	or nonconformity.	Thermal preservation and	pH will only be e	valuated either at	the request of the	e client and/or as req	uired by the metho	od/SOP.			
								Yes	<u>No</u>	<u>N/A</u>	
1	Were sample	containers properly m	narked with cli	ient sample ID	?			X			
2	Did sample co	ontainers arrive in goo	od condition?					X			
3	Were chain-of	f-custody papers used	and filled out	?				X			
4	Did sample co	Did sample container labels and/or tags agree with custody papers?									
5	Was sample v	Was sample volume received adequate for analysis?									
6	Are samples w	Are samples within specified holding times?									
7	Was proper te				X						
8	Were custody	seals on outside of co	oler/Box/Con	tainer?					X		
		Location of seal(s)?					Sealing Lid?			X	
	Were signature	e and date included?								X	
	Were seals int	act?								X	
9	Do containe	rs have appropriate pr	eservation, a	ccording to me	thod/SOP or	Client specified	information?			X	
	Is there a clier	nt indication that the s	ubmitted samp	oles are pH pre	eserved?					X	
	Were VOA v	ials checked for presen	nce/absence of	f air bubbles?						X	
	Does the clien	t/method/SOP require	that the analy	st check the sa	mple pH and	if necessary alter	r it?			X	
10	Tubes:	Are the tubes capp	•							X	
11	Badges:	Are the badges pr								X	
	0	Are dual bed badg			v capped and	intact?				X	
Lab	Sample ID	Container	Required	Received	Adjusted	VOA Headspace		pt / Pres		l	
		Description	pH *	pH	pH	(Presence/Absence)	Commer	nts		
P210492	2-001.01	6.0 L Ambient Can									
P210492		6.0 L Silonite Can									
P210492	2-003.01	6.0 L Silonite Can									

Explain any discrepancies: (include lab sample ID numbers):

1.0 L Source Can

P2104922-004.01

RSK - MEEPP, HCL (pH<2); RSK - CO2, (pH 5-8); Sulfur (pH>4)

RESULTS OF ANALYSIS

Page 1 of 1

Cliente	Stuatum Chaun Inc	8-				
Client: Client Sample ID: Client Project ID:				ALS Project ID: ALS Sample ID:		01
Test Code: Instrument ID: Analyst: Sample Type:	EPA TO-15 Tekmar AUTOCAN/Agilent 5975Bine Wida Ang 6.0 L Summa Canister	rt/6890N/M		Date Collected: Date Received: Date Analyzed: Tolume(s) Analyzed:	9/17/21 9/28/21	ter(s)
Test Notes: Container ID:	AC02286					
	Initial Pressure (psig):	0.57	Final Pressure (psig)	: 3.98		
				Caniste	er Dilution Fac	ctor: 1.22
CAS #	Compound	Result	MRL	Result	MRL	Data Qualifier

	-	μg/m³	μg/m³	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.13	ND	0.053	
67-66-3	Chloroform	4.2	0.13	0.87	0.027	
71-43-2	Benzene	0.82	0.13	0.26	0.042	
79-01-6	Trichloroethene	0.96	0.13	0.18	0.025	
127-18-4	Tetrachloroethene	14	0.13	2.0	0.020	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 1

Client: Client Sample ID: Client Project ID:	Stratum Group, Inc. NW main-air Cascade Laundry	ALS Project ID: P2104922 ALS Sample ID: P2104922-002
Test Code: Instrument ID: Analyst: Sample Type: Test Notes: Container ID:	EPA TO-15 Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 Wida Ang 6.0 L Silonite Canister AS01344	Date Collected: 9/13/21 Date Received: 9/17/21 Date Analyzed: 9/28/21 Volume(s) Analyzed: 1.00 Liter(s)
	Initial Pressure (psig): -0.80 Final Pressure	(psig): 3.70
		Canister Dilution Factor: 1.32

CAS #	Compound	Result µg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.15	ND	0.057	
67-66-3	Chloroform	1.4	0.15	0.29	0.030	
71-43-2	Benzene	23	0.15	7.3	0.045	
79-01-6	Trichloroethene	0.17	0.15	0.031	0.027	
127-18-4	Tetrachloroethene	2.8	0.15	0.41	0.021	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 1

Client: Client Sample ID: Client Project ID:	Stratum Group, Inc. Ambient-air Cascade Laundry	ALS Project ID: P2104922 ALS Sample ID: P2104922-003
Test Code: Instrument ID: Analyst: Sample Type: Test Notes: Container ID:	EPA TO-15 Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13 Wida Ang 6.0 L Silonite Canister AS01371	Date Collected: 9/13/21 Date Received: 9/17/21 Date Analyzed: 9/28/21 Volume(s) Analyzed: 1.00 Liter(s)
	Initial Pressure (psig): -0.72 Final Pressure	(psig): 3.67 Canister Dilution Factor: 1.31

CAS #	Compound	Result μg/m³	MRL µg/m³	Result ppbV	MRL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	ND	0.14	ND	0.056	
67-66-3	Chloroform	ND	0.14	ND	0.030	
71-43-2	Benzene	0.19	0.14	0.059	0.045	
79-01-6	Trichloroethene	ND	0.14	ND	0.027	
127-18-4	Tetrachloroethene	ND	0.14	ND	0.021	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 1

Client:	Stratum Group, Inc.					
Client Sample ID:	basement-subslab			ALS Project ID:	P2104922	
Client Project ID:	Cascade Laundry			ALS Sample ID:	P2104922-(004
Test Code:	EPA TO-15			Date Collected:	9/16/21	
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Bin	ert/6890N/MS	\$13	Date Received:	9/17/21	
Analyst:	Wida Ang			Date Analyzed:	9/28/21	
Sample Type:	1.0 L Summa Canister			Volume(s) Analyzed:	0.0080 L	iter(s)
Test Notes:						
Container ID:	1SC00005					
	Initial Pressure (psig):	0.20	Final Pressure (psig	y): 7.42		
				Canister	Dilution Fa	actor: 1.48
CAS #	Compound	Result	MRL	Result	MRL	Data
75-01-4	Vinyl Chloride	μg/m ³ NI	μg/m ³ Ο 96	ppbV ND	ppbV 38	Qualifier
/3-01-4	v myr Chloriae	INL) 90	ND	50	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

Chloroform

Trichloroethene

Tetrachloroethene

Benzene

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

690

15,000

ND

ND

100

93

96

96

ND

ND

130

2,200

20 29

18

14

67-66-3

71-43-2

79-01-6

127-18-4

RESULTS OF ANALYSIS

Page 1 of 1

Client:Stratum Group, Inc.Client Sample ID:Method BlankClient Project ID:Cascade Laundry

Test Code:	EPA TO-15	Date Collected: NA	
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13	Date Received: NA	
Analyst:	Wida Ang	Date Analyzed: 9/27/21	
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s)
Test Notes:			

ALS Project ID: P2104922 ALS Sample ID: P210927-MB

Canister Dilution Factor: 1.00

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m³	µg∕m³	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.11	ND	0.043	
67-66-3	Chloroform	ND	0.11	ND	0.023	
71-43-2	Benzene	ND	0.11	ND	0.034	
79-01-6	Trichloroethene	ND	0.11	ND	0.020	
127-18-4	Tetrachloroethene	ND	0.11	ND	0.016	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

RESULTS OF ANALYSIS

Page 1 of 1

Client:Stratum Group, Inc.Client Sample ID:Method BlankClient Project ID:Cascade Laundry

Test Code:	EPA TO-15	Date Collected: N	А
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13	Date Received: NA	
Analyst:	Wida Ang	Date Analyzed: 9/28/21	
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s)
Test Notes:			

ALS Project ID: P2104922 ALS Sample ID: P210928-MB

Canister Dilution Factor: 1.00

CAS #	Compound	Result	MRL	Result	MRL	Data
		μg/m³	µg/m³	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.52	ND	0.20	
67-66-3	Chloroform	ND	0.54	ND	0.11	
71-43-2	Benzene	ND	0.50	ND	0.16	
79-01-6	Trichloroethene	ND	0.52	ND	0.097	
127-18-4	Tetrachloroethene	ND	0.52	ND	0.077	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

SURROGATE SPIKE RECOVERY RESULTS

Page 1 of 1

Client:Stratum Group, Inc.Client Project ID:Cascade Laundry

ALS Project ID: P2104922

Test Code:	EPA TO-15	Date(s) Collected: 9/12 - 9/16/21				
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13	Date(s) Received: 9/17/21				
Analyst:	Wida Ang	Date(s) Analyzed: 9/27 - 9/28/21				
Sample Type:	Sample Type: 6.0 L Summa Canister(s) / 6.0 L Silonite Canister(s) / 1.0 L Summa Canister(s)					
Test Notes:						

		1,2-Dichloroethane-d4	Toluene-d8	Bromofluorobenzene		
Client Sample ID	ALS Sample ID	Percent	Percent	Percent	Acceptance	Data
		Recovered	Recovered	Recovered	Limits	Qualifier
Method Blank	P210927-MB	105	97	90	70-130	
Method Blank	P210928-MB	104	98	89	70-130	
Lab Control Sample	P210927-LCS	113	91	90	70-130	
Lab Control Sample	P210928-LCS	111	90	87	70-130	
Duplicate Lab Control Sample	P210927-DLCS	110	91	89	70-130	
Duplicate Lab Control Sample	P210928-DLCS	111	90	88	70-130	
basement-air	P2104922-001	102	97	90	70-130	
NW main-air	P2104922-002	101	96	88	70-130	
Ambient-air	P2104922-003	103	96	88	70-130	
basement-subslab	P2104922-004	110	97	89	70-130	

Surrogate percent recovery is verified and accepted based on the on-column result.

Reported results are shown in concentration units and as a result of the calculation, may vary slightly from the on-column percent recovery.

LABORATORY CONTROL SAMPLE / DUPLICATE LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

-	Stratum Group, Inc. Duplicate Lab Control Sample Cascade Laundry	ALS Project ID: P2104922 ALS Sample ID: P210927-DLCS
Test Code:	EPA TO-15	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13	Date Received: NA
Analyst:	Wida Ang	Date Analyzed: 9/28/21
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed: 0.125 Liter(s)
Test Notes:		

		Spike Amount	Re	sult			ALS			
CAS #	Compound	LCS / DLCS	LCS	DLCS	% Re	covery	Acceptance	RPD	RPD	Data
		μg/m³	µg/m³	µg/m³	LCS	DLCS	Limits		Limit	Qualifier
75-01-4	Vinyl Chloride	208	213	207	102	100	63-123	2	25	
67-66-3	Chloroform	210	227	221	108	105	71-114	3	25	
71-43-2	Benzene	208	213	210	102	101	72-113	1	25	
79-01-6	Trichloroethene	204	199	198	98	97	74-115	1	25	
127-18-4	Tetrachloroethene	212	172	176	81	83	63-130	2	25	

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

LABORATORY CONTROL SAMPLE / DUPLICATE LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

-	Stratum Group, Inc. Duplicate Lab Control Sample Cascade Laundry	ALS Project ID: P2104922 ALS Sample ID: P210928-DLCS
Test Code:	EPA TO-15	Date Collected: NA
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13	Date Received: NA
Analyst:	Wida Ang	Date Analyzed: 9/28/21
Sample Type: Test Notes:	6.0 L Summa Canister	Volume(s) Analyzed: 0.125 Liter(s)

		Spike Amount	Re	sult			ALS			
CAS #	Compound	LCS / DLCS	LCS	DLCS	% Re	covery	Acceptance	RPD	RPD	Data
		$\mu g/m^3$	µg/m³	µg/m³	LCS	DLCS	Limits		Limit	Qualifier
75-01-4	Vinyl Chloride	208	210	209	101	100	63-123	1	25	
67-66-3	Chloroform	210	224	221	107	105	71-114	2	25	
71-43-2	Benzene	208	212	207	102	100	72-113	2	25	
79-01-6	Trichloroethene	204	198	194	97	95	74-115	2	25	
127-18-4	Tetrachloroethene	212	171	169	81	80	63-130	1	25	

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

RESULTS OF ANALYSIS

Page 1 of 1

Client:	Stratum Group, Inc.		
Client Sample ID:	NW main-air	ALS Project ID: P21	104922
Client Project ID:	Cascade Laundry	ALS Sample ID: P21	04922-002
	Tentatively Identified Compo	unds	
Test Code:	EPA TO-15	Date Collected: 9/1	3/21
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13	Date Received: 9/1	7/21
Analyst:	Wida Ang	Date Analyzed: 9/2	8/21
Sample Type:	6.0 L Silonite Canister	Volume(s) Analyzed:	1.00 Liter(s)
Test Notes:	Т		
Container ID:	AS01344		
	Initial Pressure (psig): -0.80 Final Pressur	e (psig): 3.70	
		Canister Di	lution Factor: 1.32
GC/MS	Compound Identification	Concentration	Data
Retention Time		μg/m ³	Qualifier
8.32	Dimethyl Sulfide	1.9	

T = Analyte is a tentatively identified compound, result is estimated.

RESULTS OF ANALYSIS

Page 1 of 1

Client:	Stratum Group, Inc.		
Client Sample ID:	Method Blank	ALS Project ID: P2	2104922
Client Project ID:	Cascade Laundry	ALS Sample ID: P2	210927-MB
	Tentatively Identified Compound	ls	
Test Code:	EPA TO-15	Date Collected: NA	A
Instrument ID:	Tekmar AUTOCAN/Agilent 5975Binert/6890N/MS13	Date Received: NA	A
Analyst:	Wida Ang	Date Analyzed: 9/2	27/21
Sample Type:	6.0 L Summa Canister	Volume(s) Analyzed:	1.00 Liter(s)
Test Notes:			

Canister Dilution Factor: 1.00

GC/MS	Compound Identification	Concentration	Data
Retention Time		µg/m ³	Qualifier
	No Compounds Detected		

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

January 4, 2023

Kim Ninnemann, Project Manager Stratum Group 2102 Young St Bellingham, WA 98225

Dear Ms Ninnemann:

Included are the results from the testing of material submitted on December 23, 2022 from the Cascade Laundry 207 Prospect St, Bellingham WA, F&BI 212356 project. There are 7 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures STG0104R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on December 23, 2022 by Friedman & Bruya, Inc. from the Stratum Group Cascade Laundry 207 Prospect St, Bellingham WA project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Stratum Group</u>
212356 -01	basement-air
212356 -02	ambient-air
212356 -03	basement-subslab

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	baseme 12/23/2 12/19/2 12/28/2 Air ug/m3	22 22	Clien Projec Lab I Data Instru Opera	ct: D: File: ument:	Stratum Group Cascade Laundry 207 Prospect St 212356-01 122814.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	ene	% Recovery: 88	Lower Limit: 70	Upper Limit: 130	
		Conce	ntration		
Compounds:		ug/m3	ppbv		
Vinyl chloride trans-1,2-Dichloroe cis-1,2-Dichloroeth		<0.26 <0.4 1.1	<0.1 <0.1 0.28		
Trichloroethene Tetrachloroethene		4.2 58	$\begin{array}{c} 0.78\\ 8.6\end{array}$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	ambier 12/23/2 12/19/2 12/28/2 Air ug/m3	22 22	Inst	ect:	Stratum Group Cascade Laundry 207 Prospect St 212356-02 122813.D GCMS7 bat
Surrogates: 4-Bromofluorobenz	ene	% Recovery: 82	Lower Limit: 70	Upper Limit: 130	
		Conce	ntration		
Compounds:		ug/m3	ppbv		
Vinyl chloride		< 0.26	< 0.1		
trans-1,2-Dichloroe	ethene	< 0.4	< 0.1		
cis-1,2-Dichloroethe	ene	< 0.4	< 0.1		
Trichloroethene		< 0.11	< 0.02		
Tetrachloroethene		<6.8	<1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	basement-subsla 12/23/22 12/19/22 12/28/22 Air ug/m3	Pro La Da Ins	ent: oject: b ID: ta File: strument: erator:	Stratum Group Cascade Laundry 207 Prospect St 212356-03 1/7.1 122815.D GCMS7 bat						
Surrogates: 4-Bromofluorobenze	% Recovery ene 8	: Limit:	Upper Limit: 130							
	Con	centration								
Compounds:	ug/mä	B ppbv								
Vinyl chloride trans-1,2-Dichloroe cis-1,2-Dichloroethe Trichloroethene Tetrachloroethene		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Bla Not Applic: Not Applic: 12/28/22 Air ug/m3	able	Inst	ect:	Stratum Group Cascade Laundry 207 Prospect St 02-2987 MB 122812.D GCMS7 bat					
Surrogates: 4-Bromofluorobenz		% overy: 85	Lower Limit: 70	Upper Limit: 130						
		Conce	ntration							
Compounds:		ug/m3	ppbv							
Vinyl chloride trans-1,2-Dichloroe cis-1,2-Dichloroethe Trichloroethene Tetrachloroethene		<0.26 <0.4 <0.4 <0.11 <6.8	<0.1 <0.1 <0.1 <0.02 <1							

ENVIRONMENTAL CHEMISTS

Date of Report: 01/04/23 Date Received: 12/23/22 Project: Cascade Laundry 207 Prospect St, Bellingham WA, F&BI 212356

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-15

Laboratory Code: 212316-01 1/7.1 (Duplicate)

	Reporting	Sample	Duplicate	RPD
Analyte	Units	Result	Result	(Limit 30)
Vinyl chloride	ug/m3	<1.8	<1.8	nm
trans-1,2-Dichloroethene	ug/m3	<2.8	<2.8	nm
cis-1,2-Dichloroethene	ug/m3	<2.8	<2.8	nm
Trichloroethene	ug/m3	< 0.76	< 0.76	nm
Tetrachloroethene	ug/m3	<48	<48	nm

Laboratory Code: Laboratory Control Sample

Habertatory could Habertatory con	cioi sumpio			
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	ug/m3	35	97	70-130
trans-1,2-Dichloroethene	ug/m3	54	98	70-130
cis-1,2-Dichloroethene	ug/m3	54	94	70-130
Trichloroethene	ug/m3	73	109	70-130
Tetrachloroethene	ug/m3	92	120	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the lowest calibration standard. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

pc - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

$[T_{12}]$	Fax (206) 283-5044 Received by: So FORMSCOCNCOCTO-15.DOC So		5500 4th Avenue South Relingershed by Kinnem ann Jak	c. SIGNATURE PRINT NAME	IA / SG	42	amb: ent-air Od zinno otens (A) sc 29 0741 2 1543	basement-air 01 23231 07871 (A) / SG 14/19/22 26.25 0740 6 1542	ID ID (Circle One) Sampled ("Hg) Time ("Hg) Time	Lab Canister Cont. SG=Soil Gas Date Vac. Final Field Scan TO 15 TO 15 TO 15 TO 15 TO 15 TO 15 TO 15	SAMPLE INFORMATION ANALYS	Phone 200-714-9409 Email Kinesonturgrup. ret Grap	how WA 98225 NOTES:	2102 Young St 207 Prospect St. Bellingham WA	Somotion Grap PROJECT NAME & ADDRESS	REPORT TO KIM NINAMAM					
	Samples received at a C	HAN F8B	they writely write	ME COMPANY						هري ر	6	Ŀ.	("Hg) Time	Vac. Final Field TO15 Full Scan TO15 BTEXN	ANALYSIS REQUESTED	Grip					

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

March 6, 2023

Kim Ninnemann, Project Manager Stratum Group 2102 Young St Bellingham, WA 98225

Dear Ms Ninnemann:

Included are the results from the testing of material submitted on February 22, 2023 from the Cascade Laundry, F&BI 302315 project. There are 8 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures STG0306R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on February 22, 2023 by Friedman & Bruya, Inc. from the Stratum Group Cascade Laundry, F&BI 302315 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Stratum Group</u>
302315 -01	basement-air
302315 -02	subslab vent
302315 -03	basement-southwall
302315 -04	basement-subslab

The tetrachloroethene concentration in sample subslab vent exceeded the calibration range of the instrument. The data were flagged accordingly.

All other quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

ug/m3

< 0.032

< 0.032

< 0.032

< 0.13

0.014

0.16

Compounds:

Vinyl chloride

Trichloroethene

Tetrachloroethene

Benzene

trans-1,2-Dichloroethene

cis-1,2-Dichloroethene

Client Sample ID: Date Received:	02/22/23	Client: Project:	Stratum Group Cascade Laundry, F&BI 302315
Date Collected: Date Analyzed:	02/20/23 02/24/23	Lab ID: Data File:	302315-01 1/0.0065 022322.D
Matrix:	Air	Instrument:	GCMS10
Units:	ug/m3	Operator:	bat
	Concentration		

\sim	

ENVIRONMENTAL CHEMISTS

Client Sample ID:	subslab vent	Client:	Stratum Group
Date Received:	02/22/23	Project:	Cascade Laundry, F&BI 302315
Date Collected:	02/20/23	Lab ID:	302315-02 1/0.013
Date Analyzed:	02/24/23	Data File:	022329.D
Matrix:	Air	Instrument:	GCMS10
Units:	ug/m3	Operator:	bat
Compounds:	Concentration ug/m3		

Vinyl chloride	< 0.065
trans-1,2-Dichloroethene	< 0.065
cis-1,2-Dichloroethene	1.6
Benzene	< 0.26
Trichloroethene	5.0
Tetrachloroethene	47 ve

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Vinyl chloride

Trichloroethene

Tetrachloroethene

Benzene

trans-1,2-Dichloroethene

cis-1,2-Dichloroethene

Client Sample ID:	basement-southwall	Client:	Stratum Group
Date Received:	02/22/23	Project:	Cascade Laundry, F&BI 302315
Date Collected:	02/20/23	Lab ID:	302315-03 1/0.0066
Date Analyzed:	02/24/23	Data File:	022324.D
Matrix:	Air	Instrument:	GCMS10
Units:	ug/m3	Operator:	bat
Compounds:	Concentration ug/m3		

< 0.033

< 0.033

< 0.033

< 0.13

< 0.05

< 0.0066

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Trichloroethene

Tetrachloroethene

Ethane, 1,1-difluoro-

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	basement-subslab 02/22/23 02/20/23 02/24/23 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:	Stratum Group Cascade Laundry, F&BI 302315 302315-04 1/0.0068 022325.D GCMS10 bat
Compounds:	Concentration ug/m3		
Vinyl chloride trans-1,2-Dichloro cis-1,2-Dichloroeth Benzene	<0.0 ethene <0.0)34 .2	

1.2

2.8

 $3.2~{
m L}$

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Trichloroethene

Tetrachloroethene

Ethane, 1,1-difluoro-

Client Sample ID: Date Received: Date Collected: Date Analyzed: Matrix: Units:	Method Blank Not Applicable 02/23/23 Air ug/m3	Client: Project: Lab ID: Data File: Instrument: Operator:	Stratum Group Cascade Laundry, F&BI 302315 03-0351 mb 022307.D GCMS10 bat
Compounds:	Concentration ug/m3	-	
Vinyl chloride trans-1,2-Dichloro cis-1,2-Dichloroeth Benzene			

<1

<1

< 50 L

ENVIRONMENTAL CHEMISTS

Date of Report: 03/06/23 Date Received: 02/22/23 Project: Cascade Laundry, F&BI 302315

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-17

Laboratory Code: Laboratory Control Sample

Laboratory Couc. Laboratory Cor	inoi bampie		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	37 vo	50	79	70-130
trans-1,2-Dichloroethene	ng/tube	50	105	70-130
cis-1,2-Dichloroethene	ng/tube	50	108	70-130
Benzene	ng/tube	50	102	70-130
Trichloroethene	ng/tube	50	107	70-130
Tetrachloroethene	ng/tube	50	103	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased high; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 ${\bf k}-{\bf The}$ calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

Fax (206) 283-5044 Received by:	Ph. (206) 285-8282 Relinquished by:	Friedman & Bruya, Inc. South Relinquished by:					bruement - subjian	States to watt basement-sinthmall	Substate vint	busment-air	Sample Name		302315 Report To Kim Ninnemann Company Shahm Man Man Address B B:x 2546 City, State, ZIP Bellinman Wt 96227 City, State, ZIP Bellinman Wt 96227 Phone 310 14947 Email Kime, That Mangamp. Ma
	enf)	SIGNATURE			,		роч	50	10	10	Lab ID		9022 1
	222	TURE					322141	311379	3 0.2024=)	152845	Tube ID		durbu a
							14-			752845 2/2023	Sample Date		SAMJ REA REA
							h6-bh	103.28	p.c.@/	100.33	Pre- Flow Rate	Coll	SAMPLE CHAIN OF CUSTO SAMPLERS (signature) PROJECT NAME REMARKS
	こち	PR					103,86	104.10	105-21	13,23	Post- Flow Rate	Collection Information	LE CHAIN OF CUS PLERS (signature) DECT NAME ADGUAL LANNCLAN
, , L	Nhan	PRINT NAME					1007	\$12	0545	h680	Start Time	nforma	OF C
	Ph	Ninnemann			 		1019	1070	C942	09.94	End Time	tion	USTO M
	i an	unn	÷								Volume Sampled		
											Benzene	IJ.	Shar Car
	7	-fra-		S	 		•				Toluene Ethylbenzene	TO-17 A	D2/22/ PO# (ADGALR INVOICE TO
	BIT	MAMPANY		in l	 						Xylenes	Analytes Requested	
	0	ANT		0.5, 1000	 						Naphthalene TPH-DRO	es Reg	
				LCCOLVED'							2-Propanol	ueste	Page # Page # TURN Standard RUSH NuSh charg Dispose a Archive S Other
	2/2	$\frac{\text{DATE}}{1/21/2}$	L	4 4	 		× +		メフ	\prec	TLE, PLE, VC, CisjzDU		Page #
	122/23	123	.c	400		Ģ	[] d:		1 32 5 KE		1,2DCE		►
	チート	 /258			4	por KN	di fluor ethane		-		Notes Usinzi	ne	Page #
	4	S E							222)			
						34	;		2		4		

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

September 25, 2023

Kim Ninnemann, Project Manager Stratum Group 2102 Young St Bellingham, WA 98225

Dear Ms Ninnemann:

Included are the results from the testing of material submitted on September 14, 2023 from the Cascade Laundry, F&BI 309182 project. There are 6 pages included in this report.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures STG0925R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 14, 2023 by Friedman & Bruya, Inc. from the Stratum Group Cascade Laundry, F&BI 309182 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Stratum Group</u>
309182 -01	Cascade-IA basement
309182 -02	Cascade-AA

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Trichloroethene

Tetrachloroethene

Client Sample ID:	Cascade-IA basement	Client:	Stratum Group
Date Received:	09/14/23	Project:	Cascade Laundry, F&BI 309182
Date Collected:	09/11/23	Lab ID:	309182-01 1/0.12
Date Analyzed:	09/22/23	Data File:	092114.D
Matrix:	Air	Instrument:	GCMS10
Units:	ug/m3	Operator:	bat
	Concentration		
Compounds:	ug/m3		
Vinyl chloride	<0.6		
trans-1,2-Dichloro	ethene <0.6		
cis-1,2-Dichloroeth	ene <0.6		

< 0.12

1.3

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

trans-1,2-Dichloroethene

cis-1,2-Dichloroethene

Trichloroethene

Tetrachloroethene

Client Sample ID:	Cascade-AA	Client:	Stratum Group
Date Received:	09/14/23	Project:	Cascade Laundry, F&BI 309182
Date Collected:	09/11/23	Lab ID:	309182-02 1/0.10
Date Analyzed:	09/22/23	Data File:	092113.D
Matrix:	Air	Instrument:	GCMS10
Units:	ug/m3	Operator:	bat
Compounds: Vinyl chloride	Concentration ug/m3 <0.5	i	

 $<\!\!0.5$

< 0.5

< 0.1

< 0.1

ENVIRONMENTAL CHEMISTS

Analysis For Volatile Compounds By Method TO-17

Client Sample ID:	Method Blank	Client:	Stratum Group
Date Received:	Not Applicable	Project:	Cascade Laundry, F&BI 309182
Date Collected:	09/21/23	Lab ID:	03-2152 mb
Date Analyzed:	09/22/23	Data File:	092112.D
Matrix:	Air	Instrument:	GCMS10
Units:	ug/m3	Operator:	bat
Compounds: Vinyl chloride	Concentration ug/m3		Dat

Vinyl chloride	<5
trans-1,2-Dichloroethene	<5
cis-1,2-Dichloroethene	<5
Trichloroethene	<1
Tetrachloroethene	<1

ENVIRONMENTAL CHEMISTS

Date of Report: 09/25/23 Date Received: 09/14/23 Project: Cascade Laundry, F&BI 309182

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF AIR SAMPLES FOR VOLATILES BY METHOD TO-17

Laboratory Code: Laboratory Control Sample

Laboratory code. Laboratory con	cior sampio		Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Vinyl chloride	ng/tube	50	89	70-130
trans-1,2-Dichloroethene	ng/tube	50	102	70-130
cis-1,2-Dichloroethene	ng/tube	50	103	70-130
Trichloroethene	ng/tube	50	98	70-130
Tetrachloroethene	ng/tube	50	107	70-130

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht - The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 ${\bf k}-{\bf The}$ calibration results for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

FORMS\COC\COC.DOC	Fax(206) 283-5044	Ph. (206) 285-8282	Seattle, WA 98108	5500 4th Avenue South	Friedman & Bruya, Inc.								Chrunte - At	Chillian - 1A baument	Sample Name		Phone 360714-9409 F	City, State, ZIP Bellingham WH 98227	5		Report To KIM N	209182
	Received by:	Relinquished by:	Received by:	Relinquished by:	, SI												mail <u>Kimest</u>	the worker	2546	a well	Kim Ninnemann	
			furt		SIGNATURE								2	a~	ID Lab		1 kmo	962				
			N		TURE								234316	311347	Tube ID		w dwel	27				
													Ę.	$\left(\frac{a_{i}}{a_{i}}\right)$	Sample Date		- 1 -		E.	PRO.	SAM	SAMP
-							•						20.496	19156	Pré- Flow Rate	Coj		REMARKS	OCKA	PROJECT NAME	PLEAR	LE C
			A	Kim	70								6 4,135	16.583	Post- Flow Rate	Collection Information			Ciock re Laundry	NAME	SAMPLERS (signature)	SAMPLE CHAIN OF CUSTODY
			ANUPHAN	in Monuman	PRINT NAME								Shel	1035	Start Time	ıforma			Indr		re)	DF CI
			PH/	M	NAMI								(ig42	1031	End Time	tion			12			USTO
			42	5717	E										Volume Sampled					<i>ر</i> ا	1	YQC
			<u></u>	C											Benzene	TO	J IVA IVAV	INVO	(nound		1	09/14/23
			T	M		-		Sar					-	<u> </u>	Toluene Ethylbenzene	TO-17 A	VYY	DICE	an na	P0 #		14
		ţ	4 87	hatryn may	COMPANY			amples							Xylenes	Analytes Requested		TO	X			2
				1	PAN			sre					1	1	Naphthalene	tes]						
			حنه	al	Y		1	redeived	 		1				TPH-DRO	Requ			Rus	ע ע דע		2
															2-Propanol	leste	Other	ispos Trehiv	h cha	Standa	Page # TURN	
F			9	9/				2t				ļ	\times	\geq	VOC1+	d		ie aft Sa	arges	ard J	re#	
			09/14/22	12/23	DATE													<u>SAMPLE DISPOSAL</u> Dispose after <u>30 days</u> Archive Samples	Rush charges authorized by:	Standard Turnaround RHSH	Page # of TURNAROUND TIME	
			à.	23				ĉ			12	Yí	PLE	TE	7)HSP(0 day	horiz	arou	Z	
			0	12					-	FS	2 DUE	\subset	ίη	ויין	Notes*			IVSC IVSC	ed by	R.	TIM	
			10:46	245	TIME					DUE	Π				*			r.	Y:	•/		
L							I	<u> </u>	l		<u> </u>	l		<u> </u>	j				<u> </u>			

							Contam	inants of Conc	ern (µg/m3)					
Sample Location	Sample ID	Sample Collection Date		Sampling Method	Benzene	Trichloroethylene (TCE)	Tetrachloroethylene (PCE)	Chloroform	Carbon Tetrachloride	Vinyl Chloride	cis-1,2 DCE	trans-1,2DCE	1,2-DCE	Ethane, 1,1- difluoro
	Subslab-2	1/8/2018	Before Sub	Air canisters (TO-15)	U<46	1,200	11,000	U<46	U<46					
Basement	basement-subslab	9/16/2021	Slab Venting	Air canisters (TO-15)	U<93	690	15,000	U<100						
Basement	basement-subslab	12/19/2022	After Sub Slab	Air canisters (TO-15)		3.9	54			U<1.8	U<2.8	U<2.8		
	basement-subslab	2/20/2023	Venting	Sorbent tubes (TO-17)	U<0.14	1.2	2.8			U<0.034	0.12	U<0.034		3.2
	MTCA Method B Com	mercial Worker Sc	reening Levels		50	95	1,500	17	65	44	5,200	5,200		

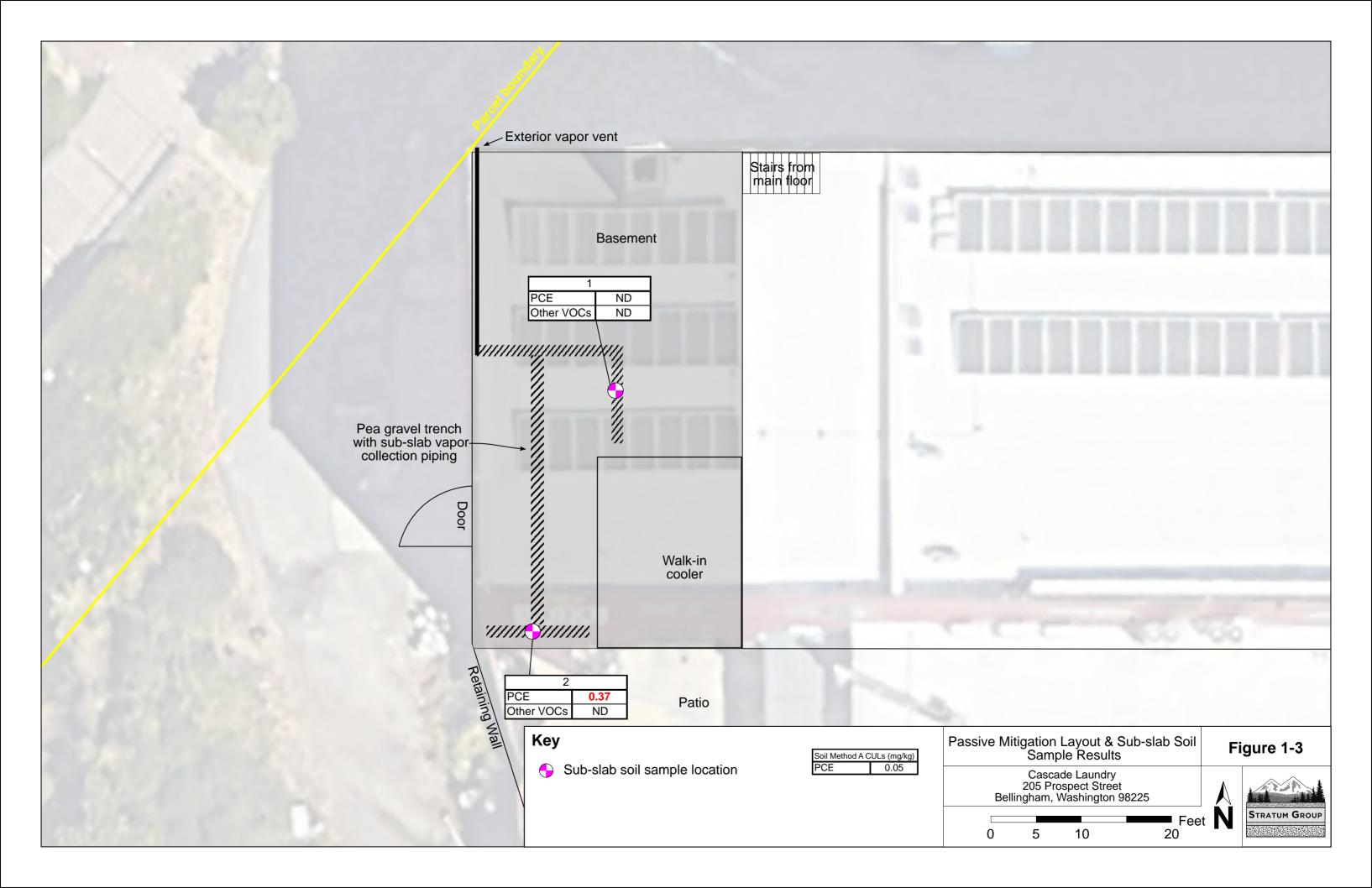
Cascade Laundry - Summary of Indoor Air Samples

CORRECTED CONCENTRATIONS ONLY

				Contaminants of Concern (µg/m3)										Ethane,
Sample Location Specific	Sample ID	Sample Collection Date		Sampling Method	Benzene	Trichloroethylene (TCE)	Tetrachloroethylene (PCE)	Chloroform	Carbon Tetrachloride	Vinyl Chloride	cis-1,2 DCE	trans-1,2DCE	1,2-DCE	1,1-
	B3	1/8/2018	Before Sub Slab	Air canisters (TO-	9.23	1.5	15	0	0.06					
	041919-2	4/29/2019	Venting	15)	12	0.79	11			0	0.35		0.085	
1st Story - Bham Cider Co.	NW main-air	9/13/2021			22.81	0.17	2.8	1.4		0				
	MTCA Method B C	ommercial Worker Scree	ning Levels		1.5	2.85	44.9	0.508	1.95	1.33	156	156		

Sample Location Specific	Sample ID	Sample Collection Date		Sampling Method	Benzene	Trichloroethylene (TCE)	Tetrachloroethylene (PCE)	Chloroform	Carbon Tetrachloride	Vinyl Chloride	cis-1,2 DCE	trans-1,2DCE	1,2-DCE	Ethane, 1,1- difluoro
	B7	1/8/2018	Before Sub Slab		0.42	6.8	66	0.29	0.02					
	041919-1	4/29/2019	Venting	Air canisters (TO- 15)	0.83	3.5	49			U<0.035	1.6		0.083	
Basement	basement-air	9/12/2021		15)	0.63	0.96	14	4.2		0				
Dasement	basement-air	12/19/2022				4.2	58			U<0.26	1.1	U<0.4		
	basement-air	2/20/2023	After Sub Slab Venting		U<0.13	0.014	0.16			U<0.032	U<0.032	U<0.032		
	Cascade-IA basement	9/11/2023		(TO-17)		U<0.12	1.3			U<0.6	U<0.6	U<0.6		

MTCA Method B Commercial Worker Screening Levels	1.5	2.85	44.9	0.508	1.95	1.33	156	156	


							Trichloroothylopo	Contam Tetrachloroethylene	ninants of Cono	cern (µg/m3) Carbon	Vinyl				Ethano 11	Dichlorodifluorom	Trichlorofluoromo	Trichlorotrifluoroot		Ethyl		2-	Chloro	Chloro
Sample Location	Sample Type	Sample ID	Sample Collection Date	Time Period	Sampling Method	Benzene	(TCE)	(PCE)	Chloroform			cis-1.2 DCF	trans-1,2DCE	1.2-DCE	, ,	ethane	thane	hane	Toluene		Propene	-		
Sample Education	Sample Type	Sample ID	Conection Date	Time renou	Sampling Fielding									-,										
1st Story - Bathroom		Subslab-1	1/8/2018			U<1.9	U<1.9	100	U<1.9	U<1.9														
1st Story - Building Center	Sub-slab	Subslab-3	1/8/2018	Before Sub Slab Venting	Air canisters (TO-15)	2.6	U<1.9	42	U<1.9	U<1.9					-									
1st Story - Staff Room	000 5000	Subslab-4	1/8/2018			U<1.8	U<1.8	160	U<1.8	U<1.8														
Subslab Vent		subslab vent	2/20/2023	After Sub Slab	Sorbent tubes (TO-17)	U<0.26	5.0	47			U<0.065	1.6	U<0.065											
Basement Behind South Wall	Behind wall	basement-southwall	2/20/2023	Venting	Sorbent tubes (TO-17)	U<0.13	U<0.0066	U<0.05			U<0.033	U<0.033	U<0.033											
	MT	CA Method B Commercia	l Worker Screenin	g Levels		5	9.5	1,500	17	65	44	5,200	5,200											
2nd Story - West		A1	10/21/2014			0.38	U<0.12	0.83	U<0.12	0.57	U<0.12	U<0.12	U<0.12			2.4	1.4	0.53	0.68					
2nd Story - East		A2	10/21/2014			0.3	0.22	2.3	U<0.12	0.58	U<0.12	U<0.12	U<0.12			2.4	1.4	0.52	0.78	1.6				
1st Story - West		A3	10/21/2014			2.6	0.66	6.4	0.24	0.65	U<0.12	0.39	U<0.12			2.5	1.4	0.57	0.74	1.8	3.2	6.1	0.22	
1st Story - Southwest		A4	10/21/2014			0.32	0.4	4.1	0.13	0.54	U<0.12	0.23	U<0.12			2.4	1.4	0.51	0.85	4.3				0.36
1st Story - Center		A5	10/21/2014			0.33	0.72	6.9	0.12	0.59	U<0.12	0.41	U<0.12			2.4	1.4	0.58	1.1	2.1				
1st Story - Southeast		A6	10/21/2014	Before Sub		0.57	0.39	2.8	U<0.12	0.59	U<0.12	U<0.12	U<0.12			2.4	1.5	0.58	0.79	2.1	0.81			
2nd Story - West Room	Indoor Air	B1	1/8/2018	Slab Venting	Air canisters (TO-15)	3.83	0.45	5	0.62	0.02														
2nd Story - East Room		B2	1/8/2018			3.53	0.38	4.5	0.6	0.01														
1st Story - SW (Theater Space)		B4	1/8/2018			1.33	0.17	6.3	0.36	0.02														
1st Story - Building Center		B5	1/8/2018			2.83	0.33	3.7	0.49	0														
1st Story - SE		B6	1/8/2018			1.73	0.21	4.2	0.52	0.01														
	MT	CA Method B Commercia	l Worker Screenin	g Levels		1.5	2.85	44.9	0.508	1.95	1.33	156	156											

*Indoor air concentrations are corrected values

APPENDIX III

Vapor Mitigation Installation (2022)

- Passive Vapor Mitigation Layout and Soil Sample Map
- Photograph of Vapor Mitigation Location
- May 2022 Soil Sample Laboratory results
- Soil Disposal Manifest

Photograph of Cascade Laundry basement (December 2022). Lighter color pavement indicates the location of the buried vapor mitigation piping locations.

May 23, 2022

Ms. Kim Ninnemann Stratum Group P.O. Box 2546 Bellingham, WA 98227

Dear Ms. Ninnemann,

On May 10th, 3 samples were received by our laboratory and assigned our laboratory project number EV22050049. The project was identified as your Cascade Laundry. The sample identification and requested analyses are outlined on the attached chain of custody record.

No abnormalities or nonconformances were observed during the analyses of the project samples.

Please do not hesitate to call me if you have any questions or if I can be of further assistance.

Sincerely,

ALS Laboratory Group

Aler, Perg

Glen Perry Laboratory Director

Page 1
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

RIGHT SOLUTIONS BIGHT PARTNER

CLIENT: CLIENT CONTACT: CLIENT PROJECT: CLIENT SAMPLE ID	Stratum Group P.O. Box 2546 Bellingham, WA 982 Kim Ninnemann Cascade Laundry 051022-1		DA COLL WDOE AC	DATE: ALS JOB#: ALS SAMPLE#: ATE RECEIVED: ECTION DATE: CREDITATION:	5/23/202 EV22050 EV22050 05/10/202 5/10/202 C601	0049 0049-01	AM
		SAMPLE	DATA RESULTS				
ANALYTE	METHOD	RESULTS		DILUTION FACTOR	UNITS		BY
Dichlorodifluoromethane	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
Chloromethane	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
Vinyl Chloride	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
Bromomethane	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
Chloroethane	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
Carbon Tetrachloride	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
Trichlorofluoromethane	EPA-8260 EPA-8260	U U	10 10	1	UG/KG	05/10/2022	DLC
Carbon Disulfide	EPA-8260 EPA-8260	U	50	1	UG/KG UG/KG	05/10/2022 05/10/2022	DLC
Acetone 1.1-Dichloroethene	EPA-8260	U	10	1	UG/KG UG/KG	05/10/2022	DLC
Methylene Chloride	EPA-8260	U	20	1	UG/KG	05/10/2022	DLC
Acrylonitrile	EPA-8260	U	50	1	UG/KG	05/10/2022	DLC
Methyl T-Butyl Ether	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
Trans-1,2-Dichloroethene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
1,1-Dichloroethane	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
2-Butanone	EPA-8260	U	50	1	UG/KG	05/10/2022	DLC
Cis-1,2-Dichloroethene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
2,2-Dichloropropane	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
Bromochloromethane	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
Chloroform	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
1,1,1-Trichloroethane	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
1,1-Dichloropropene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
1.2-Dichloroethane	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
Benzene	EPA-8260	U	5.0	1	UG/KG	05/10/2022	DLC
Trichloroethene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
1,2-Dichloropropane	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
Dibromomethane	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
Bromodichloromethane	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
Trans-1,3-Dichloropropene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
4-Methyl-2-Pentanone	EPA-8260	U	50	1	UG/KG	05/10/2022	DLC
Toluene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
Cis-1,3-Dichloropropene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
1,1,2-Trichloroethane	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
2-Hexanone	EPA-8260	U	50	1	UG/KG	05/10/2022	DLC
1,3-Dichloropropane	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
Tetrachloroethylene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
Dibromochloromethane	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
1,2-Dibromoethane	EPA-8260	U	5.0	1	UG/KG	05/10/2022	DLC

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

Page 2

		CERTIFIC	ATE OF ANALYSIS				
CLIENT: CLIENT CONTACT: CLIENT PROJECT:	Stratum Group P.O. Box 2546 Bellingham, WA 9 Kim Ninnemann Cascade Laundry	8227	COL	DATE: ALS JOB#: ALS SAMPLE#: DATE RECEIVED: COLLECTION DATE:			AM
CLIENT SAMPLE ID	051022-1			CCREDITATION:	C601		
		SAMPLE	DATA RESULTS				
ANALYTE Chlorobenzene	METHOD EPA-8260	RESULTS U	REPORTING LIMITS 10	DILUTION FACTOR	UNITS UG/KG	ANALYSIS / DATE 05/10/2022	ANALYSIS BY DLC
1,1,1,2-Tetrachloroethane	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
Ethylbenzene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
m,p-Xylene	EPA-8260	U	20	1	UG/KG	05/10/2022	DLC
Styrene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
o-Xylene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
Bromoform	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
Isopropylbenzene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
1,1,2,2-Tetrachloroethane	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
1,2,3-Trichloropropane	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
Bromobenzene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
N-Propyl Benzene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
2-Chlorotoluene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
1,3,5-Trimethylbenzene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
4-Chlorotoluene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
T-Butyl Benzene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
1,2,4-Trimethylbenzene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
S-Butyl Benzene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
P-Isopropyltoluene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
1,3-Dichlorobenzene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
1,4-Dichlorobenzene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
N-Butylbenzene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
1,2-Dichlorobenzene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
1,2-Dibromo 3-Chloropropane	EPA-8260	U	50	1	UG/KG	05/10/2022	DLC
1,2,4-Trichlorobenzene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
Hexachlorobutadiene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
Naphthalene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
1,2,3-Trichlorobenzene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC
SURROGATE	METHOD	%REC				ANALYSIS / DATE	ANALYSIS BY
1,2-Dichloroethane-d4	EPA-8260	101				05/10/2022	DLC
Toluene-d8	EPA-8260	104				05/10/2022	DLC
4-Bromofluorobenzene	EPA-8260	98.4				05/10/2022	DLC

U - Analyte analyzed for but not detected at level above reporting limit.

Page 3
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

		CERTIFIC	ATE OF ANALYSIS					
CLIENT: CLIENT CONTACT:	Stratum Group P.O. Box 2546 Bellingham, WA 982 Kim Ninnemann	227	DATE: 5/23/2022 ALS JOB#: EV22050049 ALS SAMPLE#: EV22050049-02 DATE RECEIVED: 05/10/2022					
CLIENT PROJECT:	Cascade Laundry		COLL	ECTION DATE:	5/10/202	22 10:52:00	AM	
CLIENT SAMPLE ID	051022-2		WDOE AC	CREDITATION:	C601			
		SAMPLE	DATA RESULTS					
		0, 111 22		DUUTION				
	METHOD		REPORTING LIMITS	DILUTION FACTOR		ANALYSIS DATE	BY	
ANALYTE Dichlorodifluoromethane	METHOD EPA-8260	RESULTS U	10	1	UNITS UG/KG	05/10/2022	DLC	
Chloromethane	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC	
Vinyl Chloride	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC	
Bromomethane	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC	
Chloroethane	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC	
Carbon Tetrachloride	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC	
Trichlorofluoromethane	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC	
Carbon Disulfide	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC	
Acetone	EPA-8260	U	50	1	UG/KG	05/10/2022	DLC	
1,1-Dichloroethene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC	
Methylene Chloride	EPA-8260	U	20	1	UG/KG	05/10/2022	DLC	
Acrylonitrile	EPA-8260	U	50	1	UG/KG	05/10/2022	DLC	
Methyl T-Butyl Ether	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC	
Trans-1,2-Dichloroethene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC	
1,1-Dichloroethane	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC	
2-Butanone	EPA-8260	U	50	1	UG/KG	05/10/2022	DLC	
Cis-1,2-Dichloroethene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC	
2,2-Dichloropropane	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC	
Bromochloromethane	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC	
Chloroform	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC	
1,1,1-Trichloroethane	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC	
1,1-Dichloropropene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC	
1,2-Dichloroethane	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC	
Benzene	EPA-8260	U	5.0	1	UG/KG	05/10/2022	DLC	
Trichloroethene	EPA-8260	U	3.0 10	1	UG/KG UG/KG	05/10/2022	DLC	
	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC	
1,2-Dichloropropane Dibromomethane	EPA-8260	U	10	1	UG/KG UG/KG	05/10/2022	DLC	
Bromodichloromethane	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC	
Trans-1,3-Dichloropropene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC	
4-Methyl-2-Pentanone	EPA-8260	U	50	1	UG/KG	05/10/2022	DLC	
Toluene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC	
Cis-1,3-Dichloropropene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC	
1,1,2-Trichloroethane	EPA-8260	U	10	1	UG/KG UG/KG	05/10/2022	DLC	
2-Hexanone	EPA-8260	U	50	1	UG/KG UG/KG	05/10/2022	DLC	
1,3-Dichloropropane	EPA-8260	U	10	1	UG/KG UG/KG	05/10/2022	DLC	
Tetrachloroethylene	EPA-8260	370	21	1	UG/KG UG/KG	05/10/2022	DLC	
Dibromochloromethane	EPA-8260	370 U	10	1	UG/KG UG/KG	05/11/2022	DLC	
1,2-Dibromoethane	EPA-8260	U	5.0	1	UG/KG UG/KG	05/10/2022	DLC	
Chlorobenzene	EPA-8260	U		1	UG/KG UG/KG	05/10/2022	DLC	
GHIOIODEIIZEIIE	EFA-0200	U	10	I	UG/KG	03/10/2022	DLC	

Page 4

		CERTIFIC	ATE OF ANALYSIS						
CLIENT:	Stratum Group			DATE:	5/23/202	22			
	P.O. Box 2546			ALS JOB#:	EV2205	EV22050049			
	Bellingham, WA 98	3227		ALS SAMPLE#:	EV22050049-02				
CLIENT CONTACT:	Kim Ninnemann			ATE RECEIVED:	05/10/2022				
CLIENT PROJECT:	Cascade Laundry		COL	LECTION DATE:	5/10/202	22 10:52:00	AM		
CLIENT SAMPLE ID	051022-2		WDOE AG	CCREDITATION:	C601				
		SAMPLE	DATA RESULTS						
			REPORTING	DILUTION					
ANALYTE	METHOD	RESULTS	LIMITS	FACTOR	UNITS	DATE	BY		
1,1,1,2-Tetrachloroethane	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC		
Ethylbenzene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC		
m,p-Xylene	EPA-8260	U	20	1	UG/KG	05/10/2022	DLC		
Styrene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC		
o-Xylene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC		
Bromoform	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC		
Isopropylbenzene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC		
1,1,2,2-Tetrachloroethane	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC		
1,2,3-Trichloropropane	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC		
Bromobenzene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC		
N-Propyl Benzene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC		
2-Chlorotoluene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC		
1,3,5-Trimethylbenzene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC		
4-Chlorotoluene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC		
T-Butyl Benzene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC		
1,2,4-Trimethylbenzene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC		
S-Butyl Benzene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC		
P-Isopropyltoluene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC		
1,3-Dichlorobenzene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC		
1,4-Dichlorobenzene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC		
N-Butylbenzene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC		
1,2-Dichlorobenzene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC		
1,2-Dibromo 3-Chloropropane	EPA-8260	U	50	1	UG/KG	05/10/2022	DLC		
1,2,4-Trichlorobenzene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC		
Hexachlorobutadiene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC		
Naphthalene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC		
1,2,3-Trichlorobenzene	EPA-8260	U	10	1	UG/KG	05/10/2022	DLC		
						ANALYSIS			
SURROGATE	METHOD	%REC				DATE	BY		
1,2-Dichloroethane-d4	EPA-8260	99.5				05/10/2022	DLC		
1,2-Dichloroethane-d4	EPA-8260	98.7				05/11/2022	DLC		
Toluene-d8	EPA-8260	97.8				05/10/2022	DLC		
Toluene-d8	EPA-8260	95.6				05/11/2022	DLC		
4-Bromofluorobenzene	EPA-8260	102				05/10/2022	DLC		
4-Bromofluorobenzene	EPA-8260	101				05/11/2022	DLC		

U - Analyte analyzed for but not detected at level above reporting limit.

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

Page 5

www.alsglobal.com

RIGHT SOLUTIONS BIGHT PARTNER

		CERTIFIC	ATE OF ANALYSIS						
CLIENT: CLIENT CONTACT:	Stratum Group P.O. Box 2546 Bellingham, WA 98 Kim Ninnemann	227		DATE: ALS JOB#: ALS SAMPLE#: ATE RECEIVED:	5/23/202 EV22050 EV22050 05/10/20	0049 0049-03			
				-			A N A		
CLIENT PROJECT:	Cascade Laundry	4 0		ECTION DATE:	5/10/2022 10:52:00 AM				
CLIENT SAMPLE ID	Composite 051022-			CREDITATION:	C601				
		SAMPLE	DATA RESULTS						
			REPORTING LIMITS	DILUTION FACTOR		ANALYSIS DATE	ANALYSIS BY		
	METHOD NWTPH-GX	RESULTS U	3.0	1	UNITS MG/KG	05/13/2022	KLS		
TPH-Volatile Range		U	200		UG/KG				
Pyridine	EPA-8270 EPA-8270	U	100	1	UG/KG UG/KG	05/19/2022 05/19/2022	JMK JMK		
N-Nitrosodimethylamine Phenol		U	100	1	UG/KG UG/KG	05/19/2022	JMK		
Aniline	EPA-8270 EPA-8270	U	100	1	UG/KG UG/KG	05/19/2022	JMK		
Bis(2-Chloroethyl)Ether	EPA-8270	U	250	1	UG/KG UG/KG	05/19/2022	JMK		
2-Chlorophenol	EPA-8270	U	250	1	UG/KG UG/KG	05/19/2022	JMK		
1,3-Dichlorobenzene	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK		
1,4-Dichlorobenzene	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK		
Benzyl Alcohol	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK		
1,2-Dichlorobenzene	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK		
2-Methylphenol	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK		
Bis(2-Chloroisopropyl)Ether	EPA-8270	U	250	1	UG/KG UG/KG	05/19/2022	JMK		
3&4-Methylphenol	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK		
N-Nitroso-Di-N-Propylamine	EPA-8270	U	250	1	UG/KG UG/KG	05/19/2022	JMK		
Hexachloroethane	EPA-8270	U	100	1	UG/KG UG/KG	05/19/2022	JMK		
Nitrobenzene	EPA-8270	U	100	1	UG/KG UG/KG	05/19/2022	JMK		
Isophorone	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK		
2-Nitrophenol	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK		
2,4-Dimethylphenol	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK		
Benzoic Acid	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK		
Bis(2-Chloroethoxy)Methane	EPA-8270	U	250	1	UG/KG	05/19/2022	JMK		
2,4-Dichlorophenol	EPA-8270	U	500	1	UG/KG	05/19/2022	JMK		
1,2,4-Trichlorobenzene	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK		
Naphthalene	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK		
4-Chloroaniline	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK		
2,6-Dichlorophenol	EPA-8270	U	250	1	UG/KG	05/19/2022	JMK		
Hexachlorobutadiene	EPA-8270	U	500	1	UG/KG	05/19/2022	JMK		
4-Chloro-3-Methylphenol	EPA-8270	U	500	1	UG/KG	05/19/2022	JMK		
2-Methylnaphthalene	EPA-8270	U	250	1	UG/KG	05/19/2022	JMK		
1-Methylnaphthalene	EPA-8270	U	250	1	UG/KG	05/19/2022	JMK		
Hexachlorocyclopentadiene	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK		
2,4,6-Trichlorophenol	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK		
2,4,5-Trichlorophenol	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK		
2-Chloronaphthalene	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK		
2-Nitroaniline	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK		
Acenaphthylene	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK		
Dimethylphthalate	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK		
2,6-Dinitrotoluene	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK		
_,	2. / 02/0	÷	100		00/100	00, . 0, LOLL			

Page 6

		CERTIFIC	ATE OF ANALYSIS				
CLIENT: CLIENT CONTACT: CLIENT PROJECT:	Stratum Group P.O. Box 2546 Bellingham, WA 98 Kim Ninnemann Cascade Laundry	227	DATE: 5/23/2022 ALS JOB#: EV22050049 ALS SAMPLE#: EV22050049-03 DATE RECEIVED: 05/10/2022 COLLECTION DATE: 5/10/2022 10:52:00 /				
CLIENT SAMPLE ID	Composite 051022	-12		CREDITATION:	C601		
			DATA RESULTS		0001		
			REPORTING LIMITS	DILUTION FACTOR		ANALYSIS DATE	ANALYSIS BY
	METHOD	RESULTS	-		UNITS		
Acenaphthene	EPA-8270	U U	100	1	UG/KG	05/19/2022	JMK
3-Nitroaniline	EPA-8270 EPA-8270	U	1000 100	1	UG/KG UG/KG	05/19/2022 05/19/2022	JMK JMK
2,4-Dinitrophenol	EPA-8270 EPA-8270	U	100	1	UG/KG UG/KG	05/19/2022	JMK
4-Nitrophenol Dibenzofuran	EPA-8270	U	100	1	UG/KG UG/KG	05/19/2022	JMK
2,4-Dinitrotoluene	EPA-8270	U	100	1	UG/KG UG/KG	05/19/2022	JMK
2,4-Dimitolouene 2,3,4,6-Tetrachlorophenol	EPA-8270	U	100	1	UG/KG UG/KG	05/19/2022	JMK
Diethylphthalate	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK
Fluorene	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK
4-Chlorophenyl-Phenylether	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK
4-Nitroaniline	EPA-8270	U	250	1	UG/KG	05/19/2022	JMK
4,6-Dinitro-2-Methylphenol	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK
N-Nitrosodiphenylamine	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK
Azobenzene	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK
4-Bromophenyl-Phenylether	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK
Hexachlorobenzene	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK
Pentachlorophenol	EPA-8270	U	500	1	UG/KG	05/19/2022	JMK
Phenanthrene	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK
Anthracene	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK
Carbazole	EPA-8270	U	250	1	UG/KG	05/19/2022	JMK
Di-N-Butylphthalate	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK
Fluoranthene	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK
Pyrene	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK
Butylbenzylphthalate	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK
3,3-Dichlorobenzidine	EPA-8270	U	250	1	UG/KG	05/19/2022	JMK
Benzo[A]Anthracene	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK
Chrysene	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK
Bis(2-Ethylhexyl)Phthalate	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK
Di-N-Octylphthalate	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK
Benzo[B]Fluoranthene	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK
Benzo[K]Fluoranthene	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK
Benzo[A]Pyrene	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK
Indeno[1,2,3-Cd]Pyrene	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK
Dibenz[A,H]Anthracene	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK
Benzo[G,H,I]Perylene	EPA-8270	U	100	1	UG/KG	05/19/2022	JMK
Mercury	EPA-7471	0.069	0.020	1	MG/KG	05/13/2022	RAL
Arsenic	EPA-6020	4.9	0.20	1	MG/KG	05/12/2022	RAL
Barium	EPA-6020	99	0.10	1	MG/KG	05/12/2022	RAL
Cadmium	EPA-6020	0.16	0.10	1	MG/KG	05/12/2022	RAL

Page 7

		CERTIFIC	ATE OF ANALYSIS				
CLIENT:	Stratum Group P.O. Box 2546 Bellingham, WA 9	8227		DATE: ALS JOB#: ALS SAMPLE#:			
CLIENT CONTACT: CLIENT PROJECT:	Kim Ninnemann Cascade Laundry			ATE RECEIVED: LECTION DATE:	EV22050049-03 05/10/2022 5/10/2022 10:52:00 AM		
CLIENT SAMPLE ID	Composite 051022			CCREDITATION:	C601		
		SAMPLE	DATA RESULTS				
ANALYTE	METHOD	RESULTS	REPORTING LIMITS	DILUTION FACTOR	UNITS	ANALYSIS DATE	ANALYSIS BY
Chromium	EPA-6020	44	0.10	1	MG/KG	05/12/2022	RAL
Copper	EPA-6020	35	0.10	1	MG/KG	05/12/2022	RAL
Lead	EPA-6020	11	0.20	1	MG/KG	05/12/2022	RAL
Nickel	EPA-6020	43	0.10	1	MG/KG	05/12/2022	RAL
Selenium	EPA-6020	U	1.0	1	MG/KG	05/12/2022	RAL
Silver	EPA-6020	U	0.10	1	MG/KG	05/12/2022	RAL
Zinc	EPA-6020	58	0.50	1	MG/KG	05/12/2022	RAL
SURROGATE	METHOD	%REC				ANALYSIS DATE	ANALYSIS BY
TFT	NWTPH-GX	87.8				05/13/2022	KLS
2-Fluorophenol	EPA-8270	66.5				05/19/2022	JMK
Phenol-d5	EPA-8270	88.7				05/19/2022	JMK
Nitrobenzene-d5	EPA-8270	90.1				05/19/2022	JMK
2-Fluorobiphenyl	EPA-8270	88.0				05/19/2022	JMK
2,4,6-Tribromophenol	EPA-8270	95.5				05/19/2022	JMK
Terphenyl-d14	EPA-8270	105				05/19/2022	JMK

U - Analyte analyzed for but not detected at level above reporting limit.

Page 8
ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626
ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

5/23/2022 EV22050049

C601

CLIENT:	Stratum Group	DATE:
	P.O. Box 2546	ALS SDG#:
	Bellingham, WA 98227	WDOE ACCREDITATION:
CLIENT CONTACT:	Kim Ninnemann	
CLIENT PROJECT:	Cascade Laundry	

LABORATORY BLANK RESULTS

MBG-051322S - Batch 178868 - Soil by NWTPH-GX

				REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY
TPH-Volatile Range	NWTPH-GX	U	MG/KG	3.0	05/13/2022	KLS

U - Analyte analyzed for but not detected at level above reporting limit.

MB-051022S - Batch 178820 - Soil by EPA-8260

MD-0310223 - Datch 1760		0200		REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY
Dichlorodifluoromethane	EPA-8260	U	UG/KG	10	05/10/2022	DLC
Chloromethane	EPA-8260	U	UG/KG	10	05/10/2022	DLC
Vinyl Chloride	EPA-8260	U	UG/KG	10	05/10/2022	DLC
Bromomethane	EPA-8260	U	UG/KG	10	05/10/2022	DLC
Chloroethane	EPA-8260	U	UG/KG	10	05/10/2022	DLC
Carbon Tetrachloride	EPA-8260	U	UG/KG	10	05/10/2022	DLC
Trichlorofluoromethane	EPA-8260	U	UG/KG	10	05/10/2022	DLC
Carbon Disulfide	EPA-8260	U	UG/KG	10	05/10/2022	DLC
Acetone	EPA-8260	U	UG/KG	50	05/10/2022	DLC
1,1-Dichloroethene	EPA-8260	U	UG/KG	10	05/10/2022	DLC
Methylene Chloride	EPA-8260	U	UG/KG	20	05/10/2022	DLC
Acrylonitrile	EPA-8260	U	UG/KG	50	05/10/2022	DLC
Methyl T-Butyl Ether	EPA-8260	U	UG/KG	10	05/10/2022	DLC
Trans-1,2-Dichloroethene	EPA-8260	U	UG/KG	10	05/10/2022	DLC
1,1-Dichloroethane	EPA-8260	U	UG/KG	10	05/10/2022	DLC
2-Butanone	EPA-8260	U	UG/KG	50	05/10/2022	DLC
Cis-1,2-Dichloroethene	EPA-8260	U	UG/KG	10	05/10/2022	DLC
2,2-Dichloropropane	EPA-8260	U	UG/KG	10	05/10/2022	DLC
Bromochloromethane	EPA-8260	U	UG/KG	10	05/10/2022	DLC
Chloroform	EPA-8260	U	UG/KG	10	05/10/2022	DLC
1,1,1-Trichloroethane	EPA-8260	U	UG/KG	10	05/10/2022	DLC
1,1-Dichloropropene	EPA-8260	U	UG/KG	10	05/10/2022	DLC
1,2-Dichloroethane	EPA-8260	U	UG/KG	10	05/10/2022	DLC
Benzene	EPA-8260	U	UG/KG	5.0	05/10/2022	DLC
Trichloroethene	EPA-8260	U	UG/KG	10	05/10/2022	DLC
1,2-Dichloropropane	EPA-8260	U	UG/KG	10	05/10/2022	DLC
Dibromomethane	EPA-8260	U	UG/KG	10	05/10/2022	DLC
Bromodichloromethane	EPA-8260	U	UG/KG	10	05/10/2022	DLC
Trans-1,3-Dichloropropene	EPA-8260	U	UG/KG	10	05/10/2022	DLC
4-Methyl-2-Pentanone	EPA-8260	U	UG/KG	50	05/10/2022	DLC
Toluene	EPA-8260	U	UG/KG	10	05/10/2022	DLC
Cis-1,3-Dichloropropene	EPA-8260	U	UG/KG	10	05/10/2022	DLC
1,1,2-Trichloroethane	EPA-8260	U	UG/KG	10	05/10/2022	DLC

Page 9

CLIENT:	Stratum Group
	P.O. Box 2546
	Bellingham, WA 98227
CLIENT CONTACT:	Kim Ninnemann
CLIENT PROJECT:	Cascade Laundry

DATE: 5/ ALS SDG#: E^V WDOE ACCREDITATION: C

5/23/2022 EV22050049 C601

l	LABORAT	ORY BL	.ANK RE	SULTS

MB-051022S - Batch 178820 - S	oil by EPA-8260	1				
2-Hexanone	EPA-8260	U	UG/KG	50	05/10/2022	DLC
1,3-Dichloropropane	EPA-8260	U	UG/KG	10	05/10/2022	DLC
Tetrachloroethylene	EPA-8260	U	UG/KG	10	05/10/2022	DLC
Dibromochloromethane	EPA-8260	U	UG/KG	10	05/10/2022	DLC
1,2-Dibromoethane	EPA-8260	U	UG/KG	5.0	05/10/2022	DLC
Chlorobenzene	EPA-8260	U	UG/KG	10	05/10/2022	DLC
1,1,1,2-Tetrachloroethane	EPA-8260	U	UG/KG	10	05/10/2022	DLC
Ethylbenzene	EPA-8260	U	UG/KG	10	05/10/2022	DLC
m,p-Xylene	EPA-8260	U	UG/KG	20	05/10/2022	DLC
Styrene	EPA-8260	U	UG/KG	10	05/10/2022	DLC
o-Xylene	EPA-8260	U	UG/KG	10	05/10/2022	DLC
Bromoform	EPA-8260	U	UG/KG	10	05/10/2022	DLC
Isopropylbenzene	EPA-8260	U	UG/KG	10	05/10/2022	DLC
1,1,2,2-Tetrachloroethane	EPA-8260	U	UG/KG	10	05/10/2022	DLC
1,2,3-Trichloropropane	EPA-8260	U	UG/KG	10	05/10/2022	DLC
Bromobenzene	EPA-8260	U	UG/KG	10	05/10/2022	DLC
N-Propyl Benzene	EPA-8260	U	UG/KG	10	05/10/2022	DLC
2-Chlorotoluene	EPA-8260	U	UG/KG	10	05/10/2022	DLC
1,3,5-Trimethylbenzene	EPA-8260	U	UG/KG	10	05/10/2022	DLC
4-Chlorotoluene	EPA-8260	U	UG/KG	10	05/10/2022	DLC
T-Butyl Benzene	EPA-8260	U	UG/KG	10	05/10/2022	DLC
1,2,4-Trimethylbenzene	EPA-8260	U	UG/KG	10	05/10/2022	DLC
S-Butyl Benzene	EPA-8260	U	UG/KG	10	05/10/2022	DLC
P-Isopropyltoluene	EPA-8260	U	UG/KG	10	05/10/2022	DLC
1,3-Dichlorobenzene	EPA-8260	U	UG/KG	10	05/10/2022	DLC
1,4-Dichlorobenzene	EPA-8260	U	UG/KG	10	05/10/2022	DLC
N-Butylbenzene	EPA-8260	U	UG/KG	10	05/10/2022	DLC
1,2-Dichlorobenzene	EPA-8260	U	UG/KG	10	05/10/2022	DLC
1,2-Dibromo 3-Chloropropane	EPA-8260	U	UG/KG	50	05/10/2022	DLC
1,2,4-Trichlorobenzene	EPA-8260	U	UG/KG	10	05/10/2022	DLC
Hexachlorobutadiene	EPA-8260	U	UG/KG	10	05/10/2022	DLC
Naphthalene	EPA-8260	U	UG/KG	10	05/10/2022	DLC
1,2,3-Trichlorobenzene	EPA-8260	U	UG/KG	10	05/10/2022	DLC

U - Analyte analyzed for but not detected at level above reporting limit.

MB-051922S - Batch 179118 - Soil by EPA-8270

ANALYTE	METHOD	RESULTS	UNITS	REPORTING LIMITS	ANALYSIS DATE	ANALYSIS BY
Pyridine	EPA-8270	U	UG/KG	200	05/19/2022	JMK
N-Nitrosodimethylamine	EPA-8270	U	UG/KG	100	05/19/2022	JMK
Phenol	EPA-8270	U	UG/KG	100	05/19/2022	JMK

Page 10

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

RIGHT SOLUTIONS BIGHT PARTNER

CLIENT:	Stratum Group
	P.O. Box 2546
	Bellingham, WA 98227
CLIENT CONTACT:	Kim Ninnemann
CLIENT PROJECT:	Cascade Laundry

DATE: 5/ ALS SDG#: E WDOE ACCREDITATION: C

5/23/2022 EV22050049 C601

	Cascade Laundry			-		
		LABORAT	ORY BLANK RESULT	5		
	179118 - Soil by EPA-8					
Aniline	EPA-8270	U	UG/KG	100	05/19/2022	JMK
Bis(2-Chloroethyl)Ether	EPA-8270	U	UG/KG	250	05/19/2022	JMK
2-Chlorophenol	EPA-8270	U	UG/KG	250	05/19/2022	JMK
1,3-Dichlorobenzene	EPA-8270	U	UG/KG	100	05/19/2022	JMK
1,4-Dichlorobenzene	EPA-8270	U	UG/KG	100	05/19/2022	JMK
Benzyl Alcohol	EPA-8270	U	UG/KG	100	05/19/2022	JMK
1,2-Dichlorobenzene	EPA-8270	U	UG/KG	100	05/19/2022	JMK
2-Methylphenol	EPA-8270	U	UG/KG	100	05/19/2022	JMK
Bis(2-Chloroisopropyl)Ether	EPA-8270	U	UG/KG	250	05/19/2022	JMK
3&4-Methylphenol	EPA-8270	U	UG/KG	100	05/19/2022	JMK
N-Nitroso-Di-N-Propylamine	EPA-8270	U	UG/KG	250	05/19/2022	JMK
Hexachloroethane	EPA-8270	U	UG/KG	100	05/19/2022	JMK
Nitrobenzene	EPA-8270	U	UG/KG	100	05/19/2022	JMK
sophorone	EPA-8270	U	UG/KG	100	05/19/2022	JMK
2-Nitrophenol	EPA-8270	U	UG/KG	100	05/19/2022	JMK
2,4-Dimethylphenol	EPA-8270	U	UG/KG	100	05/19/2022	JMK
Benzoic Acid	EPA-8270	U	UG/KG	1000	05/19/2022	JMK
Bis(2-Chloroethoxy)Methane	EPA-8270	U	UG/KG	250	05/19/2022	JMK
2,4-Dichlorophenol	EPA-8270	U	UG/KG	500	05/19/2022	JMK
1,2,4-Trichlorobenzene	EPA-8270	U	UG/KG	100	05/19/2022	JMK
Naphthalene	EPA-8270	U	UG/KG	100	05/19/2022	JMK
1-Chloroaniline	EPA-8270	U	UG/KG	1000	05/19/2022	JMK
2,6-Dichlorophenol	EPA-8270	U	UG/KG	250	05/19/2022	JMK
Hexachlorobutadiene	EPA-8270	U	UG/KG	500	05/19/2022	JMK
4-Chloro-3-Methylphenol	EPA-8270	U	UG/KG	500	05/19/2022	JMK
2-Methylnaphthalene	EPA-8270	U	UG/KG	250	05/19/2022	JMK
1-Methylnaphthalene	EPA-8270	U	UG/KG	250	05/19/2022	JMK
Hexachlorocyclopentadiene	EPA-8270	U	UG/KG	100	05/19/2022	JMK
2,4,6-Trichlorophenol	EPA-8270	U	UG/KG	100	05/19/2022	JMK
2,4,5-Trichlorophenol	EPA-8270	U	UG/KG	100	05/19/2022	JMK
2-Chloronaphthalene	EPA-8270	U	UG/KG	100	05/19/2022	JMK
2-Nitroaniline	EPA-8270	U	UG/KG	100	05/19/2022	JMK
Acenaphthylene	EPA-8270	U	UG/KG	100	05/19/2022	JMK
Dimethylphthalate	EPA-8270	U	UG/KG	100	05/19/2022	JMK
2,6-Dinitrotoluene	EPA-8270	U	UG/KG	100	05/19/2022	JMK
Acenaphthene	EPA-8270	U	UG/KG	100	05/19/2022	JMK
3-Nitroaniline	EPA-8270	U	UG/KG	100	05/19/2022	JMK
2,4-Dinitrophenol	EPA-8270	U	UG/KG	1000	05/19/2022	JMK
	EPA-02/U	0	UG/NG	100	05/19/2022	JIVIK

Page 11

U

U

EPA-8270

EPA-8270

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

Dibenzofuran

2,4-Dinitrotoluene

UG/KG

UG/KG

100

100

05/19/2022

05/19/2022

JMK

JMK

CLIENT:	Stratum Group
	P.O. Box 2546
	Bellingham, WA 98227
CLIENT CONTACT:	Kim Ninnemann
CLIENT PROJECT:	Cascade Laundry

DATE: ALS SDG#: WDOE ACCREDITATION:

5/23/2022 EV22050049 C601

LA	BORAT	ORY B	SLANK	RESUL	TS

MB-051922S - Batch 179118 - S	Soil by EPA-8270					
2,3,4,6-Tetrachlorophenol	EPA-8270	U	UG/KG	100	05/19/2022	JMK
Diethylphthalate	EPA-8270	U	UG/KG	100	05/19/2022	JMK
Fluorene	EPA-8270	U	UG/KG	100	05/19/2022	JMK
4-Chlorophenyl-Phenylether	EPA-8270	U	UG/KG	100	05/19/2022	JMK
4-Nitroaniline	EPA-8270	U	UG/KG	250	05/19/2022	JMK
4,6-Dinitro-2-Methylphenol	EPA-8270	U	UG/KG	290	05/19/2022	JMK
N-Nitrosodiphenylamine	EPA-8270	U	UG/KG	500	05/19/2022	JMK
Azobenzene	EPA-8270	U	UG/KG	100	05/19/2022	JMK
4-Bromophenyl-Phenylether	EPA-8270	U	UG/KG	100	05/19/2022	JMK
Hexachlorobenzene	EPA-8270	U	UG/KG	100	05/19/2022	JMK
Pentachlorophenol	EPA-8270	U	UG/KG	500	05/19/2022	JMK
Phenanthrene	EPA-8270	U	UG/KG	100	05/19/2022	JMK
Anthracene	EPA-8270	U	UG/KG	100	05/19/2022	JMK
Carbazole	EPA-8270	U	UG/KG	250	05/19/2022	JMK
Di-N-Butylphthalate	EPA-8270	U	UG/KG	100	05/19/2022	JMK
Fluoranthene	EPA-8270	U	UG/KG	100	05/19/2022	JMK
Pyrene	EPA-8270	U	UG/KG	150	05/19/2022	JMK
Butylbenzylphthalate	EPA-8270	U	UG/KG	100	05/19/2022	JMK
3,3-Dichlorobenzidine	EPA-8270	U	UG/KG	250	05/19/2022	JMK
Benzo[A]Anthracene	EPA-8270	U	UG/KG	100	05/19/2022	JMK
Chrysene	EPA-8270	U	UG/KG	100	05/19/2022	JMK
Bis(2-Ethylhexyl)Phthalate	EPA-8270	U	UG/KG	100	05/19/2022	JMK
Di-N-Octylphthalate	EPA-8270	U	UG/KG	100	05/19/2022	JMK
Benzo[B]Fluoranthene	EPA-8270	U	UG/KG	100	05/19/2022	JMK
Benzo[K]Fluoranthene	EPA-8270	U	UG/KG	100	05/19/2022	JMK
Benzo[A]Pyrene	EPA-8270	U	UG/KG	100	05/19/2022	JMK
Indeno[1,2,3-Cd]Pyrene	EPA-8270	U	UG/KG	100	05/19/2022	JMK
Dibenz[A,H]Anthracene	EPA-8270	U	UG/KG	100	05/19/2022	JMK
Benzo[G,H,I]Perylene	EPA-8270	U	UG/KG	100	05/19/2022	JMK

U - Analyte analyzed for but not detected at level above reporting limit.

MBLK-R408551 - Batch R408551 - Soil by EPA-7471

	2			REPORTING	ANALYSIS	ANALYSIS
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY
Mercury	EPA-7471	U	MG/KG	0.020	05/13/2022	RAL

U - Analyte analyzed for but not detected at level above reporting limit.

MB-051222S - Batch 178783 - Soil by EPA-6020								
				REPORTING	ANALYSIS	ANALYSIS		
ANALYTE	METHOD	RESULTS	UNITS	LIMITS	DATE	BY		
Arsenic	EPA-6020	U	MG/KG	0.20	05/12/2022	RAL		

Page 12

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

CLIENT:	Stratum Group P.O. Box 2546 Bellingham, WA 98227		WDOE ACC	DATE: ALS SDG#: CREDITATION:	5/23/2022 EV22050049 C601	
CLIENT CONTACT:	Kim Ninnemann					
CLIENT PROJECT:	Cascade Laundry					
	L	BORAT	ORY BLANK RESUL	TS		
MB-051222S - Batch	178783 - Soil by EPA-602	n				
Barium	EPA-6020	U	MG/KG	0.12	05/12/2022	RAL
Cadmium	EPA-6020	U	MG/KG	0.10	05/12/2022	RAL
Chromium	EPA-6020	U	MG/KG	0.10	05/12/2022	RAL
Copper	EPA-6020	U	MG/KG	0.10	05/12/2022	RAL
Lead	EPA-6020	U	MG/KG	0.20	05/12/2022	RAL
Nickel	EPA-6020	U	MG/KG	0.10	05/12/2022	RAL
Selenium	EPA-6020	U	MG/KG	1.0	05/12/2022	RAL
Silver	EPA-6020	U	MG/KG	0.10	05/12/2022	RAL
Zinc	EPA-6020	U	MG/KG	0.88	05/12/2022	RAL

U - Analyte analyzed for but not detected at level above reporting limit.

Page 13 ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

CLIENT:	Stratum Group
	P.O. Box 2546
	Bellingham, WA 98227
CLIENT CONTACT:	Kim Ninnemann
CLIENT PROJECT:	Cascade Laundry

DATE: ALS SDG#: WDOE ACCREDITATION:

5/23/2022 EV22050049 C601

LABORATORY CONTROL SAMPLE RESULTS

ALS Test Batch ID: 178868 - Soil by NWTPH-GX

				LIMIT	S	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD QUAL	MIN	MAX	DATE	
TPH-Volatile Range - BS	NWTPH-GX	77.5		66.5	122.7	05/13/2022	KLS
TPH-Volatile Range - BSD	NWTPH-GX	77.5	0	66.5	122.7	05/13/2022	KLS

ALS Test Batch ID: 178820 - Soil by EPA-8260

ALS TEST BAILIND. 170020	- Soli by LFA-0	200			LI	NITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	MIN	MAX	DATE	
Dichlorodifluoromethane - BS	EPA-8260	94.3			50	150	05/10/2022	DLC
Dichlorodifluoromethane - BSD	EPA-8260	97.9	4		50	150	05/10/2022	DLC
Chloromethane - BS	EPA-8260	96.3			50	150	05/10/2022	DLC
Chloromethane - BSD	EPA-8260	103	6		50	150	05/10/2022	DLC
Vinyl Chloride - BS	EPA-8260	109			50	150	05/10/2022	DLC
Vinyl Chloride - BSD	EPA-8260	108	1		50	150	05/10/2022	DLC
Bromomethane - BS	EPA-8260	108			50	150	05/10/2022	DLC
Bromomethane - BSD	EPA-8260	113	4		50	150	05/10/2022	DLC
Chloroethane - BS	EPA-8260	109			50	150	05/10/2022	DLC
Chloroethane - BSD	EPA-8260	110	2		50	150	05/10/2022	DLC
Carbon Tetrachloride - BS	EPA-8260	114			50	150	05/10/2022	DLC
Carbon Tetrachloride - BSD	EPA-8260	116	2		50	150	05/10/2022	DLC
Trichlorofluoromethane - BS	EPA-8260	108			50	150	05/10/2022	DLC
Trichlorofluoromethane - BSD	EPA-8260	110	1		50	150	05/10/2022	DLC
Carbon Disulfide - BS	EPA-8260	102			50	150	05/10/2022	DLC
Carbon Disulfide - BSD	EPA-8260	105	2		50	150	05/10/2022	DLC
Acetone - BS	EPA-8260	112			50	150	05/10/2022	DLC
Acetone - BSD	EPA-8260	120	7		50	150	05/10/2022	DLC
1,1-Dichloroethene - BS	EPA-8260	107			70	130	05/10/2022	DLC
1,1-Dichloroethene - BSD	EPA-8260	109	2		70	130	05/10/2022	DLC
Methylene Chloride - BS	EPA-8260	80.7			50	150	05/10/2022	DLC
Methylene Chloride - BSD	EPA-8260	89.2	10		50	150	05/10/2022	DLC
Acrylonitrile - BS	EPA-8260	114			50	150	05/10/2022	DLC
Acrylonitrile - BSD	EPA-8260	115	1		50	150	05/10/2022	DLC
Methyl T-Butyl Ether - BS	EPA-8260	110			50	150	05/10/2022	DLC
Methyl T-Butyl Ether - BSD	EPA-8260	115	5		50	150	05/10/2022	DLC
Trans-1,2-Dichloroethene - BS	EPA-8260	115			50	150	05/10/2022	DLC
Trans-1,2-Dichloroethene - BSD	EPA-8260	116	1		50	150	05/10/2022	DLC
1,1-Dichloroethane - BS	EPA-8260	109			50	150	05/10/2022	DLC
1,1-Dichloroethane - BSD	EPA-8260	113	4		50	150	05/10/2022	DLC
2-Butanone - BS	EPA-8260	98.6			50	150	05/10/2022	DLC
2-Butanone - BSD	EPA-8260	101	3		50	150	05/10/2022	DLC
Cis-1,2-Dichloroethene - BS	EPA-8260	112			50	150	05/10/2022	DLC

Page 14

CLIENT:

Stratum Group P.O. Box 2546 J

DATE: ALS SDG#: WDOE ACCREDITATION:

5/23/2022 EV22050049 C601

CLIENT CONTACT CLIENT PROJECT:

	Bellingham, WA 98227
Г:	Kim Ninnemann
	Cascade Laundry

LABORATORY CONTROL SAMPLE RESULTS

				LIMITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD QUAL	MIN MA	AX DATE	
Cis-1,2-Dichloroethene - BSD	EPA-8260	114	2	50 15	05/10/2022	DLC
2,2-Dichloropropane - BS	EPA-8260	114		50 15	05/10/2022	DLC
2,2-Dichloropropane - BSD	EPA-8260	115	1	50 15	05/10/2022	DLC
Bromochloromethane - BS	EPA-8260	105		50 15	05/10/2022	DLC
Bromochloromethane - BSD	EPA-8260	107	2	50 15	05/10/2022	DLC
Chloroform - BS	EPA-8260	106		50 15	05/10/2022	DLC
Chloroform - BSD	EPA-8260	109	2	50 15	05/10/2022	DLC
1,1,1-Trichloroethane - BS	EPA-8260	114		50 15	05/10/2022	DLC
1,1,1-Trichloroethane - BSD	EPA-8260	115	0	50 15	05/10/2022	DLC
1,1-Dichloropropene - BS	EPA-8260	115		50 15	05/10/2022	DLC
1,1-Dichloropropene - BSD	EPA-8260	118	3	50 15	05/10/2022	DLC
1,2-Dichloroethane - BS	EPA-8260	98.8		50 15	05/10/2022	DLC
1,2-Dichloroethane - BSD	EPA-8260	99.5	1	50 15	05/10/2022	DLC
Benzene - BS	EPA-8260	99.7		75 13	05/10/2022	DLC
Benzene - BSD	EPA-8260	100	1	75 13	05/10/2022	DLC
Trichloroethene - BS	EPA-8260	103		75 13	6 05/10/2022	DLC
Trichloroethene - BSD	EPA-8260	103	0	75 13	6 05/10/2022	DLC
1,2-Dichloropropane - BS	EPA-8260	99.4		50 15	05/10/2022	DLC
1,2-Dichloropropane - BSD	EPA-8260	104	5	50 15	05/10/2022	DLC
Dibromomethane - BS	EPA-8260	101		50 15	05/10/2022	DLC
Dibromomethane - BSD	EPA-8260	98.6	3	50 15	05/10/2022	DLC
Bromodichloromethane - BS	EPA-8260	106		50 15	05/10/2022	DLC
Bromodichloromethane - BSD	EPA-8260	103	3	50 15	05/10/2022	DLC
Trans-1,3-Dichloropropene - BS	EPA-8260	104		50 15	05/10/2022	DLC
Trans-1,3-Dichloropropene - BSD	EPA-8260	100	3	50 15	05/10/2022	DLC
4-Methyl-2-Pentanone - BS	EPA-8260	98.9		50 15	05/10/2022	DLC
4-Methyl-2-Pentanone - BSD	EPA-8260	99.5	1	50 15	05/10/2022	DLC
Toluene - BS	EPA-8260	100		71.6 12	2.1 05/10/2022	DLC
Toluene - BSD	EPA-8260	102	1	71.6 12	2.1 05/10/2022	DLC
Cis-1,3-Dichloropropene - BS	EPA-8260	103		50 15	05/10/2022	DLC
Cis-1,3-Dichloropropene - BSD	EPA-8260	104	1	50 15	05/10/2022	DLC
1,1,2-Trichloroethane - BS	EPA-8260	101		50 15	05/10/2022	DLC
1,1,2-Trichloroethane - BSD	EPA-8260	93.8	7	50 15	05/10/2022	DLC
2-Hexanone - BS	EPA-8260	99.7		50 15	05/10/2022	DLC
2-Hexanone - BSD	EPA-8260	96.2	4	50 15	05/10/2022	DLC
1,3-Dichloropropane - BS	EPA-8260	98.3		50 15	05/10/2022	DLC
1,3-Dichloropropane - BSD	EPA-8260	99.7	1	50 15	05/10/2022	DLC
Tetrachloroethylene - BS	EPA-8260	109		50 15	05/10/2022	DLC
Tetrachloroethylene - BSD	EPA-8260	103	6	50 15	05/10/2022	DLC
Dibromochloromethane - BS	EPA-8260	107		50 15	05/10/2022	DLC

Page 15

CLIENT:

Stratum Group P.O. Box 2546

DATE: ALS SDG#: WDOE ACCREDITATION:

5/23/2022 EV22050049 C601

CLIENT CONTACT: CLIENT PROJECT:

WA 98227
nann
aundry

LABORATORY CONTROL SAMPLE RESULTS LIMITS

					LIM	TS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	MIN	MAX	DATE	
Dibromochloromethane - BSD	EPA-8260	105	2		50	150	05/10/2022	DLC
1,2-Dibromoethane - BS	EPA-8260	102			50	150	05/10/2022	DLC
1,2-Dibromoethane - BSD	EPA-8260	99.9	2		50	150	05/10/2022	DLC
Chlorobenzene - BS	EPA-8260	103			79	128	05/10/2022	DLC
Chlorobenzene - BSD	EPA-8260	102	1		79	128	05/10/2022	DLC
1,1,1,2-Tetrachloroethane - BS	EPA-8260	103			50	150	05/10/2022	DLC
1,1,1,2-Tetrachloroethane - BSD	EPA-8260	97.5	5		50	150	05/10/2022	DLC
Ethylbenzene - BS	EPA-8260	103			50	150	05/10/2022	DLC
Ethylbenzene - BSD	EPA-8260	101	2		50	150	05/10/2022	DLC
m,p-Xylene - BS	EPA-8260	101			50	150	05/10/2022	DLC
m,p-Xylene - BSD	EPA-8260	97.4	3		50	150	05/10/2022	DLC
Styrene - BS	EPA-8260	98.4			50	150	05/10/2022	DLC
Styrene - BSD	EPA-8260	97.1	1		50	150	05/10/2022	DLC
o-Xylene - BS	EPA-8260	99.0			50	150	05/10/2022	DLC
o-Xylene - BSD	EPA-8260	97.2	2		50	150	05/10/2022	DLC
Bromoform - BS	EPA-8260	97.8			50	150	05/10/2022	DLC
Bromoform - BSD	EPA-8260	99.1	1		50	150	05/10/2022	DLC
Isopropylbenzene - BS	EPA-8260	102			50	150	05/10/2022	DLC
Isopropylbenzene - BSD	EPA-8260	99.0	3		50	150	05/10/2022	DLC
1,1,2,2-Tetrachloroethane - BS	EPA-8260	100			50	150	05/10/2022	DLC
1,1,2,2-Tetrachloroethane - BSD	EPA-8260	96.7	4		50	150	05/10/2022	DLC
1,2,3-Trichloropropane - BS	EPA-8260	99.7			50	150	05/10/2022	DLC
1,2,3-Trichloropropane - BSD	EPA-8260	97.1	3		50	150	05/10/2022	DLC
Bromobenzene - BS	EPA-8260	102			50	150	05/10/2022	DLC
Bromobenzene - BSD	EPA-8260	101	2		50	150	05/10/2022	DLC
N-Propyl Benzene - BS	EPA-8260	102			50	150	05/10/2022	DLC
N-Propyl Benzene - BSD	EPA-8260	97.1	5		50	150	05/10/2022	DLC
2-Chlorotoluene - BS	EPA-8260	103			50	150	05/10/2022	DLC
2-Chlorotoluene - BSD	EPA-8260	99.0	4		50	150	05/10/2022	DLC
1,3,5-Trimethylbenzene - BS	EPA-8260	103			50	150	05/10/2022	DLC
1,3,5-Trimethylbenzene - BSD	EPA-8260	98.5	4		50	150	05/10/2022	DLC
4-Chlorotoluene - BS	EPA-8260	104			50	150	05/10/2022	DLC
4-Chlorotoluene - BSD	EPA-8260	99.4	4		50	150	05/10/2022	DLC
T-Butyl Benzene - BS	EPA-8260	110			50	150	05/10/2022	DLC
T-Butyl Benzene - BSD	EPA-8260	105	5		50	150	05/10/2022	DLC
1,2,4-Trimethylbenzene - BS	EPA-8260	101			50	150	05/10/2022	DLC
1,2,4-Trimethylbenzene - BSD	EPA-8260	99.1	2		50	150	05/10/2022	DLC
S-Butyl Benzene - BS	EPA-8260	104			50	150	05/10/2022	DLC
S-Butyl Benzene - BSD	EPA-8260	100	3		50	150	05/10/2022	DLC
P-Isopropyltoluene - BS	EPA-8260	109			50	150	05/10/2022	DLC

Page 16

CLIENT:

Stratum Group P.O. Box 2546 Bellingham WA 98227

DATE: ALS SDG#: WDOE ACCREDITATION:

5/23/2022 EV22050049 C601

CLIENT CONTACT: CLIENT PROJECT:

Delingham, W	A 9022
Kim Ninneman	n
Cascade Launo	dry

LABORATORY CONTROL SAMPLE RESULTS

				LI	NITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD QUAL	MIN	MAX	DATE	
P-Isopropyltoluene - BSD	EPA-8260	104	5	50	150	05/10/2022	DLC
1,3-Dichlorobenzene - BS	EPA-8260	109		50	150	05/10/2022	DLC
1,3-Dichlorobenzene - BSD	EPA-8260	104	4	50	150	05/10/2022	DLC
1,4-Dichlorobenzene - BS	EPA-8260	105		50	150	05/10/2022	DLC
1,4-Dichlorobenzene - BSD	EPA-8260	100	4	50	150	05/10/2022	DLC
N-Butylbenzene - BS	EPA-8260	105		50	150	05/10/2022	DLC
N-Butylbenzene - BSD	EPA-8260	99.9	5	50	150	05/10/2022	DLC
1,2-Dichlorobenzene - BS	EPA-8260	103		50	150	05/10/2022	DLC
1,2-Dichlorobenzene - BSD	EPA-8260	100	2	50	150	05/10/2022	DLC
1,2-Dibromo 3-Chloropropane - BS	EPA-8260	102		50	150	05/10/2022	DLC
1,2-Dibromo 3-Chloropropane - BSD	EPA-8260	99.7	2	50	150	05/10/2022	DLC
1,2,4-Trichlorobenzene - BS	EPA-8260	107		50	150	05/10/2022	DLC
1,2,4-Trichlorobenzene - BSD	EPA-8260	102	5	50	150	05/10/2022	DLC
Hexachlorobutadiene - BS	EPA-8260	107		50	150	05/10/2022	DLC
Hexachlorobutadiene - BSD	EPA-8260	102	5	50	150	05/10/2022	DLC
Naphthalene - BS	EPA-8260	102		50	150	05/10/2022	DLC
Naphthalene - BSD	EPA-8260	97.0	5	50	150	05/10/2022	DLC
1,2,3-Trichlorobenzene - BS	EPA-8260	104		50	150	05/10/2022	DLC
1,2,3-Trichlorobenzene - BSD	EPA-8260	97.7	7	50	150	05/10/2022	DLC

ALS Test Batch ID: 179118 - Soil by EPA-8270

		2.0		LIN	IITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD QUAL	MIN	MAX	DATE	
Pyridine - BS	EPA-8270	73.7		20	150	05/19/2022	JMK
Pyridine - BSD	EPA-8270	71.9	2	20	150	05/19/2022	JMK
N-Nitrosodimethylamine - BS	EPA-8270	72.4		20	150	05/19/2022	JMK
N-Nitrosodimethylamine - BSD	EPA-8270	72.5	0	20	150	05/19/2022	JMK
Phenol - BS	EPA-8270	87.9		36.1	131	05/19/2022	JMK
Phenol - BSD	EPA-8270	89.0	1	36.1	131	05/19/2022	JMK
Aniline - BS	EPA-8270	76.4		20	150	05/19/2022	JMK
Aniline - BSD	EPA-8270	74.6	2	20	150	05/19/2022	JMK
Bis(2-Chloroethyl)Ether - BS	EPA-8270	88.3		20	150	05/19/2022	JMK
Bis(2-Chloroethyl)Ether - BSD	EPA-8270	85.3	3	20	150	05/19/2022	JMK
2-Chlorophenol - BS	EPA-8270	84.8		59.9	111	05/19/2022	JMK
2-Chlorophenol - BSD	EPA-8270	86.9	2	59.9	111	05/19/2022	JMK
1,3-Dichlorobenzene - BS	EPA-8270	95.0		20	150	05/19/2022	JMK
1,3-Dichlorobenzene - BSD	EPA-8270	94.7	0	20	150	05/19/2022	JMK
1,4-Dichlorobenzene - BS	EPA-8270	99.0		44.3	122	05/19/2022	JMK
1,4-Dichlorobenzene - BSD	EPA-8270	99.2	0	44.3	122	05/19/2022	JMK
Benzyl Alcohol - BS	EPA-8270	106		20	150	05/19/2022	JMK

Page 17

CLIENT:

P.O. Box 2546 Bellingham, WA 98227 CLIENT CONTACT: Kim Ninnemann CLIENT PROJECT: Cascade Laundry

Stratum Group

DATE: 5/2 ALS SDG#: EV WDOE ACCREDITATION: C6

5/23/2022 EV22050049 C601

LABORATORY CONTROL SAMPLE RESULTS

					LI	MITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	MIN	MAX	DATE	
Benzyl Alcohol - BSD	EPA-8270	112	6		20	150	05/19/2022	JMK
1,2-Dichlorobenzene - BS	EPA-8270	96.6			20	150	05/19/2022	JMK
1,2-Dichlorobenzene - BSD	EPA-8270	96.9	0		20	150	05/19/2022	JMK
2-Methylphenol - BS	EPA-8270	105			20	150	05/19/2022	JMK
2-Methylphenol - BSD	EPA-8270	108	3		20	150	05/19/2022	JMK
Bis(2-Chloroisopropyl)Ether - BS	EPA-8270	119			20	150	05/19/2022	JMK
Bis(2-Chloroisopropyl)Ether - BSD	EPA-8270	116	3		20	150	05/19/2022	JMK
3&4-Methylphenol - BS	EPA-8270	101			20	150	05/19/2022	JMK
3&4-Methylphenol - BSD	EPA-8270	103	3		20	150	05/19/2022	JMK
N-Nitroso-Di-N-Propylamine - BS	EPA-8270	92.2			31.6	134	05/19/2022	JMK
N-Nitroso-Di-N-Propylamine - BSD	EPA-8270	88.3	4		31.6	134	05/19/2022	JMK
Hexachloroethane - BS	EPA-8270	98.7			20	150	05/19/2022	JMK
Hexachloroethane - BSD	EPA-8270	98.5	0		20	150	05/19/2022	JMK
Nitrobenzene - BS	EPA-8270	94.9			20	150	05/19/2022	JMK
Nitrobenzene - BSD	EPA-8270	93.7	1		20	150	05/19/2022	JMK
Isophorone - BS	EPA-8270	81.7			20	150	05/19/2022	JMK
Isophorone - BSD	EPA-8270	82.0	0		20	150	05/19/2022	JMK
2-Nitrophenol - BS	EPA-8270	78.6			20	150	05/19/2022	JMK
2-Nitrophenol - BSD	EPA-8270	82.2	4		20	150	05/19/2022	JMK
2,4-Dimethylphenol - BS	EPA-8270	93.1			20	150	05/19/2022	JMK
2,4-Dimethylphenol - BSD	EPA-8270	95.3	2		20	150	05/19/2022	JMK
Bis(2-Chloroethoxy)Methane - BS	EPA-8270	93.9			20	150	05/19/2022	JMK
Bis(2-Chloroethoxy)Methane - BSD	EPA-8270	94.2	0		20	150	05/19/2022	JMK
2,4-Dichlorophenol - BS	EPA-8270	85.1			20	150	05/19/2022	JMK
2,4-Dichlorophenol - BSD	EPA-8270	85.8	1		20	150	05/19/2022	JMK
1,2,4-Trichlorobenzene - BS	EPA-8270	90.1			44.6	122	05/19/2022	JMK
1,2,4-Trichlorobenzene - BSD	EPA-8270	87.8	3		44.6	122	05/19/2022	JMK
Naphthalene - BS	EPA-8270	90.7			20	150	05/19/2022	JMK
Naphthalene - BSD	EPA-8270	88.0	3		20	150	05/19/2022	JMK
4-Chloroaniline - BS	EPA-8270	45.5			20	150	05/19/2022	JMK
4-Chloroaniline - BSD	EPA-8270	65.1	35	SR1	20	150	05/19/2022	JMK
Hexachlorobutadiene - BS	EPA-8270	93.5			20	150	05/19/2022	JMK
Hexachlorobutadiene - BSD	EPA-8270	90.0	4		20	150	05/19/2022	JMK
4-Chloro-3-Methylphenol - BS	EPA-8270	88.0			49.2	135	05/19/2022	JMK
4-Chloro-3-Methylphenol - BSD	EPA-8270	89.1	1		49.2	135	05/19/2022	JMK
2-Methylnaphthalene - BS	EPA-8270	87.9			20	150	05/19/2022	JMK
2-Methylnaphthalene - BSD	EPA-8270	88.6	1		20	150	05/19/2022	JMK
1-Methylnaphthalene - BS	EPA-8270	89.4			20	150	05/19/2022	JMK
1-Methylnaphthalene - BSD	EPA-8270	90.3	1		20	150	05/19/2022	JMK
Hexachlorocyclopentadiene - BS	EPA-8270	76.1			20	150	05/19/2022	JMK

Page 18

CERTIFICATE OF ANALYSIS

CLIENT:

Stratum Group P.O. Box 2546 ollingham W/A 98227

DATE: ALS SDG#: WDOE ACCREDITATION:

5/23/2022 EV22050049 C601

05/19/2022

05/19/2022

05/19/2022

20

20

20

150

150

150

JMK

JMK

JMK

CLIENT CONTACT: CLIENT PROJECT:

Beilingnam, WA 98	322
Kim Ninnemann	
Cascade Laundry	

CLIENT PROJECT: Ca	ascade Laundry							
LABORATORY CONTROL SAMPLE RESULTS								
					LIN	IITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	MIN	MAX	DATE	
Hexachlorocyclopentadiene - BSD	EPA-8270	77.9	2		20	150	05/19/2022	JMK
2,4,6-Trichlorophenol - BS	EPA-8270	84.8			20	150	05/19/2022	JMK
2,4,6-Trichlorophenol - BSD	EPA-8270	89.1	5		20	150	05/19/2022	JMK
2,4,5-Trichlorophenol - BS	EPA-8270	86.4			20	150	05/19/2022	JMK
2,4,5-Trichlorophenol - BSD	EPA-8270	90.7	5		20	150	05/19/2022	JMK
-Chloronaphthalene - BS	EPA-8270	88.4			20	150	05/19/2022	JMK
-Chloronaphthalene - BSD	EPA-8270	92.4	4		20	150	05/19/2022	JMK
-Nitroaniline - BS	EPA-8270	84.7			20	150	05/19/2022	JMK
2-Nitroaniline - BSD	EPA-8270	93.1	9		20	150	05/19/2022	JMK
Acenaphthylene - BS	EPA-8270	85.5			20	150	05/19/2022	JMK
cenaphthylene - BSD	EPA-8270	88.4	3		20	150	05/19/2022	JMK
Dimethylphthalate - BS	EPA-8270	91.6			20	150	05/19/2022	JMK
imethylphthalate - BSD	EPA-8270	96.3	5		20	150	05/19/2022	JMK
,6-Dinitrotoluene - BS	EPA-8270	97.4			20	150	05/19/2022	JMK
,6-Dinitrotoluene - BSD	EPA-8270	101	4		20	150	05/19/2022	JMK
cenaphthene - BS	EPA-8270	90.2			49.3	117	05/19/2022	JMK
cenaphthene - BSD	EPA-8270	95.2	5		49.3	117	05/19/2022	JMK
-Nitroaniline - BS	EPA-8270	616		SQ1	20	150	05/19/2022	JMK
-Nitroaniline - BSD	EPA-8270	825	29	SQ1	20	150	05/19/2022	JMK
,4-Dinitrophenol - BS	EPA-8270	73.3			20	150	05/19/2022	JMK
,4-Dinitrophenol - BSD	EPA-8270	78.6	7		20	150	05/19/2022	JMK
-Nitrophenol - BS	EPA-8270	81.6			29.8	137	05/19/2022	JMK
-Nitrophenol - BSD	EPA-8270	87.3	7		29.8	137	05/19/2022	JMK
Dibenzofuran - BS	EPA-8270	88.9			20	150	05/19/2022	JMK
Dibenzofuran - BSD	EPA-8270	93.9	5		20	150	05/19/2022	JMK
,4-Dinitrotoluene - BS	EPA-8270	90.5			55.3	130	05/19/2022	JMK
,4-Dinitrotoluene - BSD	EPA-8270	94.1	4		55.3	130	05/19/2022	JMK
,3,4,6-Tetrachlorophenol - BS	EPA-8270	85.0			20	150	05/19/2022	JMK
,3,4,6-Tetrachlorophenol - BSD	EPA-8270	90.6	6		20	150	05/19/2022	JMK
Diethylphthalate - BS	EPA-8270	92.8			20	150	05/19/2022	JMK
viethylphthalate - BSD	EPA-8270	96.3	4		20	150	05/19/2022	JMK
luorene - BS	EPA-8270	83.5			20	150	05/19/2022	JMK
luorene - BSD	EPA-8270	88.5	6		20	150	05/19/2022	JMK
-Chlorophenyl-Phenylether - BS	EPA-8270	78.6			20	150	05/19/2022	JMK
-Chlorophenyl-Phenylether - BSD	EPA-8270	83.6	6		20	150	05/19/2022	JMK
-Nitroaniline - BS	EPA-8270	123	-		20	150	05/19/2022	JMK
I-Nitroaniline - BSD	EPA-8270	130	6		20	150	05/19/2022	JMK

Page 19

EPA-8270

EPA-8270

EPA-8270

84.5

92.5

101

9

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

4,6-Dinitro-2-Methylphenol - BS

4,6-Dinitro-2-Methylphenol - BSD

Azobenzene - BS

CERTIFICATE OF ANALYSIS

CLIENT:

Stratum Group P.O. Box 2546 Bellingham, WA 98227 Kim Ninnemann Cascade Laundry DATE: ALS SDG#: WDOE ACCREDITATION:

5/23/2022 EV22050049 C601

CLIENT CONTACT: CLIENT PROJECT:

LABORATORY CONTROL SAMPLE RESULTS							
				LIN	IITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD QUAL	MIN	МАХ	DATE	
Azobenzene - BSD	EPA-8270	102	2	20	150	05/19/2022	JMK
4-Bromophenyl-Phenylether - BS	EPA-8270	80.3		20	150	05/19/2022	JMK
4-Bromophenyl-Phenylether - BSD	EPA-8270	84.8	5	20	150	05/19/2022	JMK
Hexachlorobenzene - BS	EPA-8270	95.0		20	150	05/19/2022	JMK
Hexachlorobenzene - BSD	EPA-8270	97.3	2	20	150	05/19/2022	JMK
Pentachlorophenol - BS	EPA-8270	85.5		41.3	113	05/19/2022	JMK
Pentachlorophenol - BSD	EPA-8270	92.5	8	41.3	113	05/19/2022	JMK
Phenanthrene - BS	EPA-8270	89.9		20	150	05/19/2022	JMK
Phenanthrene - BSD	EPA-8270	92.7	3	20	150	05/19/2022	JMK
Anthracene - BS	EPA-8270	90.1		20	150	05/19/2022	JMK
Anthracene - BSD	EPA-8270	93.5	4	20	150	05/19/2022	JMK
Carbazole - BS	EPA-8270	103		20	150	05/19/2022	JMK
Carbazole - BSD	EPA-8270	113	9	20	150	05/19/2022	JMK
Di-N-Butylphthalate - BS	EPA-8270	90.8		20	150	05/19/2022	JMK
Di-N-Butylphthalate - BSD	EPA-8270	92.8	2	20	150	05/19/2022	JMK
Fluoranthene - BS	EPA-8270	100		20	150	05/19/2022	JMK
Fluoranthene - BSD	EPA-8270	103	3	20	150	05/19/2022	JMK
Pyrene - BS	EPA-8270	87.6		57.4	145	05/19/2022	JMK
Pyrene - BSD	EPA-8270	89.4	2	57.4	145	05/19/2022	JMK
Butylbenzylphthalate - BS	EPA-8270	89.6		20	150	05/19/2022	JMK
Butylbenzylphthalate - BSD	EPA-8270	90.1	1	20	150	05/19/2022	JMK
Benzo[A]Anthracene - BS	EPA-8270	89.5		20	150	05/19/2022	JMK
Benzo[A]Anthracene - BSD	EPA-8270	91.3	2	20	150	05/19/2022	JMK
Chrysene - BS	EPA-8270	50.7		20	150	05/19/2022	JMK
Chrysene - BSD	EPA-8270	52.2	3	20	150	05/19/2022	JMK
Bis(2-Ethylhexyl)Phthalate - BS	EPA-8270	89.3		20	150	05/19/2022	JMK
Bis(2-Ethylhexyl)Phthalate - BSD	EPA-8270	91.0	2	20	150	05/19/2022	JMK
Di-N-Octylphthalate - BS	EPA-8270	85.9		20	150	05/19/2022	JMK
Di-N-Octylphthalate - BSD	EPA-8270	87.2	2	20	150	05/19/2022	JMK
Benzo[B]Fluoranthene - BS	EPA-8270	90.7		20	150	05/19/2022	JMK
Benzo[B]Fluoranthene - BSD	EPA-8270	88.3	3	20	150	05/19/2022	JMK
Benzo[K]Fluoranthene - BS	EPA-8270	104		20	150	05/19/2022	JMK
Benzo[K]Fluoranthene - BSD	EPA-8270	98.5	5	20	150	05/19/2022	JMK
Benzo[A]Pyrene - BS	EPA-8270	89.1		20	150	05/19/2022	JMK
Benzo[A]Pyrene - BSD	EPA-8270	87.3	2	20	150	05/19/2022	JMK
Indeno[1,2,3-Cd]Pyrene - BS	EPA-8270	79.6		20	150	05/19/2022	JMK
Indeno[1,2,3-Cd]Pyrene - BSD	EPA-8270	77.6	2	20	150	05/19/2022	JMK
Dibenz[A,H]Anthracene - BS	EPA-8270	42.1		20	150	05/19/2022	JMK
Dibenz[A,H]Anthracene - BSD	EPA-8270	40.3	5	20	150	05/19/2022	JMK
Benzo[G,H,I]Perylene - BS	EPA-8270	38.4		20	150	05/19/2022	JMK

Page 20

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

CERTIFICATE OF ANALYSIS

CLIENT:	Stratum Group	DATE:	5/23/2022
	P.O. Box 2546	ALS SDG#:	EV22050049
	Bellingham, WA 98227	WDOE ACCREDITATION:	C601
CLIENT CONTACT:	Kim Ninnemann		
CLIENT PROJECT:	Cascade Laundry		

LABORATORY CONTROL SAMPLE RESULTS								
					LIN	MITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	MIN	MAX	DATE	
Benzo[G,H,I]Perylene - BSD	EPA-8270	36.4	5		20	150	05/19/2022	JMK

SQ1 - Spike outside of control limits with a high bias. Associated compounds non-detect. No corrective action taken. SR1 - RPD outside of control limits.

ALS Test Batch ID: R408551 - Soil by EPA-7471

				LIM	IITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD QUAL	MIN	MAX	DATE	
Mercury - BS	EPA-7471	107		81.8	117	05/13/2022	RAL
Mercury - BSD	EPA-7471	106	1	81.8	117	05/13/2022	RAL

ALS Test Batch ID: 178783 - Soil by EPA-6020

					LIN	IITS	ANALYSIS	ANALYSIS BY
SPIKED COMPOUND	METHOD	%REC	RPD	QUAL	MIN	MAX	DATE	
Arsenic - BS	EPA-6020	93.6			80	120	05/12/2022	RAL
Arsenic - BSD	EPA-6020	96.7	3		80	120	05/12/2022	RAL
Barium - BS	EPA-6020	96.5			80	120	05/12/2022	RAL
Barium - BSD	EPA-6020	99.3	3		80	120	05/12/2022	RAL
Cadmium - BS	EPA-6020	96.3			80	120	05/12/2022	RAL
Cadmium - BSD	EPA-6020	101	5		80	120	05/12/2022	RAL
Chromium - BS	EPA-6020	91.5			80	120	05/12/2022	RAL
Chromium - BSD	EPA-6020	95.3	4		80	120	05/12/2022	RAL
Copper - BS	EPA-6020	96.2			80	120	05/12/2022	RAL
Copper - BSD	EPA-6020	100	4		80	120	05/12/2022	RAL
Lead - BS	EPA-6020	92.9			80	120	05/12/2022	RAL
Lead - BSD	EPA-6020	95.9	3		80	120	05/12/2022	RAL
Nickel - BS	EPA-6020	98.3			80	120	05/12/2022	RAL
Nickel - BSD	EPA-6020	103	5		80	120	05/12/2022	RAL
Selenium - BS	EPA-6020	91.9			80	120	05/12/2022	RAL
Selenium - BSD	EPA-6020	96.4	5		80	120	05/12/2022	RAL
Silver - BS	EPA-6020	83.9			80	120	05/12/2022	RAL
Silver - BSD	EPA-6020	88.2	5		80	120	05/12/2022	RAL
Zinc - BS	EPA-6020	96.2			80	119	05/12/2022	RAL
Zinc - BSD	EPA-6020	100	4		80	119	05/12/2022	RAL

APPROVED BY

Mler, Perry

Laboratory Director

Page 21

ADDRESS 8620 Holly Drive, Suite 100, Everett, WA 9820 | PHONE 425-356-2600 | FAX 425-356-2626 ALS Group USA, Corp dba ALS Environmental

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

44 00	Of (SECEIVED IN GOOD CONDITION?	1	7	-			RCRA-8+ U, NI, ZN ON ss Days' Stel THT HER: She
15022NS	Prage	OTHER (Specify)							Cu, NJC, ACRA Cu, N i, JESTED in Business Days OTHER: Specify:
7	Date 9/1/27	-0	PCLP-Metals Pesticides by EPA 8081 Metals-MTCA-5 RCRA-8X Pri Pol TAL Metals Other (Specify) + Cu, Ni, Zi CLP-Metals VOA Semi-Vol Pest Pri Pol TAL	V V					ND REQUI
Icanhai			EDB / EDC by EPA 8260 SIM (water) Semivolatile Organic Compounds by EPA 8270 Semivolatile Organic Wydrocarbons (PAH) by EPA 8270 SIM	8		\bigotimes			<u>+ †h€n g</u> etals & Inorg 3] [2]
Aliaiyais nequest		REQUESTED	MTBE by EPA 8021 MTBE by EPA 8260 Molatile Organic Compounds by EPA 8260	×	×				Organic, M
		ANALYSIS REC	BLEX PÀ E64 8051			8			12 Let 23
			DE LAB#	1 1	2	3			ants samp my 5/10 Graup Srich
	ε	am	AN 19026 Chackage Chackage Agrapinet Agrapinet Agrapinet TIME TYPE	Joy Joy	103 760	1052 Sol		-	- Kin wants
Fax (425) 356-2600 Fax (425) 356-2626	/www.alsglobal.cc	te Lawn	Nimpmany 12546 Many WA 91 Many WA 91 Many WA 91 Post Road	5/10/22	->1	4		1.1	any, Date, Ti
Fax (425)	http://	(wold of	C King	7		5-1-215		14	SPECIAL INSTRUCTIONS SIGNATURES (Name, Comp . Relinquished By: 2000 Received By: 2000
		PROJECT ID:	PROJECT MANAGER: ADDRESS: PHONE: Sur E-MAIL: INVOICE TO COMPANY: ATTENTION: ADDRESS: SAN	051022	2. 0510	3. Composite		 10.	SIGNATURES (Na SIGNATURES (Na 1. Relinquished By: Received By:

Generator acknowledges that no material change has occurred either in the characteristics or in the process generating the material. Form Approved. OMB No. 2050-0039

<u>-</u>----

riea	se print or type.	. 1. Generator ID Nu	mber	2 Page 1 (of 3. Emerge	ncy Response	e Phone	4. Manifest 1	racking N	umber		<u> </u>
\uparrow	UNIFORM HAZARDOU WASTE MANIFEST	3	0054560	1		483-3		01	721	.8061	FL	E
	5. Generator's Name and M Former Cascad	ailing Address			Generator's	Site Address	i (if different th	an mailing addres	s)			
	205 Prospect S	-			SAME				50	nn		
	Bellingham, W				JUNNE			V 85	s U s	0031		
	Generator's Phone: 6. Transporter 1 Company (lame						U.S. EPAID N	umber			_
	Clean Harbors Environmental Services, Inc. MAD039322250											
	7. Transporter 2 Company Name											
	Tri-State Motor Transit, Co. 1 MOD095038998											
	8. Designated Facility Name and Site Address U.S. EPA ID Number											
	Clean Harbors Environmental Services, Inc. NED981723513											
	Kimball, NE 69	145						1				
	Facility's Phone:	(308) 235-4	O12 Shipping Name, Hazard Class, II	Number	·······	10. Conta	iners	11. Total	12. Unit			_
	9a. 96. U.S. DOT Desc HM and Packing Group		ompany name, nazaro olass, n		-	No.	Туре	Quantity	WL/Vol.	13. Wasle	Codes	
~	1 RQ. NA307	7. HAZARDOU	IS WASTE, SOLID, N	.0.S.,				11000	8	F002		
GENERATOR			E), 9, PG III (F002 =			004	BA	4000	<i>r</i>			
ER.						•					<u> </u>	
GEN	2.											
Ī												
	3						1					
								!				
									ļ			_
	4.											
					1							
	14 Special Handling Instru	ctions and Additional Inf			. 				<u>.</u>	<u>I. </u>		
	I.CAX45U451	LK4#1.	TI TAFUIA									
								Contract re	tained b	y generator col	nters age	ncy
	authonity on initial to	insporter to add	or substitute additional IN: Thereby declare that the con	transporters on (Denerator's	Denail for	DUIDOSES	of transports	itiori eik Noping nam	e, and are classified	Dackaged.	2 téty
	marked and tabeled/n	lacarded, and are in all r	respects in proper condition for th	ansport according to ap	oplicable interna	ational and na	tional governm	nental regulations	If export s	hipment and I am the	Primary	
	Exporter, I certify that I certify that the waste	the contents of this cons minimization statement	signment conform to the terms of identified in 40 CFR 262.27(a) (i	the attached EPA Ackn f I am a large quantity g	iowledgment of generator) or (b) (if I am a sm	nall quantity ge	enerator) is true.				
	Generator's/Offeror's Printe				Signatule		· .			Month		Year
ļ	<u> </u>	onja Max	<u> </u>			$\frac{1}{1}$	<u> </u>			17	20 2	22
E	16. International Shipments		o U.S.	Export fro	m U.S.		ntry/exit:					
Ľ	Transporter signature (for					Date lea	ving U.S.:			<u> </u>		
TRANSPORTER INT'L	17. Transporter Acknowledg Transporter 1 Printed/Type		GIDI 1		Signature	1	1	11		Month	Day 1	Year
စ်	I'm l	Echiles!		1	J		KI	ݱ		7	20 1	4
NS I	Transporter 2 Printed/Type	1 A			Signature			N		Month	Day T	***
3	Quenti	1 KOS	<u> </u>	"	<u>(XUE</u>	httr	וא	000	-		21	24
l†	18. Discrepancy								<u> </u>			
	18a. Discrepancy Indication	n Space 🔛 Qua	ntity	Туре		Residue		Partial Re	jection	L] Fi	ull Rejection	י
					Маг	ifest Referen	ce Number:					
≿	18b. Alternate Facility (or C	ienerator)						U.S. EPAID	Number			
5												
E	Facility's Phone:									Month	Day	Year
녤	18c. Signature of Alternate	Facility (or Generator)									,	
DESIGNATED FACILITY	10 Hazartaun Manta Dar	nt Mananoment Mather	l Codes (i.e., codes for hazardou	s waste treatment dien	osal, and recvi	cling systems	}					
	1. Inazaroous vyaste Rep	on management method	2.		3.		·	4.				
$ ^{a}$	H040						<u></u>					
	20. Designated Facility Ov	ner or Operator: Certific	ation of receipt of hazardous mat	erials covered by the n		as noted in It	em 18a				0	V
	Printed/Typed Name		OL.		Signature	HI	1	$\bigcirc $		Month	, , , , , , , , , , , , , , , , , , ,	Year 772
Ē		omas	var		(<u> </u>						
ЕP	A Form 8700-22 (Rev. 12 Clean Harbors by	- i /) Previous equor is the appropriate	ns are obsolete. permits for and will acc	ept the waste the	evenerator	ts shippin	GIONATE 4		11005	5563	··· PP	STEM

CleanHa	rbors	Land Disposal Rest Notification For		Page : 1 of 1		
ENVIRONMENTAL	SERVICES"			Printed Date :Jul 15, 2022		
MANIFEST INFOR						
Generator :	Former Cascade Laundry		Manifest	Tracking Info.		
Address:	205 Prospect Street Bellingham,WA 98225		017218061	FLE		
EPA ID #:	WAH000054560		Sales Order No:	2110055563		
	<u> </u>	Certification		<u>Applies to</u> <u>Manifest Line</u> <u>Items</u>		
This waste is not n	estricted as specified in 40 C	FR 268 Subpart D.		1.		
Waste analysis da Signature :	ta, where available, is attach	ed. Print Name	<u>Sonja Mi</u>	 ۸×		
Title :		Date	7/20/22			

7

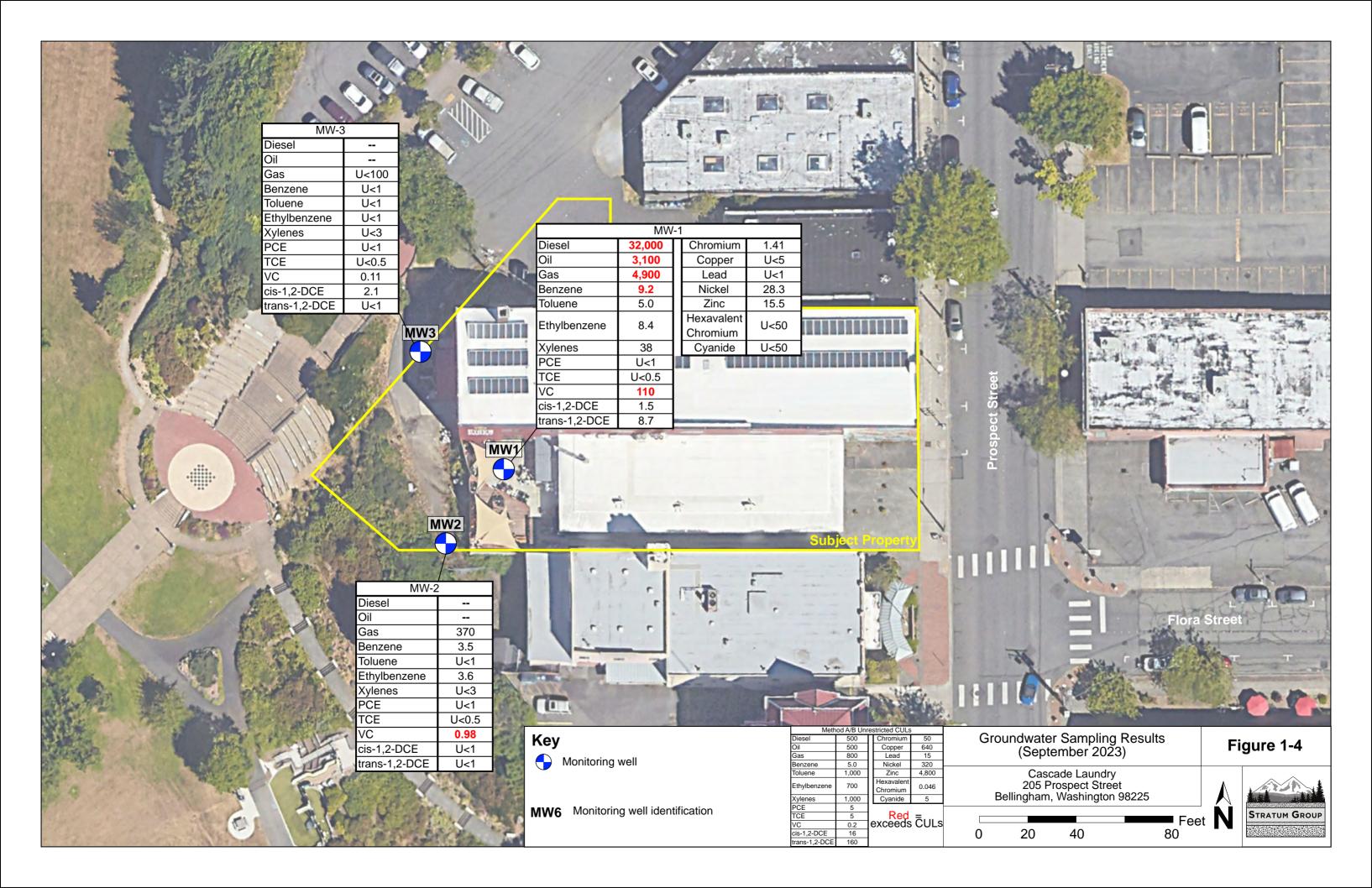
•

.

Clean Harbors Manifest Addendum

2

.


Page:1 of 1

Generator ID Number	**************************************	Sales Order Number:
WAH00005456	0 017218061FLE	2110055563
Former Cascade L	aundry	
205 Prospect Stree	et	
Bellingham, WA98	225	
Line #: Profile No:	Profile Description:	Waste Codes
1. CH2450431	SOIL - FORMER LAUN	DROMAT SITE
	CH Container #	Customer Container #
	C00000002	
	C00000003	
	C00000004	
	C00000005	

APPENDIX IV

Groundwater Sampling (2023)

- Groundwater sample map
- September 2023 Water Sample Laboratory results
- Summary of groundwater sample results (2018-2023)

ENVIRONMENTAL CHEMISTS

James E. Bruya, Ph.D. Yelena Aravkina, M.S. Michael Erdahl, B.S. Vineta Mills, M.S. Eric Young, B.S. 5500 4th Avenue South Seattle, WA 98108 (206) 285-8282 fbi@isomedia.com www.friedmanandbruya.com

October 6, 2023

Kim Ninnemann, Project Manager Stratum Group 2102 Young St Bellingham, WA 98225

Dear Ms Ninnemann:

Included are the results from the testing of material submitted on September 20, 2023 from the Cascade Laundry, F&BI 309284 project. There are 14 pages included in this report. Any samples that may remain are currently scheduled for disposal in 30 days, or as directed by the Chain of Custody document. If you would like us to return your samples or arrange for long term storage at our offices, please contact us as soon as possible.

We appreciate this opportunity to be of service to you and hope you will call if you should have any questions.

Sincerely,

FRIEDMAN & BRUYA, INC.

Michael Erdahl Project Manager

Enclosures STG1006R.DOC

ENVIRONMENTAL CHEMISTS

CASE NARRATIVE

This case narrative encompasses samples received on September 20, 2023 by Friedman & Bruya, Inc. from the Stratum Group Cascade Laundry, F&BI 309284 project. Samples were logged in under the laboratory ID's listed below.

<u>Laboratory ID</u>	<u>Stratum Group</u>
309284 -01	MW-1
309284 -02	MW-2
309284 -03	MW- 3

Sample MW-1 was sent to Fremont Analytical for EPH, VPH, cyanide, and hexavalent chromium analyses. The report is enclosed.

All quality control requirements were acceptable.

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/23 Date Received: 09/20/23 Project: Cascade Laundry, F&BI 309284 Date Extracted: 09/25/23 Date Analyzed: 09/25/23 and 09/26/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES AND TPH AS GASOLINE USING METHODS 8021B AND NWTPH-Gx

<u>Sample ID</u> Laboratory ID	<u>Benzene</u>	<u>Toluene</u>	Ethyl <u>Benzene</u>	Total <u>Xylenes</u>	Gasoline <u>Range</u>	Surrogate (<u>% Recovery</u>) (Limit 50-150)
MW-1 309284-01	9.2	5.0	8.4	38	4,900	95
MW-2 309284-02	3.5	<1	3.6	<3	370	89
MW-3 309284-03	<1	<1	<1	<3	<100	83
Method Blank ^{03-2189 MB}	<1	<1	<1	<3	<100	85

Results Reported as ug/L (ppb)

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/23 Date Received: 09/20/23 Project: Cascade Laundry, F&BI 309284 Date Extracted: 09/21/23 Date Analyzed: 09/21/23

RESULTS FROM THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL AND MOTOR OIL USING METHOD NWTPH-Dx

Results Reported as ug/L (ppb)

<u>Sample ID</u> Laboratory ID	Diesel Range (C10-C25)	Motor Oil Range (C25-C36)	Surrogate <u>(% Recovery)</u> (Limit 50-150)
MW-1 309284-01	32,000 x	3,100	127
Method Blank 03-2275 MB	<50	<250	110

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-1 09/20/23 09/21/23 09/22/23 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stratum Group Cascade Laundry, F&BI 309284 309284-01 309284-01.261 ICPMS2 SP
Analyte:		Concentration ug/L (ppb)		
Chromium		1.41		
Copper		<5		
Lead		<1		
Nickel		28.3		
Zinc		15.5		

ENVIRONMENTAL CHEMISTS

Analysis For Total Metals By EPA Method 6020B

Client ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Blank NA 09/21/23 09/21/23 Water ug/L (ppb)	Client: Project: Lab ID: Data File: Instrument: Operator:	Stratum Group Cascade Laundry, F&BI 309284 I3-730 mb I3-730 mb.106 ICPMS2 SP
Analyte:	Concentration ug/L (ppb)		
Chromium	<1		
Copper	$<\!\!5$		
Lead	<1		
Nickel	<1		
Zinc	<5		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-1 09/20/23 09/22/23 09/22/23 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stratum Group Cascade Laundry, F&BI 309284 309284-01 092221.D GCMS13 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 104 105 104	Lower Limit: 71 68 62	Upper Limit: 132 139 136
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	ene (EDC)	$ \begin{array}{c} 110 \\ <1 \\ <5 \\ 8.7 \\ <1 \\ 1.5 \\ <0.2 \\ <1 \\ <0.5 \\ <1 \end{array} $		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-2 09/20/23 09/22/23 09/22/23 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stratum Group Cascade Laundry, F&BI 309284 309284-02 092219.D GCMS13 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 103 100 98	Lower Limit: 71 68 62	Upper Limit: 132 139 136
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroeth 1,1-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	ethene ene (EDC)	0.98 <1 <1 <5 <1 <1 <1 <0.2 <1 <0.5 <1		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	MW-3 09/20/23 09/22/23 09/22/23 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stratum Group Cascade Laundry, F&BI 309284 309284-03 092220.D GCMS13 MD
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 100 94 97	Lower Limit: 71 68 62	Upper Limit: 132 139 136
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	e ethene ene e (EDC)	$\begin{array}{c} 0.11 \\ <1 \\ <1 \\ <5 \\ <1 \\ <1 \\ 2.1 \\ <0.2 \\ <1 \\ <0.5 \\ <1 \end{array}$		

ENVIRONMENTAL CHEMISTS

Client Sample ID: Date Received: Date Extracted: Date Analyzed: Matrix: Units:	Method Bla Not Applica 09/22/23 09/22/23 Water ug/L (ppb)		Client: Project: Lab ID: Data File: Instrument: Operator:	Stratum Group Cascade Laundry, F&BI 309284 03-2151 mb 092208.D GCMS11 LM
Surrogates: 1,2-Dichloroethane Toluene-d8 4-Bromofluorobenz		% Recovery: 103 99 102	Lower Limit: 78 84 72	Upper Limit: 126 115 130
Compounds:		Concentration ug/L (ppb)		
Vinyl chloride Chloroethane 1,1-Dichloroethene Methylene chloride trans-1,2-Dichloroet 1,1-Dichloroethane cis-1,2-Dichloroethane 1,2-Dichloroethane 1,1,1-Trichloroethane Trichloroethene Tetrachloroethene	ethene ene (EDC)	<0.02 <1 <1 <5 <1 <1 <1 <0.2 <1 <0.5 <1		

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/23 Date Received: 09/20/23 Project: Cascade Laundry, F&BI 309284

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR BENZENE, TOLUENE, ETHYLBENZENE, XYLENES, AND TPH AS GASOLINE USING EPA METHOD 8021B AND NWTPH-Gx

Laboratory Code: 309284-03 (Duplicate) Reporting Sample Duplicate RPD Analyte Units Result Result (Limit 20) Benzene <1 <1 ug/L (ppb) nm Toluene ug/L (ppb) <1 <1 nm Ethylbenzene ug/L (ppb) <1 <1 nm Xylenes <3 <3 ug/L (ppb) nm Gasoline ug/L (ppb) <100 <100 nm

		Percent				
	Reporting	Spike	Recovery	Acceptance		
Analyte	Units	Level	LCS	Criteria		
Benzene	ug/L (ppb)	50	96	70-130		
Toluene	ug/L (ppb)	50	92	70 - 130		
Ethylbenzene	ug/L (ppb)	50	94	70-130		
Xylenes	ug/L (ppb)	150	93	70-130		
Gasoline	ug/L (ppb)	1,000	100	70-130		

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/23 Date Received: 09/20/23 Project: Cascade Laundry, F&BI 309284

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL PETROLEUM HYDROCARBONS AS DIESEL EXTENDED USING METHOD NWTPH-Dx

			Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Diesel Extended	ug/L (ppb)	2,500	116	128	72-139	10

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/23 Date Received: 09/20/23 Project: Cascade Laundry, F&BI 309284

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR TOTAL METALS USING EPA METHOD 6020B

Laboratory Code: 309286-01 (Matrix Spike)

				Percent	Percent		
	Reporting	Spike	Sample	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	Result	MS	MSD	Criteria	(Limit 20)
Chromium	ug/L (ppb)	20	1.05	97	95	75 - 125	2
Copper	ug/L (ppb)	20	8.79	$85 \mathrm{b}$	82 b	75 - 125	4 b
Lead	ug/L (ppb)	10	<1	93	92	75 - 125	1
Nickel	ug/L (ppb)	20	1.13	93	92	75 - 125	1
Zinc	ug/L (ppb)	50	46.0	91 b	86 b	75 - 125	6 b

Laboratory couc.	Laboratory	Control De	linpic	
			Percent	
	Reporting	Spike	Recovery	Acceptance
Analyte	Units	Level	LCS	Criteria
Chromium	ug/L (ppb)	20	94	80-120
Copper	ug/L (ppb)	20	94	80-120
Lead	ug/L (ppb)	10	94	80-120
Nickel	ug/L (ppb)	20	91	80-120
Zinc	ug/L (ppb)	50	95	80-120

ENVIRONMENTAL CHEMISTS

Date of Report: 10/06/23 Date Received: 09/20/23 Project: Cascade Laundry, F&BI 309284

QUALITY ASSURANCE RESULTS FOR THE ANALYSIS OF WATER SAMPLES FOR VOLATILES BY EPA METHOD 8260D

Laboratory Code: 309320-01 (Matrix Spike)

· · ·	Reporting	Spike	Sample	Percent Recovery	Acceptance
Analyte	Units 0	Level	Result	MS	Criteria
Vinyl chloride	ug/L (ppb)	10	< 0.02	102	50-150
Chloroethane	ug/L (ppb)	10	<1	102	50 - 150
1,1-Dichloroethene	ug/L (ppb)	10	<1	105	50 - 150
Methylene chloride	ug/L (ppb)	10	<5	101	50 - 150
trans-1,2-Dichloroethene	ug/L (ppb)	10	<1	102	50 - 150
1,1-Dichloroethane	ug/L (ppb)	10	<1	108	50 - 150
cis-1,2-Dichloroethene	ug/L (ppb)	10	<1	106	10-211
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	< 0.2	116	50 - 150
1,1,1-Trichloroethane	ug/L (ppb)	10	<1	105	50 - 150
Trichloroethene	ug/L (ppb)	10	< 0.5	112	35 - 149
Tetrachloroethene	ug/L (ppb)	10	8.2	118 b	50 - 150

Laboratory Couc. Laboratory Co	and Sampio		Percent	Percent		
	Reporting	Spike	Recovery	Recovery	Acceptance	RPD
Analyte	Units	Level	LCS	LCSD	Criteria	(Limit 20)
Vinyl chloride	ug/L (ppb)	10	106	103	64-142	3
Chloroethane	ug/L (ppb)	10	110	101	70 - 130	9
1,1-Dichloroethene	ug/L (ppb)	10	113	106	64-140	6
Methylene chloride	ug/L (ppb)	10	109	104	43-134	5
trans-1,2-Dichloroethene	ug/L (ppb)	10	109	103	70 - 130	6
1,1-Dichloroethane	ug/L (ppb)	10	112	104	70 - 130	7
cis-1,2-Dichloroethene	ug/L (ppb)	10	114	105	70 - 130	8
1,2-Dichloroethane (EDC)	ug/L (ppb)	10	112	102	70 - 130	9
1,1,1-Trichloroethane	ug/L (ppb)	10	109	102	70-130	7
Trichloroethene	ug/L (ppb)	10	109	98	70-130	11
Tetrachloroethene	ug/L (ppb)	10	107	108	70-130	1

ENVIRONMENTAL CHEMISTS

Data Qualifiers & Definitions

a - The analyte was detected at a level less than five times the reporting limit. The RPD results may not provide reliable information on the variability of the analysis.

b - The analyte was spiked at a level that was less than five times that present in the sample. Matrix spike recoveries may not be meaningful.

ca - The calibration results for the analyte were outside of acceptance criteria, biased low; or, the calibration results for the analyte were outside of acceptance criteria, biased high, with a detection for the analyte in the sample. The value reported is an estimate.

c - The presence of the analyte may be due to carryover from previous sample injections.

cf - The sample was centrifuged prior to analysis.

d - The sample was diluted. Detection limits were raised and surrogate recoveries may not be meaningful.

dv - Insufficient sample volume was available to achieve normal reporting limits.

f - The sample was laboratory filtered prior to analysis.

fb - The analyte was detected in the method blank.

fc - The analyte is a common laboratory and field contaminant.

hr - The sample and duplicate were reextracted and reanalyzed. RPD results were still outside of control limits. Variability is attributed to sample inhomogeneity.

hs - Headspace was present in the container used for analysis.

ht – The analysis was performed outside the method or client-specified holding time requirement.

ip - Recovery fell outside of control limits due to sample matrix effects.

j - The analyte concentration is reported below the standard reporting limit. The value reported is an estimate.

 ${\rm J}$ - The internal standard associated with the analyte is out of control limits. The reported concentration is an estimate.

jl - The laboratory control sample(s) percent recovery and/or RPD were out of control limits. The reported concentration should be considered an estimate.

js - The surrogate associated with the analyte is out of control limits. The reported concentration should be considered an estimate.

 $k-\mbox{The calibration results}$ for the analyte were outside of acceptance criteria, biased high, and the analyte was not detected in the sample.

lc - The presence of the analyte is likely due to laboratory contamination.

L - The reported concentration was generated from a library search.

nm - The analyte was not detected in one or more of the duplicate analyses. Therefore, calculation of the RPD is not applicable.

 $\rm pc$ - The sample was received with incorrect preservation or in a container not approved by the method. The value reported should be considered an estimate.

ve - The analyte response exceeded the valid instrument calibration range. The value reported is an estimate.

vo - The value reported fell outside the control limits established for this analyte.

x - The sample chromatographic pattern does not resemble the fuel standard used for quantitation.

SAMPLE CHAIN OF CUSTODY O Q 100/33 The SAMPLES (Surve) 25% SAMPLES (Surve) TURNAROUND THE PROJECT (SURATARY CALL (ALLARY CALL)) Note: TURNAROUND THE PROJECT (SURATARY CALL) Note: TURNAROUND THE PROJECT (SURATARY CALL) Note: TURNAROUND THE PROJECT (SURATARY CALL) Note: Sumpled turnound turnou			Fn. (200) 200-0202	ı, Inc.								MW- 3	MW-2	MW-1	Sample ID		Phone 360 717 9429 Em	City, State, ZIP <u>Relliventum who get /</u>	Address 1 1 - 1	Company VIAMIN VIEN	That has here in the second se	RATE KIM WINNEMANA	200 000
SAMPLE CHAIN OF CUSTODY OF a0 [$a0/43$] SAMPLERS We prove PROJECTIVAME POT REMARKS Time Sample PO # Time Sample ANALLE LAUNAME TIENARKS Time Sample ANALLE DISPOSA Time Sample ANALLE DISPOSA Time Sample Time Sample Time Sample ANALLE DISPOSA ANALLE DISPOSA<	Incorrect of .	Relinquished by:	Received by:	Relinguished by A	/. S]							03A 5	1	1- A 10	Lab ID		ail Kimesha	man wit		46	5	inv: nv	,
Image: Sample CHAIN OF CUSTODY $Oq a0 d3$ $L'q / W3$ PROJECT/NAME PO # TUBNAROUND TIN PROJECT/NAME PO # TUBNAROUND TIN REMARKS Invoice to the sample PO # Project specific RLs? Ves / No Invoice to the sample Sample Sample # af Usin Af M Usin Af M Sample Time Sample # af MM/VISIS REQUESTED Default Dispose Invoice specific RLs? Ves / No NWTPPH-Gx Sample Sample Jars NWTPPH-Gx NWTPPH-Gx Default Dispose after 3 Invoice specific RLs? Ves / No NWTPH-GX Sample Jars NWTPH-GX NWTPH-GX Default Dispose after 3 Invoice samples NWTPH-GX NWTPH-GX Notes Invoice samples NWTPH-GX NWTPH-GX Notes Invoice samples NWTPH-GX Notes Notes Invoice samples NWTPH-GX Notes Notes Invoice samples Notes Notes Notes Invoice samples Notes Notes <t< td=""><td></td><td></td><td>June</td><td></td><td>GNATURE</td><td></td><td></td><td></td><td></td><td></td><td></td><td>K</td><td></td><td>9/15/2023</td><td>Date Sampled</td><td>· /</td><td>the purp</td><td>1226</td><td>> -]</td><td></td><td></td><td></td><td></td></t<>			June		GNATURE							K		9/15/2023	Date Sampled	· /	the purp	1226	> -]				
Y $0q a0/a3$ $141 \vee 03$ Page #												1648	0171	1540	Time Sampled				REMARI	(sich	PROJEC	SAMPLE	SAMPLE
Y $0q a0/a3$ $141 \vee 03$ Page #				Kin								~		120	Sample Type		pecific RL	5	2	de lav	TNAME	RS (Mono	CHAIN
Y $0q a0/a3$ $141 \vee 03$ Page #			AN		PRI							-F	N	9	# of Jars					indr		ture	OF (
Y $0q a0/a3$ $141 \vee 03$ Page #			HP	nne	NT N/									X	·····		N / S			<u> </u>			TSD
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				mu	ME				 			5	\mathbf{x}	$ \frac{1}{2}$					+			4	OD
Page # (vw 3 Page # (of TURNAROUND TIM XStandard turnaround RUSH Rush charges authorized b STED STED Default: Dispose after 3 Notes			Z	LI				D a m	<u> </u>									ارو		hour		Ĺ	Y
Page # (vw 3 Page # (of TURNAROUND TIM XStandard turnaround RUSH Rush charges authorized b STED STED Default: Dispose after 3 Notes								oles							VOCs EPA 8260	ANAL	1	2	NVO	sti l	PC	đ	09
Page # (vw 3 Page # (of TURNAROUND TIM XStandard turnaround RUSH Rush charges authorized b STED STED Default: Dispose after 3 Notes				Ú				rece	 						· · · · · · · · · · · · · · · · · · ·	YSES			CET	au)#		120
Page # (vw 3 Page # (of TURNAROUND TIM XStandard turnaround RUSH Rush charges authorized b STED STED Default: Dispose after 3 Notes			F8	MA	2			ivel	 							SREG		h Ne	Ó	ndu			(23
Page # 1 001 TURNAROUND TIM trandard turnaround tur			0	LLL.	DMP.			12	 <u> </u>						nvoc	UES		<u></u>					
Page # 0 of TURNAROUND TIM Indard turnaround SH charges authorized b scharges authorized b her $\frac{1}{2}$ $\frac{1}{2}$ $$			-	Jel D	ANA			11	 						Vaniore	TED	Def			Rusl			н
OUND TIM maround maround s DISPOSA ples Notes Notes <u>h (Mrw</u> <u>h (Mrw</u> <u>h (Mrw</u> <u>h (Mrw</u> <u>h (Mrw</u>) <u>h (Mrw</u>)			-					Å	 	-		+		$\left \begin{array}{c} \end{array} \right \right\rangle$	metals #		ault:	chive ther	SAN	n char	andar ISH	TUR	
				<u> </u>	+				ZINC	least	milkel	th Unmiver	hex chromit	X isyper			<u>Dispose after 30 day</u>	samples	APLE DISPOSAL	ges authorized by:	rd turnaround	* OI	-

3600 Fremont Ave. N. Seattle, WA 98103 T: (206) 352-3790 F: (206) 352-7178 info@fremontanalytical.com

Friedman & Bruya Michael Erdahl 5500 4th Ave S Seattle, WA 98108

RE: 309284 Work Order Number: 2309246

October 04, 2023

Attention Michael Erdahl:

Fremont Analytical, Inc. received 1 sample(s) on 9/20/2023 for the analyses presented in the following report.

Cyanide by SM 4500-CN C, E Extractable Petroleum Hydrocarbons by NWEPH Hexavalent Chromium by SM 3500 Cr B Volatile Petroleum Hydrocarbons by NWVPH

This report consists of the following:

- Case Narrative
- Analytical Results
- Applicable Quality Control Summary Reports
- Chain of Custody

All analyses were performed consistent with the Quality Assurance program of Fremont Analytical, Inc. Please contact the laboratory if you should have any questions about the results.

Thank you for using Fremont Analytical.

Sincerely,

Brianna Barnes Project Manager

DoD-ELAP Accreditation #79636 by PJLA, ISO/IEC 17025:2017 and QSM 5.3 for Environmental Testing ORELAP Certification: WA 100009 (NELAP Recognized) for Environmental Testing Washington State Department of Ecology Accredited for Environmental Testing, Lab ID C910

CLIENT: Project:	Friedman & Bruya 309284	Work Order S	ample Summary
Work Order:	2309246 Client Sample ID	Date/Time Collected	Date/Time Received
2309246-001	MW-1	09/18/2023 3:40 PM	09/20/2023 1:18 PM

Note: If no "Time Collected" is supplied, a default of 12:00AM is assigned

Case Narrative

WO#: **2309246** Date: **10/4/2023**

CLIENT:Friedman & BruyaProject:309284

I. SAMPLE RECEIPT:

Samples receipt information is recorded on the attached Sample Receipt Checklist.

II. GENERAL REPORTING COMMENTS:

Results are reported on a wet weight basis unless dry-weight correction is denoted in the units field on the analytical report ("mg/kg-dry" or "ug/kg-dry").

Matrix Spike (MS) and MS Duplicate (MSD) samples are tested from an analytical batch of "like" matrix to check for possible matrix effect. The MS and MSD will provide site specific matrix data only for those samples which are spiked by the laboratory. The sample chosen for spike purposes may or may not have been a sample submitted in this sample delivery group. The validity of the analytical procedures for which data is reported in this analytical report is determined by the Laboratory Control Sample (LCS) and the Method Blank (MB). The LCS and the MB are processed with the samples and the MS/MSD to ensure method criteria are achieved throughout the entire analytical process.

III. ANALYSES AND EXCEPTIONS:

Exceptions associated with this report will be footnoted in the analytical results page(s) or the quality control summary page(s) and/or noted below.

Note: Original results for Aliphatic Hydrocarbon (C10-C12) exceeded calibration range of the instrument. Subsequent dilution and reanalysis occurred outside of method holding time. Both results are presented for review.

Qualifiers & Acronyms

WO#: **2309246** Date Reported: **10/4/2023**

Qualifiers:

- * Flagged value is not within established control limits
- B Analyte detected in the associated Method Blank
- D Dilution was required
- E Value above quantitation range
- H Holding times for preparation or analysis exceeded
- I Analyte with an internal standard that does not meet established acceptance criteria
- J Analyte detected below Reporting Limit
- N Tentatively Identified Compound (TIC)
- Q Analyte with an initial or continuing calibration that does not meet established acceptance criteria
- S Spike recovery outside accepted recovery limits
- ND Not detected at the Reporting Limit
- R High relative percent difference observed

Acronyms:

%Rec - Percent Recoverv **CCB** - Continued Calibration Blank CCV - Continued Calibration Verification **DF** - Dilution Factor **DUP - Sample Duplicate** HEM - Hexane Extractable Material ICV - Initial Calibration Verification LCS/LCSD - Laboratory Control Sample / Laboratory Control Sample Duplicate MCL - Maximum Contaminant Level MB or MBLANK - Method Blank MDL - Method Detection Limit MS/MSD - Matrix Spike / Matrix Spike Duplicate PDS - Post Digestion Spike Ref Val - Reference Value **REP - Sample Replicate RL** - Reporting Limit **RPD - Relative Percent Difference SD** - Serial Dilution SGT - Silica Gel Treatment SPK - Spike

Surr - Surrogate

Analytical Report

 Work Order:
 2309246

 Date Reported:
 10/4/2023

CLIENT: Friedman & Bruya Project: 309284							
.ab ID: 2309246-001 Client Sample ID: MW-1				Collection Matrix: V		9/18/2	023 3:40:00 PN
Analyses	Result	PQL	Qual	Units	DF	Date	Analyzed
Extractable Petroleum Hydrocart	oons by NWE	<u>2H</u>		Batcl	n ID: 41	503	Analyst: AP
Aliphatic Hydrocarbon (C8-C10)	100	79.6		µg/L	1	10/3/	2023 10:52:12 AM
Aliphatic Hydrocarbon (C10-C12)	46.6	39.8		µg/L	1	10/3/	2023 10:52:12 AM
Aliphatic Hydrocarbon (C12-C16)	ND	39.8		μg/L	1	10/3/	2023 10:52:12 AM
Aliphatic Hydrocarbon (C16-C21)	ND	39.8		μg/L	1	10/3/	2023 10:52:12 AM
Aliphatic Hydrocarbon (C21-C34)	ND	39.8		μg/L	1	10/3/	2023 10:52:12 AM
Aromatic Hydrocarbon (C8-C10)	666	79.6		μg/L	1	10/2/	2023 7:02:36 PM
Aromatic Hydrocarbon (C10-C12)	460	39.8		μg/L	1	10/2/	2023 7:02:36 PM
Aromatic Hydrocarbon (C12-C16)	70.6	39.8		µg/L	1	10/2/	2023 7:02:36 PM
Aromatic Hydrocarbon (C16-C21)	ND	39.8		µg/L	1	10/2/	2023 7:02:36 PM
Aromatic Hydrocarbon (C21-C34)	54.9	39.8		µg/L	1	10/2/	2023 7:02:36 PM
Surr: 1-Chlorooctadecane	45.1	50 - 150	S	%Rec	1	10/3/	2023 10:52:12 AM
Surr: o-Terphenyl	73.4	50 - 150		%Rec	1	10/2/	2023 7:02:36 PM
NOTES:							
S - Outlying surrogate recovery(ies) obse	erved.						
/olatile Petroleum Hydrocarbons	<u>s by NWVPH</u>			Batcl	n ID: 41	585	Analyst: MS
Aliphatic Hydrocarbon (C5-C6)	ND	40.0		µg/L	1	9/27/	2023 6:22:00 AM
Aliphatic Hydrocarbon (C6-C8)	53.7	40.0		μg/L	1	9/27/	2023 6:22:00 AM
Aliphatic Hydrocarbon (C8-C10)	193	40.0	Q	µg/L	1	9/27/	2023 6:22:00 AM
Aliphatic Hydrocarbon (C10-C12)	983	40.0	E	µg/L	1	9/27/	2023 6:22:00 AM
Aliphatic Hydrocarbon (C10-C12)	767	400	DH	µg/L	10	10/3/	2023 9:04:00 PM
Aromatic Hydrocarbon (C8-C10)	1,120	40.0		µg/L	1	9/27/	2023 6:22:00 AM
Aromatic Hydrocarbon (C10-C12)	774	40.0		µg/L	1	9/27/	2023 6:22:00 AM
Aromatic Hydrocarbon (C12-C13)	ND	40.0		μg/L	1	9/27/	2023 6:22:00 AM
Surr: 2,5-dibromotoluene	103	60 - 140		%Rec	1	9/27/	2023 6:22:00 AM
NOTES:							
Q - Associated calibration verification is a	above acceptance	criteria (124%	6, nominal 8	30-120). Resul	t may be	high-bias	ed.
Cyanide by SM 4500-CN C, E				Batcl	n ID: 410	608	Analyst: ME
Cyanide, Total	ND	0.0500		mg/L	1	9/28/	2023 1:24:00 PM
lexavalent Chromium by SM 350	<u>)0 Cr B</u>			Batcl	n ID: R8	6635	Analyst: ME

Work Order:	2309246						00	SUMMARY REF	
CLIENT:	Friedman &	Bruya					• -		-
Project:	309284						Cya	anide by SM 4500-C	NC, E
Sample ID: LCS-4	1608	SampType: LCS			Units: mg/L	Prep Date	e: 9/27/2023	RunNo: 86824	
Client ID: LCSW		Batch ID: 41608				Analysis Date	e: 9/28/2023	SeqNo: 1811853	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Cyanide, Total		0.267	0.0500	0.2500	0	107 76.2	141		
Sample ID: MB-41	608	SampType: MBLK			Units: mg/L	Prep Date	e: 9/27/2023	RunNo: 86824	
Client ID: MBLK	w	Batch ID: 41608				Analysis Date	e: 9/28/2023	SeqNo: 1811855	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Cyanide, Total		ND	0.0500						
Sample ID: 23092	39-001ADUP	SampType: DUP			Units: mg/L	Prep Date	e: 9/27/2023	RunNo: 86824	
Client ID: BATC	н	Batch ID: 41608				Analysis Date	e: 9/28/2023	SeqNo: 1811858	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Cyanide, Total		0.0819	0.0500				0.07430	9.73 20	
Sample ID: 23092	39-001AMS	SampType: MS			Units: mg/L	Prep Date	e: 9/27/2023	RunNo: 86824	
Client ID: BATCH	Н	Batch ID: 41608				Analysis Date	e: 9/28/2023	SeqNo: 1811859	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Cyanide, Total		0.377	0.0500	0.2500	0.07430	121 53.7	149		
Sample ID: 23092	39-001AMSD	SampType: MSD			Units: mg/L	Prep Date	e: 9/27/2023	RunNo: 86824	
Client ID: BATCI	н	Batch ID: 41608				Analysis Date	e: 9/28/2023	SeqNo: 1811860	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Cyanide, Total		0.355	0.0500	0.2500	0.07430	112 53.7	149 0.3770	5.98 30	

	9246 dman & Bruya 284					SUMMARY REPORT romium by SM 3500 Cr B
Sample ID: MB-86635	SampType: MBLK			Units: mg/L	Prep Date: 9/20/2023	RunNo: 86635
Client ID: MBLKW	Batch ID: R8663	5			Analysis Date: 9/20/2023	SeqNo: 1807579
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium, Hexavalent	ND	0.0500				
Sample ID: LCS-86635	SampType: LCS			Units: mg/L	Prep Date: 9/20/2023	RunNo: 86635
Client ID: LCSW	Batch ID: R8663	5			Analysis Date: 9/20/2023	SeqNo: 1807580
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium, Hexavalent	0.242	0.0500	0.2500	0	96.7 87.9 108	
Sample ID: 2309246-001	DDUP SampType: DUP			Units: mg/L	Prep Date: 9/20/2023	RunNo: 86635
Client ID: MW-1	Batch ID: R8663	5			Analysis Date: 9/20/2023	SeqNo: 1807582
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium, Hexavalent	ND	0.0500			0	20 H
Sample ID: 2309246-001	DMS SampType: MS			Units: mg/L	Prep Date: 9/20/2023	RunNo: 86635
Client ID: MW-1	Batch ID: R8663	5			Analysis Date: 9/20/2023	SeqNo: 1807583
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium, Hexavalent	0.242	0.0500	0.2500	0	96.7 74.8 115	Н
Sample ID: 2309246-001	DMSD SampType: MSD			Units: mg/L	Prep Date: 9/20/2023	RunNo: 86635
Client ID: MW-1	Batch ID: R8663	5			Analysis Date: 9/20/2023	SeqNo: 1807584
Analyte	Result	RL	SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Chromium, Hexavalent	0.244	0.0500	0.2500	0	97.7 74.8 115 0.2417	1.03 20 H

Work Order: 2309246

CLIENT: Friedman & Bruya

Project: 309284

QC SUMMARY REPORT

Extractable Petroleum Hydrocarbons by NWEPH

Sample ID: LCS-41503	SampType	e: LCS			Units: µg/L		Prep Date	: 9/18/202	23	RunNo: 867	771	
Client ID: LCSW	Batch ID:	41503					Analysis Date	9/26/202	23	SeqNo: 18	10484	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)		189	79.2	990.5	0	19.1	15.3	130				
Aliphatic Hydrocarbon (C10-C12)		189	39.6	495.3	0	38.2	32.2	130				
Aliphatic Hydrocarbon (C12-C16)		271	39.6	495.3	0	54.8	41	106				
Aliphatic Hydrocarbon (C16-C21)		323	39.6	495.3	0	65.3	47.9	103				
Aliphatic Hydrocarbon (C21-C34)		347	39.6	495.3	0	70.0	33.4	142				
Surr: 1-Chlorooctadecane		308		396.2		77.7	50	150				
Sample ID: LCS-41503	SampType	e: LCS			Units: µg/L		Prep Date	: 9/18/202	23	RunNo: 867	772	
Client ID: LCSW	Batch ID:	41503					Analysis Date	9/26/202	23	SeqNo: 181	10491	
Analyte		Result	RL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C8-C10)		303	79.2	990.5	0	30.6	23.9	130				
Aromatic Hydrocarbon (C10-C12)		242	39.6	495.3	0	48.8	41.8	130				
Aromatic Hydrocarbon (C12-C16)		244	39.6	495.3	0	49.4	36.7	113				
Aromatic Hydrocarbon (C16-C21)		433	39.6	495.3	0	87.3	52.2	124				
		497	39.6	495.3	0	100	50.5	139				
Aromatic Hydrocarbon (C21-C34)												

Sample ID: LCSD-41503	SampType: LCSD			Units: µg/L		Prep Da	te: 9/18/20	23	RunNo: 867	771	
Client ID: LCSW02	Batch ID: 41503					Analysis Da	te: 9/26/20	23	SeqNo: 181	10485	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	199	79.4	991.9	0	20.1	15.3	130	188.8	5.38	20	
Aliphatic Hydrocarbon (C10-C12)	209	39.7	496.0	0	42.2	32.2	130	189.1	10.2	20	
Aliphatic Hydrocarbon (C12-C16)	293	39.7	496.0	0	59.0	41	106	271.4	7.49	20	
Aliphatic Hydrocarbon (C16-C21)	342	39.7	496.0	0	68.9	47.9	103	323.3	5.51	20	
Aliphatic Hydrocarbon (C21-C34)	373	39.7	496.0	0	75.2	33.4	142	346.6	7.30	20	
Surr: 1-Chlorooctadecane	292		396.8		73.5	50	150		0		

Work Order: 2309246

CLIENT: Friedman & Bruya

Project: 309284

QC SUMMARY REPORT

Extractable Petroleum Hydrocarbons by NWEPH

Sample ID: LCSD-41503	SampType: LCSD			Units: µg/L		Prep Da	te: 9/18/20	23	RunNo: 867	772	
Client ID: LCSW02	Batch ID: 41503					Analysis Da	te: 9/26/20	23	SeqNo: 1810492		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C8-C10)	382	79.4	991.9	0	38.5	23.9	130	302.7	23.2	20	R
Aromatic Hydrocarbon (C10-C12)	299	39.7	496.0	0	60.3	41.8	130	241.8	21.2	20	R
Aromatic Hydrocarbon (C12-C16)	309	39.7	496.0	0	62.4	36.7	113	244.4	23.4	20	R
Aromatic Hydrocarbon (C16-C21)	454	39.7	496.0	0	91.5	52.2	124	432.6	4.75	20	
Aromatic Hydrocarbon (C21-C34)	463	39.7	496.0	0	93.3	50.5	139	497.2	7.18	20	
Surr: o-Terphenyl	371		396.8		93.5	50	150		0		

NOTES:

R - High RPD observed. Samples are non-detect for this analyte; result meets QC requirements.

Sample ID: MB-41503	SampType: MBLK			Units: µg/L		Prep Dat	te: 9/18/20)23	RunNo: 867	71	
Client ID: MBLKW	Batch ID: 41503					Analysis Dat	te: 9/27/20)23	SeqNo: 181	1475	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C8-C10)	ND	79.5		0	0						
Aliphatic Hydrocarbon (C10-C12)	ND	39.8		0	0						
Aliphatic Hydrocarbon (C12-C16)	ND	39.8		0	0						
Aliphatic Hydrocarbon (C16-C21)	ND	39.8		0	0						
Aliphatic Hydrocarbon (C21-C34)	ND	39.8		0	0						
Surr: 1-Chlorooctadecane	247		397.7		62.2	50	150				

Sample ID: MB-41503	SampType: MBLK			Units: µg/L		Prep Da	te: 9/18/2	023	RunNo: 867	771	
Client ID: MBLKW	Batch ID: 41503					Analysis Da	te: 9/27/2	023	SeqNo: 181	11480	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C8-C10)	ND	79.5		0	0						
Aromatic Hydrocarbon (C10-C12)	ND	39.8		0	0						
Aromatic Hydrocarbon (C12-C16)	ND	39.8		0	0						
Aromatic Hydrocarbon (C16-C21)	ND	39.8		0	0						
Aromatic Hydrocarbon (C21-C34)	ND	39.8		0	0						
Surr: o-Terphenyl	268		397.7		67.3	50	150				

Work Order: 2309246

CLIENT: Friedman & Bruya

Project: 309284

309284

QC SUMMARY REPORT

Volatile Petroleum Hydrocarbons by NWVPH

Sample ID: LCS-41585	SampType: LCS			Units: µg/L	Prep Date: 9/26/2023				RunNo: 86901		
Client ID: LCSW	Batch ID: 41585				,				SeqNo: 1813783		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	376	40.0	400.0	0	93.9	70	130				
Aliphatic Hydrocarbon (C6-C8)	216	40.0	200.0	0	108	70	130				
Aliphatic Hydrocarbon (C8-C10)	249	40.0	200.0	0	125	70	130				
Aliphatic Hydrocarbon (C10-C12)	203	40.0	200.0	0	101	70	130				
Aromatic Hydrocarbon (C8-C10)	994	40.0	1,000	0	99.4	70	130				
Aromatic Hydrocarbon (C10-C12)	230	40.0	200.0	0	115	70	130				
Aromatic Hydrocarbon (C12-C13)	222	40.0	200.0	0	111	70	130				
Surr: 2,5-dibromotoluene	48.0		50.00		96.0	60	140				

Sample ID: MB-41585	SampType: MBLK			Units: µg/L		Prep Da	te: 9/26/20)23	RunNo: 869		
Client ID: MBLKW	Batch ID: 41585				Analysis Date: 9/27/2023				SeqNo: 18		
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	ND	40.0		0	0						
Aliphatic Hydrocarbon (C6-C8)	ND	40.0		0	0						
Aliphatic Hydrocarbon (C8-C10)	ND	40.0		0	0						
Aliphatic Hydrocarbon (C10-C12)	ND	40.0		0	0						
Aromatic Hydrocarbon (C8-C10)	ND	40.0		0	0						
Aromatic Hydrocarbon (C10-C12)	ND	40.0		0	0						
Aromatic Hydrocarbon (C12-C13)	ND	40.0		0	0						
Surr: 2,5-dibromotoluene	42.2		50.00		84.3	60	140				

Sample ID: 2309296-005ADUP	SampType: DUP			Units: µg/L	Prep Date: 9/26/2023				RunNo: 86901		
Client ID: BATCH	Batch ID: 41585					Analysis Da	te: 9/27/20	SeqNo: 1813775			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	ND	40.0		0	0			0		25	
Aliphatic Hydrocarbon (C6-C8)	ND	40.0		0	0			0		25	
Aliphatic Hydrocarbon (C8-C10)	ND	40.0		0	0			0		25	
Aliphatic Hydrocarbon (C10-C12)	ND	40.0		0	0			0		25	
Aromatic Hydrocarbon (C8-C10)	ND	40.0		0	0			0		25	

Work Order: 2309246

CLIENT: Friedman & Bruya

Project: 309284

QC SUMMARY REPORT

Volatile Petroleum Hydrocarbons by NWVPH

Sample ID: 2309296-005ADUP	Sample ID: 2309296-005ADUP SampType: DUP		mpType: DUP Units			Prep Da	te: 9/26/20	RunNo: 86901			
Client ID: BATCH	Batch ID: 41585					Analysis Da	te: 9/27/20)23	SeqNo: 181	3775	
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aromatic Hydrocarbon (C10-C12)	ND	40.0		0	0			0		25	
Aromatic Hydrocarbon (C12-C13)	ND	40.0		0	0			0		25	
Surr: 2,5-dibromotoluene	27.9		50.00		55.8	60	140		0	0	S

NOTES:

S - Outlying surrogate recovery(ies) observed.

Sample ID: 2309296-007AMS	SampType: MS	mpType: MS				Prep Da	te: 9/26/20)23	RunNo: 86901		
Client ID: BATCH	Batch ID: 41585					Analysis Da	te: 9/27/20	SeqNo: 181			
Analyte	Result	RL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Aliphatic Hydrocarbon (C5-C6)	313	40.0	400.0	0	78.3	70	130				
Aliphatic Hydrocarbon (C6-C8)	144	40.0	200.0	0	72.2	70	130				
Aliphatic Hydrocarbon (C8-C10)	163	40.0	200.0	0	81.5	70	130				
Aliphatic Hydrocarbon (C10-C12)	206	40.0	200.0	0	103	70	130				
Aromatic Hydrocarbon (C8-C10)	941	40.0	1,000	0	94.1	70	130				
Aromatic Hydrocarbon (C10-C12)	193	40.0	200.0	0	96.5	70	130				
Aromatic Hydrocarbon (C12-C13)	176	40.0	200.0	0	87.9	70	130				
Surr: 2,5-dibromotoluene	43.3		50.00		86.6	60	140				

Sample Log-In Check List

Client Name:	FB	Work Order Numb	per: 2309246	
Logged by:	Morgan Wilson	Date Received:		1:18:00 PM
	-		0/20/2020	1.10.001 W
Chain of Cus	stody	_	_	_
1. Is Chain of	Custody complete?	Yes 🖌	No 🗌	Not Present
2. How was the	ne sample delivered?	<u>Client</u>		
<u>Log In</u>				
	als present on shipping container/cooler? mments for Custody Seals not intact)	Yes 🗌	No 🗌	Not Present
4. Was an atte	empt made to cool the samples?	Yes 🖌	No 🗌	
5. Were all ite	ms received at a temperature of >2°C to 6°C *	Yes 🗸	No 🗌	
6. Sample(s) i	n proper container(s)?	Yes 🖌	No 🗌	
7. Sufficient sa	ample volume for indicated test(s)?	Yes 🗹	No 🗌	
8. Are sample	s properly preserved?	Yes 🗹	No 🗌	
9. Was preser	vative added to bottles?	Yes 🗌	No 🔽	NA 🗌
10. Is there hea	dspace in the VOA vials?	Yes	No 🗌	NA 🗹
11. Did all sam	bles containers arrive in good condition(unbroken)?	Yes 🖌	No 🗌	
12. Does paper				
13. Are matrice	s correctly identified on Chain of Custody?	Yes 🖌	No 🗌	
14. Is it clear w	hat analyses were requested?	Yes 🗹	No 🗌	
15. Were all ho	lding times able to be met?	Yes	No 🔽	
<u>Special Han</u>	<u>dling (if applicable)</u>			
16. Was client	notified of all discrepancies with this order?	Yes 🖌	No 🗌	
Perso	on Notified: Michael Erdahl Date	e:	9/20/2023	
By W	hom: Morgan Wilson Via:	🖌 eMail 🗌 Pr	none 🗌 Fax	In Person
Rega	rding: Hexavalent Chromium out of hold			
Clien	t Instructions: Okav to proceed			
17 Additional	remerke			

17. Additional remarks:

Item Information

Item #	Temp ⁰C
Sample	2.1

* Note: DoD/ELAP and TNI require items to be received at 4°C +/- 2°C

			SUBUC	SUBCONTRACT SAMPLE CHAIN OF CUSTODY	I'SAN	IPLE	CH	AIN	OFCI	USTOD	Y			2209246	8
Send Report To M	lichae	Michael Erdahl		SU	SUBCONTRACTER	Fremont	YER					_	7	Page #1of TURNAROUND TIME	of 1
	iedma	Friedman and Bruya, Inc.	Inc.	PR	PROJECT NAME/NO.	NAMI	E/NO.		_	PO#	#		X Stand	Standard TAT	
	500 4th	5500 4th Ave S		-		309284	284		_	D-456	56	_	Rush cha	Rush charges authorized by:	l by:
ate, ZIP	attle.	Seattle, WA 98108		RE	REMARKS	02			+				Dispos	SAMPLE DISPOSAL Dispose after 30 days	SAL
Phone #(206) 285-	8282	merdahl@frie	(206) 285-8282 merdahl@friedmanandbruya.com	7a.com		EIM	M						Return Will ca	Return samples Will call with instructions	ions
									ANAL	LYSES REQUESTED	QUE	STED			
Sample ID	Lab ID	Date Sampled	Time Sampled	Matrix	# of jars	EPH	VPH	cyanide	hexavalent Cr					No	Notes
MW-1		9/18/2023	1540	1540 water	57	x	x	x	х			$^{++}$			
Friedman & Bruya, Inc.	Inc.		SIGNATURE	2			PRINT NAME	NAM	Œ		a	COMPANY	NY	DATE	TIME
3012 16th Avenue West	est	Received her	all	C	Mich	Michael Erdahl	dahl			F	Friedman & Bruya	an & B	ruya	a/20/13	12.3Y
Seattle, WA 98119-2029 Ph. (206) 285-8282	620	Relinquished by:			1	All Willes	files				F	14		4/20/23	1318
Fax (206) 283-5044		Received by:													

SUBCONTRACT SAMPLE CHAIN OF CUSTODY

Cacade Laundry Summary of Depth to Water

Date	Depth to Water (ft)	Top of Casing Elevation (ft)	Water Table Elevation (ft)	Notes		
MW-1						
7/12/2018	19.99					
7/24/2018	19.68					
9/11/2023	20.33					
9/14/2023	20.33					
9/18/2023	20.80					
MW-2						
7/12/2018	24.76					
7/24/2018	24.43					
9/11/2023	24.54					
9/14/2023	24.55					
9/18/2023	24.63					
MW-3	1					
7/12/2018						
7/24/2018						
9/11/2023	19.34					
9/14/2023	19.33					
9/18/2023	21.75					
	ļ ļ					
	<u>├</u> ─────┤					

			Contamin	ant Concentra	ition (µg/L)					
Date	Diesel	Oil	Gasoline	Benzene	Toluene	Ethylbenzene	Xylenes			
CULs	500	500	800/1,000	5	1,000	700	1,000			
MW-1										
7/24/2018	2,400	U<250	2,100	6.3	1.3	6.1	9			
9/14/2023	32,000	3,100	4,900	9.2	5.0	8.4	38			
MW-2										
7/24/2018										
9/14/2023			370	3.5	U<1	3.6	U<3			
MW-3										
7/24/2018										
9/14/2023			U<100	U<1	U<1	U<1	U<3			

Cascade Laundry - Summary of Groundwater Sampling Results - Petroleum

				Contaminant Con	centration (µg/L)		
			Vinyl	cis-1,2-	trans-1,2-	1,2-Dichloro	1,2-Dichloro
Date	PCE	TCE	Chloride	Dichloroethylene	Dichloroethylene	propane	benzene
CULs	5	5	0.2	16	160	1.2	720
				MW-1			
7/24/2018	U<2	U<2	460	160	14	17	3.5
9/14/2023	U<1	U<0.5	110	1.5	8.7		
MW-2							
7/24/2018							
9/14/2023	U<1	U<0.5	0.98	U<1	U<1		
MW-3							
7/24/2018							
9/14/2023	U<1	U<0.5	0.11	2.1	U<1		

Cascade Laundry - Summary of Groundwater Sampling Results - VOCs

						Hexavalent	
Date	Chromium	Copper	Lead	Nickel	Zinc	Chromium	Cyanide
CULs	50	640	15	320	4,800	0.046	5
MW-1							
9/14/2023	1.41	U<5	U<1	28.3	15.5	U<50	U<50
MW-2							
9/14/2023							
MW-3							
9/14/2023							

Cascade Laundry - Summary of Groundwater Sampling Results - Metals

APPENDIX V

Stratum Group Field Procedures

STRATUM GROUP FIELD PROCEDURES

Site Preparatory Activities

Prior to the completion of subsurface exploration activities on the subject property, Stratum Group obtains approval for planned activities from the property owner and obtains or facilitates the public agency permits required for the desired work. Stratum Group marks the location of planned excavations or borings on the subject property with white paint and contacts the local one-call utility locating service at least two business days prior to the onset of exploration activities. Stratum Group also engages the services of a professional private utility locating radar services to minimize the potential for exploration activities to encounter and/or damage buried utilities or objects.

Soil Borings & Soil Sampling

Stratum Group engages a licensed professional drilling company to complete subsurface soil borings with a drill rig, unless hand auguring or hand-dug test pits are proposed for the site. Continuous soil cores are typically collected using Geoprobe/push probe samplers. The boring method(s) selected are indicated on the boring logs completed for the project. Stratum Group chooses the sample locations based upon researched site history and project goals with some variability based upon utility locate/GPR findings and/or conditions identified in the field.

Field Screening

Soils recovered from the borehole are examined and field screened for odor, hydrocarbon sheen, discoloration, or other obvious indications of contamination. Any such obvious indicators, if observed, are recorded on the boring logs.

A MiniRAE 3000 photoionization detector (PID) equipped with a 10.6eV lamp is utilized to field scan samples for volatile organic compounds (VOCs). To evaluate for VOCs with the PID, soil is placed into a sealed plastic bag and allowed to sit for approximately 5 minutes. The PID sampler tip is then inserted into the headspace of the plastic bag to retrieve a parts per million (ppm) concentration of VOCs. Measurements obtained from the PID are recorded on the boring log. The PID is calibrated regularly in accordance with the manufacturer's specifications using a hexane or isobutylene standard.

Soils collected from the borings are described according to the Unified Soil Classification System (USCS), with particular note to presence of colors, moisture content, presence of debris and/or indicators of contamination. These descriptions are recorded on the boring log.

Soil Sampling (from borehole)

Soil collected via soil cores from push probe equipment is sampled where contaminants are determined to be most likely based on field indications and background knowledge, such as sample depths where discoloration or odors were noted, the top of the groundwater table, or at depths associated with the suspected base of tanks or piping. Soil samples are labeled with the boring number followed by the depth of the sample. For example, sample B1-5 would have been collected from Boring B1 at 5 feet bgs (below ground surface).

Soil samples are placed into labeled laboratory supplied containers. Sample container selection is based upon laboratory recommendations for volume, container type, and preservation, if necessary. Sampling equipment is either disposable or washed with Alconox and triple-rinsed between samples. Samples are placed into an ice-chilled cooler immediately after sampling and delivered to a Washington State Department of Ecology approved laboratory for analysis. The samples are transferred under chain-of-custody protocol.

Borehole Completion

If no temporary or permanent monitoring well is going to be installed, the soil boring is backfilled with bentonite chips to approximately 1 foot below the ground surface (bgs). The rest of the hole is filled and finished to the surface with material to match the surrounding surface (e.g., asphalt, concrete, dirt, etc.). The borehole is backfilled by the licensed well driller consistent with WAC 173-360 and overseen by Stratum Group.

Soil Sampling (from excavation)

Stratum group engages a licensed excavation contractor to complete excavation activities. As in borehole sampling, soils from the sidewalls and base of the excavation area are regularly examined and field screened for obvious indications of contamination (e.g., odor, hydrocarbon sheen, discoloration, etc.). This field examination in combination with PID screening is used to direct excavation activities.

When field screening indicates that contaminant concentrations in residual soils have fallen below the cleanup standards established for the subject property, soil samples are collected from the base and sidewalls of the excavation. Where possible, samples are collected directly using hand tools that are washed with Alconox and triple-rinsed between each sample. For deeper samples, where the excavation depth is too great for Stratum Group personnel to access directly, samples are collected from the excavator bucket. Overburden slough material that collects on top of soils in the bucket is removed prior to sampling so sampled soils are representative of the desired sampling location. Samples are subsequently handled according to procedures outlined above for borehole samples.

Monitoring Well Construction & Groundwater Sampling

If groundwater is encountered during soil boring completion, samples may be collected as either a grab sample from a temporary well or from a permanent monitoring well. Prior to well purging or sample collection, the depth of the groundwater table in the borehole or monitoring well is measured using a depth-to-water meter. Prior to sample collection, water is purged from the well. For a temporary well, water is purged until the water becomes clear or turbidity is significantly reduced. For a developed monitoring well, at least three well volumes are purged prior to sampling or until field parameters as measured with a field meter (e.g., temperature, dissolved oxygen, pH, conductivity) stabilize. If low water levels or low conductivity aquifers result in the wells pumping dry during purging, purging is halted and the well is allowed to recharge until it can be purged again. Multiple rounds of purging and recharging may be completed to allow for turbidity to decrease significantly, in the case of a temporary well, or for field parameters to stabilize, in the case of a permanent monitoring well. For a developed monitoring well, at least three well volumes are purged prior to sampling or until field parameters stabilize. Total well purge volumes prior to sampling may only be reduced (i.e., less than three well volumes) if several rounds of purging and recharge do not result in sufficient purge volume within a reasonable time frame. In such cases, the reduced purge volumes will be documented. Obvious indications of contamination observed in purge water such as odors or petroleum sheens are noted on the boring logs.

In the event of low water volumes or slow recharge of the wells, less water may be purged to allow for sample collection within reasonable time frames. Obvious indications of contamination observed in purge water such as odors or petroleum sheens are noted on the boring logs.

Both well purging and subsequent water sampling are accomplished using a low-flow, peristaltic pump, as recommended by the U.S. EPA. Low-flow pumping is utilized because it is more likely to produce a sample representative of actual groundwater conditions due to its relatively low impact on aquifer characteristics and chemistry. Tubing used for well purging and sample collection is single-use and is discarded after sample collection is complete.

Groundwater samples are placed into labeled laboratory supplied containers. Sample container selection is based upon laboratory recommendations for volume, container type, and preservation, if necessary. Samples are immediately placed into an ice-chilled cooler for storage until delivery to a Washington State Department of Ecology approved laboratory.

Temporary & Monitoring Well Construction

Temporary wells are constructed using single-use slotted PVC pipe placed in the depth range of desired groundwater sampling. Blank pipe rises from the top of the screen to the surface. The screen length and placement depth are noted on the boring logs or within report text. Any reusable materials are washed and triple rinsed between uses.

Permanent monitoring wells are similarly constructed with a slotted PVC screen placed at the

desired sampling depth with non-slotted PVC to the surface. The annular space between the PVC and the borehole is filled with a silica sand filter pack, which extends approximately one to two feet above the screen. Hydrated bentonite is used to fill the annular space from the filter pack to approximately one to two feet below the ground surface to form a seal. The surface is finished with concrete surrounding a steel flush-mount or above-grade monument to protect the well and protect against surface water infiltration or placement of substances down the well casing. Well construction details are noted in the boring logs.

After construction, Stratum Group recommends engaging the services of a licensed professional land surveyor to establish the location and elevation of permanent monitoring wells. Markings are made on the north side of the well casing to establish a consistent point for collecting depth-to-water measurements. Established well casing elevations combined with depth-to-water measurements collected during groundwater sampling may then be used to model groundwater flow directions.

Well Development

After construction of a permanent monitoring well, the well is developed using either a submersible pump or disposable bailer. An agitation apparatus that consists of a stainless-steel rod with neoprene washers the diameter of the inside of the well casing is periodically dropped into the well casing to generate additional pressure and suction through the sand filter pack and further remove fine-grained sediment from the well and surrounding filter. The submersible pump and agitator rod are thoroughly washed and rinsed between wells. Well pumping and agitation proceed until purge water turbidity has reduced and stabilized. The volume of water purged during development is recorded.

Air Sampling

Air samples are commonly collected to help assess the vapor intrusion pathway for contamination into nearby structures. Air samples may be collected either as subsurface soil gas, sub-slab air, or indoor air. Sampling equipment including tubing and valve assemblies are single-use and disposable. After sampling collection, samples are delivered to a Washington State Department of Ecology approved laboratory for analysis. The samples are transferred under chain-of-custody protocol.

Sub-slab Vapor Sampling

Stratum Group engages a professional drilling contractor to install permanent and temporary subslab vapor pins. For a permanent pin with a flush-mount installation, first a 1.5-inch hole is drilled approximately 1.75 inches into the concrete slab of the structure. A 5/8-inch diameter hole is then drilled through the bottom of the slab and approximately 1 inch into the underlying soil. The vapor pin is then hammered into the open hole. At least 20 minutes is allowed to pass before beginning the sample collection process to allow for equilibration. Prior to assembling the sampling apparatus, the laboratory supplied and cleaned 1L Summa canister and ~5-minute flow

controller used for sample collection are subjected to a shut-in test to look for leaks in the sampling equipment setup and the initial vacuum is recorded.

To collect a sample, tubing recommended by the vapor pin manufacturer is attached to the barb on the pin and attached to a valve assembly provided by the laboratory. Tubing also runs from the valve assembly to the Summa canister assembly. Prior to sample collection, a leak test and shut-in test are conducted on the sampling apparatus. The leak test is conducted using either a water dam (temporary pin) or by pouring water directly into the flush-mount hole (permanent) and looking for bubbling around the vapor pin or intrusion of water into the sample tubing. A shut-in test of the sampling apparatus involves manually applying a vacuum to the canister via the purge line of the apparatus and verifying that no leaks are allowing the vacuum to rapidly disappear.

Immediately before sampling, the sampling apparatus is purged using a manually applied vacuum sufficiently to remove ambient air from the tubing. The canister valve is then opened and the sample is collected over approximately 5 minutes or until the vacuum reading on the canister is approximately 5 in/Hg, being sure to not allow the vacuum to reach zero. The canister is then closed, and the vapor pin is either removed (temporary) and the hole patched or the pin is capped and covered (permanent) for future sampling.

Indoor Air Sampling

Indoor air samples are collected using laboratory-supplied and cleaned 6L Summa canister attached to either an 8-hour or 24-hour flow controller, depending upon whether the site's use is residential or commercial, per Department of Ecology guidance. Prior to sampling, the canisters and flow controllers are subjected to a shut-in test to look for leaks in the sampling equipment setup and the initial vacuum is recorded. Sampling canisters are placed within the general breathing height zone (4 to 6 feet above the ground surface).

At the same time as indoor air sampling collection, at least one outdoor (ambient) air sample is collected of the same time period as the indoor sample(s). Contaminant concentrations detected in the ambient air samples are subtracted from contaminant concentrations detected in the indoor air samples to assess the contribution of vapor intrusion into site structures more directly.

Sampling Results Quality Assurance

The laboratory that conducts analysis of the samples collected by Stratum Group conducts their own quality assurance procedures, which typically include surrogate recovery, method blank, laboratory blank, and blank spike duplicate tests. The results of these test are reviewed by Stratum Group and any significant non-conformances or problems identified that limit our ability to use the data is addressed in the body of this report.

